Sample records for jet interaction effects

  1. Results of test MA22 in the NASA/LaRC 31-inch CFHT on an 0.010-scale model (32-0) of the space shuttle configuration 3 to determine RCS jet flow field interaction, volume 1. [wind tunnel tests for interactions of aerodynamic heating on jet flow

    NASA Technical Reports Server (NTRS)

    Kanipe, D. B.

    1976-01-01

    A wind tunnel test was conducted in the Langley Research Center 31-inch Continuous Flow Hypersonic Wind Tunnel from May 6, 1975 through June 3, 1975. The primary objectives of this test were the following: (1) to study the ability of the wind tunnel to repeat, on a run-to-run basis, data taken for identical configurations to determine if errors in repeatability could have a significant effect on jet interaction data, (2) to determine the effect of aerodynamic heating of the scale model on jet interaction, (3) to investigate the effects of elevon and body flap deflections on jet interaction, (4) to determine if the effects from jets fired separately along different axes can be added to equal the effects of the jets fired simultaneously (super position effects), (5) to study multiple jet effects, and (6) to investigate area ratio effects, i.e., the effect on jet interaction measurements of using wind tunnel nozzles with different area ratios in the same location. The model used in the test was a .010-scale model of the Space Shuttle Orbiter Configuration 3. The test was conducted at Mach 10.3 and a dynamic pressure of 150 psf. RCS chamber pressure was varied to simulate free flight dynamic pressures of 5, 7.5, 10, and 20 psf.

  2. Control of shock-wave boundary layer interaction using steady micro-jets

    NASA Astrophysics Data System (ADS)

    Verma, S. B.; Manisankar, C.; Akshara, P.

    2015-09-01

    An experimental investigation was conducted to control the amplitude of shock unsteadiness associated with the interaction induced by a cylindrical protuberance on a flat plate in a Mach 2.18 flow. The control was applied in the form of an array of steady micro air-jets of different configurations with variation in pitch and skew angle of the jets. The effect of air-jet supply pressure on control was also studied. Each of the micro-jet configurations was placed 20 boundary layer thicknesses upstream of the leading edge of the cylinder. The overall interaction is seen to get modified for all control configurations and shows a reduction in both separation- and bow-shock strengths and in triple-point height. A significant reduction in the peak rms value is also observed in the intermittent region of separation for each case. For pitched jets placed in a zig-zag configuration, good control effectiveness is achieved at control pressures similar to the stagnation pressure of the freestream. At higher control pressures, however, their obstruction component increases and if these jets are not spaced sufficiently far apart, the effectiveness of their control begins to drop due to the beginning of spanwise jet-to-jet interaction. On the other hand, pitching or skewing the jets to reduces the obstruction component considerably which at lower control pressures shows lower effectiveness. But at higher control pressure, the effectiveness of these configurations continues to increase unlike the pitched jets.

  3. Interaction of argon and helium plasma jets and jets arrays with account for gravity

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu.; Naidis, George V.; Panov, Vladislav A.; Wang, Ruixue; Zhao, Yong; Shao, Tao

    2018-06-01

    In this paper, we discuss results from an experimental and computational study of the properties of a single jet and two-tube jet arrays operating in argon and helium. The jets are positioned horizontally. It was shown in experiments that the helium plasma plume bends upward and the plumes in the two-tubes jet array tend to divert due to the jet-jet interaction. To investigate these potential interactions, a computational study was performed of one- and two-tube argon and helium jet arrays having variable spacing. The effects of buoyancy forces on the jet-to-jet interaction of the plasma plumes are also investigated. Velocities of ionization waves inside and outside the tubes are estimated and compared for the argon and helium ionization waves. We show that in helium jet-jet interactions primarily depend on the spacing between the tubes and on the buoyancy forces. The helium plumes tend to merge into one single stream before dissipating, while the argon plasma plumes are less sensitive to the spacing of the jet tubes.

  4. Coupling hydrodynamics and radiation calculations for star-jet interactions in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    de la Cita, V. M.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Khangulyan, D.; Perucho, M.

    2016-06-01

    Context. Stars and their winds can contribute to the non-thermal emission in extragalactic jets. Because of the complexity of jet-star interactions, the properties of the resulting emission are closely linked to those of the emitting flows. Aims: We simulate the interaction between a stellar wind and a relativistic extragalactic jet and use the hydrodynamic results to compute the non-thermal emission under different conditions. Methods: We performed relativistic axisymmetric hydrodynamical simulations of a relativistic jet interacting with a supersonic, non-relativistic stellar wind. We computed the corresponding streamlines out of the simulation results and calculated the injection, evolution, and emission of non-thermal particles accelerated in the jet shock, focusing on electrons or e±-pairs. Several cases were explored, considering different jet-star interaction locations, magnetic fields, and observer lines of sight. The jet luminosity and star properties were fixed, but the results are easily scalable when these parameters are changed. Results: Individual jet-star interactions produce synchrotron and inverse Compton emission that peaks from X-rays to MeV energies (depending on the magnetic field), and at ~100-1000 GeV (depending on the stellar type), respectively. The radiation spectrum is hard in the scenarios explored here as a result of non-radiative cooling dominance, as low-energy electrons are efficiently advected even under relatively high magnetic fields. Interactions of jets with cold stars lead to an even harder inverse Compton spectrum because of the Klein-Nishina effect in the cross section. Doppler boosting has a strong effect on the observer luminosity. Conclusions: The emission levels for individual interactions found here are in the line of previous, more approximate, estimates, strengthening the hypothesis that collective jet-star interactions could significantly contribute at high energies under efficient particle acceleration.

  5. Hydrodynamic Stability Analysis of Multi-jet Effects in Swirling Jet Combustors

    NASA Astrophysics Data System (ADS)

    Emerson, Benjamin; Lieuwen, Tim

    2016-11-01

    Many practical combustion devices use multiple swirling jets to stabilize flames. However, much of the understanding of swirling jet dynamics has been generated from experimental and computational studies of single reacting, swirling jets. A smaller body of literature has begun to explore the effects of multi-jet systems and the role of jet-jet interactions on the macro-system dynamics. This work uses local temporal and spatio-temporal stability analyses to isolate the hydrodynamic interactions of multiple reacting, swirling jets, characterized by jet diameter, D, and spacing, L. The results first identify the familiar helical modes in the single jet. Comparison to the multi-jet configuration reveals these same familiar modes simultaneously oscillating in each of the jets. Jet-jet interaction is mostly limited to a spatial synchronization of each jet's oscillations at the jet spacing values analyzed here (L/D =3.5). The presence of multiple jets vs a single jet has little influence on the temporal and absolute growth rates. The biggest difference between the single and multi-jet configurations is the presence of nearly degenerate pairs of hydrodynamic modes in the multi-jet case, with one mode dominated by oscillations in the inner jet, and the other in the outer jets. The close similarity between the single and multi-jet hydrodynamics lends insight into experiments from our group.

  6. Experimental and computational investigation of supersonic counterflow jet interaction in atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Ivanchenko, Oleksandr

    The flow field generated by the interaction of a converging-diverging nozzle (exit diameter, D=26 mm M=1.5) flow and a choked flow from a minor jet (exit diameter, d=2.6 mm) in a counterflow configuration was investigated. During the tests both the main C-D nozzle and the minor jet stagnation pressures were varied as well as the region of interaction. Investigations were made in the near field, at most about 2D distance, and in the far field, where the repeated patterns of shock waves were eliminated by turbulence. Both nozzles exhausted to the atmospheric pressure conditions. The flow physics was studied using Schlieren imaging techniques, Pitot-tube, conical Mach number probe, Digital Particle Image Velocimetry (DPIV) and acoustic measurement methods. During the experiments in the far field the jets interaction was observed as the minor jet flow penetrates into the main jet flow. The resulting shock structure caused by the minor jet's presence was dependent on the stagnation pressure ratio between the two jets. The penetration length of the minor jet into the main jet was also dependent on the stagnation pressure ratio. In the far field, increasing the minor jet stagnation pressure moved the bow shock forward, towards the main jet exit. In the near field, the minor jet flow penetrates into the main jet flow, and in some cases modified the flow pattern generated by the main jet, revealing a new effect of jet flow interaction that was previously unknown. A correlation function between the flow modes and the jet stagnation pressure ratios was experimentally determined. Additionally the flow interaction between the main and minor jets was simulated numerically using FLUENT. The optimal mesh geometry was found and the k-epsilon turbulence model was defined as the best fit. The results of the experimental and computational studies were used to describe the shock attenuation effect as self-sustain oscillations in supersonic flow. The effects described here can be used in different flow fields to reduce the total pressure losses that occur due to the presence of shock waves. It will result in better designs of ramjet/scramjets combustors, fighter aircraft inlets and as well as in noise reduction of existing aircraft engines. It can also improve performance of rotating machinery; ramjet fuel injectors and aircraft control mechanisms.

  7. Jet-Surface Interaction - High Aspect Ratio Nozzle Test: Test Summary

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2016-01-01

    The Jet-Surface Interaction High Aspect Ratio Nozzle Test was conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center in the fall of 2015. There were four primary goals specified for this test: (1) extend the current noise database for rectangular nozzles to higher aspect ratios, (2) verify data previously acquired at small-scale with data from a larger model, (3) acquired jet-surface interaction noise data suitable for creating verifying empirical noise models and (4) investigate the effect of nozzle septa on the jet-mixing and jet-surface interaction noise. These slides give a summary of the test with representative results for each goal.

  8. Computational Analysis of Ares I Roll Control System Jet Interaction Effects on Rolling Moment

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Pao, S. Paul; Abdol-Hamid, Khaled S.

    2011-01-01

    The computational flow solver USM3D was used to investigate the jet interaction effects from the roll control system on the rolling moment of the Ares I full protuberance configuration at wind tunnel Reynolds numbers. Solutions were computed at freestream Mach numbers from M = 0.5 to M = 5 at the angle of attack 0deg, at the angle of attack 3.5deg for a roll angle of 120deg, and at the angle of attack 7deg for roll angles of 120deg and 210deg. Results indicate that the RoCS housing provided a beneficial jet interaction effect on vehicle rolling moment for M > or = 0.9. Most of the components downstream of the roll control system housing contributed to jet interaction penalties on vehicle rolling moment.

  9. Effect of reaction control system jet-flow field interactions on a 0.015 scale model space shuttle orbiter aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Monta, W. J.; Rausch, J. R.

    1973-01-01

    The effects of the reaction control system (RCS) jet-flow field interactions on the space shuttle orbiter system during entry are discussed. The primary objective of the test program was to obtain data for the shuttle orbiter configuration to determine control amplification factors resulting from jet interaction between the RCS plumes and the external flow over the vehicle. A secondary objective was to provide data for comparison and improvement of analytic jet interaction prediction techniques. The test program was divided into two phases; (1) force and moment measurements were made with and without RCS blowing, investigating environment parameters (R sub e, Alpha, Beta), RCS plume parameters (Jet pressure ratio, momentum ratio and thrust level), and geometry parameters (RCS pod locations) on the orbiter model, (2) oil flow visualization tests were conducted on a dummy balance at the end of the test.

  10. A Parametric Study of Jet Interactions with Rarefied Flow

    NASA Technical Reports Server (NTRS)

    Glass, C. E.

    2004-01-01

    Three-dimensional computational techniques, in particular the uncoupled CFD-DSMC of the present study, are available to be applied to problems such as jet interactions with variable density regions ranging from a continuum jet to a rarefied free stream. When the value of the jet to free stream momentum flux ratio approximately greater than 2000 for a sharp leading edge flat plate forward separation vortices induced by the jet interaction are present near the surface. Also as the free stream number density n (infinity) decreases, the extent and magnitude of normalized pressure increases and moves upstream of the nozzle exit. Thus for the flat plate model the effect of decreasing n (infinity) is to change the sign of the moment caused by the jet interaction on the flat plate surface.

  11. Some characteristics of airfoil-jet interaction with Mach number nonuniformity

    NASA Technical Reports Server (NTRS)

    Lan, C. E.

    1974-01-01

    The image method is used to examine the upper-surface-blowing jet-airfoil interaction with Mach number nonuniformity. The formulation represents an extension of the classical incompressible results (Ting and Liu, 1969; Koning, 1963). Some characteristics of the interaction are discussed. The main assumptions are (1) inviscid linear theory, (2) two-dimensional jet, (3) no turbulent mixing, and (4) no airfoil thickness effect. A plane jet with Mach number M sub 2 is assumed to be imbedded in a freestream of Mach number M sub 1. A thin airfoil is placed at a distance h below the lower jet surface. For h = 0, this may represent an idealized configuration with an upper-surface blowing jet.

  12. Advanced Response Surface Modeling of Ares I Roll Control Jet Aerodynamic Interactions

    NASA Technical Reports Server (NTRS)

    Favaregh, Noah M.

    2010-01-01

    The Ares I rocket uses roll control jets. These jets have aerodynamic implications as they impinge on the surface and protuberances of the vehicle. The jet interaction on the body can cause an amplification or a reduction of the rolling moment produced by the jet itself, either increasing the jet effectiveness or creating an adverse effect. A design of experiments test was planned and carried out using computation fluid dynamics, and a subsequent response surface analysis ensued on the available data to characterize the jet interaction across the ascent portion of the Ares I flight envelope. Four response surface schemes were compared including a single response surface covering the entire design space, separate sector responses that did not overlap, continuously overlapping surfaces, and recursive weighted response surfaces. These surfaces were evaluated on traditional statistical metrics as well as visual inspection. Validation of the recursive weighted response surface was performed using additionally available data at off-design point locations.

  13. Interaction of two-dimensional transverse jet with a supersonic mainstream

    NASA Technical Reports Server (NTRS)

    Kraemer, G. O.; Tiwari, S. N.

    1983-01-01

    The interaction of a two dimensional sonic jet injected transversely into a confined main flow was studied. The main flow consisted of air at a Mach number of 2.9. The effects of varying the jet parameters on the flow field were examined using surface pressure and composition data. Also, the downstream flow field was examined using static pressure, pitot pressure, and composition profile data. The jet parameters varied were gapwidth, jet static pressure, and injectant species of either helium or nitrogen. The values of the jet parameters used were 0.039, 0.056, and 0.109 cm for the gapwidth and 5, 10, and 20 for the jet to mainstream static pressure ratios. The features of the flow field produced by the mixing and interaction of the jet with the mainstream were related to the jet momentum. The data were used to demonstrate the validity of an existing two dimensional elliptic flow code.

  14. Reducing Propulsion Airframe Aeroacoustic Interactions With Uniquely Tailored Chevrons: 3. Jet-Flap Interaction

    NASA Technical Reports Server (NTRS)

    Thomas, Russ H.; Mengle, Vinod G.; Brunsniak, Leon; Elkoby, Ronen

    2006-01-01

    Propulsion airframe aeroacoustic (PAA) interactions, resulting from the integration of engine and airframe, lead to azimuthal asymmetries in the flow/acoustic field, e.g., due to the interaction between the exhaust jet flow and the pylon, the wing and its high-lift devices, such as, flaps and flaperons. In the first two parts of this series we have presented experimental results which show that isolated and installed nozzles with azimuthally varying chevrons (AVCs) can reduce noise more than conventional chevrons when integrated with a pylon and a wing with flaps at take-off conditions. In this paper, we present model-scale experimental results for the reduction of jet-flap interaction noise source due to these AVCs and document the PAA installation effects (difference in noise between installed and isolated nozzle configurations) at both approach and take-off conditions. It is found that the installation effects of both types of chevron nozzles, AVCs and conventional, are reversed at approach and take-off, in that there is more installed noise reduction at approach and less at take-off compared to that of the isolated nozzles. Moreover, certain AVCs give larger total installed noise benefits at both conditions compared to conventional chevrons. Phased microphone array results show that at approach conditions (large flap deflection, low jet speed and low ambient Mach number), chevrons gain more noise benefit from reducing jetflap interaction noise than they do from quieting the jet plume noise source which is already weak at these low jet speeds. In contrast, at take-off (small flap deflection, high jet speed and high ambient Mach number) chevrons reduce the dominant jet plume noise better than the reduction they create in jet-flap interaction noise source. In addition, fan AVCs with enhanced mixing near the pylon are found to reduce jet-flap interaction noise better than conventional chevrons at take-off.

  15. Impact of red giant/AGB winds on active galactic nucleus jet propagation

    NASA Astrophysics Data System (ADS)

    Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.

    2017-10-01

    Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to the mass-load of the jet and thus affect its dynamics. Shear layer mass-entrainment could be important. The interaction structure can be a source of significant non-thermal emission.

  16. Flow Physics of Synthetic Jet Interactions on a Sweptback Model with a Control Surface

    NASA Astrophysics Data System (ADS)

    Monastero, Marianne; Amitay, Michael

    2016-11-01

    Active flow control using synthetic jets can be used on aerodynamic surfaces to improve performance and increase fuel efficiency. The flowfield resulting from the interaction of the jets with a separated crossflow with a spanwise component must be understood to determine actuator spacing for aircraft integration. The current and previous work showed adjacent synthetic jets located upstream of a control surface hingeline on a sweptback model interact with each other under certain conditions. Whether these interactions are constructive or destructive is dependent on the spanwise spacing of the jets, the severity of separation over the control surface, and the magnitude of the spanwise flow. Measuring and understanding the detailed flow physics of the flow structures emanating from the synthetic jet orifices and their interactions with adjacent jets of varying spacings is the focus of this work. Wind tunnel experiments were conducted at the Rensselaer Polytechnic Institute Subsonic Wind Tunnel using stereo particle image velocimetry (SPIV) and pressure measurements to study the effect that varying the spanwise spacing has on the overall performance. Initial SPIV data gave insight into defining and understanding the mechanisms behind the beneficial or detrimental jets interactions.

  17. Influence of air-jet vortex generator diameter on separation region

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard

    2013-08-01

    Control of shock wave and boundary layer interaction continues to attract a lot of attention. In recent decades several methods of interaction control have been investigated. The research has mostly concerned solid (vane type) vortex generators and transpiration methods of suction and blowing. This investigation concerns interaction control using air-jets to generate streamwise vortices. The effectiveness of air-jet vortex generators in controlling separation has been proved in a previous research. The present paper focuses on the influence of the vortex generator diameter on the separation region. It presents the results of experimental investigations and provides new guidelines for the design of air-jet vortex generators to obtain more effective separation control.

  18. Flow and temperature fields following injection of a jet normal to a cross stream

    NASA Technical Reports Server (NTRS)

    Goldstein, R. J.; Ramsey, J. W.; Eriksen, V. L.

    1978-01-01

    The interaction of a jet entering into a freestream normal to the main flow direction has been studied with particular attention directed to visualization of the large-scale flow interactions and to measurement of the film-cooling performance. Large eddies are apparent downstream of the entering jet even at moderate blowing rate (defined as the ratio of the mass velocity of the jet to the mass velocity of the freestream). At higher blowing rate, there is only intermittent contact between the mass from the jet and the downstream wall. The film cooling downstream from a single normal jet yields a lower centerline effectiveness compared to an inclined jet through a greater lateral spreading. The greater spreading provides a more uniform effectiveness across the span of the downstream wall, in particular at large blowing rate.

  19. STOL landing thrust: Reverser jet flowfields

    NASA Technical Reports Server (NTRS)

    Kotansky, D. R.; Glaze, L. W.

    1987-01-01

    Analysis tools and modeling concepts for jet flow fields encountered upon use of thrust reversers for high performance military aircraft are described. A semi-empirical model of the reverser ground wall jet interaction with the uniform cross flow due to aircraft forward velocity is described. This ground interaction model is used to demonstrate exhaust gas ingestion conditions. The effects of control of exhaust jet vector angle, lateral splay, and moving versus fixed ground simulation are discussed. The Adler/Baron jet-in-cross flow model is used in conjunction with three dimensional panel methods to investigate the upper surface jet induced flow field.

  20. Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2016-01-01

    The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.

  1. Viscous-inviscid calculations of jet entrainment effects on the subsonic flow over nozzle afterbodies

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1980-01-01

    A viscous-inviscid interaction model was developed to account for jet entrainment effects in the prediction of the subsonic flow over nozzle afterbodies. The model is based on the concept of a weakly interacting shear layer in which the local streamline deflections due to entrainment are accounted for by a displacement-thickness type of correction to the inviscid plume boundary. The entire flow field is solved in an iterative manner to account for the effects on the inviscid external flow of the turbulent boundary layer, turbulent mixing and chemical reactions in the shear layer, and the inviscid jet exhaust flow. The components of the computational model are described, and numerical results are presented to illustrate the interactive effects of entrainment on the overall flow structure. The validity of the model is assessed by comparisons with data obtained form flow-field measurements on cold-air jet exhausts. Numerical results and experimental data are also given to show the entrainment effects on nozzle boattail drag under various jet exhaust and free-stream flow conditions.

  2. Analytical solutions of hypersonic type IV shock - shock interactions

    NASA Astrophysics Data System (ADS)

    Frame, Michael John

    An analytical model has been developed to predict the effects of a type IV shock interaction at high Mach numbers. This interaction occurs when an impinging oblique shock wave intersects the most normal portion of a detached bow shock. The flowfield which develops is complicated and contains an embedded jet of supersonic flow, which may be unsteady. The jet impinges on the blunt body surface causing very high pressure and heating loads. Understanding this type of interaction is vital to the designers of cowl lips and leading edges on air- breathing hypersonic vehicles. This analytical model represents the first known attempt at predicting the geometry of the interaction explicitly, without knowing beforehand the jet dimensions, including the length of the transmitted shock where the jet originates. The model uses a hyperbolic equation for the bow shock and by matching mass continuity, flow directions and pressure throughout the flowfield, a prediction of the interaction geometry can be derived. The model has been shown to agree well with the flowfield patterns and properties of experiments and CFD, but the prediction for where the peak pressure is located, and its value, can be significantly in error due to a lack of sophistication in the model of the jet fluid stagnation region. Therefore it is recommended that this region of the flowfield be modeled in more detail and more accurate experimental and CFD measurements be used for validation. However, the analytical model has been shown to be a fast and economic prediction tool, suitable for preliminary design, or for understanding the interactions effects, including the basic physics of the interaction, such as the jet unsteadiness. The model has been used to examine a wide parametric space of possible interactions, including different Mach number, impinging shock strength and location, and cylinder radius. It has also been used to examine the interaction on power-law shaped blunt bodies, a possible candidate for hypersonic leading edges. The formation of vortices at the termination shock of the supersonic jet has been modeled using the analytical method. The vortices lead to deflections in the jet terminating flow, and the presence of the cylinder surface seems to causes the vortices to break off the jet resulting in an oscillation in the jet flow.

  3. Experimental Measurement of RCS Jet Interaction Effects on a Capsule Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.; Watkins, A. Neal; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Dyakonov, Artem A.

    2008-01-01

    An investigation was made in NASA Langley Research Center s 31-Inch Mach 10 Tunnel to determine the effects of reaction-control system (RCS) jet interactions on the aft-body of a capsule entry vehicle. The test focused on demonstrating and improving advanced measurement techniques that would aid in the rapid measurement and visualization of jet interaction effects for the Orion Crew Exploration Vehicle while providing data useful for developing engineering models or validation of computational tools used to assess actual flight environments. Measurements included global surface imaging with pressure and temperature sensitive paints and three-dimensional flow visualization with a scanning planar laser induced fluorescence technique. The wind tunnel model was fabricated with interchangeable parts for two different aft-body configurations. The first, an Apollo-like configuration, was used to focus primarily on the forward facing roll and yaw jet interactions which are known to have significant aft-body heating augmentation. The second, an early Orion Crew Module configuration (4-cluster jets), was tested blowing only out of the most windward yaw jet, which was expected to have the maximum heating augmentation for that configuration. Jet chamber pressures and tunnel flow conditions were chosen to approximate early Apollo wind tunnel test conditions. Maximum heating augmentation values measured for the Apollo-like configuration (>10 for forward facing roll jet and 4 for yaw jet) using temperature sensitive paint were shown to be similar to earlier experimental results (Jones and Hunt, 1965) using a phase change paint technique, but were acquired with much higher surface resolution. Heating results for the windward yaw jet on the Orion configuration had similar augmentation levels, but affected much less surface area. Numerical modeling for the Apollo-like yaw jet configuration with laminar flow and uniform jet outflow conditions showed similar heating patterns, qualitatively, but also showed significant variation with jet exit divergence angle, with as much as 25 percent variation in heat flux intensity for a 10 degree divergence angle versus parallel outflow. These results along with the fabrication methods and advanced measurement techniques developed will be used in the next phase of testing and evaluation for the updated Orion RCS configuration.

  4. Unsteady Aerodynamic Simulations of a Finned Projectile at a Supersonic Speed With Jet Interaction

    DTIC Science & Technology

    2014-06-01

    20 4.4 Transient Effects During the Jet Event and Time-Accuracy of...35 Figure 27. Transient effects of jet maneuver event for the no initial angular...rate case. ................36 Figure 28. Effect of time step on the coupled solution for the initial low roll rate case: (a) roll rate, (b) roll angle

  5. Cometary jets in interaction with the solar wind: a hybrid simulation study

    NASA Astrophysics Data System (ADS)

    Wiehle, Stefan; Motschmann, Uwe; Gortsas, Nikolaos; Mueller, Joachim; Kriegel, Hendrik; Koenders, Christoph; Glassmeier, Karl-Heinz

    The effect of a cometary jet on the solar wind interaction is studied using comet 67P/Churyumov-Gerasimenko as case study. This comet is the target of the Rosetta-mission which will arrive in 2014. Observations suggest that cometary outgassing is confined to only a few percent of the cometary surface; thus, the measurement of jets is expected. Most former comet simulations did not attend to this fact and used an isotropic outgassing scheme or simplified outgassing patterns. Here, a single sun-facing jet is set to be the only source of cometary gas produc-tion. Using an analytic profile, this outgassing jet was implemented in a hybrid simulation code which treats protons and cometary heavy ions as particles and electrons as massless fluid. In a simulation series, the geometric parameters of the jet were varied to study the effect of different opening angles while the integrated outgassing rate remained constant. It was shown that the resulting solar wind interaction is highly dependent on the geometry of the jet. The plasma-structures like the solar wind pile-up found in the situation with isotropic outgassing are moved more and more sunward as the opening angle of the jet decreases. Furthermore, the cometary ion tail shows some kind of splitting which is not known from isotropic models.

  6. Identifying Jets Using Artifical Neural Networks

    NASA Astrophysics Data System (ADS)

    Rosand, Benjamin; Caines, Helen; Checa, Sofia

    2017-09-01

    We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.

  7. Jet-Surface Interaction Test: Far-Field Noise Results

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2012-01-01

    Many configurations proposed for the next generation of aircraft rely on the wing or other aircraft surfaces to shield the engine noise from the observers on the ground. However, the ability to predict the shielding effect and any new noise sources that arise from the high-speed jet flow interacting with a hard surface is currently limited. Furthermore, quality experimental data from jets with surfaces nearby suitable for developing and validating noise prediction methods are usually tied to a particular vehicle concept and, therefore, very complicated. The Jet/Surface Interaction Test was intended to supply a high quality set of data covering a wide range of surface geometries and positions and jet flows to researchers developing aircraft noise prediction tools. During phase one, the goal was to measure the noise of a jet near a simple planar surface while varying the surface length and location in order to: (1) validate noise prediction schemes when the surface is acting only as a jet noise shield and when the jet/surface interaction is creating additional noise, and (2) determine regions of interest for more detailed tests in phase two. To meet these phase one objectives, a flat plate was mounted on a two-axis traverse in two distinct configurations: (1) as a shield between the jet and the observer (microphone array) and (2) as a reflecting surface on the opposite side of the jet from the observer.

  8. Study of the effect of collisionality and cooling on the interactions of counter-streaming plasma flows as a function of wire material

    NASA Astrophysics Data System (ADS)

    Collins, Gilbert; Valenzuela, Julio; Aybar, Nicholas; Conti, Fabio; Beg, Farhat

    2017-10-01

    We report on the effects wire material on collisionality and radiative cooling on the interactions of counter-streaming plasma jets produced by conical wire arrays on the 200 kA GenASIS driver. In these interactions, mean free path (λmfp) scales with jet velocity (vjet4),atomic mass (A2), and ionization (Z*-4), while cooling scales with atomic mass. By changing the material of the jets one can create slowly cooling, weakly collisional regimes using C, Al, or Cu, or strongly cooled, effectively collisionless plasmas using Mo or W. The former produced smooth shocks soon after the jets collide (near the peak current of 150 ns) that grew in size over time. Interactions of the latter produced multiple structures of a different shape, at a later time ( 300 ns) that dissipated rapidly compared to the lower Z materials. We will report on the scaleability of these different materials to astrophysical phenomena. This work was partially supported by the Department of Energy Grant Number DE-SC0014493.

  9. The ground vortex flow field associated with a jet in a cross flow impinging on a ground plane for uniform and annular turbulent axisymmetric jets. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Cavage, William M.; Kuhlman, John M.

    1993-01-01

    An experimental study was conducted of the impingement of a single circular jet on a ground plane in a cross flow. This geometry is a simplified model of the interaction of propulsive jet exhaust from a V/STOL aircraft with the ground in forward flight. Jets were oriented normal to the cross flow and ground plane. Jet size, cross flow-to-jet velocity ratio, ground plane-to-jet board spacing, and jet exit turbulence level and mean velocity profile shape were all varied to determine their effects on the size of the ground vortex interaction region which forms on the ground plane, using smoke injection into the jet. Three component laser Doppler velocimeter measurements were made with a commercial three color system for the case of a uniform jet with exit spacing equal to 5.5 diameters and cross flow-to-jet velocity ratio equal to 0.11. The flow visualization data compared well for equivalent runs of the same nondimensional jet exit spacing and the same velocity ratio for different diameter nozzles, except at very low velocity ratios and for the larger nozzle, where tunnel blockage became significant. Variation of observed ground vortex size with cross flow-to-jet velocity ratio was consistent with previous studies. Observed effects of jet size and ground plane-to-jet board spacing were relatively small. Jet exit turbulence level effects were also small. However, an annular jet with a low velocity central core was found to have a significantly smaller ground vortex than an equivalent uniform jet at the same values of cross flow-to-jet velocity ratio and jet exit-to-ground plane spacing. This may suggest a means of altering ground vortex behavior somewhat, and points out the importance of proper simulation of jet exit velocity conditions. LV data indicated unsteady turbulence levels in the ground vortex in excess of 70 percent.

  10. Deflection of jets induced by jet-cloud and jet-galaxy interactions

    NASA Astrophysics Data System (ADS)

    Mendoza, S.; Longair, M. S.

    2001-06-01

    The model first introduced by Raga & Cantó in which astrophysical jets are deflected on passing through an isothermal high-density region is generalized by taking into account gravitational effects on the motion of the jet as it crosses the high-density cloud. The problem is also generalized for relativistic jets in which gravitational effects induced by the cloud are neglected. Two further cases, classical and relativistic, are discussed for the cases in which the jet is deflected on passing through the interstellar gas of a galaxy in which a dark matter halo dominates the gravitational potential. The criteria for the stability of jets due to the formation of internal shocks are also discussed.

  11. Aerodynamic Interactions of Propulsive Deceleration and Reaction Control System Jets on Mars-Entry Aeroshells

    NASA Astrophysics Data System (ADS)

    Alkandry, Hicham

    Future missions to Mars, including sample-return and human-exploration missions, may require alternative entry, descent, and landing technologies in order to perform pinpoint landing of heavy vehicles. Two such alternatives are propulsive deceleration (PD) and reaction control systems (RCS). PD can slow the vehicle during Mars atmospheric descent by directing thrusters into the incoming freestream. RCS can provide vehicle control and steering by inducing moments using thrusters on the hack of the entry capsule. The use of these PD and RCS jets, however, involves complex flow interactions that are still not well understood. The fluid interactions induced by PD and RCS jets for Mars-entry vehicles in hypersonic freestream conditions are investigated using computational fluid dynamics (CFD). The effects of central and peripheral PD configurations using both sonic and supersonic jets at various thrust conditions are examined in this dissertation. The RCS jet is directed either parallel or transverse to the freestream flow at different thrust conditions in order to examine the effects of the thruster orientation with respect to the center of gravity of the aeroshell. The physical accuracy of the computational method is also assessed by comparing the numerical results with available experimental data. The central PD configuration decreases the drag force acting on the entry capsule due to a shielding effect that prevents mass and momentum in the hypersonic freestream from reaching the aeroshell. The peripheral PD configuration also decreases the drag force by obstructing the flow around the aeroshell and creating low surface pressure regions downstream of the PD nozzles. The Mach number of the PD jets, however, does not have a significant effect on the induced fluid interactions. The reaction control system also alters the flowfield, surface, and aerodynamic properties of the aeroshell, while the jet orientation can have a significant effect on the control effectiveness of the RCS.

  12. Computational Analysis of the Flow and Acoustic Effects of Jet-Pylon Interaction

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Thomas, Russell H.; Abdol-Hamid, K. S.; Pao, S. Paul; Elmiligui, Alaa A.; Massey, Steven J.

    2005-01-01

    Computational simulation and prediction tools were used to understand the jet-pylon interaction effect in a set of bypass-ratio five core/fan nozzles. Results suggest that the pylon acts as a large scale mixing vane that perturbs the jet flow and jump starts the jet mixing process. The enhanced mixing and associated secondary flows from the pylon result in a net increase of noise in the first 10 diameters of the jet s development, but there is a sustained reduction in noise from that point downstream. This is likely the reason the pylon nozzle is quieter overall than the baseline round nozzle in this case. The present work suggests that focused pylon design could lead to advanced pylon shapes and nozzle configurations that take advantage of propulsion-airframe integration to provide additional noise reduction capabilities.

  13. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Li, Jun; Jin, Di; Tang, Mengxiao; Wu, Yun; Xiao, Lianghua

    2018-01-01

    We come up with a control strategy for suppression of supersonic flow separation based on high-frequency Counter-flow Plasma Synthetic Jet Actuator (CPSJA). The main purpose of this investigation is to verify if its control authority can be enhanced by the jet/shock interaction. We use a blunt nose to generate a bow shock, a step on a flat plate to introduce a massive separation in a Mach 2 wind tunnel, and the CPSJA to generate Plasma Synthetic Jet (PSJ). In this study, pulsed capacitive discharge is provided for an array of CPSJAs, which makes the actuation (discharge) frequency f1 = 1 kHz, f2 = 2 kHz and f3 = 3 kHz. We use the high-speed schlieren imaging and fast response pressure transducers as well as a numerical simulation to investigate the quiescent PSJ properties, the interaction between the jet and bow shock, and its disturbance effect on the downstream separated region. The schlieren images show that PSJ is characterized by a succession of vortex rings; the jet strength weakens with the increase of frequency. A 4.5 mN jet thrust is found for all the frequencies. The simulation results show that jet/shock interaction produces vorticity in the vortex ring of the jet, enhancing turbulent mixing in PSJ so that a great deal of momentum is produced into the flow. We found the downstream flow is significantly disturbed by the enhanced actuation. Actuation with frequency of f2, f3 which is close to the natural frequency fn of the separation bubble suppresses the separation with the upstream laminar boundary layer being periodically attenuated, which has a better control effect than f1. The control effect is sensitive to the position where PSJ interacts with the shear layer, but the amount of energy deposited in one pulse is not crucial in a separation reduction in the experiment.

  14. Effect of Pulsed Plasma Jets on the Recovering Boundary Layer Downstream of a Reflected Shock Interaction

    NASA Astrophysics Data System (ADS)

    Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus

    2015-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.

  15. Noise from a Supersonic Round Jet Discharging Into a Duct

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Fagan, A. F.

    2014-01-01

    In an effort to understand an 'unwanted noise' problem occasionally encountered in ground test facilities, the interaction of a jet flow with a duct is studied in a model scale experiment. While the interaction of subsonic jets was studied earlier, that of supersonic jets is considered in this paper. The effect of the presence of a cylindrical duct in the path of the jet is studied through sound pressure level spectral measurements as well as schlieren flow visualization. When the jet involves screech tones the placement of the duct is found to make only minor effects on the tones themselves as well as on the high frequency noise. However, there is increased energy at low frequencies. The increase in low frequency noise becomes clearer when screech is eliminated from the jet by two small tabs placed at the nozzle exit. It is shown that spectral peaks and increased sound pressure levels occur at frequencies corresponding to the axial acoustic resonance modes of the duct. These peaks persist into the supersonic regime, however, their amplitudes diminish relative to increasing spectral amplitudes at other frequencies with increasing jet Mach number. A wire-mesh screen attached to the end of the duct effectively suppresses such unwanted noise at subsonic as well as supersonic conditions.

  16. Heat Transfer of Confined Impinging Air-water Mist Jet

    NASA Astrophysics Data System (ADS)

    Chang, Shyy Woei; Su, Lo May

    This paper describes the detailed heat transfer distributions of an atomized air-water mist jet impinging orthogonally onto a confined target plate with various water-to-air mass-flow ratios. A transient technique was used to measure the full field heat transfer coefficients of the impinging surface. Results showed that the high momentum mist-jet interacting with the water-film and wall-jet flows created a variety of heat transfer contours on the impinging surface. The trade-off between the competing influences of the different heat transfer mechanisms involving in an impinging mist jet made the nonlinear variation tendency of overall heat transfer against the increase of water-to-air mass-flow ratio and extended the effective cooling region. With separation distances of 10, 8, 6 and 4 jet-diameters, the spatially averaged heat transfer values on the target plate could respectively reach about 2.01, 1.83, 2.43 and 2.12 times of the equivalent air-jet values, which confirmed the applicability of impinging mist-jet for heat transfer enhancement. The optimal choices of water-to-air mass-flow ratio for the atomized mist jet required the considerations of interactive and combined effects of separation distance, air-jet Reynolds number and the water-to-air mass-flow ratio into the atomized nozzle.

  17. Distance effect on the behavior of an impinging swirling jet by PIV and flow visualizations

    NASA Astrophysics Data System (ADS)

    Felli, Mario; Falchi, Massimo; Pereira, Francisco Josè Alves

    2010-02-01

    The present paper deals with the problem of an impinging swirling jet against a wall. The study concerned a detailed experimental investigation on the jet-wall interaction using PIV and flow visualizations over a range of operating conditions in which the distance of the ducted propeller from the wall was changed. The influence of the impingement distance and the swirl number (i.e., ratio between the axial fluxes of the swirl and the axial momentum) as well as the interaction between the jet deformation and the perturbation induced on the wall is discussed in this paper.

  18. RCS jet-flow field interaction effects on the aerodynamics of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.; Roberge, A. M.

    1973-01-01

    A study was conducted to determine the external effects caused by operation of the reaction control system during entry of the space shuttle orbiter. The effects of jet plume-external flow interactions were emphasized. Force data were obtained for the basic airframe characteristics plus induced effects when the reaction control system is operating. Resulting control amplification and/or coupling were derived and their effects on the aerodynamic stability and control of the orbiter and the reaction control system thrust were determined.

  19. Plasma Jet Interaction with Thomson Scattering Probe Laser

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Banasek, Jacob; Potter, William; Kusse, Bruce

    2016-10-01

    Thomson scattering systems can diagnose plasma temperatures and velocities. When probing a plasma jet with the Thomson scattering laser, we observe a laser-plasma interaction that inputs energy into the plasma jet. The absorbed energy causes a bubble of low density ( 5*1017 cm-2) in the jet (unperturbed 1018 cm-2). A pulsed power machine (1 MA peak current, 100 ns rise time) with a radial foil (15 μm thick Al) configuration generates the plasma jet. We compare the effects of using 10 J and 1 J laser energies, for which the 10 J laser is a larger perturbation. We discuss how the interaction affects the Thomson scattering temperature and velocity measurements. Work supported by National Nuclear Security Administration (NNSA) Stewardship Sciences Academic Programs under Department of Energy (DOE) Cooperative Agreement DE-NA0001836 and National Science Foundation (NSF) Grant PHY-1102471.

  20. AGN feedback compared: jets versus radiation

    NASA Astrophysics Data System (ADS)

    Cielo, Salvatore; Bieri, Rebekka; Volonteri, Marta; Wagner, Alexander Y.; Dubois, Yohan

    2018-06-01

    Feedback by active galactic nuclei (AGNs) is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM (interstellar medium) interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGNs of 1043 and 1046 erg s-1, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarefies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20 {per cent} in 20 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.01-0.1 M⊙ yr-1, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGNs modulate their own duty cycle in a feedback/feeding cycle.

  1. Numerical analysis of exhaust jet secondary combustion in hypersonic flow field

    NASA Astrophysics Data System (ADS)

    Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han

    2018-05-01

    The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.

  2. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, Venkateswaran; Raja, Laxminarayan L.; Clemens, Noel T.

    2012-07-01

    A pulsed-plasma jet actuator is used to control the unsteady motion of the separation shock of a shock wave/boundary layer interaction formed by a compression ramp in a Mach 3 flow. The actuator is based on a plasma-generated synthetic jet and is configured as an array of three jets that can be injected normal to the cross-flow, pitched, or pitched and skewed. The typical peak jet exit velocity of the actuators is about 300 m/s and the pulsing frequencies are a few kilohertz. A study of the interaction between the pulsed-plasma jets and the shock/boundary layer interaction was performed in a time-resolved manner using 10 kHz schlieren imaging. When the actuator, pulsed at StL ≈ 0.04 (f = 2 kHz), was injected into the upstream boundary layer, the separation shock responded to the plasma jet by executing a rapid upstream motion followed by a gradual downstream recovery motion. Schlieren movies of the interaction showed that the separation shock unsteadiness was locked to the pulsing frequency of the actuator, with amplitude of about one boundary layer thickness. Wall-pressure measurements made under the intermittent region showed about a 30% decrease in the overall magnitude of the pressure fluctuations in the low-frequency band associated with unsteady large-scale motion of the separated flow. Furthermore, by increasing the pulsing frequency to 3.3 kHz, the amplitude of the separation shock oscillation was reduced to less than half the boundary layer thickness. Investigation into the effect of the actuator location on the shock wave/boundary layer interaction (SWBLI) showed qualitatively and quantitatively that the actuator placed upstream of the separation shock caused significant modification to the SWBLI unsteadiness, whereas injection from inside the separation bubble did not cause a noticeable effect.

  3. Turbulent Deflagrated Flame Interaction with a Fluidic Jet Flow for Deflagration-to-Detonation Flame Acceleration

    NASA Astrophysics Data System (ADS)

    Chambers, Jessica; McGarry, Joseph; Ahmed, Kareem

    2015-11-01

    Detonation is a high energetic mode of pressure gain combustion. Detonation combustion exploits the pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. The driving mechanism of deflagrated flame acceleration to detonation is turbulence generation and induction. A fluidic jet is an innovative method for the production of turbulence intensities and flame acceleration. Compared to traditional obstacles, the jet reduces the pressure losses and heat soak effects while providing turbulence generation control. The investigation characterizes the turbulent flame-flow interactions. The focus of the study is on classifying the turbulent flame dynamics and the temporal evolution of turbulent flame regime. The turbulent flame-flow interactions are experimentally studied using a LEGO Detonation facility. Advanced high-speed laser diagnostics, particle image velocimetry (PIV), planar laser induced florescence (PLIF), and Schlieren imaging are used in analyzing the physics of the interaction and flame acceleration. Higher turbulence induction is observed within the turbulent flame after contact with the jet, leading to increased flame burning rates. The interaction with the fluidic jet results in turbulent flame transition from the thin reaction zones to the broken reaction regime.

  4. Effects of core turbulence on jet excitability

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.; Raman, Ganesh; Rice, Edward J.

    1989-01-01

    The effects of varying freestream core turbulence on the evolution of a circular jet with and without tonal excitation are examined. Measurements are made on an 8.8 cm diameter jet at a Mach number of 0.3. The jet is excitated by plane waves at Strouhal number 0.5. For the excited and unexcited cases the turbulence level is varied by screens and grids placed upstream of the nozzle exit. The experiment results are compared with a theoretical model which incorporates a variable core turbulence and considers the energy interactions between the mean flow, the turbulence and the forced component. Both data and theory indicate that increasing the freestream turbulence diminishes the excitability of the jet and reduces the effect of excitation on the spreading rate of the jet.

  5. Effects of forward motion on jet and core noise

    NASA Technical Reports Server (NTRS)

    Low, J. K. C.

    1977-01-01

    A study was conducted to investigate the effects of forward motion on both jet and core noise. Measured low-frequency noise from static-engine and from flyover tests with a DC-9-30 powered by JT8D-109 turbofan engines and with a DC-10-40 powered by JT9D-59A turbofan engines was separated into jet- and core noise components. Comparisons of the static and the corresponding in-flight jet- and core-noise components are presented. The results indicate that for the DC-9 airplane at low power settings, where core noise is predominant, the effect of convective amplification on core-noise levels is responsible for the higher in-flight low-frequency noise levels in the inlet quadrant. Similarly, it was found that for the DC-10 airplane with engines mounted under the wings and flaps and flap deflection greater than 30 degrees, the contribution from jet-flap-interaction noise is as much as 5 dB in the inlet quadrant and is responsible for higher in-flight low-frequency noise levels during approach conditions. Those results indicate that to properly investigate flight effects, it is important to consider the noise contributions from other low-frequency sources, such as the core and the jet-flap interaction.

  6. Jet Interactions in a Feedback-Free Fluidic Oscillator in the Transition Region

    NASA Astrophysics Data System (ADS)

    Tomac, Mehmet; Gregory, James

    2013-11-01

    The details of the jet interactions and oscillation mechanism of a feedback-free type fluidic oscillator are studied in this work. Flow rate-frequency measurements indicate the existence of three distinct operating regimes: low flow rate, transition, and high flow rate regions. This study presents results from the transition regime, extracted by using refractive index-matched particle image velocimetry (PIV). A newly-developed sensor configuration for frequency measurements in the refractive index-matched fluid and a phase-averaging method that minimizes jitter will be discussed. Experimental results indicate that the interactions of the two jets create three main vortices in the mixing chamber. One vortex vanishes and forms depending on the oscillation phase and plays a key role in the oscillation mechanism. The other two vortices sustain their existence throughout the oscillation cycle; however, both continuously change their size and strength. The resulting complex flow field with self-sustained oscillations is a result of the combination of many interesting phenomena such as jet interactions and bifurcations, viscous effects, vortex-shear layer interactions, vortex-wall interactions, instabilities, and saddle point creations.

  7. Probing the Hardest Branching within Jets in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Chien, Yang-Ting; Vitev, Ivan

    2017-09-01

    Heavy ion collisions present exciting opportunities to study the effects of quantum coherence in the formation of subatomic particle showers. We report on the first calculation of the momentum sharing and angular separation distributions between the leading subjets inside a reconstructed jet in such collisions. These observables are directly sensitive to the hardest branching within jets and can probe the early stage of the jet formation. We find that the leading-order medium-induced splitting functions, here obtained in the framework of soft-collinear effective theory with Glauber gluon interactions, capture the essential many-body physics, which is different from proton-proton reactions. Qualitative and in most cases quantitative agreement between theory and preliminary CMS measurements suggests that hard parton branching in strongly interacting matter can be dramatically modified. We also propose a new measurement that will illuminate its angular structure.

  8. Probing the Hardest Branching within Jets in Heavy-Ion Collisions.

    PubMed

    Chien, Yang-Ting; Vitev, Ivan

    2017-09-15

    Heavy ion collisions present exciting opportunities to study the effects of quantum coherence in the formation of subatomic particle showers. We report on the first calculation of the momentum sharing and angular separation distributions between the leading subjets inside a reconstructed jet in such collisions. These observables are directly sensitive to the hardest branching within jets and can probe the early stage of the jet formation. We find that the leading-order medium-induced splitting functions, here obtained in the framework of soft-collinear effective theory with Glauber gluon interactions, capture the essential many-body physics, which is different from proton-proton reactions. Qualitative and in most cases quantitative agreement between theory and preliminary CMS measurements suggests that hard parton branching in strongly interacting matter can be dramatically modified. We also propose a new measurement that will illuminate its angular structure.

  9. Characteristics of Plasma Synthetic Jet Actuators in Crossflow

    NASA Astrophysics Data System (ADS)

    Santhanakrishnan, Arvind; Jacob, Jamey

    2006-11-01

    The plasma synthetic jet actuator (PSJA) consists of two annular electrodes separated by dielectric material that results in a circular region of dielectric barrier discharge plasma. In quiescent conditions, this plasma ring produces a synthetic jet which can be used for active flow control applications. Unsteady pulsing of the actuator results in the formation of multiple primary and secondary vortex rings, the latter remaining fixed or trapped in space. The jet is observed to be formed by the advection and interaction of the primary vortices, resembling a conventional synthetic jet. This presentation examines the operation of the PSJA in a crossflow at three different jet to freestream velocity ratios. PIV measurements in the streamwise and cross-stream planes are used to illustrate the three dimensionality of the jet and associated vortical structures. The strength of the vortex ring is found to vary along its circumference due to interaction with the freestream. The boundary layer characteristics obtained from these experiments suggest that the mechanism of the PSJA in crossflow is similar to an active boundary layer trip. Both the penetration of the jet and effectiveness of the trip action are found to decrease with increase in freestream velocity. The effects of unsteady pulsing and increasing input power on actuator created crossflow vortices will also be presented.

  10. On the interaction of jet noise with a nearby flexible structure

    NASA Technical Reports Server (NTRS)

    Mcgreevy, J. L.; Bayliss, A.; Maestrello, L.

    1994-01-01

    The model of the interaction of the noise from a spreading subsonic jet with a panel-stringer assembly is studied numerically in two dimensions. The radiation resulting from this flow/acoustic/structure coupling is computed and analyzed in both the time and frequency domains. The jet is initially excited by a pulse-like source inserted into the flow field. The pulse triggers instabilities associated with the inviscid instability of the jet mean flow shear layer. These instabilities in turn generate sound which provides the primary loading for the panels. The resulting structural vibration and radiation depends strongly on their placement relative to the jet/nozzle configuration. Results are obtained for the panel responses as well as the transmitted and incident pressure. The effect of the panels is to act as a narrow filter, converting the relatively broad band forcing, heavily influenced by jet instabilities, into radiation concentrated in narrow spectral bands.

  11. A study of flow past an airfoil with a jet issuing from its lower surface

    NASA Technical Reports Server (NTRS)

    Krothapalli, A.; Leopold, D.

    1984-01-01

    The aerodynamics of a NACA 0018 airfoil with a rectangular jet of finite aspect ratio exiting from its lower surface at 90 deg to the chord were investigated. The jet was located at 50% of the wing chord. Measurements include static pressures on the airfoil surface, total pressures in the near wake, and local velocity vectors in different planes of the wake. The effects of jet cross flow interaction on the aerodynamics of the airfoil are studied. It is indicated that at all values of momentum coefficients, the jet cross flow interaction produces a strong contra-rotating vortex structure in the near wake. The flow behind the jet forms a closed recirculation region which extends up to a chord length down stream of the trailing edge which results in the flow field to become highly three dimensional. The various aerodynamic force coefficients vary significantly along the span of the wing. The results are compared with a jet flap configuration.

  12. Gamma rays from clumpy wind-jet interactions in high-mass microquasars

    NASA Astrophysics Data System (ADS)

    de la Cita, V. M.; del Palacio, S.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Romero, G. E.; Khangulyan, D.

    2017-07-01

    Context. The stellar winds of the massive stars in high-mass microquasars are thought to be inhomogeneous. The interaction of these inhomogeneities, or clumps, with the jets of these objects may be a major factor in gamma-ray production. Aims: Our goal is to characterize a typical scenario of clump-jet interaction, and calculate the contribution of these interactions to the gamma-ray emission from these systems. Methods: We use axisymmetric, relativistic hydrodynamical simulations to model the emitting flow in a typical clump-jet interaction. Using the simulation results we perform a numerical calculation of the high-energy emission from one of these interactions. The radiative calculations are performed for relativistic electrons locally accelerated at the jet shock, and the synchrotron and inverse Compton radiation spectra are computed for different stages of the shocked clump evolution. We also explore different parameter values, such as viewing angle and magnetic field strength. The results derived from one clump-jet interaction are generalized phenomenologically to multiple interactions under different wind models, estimating the clump-jet interaction rates, and the resulting luminosities in the GeV range. Results: If particles are efficiently accelerated in clump-jet interactions, the apparent gamma-ray luminosity through inverse Compton scattering with the stellar photons can be significant even for rather strong magnetic fields and thus efficient synchrotron cooling. Moreover, despite the standing nature or slow motion of the jet shocks for most of the interaction stage, Doppler boosting in the postshock flow is relevant even for mildly relativistic jets. Conclusions: For clump-to-average wind density contrasts greater than or equal to ten, clump-jet interactions could be bright enough to match the observed GeV luminosity in Cyg X-1 and Cyg X-3 when a jet is present in these sources, with required non-thermal-to-total available power fractions greater than 0.01 and 0.1, respectively.

  13. Effects of forward velocity on turbulent jet mixing noise

    NASA Technical Reports Server (NTRS)

    Plumblee, H. E., Jr. (Editor)

    1976-01-01

    Flight simulation experiments were conducted in an anechoic free jet facility over a broad range of model and free jet velocities. The resulting scaling laws were in close agreement with scaling laws derived from theoretical and semiempirical considerations. Additionally, measurements of the flow structure of jets were made in a wind tunnel by using a laser velocimeter. These tests were conducted to describe the effects of velocity ratio and jet exit Mach number on the development of a jet in a coflowing stream. These turbulence measurements and a simplified Lighthill radiation model were used in predicting the variation in radiated noise at 90 deg to the jet axis with velocity ratio. Finally, the influence of forward motion on flow-acoustic interactions was examined through a reinterpretation of the 'static' numerical solutions to the Lilley equation.

  14. Investigation of impingement region and wall jets formed by the interaction of high aspect ratio lift jets and a ground plane

    NASA Technical Reports Server (NTRS)

    Kotansky, D. R.; Glaze, L. W.

    1978-01-01

    Flow characteristics of impinging jets emanating from rectangular exit area converging nozzles of exit area aspect ratio four, six, and eight were investigated. Azimuthal distributions of wall jet radial momentum flux in the ground plane were strongly directional and sensitive to rectangular nozzle exit area aspect ratio, jet impingement angle, and height above ground, H/D. Effects of jet exit velocity profile nonuniformities were also investigated. Data from the single nozzle rectangular jet impringement investigations were incorporated into an existing VTOL aircraft ground flow field computer program. It is suggested that this program together with the Douglas Neumann program modified for V/STOL applications may be used for the analysis and prediction of flow fields and resulting forces and moments on multijet V/STOL aircraft hovering in ground effect.

  15. A lifting surface computer code with jet-in-crossflow interference effects. Volume 1: Theoretical description

    NASA Technical Reports Server (NTRS)

    Furlong, K. L.; Fearn, R. L.

    1983-01-01

    A method is proposed to combine a numerical description of a jet in a crossflow with a lifting surface panel code to calculate the jet/aerodynamic-surface interference effects on a V/STOL aircraft. An iterative technique is suggested that starts with a model for the properties of a jet/flat plate configuration and modifies these properties based on the flow field calculated for the configuration of interest. The method would estimate the pressures, forces, and moments on an aircraft out of ground effect. A first-order approximation to the method suggested is developed and applied to two simple configurations. The first-order approximation is a noniterative precedure which does not allow for interactions between multiple jets in a crossflow and also does not account for the influence of lifting surfaces on the jet properties. The jet/flat plate model utilized in the examples presented is restricted to a uniform round jet injected perpendicularly into a uniform crossflow for a range of jet-to-crossflow velocity ratios from three to ten.

  16. Computation of Large-Scale Structure Jet Noise Sources With Weak Nonlinear Effects Using Linear Euler

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Hixon, Ray; Mankbadi, Reda R.

    2003-01-01

    An approximate technique is presented for the prediction of the large-scale turbulent structure sound source in a supersonic jet. A linearized Euler equations code is used to solve for the flow disturbances within and near a jet with a given mean flow. Assuming a normal mode composition for the wave-like disturbances, the linear radial profiles are used in an integration of the Navier-Stokes equations. This results in a set of ordinary differential equations representing the weakly nonlinear self-interactions of the modes along with their interaction with the mean flow. Solutions are then used to correct the amplitude of the disturbances that represent the source of large-scale turbulent structure sound in the jet.

  17. The Effects of Surfaces on the Aerodynamics and Acoustics of Jet Flows

    NASA Technical Reports Server (NTRS)

    Smith, Matthew J.; Miller, Steven A. E.

    2013-01-01

    Aircraft noise mitigation is an ongoing challenge for the aeronautics research community. In response to this challenge, low-noise aircraft concepts have been developed that exhibit situations where the jet exhaust interacts with an airframe surface. Jet flows interacting with nearby surfaces manifest a complex behavior in which acoustic and aerodynamic characteristics are altered. In this paper, the variation of the aerodynamics, acoustic source, and far-field acoustic intensity are examined as a large at plate is positioned relative to the nozzle exit. Steady Reynolds-Averaged Navier-Stokes solutions are examined to study the aerodynamic changes in the field-variables and turbulence statistics. The mixing noise model of Tam and Auriault is used to predict the noise produced by the jet. To validate both the aerodynamic and the noise prediction models, results are compared with Particle Image Velocimetry (PIV) and free-field acoustic data respectively. The variation of the aerodynamic quantities and noise source are examined by comparing predictions from various jet and at plate configurations with an isolated jet. To quantify the propulsion airframe aeroacoustic installation effects on the aerodynamic noise source, a non-dimensional number is formed that contains the flow-conditions and airframe installation parameters.

  18. Further studies of turbulence structure resulting from interactions between embedded vortices and wall jets at high blowing ratios

    NASA Astrophysics Data System (ADS)

    Doner, William D.

    1989-12-01

    Interactions of wall jets and vortices embedded in turbulent layers commonly occur near gas turbine blades and endwalls where film cooling is employed. These interactions frequently result in undesirable heat transfer effects at blade and endwall surfaces. In this thesis, a crossed hot-wire probe is used to measure the turbulence structure resulting from this type of interaction. The vortex is generated using a half delta-wing vortex generator mounted 12 deg with respect to a 10 m/s mean velocity flow over a flat plate. A single injection hole, 0.95 cm in diameter, inclined 30 deg to the horizontal, is positioned 59.3 cm downstream of the vortex generator. The vortex generator is positioned so that vortex upwash and downwash could be located over the injection hole. Streamwise development of the turbulent boundary layer was investigated for the following cases: (1) boundary layer with jet only (m = 1.5), and (2) boundary layer with vortex only. Measurement of interaction between the boundary layer, vortex upwash, and the wall jet was made at one station with various blowing ratios. At low blowing ratios (m = 0.5 and 1.5) the vortex dominates the flow. Significant alterations to the turbulent structure are seen in the Reynolds stress components, vorticity distributions and mean velocities. At higher blowing ratios (m = 2.5 and 3.5) the jet dominates the flow, the vortex is blown away from the wall, and its turbulence effects are dispersed over a larger area.

  19. An Empirical Jet-Surface Interaction Noise Model with Temperature and Nozzle Aspect Ratio Effects

    NASA Technical Reports Server (NTRS)

    Brown, Cliff

    2015-01-01

    An empirical model for jet-surface interaction (JSI) noise produced by a round jet near a flat plate is described and the resulting model evaluated. The model covers unheated and hot jet conditions (1 less than or equal to jet total temperature ratio less than or equal to 2.7) in the subsonic range (0.5 less than or equal to M(sub a) less than or equal to 0.9), surface lengths 0.6 less than or equal to (axial distance from jet exit to surface trailing edge (inches)/nozzle exit diameter) less than or equal to 10, and surface standoff distances (0 less than or equal to (radial distance from jet lipline to surface (inches)/axial distance from jet exit to surface trailing edge (inches)) less than or equal to 1) using only second-order polynomials to provide predictable behavior. The JSI noise model is combined with an existing jet mixing noise model to produce exhaust noise predictions. Fit quality metrics and comparisons to between the predicted and experimental data indicate that the model is suitable for many system level studies. A first-order correction to the JSI source model that accounts for the effect of nozzle aspect ratio is also explored. This correction is based on changes to the potential core length and frequency scaling associated with rectangular nozzles up to 8:1 aspect ratio. However, more work is needed to refine these findings into a formal model.

  20. Application of empirical and linear methods to VSTOL powered-lift aerodynamics

    NASA Technical Reports Server (NTRS)

    Margason, Richard; Kuhn, Richard

    1988-01-01

    Available prediction methods applied to problems of aero/propulsion interactions for short takeoff and vertical landing (STOVL) aircraft are critically reviewed and an assessment of their strengths and weaknesses provided. The first two problems deal with aerodynamic performance effects during hover: (1) out-of-ground effect, and (2) in-ground effect. The first can be evaluated for some multijet cases; however, the second problem is very difficult to evaluate for multijets. The ground-environment effects due to wall jets and fountain flows directly affect hover performance. In a related problem: (3) hot-gas ingestion affects the engine operation. Both of these problems as well as jet noise affect the ability of people to work near the aircraft and the ability of the aircraft to operate near the ground. Additional problems are: (4) the power-augmented lift due to jet-flap effects (both in- and out-of-ground effects), and (5) the direct jet-lift effects during short takeoff and landing (STOL) operations. The final problem: (6) is the aerodynamic/propulsion interactions in transition between hover and wing-borne flight. Areas where modern CFD methods can provide improvements to current computational capabilities are identified.

  1. Particle-laden swirling free jets: Measurements and predictions

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.; Shuen, J.-S.; Faeth, G. M.

    1987-01-01

    A theoretical and experimental investigation of single-phase and particle-laden weakly swirling jets was conducted. The jets were injected vertically downward from a 19 mm diameter tube with swirl numbers ranging from 0 to 0.33. The particle-laden jets had a single loading ratio (0.2) with particles having a SMD of 39 microns. Mean and fluctuating properties of both phases were measured using nonintrusive laser based methods while particle mass flux was measured using an isokinetic sampling probe. The continuous phase was analyzed using both a baseline kappa-epsilon turbulence model and an extended version with modifications based on the flux Richardson number to account for effects of streamline curvature. To highlight effects of interphase transport rates and particle/turbulence interactions, effects of the particles were analyzed as follows: (1) locally homogeneous flow (LHF) analysis, where interphase transport rates are assumed to be infinitely fast; (2) deterministic separated flow (DSF) analysis, where finite interphase transport rates are considered but particle/turbulence interactions are ignored; and (3) stochastic separated flow (SSF) analysis, where both effects are considered using random-walk computations.

  2. Recent advances concerning an understanding of sound transmission through engine nozzles and jets

    NASA Technical Reports Server (NTRS)

    Bechert, D.; Michel, U.; Dfizenmaier, E.

    1978-01-01

    Experiments on the interaction between a turbulent jet and pure tone sound coming from inside the jet nozzle are reported. This is a model representing the sound transmission from sound sources in jet engines through the nozzle and the jet flow into the far field. It is shown that pure tone sound at low frequencies is considerably attenuated by the jet flow, whereas it is conserved at higher frequencies. On the other hand, broadband jet noise can be amplified considerably by a pure tone excitation. Both effects seem not to be interdependent. Knowledge on how they are created and on relevant parameter dependences allow new considerations for the development of sound attenuators.

  3. Development of pulsating twin jets mechanism for mixing flow heat transfer analysis.

    PubMed

    Gitan, Ali Ahmed; Zulkifli, Rozli; Abdullah, Shahrir; Sopian, Kamaruzzaman

    2014-01-01

    Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency.

  4. Development of Pulsating Twin Jets Mechanism for Mixing Flow Heat Transfer Analysis

    PubMed Central

    Abdullah, Shahrir

    2014-01-01

    Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency. PMID:24672370

  5. Investigation of the interaction dynamics of a pair of laser-induced bubbles generated at the same time through double-exposure strobe method and numerical simulations

    NASA Astrophysics Data System (ADS)

    Han, Bing; Liu, Liu; Ni, Xiao-Wu

    2017-08-01

    In order to understand the interaction dynamics of a pair of laser-induced bubbles, a double-exposure strobe photography experimental setup is build up to study the temporal evolution of the bubble pairs and to measure the transient bubble-interface moving speed. The interaction mechanisms of the bubble pairs are discussed together with the numerical results obtained through OpenFOAM. It is shown that the direction and the velocity of the jetting could be controlled by the relative size and the relative initiation distance of the bubble pair, when the bubbles are generated at the same time, i.e., in-phase. The liquid jet is considered to be a penetrating jet. The jet is originated from the smaller bubble and clearly protruding outside of the bigger bubble. The parameter space of the relative size and the initiation distance of the bubble pair allowing the formation of the penetrating jet are very narrow. It is concluded that the liquid jet induced by the bubble interactions resulted from the collapse and the rebound of the smaller bubble nearby the bigger bubble. This is defined as the "catapult effect." Such a directional liquid transportation is a promising tool as a micro-injector or a micro-pump. The investigation results could be also supplementary to the understandings of the bubble dynamics.

  6. Overexpanded viscous supersonic jet interacting with a unilateral barrier

    NASA Astrophysics Data System (ADS)

    Dobrynin, B. M.; Maslennikov, V. G.; Sakharov, V. A.; Serova, E. V.

    1986-07-01

    The interaction of a two-dimensional supersonic jet with a unilateral barrier parallel to the flow symmetry plane was studied to account for effects due to gas viscosity and backgound-gas ejection from the region into which the jet expands. In the present experiments, the incident shock wave was reflected at the end of a shock tube equipped with a nozzle. The jet emerged into a pressure chamber 6 cu m in volume and the environmental pressure ratio of the flow in the quasi-stationary phase remained constant. The light source was an OGM-20 laser operating in the giant-pulse mode. Due to background-gas ejection, the gas density in the vicinity of the barrier is much less than on the unconfined side of the jet. The resulting flow is characterized by two distinct environmental pressure ratios: the flow is underexpanded near the barrier, while on the other side it is overexpanded.

  7. The oblique impingement of an axisymmetric jet. [flow characteristics of jet flow over flat plates

    NASA Technical Reports Server (NTRS)

    Foss, J. F.; Kleis, S. J.

    1976-01-01

    The mechanics of the oblique impingement of an axisymmetric jet on a plane surface are examined in detail. The stagnation point is discussed. A schematic drawing of the problem and coordinate system used to describe the flow field are given. The kinematic features of the flow above the plate are examined in the context of the conservation of mass, the vorticity of the jet, and the vorticity introduced by the jetplate interaction. The dynamic features of the flow are examined in terms of the surface pressure distribution and the cause-effect relationships which exist between the pressure and velocity/vorticity distributions. Flow calculations performed are given. The investigation is relevant to the flow resulting from the interaction of the propulsion jet with the main airfoil (STOL aircraft), and is appropriate to an over- or under- wing configuration.

  8. The effects of the stellar wind and orbital motion on the jets of high-mass microquasars

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.; Barkov, M. V.

    2016-05-01

    Context. High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales. Aims: This is an analytical study, performed to characterise the effects of the stellar wind and the orbital motion on the jet properties. Methods: Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterise the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind's presence. Large-scale evolution of the jet is sketched, accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. Results: If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (I) a strong recollimation shock; (II) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (III) non-ballistic helical propagation further away. Even if disrupted, the jet can re-accelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. Conclusions: The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among other observational diagnostics, such as radiation variability at any band, the radio morphology on milliarcsecond scales can be informative on the wind-jet interaction.

  9. Effects of reaction control system jet flow field interactions on the aerodynamic characteristics of a 0.010-scale space shuttle orbiter model in the Langley Research Center 31 inch CFHT (OA85)

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.; Marroquin, J.

    1974-01-01

    An experimental investigation was conducted to obtain detailed effects on supersonic vehicle hypersonic aerodynamic and stability and control characteristics of reaction control system jet flow field interactions with the local vehicle flow field. A 0.010-scale model was used. Six-component force data and wing, elevon, and body flap surface pressure data were obtained through an angle-of-attack range of -10 to +35 degrees with 0 deg angle of sideslip. The test was conducted with yaw, pitch and roll jet simulation at a free-stream Mach number of 10.3 and reaction control system plume simulation of flight dynamic pressures of 5, 10 and 20 PSF.

  10. Numerical Investigation of the Interaction of Counterflowing Jets and Supersonic Capsule Flows

    NASA Technical Reports Server (NTRS)

    Venkatachari, Balaji Shankar; Ito, Yasushi; Cheng, Gary; Chang, Chau-Lyan

    2011-01-01

    Use of counterflowing jets ejected into supersonic freestreams as a flow control concept to modify the external flowfield has gained renewed interest with regards to potential retropropulsion applications pertinent to entry, descent, and landing investigations. This study describes numerical computations of such a concept for a scaled wind-tunnel capsule model by employing the space-time conservation element solution element viscous flow solver with unstructured meshes. Both steady-state and time-accurate computations are performed for several configurations with different counterflowing jet Mach numbers. Axisymmetric computations exploring the effect of the jet flow rate and jet Mach number on the flow stability, jet interaction with the bow shock and its subsequent impact on the aerodynamic and aerothermal loads on the capsule body are carried out. Similar to previous experimental findings, both long and short penetration modes exist at a windtunnel Mach number of 3.48. It was found that both modes exhibit non-stationary behavior and the former is much more unstable than the latter. It was also found that the unstable long penetration mode only exists in a relatively small range of the jet mass flow rate. Solution-based mesh refinement procedures are used to improve solution accuracy and provide guidelines for a more effective mesh generation procedure for parametric studies. Details of the computed flowfields also serve as a means to broaden the knowledge base for future retropropulsion design studies.

  11. Airframe-Jet Engine Integration Noise

    NASA Technical Reports Server (NTRS)

    Tam, Christopher; Antcliff, Richard R. (Technical Monitor)

    2003-01-01

    It has been found experimentally that the noise radiated by a jet mounted under the wing of an aircraft exceeds that of the same jet in a stand-alone environment. The increase in noise is referred to as jet engine airframe integration noise. The objectives of the present investigation are, (1) To obtain a better understanding of the physical mechanisms responsible for jet engine airframe integration noise or installation noise. (2) To develop a prediction model for jet engine airframe integration noise. It is known that jet mixing noise consists of two principal components. They are the noise from the large turbulence structures of the jet flow and the noise from the fine scale turbulence. In this investigation, only the effect of jet engine airframe interaction on the fine scale turbulence noise of a jet is studied. The fine scale turbulence noise is the dominant noise component in the sideline direction. Thus we limit out consideration primarily to the sideline.

  12. Interaction of the jet from the neutron star with the interstellar medium

    NASA Astrophysics Data System (ADS)

    Kiikov, S. O.

    2017-12-01

    The interaction between the hypersonic plasma jet from the accreting neutron star and the ambient interstellar medium is studied. It is assumed that the jet is launched from the accretion disk via the open magnetic field anchored in the disk. The analytical investigation for the structure of the working surface of the jet is carried out. The estimates of the volume stream functions in the region of the interaction between the jet and the interstellar medium are derived. The obtained results allow to examine the distribution of the plasma velocity fields in the interaction region.

  13. Interaction Mechanisms of Cavitation Bubbles Induced by Spatially and Temporally Separated fs-Laser Pulses

    PubMed Central

    Tinne, Nadine; Kaune, Brigitte; Krüger, Alexander; Ripken, Tammo

    2014-01-01

    The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influence of fs-laser pulses and their resulting bubble dynamics with various spatial as well as temporal separations. Different time courses of characteristic interaction effects between the cavitation bubbles were observed depending on pulse energy and spatio-temporal pulse separation. These ranged from merely no interaction to the phenomena of strong water jet formation. Afterwards, the mechanisms are discussed regarding their impact on the medical application of effective tissue cutting lateral to the laser beam direction with best possible axial precision: the mechanical forces of photodisruption as well as the occurring water jet should have low axial extend and a preferably lateral priority. Furthermore, the overall efficiency of energy conversion into controlled mechanical impact should be maximized compared to the transmitted pulse energy and unwanted long range mechanical side effects, e.g. shock waves, axial jet components. In conclusion, these experimental results are of great importance for the prospective optimization of the ophthalmic surgical process with high-repetition rate fs-lasers. PMID:25502697

  14. Comparison of characteristics and downstream uniformity of linear-field and cross-field atmospheric pressure plasma jet array in He

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Fang, Zhi; Liu, Feng; Zhou, Renwu; Zhou, Ruoyu

    2018-06-01

    Using an atmospheric pressure plasma jet array is an effective way for expanding the treatment area of a single jet, and generating arrays with well downstream uniformity is of great interest for its applications. In this paper, a plasma jet array in helium is generated in a linear-field jet array with a ring-ring electrode structure excited by alternating current. The characteristics and downstream uniformity of the array and their dependence on the applied voltage and gas flow rate are investigated through optical, electrical, and Schlieren diagnostics. The results are compared with those of our reported work of a cross-field jet array with a needle-ring electrode structure. The results show that the linear-field jet array can generate relatively large-scale plasma with better uniformity and longer plumes than the cross-field case. The divergences observed in gas channels and the plasma plume trajectories are much less than those of the cross-field one. The deflection angle of lateral plumes is less than 6°, which is independent of the gas flow rate and applied voltage. The maximum downstream plumes of 23 mm can be obtained at 7 kV peak applied voltage and 4 l/min gas flow rate. The better uniformity of linear-field jet arrays is due to the effective suppression of hydrodynamic and electrical interactions among the jets in the arrays with a more uniform electric field distribution. The hydrodynamic interaction induced by the gas heating in the linear-field jet array is less than that of the cross-field one. The more uniform electric field distribution in the linear-field jet arrays can reduce the divergence of the propagation trajectories of the plasma plumes. It will generate less residual charge between the adjacent discharges and thus can reduce the accumulation effect of Coulomb force between the plasma plumes. The reported results can help design controllable and scalable plasma jet arrays with well uniformity for material surface and biomedical treatments.

  15. Numerical Study of Rarefied Hypersonic Flow Interacting with a Continuum Jet. Degree awarded by Pennsylvania State Univ., Aug. 1999

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    2000-01-01

    An uncoupled Computational Fluid Dynamics-Direct Simulation Monte Carlo (CFD-DSMC) technique is developed and applied to provide solutions for continuum jets interacting with rarefied external flows. The technique is based on a correlation of the appropriate Bird breakdown parameter for a transitional-rarefied condition that defines a surface within which the continuum solution is unaffected by the external flow-jet interaction. The method is applied to two problems to assess and demonstrate its validity; one of a jet interaction in the transitional-rarefied flow regime and the other in the moderately rarefied regime. Results show that the appropriate Bird breakdown surface for uncoupling the continuum and non-continuum solutions is a function of a non-dimensional parameter relating the momentum flux and collisionality between the two interacting flows. The correlation is exploited for the simulation of a jet interaction modeled for an experimental condition in the transitional-rarefied flow regime and the validity of the correlation is demonstrated. The uncoupled technique is also applied to an aerobraking flight condition for the Mars Global Surveyor spacecraft with attitude control system jet interaction. Aerodynamic yawing moment coefficients for cases without and with jet interaction at various angles-of-attack were predicted, and results from the present method compare well with values published previously. The flow field and surface properties are analyzed in some detail to describe the mechanism by which the jet interaction affects the aerodynamics.

  16. Prediction of nearfield jet entrainment by an interactive mixing/afterburning model

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Pergament, H. S.; Wilmoth, R. G.

    1978-01-01

    The development of a computational model (BOAT) for calculating nearfield jet entrainment, and its application to the prediction of nozzle boattail pressures, is discussed. BOAT accounts for the detailed turbulence and thermochemical processes occurring in the nearfield shear layers of jet engine (and rocket) exhaust plumes while interfacing with the inviscid exhaust and external flowfield regions in an overlaid, interactive manner. The ability of the model to analyze simple free shear flows is assessed by detailed comparisons with fundamental laboratory data. The overlaid methodology and the entrainment correction employed to yield the effective plume boundary conditions are assessed via application of BOAT in conjunction with the codes comprising the NASA/LRC patched viscous/inviscid model for determining nozzle boattail drag for subsonic/transonic external flows. Comparisons between the predictions and data on underexpanded laboratory cold air jets are presented.

  17. Interaction between a pulsating jet and a surrounding disk wind. A hydrodynamical perspective

    NASA Astrophysics Data System (ADS)

    Tabone, B.; Raga, A.; Cabrit, S.; Pineau des Forêts, G.

    2018-06-01

    Context. The molecular richness of fast protostellar jets within 20-100 au of their source, despite strong ultraviolet irradiation, remains a challenge for the models investigated so far. Aim.We aim to investigate the effect of interaction between a time-variable jet and a surrounding steady disk wind, to assess the possibility of jet chemical enrichement by the wind, and the characteristic signatures of such a configuration. Methods: We have constructed an analytic model of a jet bow shock driven into a surrounding slower disk wind in the thin shell approximation. The refilling of the post bow shock cavity from below by the disk wind is also studied. An extension of the model to the case of two or more successive internal working surfaces (IWS) is made. We then compared this analytic model with numerical simulations with and without a surrounding disk wind. Results: We find that at early times (of order the variability period), jet bow shocks travel in refilled pristine disk wind material, before interacting with the cocoon of older bow shocks. This opens the possibility of bow shock chemical enrichment (if the disk wind is molecular and dusty) and of probing the unperturbed disk wind structure near the jet base. Several distinctive signatures of the presence of a surrounding disk wind are identified, in the bow shock morphology and kinematics. Numerical simulations validate our analytical approach and further show that at large scale, the passage of many jet IWS inside a disk wind produces a stationary V-shaped cavity, closing down onto the axis at a finite distance from the source.

  18. Using Pressure- and Temperature-Sensitive Paint for Global Surface Pressure and Temperature Measurements on the Aft-Body of a Capsule Reentry Vehicle

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Buck, Gregory M.; Leighty, Bradley D.; Lipford, William E.; Oglesby, Donald M.

    2008-01-01

    Pressure Sensitive Paint (PSP) and Temperature Sensitive Paint (TSP) were used to visualize and quantify the surface interactions of reaction control system (RCS) jets on the aft body of capsule reentry vehicle shapes. The first model tested was an Apollo-like configuration and was used to focus primarily on the effects of the forward facing roll and yaw jets. The second model tested was an early Orion Crew Module configuration blowing only out of its forward-most yaw jet, which was expected to have the most intense aerodynamic heating augmentation on the model surface. This paper will present the results from the experiments, which show that with proper system design, both PSP and TSP are effective tools for studying these types of interaction in hypersonic testing environments.

  19. Hadron production in 200 GeV μ-copper and μ-carbon deep inelastic interactions

    NASA Astrophysics Data System (ADS)

    Arvidson, A.; Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; Crespo, J. M.; D'Agostini, G.; Dalpiaz, P. F.; Dalpiaz, P.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Gregory, P.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Massonnet, L.; Minssieux, H.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.; European Muon Collaboration

    1984-11-01

    The measurements of the z and pT2 distribution of hadrons produced in the interactions of 200 GeV muons with copper and carbon nuclei are shown in different xBj and virtual photon energy intervals. Effects of the jet scattering are seen at the lowest virtual photon energies while for energies above 70 GeV there is no evidence of these effects. Comparison with a theoretical model indicates that at high jet energies the parton fragmentation distance is greater than the nuclear radius and that the parton absorption cross section is less than 10 mb.

  20. Orion Launch Abort Vehicle Attitude Control Motor Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared

    2011-01-01

    Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.

  1. Results of wind tunnel RCS interaction tests on a 0.010-scale space shuttle orbiter model (51-0) in the Calspan Corporation 48-inch hypersonic shock tunnel (test 0A93)

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.; Marroquin, J.; Rogers, C. E.

    1976-01-01

    A hypersonic shock tunnel test on a 0.010 scale SSV orbital configuration was performed to determine the effects of RCS jet/flow field interactions on SSV aerodynamic stability and control characteristics at various hypersonic Mach and Reynolds numbers. Flow field interaction data were obtained using pitch and roll jets. In addition, direct impingement data were obtained at a Mach number of zero with the test section pumped down to below 10 microns of mercury pressure.

  2. JET2 Viewer: a database of predicted multiple, possibly overlapping, protein-protein interaction sites for PDB structures.

    PubMed

    Ripoche, Hugues; Laine, Elodie; Ceres, Nicoletta; Carbone, Alessandra

    2017-01-04

    The database JET2 Viewer, openly accessible at http://www.jet2viewer.upmc.fr/, reports putative protein binding sites for all three-dimensional (3D) structures available in the Protein Data Bank (PDB). This knowledge base was generated by applying the computational method JET 2 at large-scale on more than 20 000 chains. JET 2 strategy yields very precise predictions of interacting surfaces and unravels their evolutionary process and complexity. JET2 Viewer provides an online intelligent display, including interactive 3D visualization of the binding sites mapped onto PDB structures and suitable files recording JET 2 analyses. Predictions were evaluated on more than 15 000 experimentally characterized protein interfaces. This is, to our knowledge, the largest evaluation of a protein binding site prediction method. The overall performance of JET 2 on all interfaces are: Sen = 52.52, PPV = 51.24, Spe = 80.05, Acc = 75.89. The data can be used to foster new strategies for protein-protein interactions modulation and interaction surface redesign. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Jet energy calibration at the LHC

    DOE PAGES

    Schwartzman, Ariel

    2015-11-10

    In this study, jets are one of the most prominent physics signatures of high energy proton–proton (p–p) collisions at the Large Hadron Collider (LHC). They are key physics objects for precision measurements and searches for new phenomena. This review provides an overview of the reconstruction and calibration of jets at the LHC during its first Run. ATLAS and CMS developed different approaches for the reconstruction of jets, but use similar methods for the energy calibration. ATLAS reconstructs jets utilizing input signals from their calorimeters and use charged particle tracks to refine their energy measurement and suppress the effects of multiplemore » p–p interactions ( pileup). CMS, instead, combines calorimeter and tracking information to build jets from particle flow objects. Jets are calibrated using Monte Carlo (MC) simulations and a residual in situ calibration derived from collision data is applied to correct for the differences in jet response between data and Monte Carlo.« less

  4. Numerical simulation of a low-swirl impinging jet with a rotating convergent nozzle

    NASA Astrophysics Data System (ADS)

    Borynyak, K.; Hrebtov, M.; Bobrov, M.; Kozyulin, N.

    2018-03-01

    The paper presents the results of Large Eddy Simulation of a swirling impinging jet with moderate Reynolds number (104), where the swirl is organized via the rotation of a convergent nozzle. The results show that the effect of the swirl in this configuration leads to an increase of axial velocity, compared to the non-swirling case. It is shown that turbulent stress plays an important role in this effect. The vortex structure of the jet consists of multiple pairs of nearly parallel helical vortices with opposite signs of rotation. The interaction of vortices in the near region of the jet leads to radial contraction of the jet’s core which in turn, causes an the increase in the axial velocity.

  5. Inclusive production of small radius jets in heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong-Bo; Ringer, Felix; Vitev, Ivan

    Here, we develop a new formalism to describe the inclusive production of small radius jets in heavy-ion collisions, which is consistent with jet calculations in the simpler proton–proton system. Only at next-to-leading order (NLO) and beyond, the jet radius parameter R and the jet algorithm dependence of the jet cross section can be studied and a meaningful comparison to experimental measurements is possible. We are able to consistently achieve NLO accuracy by making use of the recently developed semi-inclusive jet functions within Soft Collinear Effective Theory (SCET). Additionally, single logarithms of the jet size parameter αmore » $$n\\atop{s}$$ln nR leading logarithmic (NLL R) accuracy in proton–proton collisions. The medium modified semi-inclusive jet functions are obtained within the framework of SCET with Glauber gluons that describe the interaction of jets with the medium. We also present numerical results for the suppression of inclusive jet cross sections in heavy ion collisions at the LHC and the formalism developed here can be extended directly to corresponding jet substructure observables.« less

  6. Inclusive production of small radius jets in heavy-ion collisions

    DOE PAGES

    Kang, Zhong-Bo; Ringer, Felix; Vitev, Ivan

    2017-03-31

    Here, we develop a new formalism to describe the inclusive production of small radius jets in heavy-ion collisions, which is consistent with jet calculations in the simpler proton–proton system. Only at next-to-leading order (NLO) and beyond, the jet radius parameter R and the jet algorithm dependence of the jet cross section can be studied and a meaningful comparison to experimental measurements is possible. We are able to consistently achieve NLO accuracy by making use of the recently developed semi-inclusive jet functions within Soft Collinear Effective Theory (SCET). Additionally, single logarithms of the jet size parameter αmore » $$n\\atop{s}$$ln nR leading logarithmic (NLL R) accuracy in proton–proton collisions. The medium modified semi-inclusive jet functions are obtained within the framework of SCET with Glauber gluons that describe the interaction of jets with the medium. We also present numerical results for the suppression of inclusive jet cross sections in heavy ion collisions at the LHC and the formalism developed here can be extended directly to corresponding jet substructure observables.« less

  7. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet Flows with Shock Interactions

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Denison, Marie; Moini-Yekta, Shayan; Morr, Donald E.; Durston, Donald A.

    2016-01-01

    NASA and the U.S. aerospace industry are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The computational analyses of modern aircraft designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty remains in the aft signatures due to boundary layer and nozzle exhaust jet effects. Wind tunnel testing without inlet and nozzle exhaust jet effects at lower Reynolds numbers than in-flight make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel is planned for February 2016 to address the nozzle jet effects on sonic boom. The experiment will provide pressure signatures of test articles that replicate waveforms from aircraft wings, tails, and aft fuselage (deck) components after passing through cold nozzle jet plumes. The data will provide a variety of nozzle plume and shock interactions for comparison with computational results. A large number of high-fidelity numerical simulations of a variety of shock generators were evaluated to define a reduced collection of suitable test models. The computational results of the candidate wind tunnel test models as they evolved are summarized, and pre-test computations of the final designs are provided.

  8. Upper-tropospheric environment-tropical cyclone interactions over the western North Pacific: A statistical study

    NASA Astrophysics Data System (ADS)

    Qian, Yu-Kun; Liang, Chang-Xia; Yuan, Zhuojian; Peng, Shiqiu; Wu, Junjie; Wang, Sihua

    2016-05-01

    Based on 25-year (1987-2011) tropical cyclone (TC) best track data, a statistical study was carried out to investigate the basic features of upper-tropospheric TC-environment interactions over the western North Pacific. Interaction was defined as the absolute value of eddy momentum flux convergence (EFC) exceeding 10 m s-1 d-1. Based on this definition, it was found that 18% of all six-hourly TC samples experienced interaction. Extreme interaction cases showed that EFC can reach ~120 m s-1 d-1 during the extratropical-cyclone (EC) stage, an order of magnitude larger than reported in previous studies. Composite analysis showed that positive interactions are characterized by a double-jet flow pattern, rather than the traditional trough pattern, because it is the jets that bring in large EFC from the upper-level environment to the TC center. The role of the outflow jet is also enhanced by relatively low inertial stability, as compared to the inflow jet. Among several environmental factors, it was found that extremely large EFC is usually accompanied by high inertial stability, low SST and strong vertical wind shear (VWS). Thus, the positive effect of EFC is cancelled by their negative effects. Only those samples during the EC stage, whose intensities were less dependent on VWS and the underlying SST, could survive in extremely large EFC environments, or even re-intensify. For classical TCs (not in the EC stage), it was found that environments with a moderate EFC value generally below ~25 m s-1 d-1 are more favorable for a TC's intensification than those with extremely large EFC.

  9. The President's Day cyclone 17-19 February 1979: An analysis of jet streak interactions prior to cyclogenesis

    NASA Technical Reports Server (NTRS)

    Uccellini, L. W.; Kocin, P. J.; Walsh, C. H.

    1981-01-01

    The President's Day cyclone, produced record breaking snowfall along the East Coast of the United States in February 1979. Conventional radiosonde data, SMS GOES infrared imagery and LFM 2 model diagnostics were used to analyze the interaction of upper and lower tropospheric jet streaks prior to cyclogenesis. The analysis reveals that a series of complex scale interactive processes is responsible for the development of the intense cyclone. The evolution of the subsynoptic scale mass and momentum fields prior to and during the period of rapid development of the President's Day cyclone utilizing conventional data and SMS GOES imagery is documented. The interaction between upper and lower tropospheric jet streaks which occurred prior to the onset of cyclogenesis is discussed as well as the possible effects of terrain modified airflow within the precyclogenesis environment. Possible deficiencies in the LFM-2 initial wind fields that could have been responsible, in part, for the poor numerical forecast are examined.

  10. Tickling a high speed round jet

    NASA Astrophysics Data System (ADS)

    Arakeri, Vijay; Krothapalli, Anjaneyulu; Siddavaram, Vikram; Alkislar, Mehmet

    2001-11-01

    We have experimentally studied the effect of tickling a Mach 0.9 round jet with a set of microjets.Two dimensional velocity field measurements with PIV show a significant reduction in the turbulent intensities in the developing region of the jet with the activation of the microjets.Quantitatively,the axial and normal turbulence intensities are reduced by about 15respectively;even a larger effect is found on the magnitude of the correlation of axial and normal fluctuation intensities with a reduction of almost 40possible with a mass flow rate of the microjets being only about one percent of the main jet mass flow rate and hence justifying the use of the term `tickling`.The above findings are difficult to explain on the basis of stability considerations since there is very little change in the mean profile.Physically,the observed effect could be due to the alteration of the large eddy structures,which are so natural to a round jet,by the presence of the microjets.Exact nature of this interaction may be clarified with three dimensional PIV studies.It is expected that the tickling of the jet done as presently could have a favourable reflection in the aeroacoustics characteristics of the main jet.

  11. Electroencephalographic and behavioral effects of nocturnally occurring jet aircraft sounds.

    NASA Technical Reports Server (NTRS)

    Levere, T. E.; Bartus, R. T.; Hart, F. D.

    1972-01-01

    The present research presents data relative to the objective evaluation of the effects of a specific complex auditory stimulus presented during sleep. The auditory stimulus was a jet aircraft flyover of approximately 20-sec duration and a peak intensity level of approximately 80 dB (A). Our specific interests were in terms of how this stimulus would interact with the frequency pattern of the sleeping EEG and whether there would be any carry-over effects of the nocturnally presented stimuli to the waking state. The results indicated that the physiological effects (changes in electroencephalographic activity) produced by the jet aircraft stimuli outlasted the physical presence of the auditory stimuli by a considerable degree. Further, it was possible to note both behavioral and electroencephalographic changes during waking performances subsequent to nights disturbed by the jet aircraft flyovers which were not apparent during performances subsequent to undisturbed nights.

  12. Identification and rejection of pile-up jets at high pseudorapidity with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Ferraz, V. Araujo; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagnaia, P.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Bret, M. Cano; Cantero, J.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Alberich, L. Cerda; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Donszelmann, T. Cuhadar; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'eramo, L.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; Corga, K. De Vasconcelos; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Bello, F. A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Cornell, S. Díez; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Kosseifi, R. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Pastor, O. Estrada; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Gama, R. Goncalves; Costa, J. Goncalves Pinto Firmino Da; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Jiménez, Y. Hernández; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Dortz, O. Le; Guirriec, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Lo, C. Y.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Mateos, D. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McNamara, P. C.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Mellenthin, J. D.; Melo, M.; Meloni, F.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco; Aranda, C. Padilla; Griso, S. Pagan; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Poulsen, T.; Poveda, J.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Bosca, S. Rodriguez; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Martinez, V. Sanchez; Pineda, A. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Haddad, E. Sideras; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, DMS; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Cakir, I. Turk; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vaidya, A.; Valderanis, C.; Santurio, E. Valdes; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Maira, N. Viaux; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamatani, M.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Nedden, M. zur; Zwalinski, L.

    2017-09-01

    The rejection of forward jets originating from additional proton-proton interactions (pile-up) is crucial for a variety of physics analyses at the LHC, including Standard Model measurements and searches for physics beyond the Standard Model. The identification of such jets is challenging due to the lack of track and vertex information in the pseudorapidity range |η |>2.5. This paper presents a novel strategy for forward pile-up jet tagging that exploits jet shapes and topological jet correlations in pile-up interactions. Measurements of the per-jet tagging efficiency are presented using a data set of 3.2 fb^{-1} of proton-proton collisions at a centre-of-mass energy of 13 {TeV} collected with the ATLAS detector. The fraction of pile-up jets rejected in the range 2.5<|η |<4.5 is estimated in simulated events with an average of 22 interactions per bunch-crossing. It increases with jet transverse momentum and, for jets with transverse momentum between 20 and 50 GeV, it ranges between 49% and 67% with an efficiency of 85% for selecting hard-scatter jets. A case study is performed in Higgs boson production via the vector-boson fusion process, showing that these techniques mitigate the background growth due to additional proton-proton interactions, thus enhancing the reach for such signatures.

  13. Identification and rejection of pile-up jets at high pseudorapidity with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    The rejection of forward jets originating from additional proton–proton interactions (pile-up) is crucial for a variety of physics analyses at the LHC, including Standard Model measurements and searches for physics beyond the Standard Model. The identification of such jets is challenging due to the lack of track and vertex information in the pseudorapidity range | η| > 2.5. This article presents a novel strategy for forward pile-up jet tagging that exploits jet shapes and topological jet correlations in pile-up interactions. Measurements of the per-jet tagging efficiency are presented using a data set of 3.2 fb -1 of proton–proton collisions at amore » centre-of-mass energy of 13 TeV collected with the ATLAS detector. The fraction of pile-up jets rejected in the range 2.5 < | η| < 4.5 is estimated in simulated events with an average of 22 interactions per bunch-crossing. It increases with jet transverse momentum and, for jets with transverse momentum between 20 and 50 GeV, it ranges between 49% and 67% with an efficiency of 85% for selecting hard-scatter jets. Here, a case study is performed in Higgs boson production via the vector-boson fusion process, showing that these techniques mitigate the background growth due to additional proton–proton interactions, thus enhancing the reach for such signatures.« less

  14. Identification and rejection of pile-up jets at high pseudorapidity with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-09-02

    The rejection of forward jets originating from additional proton–proton interactions (pile-up) is crucial for a variety of physics analyses at the LHC, including Standard Model measurements and searches for physics beyond the Standard Model. The identification of such jets is challenging due to the lack of track and vertex information in the pseudorapidity range | η| > 2.5. This article presents a novel strategy for forward pile-up jet tagging that exploits jet shapes and topological jet correlations in pile-up interactions. Measurements of the per-jet tagging efficiency are presented using a data set of 3.2 fb -1 of proton–proton collisions at amore » centre-of-mass energy of 13 TeV collected with the ATLAS detector. The fraction of pile-up jets rejected in the range 2.5 < | η| < 4.5 is estimated in simulated events with an average of 22 interactions per bunch-crossing. It increases with jet transverse momentum and, for jets with transverse momentum between 20 and 50 GeV, it ranges between 49% and 67% with an efficiency of 85% for selecting hard-scatter jets. Here, a case study is performed in Higgs boson production via the vector-boson fusion process, showing that these techniques mitigate the background growth due to additional proton–proton interactions, thus enhancing the reach for such signatures.« less

  15. Physics-Based Virtual Fly-Outs of Projectiles on Supercomputers

    DTIC Science & Technology

    2006-11-01

    moved along with its grid as it flew downrange. The supersonic projectile modeled in this study is an ogive- cylinder -finned configuration (see...resulting from the unsteady jet interaction flow field is clearly evident (Figure 10). The effect of the jet is stronger as evidenced by the larger...little or no effect on the other aerodynamic forces. These results show the potential to gain fundamental understanding of the complex, flow

  16. Developing an Empirical Model for Jet-Surface Interaction Noise

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2014-01-01

    The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are fit to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.

  17. Developing an Empirical Model for Jet-Surface Interaction Noise

    NASA Technical Reports Server (NTRS)

    Brown, Clif

    2014-01-01

    The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are t to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.

  18. Interaction of a Synthetic Jet Actuator with a Severely Separated Crossflow

    NASA Astrophysics Data System (ADS)

    Jansen, Kenneth; Farnsworth, John; Rasquin, Michel; Rathay, Nick; Monastero, Marianne; Amitay, Michael

    2017-11-01

    A coordinated experimental/computational study of synthetic jet-based flow control on a vertical tail/rudder assembly has been carried out on a 1/19th scale model operating at 30 degree rudder deflection, 0 degree side slip, and 20m/s free-stream flow. Under these conditions a very strong span-wise separated flow develops over the rudder surface for a majority of its span. Twelve synthetic jets were distributed across the span of the vertical tail just upstream of the rudder hinge-line to determine their ability to reduce flow separation and thereby increase the side force production; to extend the rudder effectiveness. Experiments were completed for the baseline case (i.e. no jets blowing) and for cases where 1, 6, and 12 jets were activated. RANS and DDES computations were completed to match these four experiments. While some experimental results for the same geometry have been previously reported, more detailed results concerning the experiments and their comparison to the DDES computations for the baseline and 1 jet active cases are reported here. Specifically, this effort focuses on the near-jet flow and the phase-averaged vortical structures produced by a single jet interacting with a severely separated, turbulent cross-flow. An award of computer time was provided by the INCITE program and the Theta and Aurora ESP through ALCF which is supported by the DOE under Contract DE-AC02-06CH11357.

  19. Particle-in-cell simulations of collisionless shock formation via head-on merging of two laboratory supersonic plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoma, C.; Welch, D. R.; Hsu, S. C.

    2013-08-15

    We describe numerical simulations, using the particle-in-cell (PIC) and hybrid-PIC code lsp[T. P. Hughes et al., Phys. Rev. ST Accel. Beams 2, 110401 (1999)], of the head-on merging of two laboratory supersonic plasma jets. The goals of these experiments are to form and study astrophysically relevant collisionless shocks in the laboratory. Using the plasma jet initial conditions (density ∼10{sup 14}–10{sup 16} cm{sup −3}, temperature ∼ few eV, and propagation speed ∼20–150 km/s), large-scale simulations of jet propagation demonstrate that interactions between the two jets are essentially collisionless at the merge region. In highly resolved one- and two-dimensional simulations, we showmore » that collisionless shocks are generated by the merging jets when immersed in applied magnetic fields (B∼0.1–1 T). At expected plasma jet speeds of up to 150 km/s, our simulations do not give rise to unmagnetized collisionless shocks, which require much higher velocities. The orientation of the magnetic field and the axial and transverse density gradients of the jets have a strong effect on the nature of the interaction. We compare some of our simulation results with those of previously published PIC simulation studies of collisionless shock formation.« less

  20. THREE-DIMENSIONAL SIMULATIONS OF LONG DURATION GAMMA-RAY BURST JETS: TIMESCALES FROM VARIABLE ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Cámara, D.; Lazzati, Davide; Morsony, Brian J., E-mail: diego@astro.unam.mx

    2016-08-01

    Gamma-ray burst (GRB) light curves are characterized by marked variability, each showing unique properties. The origin of this variability, at least for a fraction of long GRBs, may be the result of an unsteady central engine. It is thus important to study the effects that an episodic central engine has on the jet propagation and, eventually, on the prompt emission within the collapsar scenario. Thus, in this study we follow the interaction of pulsed outflows with their progenitor stars with hydrodynamic numerical simulations in both two and three dimensions. We show that the propagation of unsteady jets is affected bymore » the interaction with the progenitor material well after the break-out time, especially for jets with long quiescent times comparable to or larger than a second. We also show that this interaction can lead to an asymmetric behavior in which pulse durations and quiescent periods are systematically different. After the pulsed jets drill through the progenitor and the interstellar medium, we find that, on average, the quiescent epochs last longer than the pulses (even in simulations with symmetrical active and quiescent engine times). This could explain the asymmetry detected in the light curves of long quiescent time GRBs.« less

  1. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Formation of a plasma jet of multiply charged ions in the interaction of a laser plasma with an external pulsed magnetic field

    NASA Astrophysics Data System (ADS)

    Dyakin, V. M.; Pikuz, T. A.; Skobelev, I. Yu; Faenov, A. Ya; Wolowski, J.; Karpinski, L.; Kasperczuk, A.; Pisarczyk, T.

    1994-12-01

    A dense jet of a plasma consisting of multiply charged ions was generated in the interaction of a laser plasma with a strong external axial magnetic field. Images were formed by spectral lines and the soft x-ray spectrum range of the plasma jet was obtained with a large-aperture spectrograph containing a mica crystal bent to form a spherical surface with a radius of R = 10 cm. A tenfold increase in the density of the He-like Mg XI plasma, compared with a freely expanding plasma, was observed at a distance of 5 mm from the target.

  2. Performance of pile-up mitigation techniques for jets in pp collisions at √{s}=8 TeV using the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Dos Santos, S. P. Amor; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Garcia, J. A. Benitez; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Barajas, C. A. Chavez; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; El Moursli, R. Cherkaoui; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Childers, J. T.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; Garberson, F.; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, L.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; van Huysduynen, L. Hooft; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Quiles, A. Irles; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ponce, J. M. Iturbe; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Rozas, A. Juste; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Dortz, O. Le; Guirriec, E. Le; Menedeu, E. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Loscutoff, P.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Miguens, J. Machado; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; de Andrade Filho, L. Manhaes; Ramos, J. Manjarres; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Garcia, B. R. Mellado; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, M.; Mori, D.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Hanninger, G. Nunes; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Pino, S. A. Olivares; Damazio, D. Oliveira; Garcia, E. Oliver; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Barrera, C. Oropeza; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Codina, E. Perez; García-Estañ, M. T. Pérez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Martinez, V. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Castanheira, M. Teixeira Dias; Teixeira-Dias, P.; Temming, K. K.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Gallego, E. Valladolid; Vallecorsa, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vaque, F. Vives; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zurzolo, G.; Zwalinski, L.

    2016-11-01

    The large rate of multiple simultaneous proton-proton interactions, or pile-up, generated by the Large Hadron Collider in Run 1 required the development of many new techniques to mitigate the adverse effects of these conditions. This paper describes the methods employed in the ATLAS experiment to correct for the impact of pile-up on jet energy and jet shapes, and for the presence of spurious additional jets, with a primary focus on the large 20.3 fb^{-1} data sample collected at a centre-of-mass energy of √{s} = 8 TeV. The energy correction techniques that incorporate sophisticated estimates of the average pile-up energy density and tracking information are presented. Jet-to-vertex association techniques are discussed and projections of performance for the future are considered. Lastly, the extension of these techniques to mitigate the effect of pile-up on jet shapes using subtraction and grooming procedures is presented.

  3. Performance of pile-up mitigation techniques for jets in pp collisions at √s=8 TeV using the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-10-27

    The large rate of multiple simultaneous proton–proton interactions, or pile-up, generated by the Large Hadron Collider in Run 1 required the development of many new techniques to mitigate the adverse effects of these conditions. This paper describes the methods employed in the ATLAS experiment to correct for the impact of pile-up on jet energy and jet shapes, and for the presence of spurious additional jets, with a primary focus on the large 20.3 fb -1 data sample collected at a centre-of-mass energy ofmore » $$\\sqrt{s}$$ = 8TeV. The energy correction techniques that incorporate sophisticated estimates of the average pile-up energy density and tracking information are presented. Jet-to-vertex association techniques are discussed and projections of performance for the future are considered. Lastly, the extension of these techniques to mitigate the effect of pile-up on jet shapes using subtraction and grooming procedures is presented.« less

  4. Performance of pile-up mitigation techniques for jets in [Formula: see text] collisions at [Formula: see text] TeV using the ATLAS detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Dos Santos, S P Amor; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Garcia, J A Benitez; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bieniek, S P; Biglietti, M; De Mendizabal, J Bilbao; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Gimenez, V Castillo; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Barajas, C A Chavez; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; El Moursli, R Cherkaoui; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Childers, J T; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Flaschel, N; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fulsom, B G; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; Garberson, F; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, L; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henkelmann, S; Henrichs, A; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; van Huysduynen, L Hooft; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Quiles, A Irles; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ponce, J M Iturbe; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Rozas, A Juste; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Dortz, O Le; Guirriec, E Le; Menedeu, E Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Loscutoff, P; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Miguens, J Machado; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; de Andrade Filho, L Manhaes; Ramos, J Manjarres; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Garcia, B R Mellado; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Morgenstern, M; Mori, D; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Hanninger, G Nunes; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Pino, S A Olivares; Damazio, D Oliveira; Garcia, E Oliver; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Barrera, C Oropeza; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Aranda, C Padilla; Pagáčová, M; Griso, S Pagan; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Codina, E Perez; García-Estañ, M T Pérez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pirumov, H; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Martinez, V Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simoniello, R; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spanò, F; Spearman, W R; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Castanheira, M Teixeira Dias; Teixeira-Dias, P; Temming, K K; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Gallego, E Valladolid; Vallecorsa, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vaque, F Vives; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zurzolo, G; Zwalinski, L

    2016-01-01

    The large rate of multiple simultaneous proton-proton interactions, or pile-up, generated by the Large Hadron Collider in Run 1 required the development of many new techniques to mitigate the adverse effects of these conditions. This paper describes the methods employed in the ATLAS experiment to correct for the impact of pile-up on jet energy and jet shapes, and for the presence of spurious additional jets, with a primary focus on the large 20.3 [Formula: see text] data sample collected at a centre-of-mass energy of [Formula: see text]. The energy correction techniques that incorporate sophisticated estimates of the average pile-up energy density and tracking information are presented. Jet-to-vertex association techniques are discussed and projections of performance for the future are considered. Lastly, the extension of these techniques to mitigate the effect of pile-up on jet shapes using subtraction and grooming procedures is presented.

  5. Background Oriented Schlieren Implementation in a Jet-Surface Interaction Test

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Brown, Clifford A.; Fagan, Amy

    2013-01-01

    Many current and future aircraft designs rely on the wing or other aircraft surfaces to shield the engine noise from observers on the ground. However the available data regarding how a planar surface interacts with a jet to shield and/or enhance the jet noise are currently limited. Therefore, the Jet-Surface Interaction Tests supported by NASA's Fundamental Aeronautics Program's Fixed Wing Project were undertaken to supply experimental data covering a wide range of surface geometries and positions interacting with high-speed jet flows in order to support the development of noise prediction methods. Phase 1 of the Test was conducted in the Aero-Acoustic Propulsion Laboratory at NASA Glenn Research Center and consisted of validating noise prediction schemes for a round nozzle interacting with a planar surface. Phased array data and far-field acoustic data were collected for both the shielded and reflected sides of the surface. Phase 1 results showed that the broadband shock noise was greatly reduced by the surface when the jet was operated at the over-expanded condition, however, it was unclear whether this reduction was due a change in the shock cell structure by the surface. In the present study, Background Oriented Schlieren is implemented in Phase 2 of the Jet-Surface Interaction Tests to investigate whether the planar surface interacts with the high-speed jet ow to change the shock cell structure. Background Oriented Schlieren data are acquired for under-expanded, ideally-expanded, and over-expanded ow regimes for multiple axial and radial positions of the surface at three different plate lengths. These data are analyzed with far-field noise measurements to relate the shock cell structure to the broadband shock noise produced by a jet near a surface.

  6. NASA Jet Noise Research

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  7. Multiwavelength Study of Powerful New Jet Activity in the Symbiotic Binary System R Aqr

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2016-09-01

    We propose to carry out coordinated high-spatial resolution Chandra ACIS-S and HST/WFC3 observations of R Aqr, a very active symbiotic interacting binary system. Our main goal is to study the physical characteristics of multi-scale components of the powerful jet; from near the central binary (within a few AU) to the jet-circumbinary material interaction region (2500 AU) and beyond , and especially of the recently discovered inner jet, to gain insight on early jet formation and propagation, such as jet kinematics and precession.

  8. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Chang, Chau-Lyan; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    Classic tonal screech noise created by under-expanded supersonic jets; Long Penetration Mode (LPM) supersonic phenomenon -Under-expanded counter-flowing jet in supersonic free stream -Demonstrated in several wind tunnel tests -Modeled in several computational fluid dynamics (CFD) simulations; Discussion of LPM acoustics feedback and fluid interactions -Analogous to the aero-acoustics interactions seen in screech jets; Lessons Learned: Applying certain methodologies to LPM -Developed and successfully demonstrated in the study of screech jets -Discussion of mechanically induced excitation in fluid oscillators in general; Conclusions -Large body of work done on jet screech, other aero-acoustic phenomenacan have direct application to the study and applications of LPM cold flow jets

  9. Effects of external stream flow and afterbody variations on the performance of a plug nozzle

    NASA Technical Reports Server (NTRS)

    Salmi, R J; Cortright, E M , Jr

    1956-01-01

    The off-design operation of an isentropic plug nozzle designed for a jet pressure ratio of 15 was investigated experimentally at subsonic Mach numbers up to 0.9 and jet pressure ratios up to 5. When installed in a cylindrical nacelle with a sharp turn at the nozzle lip, the interaction of the jet and the external stream produced low pressures on the base formed by the high lip angle. These low pressures increased the nacelle drag and caused an overexpansion of the jet, which resulted in lower pressures on the plug and, hence, reduced thrust. With a boattail ahead of the plug nozzle, the base pressures were increased and the jet overexpansion significantly reduced.

  10. DBD Actuated Flow Control of Wall-Jet and Cross-Flow Interaction for Film Cooling Applications

    NASA Astrophysics Data System (ADS)

    Tirumala, Rakshit; Benard, Nicolas; Moreau, Eric; Fenot, Matthieu; Lalizel, Gildas; Dorignac, Eva

    2014-11-01

    In this work, we use surface DBD actuators to control the interaction between a wall jet and mainstream flow in film cooling applications. The intention of the study is to improve the contact of the jet with the wall and enhance the convective heat transfer coefficient downstream of the jet exit. A 2D wall jet (10 mm height) is injected into the mainstream flow at an angle of 30°. With an injected jet velocity (Ui) of 5 m/s, two blowing ratios M (=ρi Ui / ρ∞U∞) of 1.0 and 0.5 are studied corresponding to the mainstream flow velocity (U∞) of 5 m/s and 10 m/s respectively. Different configurations of the DBD actuator are studied, positioned both inside the jet and on the downstream side. PIV measurements are conducted to investigate the flow field of the interaction between the jet and cross flow. Streamwise velocity profiles at different downstream locations are compared to analyze the efficacy of the plasma actuator in improving the contact between the injected jet stream and the wall surface. Reynolds shear stress measurements are also conducted to study the mixing regions in the plasma-jet-mainstream flow interaction. Work was partially funded by the French government program ``Investissements d'avenir'' (LABEX INTERACTIFS, reference ANR-11-LABX-0017-01).

  11. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.

    2013-01-01

    An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper (Brown, C.A., "Jet-Surface Interaction Test: Far-Field Noise Results," ASME paper GT2012-69639, June 2012.) discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement.

  12. Pairwise Interaction Extended Point-Particle (PIEP) model for multiphase jets and sedimenting particles

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Balachandar, S.

    2017-11-01

    We perform a series of Euler-Lagrange direct numerical simulations (DNS) for multiphase jets and sedimenting particles. The forces the flow exerts on the particles in these two-way coupled simulations are computed using the Basset-Bousinesq-Oseen (BBO) equations. These forces do not explicitly account for particle-particle interactions, even though such pairwise interactions induced by the perturbations from neighboring particles may be important especially when the particle volume fraction is high. Such effects have been largely unaddressed in the literature. Here, we implement the Pairwise Interaction Extended Point-Particle (PIEP) model to simulate the effect of neighboring particle pairs. A simple collision model is also applied to avoid unphysical overlapping of solid spherical particles. The simulation results indicate that the PIEP model provides a more elaborative and complicated movement of the dispersed phase (droplets and particles). Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) project N00014-16-1-2617.

  13. PLIF Study of Mars Science Laboratory Capsule Reaction Control System Jets

    NASA Technical Reports Server (NTRS)

    Johansen, C. T.; Danehy, P. M.; Ashcraft, S. W.; Bathel, B. F.; Inman, J. A.; Jones, S. B.

    2011-01-01

    Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to visualize the flow in the wake of a Mars Science Lab (MSL) entry capsule with activated reaction control system (RCS) jets in NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Images were processed using the Virtual Diagnostics Interface (ViDI) method, which brings out the three-dimensional nature of the flow visualization data while showing the relative location of the data with respect to the model. Comparison of wind-on and wind-off results illustrates the effect that the hypersonic crossflow has on the trajectory and structure of individual RCS jets. The visualization and comparison of both single and multiple activated RCS jets indicate low levels of jet-jet interaction. Quantitative streamwise velocity was also obtained via NO PLIF molecular tagging velocimetry (MTV).

  14. PLIF Study of Mars Science Laboratory Capsule Reaction Control System Jets

    NASA Technical Reports Server (NTRS)

    Johansen, C. T.; Danehy, P. M.; Ashcraft, S. W.; Bathel, B. F.; Inman, J. A.; Jones, S. B.

    2011-01-01

    Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to visualize the flow in the wake of a Mars Science Lab (MSL) entry capsule with activated reaction control system (RCS) jets in NASA Langley Research Center's 31-Inch Mach 10 Air Tunnel facility. Images were processed using the Virtual Diagnostics Interface (ViDI) method, which brings out the three-dimensional nature of the flow visualization data while showing the relative location of the data with respect to the model. Comparison of wind-on and wind-off results illustrates the effect that the hypersonic crossflow has on the trajectory and structure of individual RCS jets. The visualization and comparison of both single and multiple activated RCS jets indicate low levels of jet-jet interaction. Quantitative streamwise velocity was also obtained via NO PLIF molecular tagging velocimetry (MTV).

  15. Inclined Jet in Crossflow Interacting with a Vortex Generator

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Rigby, D .L.; Heidmann, J. D.

    2011-01-01

    An experiment is conducted on the effectiveness of a vortex generator in preventing liftoff of a jet in crossflow, with possible relevance to film-cooling applications. The jet issues into the boundary layer at an angle of 20 degreees to the freestream. The effect of a triangular ramp-shaped vortex generator is studied while varying its geometry and location. Detailed flowfield properties are obtained for a case in which the height of the vortex generator and the diameter of the orifice are comparable with the approach boundary-layer thickness. The vortex generator produces a streamwise vortex pair with a vorticity magnitude 3 times larger (and of opposite sense) than that found in the jet in crossflow alone. Such a vortex generator appears to be most effective in keeping the jet attached to the wall. The effect of parametric variation is studied mostly from surveys 10 diameters downstream from the orifice. Results over a range of jet-to-freestream momentum flux ratio (1 < J < 11) show that the vortex generator has a significant effect even at the highest J covered in the experiment. When the vortex generator height is halved, there is a liftoff of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensity. Varying the location of the vortex generator, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the vortex generator with the increasing radius of curvature progressively diminishes its effect. However, allowing for a small radius of curvature may be quite tolerable in practice.

  16. Response of multi-panel assembly to noise from a jet in forward motion

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Maestrello, L.; Mcgreevy, J. L.; Fenno, C. C., Jr.

    1995-01-01

    A model of the interaction of the noise from a spreading subsonic jet with a 4 panel assembly is studied numerically in two dimensions. The effect of forward motion of the jet is accounted for by considering a uniform flow field superimposed on a mean jet exit profile. The jet is initially excited by a pulse-like source inserted into the flow field. The pulse triggers instabilities associated with the inviscid instability of the jet shear layer. These instabilities generate sound which in turn serves to excite the panels. We compare the sound from the jet, the responses of the panels and the resulting acoustic radiation for the static jet and the jet in forward motion. The far field acoustic radiation, the panel response and sound radiated from the panels are all computed and compared to computations of a static jet. The results demonstrate that for a jet in forward motion there is a reduction in sound in downstream directions and an increase in sound in upstream directions in agreement with experiments. Furthermore, the panel response and radiation for a jet in forward motion exhibits a downstream attenuation as compared with the static case.

  17. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without coupling to a sonic boom propagation analysis code, from the stagnation chamber of the nozzle to the far field external flow, taking into account all nonisentropic effects in the shocks, boundary layers, and free shear layers, and their interactions at distances up to 30 times the nozzle exit diameter from the jet centerline. A CFD solution is shown in Figure 2. The flow field is very complicated and multi-dimensional, with shock-shock and shockplume interactions. At the time of this reporting, a full three-dimensional CFD study was being conducted to evaluate the effects of nozzle vectoring on the aircraft tail shock strength.

  18. Mixing augmentation of transverse hydrogen jet by injection of micro air jets in supersonic crossflow

    NASA Astrophysics Data System (ADS)

    Anazadehsayed, A.; Barzegar Gerdroodbary, M.; Amini, Y.; Moradi, R.

    2017-08-01

    In this study, the influences of the micro air jet on the mixing of the sonic transverse hydrogen through micro-jets subjected to a supersonic crossflow are investigated. A three-dimensional numerical study has been performed to reveal the affects of micro air jet on mixing of the hydrogen jet in a Mach 4.0 crossflow with a global equivalence ratio of 0.5. Parametric studies were conducted on the various air jet conditions by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Complex jet interactions were found in the downstream region with a variety of flow features depending upon the angle of micro air jet. These flow features were found to have subtle effects on the mixing of hydrogen jets. Results indicate a different flow structure as air jet is presented in the downstream of the fuel jet. According to the results, without air, mixing occurs at a low rate. When the air jet is presented in the downstream of fuel jet, significant increase (up to 300%) occurs in the mixing performance of the hydrogen jet at downstream. In multi fuel jets, the mixing performance of the fuel jet is increased more than 200% when the micro air jet is injected. Consequently, an enhanced mixing zone occurs downstream of the injection slots which leads to flame-holding.

  19. Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap Sriramachandra

    2004-01-01

    A low-density gas jet injected into a high-density ambient gas is known to exhibit self-excited global oscillations accompanied by large vortical structures interacting with the flow field. The primary objective of the proposed research is to study buoyancy effects on the origin and nature of the flow instability and structure in the near-field of low-density gas jets. Quantitative rainbow schlieren deflectometry, Computational fluid dynamics (CFD) and Linear stability analysis were the techniques employed to scale the buoyancy effects. The formation and evolution of vortices and scalar structure of the flow field are investigated in buoyant helium jets discharged from a vertical tube into quiescent air. Oscillations at identical frequency were observed throughout the flow field. The evolving flow structure is described by helium mole percentage contours during an oscillation cycle. Instantaneous, mean, and RMS concentration profiles are presented to describe interactions of the vortex with the jet flow. Oscillations in a narrow wake region near the jet exit are shown to spread through the jet core near the downstream location of the vortex formation. The effects of jet Richardson number on characteristics of vortex and flow field are investigated and discussed. The laminar, axisymmetric, unsteady jet flow of helium injected into air was simulated using CFD. Global oscillations were observed in the flow field. The computed oscillation frequency agreed qualitatively with the experimentally measured frequency. Contours of helium concentration, vorticity and velocity provided information about the evolution and propagation of vortices in the oscillating flow field. Buoyancy effects on the instability mode were evaluated by rainbow schlieren flow visualization and concentration measurements in the near-field of self-excited helium jets undergoing gravitational change in the microgravity environment of 2.2s drop tower at NASA John H. Glenn Research Center. The jet Reynolds number was varied from 200 to 1500 and jet Richardson number was varied from 0.72 to 0.002. Power spectra plots generated from Fast Fourier Transform (FFT) analysis of angular deflection data acquired at a temporal resolution of 1000Hz reveal substantial damping of the oscillation amplitude in microgravity at low Richardson numbers (0.002). Quantitative concentration data in the form of spatial and temporal evolutions of the instability data in Earth gravity and microgravity reveal significant variations in the jet flow structure upon removal of buoyancy forces. Radial variation of the frequency spectra and time traces of helium concentration revealed the importance of gravitational effects in the jet shear layer region. Linear temporal and spatio-temporal stability analyses of a low-density round gas jet injected into a high-density ambient gas were performed by assuming hyper-tan mean velocity and density profiles. The flow was assumed to be non parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results were delineated. A decrease in the density ratio (ratio of the density of the jet to the density of the ambient gas) resulted in an increase in the temporal amplification rate of the disturbances. The temporal growth rate of the disturbances increased as the Froude number was reduced. The spatio-temporal analysis performed to determine the absolute instability characteristics of the jet yield positive absolute temporal growth rates at all Fr and different axial locations. As buoyancy was removed (Fr . 8), the previously existing absolute instability disappeared at all locations establhing buoyancy as the primary instability mechanism in self-excited low-density jets.

  20. A Design of Experiments Investigation of Offset Streams for Supersonic Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Papamoschou, Dimitri

    2014-01-01

    An experimental investigation into the noise characteristics of a dual-stream jet with four airfoils inserted in the fan nozzle was conducted. The intent of the airfoils was to deflect the fan stream relative to the core stream and, therefore, impact the development of the secondary potential core and noise radiated in the peak jet-noise direction. The experiments used a full-factorial Design of Experiments (DoE) approach to identify parameters and parameter interactions impacting noise radiation at two azimuthal microphone array locations, one of which represented a sideline viewing angle. The parameters studied included airfoil angle-of-attack, airfoil azimuthal location within the fan nozzle, and airfoil axial location relative to the fan-nozzle trailing edge. Jet conditions included subsonic and supersonic fan-stream Mach numbers. Heated jets conditions were simulated with a mixture of helium and air to replicate the exhaust velocity and density of the hot jets. The introduction of the airfoils was shown to impact noise radiated at polar angles in peak-jet noise direction and to have no impact on noise radiated at small and broadside polar angles and to have no impact on broadband-shock-associated noise. The DoE analysis showed the main effects impacting noise radiation at sideline-azimuthal-viewing angles included airfoil azimuthal angle for the airfoils on the lower side of the jet near the sideline array and airfoil trailing edge distance (with airfoils located at the nozzle trailing edge produced the lowest sound pressure levels). For an array located directly beneath the jet (and on the side of the jet from which the fan stream was deflected), the main effects impacting noise radiation included airfoil angle-of-attack and airfoil azimuthal angle for the airfoils located on the observation side of the jet as well and trailing edge distance. Interaction terms between multiple configuration parameters were shown to have significant impact on the radiated noise. The models were shown to adequately describe the sound-pressure levels obtained for a configuration in the center of the design space indicating the models can be used to navigate the design space.

  1. Effect of Free Jet on Refraction and Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Georgiadis, Nicholas J.; Bridges, James E.; Dippold, Vance F., III

    2005-01-01

    This article investigates the role of a free jet on the sound radiated from a jet. In particular, the role of an infinite wind tunnel, which simulates the forward flight condition, is compared to that of a finite wind tunnel. The second configuration is usually used in experiments, where the microphones are located in a static ambient medium far outside the free jet. To study the effect of the free jet on noise, both propagation and source strength need to be addressed. In this work, the exact Green's function in a locally parallel flow is derived for a simulated flight case. Numerical examples are presented that show a reduction in the magnitude of the Green's function in the aft arc and an increase in the forward arc for the simulated flight condition. The effect of finite wind tunnel on refraction is sensitive to the source location and is most pronounced in the aft arc. A Reynolds-averaged Navier-Stokes solution (RANS) yields the required mean flow and turbulence scales that are used in the jet mixing noise spectrum calculations. In addition to the sound/flow interaction, the separate effect of source strength and elongation of the noise-generating region of the jet in a forward flight is studied. Comparisons are made with experiments for the static and finite tunnel cases. Finally, the standard free-jet shear corrections that convert the finite wind tunnel measurements to an ideal wind tunnel arrangement are evaluated.

  2. Studies of supersonic, radiative plasma jet interaction with gases at the Prague Asterix Laser System facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolaie, Ph.; Stenz, C.; Tikhonchuk, V.

    2008-08-15

    The interaction of laser driven jets with gas puffs at various pressures is investigated experimentally and is analyzed by means of numerical tools. In the experiment, a combination of two complementary diagnostics allowed to characterize the main structures in the interaction zone. By changing the gas composition and its density, the plasma cooling time can be controlled and one can pass from a quasiadiabatic outflow to a strongly radiation cooling jet. This tuning yields hydrodynamic structures very similar to those seen in astrophysical objects; the bow shock propagating through the gas, the shocked materials, the contact discontinuity, and the Machmore » disk. From a dimensional analysis, a scaling is made between both systems and shows the study relevance for the jet velocity, the Mach number, the jet-gas density ratio, and the dissipative processes. The use of a two-dimensional radiation hydrodynamic code, confirms the previous analysis and provides detailed structure of the interaction zone and energy repartition between jet and surrounding gases.« less

  3. Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet

    NASA Astrophysics Data System (ADS)

    Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis

    2017-10-01

    In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.

  4. Installation and airspeed effects on jet shock-associated noise

    NASA Technical Reports Server (NTRS)

    Vonglahn, U.; Goodykoontz, J.

    1975-01-01

    Experimental acoustic data are presented to illustrate, at model scale, the effect of varying the nozzle-wing installation on shock-associated noise, statically and with airspeed. The variation in installations included nozzle only, nozzle under-the-wing (with and without flaps deflected), and nozzle over-the-wing (unattached flow). The nozzles used were a conical and a 6-tube mixer nozzle with a cold-flow nozzle pressure ratio of 2.1. A 33-cm diameter free jet was used to simulate airspeed. With the nozzle only, shock wave noise dominated the spectra in the forward quadrant, while jet mixing noise dominated in the rearward quadrant. Similar trends were observed when a wing (flaps retracted) was included. Shock noise was attenuated with an over-the-wing configuration and increased with an under-the-wing configuration (due to reflection from the wing surface). With increasing flap deflection (under-the-wing configuration), the jet-flap interaction noise exceeded the shock noise and became dominant in both quadrants. The free jet results showed that airspeed had no effect on shock noise. The free jet noise data were corrected for convective amplification to approximate flight and comparisons between the various configurations are made.

  5. Wiggles and knots in radio jets

    NASA Astrophysics Data System (ADS)

    Trussoni, E.; Ferrari, A.; Zaninetti, L.

    Dynamical effects in binary nuclei inside parent galactic cores, gravitational interactions with companion galaxies, and Kelvin-Helmholtz instabilities in the flow propagation have been proposed as mechanism responsible for the formation of the low amplitude morphologies, wiggles and knots, observed in radio jets. Here the basic characteristics and implications of these models are discussed with reference to the limited sample of existing data. In conclusion it will be shown that present observations cannot discriminate definitely these theories; conversely, different mechanisms may be at work together in any jet at the same time.

  6. The effect of liquid target on a nonthermal plasma jet—imaging, electric fields, visualization of gas flow and optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kovačević, Vesna V.; Sretenović, Goran B.; Slikboer, Elmar; Guaitella, Olivier; Sobota, Ana; Kuraica, Milorad M.

    2018-02-01

    The article describes the complex study of the interaction of a helium plasma jet with distilled water and saline. The discharge development, spatial distribution of the excited species, electric field measurement results and the results of the Schlieren imaging are presented. The results of the experiments showed that the plasma-liquid interaction could be prolonged with the proper choice of the gas composition between the jet nozzle and the target. This depends on the gas flow and the target distance. Increased conductivity of the liquid does not affect the discharge properties significantly. An increase of the gas flow enables an extension of the plasma duration on the liquid surface up to 10 µs, but with a moderate electric field strength in the ionization wave. In contrast, there is a significant enhancement of the electric field on the liquid surface, up to 30 kV cm-1 for low flows, but with a shorter time of the overall plasma liquid interaction. Ignition of the plasma jet induces a gas flow modification and may cause turbulences in the gas flow. A significant influence of the plasma jet causing a mixing in the liquid is also recorded and it is found that the plasma jet ignition changes the direction of the liquid circulation.

  7. Mapping jet-ISM interactions in X-ray binaries with ALMA: a GRS 1915+105 case study

    NASA Astrophysics Data System (ADS)

    Tetarenko, A. J.; Freeman, P.; Rosolowsky, E. W.; Miller-Jones, J. C. A.; Sivakoff, G. R.

    2018-03-01

    We present Atacama Large Millimetre/Sub-Millimetre Array (ALMA) observations of IRAS 19132+1035, a candidate jet-interstellar medium (ISM) interaction zone near the black hole X-ray binary (BHXB) GRS 1915+105. With these ALMA observations (combining data from the 12 m array and the Atacama Compact Array), we map the molecular line emission across the IRAS 19132+1035 region. We detect emission from the 12CO [J = 2 - 1], 13CO [ν = 0, J = 2 - 1], C18O [J = 2 - 1], H2CO [J = 30, 3 - 20, 2], H2CO [J = 32, 2 - 22, 1], H2CO [J = 32, 1 - 22, 0], SiO [ν = 0, J = 5 - 4], CH3OH [J = 42, 2 - 31, 2], and CS [ν = 0, J = 5 - 4] transitions. Given the morphological, spectral, and kinematic properties of this molecular emission, we present several lines of evidence that support the presence of a jet-ISM interaction at this site, including a jet-blown cavity in the molecular gas. This compelling new evidence identifies this site as a jet-ISM interaction zone, making GRS 1915+105, the third Galactic BHXB with at least one conclusive jet-ISM interaction zone. However, we find that this interaction occurs on much smaller scales than was postulated by previous work, where the BHXB jet does not appear to be dominantly powering the entire IRAS 19132+1035 region. Using estimates of the ISM conditions in the region, we utilize the detected cavity as a calorimeter to estimate the time-averaged power carried in the GRS 1915+105 jets of (8.4^{+7.7}_{-8.1})× 10^{32} erg s^{-1}. Overall, our analysis demonstrates that molecular lines are excellent diagnostic tools to identify and probe jet-ISM interaction zones near Galactic BHXBs.

  8. Radio jets clearing the way through galaxies: the view from Hi and molecular gas

    NASA Astrophysics Data System (ADS)

    Morganti, Raffaella

    2015-03-01

    Massive gas outflows are considered a key component in the process of galaxy formation and evolution. Because of this, they are the topic of many studies aimed at learning more about their occurrence, location and physical conditions as well as the mechanism(s) at their origin. This contribution presents recent results on two of the best examples of jet-driven outflows traced by cold and molecular gas. Thanks to high-spatial resolution observations, we have been able to locate the region where the outflow occurs. This appears to be coincident with bright radio features and regions where the interaction between radio plasma jet and ISM is known to occur, thus strongly supporting the idea of jet-driven outflows. We have also imaged the distribution of the outflowing gas. The results clearly show the effect that expanding radio jets and lobes have on the ISM. This appears to be in good agreement with what predicted from numerical simulations. Furthermore, the results show that cold gas is associated with these powerful phenomena and can be formed - likely via efficient cooling - even after a strong interaction and fast shocks. The discovery of similar fast outflows of cold gas in weak radio sources is further increasing the relevance that the effect of the radio plasma can have on the surrounding medium and on the host galaxy.

  9. Two-, three-, and four-poster jets in cross flow

    NASA Technical Reports Server (NTRS)

    Vukits, Thomas J.; Sullivan, John P.; Murthy, S. N. B.

    1993-01-01

    In connection with the problems of the ingestion of hot exhaust gases in engines of V/STOL and STOVL aircraft in ground effect, a series of studies have been undertaken. Ground impinging, two- and three-poster jets operating in the presence of cross flow were studied. The current paper is divided into two parts. The first part is a comparison of the low speed, two-, three-, and four-poster jet cases, with respect to the flowfield in the region of interaction between the forward and the jet flows. These include cases with mass balanced inlet suction. An analysis of the inlet entry plane of the low speed two- and three-poster jet cases is also given. In the second part, high speed results for a two jet configuration without inlet suction are given. The results are based on quantitative, marker concentration distributions obtained by digitizing video images.

  10. Experiments on Exhaust Noise of Tightly Integrated Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Brown, Clifford A.; Bozak, Richard F.

    2014-01-01

    A wide-ranging series of tests have been completed that seek to map the effects of installation, including jet by jet interaction effects, on exhaust noise from various nozzles in forward flight. The primary data was far-field acoustic spectral directivity. The goals of the test series were (i) to generate enough data for empirical models of the different effects, and (ii) to provide data for advanced computational noise predictions methods applied to simplified yet realistic configurations. Data is presented that demonstrate several checks on data quality and that provide an overview of trends observed to date. Among the findings presented here: (i) Data was repeatable between jet rigs for single nozzles with and without surfaces to within +/- 0.5 dB. (ii) The presence of a second jet caused a strong reduction of the summed noise in the plane of the two plumes and an increase over the expected source doubling in most other azimuthal planes. (iii) The impact of the second jet was reduced when the jets were unheated. (iv) The impact of adding a second isolated rectangular jet was relatively independent of the nozzle aspect ratio up to aspect ratio 8:1. (v) Forward flight had similar impact on a high aspect ratio (8:1) jet as on an axisymmetric jet, except at the peak noise angle where the impact was less. (vi) The effect of adding a second round jet to a tightly integrated nozzle where the nozzle lip was less than a diameter from the surface was very dependent upon the length of the surface downstream of the nozzle. (vii) When the nozzles were rectangular and tightly integrated with the airframe surface the impact of a second jet was very dependent upon how close together the two jets were. This paper serves as an overview of the test; other papers presented in the same conference will give more detailed analysis of the results.

  11. Computer program for calculating aerodynamic characteristics of upper-surface-blowing and over-wing-blowing configurations

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Fillman, G. L.; Fox, C. H., Jr.

    1977-01-01

    The program is based on the inviscid wing-jet interaction theory of Lan and Campbell, and the jet entrainment theory of Lan. In the interaction theory, the flow perturbations are computed both inside and outside the jet, separately, and then matched on the jet surface to satisfy the jet boundary conditions. The jet Mach number is allowed to be different from the free stream value (Mach number nonuniformity). These jet boundary conditions require that the static pressure be continuous across the jet surface which must always remain as a stream surface. These conditions, as well as the wing-surface tangency condition, are satisified only in the linearized sense. The detailed formulation of these boundary conditions is based on the quasi-vortex-lattice method of Lan.

  12. Radiative Processes in Jets

    NASA Astrophysics Data System (ADS)

    Vila, Gabriela S.

    Relativistic jets and collimated outflows are ubiquitous phenomena in astrophysical settings, from young stellar objects up to Active Galactic Nuclei. The observed emission from some of these jets can cover the whole electromagnetic spectrum, from radio to gamma-rays. The relevant features of the spectral energy distributions depend on the nature of the source and on the characteristics of the surrounding environment. Here the author reviews the main physical processes that command the interactions between populations of relativistic particles locally accelerated in the jets, with matter, radiation and magnetic fields. Special attention is given to the conditions that lead to the dominance of the different radiative mechanisms. Examples from various types of sources are used to illustrate these effects.

  13. Effects of Jet Swirl on Mixing of a Light Gas Jet in a Supersonic Airstream

    NASA Technical Reports Server (NTRS)

    Doerner, Steven E.; Cutler, Andrew D.

    1999-01-01

    A non reacting experiment was performed to investigate the effects of jet swirl on mixing of a light gas jet in a supersonic airstream. The experiment consisted of two parts. The first part was an investigation of the effects of jet swirl and skew on the mixing and penetration of a 25 deg. supersonic jet injected from a flat surface (flush wall injection) into a supersonic ducted airflow. Specifically, the objective was to determine whether the jet would mix more rapidly if the jet were swirling, and whether swirl, with and without skew, causes the injectant-air plume to have a net circulation (i.e., a single or dominant vortex). The second part was a preliminary study of the mixing of swirling jets injected from the base of a skewed ramp. The hypothesis was that favorable interactions between vorticity generated by the swirling jet and vortices generated by the ramp could produce mixing enhancements. Both parts of the experiment were conducted at equal injectant mass flow rate and total pressure. The results for the flush wall injection cases indicate that, except relatively close to the injection point, swirl, with or without skew, does not enhance the mixing of the jet, and can in fact reduce penetration. In addition, a plume with significant net circulation is not generated, as had previously been believed. The results for the ramp cases indicated no improvements in mixing in comparison with the baseline (swept ramp injector) case. However, it was not possible to determine the vorticity mechanisms underlying the poor performance, since no measurements of vorticity were made. Thus, since many geometric parameters were chosen arbitrarily, the results are inconclusive for this class of injector.

  14. Collimated Outflow Formation via Binary Stars: Three-Dimensional Simulations of Asymptotic Giant Branch Wind and Disk Wind Interactions

    NASA Astrophysics Data System (ADS)

    García-Arredondo, F.; Frank, Adam

    2004-01-01

    We present three-dimensional hydrodynamic simulations of the interaction of a slow wind from an asymptotic giant branch (AGB) star and a jet blown by an orbiting companion. The jet or ``collimated fast wind'' is assumed to originate from an accretion disk that forms via Bondi accretion of the AGB wind or Roche lobe overflow. We present two distinct regimes in the wind-jet interaction determined by the ratio of the AGB wind to jet momentum flux. Our results show that when the wind momentum flux overwhelms the flux in the jet, a more disordered outflow results with the jet assuming a corkscrew pattern and multiple shock structures driven into the AGB wind. In the opposite regime, the jet dominates and will drive a highly collimated, narrow-waisted outflow. We compare our results with scenarios described by Soker & Rappaport and extrapolate to the structures observed in planetary nebulae (PNs) and symbiotic stars.

  15. Laboratory Plasma Source as an MHD Model for Astrophysical Jets

    NASA Technical Reports Server (NTRS)

    Mayo, Robert M.

    1997-01-01

    The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to astrophysical jet observation. There exists overwhelming similarity among these flows that has already produced some fascinating results and is expected to continue a high pay off in future flow similarity studies.

  16. Results of tests using a 0.0125-scale model (70-QT) of the space shuttle vehicle orbiter in the AEDC VKF tunnel B (IA22), volume 2

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.; Marroquin, J.

    1977-01-01

    Tabulated data of an experimental investigation are presented which was conducted in the AEDC/VKF Tunnel B to obtain interaction effects of RCS thruster jet plumes on SSV aerodynamics during staging to simulate RTLS abort. Interaction effects of the orbiter RCS thruster jet plumes on the orbiter and ET aerodynamics were investigated. RCS thruster jet plumes were simulated using both air and a 15 percent argon 85 percent helium gas mixture. The ET angle of attack range was -40 to +25 deg at sideslip angles of 0, 3, and 6 degrees. Orbiter angle of attack was varied from -15 to +10 degrees at sideslip angles of 0 and 3 deg. External tank full scale separation distances simulated were 0 to 1400 in. axially; 0 to 54 in. laterally; and a range of -100 to 1000 in. vertically. Data were also obtained on the ET in the interference-free flow field. Quiescent (no tunnel flow) thruster plume interaction data were obtained on the orbiter and orbiter-ET combination. Tests were conducted at Mach number 6 and a Reynolds number of 0.86 million per foot.

  17. Three-dimensional Magnetohydrodynamical Simulations of the Morphology of Head-Tail Radio Galaxies Based on the Magnetic Tower Jet Model

    NASA Astrophysics Data System (ADS)

    Gan, Zhaoming; Li, Hui; Li, Shengtai; Yuan, Feng

    2017-04-01

    The distinctive morphology of head-tail radio galaxies reveals strong interactions between the radio jets and their intra-cluster environment, the general consensus on the morphology origin of head-tail sources is that radio jets are bent by violent intra-cluster weather. We demonstrate in this paper that such strong interactions provide a great opportunity to study the jet properties and also the dynamics of the intra-cluster medium (ICM). By three-dimensional magnetohydrodynamical simulations, we analyze the detailed bending process of a magnetically dominated jet, based on the magnetic tower jet model. We use stratified atmospheres modulated by wind/shock to mimic the violent intra-cluster weather. Core sloshing is found to be inevitable during the wind-cluster core interaction, which induces significant shear motion and could finally drive ICM turbulence around the jet, making it difficult for the jet to survive. We perform a detailed comparison between the behavior of pure hydrodynamical jets and the magnetic tower jet and find that the jet-lobe morphology could not survive against the violent disruption in all of our pure hydrodynamical jet models. On the other hand, the head-tail morphology is well reproduced by using a magnetic tower jet model bent by wind, in which hydrodynamical instabilities are naturally suppressed and the jet could always keep its integrity under the protection of its internal magnetic fields. Finally, we also check the possibility for jet bending by shock only. We find that shock could not bend the jet significantly, and thus could not be expected to explain the observed long tails in head-tail radio galaxies.

  18. Three-dimensional Magnetohydrodynamical Simulations of the Morphology of Head–Tail Radio Galaxies Based on the Magnetic Tower Jet Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Zhaoming; Yuan, Feng; Li, Hui

    The distinctive morphology of head–tail radio galaxies reveals strong interactions between the radio jets and their intra-cluster environment, the general consensus on the morphology origin of head–tail sources is that radio jets are bent by violent intra-cluster weather. We demonstrate in this paper that such strong interactions provide a great opportunity to study the jet properties and also the dynamics of the intra-cluster medium (ICM). By three-dimensional magnetohydrodynamical simulations, we analyze the detailed bending process of a magnetically dominated jet, based on the magnetic tower jet model. We use stratified atmospheres modulated by wind/shock to mimic the violent intra-cluster weather.more » Core sloshing is found to be inevitable during the wind-cluster core interaction, which induces significant shear motion and could finally drive ICM turbulence around the jet, making it difficult for the jet to survive. We perform a detailed comparison between the behavior of pure hydrodynamical jets and the magnetic tower jet and find that the jet-lobe morphology could not survive against the violent disruption in all of our pure hydrodynamical jet models. On the other hand, the head–tail morphology is well reproduced by using a magnetic tower jet model bent by wind, in which hydrodynamical instabilities are naturally suppressed and the jet could always keep its integrity under the protection of its internal magnetic fields. Finally, we also check the possibility for jet bending by shock only. We find that shock could not bend the jet significantly, and thus could not be expected to explain the observed long tails in head–tail radio galaxies.« less

  19. Synthetic Jet Interactions with Flows of Varying Separation Severity and Spanwise Flow Magnitude

    NASA Astrophysics Data System (ADS)

    Monastero, Marianne; Lindstrom, Annika; Amitay, Michael

    2017-11-01

    Flow physics associated with the interactions of synthetic jet actuators with a highly three-dimensional separated flow over a flapped airfoil were investigated experimentally and analyzed using stereo particle image velocimetry (SPIV) and surface pressure data. Increased understanding of active flow control devices in flows which are representative of airplane wings or tails can lead to actuator placement (i.e., chordwise location, spanwise spacing) with the greatest beneficial effect on performance. An array of discrete synthetic jets was located just upstream of the control surface hingeline and operated at a blowing ratio of 1 and non-dimensional frequency of 48. Detailed flowfield measurements over the control surface were conducted, where the airfoil's sweep angle and the control surface deflection angle were fixed at 20°. Focus was placed on the local and global flowfields as spanwise actuator spacing was varied. Moreover, surface pressure measurement for several sweep angles, control surface deflection angles, and angles of attack were also performed. Actuation resulted in an overall separation reduction and a dependence of local flowfield details (i.e. separation severity, spanwise flow magnitude, flow structures, and jet trajectory) on spanwise jet spacing. The Boeing Company.

  20. Jet Surface Interaction Scrubbing Noise from High Aspect-Ratio Rectangular Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bozak, Richard F.

    2015-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity of the airframe. Distributed propulsion system with exhaust configurations that resemble a high aspect ratio rectangular jet are among geometries of interest. Nearby solid surfaces could provide noise shielding for the purpose of reduced community noise. Interaction of high-speed jet exhaust with structure could also generate new sources of sound as a result of flow scrubbing past the structure, and or scattered noise from sharp edges. The present study provides a theoretical framework to predict the scrubbing noise component from a high aspect ratio rectangular exhaust in proximity of a solid surface. The analysis uses the Greens function (GF) to the variable density Pridmore-Brown equation in a transversely sheared mean flow. Sources of sound are defined as the auto-covariance function of second-rank velocity fluctuations in the jet plume, and are modeled using a RANS-based acoustic analogy approach. Acoustic predictions are presented in an 8:1 aspect ratio rectangular exhaust at three subsonic Mach numbers. The effect of nearby surface on the scrubbing noise component is shown on both reflected and shielded sides of the plate.

  1. The Prediction and Analysis of Jet Flows and Scattered Turbulent Mixing Noise about Flight Vehicle Airframes

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the airframe and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large flat plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position.The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non-dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.

  2. The Prediction and Analysis of Jet Flows and Scattered Turbulent Mixing Noise About Flight Vehicle Airframes

    NASA Technical Reports Server (NTRS)

    Miller, Steven A.

    2014-01-01

    Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the air-frame and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large at plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position. The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non- dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.

  3. Results of test 0A82 in the NASA/LRC 31 inch CFHT on an 0.010-scale model (32-0) of the space shuttle configuration 3 to determine RCS jet flow field interaction and to investigate RT real gas effects

    NASA Technical Reports Server (NTRS)

    Thornton, D. E.

    1975-01-01

    Tests were conducted in the NASA Langley Research Center 31-inch Continuous Flow Hypersonic Wind Tunnel to determine RCS jet interaction effects on hypersonic aerodynamic characteristics and to investigate RT (gas constant times temperature) scaling effects on the RCS similitude. The model was an 0.010-scale replica of the Space Shuttle Orbiter Configuration 3. Hypersonic aerodynamic data were obtained from tests at Mach 10.3 and dynamic pressures of 200, 150, 125, and 100 psf. The RCS modes of pitch, yaw, and roll at free flight dynamic pressure simulation of 20 psf were investigated.

  4. Probing nuclear matter with jet conversions

    NASA Astrophysics Data System (ADS)

    Liu, W.; Fries, R. J.

    2008-05-01

    We discuss the flavor of leading jet partons as a valuable probe of nuclear matter. We point out that the coupling of jets to nuclear matter naturally leads to an alteration of jet chemistry even at high transverse momentum pT. In particular, quantum chromodynamics (QCD) jets coupling to a chemically equilibrated quark gluon plasma in nuclear collisions will lead to hadron ratios at high transverse momentum pT that can differ significantly from their counterparts in p+p collisions. Flavor measurements could complement energy loss as a way to study interactions of hard QCD jets with nuclear matter. Roughly speaking they probe the inverse mean free path 1/λ while energy loss probes the average squared momentum transfer μ2/λ. We present some estimates for the rate of jet conversions in a consistent Fokker-Planck framework and their impact on future high-pT identified hadron measurements at RHIC and LHC. We also suggest some novel observables to test flavor effects.

  5. Experimental study of surface pressures induced on a flat plate and a body of revolution by various dual jet configurations. [wind tunnel tudies of a jet in a cross flow for V/STOL applications

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Jakubowski, A. K.

    1982-01-01

    The effect of the angle of a jet to a crossflow, the performance of dual jet configurations, and a jet injected from a body of revolution as opposed to a flat plate were investigated during experiments conducted in the 7x10 tunnel at NASA Ames at Velocities from 14.5 m/sec to 35.8 m/sec (47.6 to 117.4 ft/sec.). Pressure distributions are presented for single and dual jets over a range of velocity ratios from 2 to 10, spacings from 2 to 6 diameters and injection angles of 90, 75, 60, and 105 degrees. For the body of revolution tests, the ratio of the jet to body diameters was set as large (1/2) in order to be more representative of V/STOL aircraft applications. Flat plate tests involved dual jets both aligned and in side by side configurations. The effects of the various parameters and the differences between the axisymmetric and planar body geometrics on the nature, size, shape, and strength of the interaction regions on the body surfaces are shown. Some flowfield measurements are also presented, and it is shown that a simple analysis is capable of predicting the trajectories of the jets.

  6. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Auna L., E-mail: mosera@fusion.gat.com; Hsu, Scott C., E-mail: scotthsu@lanl.gov

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional andmore » the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less

  7. Plasma Jet Interactions with Liquids in Partial Fulfillment of an NRL Karles Fellowship

    DTIC Science & Technology

    2015-11-30

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6750--15-9650 Plasma Jet Interactions with Liquids in Partial Fulfillment of an NRL... Plasma Physics Division i REPORT DOCUMENTATION PAGE Form ApprovedOMB No. 0704-0188 3. DATES COVERED (From - To) Standard Form 298 (Rev. 8-98...ABSTRACT Plasma Jet Interactions with Liquids in Partial Fulfillment of an NRL Karle’s Fellowship Sandra (Hernandez) Hangarter Naval Research Laboratory 4555

  8. Unsteady Blade Row Interaction in a Transonic Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.

    1996-01-01

    Experimental data from jet-engine tests have indicated that unsteady blade row interaction effects can have a significant impact on the performance of multiple-stage turbines. The magnitude of blade row interaction is a function of both blade-count ratio and axial spacing. In the current research program, numerical simulations have been used to quantify the effects of blade count ratio on the performance of an advanced turbine geometries.

  9. Parsec-scale jets and tori in seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Wrobel, J. M.; Wilson, A. S.; Ulvestad, J. S.; Norris, R. P.; Mundell, C. G.; Krichbaum, T. P.; Falcke, H.; Colbert, E. J. M.

    2001-01-01

    H. Falcke, T.P. Krichbaum, C.G. Mundell, J.S. Ulvestad, A.S. Wilson, J.M. Wrobel Active galaxies tend to be powerful or weak radio sources, and we still do not understand the underlying cause. Perhaps the engine is the same in both systems and the jet gets disrupted by dense interstellar medium in radio-quiet objects, or else the difference is intrinsic with jet power scaling with black hole spin. To distinguish, one can look for signs of interaction between the jet and the narrow-line region, and to measure the jet speed close to the jet base, before environmental effects become important. We find one-sided parsec-scale jet structures in Mrk 348, Mrk 231, NGC 4151, and NGC 5506 using VLBI, and we measure low jet speeds (typically <= 0.25 c). The one-sidedness probably is not due to Doppler boosting, but rather is probably free-free absorption. Plasma conditions required to produce the absorption are Ne >= 2 × 105 cm-3 assuming a path length of 0.1 pc, typical of that expected at the inner edge of the obscuring torus.

  10. PALS laser-driven radiative jets for astrophysical and ICF applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisarczyk, T.; Kasperczuk, A.; Stenz, Ch.

    2008-03-19

    High speed, well-collimated plasma jets were generated in the interaction of defocused single laser beam with planar, massive Cu target. The experiment was carried out at the iodine laser facility (Prague Asterix Laser System--PALS) using the third harmonic beam (0.438 {mu}m) with a pulse duration of 250 ps (FWHM) and an energy of 100 J. The information about geometry of plasma expansion, plasma dynamics and electron density were obtained by means of a 3-frame interferometric system. The plasma jet parameters reach the following values: the velocity up to 7x10{sup 7} cm/s, the internal Mach number greater than 10 and themore » electron density above 10{sup 19} cm{sup -3}. The jet characteristics are appropriate for the astrophysical and ICF applications. To ensure the interaction of this jet with gas or plasma as an ambient medium, a high-pressure supersonic gas nozzle was used, which created a cylindrical column of Ar or He. The results of first experiments dedicated to studies of collision of such a jet with a gas cloud are also presented. They clearly show the effect of shocks formation in ambient gases (He and Ar) due to the jet action. In the case of He the shock waves have usually a conical shape with a thickness of 1-1.5 mm, whereas in the case of Ar, the shock wave configuration is more complex and its thickness is less than 1 mm.« less

  11. A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.; Jackson, J. A.; Seiner, J. M.

    1985-01-01

    The present investigation is concerned with the development of an analytical model of the quasi-periodic shock-cell structure of an imperfectly expanded supersonic jet. The investigation represents a part of a program to develop a mathematical theory of broadband shock-associated noise of supersonic jets. Tam and Tanna (1982) have suggested that this type of noise is generated by the weak interaction between the quasi-periodic shock cells and the downstream-propagating large turbulence structures in the mixing layer of the jet. In the model developed in this paper, the effect of turbulence in the mixing layer of the jet is simulated by the addition of turbulent eddy-viscosity terms to the momentum equation. Attention is given to the mean-flow profile and the numerical solution, and a comparison of the numerical results with experimental data.

  12. The Discovery of a Disk-Jet System Directly Exposed to Strong Ultraviolet Fields in the Rosette Nebula

    NASA Astrophysics Data System (ADS)

    Li, Jin Zeng; Rector, Travis A.

    2004-01-01

    We report on the discovery of an optical jet with a striking morphology in the Rosette Nebula. It could be the most extreme case known of an accretion disk and jet system directly exposed to strong ionization fields that impose strong effects on disk evolution. Unlike typical optical flows, this jet system is found to have a high excitation nature mainly due to disruptive interaction with the violent environment. As a result, the extension of the highly collimated jet and possible former episodes of the degenerated counterjet all show bow-shocked structures. Our results provide implications on how incipience of massive stars in giant molecular clouds prevents further generations of low-mass star formation, and possibly also how isolated substellar/planetary-mass objects in regions of massive star formation are formed.

  13. New tools for jet analysis in high energy collisions

    NASA Astrophysics Data System (ADS)

    Duffty, Daniel

    Our understanding of the fundamental interactions of particles has come far in the last century, and is still pushing forward. As we build ever more powerful machines to probe higher and higher energies, we will need to develop new tools to not only understand the new physics objects we are trying to detect, but even to understand the environment that we are searching in. We examine methods of identifying both boosted objects and low energy jets which will be shrouded in a sea of noise from other parts of the detector. We display the power of boosted-b tagging in a simulated W search. We also examine the effect of pileup on low energy jet reconstructions. For this purpose we develop a new priority-based jet algorithm, "p-jets", to cluster the energy that belongs together, but ignore the rest.

  14. Jet production and fragmentation properties in deep inelastic muon scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Conrad, J.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Drobnitzki, M.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Ftàčnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlabböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; Ziemons, K.

    1987-12-01

    Results are presented from a study of deep inelastic 280 GeV muon-nucleon interactions on the transverse momenta and jet properties of the final state hadrons. The results are analysed in a way which attempts to separate the contributions of hard and soft QCD effects from those that arise from the fragmentation process. The fragmentation models with which the data are compared are the Lund string model, the independent jet model, the QCD parton shower model including soft gluon interference effects, and the firestring model. The discrimination between these models is discussed. Various methods of analysis of the data in terms of hard QCD processes are presented. From a study of the properties of the jet profiles a value of α s , to leading order, is determined using the Lund string model, namely α s =0.29±0.01 (stat.) ±0.02 (syst.), for Q 2˜20 GeV2.

  15. Multiwavelength Study of Powerful New Jet Activity in the Symbiotic System R AQR

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2016-10-01

    We propose to carry out coordinated high-spatial resolution Chandra ACIS-S and multiwavelength (UV-Optical) HST/WFC3 observations of R Aqr, a very active symbiotic interacting binary system. Our main goal is to study the physical characteristics of the multi-scale components of the powerful jet; from the vicinity of the central binary (within a few AU) to the jet-circumbinary material interaction region (2500 AU) and beyond, and especially of the recently discovered new component of the inner jet (likely due to recent ejection of material). Our main goal is to gain new insight on early jet formation and propagation, including jet kinematics and precession.

  16. Experimental study of a vertical jet in a vegetated crossflow.

    PubMed

    Ben Meftah, Mouldi; De Serio, Francesca; Malcangio, Daniela; Mossa, Michele; Petrillo, Antonio Felice

    2015-12-01

    Aquatic ecosystems have long been used as receiving environments of wastewater discharges. Effluent discharge in a receiving water body via single jet or multiport diffuser, reflects a number of complex phenomena, affecting the ecosystem services. Discharge systems need to be designed to minimize environmental impacts. Therefore, a good knowledge of the interaction between effluents, discharge systems and receiving environments is required to promote best environmental management practice. This paper reports innovative 3D flow velocity measurements of a jet discharged into an obstructed crossflow, simulating natural vegetated channel flows for which correct environmental management still lacks in literature. In recent years, numerous experimental and numerical studies have been conducted on vegetated channels, on the one hand, and on turbulent jets discharged into unvegetated crossflows, on the other hand. Despite these studies, however, there is a lack of information regarding jets discharged into vegetated crossflow. The present study aims at obtaining a more thorough understanding of the interaction between a turbulent jet and an obstructed crossflow. In order to achieve such an objective, a series of laboratory experiments was carried out in the Department of Civil, Environmental, Building Engineering and Chemistry of the Technical University of Bari - Italy. The physical model consists of a vertical jet discharged into a crossflow, obstructed by an array of vertical, rigid, circular and threaded steel cylinders. Analysis of the measured flow velocities shows that the array of emergent rigid vegetation significantly affects the jet and the ambient flow structures. It reduces the mean channel velocity, allowing the jet to penetrate higher into the crossflow. It significantly increases the transversal flow motion, promoting a major lateral spreading of the jet within the crossflow. Due to the vegetation array effects, the jet undergoes notable variations in its vortical structure. The variation of the flow patterns affects the mixing process and consequently the dilution of pollutants discharged in receiving water bodies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Space shuttle orbiter rear mounted reaction control system jet interaction study. [hypersonic wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.

    1977-01-01

    The effect of interaction between the reaction control system (RCS) jets and the flow over the space shuttle orbiter in the atmosphere was investigated in the NASA Langley 31-inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 and in the AEDC continuous flow hypersonic tunnel B at a nominal Mach number of 6, using 0.01 and .0125 scale force models with aft RCS nozzles mounted both on the model and on the sting of the force model balance. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter when the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms.

  18. Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction.

    PubMed

    Demartin, Federico; Maltoni, Fabio; Mawatari, Kentarou; Page, Ben; Zaro, Marco

    At the LHC the CP properties of the top-quark Yukawa interaction can be probed through Higgs production in gluon fusion or in association with top quarks. We consider the possibility for both CP-even and CP-odd couplings to the top quark to be present, and study CP-sensitive observables at next-to-leading order (NLO) in QCD, including parton-shower effects. We show that the inclusion of NLO corrections sizeably reduces the theoretical uncertainties, and confirm that di-jet correlations in [Formula: see text] jet production through gluon fusion and correlations of the top-quark decay products in [Formula: see text] production can provide sensitive probes of the CP nature of the Higgs interactions.

  19. Plasma Jet Interactions with Liquids in Partial Fulfillment of an NRL Karle’s Fellowship

    DTIC Science & Technology

    2015-11-30

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6750--15-9650 Plasma Jet Interactions with Liquids in Partial Fulfillment of an NRL... Plasma Physics Division i REPORT DOCUMENTATION PAGE Form ApprovedOMB No. 0704-0188 3. DATES COVERED (From - To) Standard Form 298 (Rev. 8-98...ABSTRACT Plasma Jet Interactions with Liquids in Partial Fulfillment of an NRL Karle’s Fellowship Sandra (Hernandez) Hangarter Naval Research Laboratory 4555

  20. Experimental and numerical study of the effects of a wall on the coalescence and collapse of bubble pairs

    NASA Astrophysics Data System (ADS)

    Han, Rui; Zhang, A.-Man; Li, Shuai; Zong, Zhi

    2018-04-01

    Two-bubble interaction is the most fundamental problem in multi-bubbles dynamics, which is crucial in many practical applications involving air-gun arrays and underwater explosions. In this paper, we experimentally and numerically investigate coalescence, collapse, and rebound of non-buoyant bubble pairs below a rigid wall. Two oscillating vapor bubbles with similar size are generated simultaneously near a rigid wall in axisymmetric configuration using the underwater electric discharge method, and the physical process is captured by a high-speed camera. Numerical simulations are conducted based on potential flow theory coupled with the boundary integral method. Our numerical results show excellent agreement with the experimental data until the splashing of the jet impact sets in. With different ranges of γbw (the dimensionless distance between the rigid wall and the nearest bubble center), the interaction between the coalesced bubble and the rigid wall is divided into three types, i.e., "weak," "intermediate," and "strong." As γbw decreases, the contact point of the two axial jets migrates toward the wall. In "strong interaction" cases, only an upward jet towards the upper rigid wall forms and a secondary jet with a larger width appears at the base of the first jet. The collapsing coalesced bubble in a toroidal form splits into many smaller bubbles due to the instabilities and presents as bubble clouds during the rebounding phase, which may lead to a weakened pressure wave because the focusing energy associated with the collapsing bubble is disintegrated.

  1. Atmospheric-Pressure Plasma Interaction with Soft Materials as Fundamental Processes in Plasma Medicine.

    PubMed

    Takenaka, Kosuke; Miyazaki, Atsushi; Uchida, Giichiro; Setsuhara, Yuichi

    2015-03-01

    Molecular-structure variation of organic materials irradiated with atmospheric pressure He plasma jet have been investigated. Optical emission spectrum in the atmospheric-pressure He plasma jet has been measured. The spectrum shows considerable emissions of He lines, and the emission of O and N radicals attributed to air. Variation in molecular structure of Polyethylene terephthalate (PET) film surface irradiated with the atmospheric-pressure He plasma jet has been observed via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). These results via XPS and FT-IR indicate that the PET surface irradiated with the atmospheric-pressure He plasma jet was oxidized by chemical and/or physical effect due to irradiation of active species.

  2. Experimental study of vorticity-strain rate interaction in turbulent partially-premixed jet flames using tomographic particle image velocimetry

    DOE PAGES

    Coriton, Bruno; Frank, Jonathan H.

    2016-02-16

    In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet withmore » Reynolds number of approximately 13,000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s 2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s 2 tangential to the shear layer. The extensive and compressive principal strain rates, s 1 and s 3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. As a result, the production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s 1¯-s 2¯ plane and orthogonal to s 3¯.« less

  3. Quasi-radial wall jets as a new concept in boundary layer flow control

    NASA Astrophysics Data System (ADS)

    Javadi, Khodayar; Hajipour, Majid

    2018-01-01

    This work aims to introduce a novel concept of wall jets wherein the flow is radially injected into a medium through a sector of a cylinder, called quasi-radial (QR) wall jets. The results revealed that fluid dynamics of the QR wall jet flow differs from that of conventional wall jets. Indeed, lateral and normal propagations of a conventional three-dimensional wall jet are via shear stresses. While, lateral propagation of a QR wall jet is due to mean lateral component of the velocity field. Moreover, discharged Arrays of conventional three-dimensional wall jets in quiescent air lead to formation of a combined wall jet at large distant from the nozzles, while QR wall jet immediately spread in lateral direction, meet each other and merge together very quickly in a short distance downstream of the jet nozzles. Furthermore, in discharging the conventional jets into an external flow, there is no strong interaction between them as they are moving parallel. While, in QR wall jets the lateral components of the velocity field strongly interact with boundary layer of the external flow and create strong helical vortices acting as vortex generators.

  4. Jet atomization and cavitation induced by interactions between focused ultrasound and a water surfacea)

    NASA Astrophysics Data System (ADS)

    Tomita, Y.

    2014-09-01

    Atomization of a jet produced by the interaction of 1 MHz focused ultrasound with a water surface was investigated using high-speed photography. Viewing various aspects of jet behavior, threshold conditions were obtained necessary for water surface elevation and jet breakup, including drop separation and spray formation. In addition, the position of drop atomization, where a single drop separates from the tip of a jet without spraying, showed good correlation with the jet Weber number. For a set of specified conditions, multiple beaded water masses were formed, moving upwards to produce a vigorous jet. Cavitation phenomena occurred near the center of the primary drop-shaped water mass produced at the leading part of the jet; this was accompanied by fine droplets at the neck between the primary and secondary drop-shaped water masses, due to the collapse of capillary waves.

  5. Evaluation of stochastic particle dispersion modeling in turbulent round jets

    DOE PAGES

    Sun, Guangyuan; Hewson, John C.; Lignell, David O.

    2016-11-02

    ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent air jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial velocities are obtained as functions of axial position. The time and length scales of the jet are varied through control of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter (7 mm), particle diameters (60 and 90 µm), and Reynolds numbers (10, 000–30, 000) are analyzedmore » to obtain the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are compared to experimental measurements. It is shown that the particle tracking method is capable of yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In this study, three particle-eddy interaction models (Type-I, -C, and -IC) are presented to examine the details of particle dispersion and particle-eddy interaction in jet flow.« less

  6. Acoustics of Jet Surface Interaction - Scrubbing Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    2014-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity to the structure or embedded in the airframe. While such integrated systems are intended to shield noise from the community, they also introduce new sources of sound. Sound generation due to interaction of a jet flow past a nearby solid surface is investigated here using the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far field sound as governed by the variable density Pridmore-Brown equation. The propagation Green's function is solved numerically for a high aspect-ratio rectangular jet starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. It is shown the magnitude of the Green's function decreases with increasing source frequency and/or jet temperature. The phase remains constant for a rigid surface, but varies with source location when subject to an impedance type boundary condition. The Green's function in the absence of the surface, and flight effects are also investigated

  7. Acoustics of Jet Surface Interaction-Scrubbing Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    2014-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity of the structure or embedded in the airframe. While such integrated systems are intended to shield noise from community, they also introduce new sources of sound. Sound generation due to interaction of a jet flow past a nearby solid surface is investigated here using the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far field sound as governed by the variable density Pridmore-Brown equation. The propagation Greens function is solved numerically for a high aspect-ratio rectangular jet starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. It is shown the magnitude of the Greens function decreases with increasing source frequency andor jet temperature. The phase remains constant for a rigid surface, but varies with source location when subject to an impedance type boundary condition. The Greens function in the absence of the surface, and flight effect are also investigated.

  8. Numerical modeling of the interaction of liquid drops and jets with shock waves and gas jets

    NASA Astrophysics Data System (ADS)

    Surov, V. S.

    1993-02-01

    The motion of a liquid drop (jet) and of the ambient gas is described, in the general case, by Navier-Stokes equations. An approximate solution to the interaction of a plane shock wave with a single liquid drop is presented. Based on the analysis, the general system of Navier-Stokes equations is reduced to two groups of equations, Euler equations for gas and Navier-Stokes equations for liquid; solutions to these equations are presented. The discussion also covers the modeling of the interaction of a shock wave with a drop screen, interaction of a liquid jet with a counterpropagating supersonic gas flow, and modeling of processes in a shock layer during the impact of a drop against an obstacle in gas flow.

  9. Emergence and equilibration of jets in planetary turbulence

    NASA Astrophysics Data System (ADS)

    Constantinou, Navid; Ioannou, Petros; Farrell, Brian

    2013-04-01

    Spatially and temporally coherent large scale jets that are not forced directly at the jet scale are prominent feature of rotating turbulence. A familiar example is the midlatitude jet in the Earth's atmosphere and the banded winds of the giants planets. These jets arise and are supported by the systematic organisation of the turbulent Reynolds stresses. Understanding the mechanism producing the required eddy momentum flux convergence, and how the jets and associated eddy field mutually adjust to maintain a steady jet structure at finite amplitude, constitute fundamental theoretical problems. Stochastic Structural Stability Theory (SSST) gives an explanation for jet formation that is fundamentally based on the interaction between jets and their associated field of turbulent eddies. SSST combines the full dynamics of the zonal mean flow with the second order statistics of the turbulent field obtained from a stochastic turbulence model (STM). The quasi-linear (QL) approximation to the full nonlinear dynamics (NL) results when the perturbation-perturbation interactions are parameterized in the perturbation equations, while interaction between the perturbations and the zonal mean flow is retained in the zonal mean equation. SSST consists of an infinite ensemble of perturbations evolving under QL. Therefore, SSST provides a set of dynamical equations for the mean flow and the second order statistics of the second cummulant of the perturbation vorticity field, which are autonomous and fluctuation free and can facilitate analytic study of turbulent equilibria and their stability as a function of parameters. Thus, jet formation in homogeneous beta-turbulence can be identified with an SSST structural instability of a homogeneous (mean flow free) SSTT equilibrium. We investigate the emergence and equilibration of jets from homogeneous barotropic beta-plane turbulence in the absence of coherent external forcing. SSST predicts that infinitesimal perturbations with zonal jet form organise homogeneous turbulence to produce systematic upgradient fluxes, giving rise to exponential jet growth and eventually to the establishment of finite amplitude equilibrium jets. We compare these predictions with simulations of the NL equations and their QL approximation in order to examine further the mechanism of emergence and equilibration of jets from turbulence. We concentrate on the effects of perturbation-perturbation nonlinearity on jet bifurcation and equilibration, and on the influence of perturbations in exciting the manifold of SSST modes with jet structure. We find that the bifurcation structure predicted by SSST for the emergence of zonal jets from a homogeneous turbulent state is confirmed by both QL and NL simulations. Moreover, we show that the finite amplitude equilibrium jets found in NL and QL simulations are as predicted by the fixed point solutions of SSST. Obtaining this agreement between NL and both SSST and QL simulations required in some cases that the modification of the turbulent spectrum caused by the perturbation-perturbation nonlinearity in NL be accounted for in the specification of the stochastic forcing in QL and SSST. These results confirm that jet emergence in barotropic beta-plane turbulence can be traced to the cooperative mean flow/perturbation instability that is captured by SSST.

  10. Influence of gas flow and applied voltage on interaction of jets in a cross-field helium plasma jet array

    NASA Astrophysics Data System (ADS)

    Wan, Meng; Liu, Feng; Fang, Zhi; Zhang, Bo; Wan, Hui

    2017-09-01

    Atmospheric Pressure Plasma Jet arrays can greatly enhance the treatment area to fulfill the need for large-scale surface processing, while the spatial uniformity of the plasma jet array is closely related to the interactions of the adjacent jets. In this paper, a three-tube one-dimensional (1D) He plasma jet array with a cross-field needle-ring electrode structure is used to investigate the influences of the gas flow rate and applied voltage on the interactions of the adjacent jets through electrical, optical, and fluid measurements. The repulsion of the adjacent plume channels is observed using an intensified charge-coupled device (ICCD) and the influence of the gas flow rate and applied voltage on the electrostatic repulsion force, Coulomb force, is discussed. It is found that electrical coupling, mainly electrostatic repulsion force, exists among the jets in the array, which causes both the divergence of the lateral plumes and the nonlinear changes of the discharge power and the transport charge. The deflection angle of the lateral plumes with respect to the central plume in the optical images increases with the increase of applied voltage and decreases with the increase of gas flow rate. The deflection angle of the lateral plumes in the optical images is obviously larger than that of the lateral gas streams in the Schlieren images under the same experimental conditions, and the unconformity of the deflection angles is mainly attributed to the electrostatic repulsion force in adjacent plasma plume channels. The experimental results can help understand the interaction mechanisms of jets in the array and design controllable and scalable plasma jet arrays.

  11. Forming H-shaped and barrel-shaped nebulae with interacting jets

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Bear, Ealeal; Soker, Noam

    2018-04-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets with large opening angles launched from a binary stellar system into a previously ejected shell and show that the interaction can form barrel-like and H-like shapes in the descendant nebula. Such features are observed in planetary nebulae (PNe) and supernova remnants. Under our assumption, the dense shell is formed by a short instability phase of the giant star as it interacts with a stellar companion, and the jets are then launched by the companion as it accretes mass through an accretion disc from the giant star. We find that the H-shaped and barrel-shaped morphological features that the jets form evolve with time, and that there are complicated flow patterns, such as vortices, instabilities, and caps moving ahead along the symmetry axis. We compare our numerical results with images of 12 PNe, and show that jet-shell interaction that we simulate can account for the barrel-like or H-like morphologies that are observed in these PNe.

  12. Jet-Surface Interaction Noise from High-Aspect Ratio Nozzles: Test Summary

    NASA Technical Reports Server (NTRS)

    Brown, Clifford; Podboy, Gary

    2017-01-01

    Noise and flow data have been acquired for a 16:1 aspect ratio rectangular nozzle exhausting near a simple surface at the NASA Glenn Research Center as part of an ongoing effort to understand, model, and predict the noise produced by current and future concept aircraft employing a tightly integrated engine airframe designs. The particular concept under consideration in this experiment is a blended-wing-body airframe powered by a series of electric fans exhausting through slot nozzle over an aft deck. The exhaust Mach number and surface length were parametrically varied during the test. Far-field noise data were acquired for all nozzle surface geometries and exhaust flow conditions. Phased-array noise source localization data and in-flow pressure data were also acquired for a subset of the isolated (no surface) and surface configurations; these measurements provide data that have proven useful for modeling the jet-surface interaction noise source and the surface effect on the jet-mixing noise in round jets. A summary of the nozzle surface geometry, flow conditions tested, and data collected are presented.

  13. A kinematic eddy viscosity model including the influence of density variations and preturbulence

    NASA Technical Reports Server (NTRS)

    Cohen, L. S.

    1973-01-01

    A model for the kinematic eddy viscosity was developed which accounts for the turbulence produced as a result of jet interactions between adjacent streams as well as the turbulence initially present in the streams. In order to describe the turbulence contribution from jet interaction, the eddy viscosity suggested by Prandtl was adopted, and a modification was introduced to account for the effect of density variation through the mixing layer. The form of the modification was ascertained from a study of the compressible turbulent boundary layer on a flat plate. A kinematic eddy viscosity relation which corresponds to the initial turbulence contribution was derived by employing arguments used by Prandtl in his mixing length hypothesis. The resulting expression for self-preserving flow is similar to that which describes the mixing of a submerged jet. Application of the model has led to analytical predictions which are in good agreement with available turbulent mixing experimental data.

  14. Interaction between plasma synthetic jet and subsonic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zong, Haohua; Kotsonis, Marios

    2017-04-01

    This paper experimentally investigates the interaction between a plasma synthetic jet (PSJ) and a subsonic turbulent boundary layer (TBL) using a hotwire anemometer and phase-locked particle imaging velocimetry. The PSJ is interacting with a fully developed turbulent boundary layer developing on the flat wall of a square wind tunnel section of 1.7 m length. The Reynolds number based on the freestream velocity (U∞ = 20 m/s) and the boundary layer thickness (δ99 = 34.5 mm) at the location of interaction is 44 400. A large-volume (1696 mm3) three-electrode plasma synthetic jet actuator (PSJA) with a round exit orifice (D = 2 mm) is adopted to produce high-speed (92 m/s) and short-duration (Tjet = 1 ms) pulsed jets. The exit velocity variation of the adopted PSJA in a crossflow is shown to remain almost identical to that in quiescent conditions. However, the flow structures emanating from the interaction between the PSJ and the TBL are significantly different from what were observed in quiescent conditions. In the midspan xy plane (z = 0 mm), the erupted jet body initially follows a wall-normal trajectory accompanied by the formation of a distinctive front vortex ring. After three convective time scales the jet bends to the crossflow, thus limiting the peak penetration depth to approximately 0.58δ99. Comparison of the normalized jet trajectories indicates that the penetration ability of the PSJ is less than steady jets with the same momentum flow velocity. Prior to the jet diminishing, a recirculation region is observed in the leeward side of the jet body, experiencing first an expansion and then a contraction in the area. In the cross-stream yz plane, the signature structure of jets in a crossflow, the counter-rotating vortex pair (CVP), transports high-momentum flow from the outer layer to the near-wall region, leading to a fuller velocity profile and a drop in the boundary layer shape factor (1.3 to 1.2). In contrast to steady jets, the CVP produced by the PSJ exhibits a prominent spatiotemporal behaviour. The residence time of the CVP is estimated as the jet duration time, while the maximum extent of the affected flow in the three coordinate directions (x, y, and z) is approximately 32D, 8.5D, and 10D, respectively. An extremely high level of turbulent kinetic energy production is shown in the jet shear-layer, front vortex ring, and CVP, of which the contribution of the streamwise Reynolds normal stress is dominant. Finally, a conceptual model of the interaction between the PSJ and the TBL is proposed.

  15. VISCOUS BOUNDARY LAYERS OF RADIATION-DOMINATED, RELATIVISTIC JETS. II. THE FREE-STREAMING JET MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlin, Eric R.; Begelman, Mitchell C., E-mail: eric.coughlin@colorado.edu, E-mail: mitch@jila.colorado.edu

    2015-08-10

    We analyze the interaction of a radiation-dominated jet and its surroundings using the equations of radiation hydrodynamics in the viscous limit. In a previous paper we considered the two-stream scenario, which treats the jet and its surroundings as distinct media interacting through radiation viscous forces. Here we present an alternative boundary layer model, known as the free-streaming jet model—where a narrow stream of fluid is injected into a static medium—and present solutions where the flow is ultrarelativistic and the boundary layer is dominated by radiation. It is shown that these jets entrain material from their surroundings and that their coresmore » have a lower density of scatterers and a harder spectrum of photons, leading to observational consequences for lines of sight that look “down the barrel of the jet.” These jetted outflow models may be applicable to the jets produced during long gamma-ray bursts and super-Eddington phases of tidal disruption events.« less

  16. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets a)

    DOE PAGES

    Moser, Auna L.; Hsu, Scott C.

    2015-05-01

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease inmore » the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less

  17. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets a)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Auna L.; Hsu, Scott C.

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease inmore » the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less

  18. Probing transverse momentum broadening via jet-related angular correlations in relativistic nuclear collisions

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Qin, Guang-You; Wei, Shu-Yi; Xiao, Bo-Wen; Zhang, Han-Zhong

    2017-11-01

    Jet-related correlations have been regarded as important tools for studying jet-medium interaction and jet quenching in relativistic heavy-ion collisions at RHIC and the LHC. Here we present our recent work [L. Chen, G.-Y. Qin, S.-Y. Wei, B.-W. Xiao, H.-Z. Zhang, Probing Transverse Momentum Broadening via Dihadron and Hadron-jet Angular Correlations in Relativistic Heavy-ion Collisions, arxiv:arXiv:1607.01932] and show that the back-to-back angular correlations in dijet, dihadron and hadron-jet measurements can be utilized as a quantitative tool to probe the medium-induced transverse momentum broadening and to extract jet quenching parameter q̂. By comparing with the dihadron and hadron-jet angular correlation data at RHIC, we obtain the medium-induced transverse momentum broadening, averaged over different jet paths, 〈 p⊥2 〉 ∼ 13 GeV2 for a quark jet in most central Au-Au collisions at 200A GeV. Future experiments with statistically improved data on jet-related (angular) correlations will allow us to obtain more precise knowledge of jet quenching parameter and parton-medium interaction in high-energy nuclear collisions.

  19. Experimental Study of an Inclined Jet-In-Cross-Flow Interacting with a Vortex Generator

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Rigby, D. L.; Heidmann, J. D.

    2010-01-01

    An experiment is conducted on the effectiveness of a vortex generator (VG) in preventing lift-off of a jet-in-cross-flow (JICF), with film-cooling application in mind. The jet issues into the boundary layer at an angle of 20 to the free-stream. The effect of a triangular ramp-shaped VG is studied while varying its geometry and location. Detailed flow-field properties are documented for a specific case in which the height of the VG and the diameter of the orifice are comparable to the approach boundary layer thickness. This combination of VG and JICF produce a streamwise vortex pair with vorticity magnitude three times larger (and of opposite sense) than that found in the JICF alone. Such a VG appears to be most effective in keeping the jet attached to the wall. While most of the data are taken at a jet-to-freestream momentum flux ratio (J) of 2, limited surveys are done for varying J. The VG is found to have a significant effect even at the highest J (=11) covered in the experiment. Effect of parametric variation is studied mostly from surveys ten diameters downstream from the orifice. When the VG height is halved there is a lift-off of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensities. Varying the location of the VG, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the VG with increasing radius of curvature progressively diminishes the effect. However, a small radius of curvature may be quite tolerable in practice.

  20. Two-dimensional numerical study of two counter-propagating helium plasma jets in air at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Wen; Sang, Chaofeng; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn

    In this paper, a computational study of two counter-propagating helium plasma jets in ambient air is presented. A two-dimensional fluid model is applied to investigate the physical processes of the two plasma jets interaction (PJI) driven by equal and unequal voltages, respectively. In all studied cases, the PJI results in a decrease of both plasma bullets propagation velocity. When the two plasma jets are driven by equal voltages, they never merge but rather approach each other around the middle of the gas gap at a minimum approach distance, and the minimal distance decreases with the increase of both the appliedmore » voltages and initial electron density, but increases with the increase of the relative permittivity. When the two plasma jets are driven by unequal voltages, we observe the two plasma jets will merge at the position away from the middle of the gas gap. The effect of applied voltage difference on the PJI is also studied.« less

  1. Multistage Monte Carlo simulation of jet modification in a static medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, S.; Park, C.; Barbieri, R. A.

    In this work, the modification of hard jets in an extended static medium held at a fixed temperature is studied using three different Monte Carlo event generators: linear Boltzmann transport (LBT), modular all twist transverse-scattering elastic-drag and radiation (MATTER), and modular algorithm for relativistic treatment of heavy-ion interactions (MARTINI). Each event generator contains a different set of assumptions regarding the energy and virtuality of the partons within a jet versus the energy scale of the medium and, hence, applies to a different epoch in the space-time history of the jet evolution. Here modeling is developed where a jet may sequentiallymore » transition from one generator to the next, on a parton-by-parton level, providing a detailed simulation of the space-time evolution of medium modified jets over a much broader dynamic range than has been attempted previously in a single calculation. Comparisons are carried out for different observables sensitive to jet quenching, including the parton fragmentation function and the azimuthal distribution of jet energy around the jet axis. The effect of varying the boundary between different generators is studied and a theoretically motivated criterion for the location of this boundary is proposed. Lastly, the importance of such an approach with coupled generators to the modeling of jet quenching is discussed.« less

  2. Multistage Monte Carlo simulation of jet modification in a static medium

    DOE PAGES

    Cao, S.; Park, C.; Barbieri, R. A.; ...

    2017-08-22

    In this work, the modification of hard jets in an extended static medium held at a fixed temperature is studied using three different Monte Carlo event generators: linear Boltzmann transport (LBT), modular all twist transverse-scattering elastic-drag and radiation (MATTER), and modular algorithm for relativistic treatment of heavy-ion interactions (MARTINI). Each event generator contains a different set of assumptions regarding the energy and virtuality of the partons within a jet versus the energy scale of the medium and, hence, applies to a different epoch in the space-time history of the jet evolution. Here modeling is developed where a jet may sequentiallymore » transition from one generator to the next, on a parton-by-parton level, providing a detailed simulation of the space-time evolution of medium modified jets over a much broader dynamic range than has been attempted previously in a single calculation. Comparisons are carried out for different observables sensitive to jet quenching, including the parton fragmentation function and the azimuthal distribution of jet energy around the jet axis. The effect of varying the boundary between different generators is studied and a theoretically motivated criterion for the location of this boundary is proposed. Lastly, the importance of such an approach with coupled generators to the modeling of jet quenching is discussed.« less

  3. Experimental Evaluation of an Isolated Synthetic Jet IN Crossflow

    NASA Technical Reports Server (NTRS)

    Schaeffler, Norman W.; Jenkins, Luther N.; Hepner, Timothy E.

    2007-01-01

    The second case for this workshop builds upon the isolated synthetic jet of Case 1 by adding a crossflow, with no streamwise pressure gradient, for the developing jet to interact with. Formally, Case 2 examines the interaction of a single, isolated, synthetic jet and a fully turbulent zero-pressure gradient boundary layer. The resulting flow has many of the characteristics that need to be modeled with fidelity if the results of the calculations are to serve as the basis for research and design with active flow control devices. These include the turbulence in the boundary layer, the time-evolution of the large vortical structure emanating from the jet orifice and its subsequent interaction with and distortion by the boundary layer turbulence, and the effect of the suction cycle on the boundary layer flow. In a synthetic jet, the flow through the orifice and out into the outer flowfield alternates between an exhaust and a suction cycle, driven by the contraction and expansion of a cavity internal to the actuator. In the present experiment, the volume changes in the internal cavity are accomplished by replacing one of the rigid walls of the cavity, the wall opposite the orifice exit, with a deformable wall. This flexible wall is driven by a bottom-mounted moveable piston. The piston is driven electro-mechanically. The synthetic jet issues into the external flow through a circular orifice. In the present experiment, this orifice has a diameter of 0.250 inches (6.35 mm). The flow is conceptually similar to that documented in Schaeffler [1]. To document the flow, several measurement techniques were utilized. The upstream boundary conditions (in-flow conditions), and several key phase-averaged velocity profiles were measured with a 3-component laser-Doppler velocimetry system. Phase-averaged velocity field measurements were made with both stereo digital particle image velocimetry and 2-D digital particle image velocimetry as the primary measurement system. Surface pressure measurements were made utilizing an electronically scanned pressure system.

  4. Resummation of high order corrections in Higgs boson plus jet production at the LHC

    DOE PAGES

    Sun, Peng; Isaacson, Joshua; Yuan, C. -P.; ...

    2017-02-22

    We study the effect of multiple parton radiation to Higgs boson plus jet production at the LHC. The large logarithms arising from the small imbalance in the transverse momentum of the Higgs boson plus jet final state system are resummed to all orders in the expansion of the strong interaction coupling at the accuracy of Next-to-Leading Logarithm (NLL), by applying the transverse momentum dependent (TMD) factorization formalism. We show that the appropriate resummation scale should be the jet transverse momentum, rather than the partonic center of mass energy which has been normally used in the TMD resummation formalism. Furthermore, themore » transverse momentum distribution of the Higgs boson, particularly near the lower cut-off applied on the jet transverse momentum, can only be reliably predicted by the resummation calculation which is free of the so-called Sudakov-shoulder singularity problem, present in fixed-order calculations.« less

  5. Resummation of high order corrections in Higgs boson plus jet production at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Peng; Isaacson, Joshua; Yuan, C. -P.

    We study the effect of multiple parton radiation to Higgs boson plus jet production at the LHC. The large logarithms arising from the small imbalance in the transverse momentum of the Higgs boson plus jet final state system are resummed to all orders in the expansion of the strong interaction coupling at the accuracy of Next-to-Leading Logarithm (NLL), by applying the transverse momentum dependent (TMD) factorization formalism. We show that the appropriate resummation scale should be the jet transverse momentum, rather than the partonic center of mass energy which has been normally used in the TMD resummation formalism. Furthermore, themore » transverse momentum distribution of the Higgs boson, particularly near the lower cut-off applied on the jet transverse momentum, can only be reliably predicted by the resummation calculation which is free of the so-called Sudakov-shoulder singularity problem, present in fixed-order calculations.« less

  6. Plasma-surface interaction in the Be/W environment: Conclusions drawn from the JET-ILW for ITER

    NASA Astrophysics Data System (ADS)

    Brezinsek, S.; JET-EFDA contributors

    2015-08-01

    The JET ITER-Like Wall experiment (JET-ILW) provides an ideal test bed to investigate plasma-surface interaction (PSI) and plasma operation with the ITER plasma-facing material selection employing beryllium in the main chamber and tungsten in the divertor. The main PSI processes: material erosion and migration, (b) fuel recycling and retention, (c) impurity concentration and radiation have be1en studied and compared between JET-C and JET-ILW. The current physics understanding of these key processes in the JET-ILW revealed that both interpretation of previously obtained carbon results (JET-C) and predictions to ITER need to be revisited. The impact of the first-wall material on the plasma was underestimated. Main observations are: (a) low primary erosion source in H-mode plasmas and reduction of the material migration from the main chamber to the divertor (factor 7) as well as within the divertor from plasma-facing to remote areas (factor 30 - 50). The energetic threshold for beryllium sputtering minimises the primary erosion source and inhibits multi-step re-erosion in the divertor. The physical sputtering yield of tungsten is low as 10-5 and determined by beryllium ions. (b) Reduction of the long-term fuel retention (factor 10 - 20) in JET-ILW with respect to JET-C. The remaining retention is caused by implantation and co-deposition with beryllium and residual impurities. Outgassing has gained importance and impacts on the recycling properties of beryllium and tungsten. (c) The low effective plasma charge (Zeff = 1.2) and low radiation capability of beryllium reveal the bare deuterium plasma physics. Moderate nitrogen seeding, reaching Zeff = 1.6 , restores in particular the confinement and the L-H threshold behaviour. ITER-compatible divertor conditions with stable semi-detachment were obtained owing to a higher density limit with ILW. Overall JET demonstrated successful plasma operation in the Be/W material combination and confirms its advantageous PSI behaviour and gives strong support to the ITER material selection.

  7. Skin friction drag reduction on a flat plate turbulent boundary layer using synthetic jets

    NASA Astrophysics Data System (ADS)

    Belanger, Randy; Boom, Pieter D.; Hanson, Ronald E.; Lavoie, Philippe; Zingg, David W.

    2017-11-01

    In these studies, we investigate the effect of mild synthetic jet actuation on a flat plate turbulent boundary layer with the goal of interacting with the large scales in the log region of the boundary layer and manipulating the overall skin friction. Results will be presented from both large eddy simulations (LES) and wind tunnel experiments. In the experiments, a large parameter space of synthetic jet frequency and amplitude was studied with hot film sensors at select locations behind a pair of synthetic jets to identify the parameters that produce the greatest changes in the skin friction. The LES simulations were performed for a selected set of parameters and provide a more complete evaluation of the interaction between the boundary layer and synthetic jets. Five boundary layer thicknesses downstream, the skin friction between the actuators is generally found to increase, while regions of reduced skin friction persist downstream of the actuators. This pattern is reversed for forcing at low frequency. Overall, the spanwise-averaged skin friction is increased by the forcing, except when forcing at high frequency and low amplitude, for which a net skin friction reduction persists downstream. The physical interpretation of these results will be discussed. The financial support of Airbus is gratefully acknowledged.

  8. Viscid/inviscid interaction analysis of thrust augmenting ejectors

    NASA Technical Reports Server (NTRS)

    Bevilacqua, P. M.; Dejoode, A. D.

    1979-01-01

    A method was developed for calculating the static performance of thrust augmenting ejectors by matching a viscous solution for the flow through the ejector to an inviscid solution for the flow outside the ejector. A two dimensional analysis utilizing a turbulence kinetic energy model is used to calculate the rate of entrainment by the jets. Vortex panel methods are then used with the requirement that the ejector shroud must be a streamline of the flow induced by the jets to determine the strength of circulation generated around the shroud. In effect, the ejector shroud is considered to be flying in the velocity field of the jets. The solution is converged by iterating between the rate of entrainment and the strength of the circulation. This approach offers the advantage of including external influences on the flow through the ejector. Comparisons with data are presented for an ejector having a single central nozzle and Coanda jet on the walls. The accuracy of the matched solution is found to be especially sensitive to the jet flap effect of the flow just downstream of the ejector exit.

  9. Macroscopic analysis of gas-jet wiping: Numerical simulation and experimental approach

    NASA Astrophysics Data System (ADS)

    Lacanette, Delphine; Gosset, Anne; Vincent, Stéphane; Buchlin, Jean-Marie; Arquis, Éric

    2006-04-01

    Coating techniques are frequently used in industrial processes such as paper manufacturing, wire sleeving, and in the iron and steel industry. Depending on the application considered, the thickness of the resulting substrate is controlled by mechanical (scraper), electromagnetic (if the entrained fluid is appropriated), or hydrodynamic (gas-jet wiping) operations. This paper deals with the latter process, referred to as gas-jet wiping, in which a turbulent slot jet is used to wipe the coating film dragged by a moving substrate. This mechanism relies on the gas-jet-liquid film interaction taking place on the moving surface. The aim of this study is to compare the results obtained by a lubrication one-dimensional model, numerical volume of fluid-large eddy simulation (VOF-LES) modeling and an experimental approach. The investigation emphasizes the effect of the controlling wiping parameters, i.e., the pressure gradient and shear stress distributions induced by the jet, on the shape of the liquid film. Those profiles obtained experimentally and numerically for a jet impinging on a dry fixed surface are compared. The effect of the substrate motion and the presence of the dragged liquid film on these actuators are analyzed through numerical simulations. Good agreement is found between the film thickness profile in the wiping zone obtained from the VOF-LES simulations and with the analytical model, provided that a good model for the wiping actuators is used. The effect of the gas-jet nozzle to substrate standoff distance on the final coating thickness is analyzed; the experimental and predicted values are compared for a wide set of conditions. Finally, the occurrence of the splashing phenomenon, which is characterized by the ejection of droplets from the runback film flow at jet impingement, thus limiting the wiping process, is investigated through experiments and numerical simulations.

  10. Interaction between a laminar starting immersed micro-jet and a parallel wall

    NASA Astrophysics Data System (ADS)

    Cabaleiro, Juan Martin; Laborde, Cecilia; Artana, Guillermo

    2015-01-01

    In the present work, we study the starting transient of an immersed micro-jet in close vicinity to a solid wall parallel to its axis. The experiments concern laminar jets (Re < 200) issuing from a 100 μm internal tip diameter glass micro-pipette. The effect of the confinement was studied placing the micro-pipette at different distances from the wall. The characterization of the jet was carried out by visualizations on which the morphology of the vortex head and trajectories was analyzed. Numerical simulations were used as a complementary tool for the analysis. The jet remains stable for very long distances away from the tip allowing for a similarity analysis. The self-similar behavior of the starting jet has been studied in terms of the frontline position with time. A symmetric and a wall dominated regime could be identified. The starting jet in the wall type regime, and in the symmetric regime as well, develops a self-similar behavior that has a relative rapid loss of memory of the preceding condition of the flow. Scaling for both regimes are those that correspond to viscous dominated flows.

  11. Structure and Dynamics of Colliding Plasma Jets

    DOE PAGES

    Li, C.; Ryutov, D.; Hu, S.; ...

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generatedmore » by the well-known ∇T e ×∇n e Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number R M ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.« less

  12. Underlying-event sensitive observables in Drell–Yan production using GENEVA

    DOE PAGES

    Alioli, Simone; Bauer, Christian W.; Guns, Sam; ...

    2016-11-09

    We present an extension of the Geneva Monte Carlo framework to include multiple parton interactions (MPI) provided by Pythia8. This allows us to obtain predictions for underlying-event sensitive measurements in Drell–Yan production, in conjunction with Geneva ’s fully differential NNLO calculation, NNLL' resummation for the 0-jet resolution variable (beam thrust), and NLL resummation for the 1-jet resolution variable. We describe the interface with the parton-shower algorithm and MPI model of Pythia8, which preserves both the precision of the partonic N-jet cross sections in Geneva as well as the shower accuracy and good description of soft hadronic physics of Pythia8. Wemore » present results for several underlying-event sensitive observables and compare to data from ATLAS and CMS as well as to standalone Pythia8 predictions. This includes a comparison with the recent ATLAS measurement of the beam thrust spectrum, which provides a potential avenue to fully disentangle the physical effects from the primary hard interaction, primary soft radiation, multiple parton interactions, and nonperturbative hadronization.« less

  13. Underlying-event sensitive observables in Drell–Yan production using GENEVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alioli, Simone; Bauer, Christian W.; Guns, Sam

    We present an extension of the Geneva Monte Carlo framework to include multiple parton interactions (MPI) provided by Pythia8. This allows us to obtain predictions for underlying-event sensitive measurements in Drell–Yan production, in conjunction with Geneva ’s fully differential NNLO calculation, NNLL' resummation for the 0-jet resolution variable (beam thrust), and NLL resummation for the 1-jet resolution variable. We describe the interface with the parton-shower algorithm and MPI model of Pythia8, which preserves both the precision of the partonic N-jet cross sections in Geneva as well as the shower accuracy and good description of soft hadronic physics of Pythia8. Wemore » present results for several underlying-event sensitive observables and compare to data from ATLAS and CMS as well as to standalone Pythia8 predictions. This includes a comparison with the recent ATLAS measurement of the beam thrust spectrum, which provides a potential avenue to fully disentangle the physical effects from the primary hard interaction, primary soft radiation, multiple parton interactions, and nonperturbative hadronization.« less

  14. X-ray Jets in the CH Cyg Symbiotic System

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita; Gaetz, T.; Lee, N.; Raymond, J.; Hack, W.; Carilli, C.

    2009-09-01

    Symbiotic binaries are interacting systems in which a compact stellar source accretes matter from the wind of the cool evolved companion. There are a few hundred symbiotic systems known today, but jet activity has been detected in only a few of them, including in CH Cyg. CH Cyg is a symbiotic system that has shown significant activity since the mid 1960s. Jets have been detected in optical and radio since 1984, and more recently in 2001 in X-rays using Chandra observations.In 2008 we carried out coordinated multi-wavelength observations of the CH Cyg system with Chandra, HST, and the VLA, in order to study the propagation and interaction with the circumbinary medium of the jet detected in 2001. We report here on the detection of the 2001 SE jet which has expanded in seven years from ˜350AU to ˜1400 AU. The apex of the loop delineating the region of interaction with the circumbinary matter is moving with a speed of ˜700 km/s. Assuming a linear expansion, the jet was launched during the 1999-2000 active phase. We also report on a detection of a powerful new jet in the SW direction, observed in X-ray, optical and radio wavelengths. The new jet has a multi-component structure including an inner jet and counter jet, and a SW component ending in several clumps extending up to a distance of about 750AU.

  15. Resonant Interaction of a Linear Array of Supersonic Rectangular Jets: an Experimental Study

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Taghavi, Ray

    1994-01-01

    This paper examines a supersonic multi jet interaction problem that we believe is likely to be important for mixing enhancement and noise reduction in supersonic mixer-ejector nozzles. We demonstrate that it is possible to synchronize the screech instability of four rectangular jets by precisely adjusting the inter jet spacing. Our experimental data agrees with a theory that assumes that the phase-locking of adjacent jets occurs through a coupling at the jet lip. Although the synchronization does not change the frequency of the screech tone, its amplitude is augmented by 10 dB. The synchronized multi jets exhibit higher spreading than the unsynchronized jets, with the single jet spreading the least. We compare the nearfield noise of the four jets with synchronized screech to the noise of the sum of four jets operated individually. Our noise measurements reveal that the more rapid mixing of the synchronized multi jets causes the peak jet noise source to move up stream and to radiate noise at larger angles to the flow direction. Based on our results, we believe that screech synchronization is advantageous for noise reduction internal to a mixer-ejector nozzle, since the noise can now be suppressed by a shorter acoustically lined ejector.

  16. Prediction of Drag Reduction in Supersonic and Hypersonic Flows with Counterflow Jets

    NASA Technical Reports Server (NTRS)

    Daso, Endwell O.; Beaulieu, Warren; Hager, James O.; Turner, James E. (Technical Monitor)

    2002-01-01

    Computational fluid dynamics solutions of the flowfield of a truncated cone-cylinder with and without counterflow jets have been obtained for the short penetration mode (SPM) and long penetration mode (LPM) of the freestream-counterflow jet interaction flowfield. For the case without the counterflow jet, the comparison of the normalized surface pressures showed very good agreement with experimental data. For the case with the SPM jet, the predicted surface pressures did not compare as well with the experimental data upstream of the expansion corner, while aft of the expansion corner, the comparison of the solution and the data is seen to give much better agreement. The difference in the prediction and the data could be due to the transient character of the jet penetration modes, possible effects of the plasma physics that are not accounted for here, or even the less likely effect of flow turbulence, etc. For the LPM jet computations, one-dimensional isentropic relations were used to derived the jet exit conditions in order to obtain the LPM solutions. The solution for the jet exit Mach number of 3 shows a jet penetration several times longer than that of the SPM, and therefore much weaker bow shock, with an attendant reduction in wave drag. The LPM jet is, in essence, seen to be a "pencil" of fluid, with much higher dynamic pressure, embedded in the oncoming supersonic or hypersonic freestream. The methodology for determining the conditions for the LPM jet could enable a practical approach for the design and application of counterflow LPM jets for the reduction of wave drag and heat flux, thus significantly enhancing the aerodynamic characteristics and aerothermal performance of supersonic and hypersonic vehicles. The solutions show that the qualitative flow structure is very well captured. The obtained results, therefore, suggest that counterflowing jets are viable candidate technology concepts that can be employed to give significant reductions in wave drag, heat flux, and other attendant aerodynamic benefits.

  17. Formation mechanism of shock-induced particle jetting.

    PubMed

    Xue, K; Sun, L; Bai, C

    2016-08-01

    The shock dissemination of granular rings or shells is characterized by the formation of coherent particle jets that have different dimensions from those associated with the constituent grains. In order to identify the mechanisms governing the formation of particle jets, we carry out the simulations of the shock dispersal of quasi-two-dimensional particle rings based on the discrete-element method. The evolution of the particle velocities and contact forces on the time scales ranging from microseconds to milliseconds reveals a two-stage development of particle jets before they are expelled from the outer surface. Much effort is made to understand the particle agglomeration around the inner surface that initiates the jet formation. The shock interaction with the innermost particle layers generates a heterogeneous network of force chains with clusters of strong contacts regularly spaced around the inner surface. Momentum alongside the stresses is primarily transmitted along the strong force chains. Therefore, the clustering of strong force chains renders the agglomeration of fast-moving particles connected by strong force chains. The fast-moving particle clusters subsequently evolve into the incipient particle jets. The following competition among the incipient jets that undergo unbalanced growth leads to substantial elimination of the minor jets and the significant multiplication of the major jets, the number of jets thus varying with time. Moreover, the number of jets is found to increase with the strength of the shock loading due to an increased number of jets surviving the retarding effect of major jets.

  18. Reconnection and Associated Flares in Global Relativistic Jets Containing Helical Magnetic Fields with PIC Simulations

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-Ichi; Hartmann, Dieter; Mizuno, Yosuke; Niemiec, Jacek; Dutan, Ioana; Kobzar, Oleh; Gomez, Jose; Meli, Athina; POHL, Martin

    2018-01-01

    In the study of relativistic jets one of the key open questions is their interaction with theenvironment on the microscopic level. Here, we study the initial evolution of both electron–proton and electron–positron relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of “global” jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI) using a larger jet radius. In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the electron-proton jet simulation a recollimation-like instability occurs near the center of jet. In the electron-positron jet simulation mixed kinetic instabilities grow and the jet electrons are accelerated. The evolution of electron-ion jets will be investigated with different mass ratios. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields. We will investigate mechanisms of flares possibly due to reconnection.

  19. RANS Simulation of the Separated Flow over a Bump with Active Control

    NASA Technical Reports Server (NTRS)

    Iaccarino, Gianluca; Marongiu, Claudio; Catalano, Pietro; Amato, Marcello

    2003-01-01

    The objective of this paper is to investigate the accuracy of Reynolds-Averaged Navier- Stokes (RANS) techniques in predicting the effect of steady and unsteady flow control devices. This is part of a larger effort in applying numerical simulation tools to investigate of the performance of synthetic jets in high Reynolds number turbulent flows. RANS techniques have been successful in predicting isolated synthetic jets as reported by Kral et al. Nevertheless, due to the complex, and inherently unsteady nature of the interaction between the synthetic jet and the external boundary layer flow, it is not clear whether RANS models can represent the turbulence statistics correctly.

  20. Effect of Jet-nozzle-expansion Ratio on Drag of Parabolic Afterbodies

    NASA Technical Reports Server (NTRS)

    Englert, Gerald W; Vargo, Donald J; Cubbison, Robert W

    1954-01-01

    The interaction of the flow from one convergent and two convergent-divergent nozzles on parabolic afterbodies was studied at free-stream Mach numbers of 2.0, 1.6, and 0.6 over a range of jet pressure ratio. The influence of the jet on boattail and base drag was very pronounced. Study of the total external afterbody drag values at supersonic speeds indicated that, over most of the high-pressure-ratio range, increasing the nozzle design expansion ratio increased the drag even though the boattail area was reduced. Increasing the pressure ratio tended to increase slightly the total-drag increment caused by angle-of-attack operation.

  1. Collective Dynamics of Oscillator Networks: Why do we suffer from heavy jet lag?

    NASA Astrophysics Data System (ADS)

    Kori, Hiroshi

    The circadian rhythm of the entire body in mammals is orchestrated by a small tissue in the brain called the suprachiamatic nucleus (SCN). The SCN consists of a population of neurons, each of which exhibit circadian (i.e., approximately 24 h) gene expression. Neurons form a complex network and interact with each other using various types of neurotransmitters. The rhythmic gene expressions of individual cells in the SCN synchronize through such interaction. Jet-lag symptoms arise from temporal mismatch between the internal circadian clock orchestrated by the SCN and external solar time. It may take about one week or even longer to recover from jet lag after a long-distance trip. We recently found that recovery from jet lag is considerably accelerated in the knocked-out (KO) mice lacking the receptors of a certain neurotransmitter in the SCN. Importantly, all other properties of mice including sleep-awake rhythms and breeding seem to be intact. Only the response to the jet lag changes. It was also found that after a few days of jet lag, cells in the SCN desynchronize in the wild type (WT) mice, whereas they do not in KO mice. This desynchrony might be a main reason for heavy jet lag symptoms. To understand the mechanism underlying jet lag, we propose a simple model of the SCN, which is a network of phase oscillators. Despite its simplicity, this model can reproduce important dynamical properties of the SCN. For example, this model reproduces the desynchrony of oscillators after jet lag. Moreover, when intercellular interaction is weaker, this desynchrony is suppressed and the recover from jet lag is considerably accelerated. Our mathematical study provides a deeper understanding of jet lag and an idea how to circumvent heavy jet lag symptoms

  2. Fully-coupled analysis of jet mixing problems. Part 1. Shock-capturing model, SCIPVIS

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Wolf, D. E.

    1984-01-01

    A computational model, SCIPVIS, is described which predicts the multiple cell shock structure in imperfectly expanded, turbulent, axisymmetric jets. The model spatially integrates the parabolized Navier-Stokes jet mixing equations using a shock-capturing approach in supersonic flow regions and a pressure-split approximation in subsonic flow regions. The regions are coupled using a viscous-characteristic procedure. Turbulence processes are represented via the solution of compressibility-corrected two-equation turbulence models. The formation of Mach discs in the jet and the interactive analysis of the wake-like mixing process occurring behind Mach discs is handled in a rigorous manner. Calculations are presented exhibiting the fundamental interactive processes occurring in supersonic jets and the model is assessed via comparisons with detailed laboratory data for a variety of under- and overexpanded jets.

  3. Information jet: Handling noisy big data from weakly disconnected network

    NASA Astrophysics Data System (ADS)

    Aurongzeb, Deeder

    Sudden aggregation (information jet) of large amount of data is ubiquitous around connected social networks, driven by sudden interacting and non-interacting events, network security threat attacks, online sales channel etc. Clustering of information jet based on time series analysis and graph theory is not new but little work is done to connect them with particle jet statistics. We show pre-clustering based on context can element soft network or network of information which is critical to minimize time to calculate results from noisy big data. We show difference between, stochastic gradient boosting and time series-graph clustering. For disconnected higher dimensional information jet, we use Kallenberg representation theorem (Kallenberg, 2005, arXiv:1401.1137) to identify and eliminate jet similarities from dense or sparse graph.

  4. Particle-laden weakly swirling free jets: Measurements and predictions. Ph.D. Thesis - Pennsylvania State Univ.

    NASA Technical Reports Server (NTRS)

    Bulzan, Daniel L.

    1988-01-01

    A theoretical and experimental investigation of particle-laden, weakly swirling, turbulent free jets was conducted. Glass particles, having a Sauter mean diameter of 39 microns, with a standard deviation of 15 microns, were used. A single loading ratio (the mass flow rate of particles per unit mass flow rate of air) of 0.2 was used in the experiments. Measurements are reported for three swirl numbers, ranging from 0 to 0.33. The measurements included mean and fluctuating velocities of both phases, and particle mass flux distributions. Measurements were also completed for single-phase non-swirling and swirling jets, as baselines. Measurements were compared with predictions from three types of multiphase flow analysis, as follows: (1) locally homogeneous flow (LHF) where slip between the phases was neglected; (2) deterministic separated flow (DSF), where slip was considered but effects of turbulence/particle interactions were neglected; and (3) stochastic separated flow (SSF), where effects of both interphase slip and turbulence/particle interactions were considered using random sampling for turbulence properties in conjunction with random-walk computations for particle motion. Single-phase weakly swirling jets were considered first. Predictions using a standard k-epsilon turbulence model, as well as two versions modified to account for effects of streamline curvature, were compared with measurements. Predictions using a streamline curvature modification based on the flux Richardson number gave better agreement with measurements for the single-phase swirling jets than the standard k-epsilon model. For the particle-laden jets, the LHF and DSF models did not provide very satisfactory predictions. The LHF model generally overestimated the rate of decay of particle mean axial and angular velocities with streamwise distance, and predicted particle mass fluxes also showed poor agreement with measurements, due to the assumption of no-slip between phases. The DSF model also performed quite poorly for predictions of particle mass flux because turbulent dispersion of the particles was neglected. The SSF model, which accounts for both particle inertia and turbulent dispersion of the particles, yielded reasonably good predictions throughout the flow field for the particle-laden jets.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruisheng; Chen, Yao; Du, Guohui

    Jets are defined as impulsive, well-collimated upflows, occurring in different layers of the solar atmosphere with different scales. Their relationship with coronal mass ejections (CMEs), another type of solar impulsive events, remains elusive. Using high-quality imaging data from the Atmospheric Imaging Assembly/Solar Dynamics Observatory, we show a well-observed coronal jet event, in which the part of the jet with embedding coronal loops runs into a nearby coronal hole (CH) and gets bounced in the opposite direction. This is evidenced by the flat shape of the jet front during its interaction with the CH and the V-shaped feature in the time-slicemore » plot of the interaction region. About a half-hour later, a CME with an initially narrow and jet-like front is observed by the LASCO C2 coronagraph propagating along the direction of the post-collision jet. We also observe some 304 Å dark material flowing from the jet–CH interaction region toward the CME. We thus suggest that the jet and the CME are physically connected, with the jet–CH collision and the large-scale magnetic topology of the CH being important in defining the eventual propagating direction of this particular jet–CME eruption.« less

  6. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    NASA Astrophysics Data System (ADS)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  7. Jet formation at the interaction of localized waves on the free surface of dielectric liquid in a tangential electric field

    NASA Astrophysics Data System (ADS)

    Kochurin, E. A.; Zubarev, N. M.

    2018-01-01

    Nonlinear dynamics of the free surface of finite depth non-conducting fluid with high dielectric constant subjected to a strong horizontal electric field is considered. Using the conformal transformation of the region occupied by the fluid into a strip, the process of interaction of counter-propagating waves is numerically simulated. The nonlinear solitary waves on the surface can separately propagate along or against the direction of electric field without distortion. At the same time, the shape of the oppositely traveling waves can be distorted as the result of their interaction. In the problem under study, the nonlinearity leads to increasing the wave amplitudes and the duration of their interaction. This effect is inversely proportional to the fluid depth. In the shallow water limit, the tendency to the formation of a vertical liquid jet is observed.

  8. Results of tests in the NASA/LARC 31-inch CFHT on an 0.010-scale model (32-OT) of the space shuttle configuration 3 to determine the RCS jet flowfield interaction effects on aerodynamic characteristics (IA60/OA105), volume 1

    NASA Technical Reports Server (NTRS)

    Thornton, D. E.

    1974-01-01

    Tests were conducted in the NASA Langley Research Center 31-inch continuous Flow Hypersonic Wind Tunnel to determine RCS jet interaction effect on the hypersonic aerodynamic and stability and control characteristics prior to return to launch site (RTLS) abort separation. The model used was an 0.010-scale replica of the Space Shuttle Vehicle Configuration 3. Hypersonic stability data were obtained from tests at Mach 10.3 and dynamic pressure of 150 psf for the integrated Orbiter and external tank and the Orbiter alone. RCS modes of pitch, yaw, and roll at free flight dynamic pressure simulation of 7, 20, and 50 psf were investigated. The effects of speedbrake, bodyflap, elevon, and aileron deflections were also investigated.

  9. Results of tests in the NASA/LaRC 31-inch CFHT on an 0.010-scale model (32-OT) of the space shuttle configuration 3 to determine the RCS jet flowfield interaction effects on aerodynamic characteristics (IA60/0A105), volume 1

    NASA Technical Reports Server (NTRS)

    Thornton, D. E.

    1974-01-01

    Tests were conducted in the 31-inch continuous Flow Hypersonic Wind Tunnel to determine RCS jet interaction effect on the hypersonic aerodynamic and stability and control characteristics prior to RTLS abort separation. The model used was an 0.010-scale replica of the Space Shuttle Vehicle Configuration 3. Hypersonic stability data were obtained from tests at Mach 10.3 and dynamic pressure of 150 psf for the integrated Orbiter and external tank and the Orbiter alone. RCS modes of pitch, yaw, and roll at free flight dynamic pressure simulation of 7, 20, and 50 psf were investigated. The effects of speedbrake, bodyflap, elevon, and airleron deflections were also investigated.

  10. Results of tests in the NASA/LaRC 31-inch CFHT on an 0.010-scale model (32-OT) of the space shuttle configuration 3 to determine the RCS jet flowfield interaction effects on aerodynamic characteristics (IA60/0A105), volume 2

    NASA Technical Reports Server (NTRS)

    Thornton, D. E.

    1974-01-01

    Tests were conducted in the NASA Langley Research Center 31-inch continuous flow hypersonic wind tunnel from 14 February to 22 February 1974, to determine RCS jet interaction effect on the hypersonic aerodynamic and stability and control characteristics prior to RTLS abort separation. The model used was an 0.010-scale replica of the space shuttle vehicle configuration 3. Hypersonic stability data were obtained from tests at Mach 10.3 and dynamic pressure of 150 psf for the intergrated orbiter and external tank and the orbiter alone. RCS modes of pitch, yaw, and roll at free flight dynamic pressure simulation of 7, 20, and 50 psf were investigated. The effects of speedbrake, bodyflap, elevon, and aileron deflections were also investigated.

  11. Jet-hadron correlations relative to the event plane at the LHC with ALICE

    NASA Astrophysics Data System (ADS)

    Mazer, Joel; Alice Collaboration

    2017-11-01

    In ultra relativistic heavy-ion collisions at the Large Hadron Collider (LHC), conditions are met to produce a hot, dense and strongly interacting medium known as the Quark Gluon Plasma (QGP). Quarks and gluons from incoming nuclei collide to produce partons at high momenta early in the collisions. By fragmenting into collimated sprays of hadrons, these partons form 'jets'. The outgoing partons scatter and interact with the medium, leading to a manifestation of medium modifications of jets in the final state, known as jet quenching. Within the framework of perturbative QCD, jet production is well understood in pp collisions. We use jets measured in pp interactions as a baseline reference for comparing to heavy-ion collision systems to detect and study jet quenching. The jet quenching mechanism can be studied through the angular correlations of jets with charged hadrons and is examined in transverse momentum (pT) bins of the jets, pT bins of the associated hadrons, and as a function of collision centrality. A robust and precise background subtraction method is used in this analysis to remove the complex, flow dominated, heavy-ion background. The analysis of angular correlations for different orientations of the jet relative to the event plane allows for the study of the path-length dependence of medium modifications to jets. The event plane dependence of azimuthal angular correlations of charged hadrons with respect to the axis of an R = 0.2 reconstructed full (charged + neutral) jet in Pb-Pb collisions at √{sNN} = 2.76 TeV in ALICE is presented. Results are compared for three angular bins of the jet relative to the event plane in mid-peripheral events. The yields relative to the event plane are presented and then quantified through yield ratio calculations. The results show no significant path-length dependence on the medium modifications.

  12. The influence of the Hall term on the development of magnetized laser-produced plasma jets

    NASA Astrophysics Data System (ADS)

    Hamlin, N. D.; Seyler, C. E.; Khiar, B.

    2018-04-01

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGON and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. This points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.

  13. Numerical simulation of interaction between chemically active exhaust and a jet blast deflector

    NASA Astrophysics Data System (ADS)

    Korotaeva, T. A.; Turchinovich, A. O.

    2017-10-01

    The interaction of chemically active exhausts of aircraft engines with jet blast deflector (JBD) of various configurations has been considered at the stage of ground run procedure. The problem is modeled in the 3-D approximation in the framework of the numerical solution of the Navier-Stokes equations taking into account the kinetic model of the interaction of between the components of engine exhaust and air. A complex field of gasdynamic flow that is realized when jets emerge from nozzles and interact with each other, with air, with a gas deflector has been studied. The main purpose of the study is to prove the concept that it is possible to generate a vortex flow that can not only change the direction of the jets, but also contribute to the lifting of the mass of pollutants and their dispersion in the atmosphere using a gas deflector shape.

  14. Investigation of transport process involved in FGD. Final repot, September 1, 1993--August 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadambi, J.R.; Tien, J.S.; Yurteri, C.

    1995-02-01

    The objectives of this five year plan of study are to experimentally obtain a basic understanding of (1) turbulent flow structure of the mixing zone and it influence on particle dispersion, (2) the effect of particle loading on turbulent properties and mixing, (3) the effect of jet entrainment, (4) water spray-sorbent interaction, sorbent wetting and mixing, (5) investigate the flow field where certain ratios of jet velocity to flu gas velocity result in regions of negative flow and define onset o negative flow, and (6) sorbent reactivity in immediate mixing zone. In the first two years of the project amore » sorbent injection facility which can simulate the conditions encountered in COOLSIDE set up was designed and built. Non-intrusive laser based diagnostic tools PDA/LDA were used for flow characterization of particle laden jet in cocurrent flows. In the third year a new technique called TTLDV which combines particle transit time in measurement volume of LDV and LDV velocity measurements to simultaneously obtain non-spherical lime particle size and velocity was developed. Better sorbent injection schemes were investigated spray occurrent flow tests were conducted. During the fourth year the spray cocurrent flow interaction data was analyzed. A criterion was developed for predicting the flow reversal which results in deposition of water droplets on the duct wall (Table 3). The flow reversal occurs when the spray has entrained all the cocurrent flowing stream. The criterion is based upon the mass flow rate of the two phases. The criterion successfully predicted the flow reversals encountered in the experiments and will be a very useful practical tool. Lime laden jet occurrent flow interactions tests were completed. Tests on the swirling nozzle have been conducted. The single phase data have been analyzed while the two phase glass particle laden jet data is being analyzed.« less

  15. Wind-jet interaction in high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej

    2016-07-01

    Jets in high-mass X-ray binaries can strongly interact with the stellar wind from the donor. The interaction leads, in particular, to formation of recollimation shocks. The shocks can then accelerate electrons in the jet and lead to enhanced emission, observable in the radio and gamma-ray bands. DooSoo, Zdziarski & Heinz (2016) have formulated a condition on the maximum jet power (as a function of the jet velocity and wind rate and velocity) at which such shocks form. This criterion can explain the large difference in the radio and gamma-ray loudness between Cyg X-1 and Cyg X-3. The orbital modulation of radio emission observed in Cyg X-1 and Cyg X-3 allows a measurement of the location of the height along the jet where the bulk of emission at a given frequency occurs. Strong absorption of X-rays in the wind of Cyg X-3 is required to account for properties of the correlation of the radio emission with soft and hard X-rays. That absorption can also account for the unusual spectral and timing X-ray properties of this source.

  16. An infrared jet in Centaurus A (NGC 5128): Evidence for interaction between the active nucleus and the interstellar medium

    NASA Technical Reports Server (NTRS)

    Joy, Marshall; Harvey, P. M.; Tollestrup, E. V.; Mcgregor, P. J.; Hyland, A. R.

    1990-01-01

    In the present study, higher resolution near infrared images of the visually-obscured central region of Centaurus A were obtained in order to investigate the effects of the active nucleus on the surrounding galaxy. Researchers present J(1.25 microns), H(1.65 microns), and K(2.2 microns) images of the central 40 seconds of the galaxy, taken with the Univ. of Texas InSb array camera on the Anglo Australian 3.9 meter telescope. These images reveal a jet extending approx. 10 arcseconds to the northeast of the nucleus at the same position angle as the x ray and radio jets. The infrared jet is most prominent at the shortest wavelength (1.25 microns), where its brightness surpasses that of the nucleus. The blue appearance of the infrared jet is remarkable considering the heavy obscuration that is evident at visual wavelengths. The amount of reddening in the vicinity of the jet is determined from the measured colors of the stellar core of the galaxy, and this value is used to generate an extinction-corrected energy distribution. In contrast to previously studied optical and infrared jets in active nuclei, the short-wavelength prominence of the Cen A jet indicates that it cannot be attributed to synchrotron emission from a beam of relativistic electrons. The remaining viable mechanisms involve an interaction between the interstellar medium and the active nucleus: the infrared radiation from the jet may be due to emission from interstellar gas that has been entrained and heated by the flow of relativistic particles from the nucleus; alternatively, luminous blue stars may have been created by compression of interstellar material by the relativistic plasma. To investigate these proposed mechanisms, near-infrared spectroscopic studies of Cen A are in progress to look for collisionally excited molecular hydrogen emission lines and recombination lines from ionized gas.

  17. Study of double parton scattering using W + 2-jet events in proton-proton collisions at $$\\sqrt{s}$$ = 7 TeV

    DOE PAGES

    Chatrchyan, Serguei

    2014-03-05

    Double parton scattering is investigated in proton-proton collisions at √s = 7 TeV where the final state includes a W boson, which decays into a muon and a neutrino, and two jets. The data sample corresponds to an integrated luminosity of 5 fb –1, collected with the CMS detector at the LHC. Observables sensitive to double parton scattering are investigated after being corrected for detector effects and selection efficiencies. The fraction of W + 2-jet events due to double parton scattering is measured to be 0.055 +/- 0.002 (stat.) +/- 0.014 (syst.). Finally, the effective cross section, σ eff, characterizingmore » the effective transverse area of hard partonic interactions in collisions between protons is measured to be 20.7 +/- 0.8 (stat.) +/- 6.6 (syst.) mb.« less

  18. YANG-MILLS Theory in, Beyond, and Behind Observed Reality

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    The primary interactions of Yang-Mills theory [1] are visibly embodied in hard processes, most directly in jets. The character of jets also reflects the deep structure of effective charge, which is dominated by the influence of intrinsically non-Abelian gauge dynamics. These proven insights into fundamental physics ramify in many directions, and are far from being exhausted. I will discuss three rewarding explorations from my own experience, whose point of departure is the hard Yang-Mills interaction, and whose end is not yet in sight. Given an insight so profound and fruitful as Yang and Mills brought us, it is in order to try to consider its broadest implications, which I attempt at the end.

  19. Experimental study of secondary flow in the presence of two jet arrays on the wall of a turbine blade

    NASA Astrophysics Data System (ADS)

    Seddini, Abdelali

    A experimental study of the interaction of the secondary turbine flow with the cooling jets injected at the base of the blades is presented. Subsonic wind tunnel tests were carried on using a gas turbine wheel. The hot wire sensor and the five orifices pressure transducer used in the tests are described. The results allow a satisfactory description of the evolution of the jets in the space between blades and give some indications of the interactions of jets with secondary flows, passing vortices and between themselves.

  20. Vortex/Flame Interactions in Microgravity Pulsed Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Y.; Hegde, U.; Stocker, D. P.

    1999-01-01

    The problem of vortex/flame interaction is of fundamental importance to turbulent combustion. These interactions have been studied in normal gravity. It was found that due to the interactions between the imposed disturbances and buoyancy induced instabilities, several overall length scales dominated the flame. The problem of multiple scales does not exist in microgravity for a pulsed laminar flame, since there are no buoyancy induced instabilities. The absence of buoyant convection therefore provides an environment to study the role of vortices interacting with flames in a controlled manner. There are strong similarities between imposed and naturally occurring perturbations, since both can be described by the same spatial instability theory. Hence, imposing a harmonic disturbance on a microgravity laminar flame creates effects similar to those occurring naturally in transitional/turbulent diffusion flames observed in microgravity. In this study, controlled, large-scale, axisymmetric vortices are imposed on a microgravity laminar diffusion flame. The experimental results and predictions from a numerical model of transient jet diffusion flames are presented and the characteristics of pulsed flame are described.

  1. Aerodynamic Testing of the Orion Launch Abort Tower Separation with Jettison Motor Jet Interactions

    NASA Technical Reports Server (NTRS)

    Rhode, Matthew N.; Chan, David T.; Niskey, Charles J.; Wilson, Thomas M.

    2011-01-01

    The aerodynamic database for the Orion Launch Abort System (LAS) was developed largely from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamics (CFD) simulations. The LAS contains three solid rocket motors used in various phases of an abort to provide propulsion, steering, and Launch Abort Tower (LAT) jettison from the Crew Module (CM). This paper describes a pair of wind tunnel experiments performed at transonic and supersonic speeds to determine the aerodynamic effects due to proximity and jet interactions during LAT jettison from the CM at the end of an abort. The tests were run using two different scale models at angles of attack from 150deg to 200deg , sideslip angles from -10deg to +10deg , and a range of powered thrust levels from the jettison motors to match various jet simulation parameters with flight values. Separation movements between the CM and LAT included axial and vertical translations as well as relative pitch angle between the two bodies. The paper details aspects of the model design, nozzle scaling methodology, instrumentation, testing procedures, and data reduction. Sample data are shown to highlight trends seen in the results.

  2. Interaction of lithotripter shockwaves with single inertial cavitation bubbles

    PubMed Central

    Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K.; Khoo, Boo Cheong; Szeri, Andrew J.; Calvisi, Michael L.; Sankin, Georgy N.; Zhong, Pei

    2008-01-01

    The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave–bubble interaction are discussed. PMID:19018296

  3. Interaction of lithotripter shockwaves with single inertial cavitation bubbles.

    PubMed

    Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K; Khoo, Boo Cheong; Szeri, Andrew J; Calvisi, Michael L; Sankin, Georgy N; Zhong, Pei

    2007-01-01

    The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave-bubble interaction are discussed.

  4. Interaction of a liquid jet with an oncoming gas stream

    NASA Astrophysics Data System (ADS)

    Koval', M. A.; Shvets, A. I.

    1987-06-01

    Wind-tunnel tests were carried out to study the interaction between water jets issuing from various types of nozzles (including cylindrical) and subsonic and supersonic air streams with Mach numbers from 0.3 to 3 and Reynolds numbers from 1 x 10 to the 6th to 3 x 10 to the 7th. The following interaction structure was observed: (1) at moderate outflow velocities, the liquid jet has an extended region, which subsequently expands abruptly as a spherical or mushroom-shaped drop; (2) this drop is atomized in the peripheral region and is carried away as a gas-liquid mixture; (3) a shock wave is formed in front of the jet in the oncoming supersonic stream; and (4) a separated flow region is present in the vicinity of the cylindrical nozzle section.

  5. Plume-Free Stream Interaction Heating Effects During Orion Crew Module Reentry

    NASA Technical Reports Server (NTRS)

    Marichalar, J.; Lumpkin, F.; Boyles, K.

    2012-01-01

    During reentry of the Orion Crew Module (CM), vehicle attitude control will be performed by firing reaction control system (RCS) thrusters. Simulation of RCS plumes and their interaction with the oncoming flow has been difficult for the analysis community due to the large scarf angles of the RCS thrusters and the unsteady nature of the Orion capsule backshell environments. The model for the aerothermal database has thus relied on wind tunnel test data to capture the heating effects of thruster plume interactions with the freestream. These data are only valid for the continuum flow regime of the reentry trajectory. A Direct Simulation Monte Carlo (DSMC) analysis was performed to study the vehicle heating effects that result from the RCS thruster plume interaction with the oncoming freestream flow at high altitudes during Orion CM reentry. The study was performed with the DSMC Analysis Code (DAC). The inflow boundary conditions for the jets were obtained from Data Parallel Line Relaxation (DPLR) computational fluid dynamics (CFD) solutions. Simulations were performed for the roll, yaw, pitch-up and pitch-down jets at altitudes of 105 km, 125 km and 160 km as well as vacuum conditions. For comparison purposes (see Figure 1), the freestream conditions were based on previous DAC simulations performed without active RCS to populate the aerodynamic database for the Orion CM. Other inputs to the analysis included a constant Orbital reentry velocity of 7.5 km/s and angle of attack of 160 degrees. The results of the study showed that the interaction effects decrease quickly with increasing altitude. Also, jets with highly scarfed nozzles cause more severe heating compared to the nozzles with lower scarf angles. The difficulty of performing these simulations was based on the maximum number density and the ratio of number densities between the freestream and the plume for each simulation. The lowest altitude solutions required a substantial amount of computational resources (up to 1800 processors) to simulate approximately 2 billion molecules for the refined (adapted) solutions.

  6. HST and Merlin Observations of 3C 264--A Laboratory for Jet Physics and Unified Schemes

    NASA Astrophysics Data System (ADS)

    Baum, Stefi A.; O'Dea, Christopher P.; Giovannini, Gabriele; Cotton, William B.; de Koff, Sigrid; Feretti, Luigina; Golombek, Daniel; Lara, Lucas; Macchetto, Ferdinando D.; Miley, G. K.; Sparks, William B.; Venturi, Tiziana; Komissarov, Serguei S.

    1997-07-01

    We present new HST optical continuum and emission line WFPC2 images and MERLIN radio observations of 3C 264 at ~0.1" resolution. The jet is well resolved in both the optical and radio images. In addition, we report the discovery of an apparent optical ``ring'' at a projected radius of ~300-400 pc. The ring is most likely the manifestation of absorption by a nearly face-on circumnuclear dust disk. We discuss the evolution of the jet properties with distance. The jet collimation, brightness, and orientation change dramatically as it crosses the outer boundary of the ``ring'' suggesting an interaction between the jet and dense circumnuclear gas. We present a model for the jet propagation in which an initially relativistic jet decelerates as it crosses through a region of dense cold gas in the inner region of the galaxy. We derive the equations for brightness variations along an adiabatically expanding relativistic jet, and we model the jet brightness in 3C 264 as the combined effects of Doppler boosting, and adiabatic losses as traced through the jet velocity and width. We find that the data are consistent with a model in which the jet is initially highly relativistic (v ~ 0.98c, γ = 5) and we view it at roughly 50° inclination. We suggest that 3C 264 may serve as a laboratory for the study of relativistic entraining jets and may help us to understand the deceleration of jets, which is required in unifying schemes for FRI radio galaxies and BL Lac objects.

  7. Letter: Transient interaction between plasma jet and supersonic compression ramp flow

    NASA Astrophysics Data System (ADS)

    Huang, He-Xia; Tan, Hui-Jun; Sun, Shu; Zhang, Yu-Chao; Cheng, Lin

    2018-04-01

    The rapid flow evolution between a plasma jet and a 20° compression ramp flow is captured by a high-speed schlieren system at Mach 2.0. Several interesting flow phenomena are observed for the first time. The pulsed jet, which generates strong perturbations, forces the crossflow boundary layer to separate and forms a forward moving shock. A typical shock-on-shock interaction occurs when the precursor shock intersects with the original shock. The interaction is initially regular, and then it transforms into an irregular one with a Mach stem connecting the precursor shock and original ramp shock.

  8. An experimental study of planar heterogeneous supersonic confined jets

    NASA Astrophysics Data System (ADS)

    Tanis, Frederick J., Jr.

    1994-12-01

    The effects of varying the exit pressure of a supersonic helium jet exhausting coaxially with two parallel supersonic air streams into a constant area duct were investigated. The method used to evaluate the mass entrainment rate was to measure helium molar concentration profiles and mass flux across the duct using a binary gas probe then calculate the mass entrainment into the helium jet. In order to conduct this study a novel binary gas probe was developed which allowed helium concentration and mass flux data to be obtained during continuous traverses across the supersonic flowfield. High exit pressure ratio (EPR) led to improved overall mixing compared to the baseline case with an EPR near unity. The high EPR caused low mass entrainment along the jet shear layers due to high convective Mach numbers and velocity ratios, but the high EPR caused oblique shocks to form which reflected off the duct walls and intersected with the helium jet several times causing significant mass entrainment due to numerous shock-shear layer interactions (SSLI's). A correlation between the vorticity generated during a SSLI and the mass entrainment into the jet was developed.

  9. High-energy-density plasma jet generated by laser-cone interaction

    NASA Astrophysics Data System (ADS)

    Ke, Y. Z.; Yang, X. H.; Ma, Y. Y.; Xu, B. B.; Ge, Z. Y.; Gan, L. F.; Meng, L.; Wang, S. W.; Kawata, S.

    2018-04-01

    The generation of high-energy-density (HED) plasma jet from a laser ablating thin cone target is studied theoretically and by numerical simulations. Theoretical analysis and 1D simulations show that a maximum kinetic energy conversion efficiency (CE) of 26% can be achieved when nearly 80% of the foil is ablated by laser. A HED plasma jet is generated when an intense laser (˜1015 W/cm2) irradiates the cone target, inducing a great enhancement of energy density compared to that of the planar target, which is attributed to the cumulative effect of the cone shape and the new generation mechanism of jet, i.e., laser directly accelerating the cone wall onto the axis. The characteristic of jet is influenced by the cone geometry, i.e., thickness and cone angle. It is found that a cone with a half opening angle around 70 ° and the optimized thickness (˜5 μm) can induce a jet with a high CE and long duration, whose peak energy density can reach 3.5 × 1015 erg/cm3. The results can be beneficial for laser-driven novel neutron sources and other fusion related experiments, where HED plasma jet can be applied.

  10. The effect of exhaust plume/afterbody interaction on installed Scramjet performance

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas Alan

    1988-01-01

    Newly emerging aerospace technology points to the feasibility of sustained hypersonic flight. Designing a propulsion system capable of generating the necessary thrust is now the major obstacle. First-generation vehicles will be driven by air-breathing scramjet (supersonic combustion ramjet) engines. Because of engine size limitations, the exhaust gas leaving the nozzle will be highly underexpanded. Consequently, a significant amount of thrust and lift can be extracted by allowing the exhaust gases to expand along the underbody of the vehicle. Predicting how these forces influence overall vehicle thrust, lift, and moment is essential to a successful design. This work represents an important first step toward that objective. The UWIN code, an upwind, implicit Navier-Stokes computer program, has been applied to hypersonic exhaust plume/afterbody flow fields. The capability to solve entire vehicle geometries at hypersonic speeds, including an interacting exhaust plume, has been demonstrated for the first time. Comparison of the numerical results with available experimental data shows good agreement in all cases investigated. For moderately underexpanded jets, afterbody forces were found to vary linearly with the nozzle exit pressure, and increasing the exit pressure produced additional nose-down pitching moment. Coupling a species continuity equation to the UWIN code enabled calculations indicating that exhaust gases with low isentropic exponents (gamma) contribute larger afterbody forces than high-gamma exhaust gases. Moderately underexpanded jets, which remain attached to unswept afterbodies, underwent streamwise separation on upswept afterbodies. Highly underexpanded jets produced altogether different flow patterns, however. The highly underexpanded jet creates a strong plume shock, and the interaction of this shock with the afterbody was found to produce complicated patterns of crossflow separation. Finally, the effect of thrust vectoring on vehicle balance has been shown to alter dramatically the vehicle pitching moment.

  11. Investigating the Interaction of a Supersonic Single Expansion Ramp Nozzle and Sonic Wall Jet

    NASA Astrophysics Data System (ADS)

    Berry, Matthew G.

    For nearly 80 years, the jet engine has set the pace for aviation technology around the world. Complexity of design has compounded upon each iteration of nozzle development, while the rate of fundamental fluids knowledge struggles to keep up. The increase in velocities associated with supersonic jets, have exacerbated the need for flow physics research. Supersonic flight remains the standard for military aircraft and is being rediscovered for commercial use. With the addition of multiple streams, complex nozzle geometries, and airframe integration in modern aircraft, the flow physics rapidly become more difficult. As performance capabilities increase, so do the noise producing mechanisms and unsteady dynamics. This has prompted an experimental investigation into the flow field and turbulence quantities of a modern jet nozzle configuration. A rectangular supersonic multi-stream nozzle with aft deck is characterized using time-resolved schlieren imaging, stereo PIV measurements, deck mounted pressure transducers, and far-field microphones. These experiments are performed at the Skytop Turbulence Laboratory at Syracuse University. LES data by The Ohio State University are paired with these experiments and give valuable insight into regions of the flow unable to be probed. By decomposing this complex flow field into two canonical flows, a supersonic rectangular nozzle and a sonic wall jet, a fundamental approach is taken to observe how these two jets interact. Thorough investigations of the highly turbulent flow field are being performed. Current analytical techniques employed are statistical quantities, turbulence properties, and low-dimensional models. Results show a dominant high frequency structure that propagates through the entire field and is observable in all experimental methods. The structures emanate from the interaction point of the supersonic jet and sonic wall jet. Additionally, the propagation paths are directionally dependent. Further, spanwise PIV measurements observe the asymmetric nozzle to be relatively two-dimensional across half of the jet span. An investigation into the effect of the aft deck has shown that the jet plume deflection depended on the aft deck length. This deflection is tied to separation and reattachment caused by reflecting oblique shocks. Additionally, low-dimensional models in the form of POD and DMD observe the most energetic and periodic structures in the turbulent flow field. Finally, these experimental results are paired with LES using data fusion techniques to form a more complete view of the flow. The comprehensive dataset will help validate computational models and create a basis for future SERN and aft deck designs.

  12. Ejecta Production and Properties

    NASA Astrophysics Data System (ADS)

    Williams, Robin

    2017-06-01

    The interaction of an internal shock with the free surface of a dense material leads to the production of jets of particulate material from the surface into its environment. Understanding the processes which control the production of these jets -- both their occurrence, and properties such as the mass, velocity, and particle size distribution of material injected -- has been a topic of active research at AWE for over 50 years. I will discuss the effect of material physics, such as strength and spall, on the production of ejecta, drawing on experimental history and recent calculations, and consider the processes which determine the distribution of particle sizes which result as ejecta jets break up. British Crown Owned Copyright 2017/AWE.

  13. Numerical simulation of the interaction between a flowfield and chemical reaction on premixed pulsed jet combustion

    NASA Astrophysics Data System (ADS)

    Hishida, Manabu; Hayashi, A. Koichi

    1992-12-01

    Pulsed Jet Combustion (PJC) is numerically simulated using time-dependent, axisymmetric, full Navier-Stokes equations with the mass, momentum, energy, and species conservation equations for a hydrogen-air mixture. A hydrogen-air reaction mechanism is modeled by nine species and nineteen elementary forward and backward reactions to evaluate the effect of the chemical reactions accurately. A point implicit method with the Harten and Yee's non-MUSCL (Monotone Upstream-centerd Schemes for Conservation Laws) modified-flux type TVD (Total Variation Diminishing) scheme is applied to deal with the stiff partial differential equations. Furthermore, a zonal method making use of the Fortified Solution Algorithm (FSA) is applied to simulate the phenomena in the complicated shape of the sub-chamber. The numerical result shows that flames propagating in the sub-chamber interact with pressure waves and are deformed to be wrinkled like a 'tulip' flame and a jet passed through the orifice changes its mass flux quasi-periodically.

  14. Hybrid Manipulation of Streamwise Vorticity in a Diffuser Boundary Layer

    NASA Astrophysics Data System (ADS)

    Gissen, Abraham; Vukasinovic, Bojan; Culp, John; Glezer, Ari

    2010-11-01

    The formation of streamwise vorticity concentrations by exploiting the interaction of surface-mounted passive (micro-vanes) and active (synthetic jets) flow control elements with the cross flow is investigated experimentally in a small-scale serpentine duct at high subsonic speeds (up to M = 0.6). Streamwise vortices can be a key element in the mitigation of the adverse effects on pressure recovery and distortion caused by the naturally occurring secondary flows in embedded propulsion systems with complex inlet geometries. Counter rotating and single-sense vortices are formed using conventional passive micro-vanes and active high-power synthetic jet actuators. Interaction of the flow control elements is examined through a hybrid actuation scheme whereby synthetic jet actuation augments the primary vanes' vortices resulting in dynamic enhancement of their strength. It is shown that such sub-boundary layer individual vortices can merge and evolve into duct-scale vortical structures that counteract the inherent secondary flow and mitigates global flow distortion.

  15. A computational study of thrust augmenting ejectors based on a viscous-inviscid approach

    NASA Technical Reports Server (NTRS)

    Lund, Thomas S.; Tavella, Domingo A.; Roberts, Leonard

    1987-01-01

    A viscous-inviscid interaction technique is advocated as both an efficient and accurate means of predicting the performance of two-dimensional thrust augmenting ejectors. The flow field is subdivided into a viscous region that contains the turbulent jet and an inviscid region that contains the ambient fluid drawn into the device. The inviscid region is computed with a higher-order panel method, while an integral method is used for the description of the viscous part. The strong viscous-inviscid interaction present within the ejector is simulated in an iterative process where the two regions influence each other en route to a converged solution. The model is applied to a variety of parametric and optimization studies involving ejectors having either one or two primary jets. The effects of nozzle placement, inlet and diffuser shape, free stream speed, and ejector length are investigated. The inlet shape for single jet ejectors is optimized for various free stream speeds and Reynolds numbers. Optimal nozzle tilt and location are identified for various dual-ejector configurations.

  16. Effects of the electrical parameters and gas flow rate on the generation of reactive species in liquids exposed to atmospheric pressure plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, Eun Jeong; Joh, Hea Min; Kim, Sun Ja

    2016-07-15

    In this work, an atmospheric pressure plasma jet was fabricated and studied for plasma–liquid interactions. The plasma jet consists of a quartz-covered pin electrode and outer quartz tube with a tapered nozzle. Using the current–voltage (I-V) and optical emission characteristics of the plasma jet, the plasma density and the speed of the plume were investigated. The optical emission spectra clearly indicated the excited NO, O, OH, N{sub 2}, and N{sub 2}{sup +} in the plasma plumes. Then the plasma jets were applied to the deionized water. We investigated the effects of the operating parameters such as applied voltage, pulse frequency,more » and gas flow rate on the generation of reactive species in the gas and liquid phases. The densities of reactive species including OH radicals were obtained at the plasma–liquid surface and inside the plasma-treated liquids using ultraviolet absorption spectroscopy and chemical probe method. The nitrite concentration was detected by Griess assay. The data are very suggestive that there is a strong correlation among the production of reactive oxygen and nitrogen species (RONS) in the plasmas and liquids.« less

  17. Aircraft aerodynamic prediction method for V/STOL transition including flow separation

    NASA Technical Reports Server (NTRS)

    Gilmer, B. R.; Miner, G. A.; Bristow, D. R.

    1983-01-01

    A numerical procedure was developed for the aerodynamic force and moment analysis of V/STOL aircraft operating in the transition regime between hover and conventional forward flight. The trajectories, cross sectional area variations, and mass entrainment rates of the jets are calculated by the Adler-Baron Jet-in-Crossflow Program. The inviscid effects of the interaction between the jets and airframe on the aerodynamic properties are determined by use of the MCAIR 3-D Subsonic properties are determined by use of the MCAIR 3-D Subsonic Potential Flow Program, a surface panel method. In addition, the MCAIR 3-D Geometry influence Coefficient Program is used to calculate a matrix of partial derivatives that represent the rate of change of the inviscid aerodynamic properties with respect to arbitrary changes in the effective wing shape.

  18. OVERFLOW Validation for Predicting Plume Impingement of Underexpanded Axisymmetric Jets onto Angled Flat Plates

    NASA Technical Reports Server (NTRS)

    Lee, Henry C.; Klopfer, Goetz

    2011-01-01

    This report documents how OVERFLOW, a computational fluid dynamics code, predicts plume impingement of underexpanded axisymmetric jets onto both perpendicular and inclined flat plates. The effects of the plume impinging on a range of plate inclinations varying from 90deg to 30deg are investigated and compared to the experimental results in Reference 1 and 2. The flow fields are extremely complex due to the interaction between the shock waves from the free jet and those deflected by the plate. Additionally, complex mixing effects create very intricate structures in the flow. The experimental data is very limited, so these validation studies will focus only on cold plume impingement on flat and inclined plates. This validation study will help quantify the error in the OVERFLOW simulation when applied to stage separation scenarios.

  19. Multiple parton interaction studies at DØ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, D.

    Here, we present the results of studies of multiparton interactions done by the DØ collaboration using the Fermilab Tevatron at a center of mass energy of 1.96 TeV. We also present three analyses, involving three distinct final signatures: (a) a photon with at least 3 jets ( γ + 3jets), (b) a photon with a bottom or charm quark tagged jet and at least 2 other jets ( γ + b/c + 2jets), and (c) two J/ ψ mesons. The fraction of photon + jet events initiated by double parton scattering is about 20%, while the fraction for events inmore » which two J/ ψ mesons were produced is 30 ± 10. While the two measurements are statistically compatible, the difference might indicate differences in the quark and gluon distribution within a nucleon. Finally, this speculation originates from the fact that photon + jet events are created by collisions with quarks in the initial states, while J/ ψ events are produced preferentially by a gluonic initial state.« less

  20. Multiple parton interaction studies at DØ

    DOE PAGES

    Lincoln, D.

    2016-04-01

    Here, we present the results of studies of multiparton interactions done by the DØ collaboration using the Fermilab Tevatron at a center of mass energy of 1.96 TeV. We also present three analyses, involving three distinct final signatures: (a) a photon with at least 3 jets ( γ + 3jets), (b) a photon with a bottom or charm quark tagged jet and at least 2 other jets ( γ + b/c + 2jets), and (c) two J/ ψ mesons. The fraction of photon + jet events initiated by double parton scattering is about 20%, while the fraction for events inmore » which two J/ ψ mesons were produced is 30 ± 10. While the two measurements are statistically compatible, the difference might indicate differences in the quark and gluon distribution within a nucleon. Finally, this speculation originates from the fact that photon + jet events are created by collisions with quarks in the initial states, while J/ ψ events are produced preferentially by a gluonic initial state.« less

  1. Exotic interactions among C-jets and Pb-jets

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The C-jets and Pb-jets were surveyed on the part of Chacaltaya emulsion chamber No.19 amounting to an exposure of 28.8 sq m yr. It is shown that the adopted events make up an unbiased sample of C-jets for sigma sub E gamma TeV. Mini-Centauro interaction gives the most natural explanation for the eight pinaught-less C-jets with three or more constituent shower core. Out of the eight double-cored pinaught-less events, three are found to have visible invariant masses 1.8 GeV/c. Three Pb-jets-lower are composed of double cores whose respective visible transverse momenta are greater than 0.5 GeV/c, suggesting that they are of Geminion origin or chiron origin. The energies of the parent particles are estimated to be 100 to 200 TeV for all three kinds of events. The implications of this energy estimate and the frequency of observed exotic events are discussed.

  2. Vector-boson-tagged jet production in heavy ion collisions at energies available at the CERN Large Hadron Collider [Vector boson-tagged jet production in heavy ion collisions at the LHC

    DOE PAGES

    Kang, Zhong -Bo; Vitev, Ivan Mateev; Xing, Hongxi

    2017-07-25

    Here, vector-boson-tagged jet production in collisions of heavy nuclei opens new opportunities to study parton shower formation and propagation in strongly interacting matter. It has been argued to provide a golden channel that can constrain the energy loss of jets in the quark-gluon plasma created in heavy ion reactions. We present theoretical results for isolated-photon-tagged and Z 0-boson-tagged jet production in Pb + Pb collisions with √s NN = 5.02TeV at the LHC. Specifically, we evaluate the transverse momentum imbalance x JV distribution and nuclear modification factor I AA of tagged jets and compare our theoretical calculations to recent experimentalmore » measurements by ATLAS and CMS collaborations. Our analysis, which includes both collisional and radiative energy losses, sheds light on their relative importance versus the strength of jet-medium interactions and helps quantify the amount of out-of-cone radiation of predominantly prompt quark-initiated jets.« less

  3. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Chang, Chau-Lyan.; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    The authors provide a brief overview of the classic tonal screech noise problem created by underexpanded supersonic jets, briefly describing the fluid dynamic-acoustics feedback mechanism that has been long established as the basis for this well-known aeroacoustics problem. This is followed by a description of the Long Penetration Mode (LPM) supersonic underexpanded counterflowing jet phenomenon which has been demonstrated in several wind tunnel tests and modeled in several computational fluid dynamics (CFD) simulations. The authors provide evidence from test and CFD analysis of LPM that indicates that acoustics feedback and fluid interaction seen in LPM are analogous to the aeroacoustics interactions seen in screech jets. Finally, the authors propose applying certain methodologies to LPM which have been developed and successfully demonstrated in the study of screech jets and mechanically induced excitation in fluid oscillators for decades. The authors conclude that the large body of work done on jet screech, other aeroacoustic phenomena, and fluid oscillators can have direct application to the study and applications of LPM counterflowing supersonic cold flow jets.

  4. Lateral Reaction Jet Flow Interaction Effects on a Generic Fin-Stabilized Munition in Supersonic Crossflows

    DTIC Science & Technology

    2013-11-01

    freestream conditions ( 0 =300 K). .........22  Table 7. Results from nozzle parameter study, variation with jet gas total temperature (AR=1, M=2.5...end. Two additional supersonic nozzles of AR=2 and AR=8 (figures 3e and 3f) were also investigated, also with a throat diameter of 2.54 mm. The...walls, due to the different flow properties from the gas expansion there. Therefore, the plenum and nozzle exit walls were modeled with an advanced

  5. Numerical and experimental investigation of transverse injection flows

    NASA Astrophysics Data System (ADS)

    Erdem, E.; Kontis, K.

    2010-04-01

    The flow field resulting from a transverse injection through a slot into supersonic flow is numerically simulated by solving Favre-averaged Navier-Stokes equations with κ - ω SST turbulence model with corrections for compressibility and transition. Numerical results are compared to experimental data in terms of surface pressure profiles, boundary layer separation location, transition location, and flow structures at the upstream and downstream of the jet. Results show good agreement with experimental data for a wide range of pressure ratios and transition locations are captured with acceptable accuracy. κ - ω SST model provides quite accurate results for such a complex flow field. Moreover, few experiments involving a sonic round jet injected on a flat plate into high-speed crossflow at Mach 5 are carried out. These experiments are three-dimensional in nature. The effect of pressure ratio on three-dimensional jet interaction dynamics is sought. Jet penetration is found to be a non-linear function of jet to free stream momentum flux ratio.

  6. Study of an array of two circular jets impinging on a flat surface

    NASA Astrophysics Data System (ADS)

    Simionescu, Ştefan-Mugur; Dhondoo, Nilesh; Bălan, Corneliu

    2018-02-01

    In this study, the flow characteristics of an array of two circular, laminar air jets impinging on a smooth solid wall are experimentally and numerically investigated. Direct visualizations using high speed/resolution camera are performed. The evolution of the vortical structures in the area where the jet is deflected from axial to radial direction is emphasized, as well as the interaction between the two jets. A set of CFD numerical simulations in 2D flow domains are performed by using the commercial software Fluent, in the context of Reynolds-averaged Navier-Stokes (RANS) modeling. The numerical resultsare compared and validated with the experiments. The vorticity number is computed and plotted at two different positions from the jet nozzle, and a study of its distribution gives a clue on how the jets are interacting with each other in the proximity of the solid wall.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong -Bo; Vitev, Ivan Mateev; Xing, Hongxi

    Here, vector-boson-tagged jet production in collisions of heavy nuclei opens new opportunities to study parton shower formation and propagation in strongly interacting matter. It has been argued to provide a golden channel that can constrain the energy loss of jets in the quark-gluon plasma created in heavy ion reactions. We present theoretical results for isolated-photon-tagged and Z 0-boson-tagged jet production in Pb + Pb collisions with √s NN = 5.02TeV at the LHC. Specifically, we evaluate the transverse momentum imbalance x JV distribution and nuclear modification factor I AA of tagged jets and compare our theoretical calculations to recent experimentalmore » measurements by ATLAS and CMS collaborations. Our analysis, which includes both collisional and radiative energy losses, sheds light on their relative importance versus the strength of jet-medium interactions and helps quantify the amount of out-of-cone radiation of predominantly prompt quark-initiated jets.« less

  8. The influence of cavitation in the breakup of liquid free jets

    NASA Astrophysics Data System (ADS)

    Bode, Juergen

    1991-03-01

    The interaction between a diesel injection nozzle flow and the atomizing jet was investigated over a wide range of Reynolds numbers. If the pressure gradient towards the centerline of the injection nozzle, generated by the curved streamlines, becomes too large, cavitation occurs at the inlet corner. The cavitation region grows in length and boundary surface with increasing Reynolds number. The instability of the reentry flow causes unsteady fluctuations of the cavitation which influences the breakup of the liquid jet, whereby liquid films are generated which take off from the jet. Cavitation amplifies the mechanism of the atomization, based on the interaction between the jet and surrounding gas. The influence of the cavitation on the atomization is restricted to the region directly behind the nozzle exit. The injection pressure and the temperature of the gas hardly affect the atomization. The jet angle depends mainly on the density of the surrounding gas.

  9. Strong Interaction Effect on Jet Energy Loss with Detailed Balance

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-Ya; Cheng, Luan

    2017-10-01

    Not Available Supported by the National Natural Science Foundation of China under Grant No 11205024, and the Doctoral Scientific Fund Project of the Ministry of Education of China under Grant No 2012004112004.

  10. Reducing Propulsion Airframe Aeroacoustic Interactions with Uniquely Tailored Chevrons. 1.; Isolated Nozzles

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Elkroby, Ronen; Brunsniak, Leon; Thomas, Russ H.

    2006-01-01

    The flow/acoustic environment surrounding an engine nozzle installed on an airplane, say, under the wing, is asymmetric due to the pylon, the wing and the interaction of the exhaust jet with flaps on the wing. However, the conventional chevrons, which are azimuthally uniform serrations on the nozzle lip, do not exploit the asymmetry due to these propulsion airframe aeroacoustic interactions to reduce jet noise. In this pioneering study we use this non-axisymmetry to our advantage and examine if the total jet-related noise radiated to the ground can be reduced by using different types of azimuthally varying chevrons (AVC) which vary the mixing around the nozzle periphery. Several scale models of the isolated nozzle, representative of high bypass ratio engine nozzles, were made with a pylon and azimuthally varying chevrons on both fan and core nozzles to enhance mixing at the top (near the pylon) with less mixing at the bottom (away from the pylon) or vice versa. Various combinations of fan and core AVC nozzles were systematically tested at typical take-off conditions inside a free jet wind-tunnel and, here, in Part 1 we analyze the acoustics results for the isolated nozzle with a pylon, with installation effects reported in Parts 2 and 3. Several interesting results are discovered: amongst the fan AVCs the top-enhanced mixing T-fan chevron nozzle is quieter in combination with any core AVC nozzle when compared to conventional chevrons; however, the bottom-mixing B-fan chevrons, as well as the core AVC nozzles, by themselves, are noisier. Further, the low-frequency source strengths in the jet plume, obtained via phased microphone arrays, also corroborate the far field sound, and for the T-fan chevrons such sources move further downstream than those for baseline or conventional chevron nozzles.

  11. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber.

    PubMed

    Guerra, V G; Gonçalves, J A S; Coury, J R

    2009-01-15

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets.

  12. Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations

    DOE PAGES

    Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; ...

    2016-05-31

    Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.

  13. Laser Doppler velocimeter measurements and laser sheet imaging in an annular combustor model. M.S. Thesis, Final Report

    NASA Technical Reports Server (NTRS)

    Dwenger, Richard Dale

    1995-01-01

    An experimental study was conducted in annular combustor model to provide a better understanding of the flowfield. Combustor model configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets were investigated. The purpose of this research was to provide a better understanding of combustor flows and to provide a data base for comparison with computational models. The first part of this research used a laser Doppler velocimeter to measure mean velocity and statistically calculate root-mean-square velocity in two coordinate directions. From this data, one Reynolds shear stress component and a two-dimensional turbulent kinetic energy term was determined. Major features of the flowfield included recirculating flow, primary and annular jet interaction, and high turbulence. The most pronounced result from this data was the effect the primary jets had on the flowfield. The primary jets were seen to reduce flow asymmetries, create larger recirculation zones, and higher turbulence levels. The second part of this research used a technique called marker nephelometry to provide mean concentration values in the combustor. Results showed the flow to be very turbulent and unsteady. All configurations investigated were highly sensitive to alignment of the primary and annular jets in the model and inlet conditions. Any imbalance between primary jets or misalignment of the annular jets caused severe flow asymmetries.

  14. The Influence of the Hall Term on the Development of Magnetized Laser-Produced Plasma Jets

    DOE PAGES

    Hamlin, N.D.; Seyler, C. E.; Khiar, B.

    2018-04-29

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGONmore » and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. In conclusion, this points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.« less

  15. The Influence of the Hall Term on the Development of Magnetized Laser-Produced Plasma Jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamlin, N.D.; Seyler, C. E.; Khiar, B.

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGONmore » and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. In conclusion, this points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.« less

  16. Underexpanded Supersonic Plume Surface Interactions: Applications for Spacecraft Landings on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Mehta, M.; Sengupta, A.; Renno, N. O.; Norman, J. W.; Gulick, D. S.

    2011-01-01

    Numerical and experimental investigations of both far-field and near-field supersonic steady jet interactions with a flat surface at various atmospheric pressures are presented in this paper. These studies were done in assessing the landing hazards of both the NASA Mars Science Laboratory and Phoenix Mars spacecrafts. Temporal and spatial ground pressure measurements in conjunction with numerical solutions at altitudes of approx.35 nozzle exit diameters and jet expansion ratios (e) between 0.02 and 100 are used. Data from steady nitrogen jets are compared to both pulsed jets and rocket exhaust plumes at Mach approx.5. Due to engine cycling, overpressures and the plate shock dynamics are different between pulsed and steady supersonic impinging jets. In contrast to highly over-expanded (e <1) and underexpanded exhaust plumes, results show that there is a relative ground pressure load maximum for moderately underexpanded (e approx.2-5) jets which demonstrate a long collimated plume shock structure. For plumes with e much >5 (lunar atmospheric regime), the ground pressure is minimal due to the development of a highly expansive shock structure. We show this is dependent on the stability of the plate shock, the length of the supersonic core and plume decay due to shear layer instability which are all a function of the jet expansion ratio. Asymmetry and large gradients in the spatial ground pressure profile and large transient overpressures are predominantly linked to the dynamics of the plate shock. More importantly, this study shows that thruster plumes exhausting into martian environments possess the largest surface pressure loads and can occur at high spacecraft altitudes in contrast to the jet interactions at terrestrial and lunar atmospheres. Theoretical and analytical results also show that subscale supersonic cold gas jets adequately simulate the flow field and loads due to rocket plume impingement provided important scaling parameters are in agreement. These studies indicate the critical importance of testing and modeling plume-surface interactions for descent and ascent of spacecraft and launch vehicles.

  17. An empirical model for inverted-velocity-profile jet noise prediction

    NASA Technical Reports Server (NTRS)

    Stone, J. R.

    1977-01-01

    An empirical model for predicting the noise from inverted-velocity-profile coaxial or coannular jets is presented and compared with small-scale static and simulated flight data. The model considered the combined contributions of as many as four uncorrelated constituent sources: the premerged-jet/ambient mixing region, the merged-jet/ambient mixing region, outer-stream shock/turbulence interaction, and inner-stream shock/turbulence interaction. The noise from the merged region occurs at relatively low frequency and is modeled as the contribution of a circular jet at merged conditions and total exhaust area, with the high frequencies attenuated. The noise from the premerged region occurs at high frequency and is modeled as the contribution of an equivalent plug nozzle at outer stream conditions, with the low frequencies attenuated.

  18. Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions

    PubMed Central

    Laine, Elodie; Carbone, Alessandra

    2015-01-01

    Protein-protein interactions (PPIs) are essential to all biological processes and they represent increasingly important therapeutic targets. Here, we present a new method for accurately predicting protein-protein interfaces, understanding their properties, origins and binding to multiple partners. Contrary to machine learning approaches, our method combines in a rational and very straightforward way three sequence- and structure-based descriptors of protein residues: evolutionary conservation, physico-chemical properties and local geometry. The implemented strategy yields very precise predictions for a wide range of protein-protein interfaces and discriminates them from small-molecule binding sites. Beyond its predictive power, the approach permits to dissect interaction surfaces and unravel their complexity. We show how the analysis of the predicted patches can foster new strategies for PPIs modulation and interaction surface redesign. The approach is implemented in JET2, an automated tool based on the Joint Evolutionary Trees (JET) method for sequence-based protein interface prediction. JET2 is freely available at www.lcqb.upmc.fr/JET2. PMID:26690684

  19. Formation of soap bubbles by gas jet

    NASA Astrophysics Data System (ADS)

    Zhou, Maolei; Li, Min; Chen, Zhiyuan; Han, Jifeng; Liu, Dong

    2017-12-01

    Soap bubbles can be easily generated by various methods, while their formation process is complicated and still worth studying. A model about the bubble formation process was proposed in the study by Salkin et al. [Phys. Rev. Lett. 116, 077801 (2016)] recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after a detailed study of these experiments, we found that the bubbles could be generated in two velocity ranges which corresponded to the laminar and turbulent gas jet, respectively, and the predicted threshold was only effective for turbulent gas flow. The study revealed that the bubble formation was greatly influenced by the aerodynamics of the gas jet blowing to the film, and these results will help to further understand the formation mechanism of the soap bubble as well as the interaction between the gas jet and the thin liquid film.

  20. Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone

    NASA Technical Reports Server (NTRS)

    Uccellini, Louis W.; Petersen, Ralph A.; Kocin, Paul J.; Brill, Keith F.; Tuccillo, James J.

    1987-01-01

    A series of numerical simulations of the February 1979 Presidents Day cyclone is presented. The development of the low-level jet (LLJ) associated with the cyclone is described, and the mesoscale numerical model, initial analyses, and experimental design used in the study are discussed. Four numerical simulations are discussed and compared, including an adiabatic simulation that isolates the development of upper-level divergence along the axis of a subtropical jet streak and three other simulations that reveal the contributions of sensible and latent heat release in modifying lower-tropospheric wind fields and reducing the sea-level pressure. The formation of the LLJ is described through an evaluation of trajectories derived from the various model simulations. The effect of the LLJ on secondary cyclogenesis along the East Coast is described.

  1. Torsional splittings in the diode laser slit-jet spectra of the ν6 fundamental of 1-chloro-1,1-difluoroethane (HCFC-142b)

    NASA Astrophysics Data System (ADS)

    di Lauro, Carlo; D'Amico, Giuseppe; Snels, Marcel

    2009-04-01

    High resolution infrared spectra (0.001 cm -1 FWHM) have been measured for mixtures of 1-chloro-1,1-difluoroethane in Ne, expanded in a supersonic planar jet. The ν6 fundamental, infrared active with a dominant parallel transition moment, exhibits a remarkable splitting of about 0.035 cm -1 for both 35Cl and 37Cl isotopomers. Several mechanisms of interaction of ν6 with states with high torsional excitation are critically examined to explain the observed effect. It is concluded that the observed torsional splitting patterns can be explained in terms of a torsional Coriolis interaction between ν6 and a highly excited torsional mode, 6 ν18. A full numerical analysis, performed including a torsional Coriolis term in the Hamiltonian, shows that the interaction mechanism requires a torsional barrier height of about 1270 cm -1.

  2. Dynamic interaction of a downward plane jet and a cough jet with respect to particle transmission: An analytical and experimental study.

    PubMed

    Cao, Guangyu; Liu, Shichao; Boor, Brandon E; Novoselac, Atila

    2017-08-01

    A cough jet can travel beyond the breathing zone of the source person, and thus, infectious viral- and bacterial-laden particles can be transported from the source person to others in close proximity. To reduce the interpersonal transmission of coughed particles, the objective of this study was to analytically and experimentally investigate the performance of downward plane jets with various discharge velocities. Chamber measurements were conducted to examine the interaction between a transient cough jet (discharge velocities of 12 m/sec and 16 m/sec) and a steady downward plane jet (discharge velocities from 1.0-8.5 m/sec) with respect to the transport of and human exposure to coughed particles. The results show that a relatively high-speed cough can easily penetrate a downward plane jet with a discharge velocity of less than 6 m/sec. A downward plane jet with a discharge velocity of 8.5 m/sec can bend the cough jet to a certain extent. In this study, momentum comparison of the cough jet and the downward plane jet shows that the value of personal exposure to coughed particles depends on the ratio of jet momentums. The results show that when the two momentums are equivalent or if the downward plane jet has a greater momentum, the cough jet is deflected downward and does not reach the breathing zone of the target thermal dummy. Using the ratio of the two momentums, it may be estimated whether the transmission of a cough jet can be controlled. A trajectory model was developed based on the ratio of the two momentums of a cough jet and a downward jet and was validated using the experimental data. In addition, the predicted trajectory of the cough jet agreed well with the results from smoke visualization experiments. This model can be used to guide the design of downward plane jet systems for protection of occupants from coughed particles.

  3. Successive Two-sided Loop Jets Caused by Magnetic Reconnection between Two Adjacent Filamentary Threads

    NASA Astrophysics Data System (ADS)

    Tian, Zhanjun; Liu, Yu; Shen, Yuandeng; Elmhamdi, Abouazza; Su, Jiangtao; Liu, Ying D.; Kordi, Ayman. S.

    2017-08-01

    We present observational analysis of two successive two-sided loop jets observed by the ground-based New Vacuum Solar Telescope and the space-borne Solar Dynamics Observatory. The two successive two-sided loop jets manifested similar evolution processes and both were associated with the interaction of two small-scale adjacent filamentary threads, magnetic emerging, and cancellation processes at the jet’s source region. High temporal and high spatial resolution observations reveal that the two adjacent ends of the two filamentary threads are rooted in opposite magnetic polarities within the source region. The two threads approached each other, and then an obvious brightening patch is observed at the interaction position. Subsequently, a pair of hot plasma ejections are observed heading in opposite directions along the paths of the two filamentary threads at a typical speed for two-sided loop jets of the order 150 km s-1. Close to the end of the second jet, we report the formation of a bright hot loop structure at the source region, which suggests the formation of new loops during the interaction. Based on the observational results, we propose that the observed two-sided loop jets are caused by magnetic reconnection between the two adjacent filamentary threads, largely different from the previous scenario that a two-sided loop jet is generated by magnetic reconnection between an emerging bipole and the overlying horizontal magnetic fields.

  4. Cold gas and the disruptive effect of a young radio jet

    NASA Astrophysics Data System (ADS)

    Morganti, R.; Oosterloo, T.; Maccagni, F. M.; Geréb, K.; Oonk, J. B. R.; Tadhunter, C. N.

    2016-02-01

    Newly born and young radio sources are in a delicate phase of their life. Their jets are fighting their way through the surrounding gaseous medium, strongly experiencing this interaction while, at the same time, impacting and affecting the interstellar medium (ISM). Quantifying this interplay has far reaching implications: the rate of occurrence and the magnitude of the interaction between radio jets and ISM can have consequences for the evolution of the host galaxy. Despite the hostile conditions, cold gas - neutral atomic hydrogen and molecular - has been often found in these objects and can be also associated to fast outflows. Here we present the results from two studies of H I and molecular gas illustrating what can be learned from these phases of the gas. We first describe a statistical study of the occurrence and kinematics of H I observed in absorption with the Westerbork Synthesis Radio telescope. This allows a comparison between the properties of the gas in extended and in compact/young radio sources. The study shows that the young radio sources not only have an higher detection rate of H I, but also systematically broader and more asymmetric H I profiles, most of them blueshifted. This supports the idea that we are looking at young radio jets making their way through the surrounding ISM, which also appears to be, on average, richer in gas than in evolved radio sources. Signatures of the impact of the jet are seen in the kinematics of the gas, but the resulting outflows may be characteristic of only the initial phase of the radio source evolution. However, even among the young sources, we identify a population that remains undetected in H I even after stacking their profiles. Orientation effects can only partly explain the result. These objects either are genuinely gas-poor or have different conditions of the medium, e.g. higher spin temperature. The upcoming blind H I surveys which are about to start with large-field-of-view radio facilities (i.e. Apertif at the WSRT and ASKAP) will allow us to expand the statistics and reach even higher sensitivity with stacking techniques. We further present the case of the radio source IC 5063 where we have used the molecular gas observed with ALMA to trace in detail the jet impacting the ISM. The kinematics of the cold, molecular gas co-spatial with the radio plasma shows this process in action. The ALMA data reveal a fast outflow of molecular gas extending along the entire radio jet (˜1 kpc), with the highest outflow velocities at the location of the brighter hot-spot. The results can be described by a scenario of a radio plasma jet expanding into a clumpy medium, interacting directly with the clouds and inflating a cocoon that drives a lateral outflow into the ISM. This is consistent with the scenario proposed by numerical simulations for the expansion of a young radio jet, confirming the disruptive effect the radio plasma jet can have. Following this case, more ALMA observations of nearby young radio sources will be able to confirm if this process is common, as expected, in the initial phase of the evolution of the radio source.

  5. Experimental Optimisation of the Thermal Performance of Impinging Synthetic Jet Heat Sinks

    NASA Astrophysics Data System (ADS)

    Marron, Craig; Persoons, Tim

    2014-07-01

    Zero-net-mass flow synthetic jet devices offer a potential solution for energy- efficient cooling of medium power density electronic components. There remains an incomplete understanding of the interaction of these flows with extended surfaces, which prevents the wider implementation of these devices in the field. This study examines the effect of the main operating parameters on the heat transfer rate and electrical power consumption for a synthetic jet cooled heat sink. Three different heat sink geometries are tested. The results find that a modified sink with a 14 × 14 pin array with the central 6 × 6 pins removed provides superior cooling to either a fully pinned sink or flat plate. Furthermore each heat sink is found to have its own optimum jet orifice-to-sink spacing for heat transfer independent of flow conditions. The optimum heat transfer for the modified sink is H = 34 jet diameters. The effect of frequency on heat transfer is also studied. It is shown that heat transfer increases superlinearly with frequency at higher stroke lengths. The orientation of the impingement surface with respect to gravity has no effect on the heat transfer capabilities of the tested device. These tests are the starting point for further investigation into enhanced synthetic jet impingement surfaces. The equivalent axial fan cooled pinned heat sink (Malico Inc. MFP40- 18) has a thermal resistance of 1.93K/W at a fan power consumption of 0.12W. With the modified pinned heat sink, a synthetic jet at Re = 911, L0/D = 10, H/D = 30 provides a thermal resistance of 2.5K/W at the same power consumption.

  6. Jet-ISM Interaction in the Radio Galaxy 3C 293: Jet-driven Shocks Heat ISM to Power X-Ray and Molecular H2 Emission

    NASA Astrophysics Data System (ADS)

    Lanz, L.; Ogle, P. M.; Evans, D.; Appleton, P. N.; Guillard, P.; Emonts, B.

    2015-03-01

    We present a 70 ks Chandra observation of the radio galaxy 3C 293. This galaxy belongs to the class of molecular hydrogen emission galaxies (MOHEGs) that have very luminous emission from warm molecular hydrogen. In radio galaxies, the molecular gas appears to be heated by jet-driven shocks, but exactly how this mechanism works is still poorly understood. With Chandra, we observe X-ray emission from the jets within the host galaxy and along the 100 kpc radio jets. We model the X-ray spectra of the nucleus, the inner jets, and the X-ray features along the extended radio jets. Both the nucleus and the inner jets show evidence of 107 K shock-heated gas. The kinetic power of the jets is more than sufficient to heat the X-ray emitting gas within the host galaxy. The thermal X-ray and warm H2 luminosities of 3C 293 are similar, indicating similar masses of X-ray hot gas and warm molecular gas. This is consistent with a picture where both derive from a multiphase, shocked interstellar medium (ISM). We find that radio-loud MOHEGs that are not brightest cluster galaxies (BCGs), like 3C 293, typically have LH2/LX˜ 1 and MH2/MX˜ 1, whereas MOHEGs that are BCGs have LH2/LX˜ 0.01 and MH2/MX˜ 0.01. The more massive, virialized, hot atmosphere in BCGs overwhelms any direct X-ray emission from current jet-ISM interaction. On the other hand, LH2/LX˜ 1 in the Spiderweb BCG at z = 2, which resides in an unvirialized protocluster and hosts a powerful radio source. Over time, jet-ISM interaction may contribute to the establishment of a hot atmosphere in BCGs and other massive elliptical galaxies.

  7. Analysis of multiple jets in a cross-flow

    NASA Astrophysics Data System (ADS)

    Isaac, K. M.; Schetz, J. A.

    1982-12-01

    The analysis of Campbell and Schetz (1973) is extended to the study of multiple jets in a cross flow, where the interaction of two jets is taken into account by a modification of the drag coefficient that is sensed by each jet. Results show that the rear jet trajectory is significantly modified by the presence of the front one even when the jets are spaced far apart. The analysis is applicable to such phenomena as the exhaust of chimney stack smoke into a wind and the lift jets of a V/STOL aircraft during takeoff or landing in strong winds.

  8. Large eddy simulations of a transcritical round jet submitted to transverse acoustic modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Flesca, M.; CNES DLA, 52 Rue Jacques Hillairet, 75612 Paris Cedex; Schmitt, T.

    This article reports numerical computations of a turbulent round jet of transcritical fluid (low temperature nitrogen injected under high pressure conditions) surrounded by the same fluid at rest under supercritical conditions (high temperature and high pressure) and submitted to transverse acoustic modulations. The numerical framework relies on large eddy simulation in combination with a real-gas description of thermodynamics and transport properties. A stationary acoustic field is obtained by modulating the normal acoustic velocity at the lateral boundaries of the computational domain. This study specifically focuses on the interaction of the jet with the acoustic field to investigate how the roundmore » transcritical jet changes its shape and mixes with the surrounding fluid. Different modulation amplitudes and frequencies are used to sweep a range of conditions. When the acoustic field is established in the domain, the jet length is notably reduced and the jet is flattened in the spanwise direction. Two regimes of oscillation are identified: for low Strouhal numbers a large amplitude motion is observed, while for higher Strouhal numbers the jet oscillates with a small amplitude around the injector axis. The minimum length is obtained for a Strouhal number of 0.3 and the jet length increases with increasing Strouhal numbers after reaching this minimum value. The mechanism of spanwise deformation is shown to be linked with dynamical effects resulting from reduction of the pressure in the transverse direction in relation with increased velocities on the two sides of the jet. A propagative wave is then introduced in the domain leading to similar effects on the jet, except that a bending is also observed in the acoustic propagation direction. A kinematic model, combining hydrodynamic and acoustic contributions, is derived in a second stage to represent the motion of the jet centerline. This model captures details of the numerical simulations quite well. These various results can serve to interpret observations made on more complex flow configurations such as coaxial jets or jet flames formed by coaxial injectors.« less

  9. Hybrid Analysis of Engine Core Noise

    NASA Astrophysics Data System (ADS)

    O'Brien, Jeffrey; Kim, Jeonglae; Ihme, Matthias

    2015-11-01

    Core noise, or the noise generated within an aircraft engine, is becoming an increasing concern for the aviation industry as other noise sources are progressively reduced. The prediction of core noise generation and propagation is especially challenging for computationalists since it involves extensive multiphysics including chemical reaction and moving blades in addition to the aerothermochemical effects of heated jets. In this work, a representative engine flow path is constructed using experimentally verified geometries to simulate the physics of core noise. A combustor, single-stage turbine, nozzle and jet are modeled in separate calculations using appropriate high fidelity techniques including LES, actuator disk theory and Ffowcs-Williams Hawkings surfaces. A one way coupling procedure is developed for passing fluctuations downstream through the flowpath. This method effectively isolates the core noise from other acoustic sources, enables straightforward study of the interaction between core noise and jet exhaust, and allows for simple distinction between direct and indirect noise. The impact of core noise on the farfield jet acoustics is studied extensively and the relative efficiency of different disturbance types and shapes is examined in detail.

  10. Characteristics of a Strongly-Pulsed Non-Premixed Jet Flame in Cross-flow

    NASA Astrophysics Data System (ADS)

    Gamba, Mirko; Clemens, Noel T.; Ezekoye, Ofodike A.

    2006-11-01

    The effects of large-amplitude, high-frequency harmonic forcing of turbulent nonpremixed hydrogen/methane jet flames in cross-flow (JFICF) are investigated experimentally. Flame lengths, penetration lengths, and mixing characteristics are studied using flame luminosity imaging, planar laser Mie scattering visualization and particle image velocimetry. Mean jet Reynolds numbers of 1,600 and 3,250 (peak Re ˜2,500--6,500) with corresponding mean momentum flux ratios, r, of 1.9 and 3.7 (peak r ˜2.6--8.3) are considered. Forcing frequencies of 100 Hz and 300 Hz with amplitudes of ˜60%--300% are investigated. Consistent with previous work, a drastic decrease in flame length and soot emission, an increase in flame penetration and an improved jet fuel/cross-flow air mixing are observed for the larger forcing amplitude cases. Partial pre-mixing induced by near-field reverse flow, near-field vortex/vortex interaction and large-scale stirring, rendered stronger by large forcing amplitudes and frequencies, are thought to play a key role on the observed effects.

  11. Space shuttle orbiter reaction control system jet interaction study

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.

    1975-01-01

    The space shuttle orbiter has forward mounted and rear mounted Reaction Control Systems (RCS) which are used for orbital maneuvering and also provide control during entry and abort maneuvers in the atmosphere. The effects of interaction between the RCS jets and the flow over the vehicle in the atmosphere are studied. Test data obtained in the NASA Langley Research Center 31 inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 is analyzed. The data were obtained with a 0.01 scale force model with aft mounted RCS nozzles mounted on the sting off of the force model balance. The plume simulations were accomplished primarily using air in a cold gas simulation through scaled nozzles, however, various cold gas mixtures of Helium and Argon were also tested. The effect of number of nozzles was tested as were limited tests of combined controls. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter where the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms.

  12. Effects of reaction control system jet simulation on the stability and control characteristics of a 0.015-scale space shuttle orbiter model in the Ames Research Center 3.5-foot hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Dziubala, T. J.; Marroquin, J.; Cleary, J. W.; Mellenthin, J. A.

    1973-01-01

    An experimental investigation was performed in the Ames Research Center 3.5-Foot Hypersonic Wind Tunnel to obtain detailed effects which interactions between the RCS jet flow field and the local orbiter flow field have on orbiter hypersonic stability and control characteristics. Six-component force data were obtained through an angle-of-attack range of 15 to 35 deg with 0 deg angle of sideslip. The test was conducted with yaw, pitch and roll jet simulation at a free-stream Mach number of 10.3. These data simulate two SSV reentry flight conditions at Mach numbers of 28.3 and 10.3. Fuselage base pressures and pressures on the nonmetric RCS pods were obtained in addition to the basic force measurements. Model 42-0 was used for these tests.

  13. Effects of reaction control system jet simulation on the stability and control characteristics of a 0.015 scale space shuttle orbiter model tested in the Langley Research Center unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.; Marroquin, J.

    1974-01-01

    An experimental investigation was performed in the Langley Research Center Unitary Plan Wind Tunnel (Test 0A70) to obtain the detailed effects that RCS jet flow interactions with local orbiter flow field have on supersonic stability and control characteristics of the space shuttle orbiter. Six-component force data were obtained through an angle-of-attack range from 15 to 35 degrees at angles of sideslip of 0, +5, and -5 degrees. The test was conducted with yaw jet simulation at free-stream Mach numbers of 2.5 and 4.6, simulating SSV re-entry flight conditions at these Mach numbers. In addition to the basic force measurements, fuselage base pressures and pressures on the non-metric RCS pods were obtained.

  14. Primary zone dynamics in a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Sullivan, J. P.; Barron, D.; Seal, M.; Morgan, D.; Murthy, S. N. B.

    1989-01-01

    Fluid mechanical investigations simulating the flow in the primary zone of a gas turbine combustor are presented using three generic test rigs: (1) rotating pipe yielding a swirling jet of air; (2) primary zone model with a single swirler and various primary jet configurations, operated with air; and (3) two rectangular models of a (stretched-out) annular combustor with five swirlers in the backwall and with various primary jet configurations, one operated with air and the other with water. Concentration measurements are obtained using laser sheet imaging techniques and velocity measurements using a laser Doppler velocimeter. The results show recirculation zones, intense mixing, instabilities of the interacting jets and the presence of large random vortical motions. The flowfields are shown to exhibit bimodal behavior, have asymmetries despite symmetrical geometry and inlet conditions and display strong jet/swirler and swirler/swirler interactions.

  15. Simulations of AGN jets: magnetic kink instability versus conical shocks

    NASA Astrophysics Data System (ADS)

    Barniol Duran, Rodolfo; Tchekhovskoy, Alexander; Giannios, Dimitrios

    2017-08-01

    Relativistic jets in active galactic nuclei (AGN) convert as much as half of their energy into radiation. To explore the poorly understood processes that are responsible for this conversion, we carry out fully 3D magnetohydrodynamic (MHD) simulations of relativistic magnetized jets. Unlike the standard approach of injecting the jets at large radii, our simulated jets self-consistently form at the source and propagate and accelerate outwards for several orders of magnitude in distance before they interact with the ambient medium. We find that this interaction can trigger strong energy dissipation of two kinds inside the jets, depending on the properties of the ambient medium. Those jets that form in a new outburst and drill a fresh hole through the ambient medium fall victim to a 3D magnetic kink instability and dissipate their energy primarily through magnetic reconnection in the current sheets formed by the instability. On the other hand, those jets that form during repeated cycles of AGN activity and escape through a pre-existing hole in the ambient medium maintain their stability and dissipate their energy primarily at MHD recollimation shocks. In both cases, the dissipation region can be associated with a change in the density profile of the ambient gas. The Bondi radius in AGN jets serves as such a location.

  16. The jet-ISM interactions in IC 5063

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Wagner, Alexander Y.; Bicknell, Geoffrey V.; Morganti, Raffaella; Oosterloo, Tom; Nesvadba, Nicole; Sutherland, Ralph S.

    2018-05-01

    The interstellar medium of the radio galaxy IC 5063 is highly perturbed by an AGN jet expanding in the gaseous disc of the galaxy. We model this interaction with relativistic hydrodynamic simulations and multiphase initial conditions for the interstellar medium and compare the results with recent observations. As the jets flood through the intercloud channels of the disc, they ablate, accelerate, and disperse clouds to velocities exceeding 400 km s-1. Clouds are also destroyed or displaced in bulk from the central regions of the galaxy. Our models with jet powers of 1044 and 1045 erg s-1 are capable of reproducing many of the observed features in the position velocity diagram of IC 5063, and confirm the notion that the jet is responsible for the strongly perturbed gas dynamics seen in the ionized, neutral, and molecular gas phases. In our simulations, we also see strong venting of the jet plasma perpendicular to the disc, which entrains clumps and diffuse filaments into the halo of the galaxy. Our simulations are the first 3D hydrodynamic simulations of the jet and interstellar matter of IC 5063.

  17. Space Flows and Disturbances Due to Bodies in Motion Through the Magnetoplasma

    NASA Astrophysics Data System (ADS)

    Ponomarjov, Maxim G.

    2000-10-01

    In this paper a method is concerned which makes it possible to describe numerically and analytically the most famous structures in the non-equilibrium ionosphere, such as stratified and yacht sail like structures, flute jets, wakes and clouds. These problems are of practical interest in space sciences, astrophysics and in turbulence theory, and also of fundamental interest since they enable one to concentrate on the effects of the ambient electric and magnetic fields. Disturbances of charged particle flows due to the ambient flow interactions with bodies are simulated with taking into account the ambient magnetic field effect. The effects of interactions between solid surfaces and the flows was simulated by making use of an original image method. The flow disturbances were described by the Boltzmann equation. In the case of the ambient homogeneous magnetic field the Boltzmann equation is solved analytically. The case of diffuse reflection of particles by surface is considered in detail. The disturbances of charged particle concentration are calculated in 3D space. The contours of constant particle concentration obtained from numerical simulations illustrate the dynamics of developing stratifications and flute structures in charged particle jets and wakes under the ambient magnetic field effect. The basic goal of this paper is to present the method and to demonstate its possibility for simulations of turbulence, plasma jets, wakes and clouds in the ionosphere and Space when effects of electric and magnetic fields are taken into account.

  18. Chandra enables study of x-ray jets

    PubMed Central

    Schwartz, Daniel

    2010-01-01

    The exquisite angular resolution of the Chandra x-ray telescope has enabled the detection and study of resolved x-ray jets in a wide variety of astronomical systems. Chandra has detected extended jets in our galaxy from protostars, symbiotic binaries, neutron star pulsars, black hole binaries, extragalactic jets in radio sources, and quasars. The x-ray data play an essential role in deducing the emission mechanism of the jets, in revealing the interaction of jets with the intergalactic or intracluster media, and in studying the energy generation budget of black holes. PMID:20378839

  19. Radio Emission from Three-dimensional Relativistic Hydrodynamic Jets: Observational Evidence of Jet Stratification

    NASA Astrophysics Data System (ADS)

    Aloy, Miguel-Angel; Gómez, José-Luis; Ibáñez, José-María; Martí, José-María; Müller, Ewald

    2000-01-01

    We present the first radio emission simulations from high-resolution three-dimensional relativistic hydrodynamic jets; these simulations allow us to study the observational implications of the interaction between the jet and the external medium. This interaction gives rise to a stratification of the jet in which a fast spine is surrounded by a slow high-energy shear layer. The stratification (in particular, the large specific internal energy and slow flow in the shear layer) largely determines the emission from the jet. If the magnetic field in the shear layer becomes helical (e.g., resulting from an initial toroidal field and an aligned field component generated by shear), the emission shows a cross section asymmetry, in which either the top or the bottom of the jet dominates the emission. This, as well as limb or spine brightening, is a function of the viewing angle and flow velocity, and the top/bottom jet emission predominance can be reversed if the jet changes direction with respect to the observer or if it presents a change in velocity. The asymmetry is more prominent in the polarized flux because of field cancellation (or amplification) along the line of sight. Recent observations of jet cross section emission asymmetries in the blazar 1055+018 can be explained by assuming the existence of a shear layer with a helical magnetic field.

  20. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells

    PubMed Central

    Kim, Sun Ja; Chung, T. H.

    2016-01-01

    Cold atmospheric helium plasma jets were fabricated and utilized for plasma–cell interactions. The effect of operating parameters and jet design on the generation of specific reactive oxygen and nitrogen species (RONS) within cells and cellular response were investigated. It was found that plasma treatment induced the overproduction of RONS in various cancer cell lines selectively. The plasma under a relatively low applied voltage induced the detachment of cells, a reduction in cell viability, and apoptosis, while the plasma under higher applied voltage led to cellular necrosis in our case. To determine whether plasma-induced reactive oxygen species (ROS) generation occurs through interfering with mitochondria-related cellular response, we examined the plasma effects on ROS generation in both parental A549 cells and A549 ρ0 cells. It was observed that cancer cells were more susceptible to plasma-induced RONS (especially nitric oxide (NO) and nitrogen dioxide (NO2−) radicals) than normal cells, and consequently, plasma induced apoptotic cell responses mainly in cancer cells. PMID:26838306

  1. Magnetosheath jets: MMS observations of internal structures and jet interactions with ambient plasma

    NASA Astrophysics Data System (ADS)

    Plaschke, F.; Karlsson, T.; Hietala, H.; Archer, M. O.; Voros, Z.; Nakamura, R.; Magnes, W.; Baumjohann, W.; Torbert, R. B.; Russell, C. T.; Giles, B. L.

    2017-12-01

    The dayside magnetosheath downstream of the quasi-parallel bow shock is commonly permeated by high-speed jets. Under low IMF cone angle conditions, large scale jets alone (with cross-sectional diameters of over 2 Earth radii) have been found to impact the subsolar magnetopause once every 6 minutes - smaller scale jets occurring much more frequently. The consequences of jet impacts on the magnetopause can be significant: they may trigger local reconnection and waves, alter radiation belt electron drift paths, disturb the geomagnetic field, and potentially generate diffuse throat aurora at the dayside ionosphere. Although some basic statistical properties of jets are well-established, their internal structure and interactions with the surrounding magnetosheath plasma are rather unknown. We present Magnetospheric Multiscale (MMS) observations which reveal a rich jet-internal structure of high-amplitude plasma moment and magnetic field variations and associated currents. These variations/structures are generally found to be in thermal and magnetic pressure balance; they mostly (but not always) convect with the plasma flow. Small velocity differences between plasma and structures are revealed via four-spacecraft timing analysis. Inside a jet core region, where the plasma velocity maximizes, structures are found to propagate forward (i.e., with the jet), whereas backward propagation is found outside that core region. Although super-magnetosonic flows are detected by MMS in the spacecraft frame of reference, no fast shock is seen as the jet plasma is sub-magnetosonic with respect to the ambient magnetosheath plasma. Instead, the fast jet plasma pushes ambient magnetosheath plasma ahead of the jet out of the way, possibly generating anomalous sunward flows in the vicinity, and modifies the magnetic field aligning it with the direction of jet propagation.

  2. Clouds and the extratropical circulation response to global warming in a hierarchy of global atmosphere models

    NASA Astrophysics Data System (ADS)

    Voigt, A.

    2017-12-01

    Climate models project that global warming will lead to substantial changes in extratropical jet streams. Yet, many quantitative aspects of warming-induced jet stream changes remain uncertain, and recent work has indicated an important role of clouds and their radiative interactions. Here, I will investigate how cloud-radiative changes impact the zonal-mean extratropical circulation response under global warming using a hierarchy of global atmosphere models. I will first focus on aquaplanet setups with prescribed sea-surface temperatures (SSTs), which reproduce the model spread found in realistic simulations with interactive SSTs. Simulations with two CMIP5 models MPI-ESM and IPSL-CM5A and prescribed clouds show that half of the circulation response can be attributed to cloud changes. The rise of tropical high-level clouds and the upward and poleward movement of midlatitude high-level clouds lead to poleward jet shifts. High-latitude low-level cloud changes shift the jet poleward in one model but not in the other. The impact of clouds on the jet operates via the atmospheric radiative forcing that is created by the cloud changes and is qualitatively reproduced in a dry Held-Suarez model, although the latter is too sensitive because of its simplified treatment of diabatic processes. I will then show that the aquaplanet results also hold when the models are used in a realistic setup that includes continents and seasonality. I will further juxtapose these prescribed-SST simulations with interactive-SST simulations and show that atmospheric and surface cloud-radiative interactions impact the jet poleward jet shifts in about equal measure. Finally, I will discuss the cloud impact on regional and seasonal circulation changes.

  3. Thermal Investigation of Interaction between High-power CW-laser Radiation and a Water-jet

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Janssen, Henning; Eckert, Markus; Schmidt, Florian

    The technology of a water guided laser beam has been industrially established for micro machining. Pulsed laser radiation is guided via a water jet (diameter: 25-250 μm) using total internal reflection. Due to the cylindrical jet shape the depth of field increases to above 50 mm, enabling parallel kerfs compared to conventional laser systems. However higher material thicknesses and macro geometries cannot be machined economically viable due to low average laser powers. Fraunhofer IPT has successfully combined a high-power continuous-wave (CW) fiber laser (6 kW) and water jet technology. The main challenge of guiding high-power laser radiation in water is the energy transferred to the jet by absorption, decreasing its stability. A model of laser water interaction in the water jet has been developed and validated experimentally. Based on the results an upscaling of system technology to 30 kW is discussed, enabling a high potential in cutting challenging materials at high qualities and high speeds.

  4. Investigating the Feedback Path in a Jet-Surface Resonant Interaction

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Fagan, A. F.; Bridges, J. E.; Brown, C. A.

    2015-01-01

    A resonant interaction between an 8:1 aspect ratio rectangular jet and flat-plates, placed parallel to the jet, is studied experimentally. For certain locations of the plate relative to the jet, the resonance takes place with a loud accompanying tone. The sound pressure level spectra are often marked by multiple peaks. The frequencies of the spectral peaks are studied as a function of the streamwise length of the plate, its relative location to the jet as well as the jet Mach number. It is demonstrated that the tones are not due to a simple feedback between the plate's trailing edge and the nozzle's exit; the leading edge of the plate also comes into play in the frequency selection. With parametric variation, it is found that there is an order in the most energetic spectral peaks; their frequencies cluster in distinct bands. The 'fundamental', i.e., the lowest frequency band is explained by an acoustic feedback involving diffraction at the plate's leading edge.

  5. Flow of supersonic jets across flat plates: Implications for ground-level flow from volcanic blasts

    NASA Astrophysics Data System (ADS)

    Orescanin, Mara M.; Prisco, David; Austin, Joanna M.; Kieffer, Susan W.

    2014-04-01

    We report on laboratory experiments examining the interaction of a jet from an overpressurized reservoir with a canonical ground surface to simulate lateral blasts at volcanoes such as the 1980 blast at Mount St. Helens. These benchmark experiments test the application of supersonic jet models to simulate the flow of volcanic jets over a lateral topography. The internal shock structure of the free jet is modified such that the Mach disk shock is elevated above the surface. In elevation view, the width of the shock is reduced in comparison with a free jet, while in map view the dimensions are comparable. The distance of the Mach disk shock from the vent is in good agreement with free jet data and can be predicted with existing theory. The internal shock structures can interact with and penetrate the boundary layer. In the shock-boundary layer interaction, an oblique shock foot is present in the schlieren images and a distinctive ground signature is evident in surface measurements. The location of the oblique shock foot and the surface demarcation are closely correlated with the Mach disk shock location during reservoir depletion, and therefore, estimates of a ground signature in a zone devastated by a blast can be based on the calculated shock location from free jet theory. These experiments, combined with scaling arguments, suggest that the imprint of the Mach disk shock on the ground should be within the range of 4-9 km at Mount St. Helens depending on assumed reservoir pressure and vent dimensions.

  6. Evidence for x -dependent proton color fluctuations in p A collisions at the CERN Large Hadron Collider

    DOE PAGES

    Alvioli, M.; Cole, B. A.; Frankfurt, L.; ...

    2016-01-21

    The centrality dependence of forward jet production in pA collisions at the Large Hadron Collider (LHC) has been found to grossly violate the Glauber model prediction in a way that depends on the x in the proton. In this paper, we argue that this modification pattern provides the first experimental evidence for x-dependent proton color fluctuation effects. On average, parton configurations in the projectile proton containing a parton with large x interact with a nuclear target with a significantly smaller than average cross section and have smaller than average size. We implement the effects of fluctuations of the interaction strengthmore » and, using the ATLAS analysis of how hadron production at backward rapidities depends on the number of wounded nucleons, make quantitative predictions for the centrality dependence of the jet production rate as a function of the x-dependent interaction strength σ(x). We find that σ(x) ~ 0.6(σ) gives a good description of the data at x = 0.6. Finally, these findings support an explanation of the European Muon Collaboration effect as arising from the suppression of small-size nucleon configurations in the nucleus.« less

  7. Identification of Spey engine dynamics in the augmentor wing jet STOL research aircraft from flight data

    NASA Technical Reports Server (NTRS)

    Dehoff, R. L.; Reed, W. B.; Trankle, T. L.

    1977-01-01

    The development and validation of a spey engine model is described. An analysis of the dynamical interactions involved in the propulsion unit is presented. The model was reduced to contain only significant effects, and was used, in conjunction with flight data obtained from an augmentor wing jet STOL research aircraft, to develop initial estimates of parameters in the system. The theoretical background employed in estimating the parameters is outlined. The software package developed for processing the flight data is described. Results are summarized.

  8. A Theoretical Basis for the Scaling Law of Broadband Shock Noise Intensity in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2011-01-01

    A theoretical basis for the scaling of broadband shock noise intensity In supersonic jets was formulated considering linear shock-shear wave interaction. Modeling of broadband shock noise with the aid of shock-turbulence interaction with special reference to linear theories is briefly reviewed. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process with the noise generation contribution from off-peak incident angles being relatively unimportant. The proposed hypothesis satisfactorily explains the well-known scaling law for the broadband shock-associated noise in supersonic jets.

  9. Thruster Plume Plasma Diagnostics: A Ground Chamber Experiment for a 2-Kilowatt Arcjet

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel T.; Vayner, Boris V.; Hillard, G. Barry; Chornak, Michael T.

    2005-01-01

    Although detailed near field (0 to 3 cm) information regarding the exhaust plume of a two kilowatt arc jet is available (refs. 1 to 6), there is virtually little or no information (outside of theoretical extrapolations) available concerning the far field (2.6 to 6.1 m). Furthermore real information about the plasma at distances between (3 to 6 m) is of critical importance to high technology satellite companies in understanding the effect of arc jet plume exhausts on space based power systems. It is therefore of utmost importance that one understands the exact nature of the interaction between the arc jet plume, the spacecraft power system and the surrounding electrical plasma environment. A good first step in understanding the nature of the interactions lies in making the needed plume parameter measurements in the far field. All diagnostic measurements are performed inside a large vacuum system (12 m diameter by 18 m high) with a full scale arc jet and solar array panel in the required flight configuration geometry. Thus, necessary information regarding the plume plasma parameters in the far field is obtained. Measurements of the floating potential, the plasma potential, the electron temperature, number density, density distribution, debye length, and plasma frequency are obtained at various locations about the array (at vertical distances from the arc jet nozzle: 2.6, 2.7, 2.8, 3.2, 3.6, 4.0, 4.9, 5.0, 5.4, 5.75, and 6.14 m). Plasma diagnostic parameters are measured for both the floating and grounded configurations of the arc jet anode and array. Spectroscopic optical measurements are then acquired in close proximity to the nozzle, and contamination measurements are made in the vicinity of the array utilizing a mass spectrometer and two Quartz Crystal Microbalances (QCM's).

  10. Fluid-Structure Interactions with Flexible and Rigid Bodies

    NASA Astrophysics Data System (ADS)

    Daily, David Jesse

    Fluid structure interactions occur to some extent in nearly every type of fluid flow. Understanding how structures interact with fluids and visa-versa is of vital importance in many engineering applications. The purpose of this research is to explore how fluids interact with flexible and rigid structures. A computational model was used to model the fluid structure interactions of vibrating synthetic vocal folds. The model simulated the coupling of the fluid and solid domains using a fluid-structure interface boundary condition. The fluid domain used a slightly compressible flow solver to allow for the possibility of acoustic coupling with the subglottal geometry and vibration of the vocal fold model. As the subglottis lengthened, the frequency of vibration decreased until a new acoustic mode could form in the subglottis. Synthetic aperture particle image velocimetry (SAPIV) is a three-dimensional particle tracking technique. SAPIV was used to image the jet of air that emerges from vibrating human vocal folds (glottal jet) during phonation. The three-dimensional reconstruction of the glottal jet found faint evidence of flow characteristics seen in previous research, such as axis-switching, but did not have sufficient resolution to detect small features. SAPIV was further applied to reconstruct the smaller flow characteristics of the glottal jet of vibrating synthetic vocal folds. Two- and four-layer synthetic vocal fold models were used to determine how the glottal jet from the synthetic models compared to the glottal jet from excised human vocal folds. The two- and four-layer models clearly exhibited axis-switching which has been seen in other 3D analyses of the glottal jet. Cavitation in a quiescent fluid can break a rigid structure such as a glass bottle. A new cavitation number was derived to include acceleration and pressure head at cavitation onset. A cavitation stick was used to validate the cavitation number by filling it with different depths and hitting the stick to cause fluid cavitation. Acceleration was measured using an accelerometer and cavitation bubbles were detected using a high-speed camera. Cavitation in an accelerating fluid occurred at a cavitation number of 1. Keywords: Fluid structure interaction, vocal folds, acoustics, SAPIV, cavitation, slightly compressible

  11. Unsteady Aerodynamic Flow Control of Moving Platforms

    DTIC Science & Technology

    2014-05-29

    aerodynamic forces and moments effected by fluidic actuation on the flow boundaries of stationary and moving platforms. Aerodynamic forces and...Control is effected fluidically by interactions of azimuthally- and streamwise-segmented individually-addressable synthetic jet actuators with...fundamental flow mechanisms that are associated with transitory aerodynamic forces and moments effected by fluidic actuation on the flow boundaries of

  12. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  13. Secondary Flows and Sediment Transport due to Wave - Current Interaction

    NASA Astrophysics Data System (ADS)

    Ismail, Nabil; Wiegel, Robert

    2015-04-01

    Objectives: The main purpose of this study is to determine the modifications of coastal processes driven by wave-current interaction and thus to confirm hydrodynamic mechanisms associated with the interaction at river mouths and tidal inlets where anthropogenic impacts were introduced. Further, the aim of the work has been to characterize the effect of the relative strength of momentum action of waves to the opposing current on the nearshore circulation where river flow was previously effective to entrain sediments along the shoreline. Such analytical information are useful to provide guidelines for sustainable design of coastal defense structures. Methodology and Analysis: Use is made of an earlier study reported by the authors (1983) on the interaction of horizontal momentum jets and opposing shallow water waves at shorelines, and of an unpublished laboratory study (1980). The turbulent horizontal discharge was shore-normal, directed offshore, and the incident wave direction was shore-normal, travelling toward shore. Flow visualization at the smooth bottom and the water surface, velocity and water surface elevation measurements were made. Results were obtained for wave , current modifications as well as the flow pattern in the jet and the induced circulation on both sides of the jet, for a range of wave and jet characteristics. The experimental data, obtained from measurement in the 3-D laboratory basin, showed several distinct flow pattern regimes on the bottom and the water surface. The observed flow circulation regimes were found to depend on the ratio of the wave momentum action on the jet to the jet initial momentum. Based on the time and length scales of wave and current parameters and using the time average of the depth integrated conservation equations, it is found that the relative strength of the wave action on the jet could be represented by a dimensionless expression; Rsm ( ) 12ρSa20g-L0h-Cg- 2 Rsm ≈ (C0 - U) /ρ0U w (1) In the above dimensionless expression, ρs is the seawater mass density, ρ is the river current mass density, a0 is the deep water wave amplitude, g is the acceleration of gravity, Cg is the wave group velocity, L is the deep water wave length, h is the average water depth near the river mouth, C0 is the deep water wave phase velocity, U is the average jet exit velocity and w is the river or the tidal inlet effective width. The values of the above number were found to be in the range between 1.0 and 6.0-8.0 for the examined laboratory and field case studies for non-buoyant jets. Upper bound corresponds to cases of higher wave activity on the coast while the lower bound corresponds to cases of tidal currents with minimum wave activity, Coastal Processes Modifications due to River and Ebb Current Interaction with Opposing Waves: Confirmation of the obtained theoretical expression was obtained by comparison against field data for shoreline variability at river mouths and the formation of accretion shoals and erosion spots at tidal inlets and ocean outfalls in the USA and the Nile delta coastline. The predicted extent of the coast reshaping process, due to shoreline erosion and subsequent accretion, due to the absence of the river Nile current after 1965, east of the Rosetta headland, was determined. The obtained shoreline erosion spatial extent using the above correlation showed that the long term length of coastline recession would be in the neighborhood of 16-20 km east of Rosetta headland (1990-2014). Such results were further confirmed by the recent satellite data (Ghoneim, et al, 2015). The results of the present work were well compared to the data on Fort Pierce Inlet, Florida, where severe erosion is known to exist on both sides of the inlet (Joshi, 1983). The current results are qualitatively in parallel to that obtained recently by the numerical model Delft3D coupled with the wave model SWAN ( Nardin, et al, 2013) on wave- current interaction at river mouths and the formation of mouth bars. Further analyses were also conducted to test the validity of the derived expression to the cases of wave interaction with buoyant currents in shallow waters. The buoyant jets represent the thermal discharges from power plants on coastlines of Diablo Canyon cove in CA at the Pacific Ocean (Ismail, et al,1988) and at the northern coast of Egypt at Al-Arish. The comparison showed higher values range of Rsm for the cases of buoyant jets. References: Ghoneim, E., Mashaly , J., Gamble, D., Halls, J., and AbuBakr, M. (2015). "Nile Delta Exhibited a Spatial Reversal in the Rates of Shoreline Retreat on the Rosetta Promontory; comparing pre- and post-beach protection", Geomorphology, 228,1-14. Ismail, N. (2007). "Reynolds Stresses and Velocity Distributions in a Wave-Current Coexisting Environment', Discussion, J. Waterway, Port, Coastal, and Ocean Engineering,10.1061/(ASCE)0733-950X(2007)133:2(168),168-170. Ismail, N.M., Wiegel, R.L., Ryan, P.J., and Tu, S. W. (1988). "Mixing of Thermal Discharges in Coastal Waters" , 21 st International Conference on Coastal Engineering, ASCE, Malaga, Spain, 2521-2535. Ismail, N. (1984). "Wave-Current Models for Design of Marine Structures" , Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 110, No. 4, 432-447. Ismail, N.M. and Wiegel, R.L. (1983). "Opposing Waves Effect on Momentum Jets Spreading Rate", J. Waterways, Port, Coastal and Ocean Division, Proc., ASCE, vol. 109, No.4, 465-483. Joshi, P. and Taylor, R. (1983). 'Circulation Induced by Tidal Jets.' J. Waterway, Port, Coastal, Ocean Eng., 109(4), 445-464. Nardin, W., Mariotti, G., Edmonds, D., Guercio, R., and Fagherazzi, S. (2013). "Growth of River Mouth Bars in Sheltered Bays in the Presence of Frontal Waves." Journal of Geophysical Research: Earth Surface,10, 872-886.

  14. RF Sheath-Enhanced Plasma Surface Interaction Studies using Beryllium Optical Emission Spectroscopy in JET ITER-Like Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarici, G.; Klepper, C Christopher; Colas, L.

    A dedicated study on JET-ILW, deploying two types of ICRH antennas and spectroscopic observation spots at two outboard, beryllium limiters, has provided insight on long-range (up to 6m) RFenhanced plasma-surface interactions (RF-PSI) due to near-antenna electric fields. To aid in the interpretation of optical emission measurements of these effects, the antenna near-fields are computed using the TOPICA code, specifically run for the ITER-like antenna (ILA); similar modelling already existed for the standard JET antennas (A2). In the experiment, both antennas were operated in current drive mode, as RF-PSI tends to be higher in this phasing and at similar power (∼0.5more » MW). When sweeping the edge magnetic field pitch angle, peaked RF-PSI effects, in the form of 2-4 fold increase in the local Be source,are consistently measured with the observation spots magnetically connect to regions of TOPICAL-calculated high near-fields, particularly at the near-antenna limiters. It is also found that similar RF-PSI effects are produced by the two types of antenna on similarly distant limiters. Although this mapping of calculated near-fields to enhanced RF-PSI gives only qualitative interpretion of the data, the present dataset is expected to provide a sound experimental basis for emerging RF sheath simulation model validation.« less

  15. Flaperon Modification Effect on Jet-Flap Interaction Noise Reduction for Chevron Nozzles

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Mengle, Vinod G.; Stoker, Robert W.; Brusniak, Leon; Elkoby, Ronen

    2007-01-01

    Jet-flap interaction (JFI) noise can become an important component of far field noise when a flap is immersed in the engine propulsive stream or is in its entrained region, as in approach conditions for under-the-wing engine configurations. We experimentally study the effect of modifying the flaperon, which is a high speed aileron between the inboard and outboard flaps, at both approach and take-off conditions using scaled models in a free jet. The flaperon modifications were of two types: sawtooth trailing edge and mini vortex generators (vg s). Parametric variations of these two concepts were tested with a round coaxial nozzle and an advanced chevron nozzle, with azimuthally varying fan chevrons, using both far field microphone arrays and phased microphone arrays for source diagnostics purposes. In general, the phased array results corroborated the far field results in the upstream quadrant pointing to JFI near the flaperon trailing edge as the origin of the far field noise changes. Specific sawtooth trailing edges in conjunction with the round nozzle gave marginal reduction in JFI noise at approach, and parallel co-rotating mini-vg s were somewhat more beneficial over a wider range of angles, but both concepts were noisier at take-off conditions. These two concepts had generally an adverse JFI effect when used in conjunction with the advanced chevron nozzle at both approach and take-off conditions.

  16. Exposure to low levels of jet-propulsion fuel impairs brainstem encoding of stimulus intensity.

    PubMed

    Guthrie, O'neil W; Xu, Helen; Wong, Brian A; McInturf, Shawn M; Reboulet, Jim E; Ortiz, Pedro A; Mattie, David R

    2014-01-01

    Jet propulsion fuel-8 (JP-8) is a kerosene-based fuel that is used in military jets. The U.S. Armed Services and North Atlantic Treaty Organization countries adopted JP-8 as a standard fuel source and the U.S. military alone consumes more than 2.5 billion gallons annually. Preliminary epidemiologic data suggested that JP-8 may interact with noise to induce hearing loss, and animal studies revealed damage to presynaptic sensory cells in the cochlea. In the current study, Long-Evans rats were divided into four experimental groups: control, noise only, JP-8 only, and JP-8 + noise. A subototoxic level of JP-8 was used alone or in combination with a nondamaging level of noise. Functional and structural assays of the presynaptic sensory cells combined with neurophysiologic studies of the cochlear nerve revealed that peripheral auditory function was not affected by individual exposures and there was no effect when the exposures were combined. However, the central auditory nervous system exhibited impaired brainstem encoding of stimulus intensity. These findings may represent important and major shifts in the theoretical framework that governs current understanding of jet fuel and/or jet fuel + noise-induced ototoxicity. From an epidemiologic perspective, results indicate that jet fuel exposure may exert consequences on auditory function that may be more widespread and insidious than what was previously shown. It is possible that a large population of military personnel who are suffering from the effects of jet fuel exposure may be misidentified because they would exhibit normal hearing thresholds but harbor a "hidden" brainstem dysfunction.

  17. On the Scaling Law for Broadband Shock Noise Intensity in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kanudula, Max

    2009-01-01

    A theoretical model for the scaling of broadband shock noise intensity in supersonic jets was formulated on the basis of linear shock-shear wave interaction. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process rather than the noise generation contribution from off-peak incident angles. The proposed theory satisfactorily explains the well-known scaling law for the broadband shock -associated noise in supersonic jets.

  18. Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change

    NASA Technical Reports Server (NTRS)

    Goekcen, Tahir; Chen, Yih-Kanq; Skokova, Kristina A.; Milos, Frank S.

    2010-01-01

    Coupled fluid-material response analyses of arc-jet wedge ablation tests conducted in a NASA Ames arc-jet facility are considered. These tests were conducted using blunt wedge models placed in a free jet downstream of the 6-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles undergoing shape change, the material response and fluid analyses are coupled in order to calculate the time dependent surface heating and pressure distributions that result from shape change. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator. Effects of the test article shape change on fluid and material response simulations are demonstrated, and computational predictions of surface recession, shape change, and in-depth temperatures are compared with the experimental measurements.

  19. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet: THEMIS and ground-based observations

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. V.; Suvorova, A. V.

    2012-08-01

    Here, we present a case study of THEMIS and ground-based observations of the perturbed dayside magnetopause and the geomagnetic field in relation to the interaction of an interplanetary directional discontinuity (DD) with the magnetosphere on 16 June 2007. The interaction resulted in a large-scale local magnetopause distortion of an "expansion - compression - expansion" (ECE) sequence that lasted for ˜15 min. The compression was caused by a very dense, cold, and fast high-βmagnetosheath plasma flow, a so-called plasma jet, whose kinetic energy was approximately three times higher than the energy of the incident solar wind. The plasma jet resulted in the effective penetration of magnetosheath plasma inside the magnetosphere. A strong distortion of the Chapman-Ferraro current in the ECE sequence generated a tripolar magnetic pulse "decrease - peak- decrease" (DPD) that was observed at low and middle latitudes by some ground-based magnetometers of the INTERMAGNET network. The characteristics of the ECE sequence and the spatial-temporal dynamics of the DPD pulse were found to be very different from any reported patterns of DD interactions with the magnetosphere. The observed features only partially resembled structures such as FTE, hot flow anomalies, and transient density events. Thus, it is difficult to explain them in the context of existing models.

  20. Experimental and data analysis techniques for deducing collision-induced forces from photographic histories of engine rotor fragment impact/interaction with a containment ring

    NASA Technical Reports Server (NTRS)

    Yeghiayan, R. P.; Leech, J. W.; Witmer, E. A.

    1973-01-01

    An analysis method termed TEJ-JET is described whereby measured transient elastic and inelastic deformations of an engine-rotor fragment-impacted structural ring are analyzed to deduce the transient external forces experienced by that ring as a result of fragment impact and interaction with the ring. Although the theoretical feasibility of the TEJ-JET concept was established, its practical feasibility when utilizing experimental measurements of limited precision and accuracy remains to be established. The experimental equipment and the techniques (high-speed motion photography) employed to measure the transient deformations of fragment-impacted rings are described. Sources of error and data uncertainties are identified. Techniques employed to reduce data reading uncertainties and to correct the data for optical-distortion effects are discussed. These procedures, including spatial smoothing of the deformed ring shape by Fourier series and timewise smoothing by Gram polynomials, are applied illustratively to recent measurements involving the impact of a single T58 turbine rotor blade against an aluminum containment ring. Plausible predictions of the fragment-ring impact/interaction forces are obtained by one branch of this TEJ-JET method; however, a second branch of this method, which provides an independent estimate of these forces, remains to be evaluated.

  1. Numerical investigation of the effect of the configuration of ExoMars landing platform propulsion system on the interaction of supersonic jets with the surface of Mars

    NASA Astrophysics Data System (ADS)

    Kagenov, Anuar; Glazunov, Anatoliy; Kostyushin, Kirill; Eremin, Ivan; Shuvarikov, Vladimir

    2017-10-01

    This paper presents the results of numerical investigations of the interaction with the Mars surface of four supersonic jets of ExoMars landing platform propulsion system. The cases of impingement of supersonic jets on a curved surface are considered depending on the values of propulsion system thrust. According to the results of numerical studies are obtained the values of normal stresses on the surface of Mars at altitudes of 1.0, 0.5 and 0.3 meter to the surface of the landing. To define the occurring shear stresses Mohr-Coulomb theory was used. The maximum values of shear stresses were defined for the following types of soil of Mars: drift material, crusty to cloddy material, blocky material, sand and Mojave Mars simulant. The conducted evaluations showed, regardless of the propulsion system configuration, that when the final stage of the controlled landing of the ExoMars landing platform, the erosion of the Mars regolith would be insignificant. The estimates are consistent with the available data from previous Mars missions.

  2. Resonant Interaction of a Rectangular Jet with a Flat-Plate

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Fagan, A. F.; Clem, M. M.; Brown, C. A.

    2014-01-01

    A resonant interaction between a large aspect ratio rectangular jet and a flat-plate is addressed in this experimental study. The plate is placed parallel to but away from the direct path of the jet. At high subsonic conditions and for certain relative locations of the plate, the resonance accompanied by an audible tone is encountered. The trends of the tone frequency variation exhibit some similarities to, but also marked differences from, corresponding trends of the well-known edge-tone phenomenon. Under the resonant condition flow visualization indicates a periodic flapping motion of the jet column. Phase-averaged Mach number data obtained near the plate's trailing edge illustrate that the jet cross-section goes through large contortions within the period of the tone. Farther downstream a clear 'axis switching' takes place. These results suggest that the assumption of two-dimensionality should be viewed with caution in any analysis of the flow.

  3. Investigating the Feedback Path in a Jet-Surface Resonant Interaction

    NASA Technical Reports Server (NTRS)

    Zaman, Khairul; Fagan, Amy; Bridges, James; Brown, Cliff

    2015-01-01

    A resonant interaction between an 8:1 aspect ratio rectangular jet and flat-plates, placed parallel to the jet, is addressed in this study. For certain relative locations of the plates, the resonance takes place with accompanying audible tones. Even when the tone is not audible the sound pressure level spectra is often marked by conspicuous peaks. The frequencies of the spectral peaks, as functions of the streamwise length of the plate and its relative location to the jet as well as the jet Mach number, are explored in an effort of understand the flow mechanism. It is demonstrated that the tones are not due to a simple feedback between the plates trailing edge and the nozzle exit; the leading edge also comes into play in determining the frequency. An acoustic feedback path, involving diffraction from the leading edge, appears to explain the frequencies of some of the spectral peaks.

  4. Successive Two-sided Loop Jets Caused by Magnetic Reconnection between Two Adjacent Filamentary Threads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Zhanjun; Liu, Yu; Shen, Yuandeng

    We present observational analysis of two successive two-sided loop jets observed by the ground-based New Vacuum Solar Telescope and the space-borne Solar Dynamics Observatory . The two successive two-sided loop jets manifested similar evolution processes and both were associated with the interaction of two small-scale adjacent filamentary threads, magnetic emerging, and cancellation processes at the jet’s source region. High temporal and high spatial resolution observations reveal that the two adjacent ends of the two filamentary threads are rooted in opposite magnetic polarities within the source region. The two threads approached each other, and then an obvious brightening patch is observedmore » at the interaction position. Subsequently, a pair of hot plasma ejections are observed heading in opposite directions along the paths of the two filamentary threads at a typical speed for two-sided loop jets of the order 150 km s{sup −1}. Close to the end of the second jet, we report the formation of a bright hot loop structure at the source region, which suggests the formation of new loops during the interaction. Based on the observational results, we propose that the observed two-sided loop jets are caused by magnetic reconnection between the two adjacent filamentary threads, largely different from the previous scenario that a two-sided loop jet is generated by magnetic reconnection between an emerging bipole and the overlying horizontal magnetic fields.« less

  5. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations, phase 1

    NASA Technical Reports Server (NTRS)

    Mraz, M. R.; Hiley, P. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to present two different test techniques. One was a coventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a subscale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously.

  6. Jet energy measurement and its systematic uncertainty in proton-proton collisions at TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adye, T.; Aefsky, S.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmad, A.; Ahmadov, F.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. A.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Astbury, A.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernard, C.; Bernat, P.; Bernhard, R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Bittner, B.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, G.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Burckhart, H.; Burdin, S.; Burgess, T.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Caso, C.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Christidi, I. A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Colas, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Courneyea, L.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Crispin Ortuzar, M.; Cristinziani, M.; Crosetti, G.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; De Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliot, F.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Demirkoz, B.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Dwuznik, M.; Ebke, J.; Edson, W.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, J.; Fisher, M. J.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gandrajula, R. P.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giunta, M.; Gjelsten, B. K.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Grybel, K.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haefner, P.; Hageboeck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jeng, G.-Y.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Karnevskiy, M.; Karpov, S. N.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller, J. S.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koenig, S.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Laisne, E.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le, B. T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Lukas, W.; Luminari, L.; Lund, E.; Lundberg, J.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madar, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattmann, J.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mazzanti, M.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Michal, S.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Molfetas, A.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen, D. H.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novakova, J.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petteni, M.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pizio, C.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinsch, A.; Reisin, H.; Reisinger, I.; Relich, M.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schroer, N.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherwood, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snow, J.; Snyder, S.; Sobie, R.; Socher, F.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spighi, R.; Spigo, G.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Stucci, S. A.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Su, D.; Su, J.; Subramania, HS.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Berg, R.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Whittington, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, C.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.

    2015-01-01

    The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of TeV corresponding to an integrated luminosity of . Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti- algorithm with distance parameters or , and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a boson, for and pseudorapidities . The effect of multiple proton-proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region () for jets with . For central jets at lower , the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton-proton collisions and test-beam data, which also provide the estimate for TeV. The calibration of forward jets is derived from dijet balance measurements. The resulting uncertainty reaches its largest value of 6 % for low- jets at . Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5-3 %.

  7. Aeroelastic instability in a jet plate interaction

    NASA Astrophysics Data System (ADS)

    Antoine, Maxime; Hémon, Pascal; de Langre, Emmanuel

    2007-11-01

    A flexible sheet subject to a normal impinging air jet can oscillate. We present a simple experiment that shows that added damping generated by the jet is responsible for this aeroelastic instability. The cases of planar jet and circular jet are studied. A model is presented to describe this instability and the results agree well with the experimental observations. The nozzle geometry is found to be a dominant parameter that drives the critical distance between the jet and the sheet, under which the instability develops. To cite this article: M. Antoine et al., C. R. Mecanique 335 (2007).

  8. Flow interaction experiment. Volume 2: Aerothermal modeling, phase 2

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Sullivan, J. P.; Murthy, S. N. B.

    1993-01-01

    An experimental and computational study is reported for the flow of a turbulent jet discharging into a rectangular enclosure. The experimental configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets are investigated to provide a better understanding of the flow field in an annular combustor. A laser Doppler velocimeter is used to measure mean velocity and Reynolds stress components. Major features of the flow field include recirculation, primary and annular jet interaction, and high turbulence. A significant result from this study is the effect the primary jets have on the flow field. The primary jets are seen to create statistically larger recirculation zones and higher turbulence levels. In addition, a technique called marker nephelometry is used to provide mean concentration values in the model combustor. Computations are performed using three levels of turbulence closures, namely k-epsilon model, algebraic second moment (ASM), and differential second moment (DSM) closure. Two different numerical schemes are applied. One is the lower-order power-law differencing scheme (PLDS) and the other is the higher-order flux-spline differencing scheme (FSDS). A comparison is made of the performance of these schemes. The numerical results are compared with experimental data. For the cases considered in this study, the FSDS is more accurate than the PLDS. For a prescribed accuracy, the flux-spline scheme requires a far fewer number of grid points. Thus, it has the potential for providing a numerical error-free solution, especially for three-dimensional flows, without requiring an excessively fine grid. Although qualitatively good comparison with data was obtained, the deficiencies regarding the modeled dissipation rate (epsilon) equation, pressure-strain correlation model, and the inlet epsilon profile and other critical closure issues need to be resolved before one can achieve the degree of accuracy required to analytically design combustion systems.

  9. Flow interaction experiment. Volume 1: Aerothermal modeling, phase 2

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Sullivan, J. P.; Murthy, S. N. B.

    1993-01-01

    An experimental and computational study is reported for the flow of a turbulent jet discharging into a rectangular enclosure. The experimental configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets are investigated to provide a better understanding of the flow field in an annular combustor. A laser Doppler velocimeter is used to measure mean velocity and Reynolds stress components. Major features of the flow field include recirculation, primary and annular jet interaction, and high turbulence. A significant result from this study is the effect the primary jets have on the flow field. The primary jets are seen to create statistically larger recirculation zones and higher turbulence levels. In addition, a technique called marker nephelometry is used to provide mean concentration values in the model combustor. Computations are performed using three levels of turbulence closures, namely k-epsilon model, algebraic second moment (ASM), and differential second moment (DSM) closure. Two different numerical schemes are applied. One is the lower-order power-law differencing scheme (PLDS) and the other is the higher-order flux-spline differencing scheme (FSDS). A comparison is made of the performance of these schemes. The numerical results are compared with experimental data. For the cases considered in this study, the FSDS is more accurate than the PLDS. For a prescribed accuracy, the flux-spline scheme requires a far fewer number of grid points. Thus, it has the potential for providing a numerical error-free solution, especially for three-dimensional flows, without requiring an excessively fine grid. Although qualitatively good comparison with data was obtained, the deficiencies regarding the modeled dissipation rate (epsilon) equation, pressure-strain correlation model, and the inlet epsilon profile and other critical closure issues need to be resolved before one can achieve the degree of accuracy required to analytically design combustion systems.

  10. Multiple Parton Interactions in p$$bar{p}$$ Collisions in D0 Experiment at the Tevatron Collider (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovanov, Georgy

    The thesis is devoted to the study of processes with multiple parton interactions (MPI) in a ppbar collision collected by D0 detector at the Fermilab Tevatron collider at sqrt(s) = 1.96 TeV. The study includes measurements of MPI event fraction and effective cross section, a process-independent parameter related to the effective interaction region inside the nucleon. The measurements are done using events with a photon and three hadronic jets in the final state. The measured effective cross section is used to estimate background from MPI for WH production at the Tevatron energy

  11. Fuzzy jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  12. Fuzzy jets

    DOE PAGES

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; ...

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  13. The Trails of Superluminal Jet Components in 3C 111

    NASA Technical Reports Server (NTRS)

    Kadler, M.; Ros, E.; Perucho, M.; Kovalev, Y. Y.; Homan, D. C.; Agudo, I.; Kellermann, K. I.; Aller, M. F.; Aller, H. D.; Lister, M. L.; hide

    2007-01-01

    The parsec-scale radio jet of the broad-line radio galaxy 3C 111 has been monitored since 1995 as part of the 2cm Survey and MOJAVE monitoring observations conducted with the VLBA. Here, we present results from 18 epochs of VLBA observations of 3C 111 and from 18 years of radio flux density monitoring observations conducted at the University of Michigan. A major radio flux-density outburst of 3C 111 occurred in 1996 and was followed by a particularly bright plasma ejection associated with a superluminal jet component. This major event allows us to study a variety of processes associated with outbursts of radio-loud AGN in much greater detail than possible in other cases: the primary perturbation gives rise to the formation of a forward and a backward-shock, which both evolve in characteristically different ways and allow us to draw conclusions about the workflow of jet-production events; the expansion, acceleration and recollimation of the ejected jet plasma in an environment with steep pressure and density gradients are revealed; trailing components are formed in the wake of the primary perturbation as a result of Kelvin- Helmholtz instabilities from the interaction of the jet with the external medium. The jet-medium interaction is further scrutinized by the linear-polarization signature of jet components traveling along the jet and passing a region of steep pressure/density gradients.

  14. ORIGIN OF THE COMPLEX RADIO STRUCTURE IN BAL QSO 1045+352

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunert-Bajraszewska, Magdalena; Gawronski, Marcin P.; Janiuk, Agnieszka

    2010-08-01

    We present new, more sensitive, high-resolution radio observations of a compact broad absorption line (BAL) quasar, 1045+352, made with the EVN+MERLIN at 5 GHz. These observations allowed us to trace the connection between the arcsecond structure and the radio core of the quasar. The radio morphology of 1045+352 is dominated by a knotty jet showing several bends. We discuss possible scenarios that could explain such a complex morphology: galaxy merger, accretion disk instability, precession of the jet, and jet-cloud interactions. It is possible that we are witnessing an ongoing jet precession in this source due to internal instabilities within themore » jet flow; however, a dense environment detected in the submillimeter band and an outflowing material suggested by the X-ray absorption could strongly interact with the jet. It is difficult to establish the orientation between the jet axis and the observer in 1045+352 because of the complex structure. Nevertheless, taking into account the most recent inner radio structure, we conclude that the radio jet is oriented close to the line of sight, which can mean that the opening angle of the accretion disk wind can be large in this source. We also suggest that there is no direct correlation between the jet-observer orientation and the possibility of observing BALs.« less

  15. Inductive and electrostatic acceleration in relativistic jet-plasma interactions.

    PubMed

    Ng, Johnny S T; Noble, Robert J

    2006-03-24

    We report on the observation of rapid particle acceleration in numerical simulations of relativistic jet-plasma interactions and discuss the underlying mechanisms. The dynamics of a charge-neutral, narrow, electron-positron jet propagating through an unmagnetized electron-ion plasma was investigated using a three-dimensional, electromagnetic, particle-in-cell computer code. The interaction excited magnetic filamentation as well as electrostatic plasma instabilities. In some cases, the longitudinal electric fields generated inductively and electrostatically reached the cold plasma-wave-breaking limit, and the longitudinal momentum of about half the positrons increased by 50% with a maximum gain exceeding a factor of 2 during the simulation period. Particle acceleration via these mechanisms occurred when the criteria for Weibel instability were satisfied.

  16. The characteristics of the ground vortex and its effect on the aerodynamics of the STOL configuration

    NASA Technical Reports Server (NTRS)

    Stewart, Vearle R.

    1988-01-01

    The interaction of the free stream velocity on the wall jet formed by the impingement of deflected engine thrust results in a rolled up vortex which exerts sizable forces on a short takeoff (STOL) airplane configuration. Some data suggest that the boundary layer under the free stream ahead of the configuration may be important in determining the extent of the travel of the wall jet into the oncoming stream. Here, early studies of the ground vortex are examined, and those results are compared to some later data obtained with moving a model over a fixed ground board. The effect of the ground vortex on the aerodynamic characteristics are discussed.

  17. Mapping the Interactions between Shocks and Mixing Layers in a 3-Stream Supersonic Jet

    NASA Astrophysics Data System (ADS)

    Lewalle, Jacques; Ruscher, Christopher; Kan, Pinqing; Tenney, Andrew; Gogineni, Sivaram; Kiel, Barry

    2015-11-01

    Pressure is obtained from an LES calculation of the supersonic jet (Ma1 = 1 . 6) issuing from a rectangular nozzle in a low-subsonic co-flow; a tertiary flow, also rectangular with Ma3 = 1 insulates the primary jet from an aft-deck plate. The developing jet exhibits complex three-dimensional interactions between oblique shocks, multiple mixing layers and corner vortices, which collectively act as a skeleton for the flow. Our study is based on several plane sections through the pressure field, with short signals (0.1 s duration at 80 kHz sampling rate). Using wavelet-based band-pass filtering and cross-correlations, we map the directions of propagation of information among the various ``bones'' in the skeleton. In particular, we identify upstream propagation in some frequency bands, 3-dimensional interactions between the various shear layers, and several key bones from which the pressure signals, when taken as reference, provide dramatic phase-locking for parts of the skeleton. We acknowledge the support of AFRL through an SBIR grant.

  18. Flow-structure interaction effects on a jet emanating from a flexible nozzle

    PubMed Central

    Murugappan, S.; Gutmark, E. J.; Lakhamraju, R. R.; Khosla, S.

    2008-01-01

    In recent years, a wide variety of applications have been found for the use of pulsed jets in the area of flow control. The goal of the current study was to identify the flow field and mixing characteristics associated with an incompressible elongated jet emitted from a flexible nozzle. The shape of the nozzle was that of a high aspect ratio jet deforming from a fully opened to a completely closed configuration. The jet was characterized by a pulsatile flow that was self-excited by the motion of the flexible tube. The frequency of excitation was found to be between 150 and 175 Hz and the Strouhal number (nondimensional frequency) varied from 0.17 to 0.45. The jet flow was dominated by vortices that were shed from the nozzle with an axis parallel to the major axis. The vortices in the near field were quasi-two-dimensional so that measurements performed at the center plane represented the dynamics of the entire vortex. The nozzle excited two different modes depending on the tension applied to the flexible nozzle and the volumetric flow through it. The first was a flapping mode, which was associated with alternate shedding of vortices. This caused strong steering of the jet to one side or the other. The second mode was a symmetric mode that was associated with the formation of counter-rotating vortex pairs. Turbulence and jet spread in the measured planes were much larger in the first mode than the second one. PMID:19547723

  19. Jets in d (p )-A collisions: Color transparency or energy conservation

    NASA Astrophysics Data System (ADS)

    Kordell, Michael; Majumder, Abhijit

    2018-05-01

    The production of jets, and high momentum hadrons from jets, produced in deuteron-Au (d -Au) collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and proton-Pb (p -Pb) collisions at the CERN Large Hadron Collider (LHC) are studied as a function of centrality, a measure of the impact parameter of the collision. A modified version of the event generator pythia, widely used to simulate p -p collisions, is used in conjunction with a nuclear Monte Carlo event generator which simulates the locations of the nucleons within a large nucleus. We demonstrate how events with a hard jet may be simulated, in such a way that the parton distribution function of the projectile is "frozen" during its interaction with the extended nucleus. Using our approach, we demonstrate that the puzzling enhancement seen in peripheral events at RHIC and the LHC, as well as the suppression seen in central events at the LHC, are possibly due to mis-binning of central and semicentral events, containing a jet, as peripheral events. This occurs due to the suppression of soft particle production away from the jet, caused by the depletion of energy available in a nucleon of the deuteron (in d -Au at RHIC) or in the proton (in p -Pb at LHC), after the production of a hard jet. We conclude that partonic correlations built out of simple energy conservation are responsible for such an effect, though these are sampled at the hard scale of jet production and, as such, represent smaller states.

  20. Liquid Spray Characterization in Flow Fields with Centripetal Acceleration

    DTIC Science & Technology

    2014-03-27

    25 2.4.1 Atomization of Liquid Jets ...volumetric heat release rates, easier light-up, wider burning range, and lower exhaust pollutant emissions [11]. 26 2.4.1 Atomization of Liquid Jets ...Atomization involves the interaction of consolidating and disruptive forces acting on a jet of liquid . The process of atomization can be further

  1. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.

    2012-01-01

    An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement.

  2. Time-domain simulation of flute-like instruments: comparison of jet-drive and discrete-vortex models.

    PubMed

    Auvray, Roman; Ernoult, Augustin; Fabre, Benoît; Lagrée, Pierre-Yves

    2014-07-01

    This paper presents two models of sound production in flute-like instruments that allow time-domain simulations. The models are based on different descriptions of the jet flow within the window of the instrument. The jet-drive model depicts the jet by its transverse perturbation that interacts with the labium to produce sound. The discrete-vortex model depicts the jet as two independent shear layers along which vortices are convected and interact with the acoustic field within the window. The limit of validity between both models is usually discussed according to the aspect ratio of the jet W/h, with W the window length and h the flue channel height. The present simulations, compared with experimental data gathered on a recorder, allow to extend the aspect ratio criterion to the notion of dynamic aspect ratio defined as λ/h where λ is the hydrodynamic wavelength that now accounts for geometrical properties, such as W/h, as well as for dynamic properties, such as the Strouhal number. The two models are found to be applicable over neighboring values of geometry and blowing pressure.

  3. GRMHD/RMHD Simulations and Stability of Magnetized Spine-Sheath Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Hardee, Philip; Mizuno, Yosuke; Nishikawa, Ken-Ichi

    2007-01-01

    A new general relativistic magnetohydrodynamics (GRMHD ) code "RAISHIN" used to simulate jet generation by rotating and non-rotating black holes with a geometrically thin Keplarian accretion disk finds that the jet develops a spine-sheath structure in the rotating black hole case. Spine-sheath structure and strong magnetic fields significantly modify the Kelvin-Helmholtz (KH) velocity shear driven instability. The RAISHIN code has been used in its relativistic magnetohydrodynamic (RMHD) configuration to study the effects of strong magnetic fields and weakly relativistic sheath motion, cl2, on the KH instability associated with a relativistic, Y = 2.5, jet spine-sheath interaction. In the simulations sound speeds up to ? c/3 and Alfven wave speeds up to ? 0.56 c are considered. Numerical simulation results are compared to theoretical predictions from a new normal mode analysis of the RMHD equations. Increased stability of a weakly magnetized system resulting from c/2 sheath speeds and stabilization of a strongly magnetized system resulting from d 2 sheath speeds is found.

  4. Studies of turbulent round jets through experimentation, simulation, and modeling

    NASA Astrophysics Data System (ADS)

    Keedy, Ryan

    This thesis studies the physics of the turbulent round jet. In particular, it focuses on three different problems that have the turbulent round jet as their base flow. The first part of this thesis examines a compressible turbulent round jet at its sonic condition. We investigate the shearing effect such a jet has when impinging on a solid surface that is perpendicular to the flow direction. We report on experiments to evaluate the jet's ability to remove different types of explosive particles from a glass surface. Theoretical analysis revealed trends and enabled modeling to improve the predictability of particle removal for various jet conditions. The second part of thesis aims at developing a non-intrusive measurement technique for free-shear turbulent flows in nature. Most turbulent jet investigations in the literature, both in the laboratory and in the field, required specialized intrusive instrumentation and/or complex optical setups. There are many situations in naturally-occurring flows where the environment may prove too hostile or remote for existing instrumentation. We have developed a methodology for analyzing video of the exterior of a naturally-occurring flow and calculating the flow velocity. We found that the presence of viscosity gradients affects the velocity analysis. While these effects produce consistent, predictable changes, we became interested in the mechanism by which the viscosity gradients affect the mixing and development of the turbulent round jet. We conducted a stability analysis of the axisymmetric jet when a viscosity gradient is present. Finally, the third problem addressed in this thesis is the growth of liquid droplets by condensation in a turbulent round jet. A vapor-saturated turbulent jet issues into a cold, dry environment. The resulting mixing produces highly inhomogeneous regions of supersaturation, where droplets grow and evaporate. Non-linear interactions between the droplet growth rate and the supersaturation field make analysis computationally taxing. A Probability Density Function (PDF) model for the concentration of scalars, as well as for the droplet number in different size bins, is developed. The growth of droplets as they evolve along the jet, for different downstream and radial positions, compared favorably with experimental measurements in the literature. We utilized a graphical processing unit with the PDF method to more efficiently compute the statistics of the droplet diameter in the non-uniform supersaturation field.

  5. Effects of Atwood number on shock focusing in shock-cylinder interaction

    NASA Astrophysics Data System (ADS)

    Ou, Junfeng; Ding, Juchun; Luo, Xisheng; Zhai, Zhigang

    2018-02-01

    The evolution of shock-accelerated heavy-gas cylinder surrounded by the air with different Atwood numbers (A_t=0.28, 0.50, 0.63) is investigated, concentrating on shock focusing and jet formation. Experimentally, a soap film technique is used to generate an ideal two-dimensional discontinuous gas cylinder with a clear surface, which can guarantee the observation of shock wave movements inside the cylinder. Different Atwood numbers are realized by different mixing ratios of SF_6 and air inside the cylinder. A high-speed schlieren system is adopted to capture the shock motions and jet morphology. Numerical simulations are also performed to provide more information. The results indicate that an inward jet is formed for low Atwood numbers, while an outward jet is generated for high Atwood numbers. Different Atwood numbers will lead to the differences in the relative velocities between the incident shock and the refraction shock, which ultimately results in the differences in shock competition near the downstream pole. The morphology and feature of the jet are closely associated with the position and intensity of shock focusing. The pressure and vorticity contours indicate that the jet formation should be attributed to the pressure pulsation caused by shock focusing, and the jet development is ascribed to the vorticity induction. Finally, a time ratio proposed in the previous work for determining the shock-focusing type is verified by experiments.

  6. Iso-thermal flow characteristics of rotationally symmetric jets generating a swirl within a cylindrical chamber

    NASA Astrophysics Data System (ADS)

    Long, Shen; Lau, Timothy C. W.; Chinnici, Alfonso; Tian, Zhao Feng; Dally, Bassam B.; Nathan, Graham J.

    2018-05-01

    We present a systematic experimental study of the interaction between four rotationally symmetric jets within a cylindrical chamber, under conditions relevant to a wide range of engineering applications, including the technology of a Hybrid Solar Receiver Combustor (HSRC). The HSRC geometry is simplified here to a cylindrical cavity with four inlet jets (representing four burners) which are configured in an annular arrangement and aligned at an inclination angle to the axis with a tangential component (azimuthal angle) to generate a swirl in the chamber. In this study, the jet inclination angle (αj) was varied over the range of 25°-45°, while the jet azimuthal angle (θj) was varied from 5° to 15°. The inlet Reynolds number for each injected jet and the number of jets were fixed at ReD = 10 500 and 4, respectively. Measurements obtained with Particle Image Velocimetry were used to characterise the large-scale flow field within selected configurations. The results reveal a significant dependence of the mean and root-mean-square flow-fields on the jet azimuthal angle (θj) and the jet inclination angle (αj). Three different flow regimes with distinctive flow characteristics were identified within the configurations investigated here. It was also found that θj can significantly influence (a) the position and strength of an external recirculation zone and a central recirculation zone, (b) the extent of turbulence fluctuation, and (c) the flow unsteadiness. Importantly, the effect of αj on the flow characteristics was found to depend strongly on the value of θj.

  7. DSMC simulation of the interaction between rarefied free jets

    NASA Technical Reports Server (NTRS)

    Dagum, Leonardo; Zhu, S. H. K.

    1993-01-01

    This paper presents a direct simulation Monte Carlo (DSMC) calculation of two interacting free jets exhausting into vacuum. The computed flow field is compared against available experimental data and shows excellent agreement everywhere except in the very near field (less than one orifice diameter downstream of the jet exhaust plane). The lack of agreement in this region is attributed to having assumed an inviscid boundary condition for the orifice lip. The results serve both to validate the DSMC code for a very complex, three dimensional non-equilibrium flow field, and to provide some insight as to the complicated nature of this flow.

  8. Comparative study of hadron- and γ-triggered azimuthal correlations in relativistic heavy-ion collisions

    DOE PAGES

    Ma, Guo -Lang; Wang, Xin -Nian

    2012-01-01

    In the framework of a multi-phase transport model, initial fluctuations in the transverse parton density lead to all orders of harmonic flows. Hadron-triggered azimuthal correlations include all contributions from harmonic flows, hot spots, and jet-medium excitations, which are isolated by using different initial conditions. We found that different physical components dominate different pseudorapidity ranges of dihadron correlations. Because γ-triggered azimuthal correlations can only be caused by jet-medium interactions, a comparative study of hadron- and γ -triggered azimuthal correlations can reveal more dynamics about jet-medium interactions.

  9. Numerical Analysis of Pelton Nozzle Jet Flow Behavior Considering Elbow Pipe

    NASA Astrophysics Data System (ADS)

    Chongji, Zeng; Yexiang, Xiao; Wei, Xu; Tao, Wu; Jin, Zhang; Zhengwei, Wang; Yongyao, Luo

    2016-11-01

    In Pelton turbine, the dispersion of cylindrical jet have a great influence on the energy interaction of jet and buckets. This paper simulated the internal flow of nozzle and the downstream free jet flow at 3 different needle strokes. The nozzle model consists of the elbow pipe and the needle rod which supported by 4 ribs. Homogenous model and SST k-ω model were adopted to simulate the unsteady two-phase jet flow. The development of free flow, including a contraction process followed by an expansion process, was analysed detailed as well as the influence of the nozzle geometry on the jet flow pattern. The increase of nozzle opening results in a more dispersion jet, which means a higher hydraulic loss. Upstream bend and ribs induce the secondary flow in the jet and decrease the jet concentration.

  10. Wedge Shock and Nozzle Exhaust Plume Interaction in a Supersonic Jet Flow

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Zaman, Khairul; Fagan, Amy; Heath, Christopher

    2014-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the nozzle exhaust plume. Aft body shock waves that interact with the exhaust plume contribute to the near-field pressure signature of a vehicle. The plume and shock interaction was studied using computational fluid dynamics and compared with experimental data from a coaxial convergent-divergent nozzle flow in an open jet facility. A simple diamond-shaped wedge was used to generate the shock in the outer flow to study its impact on the inner jet flow. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the opposite plume boundary. The sonic boom pressure signature of the nozzle exhaust plume was modified by the presence of the wedge. Both the experimental results and computational predictions show changes in plume deflection.

  11. On the generation of magnetosheath high-speed jets by bow shock ripples

    PubMed Central

    Hietala, H; Plaschke, F

    2013-01-01

    [1]The terrestrial magnetosheath is embedded with coherent high-speed jets of about 1RE in scale, predominantly during quasi-radial interplanetary magnetic field (IMF). When these high dynamic pressure (Pdyn) jets hit the magnetopause, they cause large indentations and further magnetospheric effects. The source of these jets has remained controversial. One of the proposed mechanisms is based on ripples of the quasi-parallel bow shock. In this paper, we combine for the first time, 4 years of subsolar magnetosheath observations from the Time History of Events and Macroscale Interactions during Substorms mission and corresponding NASA/OMNI solar wind conditions with model calculations of a rippled bow shock. Concentrating on the magnetosheath close to the shock during intervals when the angle between the IMF and the Sun-Earth line was small, we find that (1) 97% of the observed jets can be produced by local ripples of the shock under the observed upstream conditions; (2) the coherent jets form a significant fraction of the high Pdyn tail of the magnetosheath flow distribution; (3) the magnetosheath Pdyn distribution matches the flow from a bow shock with ripples that have a dominant amplitude to wavelength ratio of about 9% (∼0.1RE/1RE) and are present ∼12% of the time at any given location. PMID:26167426

  12. Monte-Carlo Event Generators for Jet Modification in d(p)-A and A-A Collisions

    NASA Astrophysics Data System (ADS)

    Kordell, Michael C., III

    This work outlines methods to use jet simulations to study both initial and final state nuclear effects in heavy-ion collisions. To study the initial state of heavy-ion collisions, the production of jets and high momentum hadrons from jets, produced in deuteron (d)-Au collisions at the relativistic heavy-ion collider (RHIC) and proton (p)- Pb collisions at the large hadron collider (LHC) are studied as a function of centrality, a measure of the impact parameter of the collision. A modified version of the event generator PYTHIA, widely used to simulate p-p collisions, is used in conjunction with a nuclear Monte-Carlo event generator which simulates the locations of the nucleons within a large nucleus. It is demonstrated how events with a hard jet may be simulated, in such a way that the parton distribution function of the projectile is frozen during its interaction with the extended nucleus. Using this approach, it is demonstrated that the puzzling enhancement seen in peripheral events at RHIC and the LHC, as well as the suppression seen in central events at the LHC are mainly due to mis-binning of central and semi-central events, containing a jet, as peripheral events. This occurs due to the suppression of soft particle production away from the jet, caused by the depletion of energy available in a nucleon of the deuteron (in d-Au at RHIC) or in the proton (in p-Pb at LHC), after the production of a hard jet. In conclusion, partonic correlations built out of simple energy conservation are responsible for such an effect, though these are sampled at the hard scale of jet production and, as such, represent smaller states. To study final state nuclear effects, the modification of hard jets in the Quark Gluon Plasma (QGP) is simulated using the MATTER event generator. Based on the higher twist formalism of energy loss, the MATTER event generator simulates the evolution of highly virtual partons through a medium. These partons sampled from an underlying PYTHIA kernel undergo splitting through a combination of vacuum and medium induced emission. The momentum exchange with the medium is simulated via the jet transport coefficient q̂, which is assumed to scale with the entropy density at a given location in the medium. The entropy density is obtained from a relativistic viscous fluid dynamics simulation (VISH2+1D) in 2+1 space time dimensions. Results for jet and hadron observables are presented using an independent fragmentation model.

  13. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray.

    PubMed

    Pak, S I; Chang, K S

    2006-12-01

    A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements.

  14. Evidence for shock-shock interaction in the jet of CTA 102

    NASA Astrophysics Data System (ADS)

    Fromm, C. M.; Perucho, M.; Savolainen, T.; Ros, E.; Lobanov, A. P.; Zensus, J. A.; Lähteenmäki, A.

    2011-02-01

    We have found evidence for interaction between a standing and a traveling shock in the jet of the blazar CTA 102. Our result is based in the study of the spectral evolution of the turnover frequency-turnover flux density (νm, Sm) plane. The radio/mm light curves were taken during a major radio outburst in April 2006.

  15. Incident Shock-Transverse Jet Interactions at Mach 1.9: Effect of Shock Impingement Location

    NASA Astrophysics Data System (ADS)

    Zare-Behtash, H.; Lo, K. H.; Erdem, E.; Kontis, K.; Lin, J.; Ukai, T.; Obayashi, S.

    The scramjet engine is an efficient design for high-speed propulsion, requiring injection of fuel into a supersonic flow in a short amount of time. Due to the nature of the flow numerous shock waves exist within the combustor of a scramjet, significantly altering the flow characteristics and performance of the engine as the flow Mach number or attitude is changed. According to Mai et al. [1] the location of impingement of the incident shock, relative to the fuel injection location, has significant impact on the mixing and flame-holding properties. This emphasises the importance of understanding and hence the need for controlling the dynamic interactions that are created. Of course another fertile area where transverse jet injections are studied for their application is the creation of forces and moments for pitch and attitude control [2, 3].

  16. Simulation of kinematics of SS 433 radio jets that interact with the ambient medium

    NASA Astrophysics Data System (ADS)

    Panferov, A.

    2014-02-01

    Context. The mildly relativistic jets of SS 433 are believed to inflate the surrounding supernova remnant W 50, possibly depositing more than 99% of their kinetic energy in the remnant expansion. Where and how this transformation of the energy occurs is as yet unknown. We can learn from this that the jets decelerate and that this deceleration is non-dissipative. Aims: We uncover the deviation of the arcsecond-scale precessing radio jets of SS 433 from the ballistic locus described by the kinematic model as a signature of the dynamics issuing from the interaction of the jets with the ambient medium. Methods: To do this, we simulated the kinematics of these jets, taking into account the ram pressure on the jets, which we estimated from the profile of brightness of synchrotron radiation along the radio jets, assuming pressure balance in the jets. Results: We found that to fit an observable locus in all scales the radio jets need to be decelerated and twisted in addition to the precession torsion, mostly within the first one-fifth of the precession period, and subsequently they extend in a way that imitates ballistic jets. This jet kinematics implies a smaller distance to SS 433 than the currently accepted 5.5 kpc. The physical parameters of the jet model, which links jets dynamics with radiation, are physically reliable and characteristic for the SS 433 jets. The model proposes that beyond the radio-brightening zone, the jet clouds expand because they are in pressure balance with the intercloud medium, and heat up with distance according to the law T = 2 × 104(r/1015 cm)1.5 K. Conclusions: This model naturally explains and agrees with, the observed properties of the radio jets: a) the shock-pressed morphology; b) the brightness profile; c) the ~10% deflections of the jet kinematics from the standard kinematic model - a magnitude of the jet speed decrement in our simulation; d) the precession-phase deviations from the standard kinematic model predictions; e) the dichotomy of the distances to the object, 4.8 kpc vs. 5.5 kpc, which are determined on the basis of the jet kinematics on scales of sub-arcsecond and several arcseconds, respectively; and f) the reheating on arcsecond scales.

  17. The flow separation delay in the boundary layer by induced vortices.

    PubMed

    Chaudhry, Ishtiaq A; Sultan, Tipu; Siddiqui, Farrukh A; Farhan, M; Asim, M

    2017-01-01

    A series of experiments involving the particle image velocimetry technique are carried out to analyse the quantitative effectiveness of the synthesized vortical structures towards actual flow separation control. The streamwise vortices are synthesized from the synthetic jet actuator and introduced into the attached and separating boundary layer developed on the flat plate surface. Two types of actuators with different geometrical set-ups are used to analyse the evolution of vortical structures in the near wall region and their impact towards achieving separation delay in the boundary layer. First, a single circular jet is synthesized by varying actuator operating parameters and issued into the boundary layer to evaluate the dynamics of the interaction between the vortical structures and the near wall low momentum fluid in the separated region. Second, an array of jets has been issued into the artificially separated region to assess the effectiveness of various vortical structures towards achieving the reattachment of the separated flow in the streamwise direction.

  18. Flow Structures and Interactions of a Fail-Safe Actuator

    NASA Astrophysics Data System (ADS)

    Khan, Wasif; Elimelech, Yoseph; Amitay, Michael

    2010-11-01

    Vortex generators are passive devices that are commonly used in many aerodynamic applications. In their basic concept, they enhance mixing, reduce or mitigate flow separation; however, they cause drag penalties at off design conditions. Micro vanes implement the same basic idea of vortex generators but their physical dimensions are much smaller. To achieve the same effect on the baseline flow field, micro vanes are combined with an active flow control device, so their net effect is comparable to that of vortex generators when the active device is energized. As a result of their small size, micro vanes have significantly less drag penalty at off design conditions. This concept of "dual-action" is the reason why such actuation is commonly called hybrid or fail-safe actuation. The present study explores experimentally the flow interaction of a synthetic-jet with a micro vane in a zero pressure gradient flow over a flat plate. Using the stereo particle image velocimetry technique a parametric study was conducted, where the effects of the micro vane shape, height and its angle with respect to the flow were examined, at several blowing ratios and synthetic-jet configurations.

  19. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 4: Summary

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.; Wallace, H. W.; Hiley, P. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 4 of 4: Final Report- Summary.

  20. Jet impact on a soap film

    NASA Astrophysics Data System (ADS)

    Kirstetter, Geoffroy; Raufaste, Christophe; Celestini, Franck

    2012-09-01

    We experimentally investigate the impact of a liquid jet on a soap film. We observe that the jet never breaks the film and that two qualitatively different steady regimes may occur. The first one is a refractionlike behavior obtained at small incidence angles when the jet crosses the film and is deflected by the film-jet interaction. For larger incidence angles, the jet is absorbed by the film, giving rise to a new class of flows in which the jet undulates along the film with a characteristic wavelength. Besides its fundamental interest, this paper presents a different way to guide a micrometric flow of liquid in the inertial regime and to probe foam stability submitted to violent perturbations at the soap film scale.

  1. Jet impact on a soap film.

    PubMed

    Kirstetter, Geoffroy; Raufaste, Christophe; Celestini, Franck

    2012-09-01

    We experimentally investigate the impact of a liquid jet on a soap film. We observe that the jet never breaks the film and that two qualitatively different steady regimes may occur. The first one is a refractionlike behavior obtained at small incidence angles when the jet crosses the film and is deflected by the film-jet interaction. For larger incidence angles, the jet is absorbed by the film, giving rise to a new class of flows in which the jet undulates along the film with a characteristic wavelength. Besides its fundamental interest, this paper presents a different way to guide a micrometric flow of liquid in the inertial regime and to probe foam stability submitted to violent perturbations at the soap film scale.

  2. Simultaneous Cotton-Mouton and Faraday rotation angle measurements on JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boboc, A.; Zabeo, L.; Murari, A.

    The change in the ellipticity of a laser beam that passes through plasma due to the Cotton-Mouton effect can provide additional information on the plasma density. This approach, complementary to the more traditional interferometric methods, has been implemented recently using the JET interferometer-polarimeter with a new setup. Routine Cotton-Mouton phase shift measurements are made on the vertical central chords simultaneously with the Faraday rotation angle data. These new data are used to provide robust line-integrated density measurements in difficult plasma scenarios, with strong Edge Localized Modes (ELMs) or pellets. These always affect interferometry, causing fringe jumps and preventing good controlmore » of the plasma density. A comparison of line-integrated density from polarimetry and interferometry measurements shows an agreement within 10%. Moreover, in JET the measurements can be performed close to a reactor relevant range of parameters, in particular, at high densities and temperatures. This provides a unique opportunity to assess the quality of the Faraday rotation and Cotton-Mouton phase shift measurements where both effects are strong and mutual nonlinear interaction between the two effects takes place.« less

  3. Real-time evolution of a large-scale relativistic jet

    NASA Astrophysics Data System (ADS)

    Martí, Josep; Luque-Escamilla, Pedro L.; Romero, Gustavo E.; Sánchez-Sutil, Juan R.; Muñoz-Arjonilla, Álvaro J.

    2015-06-01

    Context. Astrophysical jets are ubiquitous in the Universe on all scales, but their large-scale dynamics and evolution in time are hard to observe since they usually develop at a very slow pace. Aims: We aim to obtain the first observational proof of the expected large-scale evolution and interaction with the environment in an astrophysical jet. Only jets from microquasars offer a chance to witness the real-time, full-jet evolution within a human lifetime, since they combine a "short", few parsec length with relativistic velocities. Methods: The methodology of this work is based on a systematic recalibraton of interferometric radio observations of microquasars available in public archives. In particular, radio observations of the microquasar GRS 1758-258 over less than two decades have provided the most striking results. Results: Significant morphological variations in the extended jet structure of GRS 1758-258 are reported here that were previously missed. Its northern radio lobe underwent a major morphological variation that rendered the hotspot undetectable in 2001 and reappeared again in the following years. The reported changes confirm the Galactic nature of the source. We tentatively interpret them in terms of the growth of instabilities in the jet flow. There is also evidence of surrounding cocoon. These results can provide a testbed for models accounting for the evolution of jets and their interaction with the environment.

  4. Aeroacoustic Characteristics of Supersonic Impinging Jets

    NASA Astrophysics Data System (ADS)

    Worden, Theodore James

    High-speed impinging jets are often generated by the propulsive systems of aerospace launch vehicles and tactical aircraft. In many instances, the presence of these impinging jets creates a hazard for flight operations personnel due to the extremely high noise levels and unsteady loads produced by fluid-surface interaction. In order to effectively combat these issues, a fundamental understanding of the flow physics and dominant acoustic behavior is essential. There are inherent challenges in performing such investigations, especially with the need to simulate the flowfield under realistic operational conditions (temperature, Mach number, etc.) and in configurations that are relevant to full-scale application. A state-of-the-art high-temperature flow facility at Florida State University has provided a unique opportunity to experimentally investigate the high-speed impinging jet flowfield at application-relevant conditions. Accordingly, this manuscript reports the findings of several experimental studies on high-temperature supersonic impinging jets in multiple configurations. The overall objective of these studies is to characterize the complex relationship between the hydrodynamic and acoustic fields. A fundamental parametric investigation has been performed to document the flowfield and acoustic characteristics of an ideally-expanded supersonic air jet impinging onto a semi-infinite flat plate at ambient and heated jet conditions. The experimental program has been designed to span a widely-applicable geometric parameter space, and as such, an extensive database of the flow and acoustic fields has been developed for impingement distances in the range 1d to 12d, impingement angles in the range 45 degrees to 90 degrees, and jet stagnation temperatures from 289K to 811K (TTR = 1.0 to 2.8). Measurements include point-wise mean and unsteady pressure on the impingement surface, time-resolved shadowgraphy of the flowfield, and fully three-dimensional near field acoustics. Aside from detailed documentation of the flow and acoustic fields, this work aims to develop a physical understanding of the noise sources generated by impingement. Correlation techniques are employed to localize and quantify the spatial extent of broadband noise sources in the near-impingement region and to characterize their frequency content. Additionally, discrete impingement tones are documented for normal and oblique incidence angles, and an empirical model of the tone frequencies has been developed using velocity data extracted from time-resolved shadowgraphy together with a simple modification to the conventional feedback formula to account for non-normal incidence. Two application-based studies have also been undertaken. In simulating a vertical take-off and landing aircraft in hover, the first study of a normally-impinging jet outfitted with lift-plate characterizes the flow-acoustic interaction between the high-temperature jet and the underside of an aircraft and documents the effectiveness of an active flow control technique known as `steady microjet injection' to mitigate high noise levels and unsteady phenomena. The second study is a detailed investigation of the jet blast deflector/carrier deck configuration aimed at gaining a better understanding of the noise field generated by a jet operating on a flight deck. The acoustic directionality and spectral characteristics are documented for a model-scale carrier deck with particular focus on locations that are pertinent to flight operations personnel.

  5. Hydrodynamic interactions in metachronal paddling: effects of varying stroke kinematics

    NASA Astrophysics Data System (ADS)

    Samaee, Milad; Kasoju, Vishwa; Lai, Hong Kuan; Santhanakrishnan, Arvind

    2017-11-01

    Crustaceans such as shrimp and krill use a drag-based technique for propulsion, in which multiple pairs of limbs are paddled rhythmically from the tail to the head. Each limb is phase-shifted in time relative to its neighbor. Most studies of this type of metachronal swimming have focused on the jet formed in the animal's wake. However, synergistic hydrodynamic interactions between adjacent limbs in metachrony have received minimal attention. We used a dynamically scaled robotic model to experimentally investigate how variations in stroke kinematics impact inter-paddle hydrodynamic interactions and thrust generation. Physical models of limbs were fitted to the robot and paddled with two different motion profiles (MPs)-1) MP1: metachronal power stroke (PS) and metachronal recovery stroke (RS); and 2) MP2: metachronal PS and synchronous RS. Stroke frequency and amplitude were maintained constant across both MPs. Our results show that MP2 produced faster jets in the thrust-generating direction as compared to MP1. The necessity for a pause in MP2 after completion of PS by the paddles leading the motion, prior to executing the synchronous RS, aided in further downstream flow propagation. The effect of using asymmetric stroke kinematics on thrust generated will be discussed.

  6. Free stream turbulence and density ratio effects on the interaction region of a jet in a cross flow

    NASA Technical Reports Server (NTRS)

    Wark, C. E.; Foss, J. F.

    1984-01-01

    Jets of low temperature air are introduced into the aft sections of gas turbine combustors for the purpose of cooling the high temperature gases and quenching the combustion reactions. Research studies, motivated by this complex flow field, have been executed by introducing a heated jet into the cross stream of a wind tunnel. The investigation by Kamotani and Greber stands as a prime example of such investigations and it serves as the principal reference for the present study. The low disturbance level of the cross stream, in their study and in similar research investigations, is compatible with an interest in identifying the basic features of this flow field. The influence of the prototypes' strongly disturbed cross flow is not, however, made apparent in these prior investigations.

  7. Winter NH low-frequency variability in a hierarchy of low-order stochastic dynamical models of earth-atmosphere system

    NASA Astrophysics Data System (ADS)

    Zhao, Nan

    2018-02-01

    The origin of winter Northern Hemispheric low-frequency variability (hereafter, LFV) is regarded to be related to the coupled earth-atmosphere system characterized by the interaction of the jet stream with mid-latitude mountain ranges. On the other hand, observed LFV usually appears as transitions among multiple planetary-scale flow regimes of Northern Hemisphere like NAO + , AO +, AO - and NAO - . Moreover, the interaction between synoptic-scale eddies and the planetary-scale disturbance is also inevitable in the origin of LFV. These raise a question regarding how to incorporate all these aspects into just one framework to demonstrate (1) a planetary-scale dynamics of interaction of the jet stream with mid-latitude mountain ranges can really produce LFV, (2) such a dynamics can be responsible for the existence of above multiple flow regimes, and (3) the role of interaction with eddy is also clarified. For this purpose, a hierarchy of low-order stochastic dynamical models of the coupled earth-atmosphere system derived empirically from different timescale ranges of indices of Arctic Oscillation (AO), North Atlantic Oscillation (NAO), Pacific/North American (PNA), and length of day (LOD) and related probability density function (PDF) analysis are employed in this study. The results seem to suggest that the origin of LFV cannot be understood completely within the planetary-scale dynamics of the interaction of the jet stream with mid-latitude mountain ranges, because (1) the existence of multiple flow regimes such as NAO+, AO+, AO- and NAO- resulted from processes with timescales much longer than LFV itself, which may have underlying dynamics other than topography-jet stream interaction, and (2) we find LFV seems not necessarily to come directly from the planetary-scale dynamics of the interaction of the jet stream with mid-latitude mountain, although it can produce similar oscillatory behavior. The feedback/forcing of synoptic-scale eddies on the planetary-scale dynamics seems to play a more essential role in its origin.

  8. Formation of Bipolar Lobes by Jets

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2002-04-01

    I conduct an analytical study of the interaction of jets, or a collimated fast wind (CFW), with a previously blown asymptotic giant branch (AGB) slow wind. Such jets (or CFWs) are supposedly formed when a compact companion, a main-sequence star, or a white dwarf accretes mass from the AGB star, forms an accretion disk, and blows two jets. This type of flow, which I think shapes bipolar planetary nebulae (PNs), requires three-dimensional gasdynamical simulations, which are limited in the parameter space they can cover. By imposing several simplifying assumptions, I derive simple expressions which reproduce some basic properties of lobes in bipolar PNs and which can be used to guide future numerical simulations. I quantitatively apply the results to two proto-PNs. I show that the jet interaction with the slow wind can form lobes which are narrow close to, and far away from, the central binary system, and which are wider somewhere in between. Jets that are recollimated and have constant cross section can form cylindrical lobes with constant diameter, as observed in several bipolar PNs. Close to their source, jets blown by main-sequence companions are radiative; only further out they become adiabatic, i.e., they form high-temperature, low-density bubbles that inflate the lobes.

  9. Detection of helicoidal motion in the optical jet of PKS 0521-365

    NASA Astrophysics Data System (ADS)

    Jiménez-Andrade, E. F.; Chavushyan, V.; León-Tavares, J.; Patiño-Álvarez, V. M.; Olguín-Iglesias, A.; Kotilainen, J.; Falomo, R.; Hyvönen, T.

    2017-09-01

    The jet activity of active galactic nuclei (AGNs), and its interaction with the interstellar medium, may play a pivotal role in the processes that regulate the growth and star formation of its host galaxy. Observational evidence that pinpoints the conditions of such interaction is paramount to unveil the physical processes involved. We report on the discovery of extended emission-line regions exhibiting an S-shaped morphology along the optical jet of the radio-loud AGN PKS 0521-365 (z = 0.055), by using long-slit spectroscopic observations obtained with FOcal Reducer/low dispersion Spectrograph 2 on the Very Large Telescope. The velocity pattern derived from the [O II] λ3727 Å, H β λ4861 Å and [O III] λλ4959, 5007 Å emission lines is well fitted by a sinusoidal function of the form: v(r) = αr1/2sin(βr1/2 + γ), suggesting helicoidal motions along the jet up to distances of 20 kpc. We estimate a lower limit for the mass of the outflowing ionized gas along the jet of ˜104 M⊙. Helical magnetic fields and jet precession have been proposed to explain helicoidal paths along the jet at pc scales; nevertheless, it is not clear yet whether these hypotheses may hold at kpc scales.

  10. Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow

    NASA Astrophysics Data System (ADS)

    Li, Peibo; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo

    2017-05-01

    The gas-liquid interaction process of a liquid jet in supersonic crossflow with a Mach number of 1.94 was investigated numerically using the Eulerian-Lagrangian method. The KH (Kelvin-Helmholtz) breakup model was used to calculate the droplet stripping process, and the secondary breakup process was simulated by the competition of RT (Rayleigh-Taylor) breakup model and TAB (Taylor Analogy Breakup) model. A correction of drag coefficient was proposed by considering the compressible effects and the deformation of droplets. The location and velocity models of child droplets after breakup were improved according to droplet deformation. It was found that the calculated spray features, including spray penetration, droplet size distribution and droplet velocity profile agree reasonably well with the experiment. Numerical results revealed that the streamlines of air flow could intersect with the trajectory of droplets and are deflected towards the near-wall region after they enter into spray zone around the central plane. The analysis of gas-liquid relative velocity and droplet deformation suggested that the breakup of droplets mainly occurs around the front region of the spray where gathered a large number of droplets with different sizes. The liquid trailing phenomenon of jet spray which has been discovered by the previous experiment was successfully captured, and a reasonable explanation was given based on the analysis of gas-liquid interaction process.

  11. Flame deformation and entrainment associated with an isothermal transverse fuel jet

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.; Karagozian, A. R.

    1992-01-01

    This paper describes an analytical model of an incompressible, isothermal reacting jet in crossflow. The model represents the flow in the jet cross-section by a counter rotating vortex pair, a flow structure that has been observed to dominate the jet behavior. The reaction surface surrounding the fuel jet is represented as a composite of strained diffusion flames that are stretched and deformed by the vortex pair flow. The results shed new light on the interaction between the vortex pair circulation and flame structure evolution and their relation to the concept of entrainment.

  12. Interaction of Vortex Rings and Steady Jets with Permeable Screens of Varied Porosity

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa

    2013-11-01

    Vortex ring and steady jet interaction with a porous matrix formed from several parallel, transparent permeable screens with the same grid geometry for open area ratios (φ) 49.5% - 83.8% was studied previously using digital particle image velocimetry (DPIV) at jet Reynolds number (Re) of 1000-3000. Vortex ring results showed that unlike the experiments with thin screens, a transmitted vortex ring, which has a similar diameter to the primary one, wasn't formed. Instead a centerline vortex ring like structure formed and its diameter, circulation, and dissipation time decreased as φ decreased. However, for the case of screens φ = 55.7% with large screen spacing, reformation of large scale weak vortex rings was observed downstream of the first screen. The present work experimentally investigates the interaction of vortex rings and steady jets with screens of decreasing φ (83.8%-49.5%) in the flow direction. A piston type vortex ring generator was used and measurements were made using DPIV. The vortex ring results show that the size and circulation of the vortex ring like flow structure was changed based on the screen φ within the permeable screen matrix. Similarly, steady jet flow structure and the local turbulent kinetic energy was changed based on the local screen φ.

  13. The Shock Dynamics of Heterogeneous YSO Jets: 3D Simulations Meet Multi-epoch Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, E. C.; Frank, A.; Hartigan, P.

    High-resolution observations of young stellar object (YSO) jets show them to be composed of many small-scale knots or clumps. In this paper, we report results of 3D numerical simulations designed to study how such clumps interact and create morphologies and kinematic patterns seen in emission line observations. Our simulations focus on clump scale dynamics by imposing velocity differences between spherical, over-dense regions, which then lead to the formation of bow shocks as faster clumps overtake slower material. We show that much of the spatial structure apparent in emission line images of jets arises from the dynamics and interactions of thesemore » bow shocks. Our simulations show a variety of time-dependent features, including bright knots associated with Mach stems where the shocks intersect, a “frothy” emission structure that arises from the presence of the Nonlinear Thin Shell Instability along the surfaces of the bow shocks, and the merging and fragmentation of clumps. Our simulations use a new non-equilibrium cooling method to produce synthetic emission maps in H α and [S ii]. These are directly compared to multi-epoch Hubble Space Telescope observations of Herbig–Haro jets. We find excellent agreement between features seen in the simulations and the observations in terms of both proper motion and morphologies. Thus we conclude that YSO jets may be dominated by heterogeneous structures and that interactions between these structures and the shocks they produce can account for many details of YSO jet evolution.« less

  14. The resonance of twin supersonic jets

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.

    1989-01-01

    This paper presents an analytical study of the resonant interaction between twin supersonic jets. An instability wave model is used to describe the large scale coherent structures in the jet mixing layers. A linearized shock cell model is also given for the jets when operating off design. The problem's geometry admits four types of normal modes associated with each azimuthal mode number in the single jet. The stability of these modes is examined for both a vortex sheet model of the jet and a jet flow represented by realistic profiles. The growth rates of each mode number and type are found to vary with jet separation and mixing layer thickness and Strouhal number. Contours of equal pressure level are obtained for each mode. The region close to the symmetry axis is found to have the greatest pressure fluctuation amplitude.

  15. Decoherence effect in neutrinos produced in microquasar jets

    NASA Astrophysics Data System (ADS)

    Mosquera, M. E.; Civitarese, O.

    2018-04-01

    We study the effect of decoherence upon the neutrino spectra produced in microquasar jets. In order to analyse the precession of the polarization vector of neutrinos we have calculated its time evolution by solving the corresponding equations of motion, and by assuming two different scenarios, namely: (i) the mixing between two active neutrinos, and (ii) the mixing between one active and one sterile neutrino. The results of the calculations corresponding to these scenarios show that the onset of decoherence does not depends on the activation of neutrino-neutrino interactions when realistic values of the coupling are used in the calculations. We discuss also the case of neutrinos produced in windy microquasars and compare the results which those obtained with more conventional models of microquasars.

  16. An experimental investigation of velocity fields in divergent glottal models of the human vocal tract

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Plesniak, Michael W.

    2005-09-01

    In speech, sound production arises from fluid-structure interactions within the larynx as well as viscous flow phenomena that is most likely to occur during the divergent orientation of the vocal folds. Of particular interest are the flow mechanisms that influence the location of flow separation points on the vocal folds walls. Physiologically scaled pulsatile flow fields in 7.5 times real size static divergent glottal models were investigated. Three divergence angles were investigated using phase-averaged particle image velocimetry (PIV). The pulsatile glottal jet exhibited a bi-modal stability toward both glottal walls, although there was a significant amount of variance in the angle the jet deflected from the midline. The attachment of the Coanda effect to the glottal model walls occurred when the pulsatile velocity was a maximum, and the acceleration of the waveform was zero. The location of the separation and reattachment points of the flow from the glottal models was a function of the velocity waveform and divergence angle. Acoustic analogies show that a dipole sound source contribution arising from the fluid interaction (Coanda jet) with the vocal fold walls is expected. [Work funded by NIH Grant RO1 DC03577.

  17. Search for dark matter in events with heavy quarks and missing transverse momentum in [Formula: see text] collisions with the ATLAS detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, M; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Azuelos, G; Azuma, Y; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Battistin, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Cunha Sargedas De Sousa, M J Da; Via, C Da; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dwuznik, M; Dyndal, M; Ebke, J; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franconi, L; Franklin, M; Fraternali, M; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giorgi, F M; Giraud, P F; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböeck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Heng, Y; Henderson, R C W; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hoffmann, D; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kyriazopoulos, D; La Rosa, A; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Lester, C M; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, B A; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Maiani, C; Maidantchik, C; Maier, A A; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Mechnich, J; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Migas, S; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morton, A; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Naranjo Garcia, R F; Narayan, R; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Przysiezniak, H; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Qureshi, A; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, M; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Sauvage, G; Sauvan, E; Savard, P; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simoniello, R; Sinervo, P; Sinev, N B; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Denis, R D St; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wright, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yanush, S; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, L; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L

    This article reports on a search for dark matter pair production in association with bottom or top quarks in [Formula: see text] of [Formula: see text] collisions collected at [Formula: see text] TeV by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing [Formula: see text]-quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on the mass scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter-nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a coloured mediator suitable to explain a possible signal of annihilating dark matter.

  18. A multiple-time-scale turbulence model based on variable partitioning of turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1987-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  19. A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1989-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  20. Search for dark matter in events with heavy quarks and missing transverse momentum in pp collisions with the ATLAS detector

    DOE PAGES

    Aad, G.

    2015-02-24

    This article reports on a search for dark matter pair production in association with bottom or top quarks in 20.3 fb –1 of pp collisions collected at √s=8 TeV by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing b-quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on themore » mass scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter–nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a colored mediator suitable to explain a possible signal of annihilating dark matter.« less

  1. Reynolds-Averaged Navier-Stokes Studies of Low Reynolds Number Effects on the Losses in a Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.

    1996-01-01

    Experimental data from jet-engine tests have indicated that unsteady blade-row interaction effects can have a significant impact on the efficiency of low-pressure turbine stages. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Preliminary studies indicate that Reynolds number effects may contribute to the lower efficiencies at cruise conditions. In the current study, numerical experiments have been performed to quantify the Reynolds number dependence of unsteady wake/separation bubble interaction on the performance of a low-pressure turbine.

  2. Relativistic Hydrodynamics and Spectral Evolution of GRB Jets

    NASA Astrophysics Data System (ADS)

    Cuesta-Martínez, C.

    2017-09-01

    In this thesis we study the progenitor systems of long gamma-ray bursts (GRBs) using numerical models of their dynamics and the electromagnetic emission. Of all the possible classes of events, we focus on those showing a prominent component of thermal emission, which might be generated due to the interaction of a relativistic jet with the medium into which it is propagating. The main part of the thesis is devoted to modelling GRBs from two different clases of progenitors: ultra-long GRBs dominated by blackbody emission and GRBs associated with core-collapse supernovae (SNe). The study of GRB jets and their radiative emission has been basically divided into two steps. First, the dynamical evolution of relativistic jets can be simulated by means of multidimensional special relativistic hydrodynamic simulations which have been performed with the MRGENESIS code. Second, the synthetic emission from such jets is computed with the relativistic radiative transfer code SPEV in a post-processing stage assuming different radiative processes in which we follow the temporal and spectral evolution of the emitted radiation. An instrumental part of this project consisted in extending SPEV to include thermal processes, such as thermal bremsstrahlung, in order to account for the thermal signal that may arise in some GRBs. In the first part of this thesis, we extend an existing theoretical model to explain the class of blackbody-dominated GRBs (BBD-GRBs), i.e., long lasting events characterized by the presence of a notable thermal component trailing the GRB prompt emission, and a rather weak traditional afterglow. GRB 101225A, the "Christmas burst", is the most prominent member of this class. It has been suggested that BBD-GRBs could result from the merger of a binary system formed by a neutron star and the Helium core of an evolved, massive star. We model in 2D the propagation of ultrarelativistic jets through the environments created by such mergers. We outline the most relevant dynamical details of the jet propagation and connect them to the generation of thermal radiation in GRB events akin to that of the Christmas burst. A comprehensive parameter study of the jet/environment interaction has been performed and synthetic light curves are confronted with the observational data. The thermal emission in our models originates from the interaction between the jet and the hydrogen envelope ejected during the neutron star/He core merger. We find that the lack of a classical afterglow and the accompanying thermal emission in BBD-GRBs can be explained by the interaction of an ultrarelativistic jet with a toroidally shaped ejecta whose axis coincides with the binary rotation axis. We also find that the synchrotron emission of the forward shock of the jet is dominant during the early phases of the evolution, along which that shock is still moderately relativistic. The contribution of the reverse shock is of the same magnitude as that of the forward shock during the first 80 min after the GRB. Later, it quickly fades because the jet/environment interaction chokes the ultrarelativistic jet beam and effectively dumps the reverse shock. We highlight that, in agreement with observations, we obtain rather flat light curves during the first 2 days after the GRB, and a spectral evolution consistent with the observed reddening of the system. Besides, we obtain that this spectral inversion and reddening happening at about 2 days in the Christmas burst can be related to the time at which the massive shell, ejected in an early phase of the common-envelope evolution of the progenitor system, is completely ablated by the ultrarelativistic jet. In the second part of this thesis, we study more canonical progenitor systems of GRBs, namely single massive stars on the brink of collapse. Motivated by the many associations of GRBs with energetic SN explosions, we study the propagation of relativistic jets within the progenitor star and the circumstellar medium. Particular attention is paid to the interaction between the jets and a SN shock wave launched briefly before the jets start to propagate. We have followed the dynamical evolution in one spatial dimension (1D) of the SN ejecta alone. Employing 2D axisymmetric relativistic hydrodynamic simulations we have explored the dynamical evolution of jets running into the medium left behind by the SN shock. For completeness, we have studied also the case in which no SN has formed. Based on analytic considerations and verified with an extensive set of simulations, we have estimated a threshold intrinsic jet luminosity, L_j^{thr}. For the stellar model under consideration here it is L_j^{thr} ≳ 1E49 erg s^{-1}. The observed equivalent isotropic γ-ray luminosity, L_{iso,γ} - 4 ɛ_γ L_j / θ_{BO}^2, crucially depends on the jet opening angle after breakout, θ_{BO}, and on the efficiency in converting the intrinsic jet luminosity into γ-radiation, ɛ_γ. Highly energetic jets can produce low-luminosity events if either their opening angle after the breakout is large, which is found in our models, or if the conversion efficiency of kinetic and internal energy into radiation is low enough. Beyond these theoretical analysis, we show how the presence of a SN shock wave modifies the jet propagation. One of the main goals of this chapter was studying the emission with SPEV at the breakout of the jet or the SN ejecta. However this part suffered from technical problems, in particular excessive numerical diffusion caused by a lack of numerical resolution. Due to computing time restrictions, we could not properly obtain long-time light curves and spectra and could only compute the thermal emission. Therefore, our conclusions have to be considered preliminary. We have obtained rather low luminosities inconsistent with previous calculations in the literature. We find that the SN flash of our models is ≳ 1000 times dimmer than that of one of the prototype examples of GRB/SNe (GRB 060218/SN 2006aj) or X-ray flashes (XRF) associated to SNe (XRF 080109/SN 2008D). However, observations of GRB/SNe show heterogeneous properties, with cases in which the bolometric luminosity is orders of magnitude smaller than in the previous examples. Besides, X-ray peak times of 10 s are theoretically expected for compact WR progenitors. Both facts, make our models partly consistent with the existing phenomenology. From the analysis of the asymptotic Lorentz factor in the whole cavity blown by the different jets, we foresee that the high-energy transients we may produce will be more similar to XRF than to GRBs. Indeed, our jet events display their peak specific luminosity in the extreme UV band, rather than in the X-ray band, and clearly a fainter γ-ray luminosity ( 2-4 orders of magnitude smaller than in the X-ray band). Finally, we find that the very early observational signature of our different jet models (prior to the luminosity peak) below the γ-ray band is very similar comparing jets with the same intrinsic luminosity. This happens in spite of the substantially different hydrodynamic evolution of models which either interact with a pre-existing SN ejecta or propagate through the unmodified stellar progenitor. We expect this similarity lasting for time scales of the order of the light-crossing time of the transversal size of the emitting region ( 1-2 s). Thus, we shall continue our models for even longer evolutionary times and, as argued above, employing a finer grid resolution.

  3. Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s = 7 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.

    2015-01-15

    The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton–proton collision data with a centre-of-mass energy of \\(\\sqrt{s}=7\\) TeV corresponding to an integrated luminosity of \\(4.7\\) \\(\\,\\,\\text{ fb }^{-1}\\). Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-\\(k_{t}\\) algorithm with distance parameters \\(R=0.4\\) or \\(R=0.6\\), and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transversemore » momentum balance between a jet and a reference object such as a photon or a \\(Z\\) boson, for \\({20} \\le p_{\\mathrm {T}}^\\mathrm {jet}<{1000}\\, ~\\mathrm{GeV }\\) and pseudorapidities \\(|\\eta |<{4.5}\\). The effect of multiple proton–proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region (\\(|\\eta |<{1.2}\\)) for jets with \\({55} \\le p_{\\mathrm {T}}^\\mathrm {jet}<{500}\\, ~\\mathrm{GeV }\\). For central jets at lower \\(p_{\\mathrm {T}}\\), the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton–proton collisions and test-beam data, which also provide the estimate for \\(p_{\\mathrm {T}}^\\mathrm {jet}> 1\\) TeV. The calibration of forward jets is derived from dijet \\(p_{\\mathrm {T}}\\) balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-\\(p_{\\mathrm {T}}\\) jets at \\(|\\eta |=4.5\\). In addition, JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5–3 %.« less

  4. Ejector Noise Suppression with Auxiliary Jet Injection

    NASA Technical Reports Server (NTRS)

    Berman, Charles H.; Andersen, Otto P., Jr.

    1997-01-01

    An experimental program to reduce aircraft jet turbulence noise investigated the interaction of small auxiliary jets with a larger main jet. Significant reductions in the far field jet noise were obtained over a range of auxiliary jet pressures and flow rates when used in conjunction with an acoustically lined ejector. While the concept is similar to that of conventional ejector suppressors that use mechanical mixing devices, the present approach should improve thrust and lead to lower weight and less complex noise suppression systems since no hardware needs to be located in the main jet flow. A variety of auxiliary jet and ejector configurations and operating conditions were studied. The best conditions tested produced peak to peak noise reductions ranging from 11 to 16 dB, depending on measurement angle, for auxiliary jet mass flows that were 6.6% of the main jet flow with ejectors that were 8 times the main jet diameter in length. Much larger reductions in noise were found at the original peak frequencies of the unsuppressed jet over a range of far field measurement angles.

  5. Collective emission of matter-wave jets from driven Bose-Einstein condensates.

    PubMed

    Clark, Logan W; Gaj, Anita; Feng, Lei; Chin, Cheng

    2017-11-16

    Scattering is used to probe matter and its interactions in all areas of physics. In ultracold atomic gases, control over pairwise interactions enables us to investigate scattering in quantum many-body systems. Previous experiments on colliding Bose-Einstein condensates have revealed matter-wave interference, haloes of scattered atoms, four-wave mixing and correlations between counter-propagating pairs. However, a regime with strong stimulation of spontaneous collisions analogous to superradiance has proved elusive. In this regime, the collisions rapidly produce highly correlated states with macroscopic population. Here we find that runaway stimulated collisions in Bose-Einstein condensates with periodically modulated interaction strength cause the collective emission of matter-wave jets that resemble fireworks. Jets appear only above a threshold modulation amplitude and their correlations are invariant even when the number of ejected atoms grows exponentially. Hence, we show that the structures and atom occupancies of the jets stem from the quantum fluctuations of the condensate. Our findings demonstrate the conditions required for runaway stimulated collisions and reveal the quantum nature of matter-wave emission.

  6. Analytical and experimental study of the acoustics and the flow field characteristics of cavitating self-resonating water jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chahine, G.L.; Genoux, P.F.; Johnson, V.E. Jr.

    1984-09-01

    Waterjet nozzles (STRATOJETS) have been developed which achieve passive structuring of cavitating submerged jets into discrete ring vortices, and which possess cavitation incipient numbers six times higher than obtained with conventional cavitating jet nozzles. In this study we developed analytical and numerical techniques and conducted experimental work to gain an understanding of the basic phenomena involved. The achievements are: (1) a thorough analysis of the acoustic dynamics of the feed pipe to the nozzle; (2) a theory for bubble ring growth and collapse; (3) a numerical model for jet simulation; (4) an experimental observation and analysis of candidate second-generation low-sigmamore » STRATOJETS. From this study we can conclude that intensification of bubble ring collapse and design of highly resonant feed tubes can lead to improved drilling rates. The models here described are excellent tools to analyze the various parameters needed for STRATOJET optimizations. Further analysis is needed to introduce such important factors as viscosity, nozzle-jet interaction, and ring-target interaction, and to develop the jet simulation model to describe the important fine details of the flow field at the nozzle exit.« less

  7. An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harlim, John, E-mail: jharlim@psu.edu; Mahdi, Adam, E-mail: amahdi@ncsu.edu; Majda, Andrew J., E-mail: jonjon@cims.nyu.edu

    2014-01-15

    A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partialmore » noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model.« less

  8. Low Frequency Noise Contamination in Fan Model Testing

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Schifer, Nicholas A.

    2008-01-01

    Aircraft engine noise research and development depends on the ability to study and predict the noise created by each engine component in isolation. The presence of a downstream pylon for a model fan test, however, may result in noise contamination through pylon interactions with the free stream and model exhaust airflows. Additionally, there is the problem of separating the fan and jet noise components generated by the model fan. A methodology was therefore developed to improve the data quality for the 9 15 Low Speed Wind Tunnel (LSWT) at the NASA Glenn Research Center that identifies three noise sources: fan noise, jet noise, and rig noise. The jet noise and rig noise were then measured by mounting a scale model of the 9 15 LSWT model fan installation in a jet rig to simulate everything except the rotating machinery and in duct components of fan noise. The data showed that the spectra measured in the LSWT has a strong rig noise component at frequencies as high as 3 kHz depending on the fan and airflow fan exit velocity. The jet noise was determined to be significantly lower than the rig noise (i.e., noise generated by flow interaction with the downstream support pylon). A mathematical model for the rig noise was then developed using a multi-dimensional least squares fit to the rig noise data. This allows the rig noise to be subtracted or removed, depending on the amplitude of the rig noise relative to the fan noise, at any given frequency, observer angle, or nozzle pressure ratio. The impact of isolating the fan noise with this method on spectra, overall power level (OAPWL), and Effective Perceived Noise Level (EPNL) is studied.

  9. Three-dimensional particle-in-cell simulations of a plasma jet/cloud streaming across a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Voitcu, Gabriel; Echim, Marius

    2014-05-01

    The dynamics of collisionless plasma jets/clouds in magnetic field configurations typical for the terrestrial magnetotail and frontside magnetosheath is a topic of interest for understanding the physics of the magnetosphere and its interaction with the solar wind. The presence of high-speed jets in the frontside magnetosheath has been recently proved experimentally by Cluster and THEMIS spacecrafts. There is increasing evidence that the bursty bulk flows in the magnetotail have jet-like features. In the present paper we use fully electromagnetic 3D explicit particle-in-cell (PIC) simulations to investigate the interaction of a localized three-dimensional plasma element/jet/cloud with a transverse magnetic field. We consider a plasma jet/cloud that moves in vacuum and perpendicular to an ambient magnetic field. Ampère and Faraday's laws are used to compute the self-consistent electric and magnetic fields on a three-dimensional spatial grid having a step-size of the order of the Debye length and using a time-step that resolves the plasma frequency. The initial magnetic field inside the simulation domain is uniform and the plasma bulk velocity at the beginning of the simulation is normal to the magnetic field direction. The total time scale of the simulation is of the order of few ion Larmor periods. Space and time variations of the plasma parameters and of the electromagnetic field are analyzed and discussed. We emphasize non-MHD effects like the energy-dispersion signatures at the edges of the plasma element, similar to results previously reported by Voitcu and Echim (2012) using test-kinetic simulations. Acknowledgments: Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 313038/STORM, and a grant of the Romanian Ministry of National Education, CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.

  10. Numerically calibrated model for propagation of a relativistic unmagnetized jet in dense media

    NASA Astrophysics Data System (ADS)

    Harrison, Richard; Gottlieb, Ore; Nakar, Ehud

    2018-06-01

    Relativistic jets reside in high-energy astrophysical systems of all scales. Their interaction with the surrounding media is critical as it determines the jet evolution, observable signature, and feedback on the environment. During its motion, the interaction of the jet with the ambient media inflates a highly pressurized cocoon, which under certain conditions collimates the jet and strongly affects its propagation. Recently, Bromberg et al. derived a general simplified (semi-)analytic solution for the evolution of the jet and the cocoon in case of an unmagnetized jet that propagates in a medium with a range of density profiles. In this work we use a large suite of 2D and 3D relativistic hydrodynamic simulations in order to test the validity and accuracy of this model. We discuss the similarities and differences between the analytic model and numerical simulations and also, to some extent, between 2D and 3D simulations. Our main finding is that although the analytic model is highly simplified, it properly predicts the evolution of the main ingredients of the jet-cocoon system, including its temporal evolution and the transition between various regimes (e.g. collimated to uncollimated). The analytic solution predicts a jet head velocity that is faster by a factor of about 3 compared to the simulations, as long as the head velocity is Newtonian. We use the results of the simulations to calibrate the analytic model which significantly increases its accuracy. We provide an applet that calculates semi-analytically the propagation of a jet in an arbitrary density profile defined by the user at http://www.astro.tau.ac.il/˜ore/propagation.html.

  11. The Highest Resolution Chandra View of Photoionization and Jet-Cloud Interaction in the Nuclear Region of NGC 4151

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, G.; Karovska, M.; Elvis, M.; Risaliti, G.; Zezas, A.; Mundell, C. G.

    2009-10-01

    We report high resolution imaging of the nucleus of the Seyfert 1 galaxy NGC 4151 obtained with a 50 ks Chandra High Resolution Camera (HRC) observation. The HRC image resolves the emission on spatial scales of 0farcs5, ~30 pc, showing an extended X-ray morphology overall consistent with the narrow-line region (NLR) seen in optical line emission. Removal of the bright point-like nuclear source and image deconvolution techniques both reveal X-ray enhancements that closely match the substructures seen in the Hubble Space Telescope [O III] image and prominent knots in the radio jet. We find that most of the NLR clouds in NGC 4151 have [O III]/soft X-ray ratio ~10, despite the distance of the clouds from the nucleus. This ratio is consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii and a density decreasing as r -2 as expected for a nuclear wind scenario. The [O III]/X-ray ratios at the location of radio knots show an excess of X-ray emission, suggesting shock heating in addition to photoionization. We examine various mechanisms for the X-ray emission and find that, in contrast to jet-related X-ray emission in more powerful active galactic nucleus, the observed jet parameters in NGC 4151 are inconsistent with synchrotron emission, synchrotron self-Compton, inverse Compton of cosmic microwave background photons or galaxy optical light. Instead, our results favor thermal emission from the interaction between radio outflow and NLR gas clouds as the origin for the X-ray emission associated with the jet. This supports previous claims that frequent jet-interstellar medium interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated, distinct from those kpc-scale jets in the radio galaxies.

  12. Experimental Investigation of Normal Shock Boundary-Layer Interaction with Hybrid Flow Control

    NASA Technical Reports Server (NTRS)

    Vyas, Manan A.; Hirt, Stefanie M.; Anderson, Bernhard H.

    2012-01-01

    Hybrid flow control, a combination of micro-ramps and micro-jets, was experimentally investigated in the 15x15 cm Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Full factorial, a design of experiments (DOE) method, was used to develop a test matrix with variables such as inter-ramp spacing, ramp height and chord length, and micro-jet injection flow ratio. A total of 17 configurations were tested with various parameters to meet the DOE criteria. In addition to boundary-layer measurements, oil flow visualization was used to qualitatively understand shock induced flow separation characteristics. The flow visualization showed the normal shock location, size of the separation, path of the downstream moving counter-rotating vortices, and corner flow effects. The results show that hybrid flow control demonstrates promise in reducing the size of shock boundary-layer interactions and resulting flow separation by means of energizing the boundary layer.

  13. Innovative diagnostics for ITER physics addressed in JET

    NASA Astrophysics Data System (ADS)

    Murari, A.; Edlington, T.; Alfier, A.; Alonso, A.; Andrew, Y.; Arnoux, G.; Beurskens, M.; Coad, P.; Crombe, C.; Gauthier, E.; Giroud, C.; Hidalgo, C.; Hong, S.; Kempenaars, M.; Kiptily, V.; Loarer, T.; Meigs, A.; Pasqualotto, R.; Tala, T.; Contributors, JET-EFDA

    2008-12-01

    In recent years, JET diagnostic capability has been significantly improved to widen the range of physical phenomena that can be studied and thus contribute to the understanding of some ITER relevant issues. The most significant results reported in this paper refer to the plasma wall interactions, the interplay between core and edge physics and fast particles. A synergy between new infrared cameras, visible cameras and spectroscopy diagnostics has allowed investigating a series of new aspects of the plasma wall interactions. The power loads on the plasma facing components of JET main chambers have been assessed at steady state and during transient events like ELMs and disruptions. Evidence of filaments in the edge region of the plasma has been collected with a new fast visible camera and high resolution Thomson scattering. The physics of detached plasmas and some new aspects of dust formation have also been devoted particular attention. The influence of the edge plasma on the core has been investigated with upgraded active spectroscopy, providing new information on momentum transport and the effects of impurity injection on ELMs and ITBs and their interdependence. Given the fact that JET is the only machine with a plasma volume big enough to confine the alphas, a coherent programme of diagnostic developments for the energetic particles has been undertaken. With upgraded γ-ray spectroscopy and a new scintillator probe, it is now possible to study both the redistribution and the losses of the fast particles in various plasma conditions.

  14. Shock-wave proton acceleration from a hydrogen gas jet

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  15. On the generation of magnetosheath high-speed jets by bow shock ripples.

    PubMed

    Hietala, H; Plaschke, F

    2013-11-01

    [1]The terrestrial magnetosheath is embedded with coherent high-speed jets of about 1 R E in scale, predominantly during quasi-radial interplanetary magnetic field (IMF). When these high dynamic pressure ( P dyn ) jets hit the magnetopause, they cause large indentations and further magnetospheric effects. The source of these jets has remained controversial. One of the proposed mechanisms is based on ripples of the quasi-parallel bow shock. In this paper, we combine for the first time, 4 years of subsolar magnetosheath observations from the Time History of Events and Macroscale Interactions during Substorms mission and corresponding NASA/OMNI solar wind conditions with model calculations of a rippled bow shock. Concentrating on the magnetosheath close to the shock during intervals when the angle between the IMF and the Sun-Earth line was small, we find that (1) 97% of the observed jets can be produced by local ripples of the shock under the observed upstream conditions; (2) the coherent jets form a significant fraction of the high P dyn tail of the magnetosheath flow distribution; (3) the magnetosheath P dyn distribution matches the flow from a bow shock with ripples that have a dominant amplitude to wavelength ratio of about 9% (∼0.1 R E /1 R E ) and are present ∼12 % of the time at any given location.

  16. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 1: Wind tunnel test pressure data report

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.; Devereaux, P. A.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 1 of 2: Wind Tunnel Test Pressure Data Report.

  17. Single inclusive jet production and the nuclear modification ratio at very forward rapidity in proton-lead collisions with √{sNN } = 5.02 TeV

    NASA Astrophysics Data System (ADS)

    Bury, Marcin; Van Haevermaet, Hans; Van Hameren, Andreas; Van Mechelen, Pierre; Kutak, Krzysztof; Serino, Mirko

    2018-05-01

    We present calculations of single inclusive jet transverse momentum and energy spectra at forward rapidity (5.2 < y < 6.6) in proton-lead collisions with √{sNN } = 5.02 TeV. The predictions are obtained with the KaTie Monte Carlo event generator, which allows to calculate interactions within the High Energy Factorisation framework. The tree-level matrix element results are subsequently interfaced with the CASCADE Monte Carlo event generator to account for hadronisation. The effects of the saturation of the gluon density, leading to suppression of the cross section, are investigated.

  18. Optical diagnostics of mercury jet for an intense proton target.

    PubMed

    Park, H; Tsang, T; Kirk, H G; Ladeinde, F; Graves, V B; Spampinato, P T; Carroll, A J; Titus, P H; McDonald, K T

    2008-04-01

    An optical diagnostic system is designed and constructed for imaging a free mercury jet interacting with a high intensity proton beam in a pulsed high-field solenoid magnet. The optical imaging system employs a backilluminated, laser shadow photography technique. Object illumination and image capture are transmitted through radiation-hard multimode optical fibers and flexible coherent imaging fibers. A retroreflected illumination design allows the entire passive imaging system to fit inside the bore of the solenoid magnet. A sequence of synchronized short laser light pulses are used to freeze the transient events, and the images are recorded by several high speed charge coupled devices. Quantitative and qualitative data analysis using image processing based on probability approach is described. The characteristics of free mercury jet as a high power target for beam-jet interaction at various levels of the magnetic induction field is reported in this paper.

  19. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet with Shock Interactions

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Denison, Marie; Sozer, Emre; Moini-Yekta, Shayan

    2016-01-01

    NASA and Industry are performing vehicle studies of configurations with low sonic boom pressure signatures. The computational analyses of modern configuration designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty in the aft signatures with often greater boundary layer effects and nozzle jet pressures. Wind tunnel testing at significantly lower Reynolds numbers than in flight and without inlet and nozzle jet pressures make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel from Mach 1.6 to 2.0 will be used to assess the effects of shocks from components passing through nozzle jet plumes on the sonic boom pressure signature and provide datasets for comparison with CFD codes. A large number of high-fidelity numerical simulations of wind tunnel test models with a variety of shock generators that simulate horizontal tails and aft decks have been studied to provide suitable models for sonic boom pressure measurements using a minimally intrusive pressure rail in the wind tunnel. The computational results are presented and the evolution of candidate wind tunnel models is summarized and discussed in this paper.

  20. Fluid-acoustic interactions in a low area ratio supersonic jet ejector

    NASA Technical Reports Server (NTRS)

    Krothapalli, Anjaneyulu; Ross, Christopher; Yamomoto, K.; Joshi, M. C.

    1994-01-01

    An experimental investigation carried out to determine aerodynamic and acoustic characteristics of a low area ratio rectangular jet ejector is reported. A supersonic primary jet issuing from a rectangular convergent-divergent nozzle of aspect ratio 4, into a rectangular duct of area ratio 3, was used. Improved performance was found when the ejector screech tone is most intense and appears to match the most unstable Strouhal number of the free rectangular jet. When the primary jet was operating at over and ideally expanded conditions, significant noise reduction was obtained with the ejector as compared to a corresponding free jet. Application of particle image velocimetry to high speed ejector flows was demonstrated through the measurement of instantaneous two dimensional velocity fields.

  1. Electrohydrodynamic (EHD) stimulation of jet breakup

    NASA Technical Reports Server (NTRS)

    Crowley, J. M.

    1982-01-01

    Electrohydrodynamic (EHD) excitation of liquid jets offers an alternative to piezoelectric excitation without the complex frequency response caused by piezoelectric and mechanical resonances. In an EHD exciter, an electrode near the nozzle applies an alternating Coulomb force to the jet surface, generating a disturbance which grows until a drop breaks off downstream. This interaction is modelled quite well by a linear, long wave model of the jet together with a cylindrical electric field. The breakup length, measured on a 33 micrometer jet, agrees quite well with that predicted by the theory, and increases with the square of the applied voltage, as expected. In addition, the frequency response is very smooth, with pronounced nulls occurring only at frequencies related to the time which the jet spends inside the exciter.

  2. Observation of two-jet production in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Repond, S.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; Del Papa, C.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Lin, Q.; Lisowski, B.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Dabbous, H.; Desch, K.; Diekmann, B.; Doeker, T.; Geerts, M.; Geitz, G.; Gutjahr, B.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Kramarczyk, S.; Kückes, M.; Mass, A.; Mengel, S.; Mollen, J.; Monaldi, D.; Müsch, H.; Paul, E.; Schattevoy, R.; Schneider, J.-L.; Wedemeyer, R.; Cassidy, A.; Cussans, D. G.; Dyce, N.; Fawcett, H. F.; Foster, B.; Gilmore, R.; Heath, G. P.; Lancaster, M.; Llewellyn, T. J.; Malos, J.; Morgado, C. J. S.; Tapper, R. J.; Wilson, S. S.; Rau, R. R.; Arneodo, M.; Barillari, T.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Gialas, I.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Chwastowski, J.; Dwuraźny, A.; Eskreys, A.; Jakubowski, Z.; Niziom̵, B.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Bednarek, B.; Borzemski, P.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kȩdzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Coldewey, C.; Dannemann, A.; Drews, G.; Erhard, P.; Flasiński, M.; Fleck, I.; Gläser, R.; Göttlicher, P.; Haas, T.; Hagge, L.; Hain, W.; Hasell, D.; Hultschig, H.; Jahnen, G.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Krüger, J.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Manczak, O.; Momayezi, M.; Ng, J. S. T.; Nickel, S.; Notz, D.; Park, I. H.; Pösnecker, K.-U.; Rohde, M.; Roldán, J.; Ros, E.; Schneekloth, U.; Schroeder, J.; Schulz, W.; Selonke, F.; Stiliaris, E.; Tscheslog, E.; Tsurugai, T.; Turkot, F.; Vogel, W.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlenstedt, S.; Barbagli, G.; Francescato, A.; Nuti, M.; Pelfer, P.; Anzivino, G.; Casaccia, R.; De Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Forbes, J. R.; Jamieson, V. A.; Raine, C.; Saxon, D. H.; Brückmann, H.; Gloth, G.; Holm, U.; Kammerlocher, H.; Krebs, B.; Neumann, T.; Wick, K.; Fürtjes, A.; Kröger, W.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Seidman, A.; Schott, W.; Terron, J.; Wiik, B. H.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Markou, C.; McQuillan, D.; Miller, D. B.; Mobayyen, M. M.; Prinias, A.; Vorvolakos, A.; Bienz, T.; Kreutzmann, H.; Mallik, U.; McCliment, E.; Roco, M.; Wang, M. Z.; Cloth, P.; Filges, D.; Chen, L.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Barreiro, F.; Cases, G.; Hervás, L.; Labarga, L.; del Peso, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Gilkinson, D. J.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Meijer Drees, R.; Mitchell, J. W.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Ullmann, R.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kuzmin, V. A.; Kuznetsov, E. N.; Savin, A. A.; Voronin, A. G.; Zotov, N. P.; Bentvelsen, S.; Botje, M.; Dake, A.; Engelen, J.; de Jong, P.; de Kamps, M.; Kooijman, P.; Kruse, A.; van der Lugt, H.; O'Dell, V.; Tenner, A.; Tiecke, H.; Uijterwaal, H.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Yoshida, R.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, S. K.; Romanowski, T. A.; Seidlein, R.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Gingrich, D. M.; Hallam-Baker, P. M.; Harnew, N.; Khatri, T.; Long, K. R.; Luffman, P.; McArthur, I.; Morawitz, P.; Nash, J.; Smith, S. J. P.; Roocroft, N. C.; Wilson, F. F.; Abbiendi, G.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Gasparini, F.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Butterworth, J. M.; Bulmahn, J.; Field, G.; Oh, B. Y.; Whitmore, J.; Contino, U.; D'Agostini, G.; Guida, M.; Iori, M.; Mari, S. M.; Marini, G.; Mattioli, M.; Nigro, A.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Heusch, C.; Hubbard, B.; Leslie, J.; Lockman, W.; O'Shaughnessy, K.; Sadrozinski, H. F.; Seiden, A.; Badura, E.; Biltzinger, J.; Chaves, H.; Rost, M.; Seifert, R. J.; Walenta, A. H.; Weihs, W.; Zech, G.; Dagan, S.; Levy, A.; Zer-Zion, D.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kasai, S.; Kuze, M.; Nagasawa, Y.; Nakao, M.; Okuno, H.; Tokushuku, K.; Watanabe, T.; Yamada, S.; Chiba, M.; Hamatsu, R.; Hirose, T.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Bhadra, S.; Brkic, M.; Burow, B. D.; Chlebana, F. S.; Crombie, M. B.; Hartner, G. F.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Prentice, J. D.; Sampson, C. R.; Stairs, G. G.; Teuscher, R. J.; Yoon, T.-S.; Bullock, F. W.; Catterall, C. D.; Giddings, J. C.; Jones, T. W.; Khan, A. M.; Lane, J. B.; Makkar, P. L.; Shaw, D.; Shulman, J.; Blankenship, K.; Gibaut, D. B.; Kochocki, J.; Lu, B.; Mo, L. W.; Charchum̵a, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Stopczyński, A.; Tymieniecka, T.; Walczak, R.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Abramowicz, H.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Montag, A.; Revel, D.; Shapira, A.; Foudas, C.; Fordham, C.; Loveless, R. J.; Goussiou, A.; Ali, I.; Behrens, B.; Dasu, S.; Reeder, D. D.; Smith, W. H.; Silverstein, S.; Frisken, W. R.; Furutani, K. M.; Iga, Y.; ZEUS Collaboration

    1993-05-01

    A sample of events with two distinct jets, in addition to the proton remnant, has been identified in deep inelastic, neutral current ep interactions recorded at HERA by the ZEUS experiment. For these events, the mass of the hadronic system ranges from 40 to 260 GeV. The salient features of the observed jet production agree with the predictions of higher order QCD.

  3. Effects of diabatic heating on the ageostrophic circulation of an upper tropospheric jet streak

    NASA Technical Reports Server (NTRS)

    Keyser, D. A.; Johnson, D. R.

    1982-01-01

    Interaction between the mass circulation within a mesoscale convective complex (MCC) and a direct mass circulation in the entrance region of an upper tropospheric polar jet streak was examined within the isentropic structure to investigate mechanisms responsible for linking these two scales of motion. The results establish that latent heating in the MCC modifies the direct mass circulation in the jet streak entrance region through the diabatically induced components of ageostrophic motion analyzed within isentropic coordinates. Within the strong mesoscale mass circulation of each MCC, strong horizontal mass flux convergence into the MCC at low levels is balanced by strong horizontal mass flux divergence away from the convergence at upper levels. Locations of large diabatic heating rates correspond well to the MCC position for each case; diabatic heating forces the upward vertical branch for the mesoscale mass circulation.

  4. A computational model for the prediction of jet entrainment in the vicinity of nozzle boattails (the BOAT code)

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Pergament, H. S.

    1978-01-01

    The development of a computational model (BOAT) for calculating nearfield jet entrainment, and its incorporation in an existing methodology for the prediction of nozzle boattail pressures, is discussed. The model accounts for the detailed turbulence and thermochemical processes occurring in the mixing layer formed between a jet exhaust and surrounding external stream while interfacing with the inviscid exhaust and external flowfield regions in an overlaid, interactive manner. The ability of the BOAT model to analyze simple free shear flows is assessed by comparisons with fundamental laboratory data. The overlaid procedure for incorporating variable pressures into BOAT and the entrainment correction employed to yield an effective plume boundary for the inviscid external flow are demonstrated. This is accomplished via application of BOAT in conjunction with the codes comprising the NASA/LRC patched viscous/inviscid methodology for determining nozzle boattail drag for subsonic/transonic external flows.

  5. Correlations of heavy quarks produced at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Younus, Mohammed; Jamil, Umme; Srivastava, Dinesh K.

    2012-02-01

    We study the correlations of heavy quarks produced in relativistic heavy-ion collisions and find them to be quite sensitive to the effects of the medium and the production mechanisms. In order to put this on a quantitative footing, as a first step, we analyze the azimuthal, transverse momentum, and rapidity correlations of heavy quark-antiquark (Q\\overline{Q}) pairs in pp collisions at {O}(α3s). This sets the stage for the identification and study of medium modification of similar correlations in the relativistic collision of heavy nuclei at the Large Hadron Collider. Next we study the additional production of charm quarks in heavy ion collisions due to multiple scatterings, namely jet-jet collisions, jet-thermal collisions, and thermal interactions. We find that these give rise to azimuthal correlations which are quite different from those arising from the prompt initial production at leading order and at next to leading order. Communicated by Professor Steffen Bass.

  6. Relating a Jet-Surface Interaction Experiment to a Commercial Supersonic Transport Aircraft Using Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F., III; Friedlander, David

    2017-01-01

    NASA and industry partners desire to reintroduce commercial supersonic airliners to the air transportation system. There are a number of technical challenges that must be overcome by future commercial supersonic airliners to make them viable solutions in society. NASA is specifically concerned with the challenges of reducing boom during supersonic cruise, maximizing range, and reducing airport community noise to acceptable levels. Concepts for commercial supersonic transports, such as the concept aircraft by Lockheed Martin pictured in Figure 1, place the engine nozzles in close proximity to wing and tail surfaces. However, the effects of noise shielding and noise radiation are not fully understood for installed propulsion systems. A series of acoustic tests were conducted on the NASA Glenn Research Centers Nozzle Acoustic Test Rig (NATR) to address the challenge of reducing airport community noise, which is often dominated by jet noise. To best represent the conceptual aircraft in the acoustic tests, noise measurements were taken of the jet in close proximity of simulated aerodynamic surfaces, not simply of an isolated jet.

  7. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-05-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  8. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes. [predicting afterbody drag

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-01-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  9. Search for anomalous C-jets in Chacaltaya emulsion chamber experiment

    NASA Technical Reports Server (NTRS)

    Kumano, H.

    1985-01-01

    Anomalous C-jets were measured in Chacaltaya emulsion chamber No.17. Measurement of 150 C-jets nuclear interactions occured in the target layer in the chamber itself with total visible energy greater than 5 TeV was completed. they are recorded in area of 11 sq m, corresponding to 17.1 sq m year exposure. Among them, seven events have no pinaught and two events are peculiar in that three showers out of four show abnormal cascade development. Two show remarkable characteristics indicating that they are coming from exotic interactions in the target layer. Illustrations of these events are presented and the thresholds of this type of event are discussed.

  10. A study of the variable impedance surface concept as a means for reducing noise from jet interaction with deployed lift-augmenting flaps

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Kadman, Y.; Chanaud, R. C.

    1972-01-01

    The feasibility of quieting the externally-blown-flap (EBF) noise sources which are due to interaction of jet exhaust flow with deployed flaps was demonstrated on a 1/15-scale 3-flap EBF model. Sound field characteristics were measured and noise reduction fundamentals were reviewed in terms of source models. Test of the 1/15-scale model showed broadband noise reductions of up to 20 dB resulting from combination of variable impedance flap treatment and mesh grids placed in the jet flow upstream of the flaps. Steady-state lift, drag, and pitching moment were measured with and without noise reduction treatment.

  11. Modelling cavitation erosion using fluid–material interaction simulations

    PubMed Central

    Chahine, Georges L.; Hsiao, Chao-Tsung

    2015-01-01

    Material deformation and pitting from cavitation bubble collapse is investigated using fluid and material dynamics and their interaction. In the fluid, a novel hybrid approach, which links a boundary element method and a compressible finite difference method, is used to capture non-spherical bubble dynamics and resulting liquid pressures efficiently and accurately. The bubble dynamics is intimately coupled with a finite-element structure model to enable fluid/structure interaction simulations. Bubble collapse loads the material with high impulsive pressures, which result from shock waves and bubble re-entrant jet direct impact on the material surface. The shock wave loading can be from the re-entrant jet impact on the opposite side of the bubble, the fast primary collapse of the bubble, and/or the collapse of the remaining bubble ring. This produces high stress waves, which propagate inside the material, cause deformation, and eventually failure. A permanent deformation or pit is formed when the local equivalent stresses exceed the material yield stress. The pressure loading depends on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall and the pressure driving the bubble collapse. The effects of standoff and material type on the pressure loading and resulting pit formation are highlighted and the effects of bubble interaction on pressure loading and material deformation are preliminarily discussed. PMID:26442140

  12. Jet-Surface Interaction Test: Flow Measurements Results

    NASA Technical Reports Server (NTRS)

    Brown, Cliff; Wernet, Mark

    2014-01-01

    Modern aircraft design often puts the engine exhaust in close proximity to the airframe surfaces. Aircraft noise prediction tools must continue to develop in order to meet the challenges these aircraft present. The Jet-Surface Interaction Tests have been conducted to provide a comprehensive quality set of experimental data suitable for development and validation of these exhaust noise prediction methods. Flow measurements have been acquired using streamwise and cross-stream particle image velocimetry (PIV) and fluctuating surface pressure data acquired using flush mounted pressure transducers near the surface trailing edge. These data combined with previously reported far-field and phased array noise measurements represent the first step toward the experimental data base. These flow data are particularly applicable to development of noise prediction methods which rely on computational fluid dynamics to uncover the flow physics. A representative sample of the large flow data set acquired is presented here to show how a surface near a jet affects the turbulent kinetic energy in the plume, the spatial relationship between the jet plume and surface needed to generate surface trailing-edge noise, and differences between heated and unheated jet flows with respect to surfaces.

  13. Interaction of a Rectangular Jet with a Flat-Plate Placed Parallel to the Flow

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Brown, C. A.; Bridges, J. A.

    2013-01-01

    An experimental study is carried out addressing the flowfield and radiated noise from the interaction of a large aspect ratio rectangular jet with a flat plate placed parallel to but away from the direct path of the jet. Sound pressure level spectra exhibit an increase in the noise levels for both the 'reflected' and 'shielded' sides of the plate relative to the free-jet case. Detailed cross-sectional distributions of flowfield properties obtained by hot-wire anemometry are documented for a low subsonic condition. Corresponding mean Mach number distributions obtained by Pitot-probe surveys are presented for high subsonic conditions. In the latter flow regime and for certain relative locations of the plate, a flow resonance accompanied by audible tones is encountered. Under the resonant condition the jet cross-section experiences an 'axis-switching' and flow visualization indicates the presence of an organized 'vortex street'. The trends of the resonant frequency variation with flow parameters exhibit some similarities to, but also marked differences with, corresponding trends of the well-known edgetone phenomenon.

  14. Electrospray performance of interacting multi-capillary emitters in a linear array

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Srivastava, A.; Shanbhogue, K. M.; Ingersol, S.; Sen, A. K.

    2018-03-01

    Here, we report electrospray performance of multiple emitters (of internal diameter 200 µm) arranged in a linear (inline) array. For a fixed flow rate Q , at higher voltages {{V}a} , multi-jet mode is observed, which leads to a rapid increase in the spray current (I∼ {{V}a} ) as compared to the single cone-jet case (I∼ Va0.8 ). A theoretical model is presented that predicts (within 10% of experimental data) the divergence of sprays g(x) issued from a pair of interacting emitters due to the mutual Columbic interaction of space charges. The variation of onset voltage {{V}o} and spray current I with spacing between the emitters p is studied and it is found that {{V}o}∼ {{p}-0.2} and I∼ {{p}0.8} . The effect of the flow rate Q , voltage V and number of emitters ~n~ on the spray current I is investigated and it is found that I∼ {{Q}0.5} , I∼ Va0.8 and I∼ \\sqrt{n} . The present work provides insight regarding the behavior of interacting sprays in an inline configuration and could be significant in the design of multiple emitter systems for electrospray applications.

  15. A ray tracing model of gravity wave propagation and breakdown in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.

    1985-01-01

    Gravity wave ray tracing and wave packet theory is used to parameterize wave breaking in the mesosphere. Rays are tracked by solving the group velocity equations, and the interaction with the basic state is determined by considering the evolution of the packet wave action density. The ray tracing approach has a number of advantages over the steady state parameterization as the effects of gravity wave focussing and refraction, local dissipation, and wave response to rapid changes in the mean flow are more realistically considered; however, if steady state conditions prevail, the method gives identical results. The ray tracing algorithm is tested using both interactive and noninteractive models of the basic state. In the interactive model, gravity wave interaction with the polar night jet on a beta-plane is considered. The algorithm produces realistic polar night jet closure for weak topographic forcing of gravity waves. Planetary scale waves forced by local transfer of wave action into the basic flow in turn transfer their wave action into the zonal mean flow. Highly refracted rays are also found not to contribute greatly to the climatology of the mesosphere, as their wave action is severely reduced by dissipation during their lateral travel.

  16. A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam

    NASA Astrophysics Data System (ADS)

    Graves, Van; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques

    2006-06-01

    A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high-Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×1012 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.

  17. A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam

    NASA Astrophysics Data System (ADS)

    Van Graves; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques

    2006-06-01

    A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high- Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×10 12 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.

  18. Experimental investigation of jet-induced loads on a flat plate in hover out-of-ground effect

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.; Warcup, R. W.

    1979-01-01

    Effects of varying jet decay rate on jet-induced loads on a flat plate located in the plane of the jet exit perpendicular to the jet axis were investigated using a small-scale laboratory facility. Jet decay rate has been varied through use of two cylindrical centerbodies having either a flat or hemispherical tip, which were submerged various distances below the flat plate jet exit plane. Increased jet decay rate, caused by the presence of a center-body or plug in the jet nozzle, led to an increased jet-induced lift loss on the flat plate. Jet-induced lift losses reached 1 percent of the jet thrust for the quickest jet decay rates for plate areas equal to 100 times the effective jet exit area. The observed lift loss versus jet decay rate trend agreed well with results of previous investigations.

  19. Experimental and Theoretical Studies of Axisymmetric Free Jets

    NASA Technical Reports Server (NTRS)

    Love, Eugene S.; Grigsby, Carl E.; Lee, Louise P.; Woodling, Mildred J.

    1959-01-01

    Some experimental and theoretical studies have been made of axisymmetric free jets exhausting from sonic and supersonic nozzles into still air and into supersonic streams with a view toward problems associated with propulsive jets and the investigation of these problems. For jets exhausting into still air, consideration is given to the effects of jet Mach number, nozzle divergence angle, and jet static pressure ratio upon jet structure, jet wavelength, and the shape and curvature of the jet boundary. Studies of the effects of the ratio of specific heats of the jets are included are observations pertaining to jet noise and jet simulation. For jets exhausting into supersonic streams, an attempt has been made to present primarily theoretical certain jet interference effects and in formulating experimental studies. The primary variables considered are jet Mach number, free stream Mach number, jet static pressure ratio, ratio of specific heats of the jet, nozzle exit angle, and boattail angle. The simulation problem and the case of a hypothetical hypersonic vehicle are examined, A few experimental observations are included.

  20. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.

    2015-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 900 observation angle, the low-frequency noise could be as much as 10dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite de-correlation region. Numerical predictions, based on three-dimensional RANS solutions for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region increases the low-frequency algebraic decay (the low frequency "rolloff") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal numbers less than 0.1. Secondly, the large-aspectratio theory is able to predict the low-frequency amplification due to the jet-edge interaction reasonably well, even for moderate aspect ratio nozzles. We show also that the noise predictions for smaller aspect ratio jets can be fine-tuned using the appropriate RANS-based mean flow and turbulence properties.

  1. Aerodynamic interactions from reaction controls for lateral control of the M2-F2 lifting-body entry configuration at transonic and supersonic and supersonic Mach numbers. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Bailey, R. O.; Brownson, J. J.

    1979-01-01

    Tests were conducted in the Ames 6 by 6 foot wind tunnel to determine the interaction of reaction jets for roll control on the M2-F2 lifting-body entry vehicle. Moment interactions are presented for a Mach number range of 0.6 to 1.7, a Reynolds number range of 1.2 x 10 to the 6th power to 1.6 x 10 to the 6th power (based on model reference length), an angle-of-attack range of -9 deg to 20 deg, and an angle-of-sideslip range of -6 deg to 6 deg at an angle of attack of 6 deg. The reaction jets produce roll control with small adverse yawing moment, which can be offset by horizontal thrust component of canted jets.

  2. Parametric Time-Dependent Navier-Stokes Computations for a YAV-8B Harrier in Ground Effect

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Pandya, Shishir; Ahmad, Jasim; Murman, Scott; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The Harrier Jump Jet has the distinction of being the only powered-lift aircraft in the free world to achieve operational status and to have flown in combat. This V/STOL aircraft can take-off and land vertically or utilize very short runways by directing its four exhaust nozzles towards the ground. Transition to forward flight is achieved by rotating these nozzles into a horizontal position. Powered-lift vehicles have certain advantages over conventional strike fighters. Their V/STOL capabilities allow for safer carrier operations, smaller carrier size, and quick reaction time for troop support. Moreover, they are not dependent on vulnerable land-based runways. The AV-8A Harrier first entered service in the British Royal Air Force (RAF) during 1969, and the U.S. Marine Corps (USMC) in 1971. The AV-8B was a redesign to achieve improved payload capacity, range, and accuracy. This modified design first entered service with the USMC and RAF in 1985. The success and unique capabilities of the Harrier has prompted the design of a powered-lift version of the Joint Strike Fighter (JSF). The flowfield for the Harrier near the ground during low-speed or hover flight operations is very complex and time-dependent. A sketch of this flowfield is shown. Warm air from the fan is exhausted from the front nozzles, while a hot air/fuel mixture from the engine is exhausted from the rear nozzles. These jets strike the ground and move out radially forming a ground jet-flow. The ambient freestream, due to low-speed forward flight or - headwind during hover, opposes the jet-flow. This interaction causes the flow to separate and form a ground vortex. The multiple jets also interact with each other near the ground and form an upwash or jet fountain, which strikes the underside of the fuselage. If the aircraft is sufficiently close to the ground, the inlet can ingest ground debris and hot gases from the fountain and ground vortex. This Hot Gas Ingestion (HGI) can cause a sudden loss of thrust (powered lift), and the vehicle may crash. The high-speed jet flow along the ground can also entrain the ambient flow, resulting in a low pressure region underneath the vehicle. The accompanied loss of lift is referred to as the suckdown effect. The ground vortex may also be highly unsteady, dramatically changing its size and position with time at low frequencies, e.g., 1 Hz.

  3. Study Confirms Biofuels Reduce Jet Engine Pollution on This Week @NASA – March 17, 2017

    NASA Image and Video Library

    2017-03-17

    Findings published March 15 in the journal Nature from a series of flight tests in 2013 and 2014 near NASA’s Armstrong Flight Research Center in California indicate that using biofuels helps jet engines reduce particle emissions in exhaust by as much as 50 to 70 percent. That’s both an economic and an environmental benefit. The findings were based on data from the Alternative Fuel Effects on Contrails and Cruise Emissions Study, or ACCESS. The international research program led by NASA and involving agencies from Germany and Canada, studied the effects of alternative fuels on aircraft-generated contrails, engine performance and emissions. Also, NASA @SXSW Interactive Festival, Satellites See Winter Storm from Space, CST-100 Starliner Parachute Testing, and NASA’s Pi Day Challenge!

  4. Bubbles with shock waves and ultrasound: a review.

    PubMed

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-10-06

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.

  5. Bubbles with shock waves and ultrasound: a review

    PubMed Central

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-01-01

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed ‘acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics–bubble interactions, with a focus on shock wave–bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the ‘resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave–bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead. PMID:26442143

  6. Combustion-transition interaction in a jet flame

    NASA Astrophysics Data System (ADS)

    Yule, A. J.; Chigier, N. A.; Ralph, S.; Boulderstone, R.; Ventura, J.

    1980-01-01

    The transition between laminar and turbulent flow in a round jet flame is studied experimentally. Comparison is made between transition in non-burning and burning jets and between jet flames with systematic variation in initial Reynolds number and equivalence ratio. Measurements are made using laser anemometry, miniature thermocouples, ionization probes, laser-schlieren and high speed cine films. Compared with the cold jet, the jet flame has a longer potential core, undergoes a slower transition to turbulence, has lower values of fluctuating velocity near the burner but higher values further downstream, contains higher velocity gradients in the mixing layer region although the total jet width does not alter greatly in the first twenty diameters. As in the cold jet, transitional flow in the flame contains waves and vortices and these convolute and stretch the initially laminar interface burning region. Unlike the cold jet, which has Kelvin-Helmholtz instabilities, the jet flame can contain at least two initial instabilities; an inner high frequency combustion driven instability and an outer low frequency instability which may be influenced by buoyancy forces.

  7. Experimental investigation of aerodynamics, combustion, and emissions characteristics within the primary zone of a gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Elkady, Ahmed M.

    2006-04-01

    The present work investigates pollutant emissions production, mainly nitric oxides and carbon monoxide, within the primary zone of a highly swirling combustion and methods with which to reduce their formation. A baseline study was executed at different equivalence ratios and different inlet air temperatures. The study was then extended to investigate the effects of utilizing transverse air jets on pollutant emission characteristics at different jet locations, jet mass ratio, and overall equivalence ratio as well as to investigate the jets' overall interactions with the recirculation zone. A Fourier Transform Infrared (FTIR) spectrometer was employed to measure emissions concentrations generated during combustion of Jet-A fuel in a swirl-cup assembly. Laser Doppler Velocimetry (LDV) was employed to investigate the mean flow aerodynamics within the combustor. Particle Image Velocimetry (PIV) was utilized to capture the instantaneous aerodynamic behavior of the non-reacting primary zone. Results illustrate that NOx production is a function of both the recirculation zone and the flame length. At low overall equivalence ratios, the recirculation zone is found to be the main producer of NOx. At near stoichiometric conditions, the post recirculation zone appears to be responsible for the majority of NOx produced. Results reveal the possibility of injecting air into the recirculation zone without altering flame stability to improve emission characteristics. Depending on the jet location and strength, nitric oxides as well as carbon monoxide can be reduced simultaneously. Placing the primary air jet just downstream of the fuel rich recirculation zone can lead to a significant reduction in both nitric oxides and carbon monoxide. In the case of fuel lean recirculation zone, reduction of nitric oxides can occur by placing the jets below the location of maximum radius of the recirculation zone.

  8. Supersonic Free-Jet Combustion in a Ramjet Burner

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Dippold, Vance F., III

    2010-01-01

    A new dual-mode ramjet combustor concept intended for operation over a wide flight Mach number range is described. Subsonic combustion mode is similar to that of a traditional ram combustor which allows operation at higher efficiency, and to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle. The maximum flight Mach number of this scheme is governed largely by the same physics as its classical counterpart. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated. Given the parallel nature of the present scheme, overall flowpath length is less than that of present dual-mode configurations. Cycle analysis was done to define the flowpath geometry for computational fluid dynamics (CFD) analysis, and then to determine performance based on the CFD results. CFD results for Mach 5, 8, and 12 flight conditions indicate stable supersonic free-jet formation and nozzle reattachment, thereby establishing the basic feasibility of the concept. These results also reveal the structure of, and interactions between the free-jet and recirculating combustion chamber flows. Performance based on these CFD results is slightly less than that of the constant-pressure-combustion cycle analysis primarily due to these interactions. These differences are quantified and discussed. Additional CFD results at the Mach 8 flight condition show the effects of nozzle throat area variation on combustion chamber pressure, flow structure, and performance. Calculations with constant temperature walls were also done to evaluate heat flux and overall heat loads. Aspects of the concept that warrant further study are outlined. These include diffuser design, ramjet operation, mode transition, loss mechanisms, and the effects of secondary flow for wall cooling and combustion chamber pressurization. Also recommended is an examination of system-level aspects such as weight, thermal management and rocket integration as well as alternate geometries and variable geometry schemes.

  9. A Spreadsheet for the Mixing of a Row of Jets with a Confined Crossflow

    NASA Technical Reports Server (NTRS)

    Holderman, J. D.; Smith, T. D.; Clisset, J. R.; Lear, W. E.

    2005-01-01

    An interactive computer code, written with a readily available software program, Microsoft Excel (Microsoft Corporation, Redmond, WA) is presented which displays 3 D oblique plots of a conserved scalar distribution downstream of jets mixing with a confined crossflow, for a single row, double rows, or opposed rows of jets with or without flow area convergence and/or a non-uniform crossflow scalar distribution. This project used a previously developed empirical model of jets mixing in a confined crossflow to create an Microsoft Excel spreadsheet that can output the profiles of a conserved scalar for jets injected into a confined crossflow given several input variables. The program uses multiple spreadsheets in a single Microsoft Excel notebook to carry out the modeling. The first sheet contains the main program, controls for the type of problem to be solved, and convergence criteria. The first sheet also provides for input of the specific geometry and flow conditions. The second sheet presents the results calculated with this routine to show the effects on the mixing of varying flow and geometric parameters. Comparisons are also made between results from the version of the empirical correlations implemented in the spreadsheet and the versions originally written in Applesoft BASIC (Apple Computer, Cupertino, CA) in the 1980's.

  10. A Spreadsheet for the Mixing of a Row of Jets with a Confined Crossflow. Supplement

    NASA Technical Reports Server (NTRS)

    Holderman, J. D.; Smith, T. D.; Clisset, J. R.; Lear, W. E.

    2005-01-01

    An interactive computer code, written with a readily available software program, Microsoft Excel (Microsoft Corporation, Redmond, WA) is presented which displays 3 D oblique plots of a conserved scalar distribution downstream of jets mixing with a confined crossflow, for a single row, double rows, or opposed rows of jets with or without flow area convergence and/or a non-uniform crossflow scalar distribution. This project used a previously developed empirical model of jets mixing in a confined crossflow to create an Microsoft Excel spreadsheet that can output the profiles of a conserved scalar for jets injected into a confined crossflow given several input variables. The program uses multiple spreadsheets in a single Microsoft Excel notebook to carry out the modeling. The first sheet contains the main program, controls for the type of problem to be solved, and convergence criteria. The first sheet also provides for input of the specific geometry and flow conditions. The second sheet presents the results calculated with this routine to show the effects on the mixing of varying flow and geometric parameters. Comparisons are also made between results from the version of the empirical correlations implemented in the spreadsheet and the versions originally written in Applesoft BASIC (Apple Computer, Cupertino, CA) in the 1980's.

  11. Cold atmospheric pressure plasma jets: Interaction with plasmid DNA and tailored electron heating using dual-frequency excitation

    NASA Astrophysics Data System (ADS)

    Niemi, K.; O'Neill, C.; Cox, L. J.; Waskoenig, J.; Hyland, W. B.; McMahon, S. J.; Reuter, S.; Currell, F. J.; Graham, W. G.; O'Connell, D.; Gans, T.

    2012-05-01

    Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations.

  12. Numerical simulation of supersonic water vapor jet impinging on a flat plate

    NASA Astrophysics Data System (ADS)

    Kuzuu, Kazuto; Aono, Junya; Shima, Eiji

    2012-11-01

    We investigated supersonic water vapor jet impinging on a flat plate through numerical simulation. This simulation is for estimating heating effect of a reusable sounding rocket during vertical landing. The jet from the rocket bottom is supersonic, M=2 to 3, high temperature, T=2000K, and over-expanded. Atmospheric condition is a stationary standard air. The simulation is base on the full Navier-Stokes equations, and the flow is numerically solved by an unstructured compressible flow solver, in-house code LS-FLOW-RG. In this solver, the transport properties of muti-species gas and mass conservation equations of those species are considered. We employed DDES method as a turbulence model. For verification and validation, we also carried out a simulation under the condition of air, and compared with the experimental data. Agreement between our results and the experimental data are satisfactory. Through this simulation, we calculated the flow under some exit pressure conditions, and discuss the effects of pressure ratio on flow structures, heat transfer and so on. Furthermore, we also investigated diffusion effects of water vapor, and we confirmed that these phenomena are generated by the interaction of atmospheric air and affects the heat transfer to the surrounding environment.

  13. Transient interaction between a reaction control jet and a hypersonic crossflow

    NASA Astrophysics Data System (ADS)

    Miller, Warrick A.; Medwell, Paul R.; Doolan, Con J.; Kim, Minkwan

    2018-04-01

    This paper presents a numerical study that focuses on the transient interaction between a reaction control jet and a hypersonic crossflow with a laminar boundary layer. The aim is to better understand the underlying physical mechanisms affecting the resulting surface pressure and control force. Implicit large-eddy simulations were performed with a round, sonic, perfect air jet issuing normal to a Mach 5 crossflow over a flat plate with a laminar boundary layer, at a jet-to-crossflow momentum ratio of 5.3 and a pressure ratio of 251. The pressure distribution induced on the flat plate is unsteady and is influenced by vortex structures that form around the jet. A horseshoe vortex structure forms upstream and consists of six vortices: two quasi-steady vortices and two co-rotating vortex pairs that periodically coalesce. Shear-layer vortices shed periodically and cause localised high pressure regions that convect downstream with constant velocity. A longitudinal counter-rotating vortex pair is present downstream of the jet and is formed from a series of trailing vortices which rotate about a common axis. Shear-layer vortex shedding causes periodic deformation of barrel and bow shocks. This changes the location of boundary layer separation which also affects the normal force on the plate.

  14. NO PLIF Visualizations of the Orion Capsule in LENS-I

    NASA Technical Reports Server (NTRS)

    Combs, C.; Clemens, N.; Danehy, P. M.; Bathel, B.; Parker, R.; Wadhams, T.; Holden, M.; Kirk, B.

    2013-01-01

    Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize the interaction of reaction-control-system (RCS) jet flows in the wake of a hypersonic capsule reentry vehicle. The tests were performed at the Calspan University at Buffalo Research Center's (CUBRC) LENS-I reflected shock tunnel facility. This was the first application of PLIF to study RCS jets in a large-scale pulsed hypersonic facility. The LENS-I facility allowed RCS jet flows to be studied while varying the flow enthalpy, Reynolds number, angle of attack and jet configuration. The interaction of pitch and roll jets with the flowfield was investigated. Additionally, thin film sensors were used to monitor heat transfer on the surface of the model to detect any localized heating resulting from the firing of the RCS jets. Tests were conducted with the model held at angles of attack of 18deg and 22deg. The nominal Mach number in all tests was 8, while Reynolds number based on model diameter ranged from 2.2x10(exp 6) - 1.5x10(exp 7). Images were processed using the Virtual Diagnostics Interface (ViDI) system developed at NASA Langley Research Center to provide a three-dimensional display of the experimental data.

  15. Dynamical Evolution of the Recent Jet in CH Cyg

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2011-10-01

    We propose to carry out Chandra ACIS-S observations combined with HST/WFC3multi-wavelength imaging of the powerful, multi-component jet which was detectedin 2008 in the nearby symbiotic CH Cyg. CH Cyg is a fascinating system containing an evolved giant and a wind-accreting white dwarf, and it is one of the few symbiotics showing jet activity, especially in X-rays. Our goal is to measure the physical characteristics of the individual jet components, from the central source to the region of interaction with the circumbinary environment, reaching to within a few AU from the source of the jet. We will determine the characteristics of the central source, and of the inner and the outer jet, and the dynamical evolution, including precession, and kinematics of the ejecta.

  16. Dynamical Evolution of the Recent Jet in CH Cyg

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2011-09-01

    We propose to carry out Chandra ACIS-S observations combined with HST/WFC3 multi-wavelength imaging of the powerful, multi-component jet which was detected in 2008 in the nearby symbiotic CH Cyg. CH Cyg is a fascinating system containing an evolved giant and a wind-accreting white dwarf, and it is one of the few symbiotics showing jet activity, especially in X-rays. Our goal is to measure the physical characteristics of the individual jet components, from the central source to the region of interaction with the circumbinary environment, reaching to within a few AU from the source of the jet. We will determine the characteristics of the central source, and of the inner and the outer jet, and the dynamical evolution, including precession, and kinematics of the ejecta.

  17. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    NASA Astrophysics Data System (ADS)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    Plasma plumes, or plasma jets, belong to a large family of gas discharges whereby the discharge plasma is extended beyond the plasma generation region into the surrounding ambience, either by a field (e.g. electromagnetic, convective gas flow, or shock wave) or a gradient of a directionless physical quantity (e.g. particle density, pressure, or temperature). This physical extension of a plasma plume gives rise to a strong interaction with its surrounding environment, and the interaction alters the properties of both the plasma and the environment, often in a nonlinear and dynamic fashion. The plasma is therefore not confined by defined physical walls, thus extending opportunities for material treatment applications as well as bringing in new challenges in science and technology associated with complex open-boundary problems. Some of the most common examples may be found in dense plasmas with very high dissipation of externally supplied energy (e.g. in electrical, optical or thermal forms) and often in or close to thermal equilibrium. For these dense plasmas, their characteristics are determined predominantly by strong physical forces of different fields, such as electrical, magnetic, thermal, shock wave, and their nonlinear interactions [1]. Common to these dense plasma plumes are significant macroscopic plasma movement and considerable decomposition of solid materials (e.g. vaporization). Their applications are numerous and include detection of elemental traces, synthesis of high-temperature materials and welding, laser--plasma interactions, and relativistic jets in particle accelerators and in space [2]-[4]. Scientific challenges in the understanding of plasma jets are exciting and multidisciplinary, involving interweaving transitions of all four states of matter, and their technological applications are wide-ranging and growing rapidly. Using the Web of Science database, a search for journal papers on non-fusion plasma jets reveals that a long initial phase up to 1990 with only 31 papers per year on average, and a total of some 1300 papers, precedes a considerable growth of some 35-50% in research activity every five years, over the last 20 years or so. As shown in the table, the annual dissemination of the field is more than 1600 papers and the total number of papers is in excess of 20000. This upwards trajectory is typical of a strong and growing subject area in physical science, with considerable capacity in both fundamental science and applications. PeriodNumber of papersPapers per annum 1948-1990130031 1991-19952279456 1996-20003447689 2001-20054571914 2006-201066401328 2011 1658 In many of the dense plasma jets discussed above, strong physical forces generated by the plasma are often desired and this favours plasma generation at elevated gas pressure, including atmospheric pressure, which favours a high level of gas ionization. Historically it has been challenging to reduce and control the strong physical forces in high-pressure plasmas for applications where these are unwanted, for example, surface modification of polymeric sheets [5]. Indeed, there is a real need for a vast range of material processing applications at temperatures below 100oC (or below 400 K) and this favours atmospheric-pressure plasma jets sustained far from thermal equilibrium with the dissipated electrical energy largely used not in heat generation but in unleashing non-equilibrium chemical reactions. The long-standing difficulty of effectively controlling the level of gas ionization at atmospheric pressure was overcome by the technological breakthrough of achieving atmospheric-pressure glow discharges in the late 1980s [6]. A related challenge stemming from high collisionality of atmospheric-pressure plasmas (v >> ω0) means that large-area plasmas sustained between parallel-plate electrodes are very susceptible to strong plasma instabilities when molecular gases are introduced for processing applications. This led to an effective technological solution in the early to late 1990s of confining atmospheric plasmas in a small volume of plasma generation (i.e. with a small volume-to-surface ratio) and then extending it towards a downstream sample [7]-[9]. These are among the first low-temperature atmospheric plasmas aimed particularly at the exploitation of their ability to invoke the active and rich reactive chemistry close to ambient temperature. The main applications of these early devices are precision surface modification of low-temperature dielectric materials, for example thin film deposition and etching [7]-[9]. Variations of the early plasma jets include atmospheric plasma sheet jets [10] for the treatment of largely planar objects (e.g. polymeric sheets) as well as large arrays of many plasma jets for the treatment of complex-structured objects (e.g. surgical tools and open human wounds) [11]. As a material processing technology, the sub-100oC atmospheric-pressure plasma jet has benefited over the years from many innovations. Whilst a detailed account and analysis of these is clearly outside the scope of this Editorial, it is worth stating that there are different avenues with which to maintain a moderate electron density at the plasma core so as to keep the gas temperature at the sample point below a ceiling level. Most of the early studies employed excitation at radio frequencies above 10 MHz, at which electrons are largely confined in the plasma generation region, and this limits the current flow to and gas heating in the plume region of the plasma jet. Other techniques of current limitation have since been shown to be effective, including the use of dielectric barriers across a very large frequency range of 1 kHz--50 MHz, sub-microsecond pulses sustained at kHz frequencies, pulse-modulated radio frequencies and dual-frequency excitation [12]-[15]. These and other techniques have considerably advanced the atmospheric-pressure plasma jet technology. The period of some 15 years since the above-mentioned early studies has witnessed a considerable and exciting growth in terms of new phenomena observed, new physics and chemistry uncovered, new plasma jet sources conceived, and new applications developed. Examples include the observations of plasma bullets on a nanosecond scale [16], the similarity of plasma bullets to streamers [17], arrays of plasma jets as metamaterials [18], and a rapid increase of applications in biomedicine [19]. However the considerable growth in the research of plasma jets has not been adequately supported, so far, by a sound fundamental underpinning, partly resulting from a somewhat underdevelopment of effective diagnostics and modelling tools. Recognizing the critical importance of basic science for future growth of low-temperature plasma jet technology, this special issue on plasma jets and bullets aims to address some of the most important fundamental questions. Many of the special issue papers continue the established line of investigation to characterize the formation of plasma bullets, using typically ultrafast imaging, electrical detection including electric field and plasma conductivity measurement, and optical emission spectrometry [20]-[26]. These offer strong experimental evidence for the well-known hypothesis that a plasma jet is a form of streamer, and that the ionization wave plays a critical role in their formation. The interaction of two parallel plasma jets [27] and manipulation of plasma jet characteristics [28, 29] are also reported using a similar combination of experimental techniques. Some of the common characteristics of plasma jets are summarized in a review paper in this special issue [30]. A somewhat different line of investigation is employed in a detailed experimental characterization of deterministic chaos in atmospheric plasma jets [31], one of the few non-bullet modes of plasma jets. Although chaos in ionized gases have been observed in other types of discharge plasmas, their applications have not so far been linked to material processing applications, possibly because chaotic patterns of reaction chemistry could be undesirable for sample-sample reproducibility of application efficacy. Nevertheless, the lack of reproducibility in the presence of chaos may actually offer an advantage in tackling drug resistance in the new field of plasma medicine. As a material processing tool, it is important to characterize the reaction chemistry of plasma jets at a downstream point. Four special issue papers report measurement of argon and helium metastable atoms, ozone, oxygen atoms and UV irradiation using a variety of diagnostic tools including laser absorption spectroscopy, molecular beam mass spectrometry, optical emission and UV absorption spectrometry [32]-[35]. There is, however, a gap in these measurements of key reactive plasma species and characterization of plasma bullet formation [20]-[26], both in this special issue and elsewhere in the literature. Whilst atmospheric plasma modes are known to operate in bullet and non-bullet modes, it is unclear whether electron excitation of helium and/or argon metastables is different in the bullet mode from the non-bullet mode. Similarly, it remains little known whether the bullet mode facilitates a particularly efficient production of reactive plasma species [36]. An encouraging sign of our ability to address this and other knowledge gaps is evident from three excellent modelling investigations, looking into the behaviours of ionization waves [37], interaction of two counter-propagating streamers [38], and the two-dimensional structure of streamers [39]. Considerable detail unravelled from these and similar simulation studies is likely to not only uncover the physics of plasma bullet formation, but also link it to the design and manipulation of downstream reaction chemistry. In fact, very recent studies have combined experimental characterization of plasma jets with their numerical modelling [40].

  18. An integrated model for Jupiter's dynamo action and mean jet dynamics

    NASA Astrophysics Data System (ADS)

    Gastine, Thomas; Wicht, Johannes; Duarte, Lucia; Heimpel, Moritz

    2014-05-01

    Data from various space crafts revealed that Jupiter's large scale interior magnetic field is very Earth-like. This is surprising since numerical simulations have demonstrated that, for example, the radial dependence of density, electrical conductivity and other physical properties, which is only mild in the iron cores of terrestrial planets but very drastic in gas planets, can significantly affect the interior dynamics. Jupiter's dynamo action is thought to take place in the deeper envelope where hydrogen, the main constituent of Jupiter's atmosphere, assumes metallic properties. The potential interaction between the observed zonal jets and the deeper dynamo region is an unresolved problem with important consequences for the magnetic field generation. Here we present the first numerical simulation that is based on recent interior models and covers 99% of the planetary radius (below the 1 bar level). A steep decease in the electrical conductivity over the outer 10% in radius allowed us to model both the deeper metallic region and the outer molecular layer in an integrated approach. The magnetic field very closely reproduces Jupiter's known large scale field. A strong equatorial zonal jet remains constrained to the molecular layer while higher latitude jets are suppressed by Lorentz forces. This suggests that Jupiter's higher latitude jets remain shallow and are driven by an additional effect not captured in our deep convection model. The dynamo action of the equatorial jet produces a band of magnetic field located around the equator. The unprecedented magnetic field resolution expected from the Juno mission will allow to resolve this feature allowing a direct detection of the equatorial jet dynamics at depth. Typical secular variation times scales amount to around 750 yr for the dipole contribution but decrease to about 5 yr at the expected Juno resolution (spherical harmonic degree 20). At a nominal mission duration of one year Juno should therefore be able to directly detect secular variation effects in the higher field harmonics.

  19. Computational Analysis of a Chevron Nozzle Uniquely Tailored for Propulsion Airframe Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Elmiligui, Alaa A.; Hunter, Craig A.; Thomas, Russell H.; Pao, S. Paul; Mengle, Vinod G.

    2006-01-01

    A computational flow field and predicted jet noise source analysis is presented for asymmetrical fan chevrons on a modern separate flow nozzle at take off conditions. The propulsion airframe aeroacoustic asymmetric fan nozzle is designed with an azimuthally varying chevron pattern with longer chevrons close to the pylon. A baseline round nozzle without chevrons and a reference nozzle with azimuthally uniform chevrons are also studied. The intent of the asymmetric fan chevron nozzle was to improve the noise reduction potential by creating a favorable propulsion airframe aeroacoustic interaction effect between the pylon and chevron nozzle. This favorable interaction and improved noise reduction was observed in model scale tests and flight test data and has been reported in other studies. The goal of this study was to identify the fundamental flow and noise source mechanisms. The flow simulation uses the asymptotically steady, compressible Reynolds averaged Navier-Stokes equations on a structured grid. Flow computations are performed using the parallel, multi-block, structured grid code PAB3D. Local noise sources were mapped and integrated computationally using the Jet3D code based upon the Lighthill Acoustic Analogy with anisotropic Reynolds stress modeling. In this study, trends of noise reduction were correctly predicted. Jet3D was also utilized to produce noise source maps that were then correlated to local flow features. The flow studies show that asymmetry of the longer fan chevrons near the pylon work to reduce the strength of the secondary flow induced by the pylon itself, such that the asymmetric merging of the fan and core shear layers is significantly delayed. The effect is to reduce the peak turbulence kinetic energy and shift it downstream, reducing overall noise production. This combined flow and noise prediction approach has yielded considerable understanding of the physics of a fan chevron nozzle designed to include propulsion airframe aeroacoustic interaction effects.

  20. Jet properties in PbPb and pp collisions at √{s_{NN}}=5.02 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hrubec, J.; Jeitler, M.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Taurok, A.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Pieters, M.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Bilin, B.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Kalsi, A. K.; Lenzi, T.; Luetic, J.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Trocino, D.; Tytgat, M.; Verbeke, W.; Vermassen, B.; Vit, M.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correia Silva, G.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Malbouisson, H.; Medina Jaime, M.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Calligaris, L.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, J.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Wang, Y.; Avila, C.; Cabrera, A.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Ellithi Kamel, A.; Mahmoud, M. A.; Mohammed, Y.; Bhowmik, S.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Kucher, I.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Coubez, X.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Juillot, P.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lattaud, H.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Zhang, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M. P.; Schomakers, C.; Schulz, J.; Teroerde, M.; Wittmer, B.; Zhukov, V.; Albert, A.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Babounikau, I.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bertsche, D.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Danilov, V.; De Wit, A.; Diez Pardos, C.; Domínguez Damiani, D.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Elwood, A.; Eren, E.; Gallo, E.; Geiser, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Jung, H.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Knolle, J.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Meyer, M.; Missiroli, M.; Mittag, G.; Mnich, J.; Mussgiller, A.; Pflitsch, S. K.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Schwanenberger, C.; Shevchenko, R.; Singh, A.; Stefaniuk, N.; Tholen, H.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Kasieczka, G.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Kutzner, V.; Lange, J.; Marconi, D.; Multhaup, J.; Niedziela, M.; Nowatschin, D.; Peiffer, T.; Perieanu, A.; Reimers, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Vellidis, K.; Kousouris, K.; Papakrivopoulos, I.; Evangelou, I.; Foudas, C.; Gianneios, P.; Katsoulis, P.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Tsitsonis, D.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Vámi, T. Á.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chauhan, S.; Chawla, R.; Dhingra, N.; Gupta, R.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Lohan, M.; Mehta, A.; Sharma, S.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Bhowmik, D.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Rout, P. K.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Singh, B.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Ravindra Kumar Verma, R.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sahoo, N.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Di Florio, A.; Errico, F.; Fiore, L.; Gelmi, A.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Marangelli, B.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Iemmi, F.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Ravera, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Galati, G.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Voevodina, E.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Tiko, A.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bianchini, L.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Castello, R.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Vazzoler, F.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Eysermans, J.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Traczyk, P.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sosnov, D.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Stolin, V.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Popova, E.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Blinov, V.; Shtol, D.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Godizov, A.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Babaev, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Alcaraz Maestre, J.; Bachiller, I.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Soares, M. S.; Triossi, A.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Duarte Campderros, J.; Fernandez, M.; Fernández Manteca, P. J.; Garcia-Ferrero, J.; García Alonso, A.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Prieels, C.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bocci, A.; Botta, C.; Camporesi, T.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pantaleo, F.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pitters, F. M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Casal, B.; Chernyavskaya, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Klijnsma, T.; Lustermann, W.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; NessiTedaldi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Ruini, D.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Brzhechko, D.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Neutelings, I.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Chang, Y. H.; Cheng, K. y.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bakirci, M. N.; Bat, A.; Boran, F.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tok, U. G.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Atakisi, I. O.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Komurcu, Y.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Linacre, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Auzinger, G.; Bainbridge, R.; Bloch, P.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; Della Negra, M.; Di Maria, R.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Komm, M.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Strebler, T.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Morton, A.; Reid, I. D.; Teodorescu, L.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Taylor, D.; Tos, K.; Tripathi, M.; Wang, Z.; Zhang, F.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Karapostoli, G.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Citron, M.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; Gouskos, L.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Bunn, J.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T. Q.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; MacDonald, E.; Mulholland, T.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chaves, J.; Cheng, Y.; Chu, J.; Datta, A.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kortelainen, M. J.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Savoy-Navarro, A.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, W.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Dittmer, S.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Varelas, N.; Wang, H.; Wang, X.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Hung, W. T.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Benitez, J. F.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Rogan, C.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Modak, A.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Rebassoo, F.; Wright, D.; Baden, A.; Baron, O.; Belloni, A.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bauer, G.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Harris, P.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Zhaozhong, S.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Golf, F.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Freer, C.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Wamorkar, T.; Wang, B.; Wisecarver, A.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Bucci, R.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Li, W.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Siddireddy, P.; Smith, G.; Taroni, S.; Wayne, M.; Wightman, A.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Ling, T. Y.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Kalogeropoulos, A.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Salfeld-Nebgen, J.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Gutay, L.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xiao, R.; Xie, W.; Cheng, T.; Dolen, J.; Parashar, N.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Ruiz Alvarez, J. D.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Carlsmith, D.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Rekovic, V.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Woods, N.

    2018-05-01

    Modifications of the properties of jets in PbPb collisions, relative to those in pp collisions, are studied at a nucleon-nucleon center-of-mass energy of √{s_{NN}}=5.02 TeV via correlations of charged particles with the jet axis in relative pseudorapidity (Δ η), relative azimuth (Δ ϕ), and relative angular distance from the jet axis Δ r=√{(Δ η )^2+{(Δ φ )}^2} . This analysis uses data collected with the CMS detector at the LHC, corresponding to integrated luminosities of 404 μb-1 and 27.4 pb-1 for PbPb and pp collisions, respectively. Charged particle number densities, jet fragmentation functions, and jet shapes are presented as a function of PbPb collision centrality and charged-particle track transverse momentum, providing a differential description of jet modifications due to interactions with the quark-gluon plasma. [Figure not available: see fulltext.

  1. Reynolds stress closure in jet flows using wave models

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.

    1990-01-01

    A collection of papers is presented. The outline of this report is as follows. Chapter three contains a description of a weakly nonlinear turbulence model that was developed. An essential part of the application of such a closure scheme to general geometry jets is the solution of the local hydrodynamic stability equation for a given jet cross-section. Chapter four describes the conformal mapping schemes used to map such geometries onto a simple computational domain. Chapter five describes a solution of a stability problem for circular, elliptic, and rectangular geometries. In chapter six linear models for the shock shell structure in non-circular jets is given. The appendices contain reprints of papers also published during this study including the following topics: (1) instability of elliptic jets; (2) a technique for predicting the shock cell structure in non-circular jets using a vortex sheet model; and (3) the resonant interaction between twin supersonic jets.

  2. Coupling modes between liquid/gas coaxial jets and transverse acoustic waves

    NASA Astrophysics Data System (ADS)

    Helland, Chad; Hilliker, Cullen; Forliti, David; University of St. Thomas Team

    2017-11-01

    The interactions between shear flows and acoustic disturbances plays a very important role in many propulsion and energy applications. Liquid jets, either independent or air assisted, respond to acoustic disturbances in a manner that alters the primary and secondary atomization processes. The current study focused on the response of an air-assisted liquid jet to disturbances associated with a transverse acoustic wave. The jet is placed in the pressure node (velocity antinode) region of the resonant mode shape. It has been shown in previous studies, under certain conditions, that the acoustic forces can cause the jet flow to distort and atomize. Both liquid and coaxial gas/ liquid jet flows have been shown to distort via acoustic forces. The purpose of the current study is to understand the predictive characteristics that cause the distortion behaviors of a liquid and coaxial jet flow, and how a how a coaxial flow affects the behavior.

  3. Origin of superluminal radio jets in microquasars

    NASA Astrophysics Data System (ADS)

    Yadav, J. S.; Bhandare, R. S.

    In Microquasars, superluminal radio jets are seen at large distances from few hundred AU to 5000 AU with very high radio luminosity. We suggest that these superluminal jets are due to internal shocks which form in the previously generated slowly moving wind (from the accretion disk or the companion star) with beta < 0.01 as the fast moving discrete jet with beta sim 1 catches up and interacts with it. The black hole X-ray binaries with transient radio emission (mostly LMXBs) produce superluminal jets with beta_app > 1 when the accretion rate is high and the bolometric luminosity, L_bol approaches the Eddington Luminosity, L_Edd. On the other hand, the black hole X-ray binaries with persistent radio emission (mostly HMXBs) produce superluminal jets with beta_app < 1 at relatively low accretion rate. Our work here brings Galactic microquasars closer to extragalactic AGNs and quasars as the environment plays an important role in the formation of superluminal jets.

  4. Experimental studies of shock-wave/wall-jet interaction in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Rodriguez, Kathleen

    1994-01-01

    Experimental studies have been conducted to examine slot film cooling effectiveness and the interaction between the cooling film and an incident planar shock wave in turbulent hypersonic flow. The experimental studies were conducted in the 48-inch shock tunnel at Calspan at a freestream Mach number of close to 6.4 and at a Reynolds number of 35 x 10(exp 6) based on the length of the model at the injection point. The Mach 2.3 planar wall jet was generated from 40 transverse nozzles (with heights of both 0.080 inch and 0.120 inch), producing a film that extended the full width of the model. The nozzles were operated at pressures and velocities close to matching the freestream, as well as at conditions where the nozzle flows were over- and under-expanded. A two-dimensional shock generator was used to generate oblique shocks that deflected the flow through total turnings of 11, 16, and 21 degrees; the flows impinged downstream of the nozzle exits. Detailed measurements of heat transfer and pressure were made both ahead and downstream of the injection station, with the greatest concentration of measurements in the regions of shock-wave/boundary layer interaction. The major objectives of these experimental studies were to explore the effectiveness of film cooling in the presence of regions of shock-wave/boundary layer interaction and, more specifically, to determine how boundary layer separation and the large recompression heating rates were modified by film cooling. Detailed distributions of heat transfer and pressure were obtained in the incident shock/wall-jet interaction region for a series of shock strengths and impingement positions for each of the two nozzle heights. Measurements were also made to examine the effects of nozzle lip thickness on cooling effectiveness. The major conclusion from these studies was that the effect of the cooling film could be readily dispersed by relatively weak incident shocks, so the peak heating in the recompression region was not significantly reduced by even the largest levels of film cooling. For the case studies in the absence of film cooling, the interaction regions were unseparated. However, adding film cooling resulted in regions of boundary layer separation induced in the film cooling layer -- the size of which regions first increased and then decreased with increased film cooling. Surprisingly, the size of the separated regions and the magnitude of the recompression heating were not strongly influenced by the thickness of the cooling film, nor by the point of shock impingement relative to the exit plane of the nozzles. The lip thickness was found to have little effect on cooling effectiveness. Measurements with and in the absence of shock interaction were compared with the results of earlier experimental studies and correlated in terms of the major parameters controlling these flows.

  5. Experimental studies of shock-wave/wall-jet interaction in hypersonic flow, part A

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Rodriguez, Kathleen

    1994-01-01

    Experimental studies have been conducted to examine slot film cooling effectiveness and the interaction between the cooling film and an incident planar shock wave in turbulent hypersonic flow. The experimental studies were conducted in the 48-inch shock tunnel at Calspan at a freestream Mach number of close to 6.4 and at a Reynolds number of 35 x 10(exp 6) based on the length of the model at the injection point. The Mach 2.3 planar wall jet was generated from 40 transverse nozzles (with heights of both 0.080 inch and 0.120 inch), producing a film that extended the full width of the model. The nozzles were operated at pressures and velocities close to matching the freestream, as well as at conditions where the nozzle flows were over- and under-expanded. A two-dimensional shock generator was used to generate oblique shocks that deflected the flow through total turnings of 11, 16, and 21 degrees; the flows impinged downstream of the nozzle exits. Detailed measurements of heat transfer and pressure were made both ahead and downstream of the injection station, with the greatest concentration of measurements in the regions of shock-wave/boundary layer interaction. The major objectives of these experimental studies were to explore the effectiveness of film cooling in the presence of regions of shock-wave/boundary layer interaction and, more specifically, to determine how boundary layer separation and the large recompression heating rates were modified by film cooling. Detailed distributions of heat transfer and pressure were obtained in the incident-shock/wall-jet interaction region for a series of shock strengths and impingement positions for each of the two nozzle heights. Measurements were also made to examine the effects of nozzle lip thickness on cooling effectiveness. The major conclusion from these studies was that the effect of the cooling film could be readily dispersed by relatively weak incident shocks, so the peak heating in the recompression region was not significantly reduced by even the largest levels of film cooling. For the case studies in the absence of film cooling, the interaction regions were unseparated. However, adding film cooling resulted in regions of boundary layer separation induced in the film cooling layer, the size of which regions first increased and then decreased with increased film cooling. Surprisingly, the size of the separated regions and the magnitude of the recompression heating were not strongly influenced by the thickness of the cooling film, nor by the point of shock impingement relative to the exit plane of the nozzles. The lip thickness was found to have little effect on cooling effectiveness. Measurements with and in the absence of shock interaction were compared with the results of earlier experimental studies and correlated in terms of the major parameters controlling these flows.

  6. Wintertime East Asian Jet Stream and Its Association with the Asian-Pacific Climate

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Kim, K.-M.

    2000-01-01

    Interannual variability of the wintertime East Asian westerly jet stream and the linkage between this variability and the Asian-Pacific climate are investigated. The study emphasizes on the variability of the jet core and its association with the Asian winter monsoon, tropical convection, upper tropospheric wave patterns, and the teleconnection of the jet with other climate systems. The relationship between the jet and North Pacific sea surface temperature pattern (SST) is also explored. NCEP/NCAR reanalysis, NASA GISS surface temperature, NASA GEOS reanalysis, NOAA reconstructed SST, GPCP precipitation, and NOAA snow cover data sets are analyzed in this study. An index of the East Asian jet has been defined by the December-February means of the 200 mb zonal winds that are averaged within a box enclosing the jet maximum, which shifts only moderately from one year to another especially in the south-north direction. The jet links to a teleconnection pattern whose major climate anomalies appear over the Asian continent and western Pacific (west of the dateline). This pattern differs distinctly from the teleconnection pattern associated with El Nino/Southern Oscillation (ENSO), which causes the Pacific/North American pattern to the east of the dateline. A strong jet is accompanied clearly by an increase in the intensity of the atmospheric circulation over Asia and the Pacific. In particular, the winter monsoon strengthens over East Asia, leading to cold climate in the region, and convection intensifies over the tropical Asia-Australia sector. Changes in the jet are associated with broad-scale modification in the upper tropospheric wave patterns that leads to downstream climate anomalies over the eastern Pacific. Through this downstream influence, the East Asian jet causes climate signals in North America as well. A strong jet gives rise to warming and less snow cover in the western United States but reverse climate anomalies in the eastern part of the country, although these signals are relatively weaker than the jet-related anomalies in East Asia. There is a strong association between the East Asian jet and the North Pacific SST (NPSST). A strong jet is accompanied by a cooling in the extratropical Pacific and a warming in the tropical-subtropical Pacific. Evidence also indicates that the extratropical NPSST pattern plays a role in modulating the intensity of the jet stream. ENSO, the jet, and the NPSST are mutually interactive on certain time scales and such an interaction links closely to the climate anomalies in the Asian-Pacific-American regions.

  7. Newly Uncovered Large-Scale Component of the Northern Jet in R Aqr

    NASA Astrophysics Data System (ADS)

    Montez, Rodolfo; Karovska, Margarita; Nichols, Joy S.; Kashyap, Vinay

    2017-06-01

    R Aqr is a symbiotic system comprised a compact white dwarf and Mira giant star. The interaction of these stars is responsible for the presence of a two-sided jet structure that is seen across the electromagnetic spectrum. X-ray emission from the jet was first discovered in 2000 with an observation by the Chandra X-ray Observatory. Since then follow-up observations have traced the evolution of the X-ray emission from the jet and a central compact source. In X-rays, the NE jet is brighter than the SW jet, but the full extent of the SW jet was larger - before it began fading below the detection threshold. However, we have uncovered evidence for large-scale emission associated with the NE jet that matches the extent of the SW jet. The emission has escaped previous identification because it is near the detection threshold, but it has been present since the first 2000 observation and clearly evolves in subsequent observations. We present our study of the emission from this component of the NE jet, its relationship to multiwavelength observations, and how it impacts our interpretation of the jet-phenomenon in R Aqr.

  8. The free jet as a simulator of forward velocity effects on jet noise

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Tester, B. J.; Tanna, H. K.

    1978-01-01

    A thorough theoretical and experimental study of the effects of the free-jet shear layer on the transmission of sound from a model jet placed within the free jet to the far-field receiver located outside the free-jet flow was conducted. The validity and accuracy of the free-jet flight simulation technique for forward velocity effects on jet noise was evaluated. Transformation charts and a systematic computational procedure for converting measurements from a free-jet simulation to the corresponding results from a wind-tunnel simulation, and, finally, to the flight case were provided. The effects of simulated forward flight on jet mixing noise, internal noise and shock-associated noise from model-scale unheated and heated jets were established experimentally in a free-jet facility. It was illustrated that the existing anomalies between full-scale flight data and model-scale flight simulation data projected to the flight case, could well be due to the contamination of flight data by engine internal noise.

  9. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 2: Wind tunnel test force and moment data report

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.

  10. Anomalous neutron yield in indirect-drive inertial-confinement-fusion due to the formation of collisionless shocks in the corona

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Shuai; Cai, Hong-Bo; Shan, Lian-Qiang; Zhang, Hua-Sen; Gu, Yu-Qiu; Zhu, Shao-Ping

    2017-06-01

    Observations of anomalous neutron yield in the indirect-drive inertial confinement fusion implosion experiments conducted at SG-III prototype and SG-II upgrade laser facilities are interpreted. The anomalous mechanism results in a neutron yield which is 100-times higher than that predicted by 1D radiation-hydrodynamic simulations. 2D radiation-hydrodynamic simulations show that the supersonic, radially directed gold (Au) plasma jets arising from the laser-hohlraum interactions can collide with the carbon-deuterium (CD) corona plasma of the compressed pellet. It is found that in the interaction front of the high-Z jet with the low-Z corona, with low density  ˜{{10}20}~\\text{c}{{\\text{m}}-3} and high temperature  ˜keV, kinetic effects become important. Particle-in-cell simulations indicate that an electrostatic shock wave can be driven when the high-temperature Au jet expands into the low-temperature CD corona. Deuterium ions with an amount of  ˜1015 can be accelerated to  ˜25 keV by the collisionless shock wave, thus causing efficient neutron productions though the beam-target method by stopping these energetic ions in the corona. The evaluated neutron yield is consistent with the experiments conducted at SG laser facilities.

  11. Vela X: A plerion or part of a shell?

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    1998-03-01

    An analysis of the radio, optical, and X-ray observations of the supernova remnant (SNR) in Vela has led us to conclude that the radio source Vela X is part of the SNR shell. The high brightness of this radio source is assumed to be a result of the interaction of dome-shaped deformations (bubbles) on the SNR shell, which gives rise to bright radio filaments. The deformations could be produced by Richtmaier-Meshkov's instability, which develops during the impulsive acceleration of a shell of gas (swept up from the interstellar medium by the wind from a presupernova) by a shock wave (generated by a supernova explosion). The brightest radio filament and the X-ray jet extending along it are shown to be located in the region of interaction of two prominent bubbles on the SNR shell. We conclude that the X-ray jet, like Vela X, is part of the shell, and that it has its origin in the Mach reflection of two semispherical shock waves. Our estimate of the plasma temperature behind the front of the Mach wave matches the jet temperature. We also show that the large spread in the estimates of the spectral index for Vela X could be caused by the instrumental effect which arises during observations of extended radio sources with a nonuniform surface-brightness distribution.

  12. Nanodosimetry of (125)I Auger electrons.

    PubMed

    Bantsar, Aliaksandr; Pszona, Stanislaw

    2012-12-01

    The nanodosimetric description of the radiation action of Auger electrons on nitrogen targets of nanometric size is presented. Experimental microdosimetry at nanometer scale for Auger electrons has been accomplished with the set-up called Jet Counter. This consists of a pulse-operated valve which injects an expanding nitrogen jet into an interaction chamber where a gaseous sensitive volume of cylindrical shape is created. The ionization cluster size distributions (ICSD) created by Auger electrons emitted by (125)I while crossing a nanometer-sized volume have been measured. The ICSD for the sensitive volumes corresponding to 3 and 12 nm in diameter (in unit density 1 g/cm(3)) irradiated by electrons emitted by a (125)I source were collected and compared with the corresponding Monte Carlo (MC) simulation. The preliminary results of the experiments with Auger electrons of (125)I interacting with a nitrogen jet having nanometric size comparable to a deoxyribonucleic acid (DNA) and nucleosome, showing the discrete spectrum of ICSD with extended cluster size, are described. The presented paper describes for the first time the nanodosimetric experiments with Auger electrons emitted by (125)I. A set of the new descriptors of the radiation quality describing the radiation effect at nanometer level is proposed. The ICSD were determined for the first time for an Auger emitter of (125)I.

  13. Electromagnetic radiation from nuclear collisions at ultrarelativistic energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turbide, Simon; Gale, Charles; Frodermann, Evan

    2008-02-15

    The hot and dense strongly interacting matter created in collisions of heavy nuclei at RHIC energies is modeled with relativistic hydrodynamics, and the spectra of real and virtual photons produced at midrapidity in these events are calculated. Several different sources are considered, and their relative importance is compared. Specifically, we include jet fragmentation, jet-plasma interactions, the emission of radiation from the thermal medium and from primordial hard collisions. Our calculations consistently take into account jet energy loss, as evaluated in the AMY formalism. We obtain results for the spectra, the nuclear modification factor (R{sub AA}{sup {gamma}}), and the azimuthal anisotropymore » (v{sub 2}{sup {gamma}}) that agree with the photon measurements performed by the PHENIX Collaboration at RHIC.« less

  14. Angular and polarization trails from effective interactions of Majorana neutrinos at the LHeC

    NASA Astrophysics Data System (ADS)

    Duarte, Lucía; Zapata, Gabriel; Sampayo, Oscar A.

    2018-05-01

    We study the possibility of the LHeC facility to disentangle different new physics contributions to the production of heavy sterile Majorana neutrinos in the lepton number violating channel e-p→ lj+ + 3 jets (l_j≡e ,μ ). This is done investigating the angular and polarization trails of effective operators with distinct Dirac-Lorentz structure contributing to the Majorana neutrino production, which parameterize new physics from a higher energy scale. We study an asymmetry in the angular distribution of the final anti-lepton and the initial electron polarization effect on the number of signal events produced by the vectorial and scalar effective interactions, finding both analyses could well separate their contributions.

  15. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage. [aircraft engine blade cooling

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1984-01-01

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  16. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage

    NASA Astrophysics Data System (ADS)

    Papell, S. S.

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  17. Analysis of jet-airfoil interaction noise sources by using a microphone array technique

    NASA Astrophysics Data System (ADS)

    Fleury, Vincent; Davy, Renaud

    2016-03-01

    The paper is concerned with the characterization of jet noise sources and jet-airfoil interaction sources by using microphone array data. The measurements were carried-out in the anechoic open test section wind tunnel of Onera, Cepra19. The microphone array technique relies on the convected, Lighthill's and Ffowcs-Williams and Hawkings' acoustic analogy equation. The cross-spectrum of the source term of the analogy equation is sought. It is defined as the optimal solution to a minimal error equation using the measured microphone cross-spectra as reference. This inverse problem is ill-posed yet. A penalty term based on a localization operator is therefore added to improve the recovery of jet noise sources. The analysis of isolated jet noise data in subsonic regime shows the contribution of the conventional mixing noise source in the low frequency range, as expected, and of uniformly distributed, uncorrelated noise sources in the jet flow at higher frequencies. In underexpanded supersonic regime, a shock-associated noise source is clearly identified, too. An additional source is detected in the vicinity of the nozzle exit both in supersonic and subsonic regimes. In the presence of the airfoil, the distribution of the noise sources is deeply modified. In particular, a strong noise source is localized on the flap. For high Strouhal numbers, higher than about 2 (based on the jet mixing velocity and diameter), a significant contribution from the shear-layer near the flap is observed, too. Indications of acoustic reflections on the airfoil are also discerned.

  18. A cosmic ray super high energy multicore family event. 2: Structure and fragmentation characteristics of the jets

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Quarks and gluons are not directly observable, but may be displayed through fragmentation in the form of hadronic jets, the evidence of which was first revealed in cosmic ray interactions before the advent of the modern theory of strong interactions. Experimental results from ISR and SPPS collider rendered the jet phenomena more confident and definite. All the properties of jets observed up to now at ISR and SPPS collider are in agreement with the predictions of QCD. In order to make further test of QCD in still higher energy regions, detailed study of super high energy jet events in cosmic rays is very desirable. The event KO E19 observed in the Mt. Kambala emulsion chamber is an interesting event for such study. The general features of KO E19 is described. Its total visible energy is sigma E sub gamma = 1537 TeV(E sub min = 1.5 TeV) and production height H=(70 + or - 30)m, with a hadron as its primary particle. Besides about forty small clusters, there are five super high energy cores or jets, one lying near the center of the event while the other four surrounding it, having incident directions making small angles with that of the primary particle. Detailed analysis is done on the emulsion plates inserted in the chamber, making full use of their fine granularity, superior in detecting and analyzing jet events, specially their substructures.

  19. The Impact of Subsonic Twin Jets on Airport Noise

    NASA Technical Reports Server (NTRS)

    Bozak, Richard, F.

    2012-01-01

    Subsonic and supersonic aircraft concepts proposed through NASA s Fundamental Aeronautics Program have multiple engines mounted near one another. Engine configurations with multiple jets introduce an asymmetry to the azimuthal directivity of the jet noise. Current system noise predictions add the jet noise from each jet incoherently, therefore, twin jets are estimated by adding 3 EPNdB to the far-field noise radiated from a single jet. Twin jet effects have the ability to increase or decrease the radiated noise to different azimuthal observation locations. Experiments have shown that twin jet effects are reduced with forward flight and increasing spacings. The current experiment investigates the impact of spacing, and flight effects on airport noise for twin jets. Estimating the jet noise radiated from twin jets as that of a single jet plus 3 EPNdB may be sufficient for horizontal twin jets with an s/d of 4.4 and 5.5, where s is the center-to-center spacing and d is the jet diameter. However, up to a 3 EPNdB error could be present for jet spacings with an s/d of 2.6 and 3.2.

  20. Star-Jet Interactions and Gamma-Ray Outbursts from 3C454.3

    NASA Astrophysics Data System (ADS)

    Khangulyan, D. V.; Barkov, M. V.; Bosch-Ramon, V.; Aharonian, F. A.; Dorodnitsyn, A. V.

    2013-09-01

    We propose a model to explain the ultra-bright GeV gamma-ray flares observed from the blazar 3C454.3. The model is based on the concept of a relativistic jet interacting with compact gas condensations produced when a star (a red giant) crosses the jet close to the central black hole. The study includes an analytical treatment of the evolution of the envelope lost by the star within the jet, and calculations of the related high-energy radiation. The model readily explains the day-long that varies on timescales of hours, GeV gamma-ray flare from 3C454.3, observed during 2010 November on top of a plateau lasting weeks. In the proposed scenario, the plateau state is caused by a strong wind generated by the heating of the stellar atmosphere due to nonthermal particles accelerated at the jet-star interaction region. The flare itself could be produced by a few clouds of matter lost by the red giant after the initial impact of the jet. In the framework of the proposed scenario, the observations constrain the key model parameters of the source, including the mass of the central black hole: M BH ~= 109 M ⊙, the total jet power: L j ~= 1048 erg s-1, and the Doppler factor of the gamma-ray emitting clouds: δ ~= 20. Whereas we do not specify the particle acceleration mechanisms, the potential gamma-ray production processes are discussed and compared in the context of the proposed model. We argue that synchrotron radiation of protons has certain advantages compared to other radiation channels of directlyaccelerated electrons. An injected proton distribution vpropE -1 or harder below the relevant energies would be favored to alleviate the tight energetic constraints and to avoid the violation of the observational low-energy constraints.

  1. Star-jet Interactions and Gamma-ray Outbursts from 3C454.3

    NASA Technical Reports Server (NTRS)

    Khangulyan, D. V.; Barkov, M. V.; Bosch-Romon, V.; Aharonian, F. A.; Dorodnitsyn, A. V.

    2013-01-01

    We propose a model to explain the ultra-bright GeV gamma-ray flares observed from the blazar 3C454.3. The model is based on the concept of a relativistic jet interacting with compact gas condensations produced when a star (a red giant) crosses the jet close to the central black hole. The study includes an analytical treatment of the evolution of the envelope lost by the star within the jet, and calculations of the related high-energy radiation. The model readily explains the day-long that varies on timescales of hours, GeV gamma-ray flare from 3C454.3, observed during 2010 November on top of a plateau lasting weeks. In the proposed scenario, the plateau state is caused by a strong wind generated by the heating of the stellar atmosphere due to nonthermal particles accelerated at the jet-star interaction region. The flare itself could be produced by a few clouds of matter lost by the red giant after the initial impact of the jet. In the framework of the proposed scenario, the observations constrain the key model parameters of the source, including the mass of the central black hole: Blackhole Mass is approx. equal to 10(exp 9) Solar Mass, the total jet power: L(j) is approx. equal to 10(exp 48) erg s(exp -1), and the Doppler factor of the gamma-ray emitting clouds: Delta is approx. equal to 20. Whereas we do not specify the particle acceleration mechanisms, the potential gamma-ray production processes are discussed and compared in the context of the proposed model.We argue that synchrotron radiation of protons has certain advantages compared to other radiation channels of directlyaccelerated electrons. An injected proton distribution varies as E(exp -1) or harder below the relevant energies would be favored to alleviate the tight energetic constraints and to avoid the violation of the observational low-energy constraints.

  2. Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Emami, Saied

    2001-01-01

    Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.

  3. An imaging spectrometer for microgravity application

    NASA Technical Reports Server (NTRS)

    Wong, Wallace K.

    1995-01-01

    Flame structure is the result of complex interaction of mechanisms operating in both unwanted fires and controlled combustion systems. The scientific study of gas-jet diffusion flames in reduced-gravity environment is of interest because the effects of buoyancy on flow entrainment and acceleration are lessened. Measurements of flames have been restricted to cinematography, thermocouples, and radiometers. SSG, Inc. is developing an MWIR imaging spectrometer (MIS) for microgravity flame measurements. The device will be delivered to NASA Lewis at the end of this project to demonstrate flame measurements in the laboratory. With proper modifications, the MIS can be used to monitor a gas-jet flame under microgravity on a NASA Learjet or DC-9.

  4. Studies of inclusive four-jet production with two b -tagged jets in proton-proton collisions at 7 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.

    Here, measurements are presented of the cross section for the production of at least four jets, of which at least two originate from b quarks, in proton-proton collisions. Data collected with the CMS detector at the LHC at a center-of-mass energy of 7 TeV are used, corresponding to an integrated luminosity of 3 pb -1. The cross section is measured as a function of the jet transverse momentum for p T > 20 GeV, and of the jet pseudorapidity for |η| < 2.4 (b jets), 4.7 (untagged jets). The correlations in azimuthal angle and pT between the jets are also studied.more » The inclusive cross section is measured to be σ(pp → 2b + 2j + X) = 69 ± 3(stat) ± 24(syst) nb. The η and p T distributions of the four jets and the correlations between them are well reproduced by event generators that combine perturbative QCD calculations at next-to-leading-order accuracy with contributions from parton showers and multiparton interactions.« less

  5. Studies of inclusive four-jet production with two b -tagged jets in proton-proton collisions at 7 TeV

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2016-12-08

    Here, measurements are presented of the cross section for the production of at least four jets, of which at least two originate from b quarks, in proton-proton collisions. Data collected with the CMS detector at the LHC at a center-of-mass energy of 7 TeV are used, corresponding to an integrated luminosity of 3 pb -1. The cross section is measured as a function of the jet transverse momentum for p T > 20 GeV, and of the jet pseudorapidity for |η| < 2.4 (b jets), 4.7 (untagged jets). The correlations in azimuthal angle and pT between the jets are also studied.more » The inclusive cross section is measured to be σ(pp → 2b + 2j + X) = 69 ± 3(stat) ± 24(syst) nb. The η and p T distributions of the four jets and the correlations between them are well reproduced by event generators that combine perturbative QCD calculations at next-to-leading-order accuracy with contributions from parton showers and multiparton interactions.« less

  6. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE PAGES

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; ...

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: n e ≈ n i ~ 10¹⁶ cm⁻³, T e ≈ T i ≈ 1.4 eV, V jet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number M s ≡ V jet/C s > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  7. Studies of inclusive four-jet production with two b -tagged jets in proton-proton collisions at 7 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; De Visscher, S.; Delaere, C.; Delcourt, M.; Forthomme, L.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; El-khateeb, E.; Mahmoud, M. A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asawatangtrakuldee, C.; Asin, I.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Goebel, K.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Parida, B.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Behnamian, H.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; De Remigis, P.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Oh, S. B.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Gavrilenko, M.; Golutvin, I.; Karjavin, V.; Korenkov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Voytishin, N.; Yuldashev, B. S.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Chistov, R.; Rusinov, V.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Khein, L.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Lukina, O.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Bowen, J.; Bruner, C.; Castle, J.; Kenny, R. P.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Luo, J.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2016-12-01

    Measurements are presented of the cross section for the production of at least four jets, of which at least two originate from b quarks, in proton-proton collisions. Data collected with the CMS detector at the LHC at a center-of-mass energy of 7 TeV are used, corresponding to an integrated luminosity of 3 pb-1 . The cross section is measured as a function of the jet transverse momentum for pT>20 GeV , and of the jet pseudorapidity for |η | <2.4 (b jets), 4.7 (untagged jets). The correlations in azimuthal angle and pT between the jets are also studied. The inclusive cross section is measured to be σ (p p →2 b +2 j +X )=69 ±3 (stat )±24 (syst ) nb . The η and pT distributions of the four jets and the correlations between them are well reproduced by event generators that combine perturbative QCD calculations at next-to-leading-order accuracy with contributions from parton showers and multiparton interactions.

  8. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: n e ≈ n i ~ 10¹⁶ cm⁻³, T e ≈ T i ≈ 1.4 eV, V jet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number M s ≡ V jet/C s > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  9. Proton acceleration by multi-terawatt interaction with a near-critical density hydrogen jet

    NASA Astrophysics Data System (ADS)

    Goers, Andy; Feder, Linus; Hine, George; Salehi, Fatholah; Woodbury, Daniel; Su, J. J.; Papadopoulos, Dennis; Zigler, Arie; Milchberg, Howard

    2016-10-01

    We investigate the high intensity laser interaction with thin, near critical density plasmas as a means of efficient acceleration of MeV protons. A promising mechanism is magnetic vortex acceleration, where the ponderomotive force of a tightly focused laser pulse drives a relativistic electron current which generates a strong azimuthal magnetic field. The rapid expansion of this azimuthal magnetic field at the back side of the target can accelerate plasma ions to MeV scale energies. Compared to typical ion acceleration experiments utilizing a laser- thin solid foil interaction, magnetic vortex acceleration in near critical density plasma may be realized in a high density gas jet, making it attractive for applications requiring high repetition rates. We present preliminary experiments studying laser-plasma interaction and proton acceleration in a thin (< 200 μm) near-critical density hydrogen gas jet delivering electron densities 1020 -1021 cm-3 . This research was funded by the United States Department of Energy and the Defense Advanced Research Projects Agency (DARPA) under Contract Number W911-NF-15-C-0217, issued by the Army Research Office.

  10. Thermometry of the system “heat-resistant sample - incident plasma stream”

    NASA Astrophysics Data System (ADS)

    Sargsyan, M. A.; Chinnov, V. F.; Kavyrshin, D. I.; Gadzhiev, M. Kh; Khromov, M. A.; Chistolinov, A. V.; Senchenko, V. N.

    2017-11-01

    To study the interacting system “heat-resistant sample - an incident plasma stream” a setup of synchronized measurement equipment was developed and tested that recorded the main parameters of such interaction. Heat resistance tests were carried out on the samples of MPG-6 grade isotropic graphite, and samples of pyrolytic graphite that were subjected to a long (60 … 100 s) exposure to nitrogen, argon and air plasma streams at atmospheric pressure. As plasma generators a series of plasma torches with a vortex stabilization of the stream and an expanding anode channels was used. The temperature and composition of the plasma in the jet and near the sample were determined using two AvaSpec2048 and AvaSpec3648 scanning optical spectrometers and the MS5402i spectrograph with the Andor matrix at its outlet. The surface temperature of the sample was determined in real time using three independent ways: two pyrometric systems - a high-speed micro-pyrometer FMP1001 and a two-position visualization of the heated sample by high-speed Motion Pro X3 and VS-FAST cameras, and the spectral analysis of the wide-range thermal radiation of the samples. The main method for determining the rate of material loss during the action of a plasma jet on it was to analyze a two-position synchronous visualization of the “jet-sample” system. When a crater was formed on the surface of the sample under the “dagger” effect of a plasma jet, a video recording system of the crater zone was used, backlit using the “laser knife” method.

  11. Solar Tornadoes Triggered by Interaction between Filaments and EUV Jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huadong; Zhang, Jun; Ma, Suli

    We investigate the formations and evolutions of two successive solar tornadoes in/near AR 12297 during 2015 March 19–20. Recurrent EUV jets close to two filaments were detected along a large-scale coronal loop prior to the appearances of the tornadoes. Under the disturbances from the activities, the filaments continually ascended and finally interacted with the loops tracked by the jets. Subsequently, the structures of the filaments and the loop were merged together, probably via magnetic reconnections, and formed tornado-like structures with a long spiral arm. Our observations suggest that solar tornadoes can be triggered by the interaction between filaments and nearbymore » coronal jets, which has rarely been reported before. At the earlier development phase of the first tornado, about 30 small-scale sub-jets appeared in the tornado’s arm, accompanied by local EUV brightenings. They have an ejection direction approximately vertical to the axis of the arm and a typical maximum speed of ∼280 km s{sup −1}. During the ruinations of the two tornadoes, fast plasma outflows from the strong EUV brightenings inside tornadoes are observed, in company with the untangling or unwinding of the highly twisted tornado structures. These observational features indicate that self reconnections probably occurred between the tangled magnetic fields of the tornadoes and resulted in the rapid disintegrations and disappearances of the tornadoes. According to the reconnection theory, we also derive the field strength of the tornado core to be ∼8 G.« less

  12. Solar Tornadoes Triggered by Interaction between Filaments and EUV Jets

    NASA Astrophysics Data System (ADS)

    Chen, Huadong; Zhang, Jun; Ma, Suli; Yan, Xiaoli; Xue, Jianchao

    2017-05-01

    We investigate the formations and evolutions of two successive solar tornadoes in/near AR 12297 during 2015 March 19-20. Recurrent EUV jets close to two filaments were detected along a large-scale coronal loop prior to the appearances of the tornadoes. Under the disturbances from the activities, the filaments continually ascended and finally interacted with the loops tracked by the jets. Subsequently, the structures of the filaments and the loop were merged together, probably via magnetic reconnections, and formed tornado-like structures with a long spiral arm. Our observations suggest that solar tornadoes can be triggered by the interaction between filaments and nearby coronal jets, which has rarely been reported before. At the earlier development phase of the first tornado, about 30 small-scale sub-jets appeared in the tornado’s arm, accompanied by local EUV brightenings. They have an ejection direction approximately vertical to the axis of the arm and a typical maximum speed of ˜280 km s-1. During the ruinations of the two tornadoes, fast plasma outflows from the strong EUV brightenings inside tornadoes are observed, in company with the untangling or unwinding of the highly twisted tornado structures. These observational features indicate that self reconnections probably occurred between the tangled magnetic fields of the tornadoes and resulted in the rapid disintegrations and disappearances of the tornadoes. According to the reconnection theory, we also derive the field strength of the tornado core to be ˜8 G.

  13. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust

    NASA Astrophysics Data System (ADS)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam

    2017-11-01

    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  14. Super-luminescent jet light generated by femtosecond laser pulses

    PubMed Central

    Xu, Zhijun; Zhu, Xiaonong; Yu, Yang; Zhang, Nan; Zhao, Jiefeng

    2014-01-01

    Phenomena of nonlinear light-matter interaction that occur during the propagation of intense ultrashort laser pulses in continuous media have been extensively studied in ultrafast optical science. In this vibrant research field, conversion of the input laser beam into optical filament(s) is commonly encountered. Here, we demonstrate generation of distinctive single or double super-luminescent optical jet beams as a result of strong spatial-temporal nonlinear interaction between focused 50 fs millijoule laser pulses and their induced micro air plasma. Such jet-like optical beams, being slightly divergent and coexisting with severely distorted conical emission of colored speckles, are largely different from optical filaments, and obtainable when the focal lens of proper f-number is slightly tilted or shifted. Once being collimated, the jet beams can propagate over a long distance in air. These beams not only reveal a potentially useful approach to coherent optical wave generation, but also may find applications in remote sensing. PMID:24463611

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asahina, Yuta; Kawashima, Tomohisa; Furukawa, Naoko

    The formation mechanism of CO clouds observed with the NANTEN2 and Mopra telescopes toward the stellar cluster Westerlund 2 is studied by 3D magnetohydrodynamic simulations, taking into account the interstellar cooling. These molecular clouds show a peculiar shape composed of an arc-shaped cloud on one side of the TeV γ -ray source HESS J1023-575 and a linear distribution of clouds (jet clouds) on the other side. We propose that these clouds are formed by the interaction of a jet with clumps of interstellar neutral hydrogen (H i). By studying the dependence of the shape of dense cold clouds formed bymore » shock compression and cooling on the filling factor of H i clumps, we found that the density distribution of H i clumps determines the shape of molecular clouds formed by the jet–cloud interaction: arc clouds are formed when the filling factor is large. On the other hand, when the filling factor is small, molecular clouds align with the jet. The jet propagates faster in models with small filling factors.« less

  16. Jet energy measurement and its systematic uncertainty in proton-proton collisions at [Formula: see text] TeV with the ATLAS detector.

    PubMed

    Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adye, T; Aefsky, S; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmad, A; Ahmadov, F; Aielli, G; Åkesson, T P A; Akimoto, G; Akimov, A V; Alam, M A; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Ammosov, V V; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arfaoui, S; Arguin, J-F; Argyropoulos, S; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ask, S; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Astbury, A; Atkinson, M; Atlay, N B; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, S; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battistin, M; Bauer, F; Bawa, H S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belloni, A; Beloborodova, O L; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernard, C; Bernat, P; Bernhard, R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertolucci, F; Besana, M I; Besjes, G J; Bessidskaia, O; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Bittner, B; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blocki, J; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boek, T T; Boelaert, N; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, G; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Bunse, M; Burckhart, H; Burdin, S; Burgess, T; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Caso, C; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Christidi, I A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirilli, M; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coelli, S; Coffey, L; Cogan, J G; Coggeshall, J; Colas, J; Cole, B; Cole, S; Colijn, A P; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Courneyea, L; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Crispin Ortuzar, M; Cristinziani, M; Crosetti, G; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Dano Hoffmann, M; Dao, V; Darbo, G; Darlea, G L; Darmora, S; Dassoulas, J A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Del Peso, J; Del Prete, T; Delemontex, T; Deliot, F; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Demirkoz, B; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Dwuznik, M; Ebke, J; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, J; Fisher, M J; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Fonseca Martin, T; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gandrajula, R P; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gillman, A R; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giuliani, C; Giunta, M; Gjelsten, B K; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Groth-Jensen, J; Grout, Z J; Grybel, K; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haefner, P; Hageboeck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hard, A S; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernandez, C M; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jared, R C; Jarlskog, G; Jeanty, L; Jeng, G-Y; Jen-La Plante, I; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalinin, S; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Keller, J S; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koenig, S; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretzschmar, J; Kreutzfeldt, K; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Lablak, S; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Laisne, E; Lambourne, L; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le, B T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leonhardt, K; Leontsinis, S; Leroy, C; Lessard, J-R; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, D; Ludwig, I; Luehring, F; Lukas, W; Luminari, L; Lund, E; Lundberg, J; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Macina, D; Mackeprang, R; Madar, R; Madaras, R J; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magnoni, L; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marques, C N; Marroquim, F; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matsunaga, H; Matsushita, T; Mättig, P; Mättig, S; Mattmann, J; Mattravers, C; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mazzanti, M; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; Mclaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meehan, S; Meera-Lebbai, R; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Michal, S; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Molfetas, A; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newcomer, F M; Newman, P R; Nguyen, D H; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novakova, J; Nozaki, M; Nozka, L; Ntekas, K; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Brien, B J; O'Grady, F; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pashapour, S; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petteni, M; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pizio, C; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Quilty, D; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinsch, A; Reisin, H; Reisinger, I; Relich, M; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rumyantsev, L; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarkisyan-Grinbaum, E; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaelicke, A; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schramm, S; Schreyer, M; Schroeder, C; Schroer, N; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherwood, P; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snow, J; Snyder, S; Sobie, R; Socher, F; Sodomka, J; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sood, A; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spighi, R; Spigo, G; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoerig, K; Stoicea, G; Stonjek, S; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Stucci, S A; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Su, D; Su, J; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tamsett, M C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, W; Wagner, P; Wahrmund, S; Wakabayashi, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Whittington, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, H H; Williams, S; Willis, W; Willocq, S; Wilson, J A; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wong, W C; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, C; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yanush, S; Yao, L; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zitoun, R; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L

    The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of [Formula: see text] TeV corresponding to an integrated luminosity of [Formula: see text][Formula: see text]. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-[Formula: see text] algorithm with distance parameters [Formula: see text] or [Formula: see text], and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a [Formula: see text] boson, for [Formula: see text] and pseudorapidities [Formula: see text]. The effect of multiple proton-proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region ([Formula: see text]) for jets with [Formula: see text]. For central jets at lower [Formula: see text], the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton-proton collisions and test-beam data, which also provide the estimate for [Formula: see text] TeV. The calibration of forward jets is derived from dijet [Formula: see text] balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-[Formula: see text] jets at [Formula: see text]. Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5-3 %.

  17. Temporal and Spatial Response of a Turbulent Boundary Layer to Forcing by Synthetic Jets

    NASA Astrophysics Data System (ADS)

    Hanson, Ronald; Ganapathisubramani, Bharathram; Lavoie, Philippe

    2016-11-01

    In this experimental study we examine the spatial and temporal response of a turbulent boundary layer affected by a single, and pair of, synthetic jet actuator(s). The spatial signature of the boundary layer mean-flow has been previously shown to result from large vortical motions caused by the interaction between the synthetic jets and the cross flow. By means of hot-wire measurements, phase-locked to the synthetic jet input, the propagation of the unsteady disturbance can be quantified over the actuation cycle of a synthetic jet. Using long samples both the phase-locked variation of the periodic (actuation cycle) and turbulent fluctuations are examined. It is shown that both the mean flow and turbulence characteristics are markedly different across the span, owing to the three dimensionality of the upstream input. Further, the disturbance shape and phase of the phase-locked disturbance varies significantly with forcing level, in part owing to the disruption of the mean velocity. Particular focus is given to the interaction occurring between the near-wall and outer region scales, which vary across the span, with respect to various forcing conditions. The financial support of Airbus is gratefully acknowledged.

  18. Streamwise Vorticity Generation in Laminar and Turbulent Jets

    NASA Technical Reports Server (NTRS)

    Demuren, Aodeji O.; Wilson, Robert V.

    1999-01-01

    Complex streamwise vorticity fields are observed in the evolution of non-circular jets. Generation mechanisms are investigated via Reynolds-averaged (RANS), large-eddy (LES) and direct numerical (DNS) simulations of laminar and turbulent rectangular jets. Complex vortex interactions are found in DNS of laminar jets, but axis-switching is observed only when a single instability mode is present in the incoming mixing layer. With several modes present, the structures are not coherent and no axis-switching occurs, RANS computations also produce no axis-switching. On the other hand, LES of high Reynolds number turbulent jets produce axis-switching even for cases with several instability modes in the mixing layer. Analysis of the source terms of the mean streamwise vorticity equation through post-processing of the instantaneous results shows that, complex interactions of gradients of the normal and shear Reynolds stresses are responsible for the generation of streamwise vorticity which leads to axis-switching. RANS computations confirm these results. k - epsilon turbulence model computations fail to reproduce the phenomenon, whereas algebraic Reynolds stress model (ASM) computations, in which the secondary normal and shear stresses are computed explicitly, succeeded in reproducing the phenomenon accurately.

  19. Shock-capturing parabolized Navier-Stokes model /SCIPVIS/ for the analysis of turbulent underexpanded jets

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Wolf, D. E.

    1983-01-01

    A new computational model, SCIPVIS, has been developed to predict the multiple-cell wave/shock structure in under or over-expanded turbulent jets. SCIPVIS solves the parabolized Navier-Stokes jet mixing equations utilizing a shock-capturing approach in supersonic regions of the jet and a pressure-split approach in subsonic regions. Turbulence processes are represented by the solution of compressibility corrected two-equation turbulence models. The formation of Mach discs in the jet and the interactive turbulent mixing process occurring behind the disc are handled in a detailed fashion. SCIPVIS presently analyzes jets exhausting into a quiescent or supersonic external stream for which a single-pass spatial marching solution can be obtained. The iterative coupling of SCIPVIS with a potential flow solver for the analysis of subsonic/transonic external streams is under development.

  20. The Dynamics of Shock Dispersion and Interactions in Supersonic Freestreams with Counterflowing Jets

    NASA Technical Reports Server (NTRS)

    Daso, Endwell O.; Pritchett, Victor E.; Wang, Ten-See; Ota, Dale K.; Blankson, Isaiah M.; Auslender, Aaron H.

    2007-01-01

    An active flow control concept using counterflowing jets to significantly modify the external flowfields and strongly weaken or disperse the shock-waves of supersonic and hypersonic vehicles to reduce the aerothermal loads and wave drag was investigated. Experiments were conducted in a trisonic blow-down wind-tunnel, complemented by pre-test computational fluid dynamics (CFD) analysis of a 2.6% scale model of Apollo capsule, with and without counterflowing jets, in Mach 3.48 and 4.0 freestreams, to assess the potential aerothermal and aerodynamic benefits of this concept. The model was instrumented with heat flux gauges, thermocouples and pressure taps, and employed five counterflowing jet nozzles (three sonic and other two supersonic with design Mach numbers of 2.44 and 2.94) and nozzle exit diameters ranging from 0.25 to 0.5 inch. Schlieren data show that at low jet flow rates of 0.05 and 0.1lb(sub m)/sec, the interactions result in a long penetration mode (LPM) jet, while the short penetration mode (SPM) jet is observed at flow rates greater than 0.1 lb(sub m)/sec., consistent with the pre-test CFD predictions. For the LPM, the jet appears to be nearly fully-expanded, resulting in a very unsteady and oscillatory flow structure in which the bow shock becomes highly dispersed such that it is no longer discernable. Higher speed camera Schlieren data reveal the shock to be dispersed into striations of compression waves, which suddenly coalesce to a weaker bow shock with a larger standoff distance as the flow rate reached a critical value. The pronounced shock dispersion could significantly impact the aerodynamic performance (L/D) and heat flux reduction of spacecraft in atmospheric entry and re-entry, and could also attenuate the entropy layer in hypersonic blunt body flows. For heat transfer, the results show significant reduction in heat flux, even giving negative heat flux for some of the SPM interactions, indicating that the flow wetting the model is cooling, instead of heating the model, which could significantly impact the requirements and design of thermal protection system. These findings strongly suggest that the application of counterflowing jets as active flow control could have strong impact on supersonic and hypersonic vehicle design and performance.

  1. Current COIL research in Samara

    NASA Astrophysics Data System (ADS)

    Nikolaev, Valeri D.

    1996-02-01

    Development of the high pressure singlet oxygen generator (SOG) is a very important aspect for chemical oxygen-iodine laser (COIL). Increasing of oxygen pressure up to 30 torr and more at conserving high O2(1(Delta) ) yield and maintaining BHP temperature at minus (10 divided by 20) degrees Celsius permits us to decrease ration [H2O]/[O2] to 5% and less. In this case COIL can operate successfully without a water vapor trap. With raising the total pressure Reynolds number increases too, diminishing boundary layers in supersonic nozzles and improving pressure recovery. The weight and dimensions of the SOG and laser become reduced for the same gas flow rate. For solving these problems the jet SOG has been suggested and developed in Lebedev Physical Institute, Samara Branch. The advantages of the jet SOG consist of the following: (1) Large and controlled specific surface of contact liquid-gas provides for high mass transfer efficiency. (2) High jets velocity guarantees fast basic hydrogen peroxide (BHP) surface renovation. (3) High gas velocity in the reaction zone diminishes O2(1(Delta) ) quenching. (4) Efficient gas-liquid heat exchange eliminates the gas heating and generation water vapor due O2(1(Delta) ) quenching. (5) Counterflowing design of the jet SOG produces the best conditions for self-cleaning gas flow of droplets in the reaction zone and gives the possibility of COIL operation without droplets separator. High pressure jet SOG has some features connected with intrachannel jet formation, free space jets reconstruction, interaction jets ensemble with counter moving gas flow and drag part of gas by jets, disintegrating jets, generation and separation of droplets, heat effects, surface renovation, impoverishment BHP surface by HO2- ions, moving solution film on the reaction zone walls, etc. In this communication our current understanding of the major processes in the jet SOG is set forth. The complex gas and hydrodynamic processes with heat and mass transfer, chemical reactions, generation of the relaxing components with high energy store take place in the SOG reaction zone. It is impossible to create a sufficiently exact model of such a jet SOG taking into account all the enumerated processes. But some approximations and simplifications allow us to determine what the main jet SOG parameters parts are for designing COIL.

  2. Numerical solution of supersonic three-dimensional free-mixing flows using the parabolic-elliptic Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Hirsh, R. S.

    1976-01-01

    A numerical method is presented for solving the parabolic-elliptic Navier-Stokes equations. The solution procedure is applied to three-dimensional supersonic laminar jet flow issuing parallel with a supersonic free stream. A coordinate transformation is introduced which maps the boundaries at infinity into a finite computational domain in order to eliminate difficulties associated with the imposition of free-stream boundary conditions. Results are presented for an approximate circular jet, a square jet, varying aspect ratio rectangular jets, and interacting square jets. The solution behavior varies from axisymmetric to nearly two-dimensional in character. For cases where comparisons of the present results with those obtained from shear layer calculations could be made, agreement was good.

  3. Experimental study of the transient hydrogen jet - Using a fast response probe

    NASA Astrophysics Data System (ADS)

    Tanabe, H.; Ohnishi, M.; Sato, G. T.; Fujimoto, H.

    Mixing processes of a transient hydrogen jet, such as those of a hydrogen-injection internal combustion engine, are studied by means of a concentration probe having a response time of less than 200 microsec. Hydrogen was injected into quiescent air by means of (1) a single-shot device, in order to study the air interactions of the jet with schlieren photography and smoke wire methods, and (2) a hydrogen diesel engine injection nozzle to determine jet shape with high speed schlieren photography. The concentration probe's response time was found to be adequate for the very short injection period, and it was determined that air-hydrogen mixing in the case of high jet momentum is governed by eddy diffusion.

  4. Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface

    NASA Technical Reports Server (NTRS)

    Brown, Cliff

    2015-01-01

    Empirical models for the shielding and refection of jet mixing noise by a nearby surface are described and the resulting models evaluated. The flow variables are used to non-dimensionalize the surface position variables, reducing the variable space and producing models that are linear function of non-dimensional surface position and logarithmic in Strouhal frequency. A separate set of coefficients are determined at each observer angle in the dataset and linear interpolation is used to for the intermediate observer angles. The shielding and rejection models are then combined with existing empirical models for the jet mixing and jet-surface interaction noise sources to produce predicted spectra for a jet operating near a surface. These predictions are then evaluated against experimental data.

  5. Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2016-01-01

    Empirical models for the shielding and reflection of jet mixing noise by a nearby surface are described and the resulting models evaluated. The flow variables are used to non-dimensionalize the surface position variables, reducing the variable space and producing models that are linear function of non-dimensional surface position and logarithmic in Strouhal frequency. A separate set of coefficients are determined at each observer angle in the dataset and linear interpolation is used to for the intermediate observer angles. The shielding and reflection models are then combined with existing empirical models for the jet mixing and jet-surface interaction noise sources to produce predicted spectra for a jet operating near a surface. These predictions are then evaluated against experimental data.

  6. Numerical modeling of laser-driven ion acceleration from near-critical gas targets

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; Vizman, Daniel; d’Humières, Emmanuel

    2018-06-01

    In the past two decades, laser-accelerated ion sources and their applications have been intensely researched. Recently, it has been shown through experiments that proton beams with characteristics comparable to those obtained with solid targets can be obtained from gaseous targets. By means of particle-in-cell simulations, this paper studies in detail the effects of a near-critical density gradient on ion and electron acceleration after the interaction with ultra high intensity lasers. We can observe that the peak density of the gas jet has a significant influence on the spectrum features. As the gas jet density increases, so does the peak energy of the central quasi-monoenergetic ion bunch due to the increase in laser absorption while at the same time having a broadening effect on the electron angular distribution.

  7. Implications of the radio and X-ray emission that followed GW170817

    NASA Astrophysics Data System (ADS)

    Nakar, Ehud; Piran, Tsvi

    2018-07-01

    The radio and X-rays that followed GW170817 increased gradually over ˜100 d, resembling the radio flare predicted to arise from the interaction of a binary neutron star merger outflow with the interstellar medium (Nakar & Piran 2011). Considering a blast wave moving with a Lorentz factor Γ, we show that an off-axis observer, namely an observer at θobs > 1/Γ, sees a light curve rising faster than Fν ∝ t3. Therefore, the observed rise, Fν ∝ t0.78, implies that at all times we have seen an on-axis emission. Nfamely, the emitting matter was within θobs< 1/Γ at the time of observations (even if it was off-axis beforehand). The observations tightly constrain the blast wave Lorentz factor: Γ ˜ (1.5-7)(t/10 d)-0.21. The isotropic equivalent energy in the observed region increases with time, Eiso ˜ 1050 erg(t/150 d)1.3, implying that the outflow was structured. This structure could have different origins; however, the only physically motivated one, proposed so far, is the interaction of a relativistic jet with the ejecta and the resulting cocoon. The jet could have been choked or successful. In the latter case, it has produced a short gamma-ray burst pointing elsewhere (this successful jet-cocoon system is sometimes called a `structured jet'). Although circumstantial evidence disfavours a successful jet, the jet fate cannot be decisively determined from current observations. The light curve alone may not be sufficient to resolve this question, since both chocked and successful jets can lead to a gradual rise to a peak, followed by a decay. Therefore, the recent turnover of the light curve does not necessitate a successful jet.

  8. Implications of the radio and X-ray emission that followed GW170817

    NASA Astrophysics Data System (ADS)

    Nakar, Ehud; Piran, Tsvi

    2018-04-01

    The radio and X-rays that followed GW170817 increased gradually over ˜ 100 days, resembling the radio flare predicted to arise from the interaction of a binary neutron star merger outflow with the ISM (Nakar & Piran 2011). Considering a blast wave moving with a Lorentz factor Γ, we show that an off-axis observer, namely an observer at θobs > 1/Γ, sees a light curve rising faster than Fν∝t3. Therefore, the observed rise, Fν∝ t0.78, implies that at all times we have seen an on-axis emission. Namely, the emitting matter was within θobs < 1/Γ at the time of observations (even if it was off-axis beforehand). The observations tightly constrain the blast wave Lorentz factor: Γ ˜ (1.5 - 7)(t/10 day)-0.21. The isotropic equivalent energy in the observed region increases with time, Eiso ˜ 1050 erg (t/150 day)1.3, implying that the outflow was structured. This structure could have different origins, however, the only physically motivated one, proposed so far, is the interaction of a relativistic jet with the ejecta and the resulting cocoon. The jet could have been choked or successful. In the latter case, it has produced a short GRB pointing elsewhere (this successful jet-cocoon system is sometimes called a "structured jet"). Although circumstantial evidence disfavors a successful jet, the jet fate cannot be decisively determined from current observations. The light curve alone may not be sufficient to resolve this question, since both chocked and successful jets can lead to a gradual rise to a peak, followed by a decay. Therefore, the recent turnover of the light curve does not necessitate a successful jet.

  9. Interaction of cw CO2 laser radiation with plasma near-metallic substrate surface

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Astapchik, S. A.; Zabelin, Alexandre M.; Golubev, Vladimir S.; Golubev, V. S.; Grezev, A. N.; Filatov, Igor V.; Chubrik, N. I.; Shimanovich, V. D.

    2000-07-01

    Optical and spectroscopic methods were used in studying near-surface plasma that is formed under the effect CW CO2 laser of (2- 5)x106W/cm2 power density upon stainless steel in He and Ar shielding gases. The variation of plume spatial structure with time has been studied, the outflow of gas-vapor jets from the interaction area has been characterized. The spectra of plasma plume pulsations have been obtained for the frequency range Δf = 0-1 MHz. The temperature and electron concentration of plasma plume have been found under radiation effect upon the target of stainless steel. Consideration has been given to the most probable mechanisms of CW laser radiation-metal non-stationary interaction.

  10. Numerical optimization of a multi-jet cooling system for the blown film extrusion

    NASA Astrophysics Data System (ADS)

    Janas, M.; Wortberg, J.

    2015-05-01

    The limiting factor for every extrusion process is the cooling. For the blown film process, this task is usually done by means of a single or dual lip air ring. Prior work has shown that two major effects are responsible for a bad heat transfer. The first one is the interaction between the jet and the ambient air. It reduces the velocity of the jet and enlarges the straight flow. The other one is the formation of a laminar boundary layer on the film surface due to the fast flowing cooling air. In this case, the boundary layer isolates the film and prevents an efficient heat transfer. To improve the heat exchange, a novel cooling approach is developed, called Multi-Jet. The new cooling system uses several slit nozzles over the whole tube formation zone for cooling the film. In contrast to a conventional system, the cooling air is guided vertically on the film surface in different heights to penetrate the boundary sublayer. Simultaneously, a housing of the tube formation zone is practically obtained to reduce the interaction with the ambient air. For the numerical optimization of the Multi-Jet system, a new procedure is developed. First, a prediction model identifies a worth considering cooling configuration. Therefore, the prediction model computes a film curve using the formulation from Zatloukal-Vlcek and the energy balance for the film temperature. Thereafter, the optimized cooling geometry is investigated in detail using a process model for the blown film extrusion that is able to compute a realistic bubble behavior depending on the cooling situation. In this paper, the Multi-Jet cooling system is numerically optimized for several different process states, like mass throughputs and blow-up ratios using one slit nozzle setting. For each process condition, the best cooling result has to be achieved. Therefore, the height of any nozzle over the tube formation zone is adjustable. The other geometrical parameters of the cooling system like the nozzle diameter or the nozzle width are fix.

  11. Gamma-ray burst jet dynamics and their interaction with the progenitor star.

    PubMed

    Lazzati, Davide; Morsony, Brian J; Begelman, Mitchell C

    2007-05-15

    The association of at least some long gamma-ray bursts with type Ic supernova explosions has been established beyond reasonable doubt. Theoretically, the challenge is to explain the presence of a light hyper-relativistic flow propagating through a massive stellar core without losing those properties. We discuss the role of the jet-star interaction in shaping the properties of the outflow emerging on the surface of the star. We show that the nature of the inner engine is hidden from the observer for most of the evolution, well beyond the time of the jet breakout on the stellar surface. The discussion is based on analytical considerations as well as high resolution numerical simulations. Finally, the observational consequences of the scenario are addressed in light of the present capabilities.

  12. Development of atmospheric pressure large area plasma jet for sterilisation and investigation of molecule and plasma interaction

    NASA Astrophysics Data System (ADS)

    Zerbe, Kristina; Iberler, Marcus; Jacoby, Joachim; Wagner, Christopher

    2016-09-01

    The intention of the project is the development and improvement of an atmospheric plasma jet based on various discharge forms (e.g. DBD, RF, micro-array) for sterilisation of biomedical equipment and investigation of biomolecules under the influence of plasma stress. The major objective is to design a plasma jet with a large area and an extended length. Due to the success on small scale plasma sterilisation the request of large area plasma has increased. Many applications of chemical disinfection in environmental and medical cleaning could thereby be complemented. Subsequently, the interaction between plasma and biomolecules should be investigated to improve plasma strerilisation. Special interest will be on non equilibrium plasma electrons affecting the chemical bindings of organic molecules.

  13. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.

    2016-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 90deg observation angle, the low-frequency noise could be as much as 10 dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite decorrelation region. Numerical predictions of the sound field, based on three-dimensional RANS solutions to determine the mean flow, turbulent kinetic energy and turbulence length and time scales, for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region in the turbulence spectrum increases the low-frequency algebraic decay (the low frequency "roll-off") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal numbers less than 0.1. Secondly, the large-aspect-ratio theory is able to predict the low-frequency amplification due to the jet-edge interaction reasonably well, even for moderate aspect ratio nozzles. We show also that the noise predictions for smaller aspect ratio jets can be fine-tuned using the appropriate RANS-based mean flow and turbulence properties.

  14. Mean-Eddy-Turbulence Interaction through Canonical Transfer Analysis: Theory and Application to the Kuroshio Extension Energetics Study

    NASA Astrophysics Data System (ADS)

    Liang, X. S.

    2016-02-01

    Central at the processes of mean-eddy-turbulence interaction, e.g., mesoscale eddy shedding, relaminarization, etc., is the transfer of energy among different scales. The existing classical transfers, however, do not take into account the issue of energy conservation and, therefore, are not faithful representations of the real interaction processes, which are fundamentally a redistribution of energy among scales. Based on a new analysis machinery, namely, multiscale window transform (Liang and Anderson, 2007), we were able to obtain a formula for this important processes, with the property of energy conservation a naturally embedded property. This formula has a form reminiscent of the Poisson bracket in Hamiltonian dynamics. It has been validated with many benchmark processes, and, particularly, has been applied with success to control the eddy shedding behind a bluff body. Presented here will be an application study of the instabilities and mean-eddy interactions in the Kuroshio Extension (KE) region. Generally, it is found that the unstable KE jet fuels the mesoscale eddies, but in the offshore eddy decaying region, the cause-effect relation reverses: it is the latter that drive the former. On the whole the eddies act to decelerate the jet in the upstream, whereas accelerating it downstream.

  15. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications.

    PubMed

    Stephan, Karl D; McLean, Robert J C; DeLeon, Gian; Melnikov, Vadim

    2016-11-14

    We investigate the effect of feed-gas humidity on the oxidative properties of an atmospheric-pressure plasma jet using nitrogen gas. Plasma jets operating at atmospheric pressure are finding uses in medical and biological settings for sterilization and other applications involving oxidative stress applied to organisms. Most jets use noble gases, but some researchers use less expensive nitrogen gas. The feed-gas water content (humidity) has been found to influence the performance of noble-gas plasma jets, but has not yet been systematically investigated for jets using nitrogen gas. Low-humidity and high-humidity feed gases were used in a nitrogen plasma jet, and the oxidation effect of the jet was measured quantitatively using a chemical dosimeter known as FBX (ferrous sulfate-benzoic acid-xylenol orange). The plasma jet using high humidity was found to have about ten times the oxidation effect of the low-humidity jet, as measured by comparison with the addition of measured amounts of hydrogen peroxide to the FBX dosimeter. Atmospheric-pressure plasma jets using nitrogen as a feed gas have a greater oxidizing effect with a high level of humidity added to the feed gas.

  16. Hysteresis and precession of a swirling jet normal to a wall.

    PubMed

    Shtern, V; Mi, J

    2004-01-01

    Interaction of a swirling jet with a no-slip surface has striking features of fundamental and practical interest. Different flow states and transitions among them occur at the same conditions in combustors, vortex tubes, and tornadoes. The jet axis can undergo precession and bending in combustors; this precession enhances large-scale mixing and reduces emissions of NOx. To explore the mechanisms of these phenomena, we address conically similar swirling jets normal to a wall. In addition to the Serrin model of tornadolike flows, a new model is developed where the flow is singularity free on the axis. New analytical and numerical solutions of the Navier-Stokes equations explain occurrence of multiple states and show that hysteresis is a common feature of wall-normal vortices or swirling jets no matter where sources of motion are located. Then we study the jet stability with the aid of a new approach accounting for deceleration and nonparallelism of the base flow. An appropriate transformation of variables reduces the stability problem for this strongly nonparallel flow to a set of ordinary differential equations. A particular flow whose stability is studied in detail is a half-line vortex normal to a rigid plane-a model of a tornado and of a swirling jet issuing from a nozzle in a combustor. Helical counter-rotating disturbances appear to be first growing as Reynolds number increases. Disturbance frequency changes its sign along the neutral curve while the wave number remains positive. Short disturbance waves propagate downstream and long waves propagate upstream. This helical instability causes bending of the vortex axis and its precession-the effects observed in technological flows and in tornadoes.

  17. SIMULATION AND MOCKUP OF SNS JET-FLOW TARGET WITH WALL JET FOR CAVITATION DAMAGE MITIGATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendel, Mark W; Geoghegan, Patrick J; Felde, David K

    2014-01-01

    Pressure waves created in liquid mercury pulsed spallation targets at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory induce cavitation damage on the stainless steel target container. The cavitation damage is thought to limit the lifetime of the target for power levels at and above 1 MW. Severe through-wall cavitation damage on an internal wall near the beam entrance window has been observed in spent-targets. Surprisingly though, there is very little damage on the walls that bound an annular mercury channel that wraps around the front and outside of the target. The mercury flow through this channel ismore » characterized by smooth, attached streamlines. One theory to explain this lack of damage is that the uni-directional flow biases the direction of the collapsing cavitation bubble, reducing the impact pressure and subsequent damage. The theory has been reinforced by in-beam separate effects data. For this reason, a second-generation SNS mercury target has been designed with an internal wall jet configuration intended to protect the concave wall where damage has been observed. The wall jet mimics the annular flow channel streamlines, but since the jet is bounded on only one side, the momentum is gradually diffused by the bulk flow interactions as it progresses around the cicular path of the target nose. Numerical simulations of the flow through this jet-flow target have been completed, and a water loop has been assembled with a transparent test target in order to visualize and measure the flow field. This paper presents the wall jet simulation results, as well as early experimental data from the test loop.« less

  18. POD Analysis of Jet-Plume/Afterbody-Wake Interaction

    NASA Astrophysics Data System (ADS)

    Murray, Nathan E.; Seiner, John M.; Jansen, Bernard J.; Gui, Lichuan; Sockwell, Shuan; Joachim, Matthew

    2009-11-01

    The understanding of the flow physics in the base region of a powered rocket is one of the keys to designing the next generation of reusable launchers. The base flow features affect the aerodynamics and the heat loading at the base of the vehicle. Recent efforts at the National Center for Physical Acoustics at the University of Mississippi have refurbished two models for studying jet-plume/afterbody-wake interactions in the NCPA's 1-foot Tri-Sonic Wind Tunnel Facility. Both models have a 2.5 inch outer diameter with a nominally 0.5 inch diameter centered exhaust nozzle. One of the models is capable of being powered with gaseous H2 and O2 to study the base flow in a fully combusting senario. The second model uses hi-pressure air to drive the exhaust providing an unheated representative flow field. This unheated model was used to acquire PIV data of the base flow. Subsequently, a POD analysis was performed to provide a first look at the large-scale structures present for the interaction between an axisymmetric jet and an axisymmetric afterbody wake. PIV and Schlieren data are presented for a single jet-exhaust to free-stream flow velocity along with the POD analysis of the base flow field.

  19. Effective Jet Properties for the Prediction of Turbulent Mixing Noise Reduction by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Lonergan, Michael J.

    2007-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the control volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  20. Jet-cooled laser-induced fluorescence spectroscopy of cyclohexoxy: rotational and fine structure of molecules in nearly degenerate electronic States.

    PubMed

    Liu, Jinjun; Miller, Terry A

    2014-12-26

    The rotational structure of the previously observed B̃(2)A' ← X̃(2)A″ and B̃(2)A' ← Ã(2)A' laser-induced fluorescence spectra of jet-cooled cyclohexoxy radical (c-C6H11O) [ Zu, L.; Liu, J.; Tarczay, G.; Dupré, P; Miller, T. A. Jet-cooled laser spectroscopy of the cyclohexoxy radical. J. Chem. Phys. 2004 , 120 , 10579 ] has been analyzed and simulated using a spectroscopic model that includes the coupling between the nearly degenerate X̃ and à states separated by ΔE. The rotational and fine structure of these two states is reproduced by a 2-fold model using one set of molecular constants including rotational constants, spin-rotation constants (ε's), the Coriolis constant (Aζt), the quenched spin-orbit constant (aζed), and the vibronic energy separation between the two states (ΔE0). The energy level structure of both states can also be reproduced using an isolated-state asymmetric top model with rotational constants and effective spin-rotation constants (ε's) and without involving Coriolis and spin-orbit constants. However, the spin-orbit interaction introduces transitions that have no intensity using the isolated-state model but appear in the observed spectra. The line intensities are well simulated using the 2-fold model with an out-of-plane (b-) transition dipole moment for the B̃ ← X̃ transitions and in-plane (a and c) transition dipole moment for the B̃ ← à transitions, requiring the symmetry for the X̃ (Ã) state to be A″ (A'), which is consistent with a previous determination and opposite to that of isopropoxy, the smallest secondary alkoxy radical. The experimentally determined Ã-X̃ separation and the energy level ordering of these two states with different (A' and A″) symmetries are consistent with quantum chemical calculations. The 2-fold model also enables the independent determination of the two contributions to the Ã-X̃ separation: the relativistic spin-orbit interaction (magnetic effect) and the nonrelativistic vibronic separation between the lowest vibrational energy levels of these two states due to both electrostatic interaction (Coulombic effect) and difference in zero-point energies (kinetic effect).

  1. Effect of Microjet Injection on Supersonic Jet Noise

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Podboy, G. G.

    2010-01-01

    The effect of microjet (jet) injection on the noise from supersonic jets is investigated. Three convergent-divergent (C-D) nozzles and one convergent nozzle, all having the same exit diameters, are used in the study. The jets are injected perpendicular to the primary jet close to the nozzle lip from six equally-spaced ports having a jet-to-primary-jet diameter ratio of 0.0054. Effects in the over-expanded, fully expanded as well as underexpanded flow regimes are explored. Relative to the effect on subsonic jets, larger reductions in the overall sound pressure level (OASPL) are achieved in most supersonic conditions. The largest reductions are typically associated with suppression of screech and transonic tones. For a shock-free, fully expanded case, the OASPL reductions achieved are comparable to that in the subsonic case; the same correlation, found for subsonic jet noise reduction at shallow observation angle, applies.

  2. Experimental characterization of gasoline sprays under highly evaporating conditions

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Mahabat; Sheikh, Nadeem Ahmed; Khalid, Azfar; Lughmani, Waqas Akbar

    2018-05-01

    An experimental investigation of multistream gasoline sprays under highly evaporating conditions is carried out in this paper. Temperature increase of fuel and low engine pressure could lead to flash boiling. The spray shape is normally modified significantly under flash boiling conditions. The spray plumes expansion along with reduction in the axial momentum causes the jets to merge and creates a low-pressure area below the injector's nozzle. These effects initiate the collapse of spray cone and lead to the formation of a single jet plume or a big cluster like structure. The collapsing sprays reduces exposed surface and therefore they last longer and subsequently penetrate more. Spray plume momentum increase, jet plume reduction and spray target widening could delay or prevent the closure condition and limit the penetration (delayed formation of the cluster promotes evaporation). These spray characteristics are investigated experimentally using shadowgraphy, for five and six hole injectors, under various boundary conditions. Six hole injectors produce more collapsing sprays in comparison to five hole injector due to enhanced jet to jet interactions. The spray collapse tendency reduces with increase in injection pressure due high axial momentum of spray plumes. The spray evaporation rates of five hole injector are observed to be higher than six hole injectors. Larger spray cone angles of the six hole injectors promote less penetrating and less collapsing sprays.

  3. Surface Damage and Treatment by Impact of a Low Temperature Nitrogen Jet

    NASA Astrophysics Data System (ADS)

    Laribou, Hicham; Fressengeas, Claude; Entemeyer, Denis; Jeanclaude, Véronique; Tazibt, Abdel

    2011-01-01

    Nitrogen jets under high pressure and low temperature have been introduced recently. The process consists in projecting onto a surface a low temperature jet obtained from releasing the liquid nitrogen stored in a high pressure tank (e.g. 3000 bars) through a nozzle. It can be used in a range of industrial applications, including surface treatment or material removal through cutting, drilling, striping and cleaning. The process does not generate waste other than the removed matter, and it only releases neutral gas into the atmosphere. This work is aimed at understanding the mechanisms of the interaction between the jet and the material surface. Depending on the impacted material, the thermo-mechanical shock and blast effect induced by the jet can activate a wide range of damage mechanisms, including cleavage, crack nucleation and spalling, as well as void expansion and localized ductile failure. The test parameters (standoff distance, dwell time, operating pressure) play a role in selecting the dominant damage mechanism, but combinations of these various modes are usually present. Surface treatment through phase transformation or grain fragmentation in a layer below the surface can also be obtained by adequate tuning of the process parameters. In the current study, work is undertaken to map the damage mechanisms in metallic materials as well as the influence of the test parameters on damage, along with measurements of the thermo-mechanical conditions (impact force, temperature) in the impacted area.

  4. Structure of saligenin: microwave, UV and IR spectroscopy studies in a supersonic jet combined with quantum chemistry calculations.

    PubMed

    Kumar, Sumit; Singh, Santosh K; Calabrese, Camilla; Maris, Assimo; Melandri, Sonia; Das, Aloke

    2014-08-28

    In this study, we have determined the structure of a medicinally important molecule saligenin (2-hydroxybenzyl alcohol) using UV, IR and microwave absorption spectroscopy in a supersonic jet combined with ab initio calculations. The structure of the only observed conformer of saligenin corresponds to the global minimum on the conformational surface. The observed structure is stabilized by an intramolecular strong O-H···O hydrogen bonding as well as a very weak O-H···π interaction. The hydrogen bond is formed through phenolic OH as the hydrogen bond donor and benzylic OH as the hydrogen bond acceptor while the O-H···π interaction is through benzylic O-H as the hydrogen bond donor and phenyl group as the hydrogen bond acceptor. It has been observed that the benzylic OH stretching frequency in saligenin is more red-shifted compared to that in benzyl alcohol as the strong O-H···O interaction present in saligenin acts on the benzylic O-H group. In fact, there is a subtle interplay among the strong O-H···O hydrogen bond, weak O-H···π interaction, and steric effects arising from the ortho substitution of the OH group in benzyl alcohol. This fine-tuning of multiple interactions very often governs the specific structures of biomolecules and materials.

  5. Computational Study of a Vortex-Ring Pair Interacting with a Constant-Temperature Heated Wall

    NASA Astrophysics Data System (ADS)

    Jabbar, Hussam; Naguib, Ahmed

    2017-11-01

    Impinging jets are used widely in industrial and manufacturing processes because of their ability to increase the heat transfer rate from the impingement surface. The vortical structures of these jets have an important influence on the heat transfer; by affecting the thermal boundary layer (TBL) during their interaction with the wall. In order to better understand the physics of this interaction, particularly when pairing of two vortices happens near the wall, a simplified model problem of two isolated vortex rings interacting with a flat wall is investigated computationally using ANSYS FLUENT 17.1. Observations of the vorticity field, the temperature field, the wall shear stress, the TBL and the Nusselt number (Nu) provide insight into the association of local Nu maxima/minima with different flow features. The results provide physical understanding of the flow processes leading to enhancement/deterioration of Nu due to vortex-wall interaction. Additionally, the characteristics of the vortical structures are quantified, and possible correlations between the temporal development of these characteristics and the evolution of the maximum/minimum Nu are investigated. The results are compared to those involving a single vortex ring in order to understand the effect of vortex pairing. This work is supported by NSF Grant Number CBET-1603720. Hussam Jabbar also acknowledges the fellowship support from Higher Committee for Education Development in Iraq (HCED).

  6. A Shock-Refracted Acoustic Wave Model for Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fully expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on the directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength).

  7. Modeling the Influence of Injection Modes on the Evolution of Solution Sprays in a Plasma Jet

    NASA Astrophysics Data System (ADS)

    Shan, Y.; Coyle, T. W.; Mostaghimi, J.

    2010-01-01

    Solution precursor plasma spraying (SPPS) is a novel technology with great potential for depositing finely structured ceramic coatings with nano- and sub-micrometric features. The solution is injected into the plasma jet either as a liquid stream or gas atomized droplets. Solution droplets or the stream interact with the plasma jet and break up into fine droplets. The solvent vaporizes very fast as the droplets travel downstream. Solid particles are finally formed, and the particle are heated up and accelerated to the substrate to generate the coating. The deposition process and the properties of coatings obtained are extremely sensitive to the process parameters, such as torch operating conditions, injection modes, injection parameters, and substrate temperatures. This article numerically investigates the effect of injection modes, a liquid stream injection and a gas-blast injection, on the size distribution of injected droplets. The particle/droplet size, temperature, and position distributions on the substrate are predicted for different injection modes.

  8. A Shock-Refracted Acoustic Wave Model for the Prediction of Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fuiiy expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength

  9. Active control of jet flowfields

    NASA Astrophysics Data System (ADS)

    Kibens, Valdis; Wlezien, Richard W.

    1987-06-01

    Passive and active control of jet shear layer development were investigated as mechanisms for modifying the global characteristics of jet flowfields. Slanted and stepped indeterminate origin (I.O.) nozzles were used as passive, geometry-based control devices which modified the flow origins. Active control techniques were also investigated, in which periodic acoustic excitation signals were injected into the I.O. nozzle shear layers. Flow visualization techniques based on a pulsed copper-vapor laser were used in a phase-conditioned image acquisition mode to assemble optically averaged sets of images acquired at known times throughout the repetition cycle of the basic flow oscillation period. Hot wire data were used to verify the effect of the control techniques on the mean and fluctuating flow properties. The flow visualization images were digitally enhanced and processed to show locations of prominent vorticity concentrations. Three-dimensional vortex interaction patterns were assembled in a format suitable for movie mode on a graphic display workstation, showing the evolution of three-dimensional vortex system in time.

  10. Wall jet analysis for circulation control aerodynamics. Part 1: Fundamental CFD and turbulence modeling concepts

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; York, B. J.; Sinha, N.; Dvorak, F. A.

    1987-01-01

    An overview of parabolic and PNS (Parabolized Navier-Stokes) methodology developed to treat highly curved sub and supersonic wall jets is presented. The fundamental data base to which these models were applied is discussed in detail. The analysis of strong curvature effects was found to require a semi-elliptic extension of the parabolic modeling to account for turbulent contributions to the normal pressure variations, as well as an extension to the turbulence models utilized, to account for the highly enhanced mixing rates observed in situations with large convex curvature. A noniterative, pressure split procedure is shown to extend parabolic models to account for such normal pressure variations in an efficient manner, requiring minimal additional run time over a standard parabolic approach. A new PNS methodology is presented to solve this problem which extends parabolic methodology via the addition of a characteristic base wave solver. Applications of this approach to analyze the interaction of wave and turbulence processes in wall jets is presented.

  11. Reduction of shock induced noise in imperfectly expanded supersonic jets using convex optimization

    NASA Astrophysics Data System (ADS)

    Adhikari, Sam

    2007-11-01

    Imperfectly expanded jets generate screech noise. The imbalance between the backpressure and the exit pressure of the imperfectly expanded jets produce shock cells and expansion or compression waves from the nozzle. The instability waves and the shock cells interact to generate the screech sound. The mathematical model consists of cylindrical coordinate based full Navier-Stokes equations and large-eddy-simulation turbulence modeling. Analytical and computational analysis of the three-dimensional helical effects provide a model that relates several parameters with shock cell patterns, screech frequency and distribution of shock generation locations. Convex optimization techniques minimize the shock cell patterns and the instability waves. The objective functions are (convex) quadratic and the constraint functions are affine. In the quadratic optimization programs, minimization of the quadratic functions over a set of polyhedrons provides the optimal result. Various industry standard methods like regression analysis, distance between polyhedra, bounding variance, Markowitz optimization, and second order cone programming is used for Quadratic Optimization.

  12. Squeezed colour states in gluon jet

    NASA Technical Reports Server (NTRS)

    Kilin, S. YA.; Kuvshinov, V. I.; Firago, S. A.

    1993-01-01

    The possibility of the formation of squeezed states of gluon fields in quantum chromodynamics due to nonlinear nonperturbative self interaction during jet evolution in the process of e(+)e(-) annihilation into hadrons, which are analogous to the quantum photon squeezed states in quantum electrodynamics, is demonstrated. Additionally, the squeezing parameters are calculated.

  13. Gamma-jet physics with the electro-magnetic calorimeter in the ALICE experiment at LHC

    NASA Astrophysics Data System (ADS)

    Bourdaud, G.

    2008-05-01

    The Electro-Magnetic Calorimeter (EMCal) will be fully installed for the first LHC heavy ion beam in order to improve the ALICE experiment performances in detection of high transverse momentum particles and in particular in reconstruction of γ-jet events. These events appear to be very interesting to probe the strongly interacting matter created in ultra-relativistic heavy ion collisions and the eventual Quark Gluon Plasma (QGP) state. Indeed, they may give information on the degree of medium opacity which induces the jet-quenching phenomenon: measuring the energy of the γ and comparing it to that of the associated jet may provide a unique way to quantify the jet energy loss in the dense matter. The interest of γ-jet studies in the framework of the quark gluon plasma physics will be discussed. A particular highlight will be stressed on the EMCal calorimeter. The detection of the γ-jet events will be then presented using this new ALICE detector.

  14. Jet properties in PbPb and pp collisions at $$ \\sqrt{s_{\\mathrm{N}\\;\\mathrm{N}}}=5.02 $$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Modifications of the properties of jets in PbPb collisions, relative to those in pp collisions, are studied at a nucleon-nucleon center-of-mass energy ofmore » $$ \\sqrt{s_{\\mathrm{N}\\,\\mathrm{N}}}=5.02 $$ TeV via correlations of charged particles with the jet axis in relative pseudorapidity (Δη), relative azimuth (ΔΦ), and relative angular distance from the jet axis $$ \\varDelta \\mathrm{r}=\\sqrt{{\\left(\\varDelta \\eta \\right)}^2+{\\left(\\varDelta \\phi \\right)}^2} $$ . This analysis uses data collected with the CMS detector at the LHC, corresponding to integrated luminosities of 404 μb$$^{-1}$$ and 27.4 pb$$^{-1}$$ for PbPb and pp collisions, respectively. Charged particle number densities, jet fragmentation functions, and jet shapes are presented as a function of PbPb collision centrality and charged-particle track transverse momentum, providing a differential description of jet modifications due to interactions with the quark-gluon plasma.« less

  15. Jet properties in PbPb and pp collisions at $$ \\sqrt{s_{\\mathrm{N}\\;\\mathrm{N}}}=5.02 $$ TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2018-05-02

    Modifications of the properties of jets in PbPb collisions, relative to those in pp collisions, are studied at a nucleon-nucleon center-of-mass energy ofmore » $$ \\sqrt{s_{\\mathrm{N}\\,\\mathrm{N}}}=5.02 $$ TeV via correlations of charged particles with the jet axis in relative pseudorapidity (Δη), relative azimuth (ΔΦ), and relative angular distance from the jet axis $$ \\varDelta \\mathrm{r}=\\sqrt{{\\left(\\varDelta \\eta \\right)}^2+{\\left(\\varDelta \\phi \\right)}^2} $$ . This analysis uses data collected with the CMS detector at the LHC, corresponding to integrated luminosities of 404 μb$$^{-1}$$ and 27.4 pb$$^{-1}$$ for PbPb and pp collisions, respectively. Charged particle number densities, jet fragmentation functions, and jet shapes are presented as a function of PbPb collision centrality and charged-particle track transverse momentum, providing a differential description of jet modifications due to interactions with the quark-gluon plasma.« less

  16. The Prediction of Noise Due to Jet Turbulence Convecting Past Flight Vehicle Trailing Edges

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    High intensity acoustic radiation occurs when turbulence convects past airframe trailing edges. A mathematical model is developed to predict this acoustic radiation. The model is dependent on the local flow and turbulent statistics above the trailing edge of the flight vehicle airframe. These quantities are dependent on the jet and flight vehicle Mach numbers and jet temperature. A term in the model approximates the turbulent statistics of single-stream heated jet flows and is developed based upon measurement. The developed model is valid for a wide range of jet Mach numbers, jet temperature ratios, and flight vehicle Mach numbers. The model predicts traditional trailing edge noise if the jet is not interacting with the airframe. Predictions of mean-flow quantities and the cross-spectrum of static pressure near the airframe trailing edge are compared with measurement. Finally, predictions of acoustic intensity are compared with measurement and the model is shown to accurately capture the phenomenon.

  17. Direct Numerical Simulation of a Plane Transitional Wall Jet

    NASA Astrophysics Data System (ADS)

    Ramesh, O.; Varghese, Joel

    2017-11-01

    A transitional plane wall jet is studied using direct numerical simulation. The presence of an inflectional point leads to the outer layer rolling up into vortices that interacts with the inner region resulting in a double array of counter rotating vortices before breakdown into turbulence. Past studies have focused on forced wall jet which results in shorter transition region and prominent vortical structures. In the present work, natural transition will be discussed by analysing the coherent structures and scaled frequency spectra. Clear hairpin like structures leaning downstream in the inner region(as in a boundary layer) and leaning upstream in the outerstream (as in a jet) are evident.

  18. Rapidity gaps between jets in photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bornheim, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mengel, S.; Mollen, J.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Cottingham, W. N.; Dyce, N.; Foster, B.; George, S.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Morgado, C. J. S.; O'Mara, J. A.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kotański, A.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Groß-Knetter, J.; Gutjahr, B.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K. F.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Monteiro, T.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zeuner, W.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mari, S. M.; Mattingly, M. C. K.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Gallo, E.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Bruemmer, N.; Butterworth, I.; Harris, V. L.; Hung, B. Y. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. V.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Nylander, P.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Okrasinski, J. R.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Händel-Pikielny, C.; Levy, A.; Fleck, J. I.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Murray, W. N.; Schmidke, W. B.; ZEUS Collaboration

    1996-02-01

    Photoproduction events which have two or more jets have been studied in the Wγp range 135 GeV < Wγp < 280 GeV with the ZEUS detector at HERA. A class of events is observed with little hadronic activity between the jets. The jets are separated by pseudorapidity intervals (Δη) of up to four units and have transverse energies greater than 6 GeV. A gap is defined as the absence between the jets of particles with transverse energy greater than 300 MeV. The fraction of events containing a gap is measured as a function of Δη. It decreases exponentially as expected for processes in which colour is exchanged between the jets, up to a value of Δη ˜ 3, then reaches a cconstant value of about 0.1. The excess above the exponential fall-off can be interpreted as evidence for hard diffractive scattering via a strongly interacting colour singlet object.

  19. Fluid-flow of a row of jets in crossflow - A numerical study

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Benson, T. J.

    1992-01-01

    A detailed computer-visualized flow field of a row of jets in a confined crossflow is presented. The Reynolds averaged Navier-Stokes equations are solved using a finite volume method that incorporates a partial differential equation for incremental pressure to obtain a divergence-free flow field. The turbulence is described by a multiple-time-scale turbulence model. The computational domain includes the upstream region of the circular jet so that the interaction between the jet and the crossflow is simulated accurately. It is shown that the row of jets in the crossflow is characterized by a highly complex flow field that includes a horse-shoe vortex and two helical vortices whose secondary velocity components are co-rotating in space. It is also shown that the horse-shoe vortex is a ring of reversed flows located along the circumference of the jet exit.

  20. Transverse acoustic forcing of a round hydrodynamically self-excited jet

    NASA Astrophysics Data System (ADS)

    Kushwaha, Abhijit Kumar; Mazur, Marek; Worth, Nicholas; Dawson, James; Li, Larry K. B.

    2017-11-01

    Hydrodynamically self-excited jets can readily synchronize with longitudinal acoustic forcing, but their response to transverse acoustic forcing is less clear. In this experimental study, we apply transverse acoustic forcing to an axisymmetric low-density jet at frequencies around its natural global frequency. We place the jet in a rectangular box containing two loudspeakers, one at each end, producing nominally one-dimensional standing pressure waves. By traversing the jet across this box, we subject it to a range of acoustic modes, from purely longitudinal (streamwise) modes at the pressure anti-node to purely transverse (cross-stream) modes at the pressure node. Using time-resolved Background-Oriented Schlieren (BOS) imaging and hot-wire anemometry, we characterize the jet response for different forcing frequencies, amplitudes and mode shapes, providing new insight into the way transverse acoustic oscillations interact with axisymmetric hydrodynamic oscillations. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

Top