Sample records for jet propulsion fuel

  1. Jet propulsion for airplanes

    NASA Technical Reports Server (NTRS)

    Buckingham, Edgar

    1924-01-01

    This report is a description of a method of propelling airplanes by the reaction of jet propulsion. Air is compressed and mixed with fuel in a combustion chamber, where the mixture burns at constant pressure. The combustion products issue through a nozzle, and the reaction of that of the motor-driven air screw. The computations are outlined and the results given by tables and curves. The relative fuel consumption and weight of machinery for the jet, decrease as the flying speed increases; but at 250 miles per hour the jet would still take about four times as much fuel per thrust horsepower-hour as the air screw, and the power plant would be heavier and much more complicated. Propulsion by the reaction of a simple jet can not compete with air screw propulsion at such flying speeds as are now in prospect.

  2. Exposure to low levels of jet-propulsion fuel impairs brainstem encoding of stimulus intensity.

    PubMed

    Guthrie, O'neil W; Xu, Helen; Wong, Brian A; McInturf, Shawn M; Reboulet, Jim E; Ortiz, Pedro A; Mattie, David R

    2014-01-01

    Jet propulsion fuel-8 (JP-8) is a kerosene-based fuel that is used in military jets. The U.S. Armed Services and North Atlantic Treaty Organization countries adopted JP-8 as a standard fuel source and the U.S. military alone consumes more than 2.5 billion gallons annually. Preliminary epidemiologic data suggested that JP-8 may interact with noise to induce hearing loss, and animal studies revealed damage to presynaptic sensory cells in the cochlea. In the current study, Long-Evans rats were divided into four experimental groups: control, noise only, JP-8 only, and JP-8 + noise. A subototoxic level of JP-8 was used alone or in combination with a nondamaging level of noise. Functional and structural assays of the presynaptic sensory cells combined with neurophysiologic studies of the cochlear nerve revealed that peripheral auditory function was not affected by individual exposures and there was no effect when the exposures were combined. However, the central auditory nervous system exhibited impaired brainstem encoding of stimulus intensity. These findings may represent important and major shifts in the theoretical framework that governs current understanding of jet fuel and/or jet fuel + noise-induced ototoxicity. From an epidemiologic perspective, results indicate that jet fuel exposure may exert consequences on auditory function that may be more widespread and insidious than what was previously shown. It is possible that a large population of military personnel who are suffering from the effects of jet fuel exposure may be misidentified because they would exhibit normal hearing thresholds but harbor a "hidden" brainstem dysfunction.

  3. The methodology of variable management of propellant fuel consumption by jet-propulsion engines of a spacecraft

    NASA Astrophysics Data System (ADS)

    Kovtun, V. S.

    2012-12-01

    Traditionally, management of propellant fuel consumption on board of a spacecraft is only associated with the operation of jet-propulsion engines (JPE) that are actuator devices of motion control systems (MCS). The efficiency of propellant fuel consumption depends not only on the operation of the MCS, but also, to one extent or another, on all systems functioning on board of a spacecraft, and on processes that occur in them and involve conversion of variable management of propellant fuel consumption by JPEs as a constituent part of the control of the complex process of spacecraft flight.

  4. Tests on Thrust Augmenters for Jet Propulsion

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Shoemaker, James M

    1932-01-01

    This series of tests was undertaken to determine how much the reaction thrust of a jet could be increased by the use of thrust augmenters and thus to give some indication as to the feasibility of jet propulsion for airplanes. The tests were made during the first part of 1927 at the Langley Memorial Aeronautical Laboratory. A compressed air jet was used in connection with a series of annular guides surrounding the jet to act as thrust augmenters. The results show that, although it is possible to increase the thrust of a jet, the increase is not large enough to affect greatly the status of the problem of the application of jet propulsion to airplanes.

  5. Evaluation of genotoxic and oxidative effects in workers exposed to jet propulsion fuel.

    PubMed

    Erdem, Onur; Sayal, Ahmet; Eken, Ayşe; Akay, Cemal; Aydın, Ahmet

    2012-05-01

    Jet fuel is a common occupational exposure risk among military and civilian populations. The purpose of this study was to evaluate genotoxic and oxidative effects in workers occupational exposure to jet propulsion fuel (JP-8). In this study, sister-chromatid exchange (SCE), high frequency of SCE cells (HFCs), and micronuclei (MN) were determined for 43 workers exposed to JP-8 and 38 control subjects. We measured the antioxidant enzyme activities including that of superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT). The levels of thiobarbituric acid-reactive substances (TBARS) were also studied. Urinary 1- and 2-naphthol excretion was used as a biomarker of occupational exposure to JP-8. The results obtained from cytogenetic analysis show a statistically significant increase in frequency of SCE in the exposed workers when compared to controls (P < 0.05). Interestingly, the mean value of the frequency (%o) of MN and HFCs for workers and controls did not show any statistical differences (P > 0.05). Oxidative stress parameters were not statistically different between exposed and control groups except for TBARS levels. Urinary 1-and 2-naphthol levels of exposed workers were found to be significantly higher than those of control subjects. Occupational exposure to JP-8 resulted in no significant genotoxic and oxidative effects, while smoking is the principal confounding factor for the some parameters. To understand the genotoxic and oxidative effects of JP-8 exposure, further studies should be planned to find out whether human populations may be at increased risk for cancer because of the exposures related to occupation and lifestyle.

  6. Study of Jet-Propulsion System Comprising Blower, Burner, and Nozzle

    NASA Technical Reports Server (NTRS)

    Hall, Eldon W

    1944-01-01

    A study was made of the performance of a jet-propulsion system composed of an engine-driven blower, a combustion chamber, and a discharge nozzle. A simplified analysis is made of this system for the purpose of showing in concise form the effect of the important design variables and operating conditions on jet thrust, thrust horsepower, and fuel consumption. Curves are presented that permit a rapid evaluation of the performance of this system for a range of operating conditions. The performance for an illustrative case of a power plant of the type under consideration id discussed in detail. It is shown that for a given airplane velocity the jet thrust horsepower depends mainly on the blower power and the amount of fuel burned in the jet; the higher the thrust horsepower is for a given blower power, the higher the fuel consumption per thrust horsepower. Within limits the amount of air pumped has only a secondary effect on the thrust horsepower and efficiency. A lower limit on air flow for a given fuel flow occurs where the combustion-chamber temperature becomes excessive on the basis of the strength of the structure. As the air-flow rate is increased, an upper limit is reached where, for a given blower power, fuel-flow rate, and combustion-chamber size, further increase in air flow causes a decrease in power and efficiency. This decrease in power is caused by excessive velocity through the combustion chamber, attended by an excessive pressure drop caused by momentum changes occurring during combustion.

  7. Aperture effects in squid jet propulsion.

    PubMed

    Staaf, Danna J; Gilly, William F; Denny, Mark W

    2014-05-01

    Squid are the largest jet propellers in nature as adults, but as paralarvae they are some of the smallest, faced with the inherent inefficiency of jet propulsion at a low Reynolds number. In this study we describe the behavior and kinematics of locomotion in 1 mm paralarvae of Dosidicus gigas, the smallest squid yet studied. They swim with hop-and-sink behavior and can engage in fast jets by reducing the size of the mantle aperture during the contraction phase of a jetting cycle. We go on to explore the general effects of a variable mantle and funnel aperture in a theoretical model of jet propulsion scaled from the smallest (1 mm mantle length) to the largest (3 m) squid. Aperture reduction during mantle contraction increases propulsive efficiency at all squid sizes, although 1 mm squid still suffer from low efficiency (20%) because of a limited speed of contraction. Efficiency increases to a peak of 40% for 1 cm squid, then slowly declines. Squid larger than 6 cm must either reduce contraction speed or increase aperture size to maintain stress within maximal muscle tolerance. Ecological pressure to maintain maximum velocity may lead them to increase aperture size, which reduces efficiency. This effect might be ameliorated by nonaxial flow during the refill phase of the cycle. Our model's predictions highlight areas for future empirical work, and emphasize the existence of complex behavioral options for maximizing efficiency at both very small and large sizes.

  8. The Effects of Propulsive Jetting on Drag of a Streamlined body

    NASA Astrophysics Data System (ADS)

    Krieg, Michael; Mohseni, Kamran

    2017-11-01

    Recently an abundance of bioinspired underwater vehicles have emerged to leverage eons of evolution. Our group has developed a propulsion technique inspired by jellyfish and squid. Propulsive jets are generated by ingesting and expelling water from a flexible internal cavity. We have demonstrated thruster capabilities for maneuvering on AUV platforms, where the internal thruster geometry minimized forward drag; however, such a setup cannot characterize propulsive efficiency. Therefore, we created a new streamlined vehicle platform that produces unsteady jets for forward propulsion rather than maneuvering. The streamlined jetting body is placed in a water tunnel and held stationary while jetting frequency and background flow velocity are varied. For each frequency/velocity pair the flow field is measured around the surface and in the wake using PIV. Using the zero jetting frequency as a baseline for each background velocity, the passive body drag is related to the velocity distribution. For cases with active jetting the drag and jetting forces are estimated from the velocity field and compared to the passive case. For this streamlined body, the entrainment of surrounding flow into the propulsive jet can reduce drag forces in addition to the momentum transfer of the jet itself. Office of Naval Research.

  9. Postural sway and exposure to jet propulsion fuel 8 among US Air Force personnel.

    PubMed

    Maule, Alexis L; Heaton, Kristin J; Rodrigues, Ema; Smith, Kristen W; McClean, Michael D; Proctor, Susan P

    2013-04-01

    To determine whether short-term jet propulsion fuel 8 (JP-8) exposure is associated with balance measurements in JP-8-exposed air force personnel. As part of a larger neuroepidemiology study, balance tasks were completed by JP-8-exposed individuals (n = 37). Short-term JP-8 exposure was measured using personal breathing zone levels and urinary biomarkers. Multivariate linear regression analyses were conducted to examine the relationship between workday JP-8 exposure and postural sway. Balance control decreased as the task became more challenging. Workday exposure to JP-8, measured by either personal air or urinary metabolite levels, was not significantly related to postural sway. Increases in workday postural sway were associated with demographic variables, including younger age, being a current smoker, and higher body mass index. Results suggest that short-term workday JP-8 exposure does not significantly contribute to diminished balance control.

  10. Publications of the Jet Propulsion Laboratory, 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Jet Propulsion Laboratory (JPL) bibliography 39-26 describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1984, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications (82-, 83-, 84-series, etc.), in which the information is complete for a specific accomplishment; (2) articles from the quarterly Telecommunications and Data Acquisition (TDA) Program Report (42-series); and (3) articles published in the open literature.

  11. Deriving the Generalized Power and Efficiency Equations for Jet Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Lee, Hsing-Juin; Chang, Chih-Luong

    The kinetic power and efficiency equations for general jet propulsion systems are classically given in a much cursory, incomplete, and ununified format. This situation prohibits the propulsion designer from seeing the panorama of interrelated propulsion parameters and effects. And in some cases, it may lead to an energy-inefficient propulsion system design, or induce significant offset in propulsion performance as demonstrated in this study. Thus, herein we attempt to clarify some related concepts and to rigorously derive the associated generalized equations with a complete spectrum of physical parameters to be manipulated in quest of better performance. By a highly efficient interweaved transport scheme, we have derived the following equations for general jet propulsion systems: i.e., generalized total kinetic power, generalized kinetic power delivered to the jet propulsion system, generalized thrust power, generalized available propulsion power, and relevant generalized propulsive, thermal, and overall efficiency equations. Further, the variants of these equations under special conditions are also considered. For taking advantage of the above propulsion theories, we also illustrate some novel propulsion strategies in the final discussion, such as the dive-before-climb launch of rocket from highland mountain on eastbound rail, with perhaps minisatellites as the payloads.

  12. Exhaust turbine and jet propulsion systems

    NASA Technical Reports Server (NTRS)

    Leist, Karl; Knornschild, Eugen

    1951-01-01

    DVL experimental and analytical work on the cooling of turbine blades by using ram air as the working fluid over a sector or sectors of the turbine annulus area is summarized. The subsonic performance of ram-jet, turbo-jet, and turbine-propeller engines with both constant pressure and pulsating-flow combustion is investigated. Comparison is made with the performance of a reciprocating engine and the advantages of the gas turbine and jet-propulsion engines are analyzed. Nacelle installation methods and power-level control are discussed.

  13. Urinary biomarkers of exposure to jet fuel (JP-8).

    PubMed Central

    Serdar, Berrin; Egeghy, Peter P; Waidyanatha, Suramya; Gibson, Roger; Rappaport, Stephen M

    2003-01-01

    Benzene, naphthalene, and 1- and 2-naphthol were measured in urine samples obtained from 322 U.S. Air Force personnel categorized a priori as likely to have low, moderate, or high exposure to jet fuel [jet propulsion fuel-8 (JP-8)]. In postexposure samples, levels of these analytes in the high-exposure group were 3- to 29-fold greater than in the low-exposure group and 2- to 12-fold greater than in the moderate-exposure group. Heavy exposure to JP-8 contributed roughly the same amount of benzene and more than three times the amount of naphthalene compared with cigarette smoking. Strong correlations were observed among postexposure levels of naphthalene-based biomarkers in urine and naphthalene in air and breath. We conclude that urinary naphthalene and the naphthols can serve as biomarkers of exposure to jet fuel. Of these, the naphthols are probably more useful because of their greater abundance and slower elimination kinetics. PMID:14594628

  14. Publications of the Jet Propulsion Laboratory 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Jet propulsion Laboratory (JPL) bibliography describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1983, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included. JPL Publication (81-,82-,83-series, etc.), in which the information is complete for a specific accomplishment, articles published in the open literature, and articles from the quarterly telecommunications and Data Acquisition (TDA) Progress Report (42-series) are included. Each collection of articles in this class of publication presents a periodic survey of current accomplishments by the Deep Space Network as well as other developments in Earth-based radio technology.

  15. Activities of the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Work accomplished by the Jet Propulsion Laboratory (JPL) under contract to NASA in 1985 is described. The work took place in the areas of flight projects, space science, geodynamics, materials science, advanced technology, defense and civil programs, telecommunications systems, and institutional activities.

  16. Conceptual Design of a Supersonic Business Jet Propulsion System

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2002-01-01

    NASA's Ultra-Efficient Engine Technology Program (UEETP) is developing a suite of technology to enhance the performance of future aircraft propulsion systems. Areas of focus for this suite of technology include: Highly Loaded Turbomachinery, Emissions Reduction, Materials and Structures, Controls, and Propulsion-Airframe Integration. The two major goals of the UEETP are emissions reduction of both landing and take-off nitrogen oxides (LTO-NO(x)) and mission carbon dioxide (CO2) through fuel burn reductions. The specific goals include a 70 percent reduction in the current LTO-NO(x) rule and an 8 percent reduction in mission CO2 emissions. In order to gain insight into the potential applications and benefits of these technologies on future aircraft, a set of representative flight vehicles was selected for systems level conceptual studies. The Supersonic Business Jet (SBJ) is one of these vehicles. The particular SBJ considered in this study has a capacity of 6 passengers, cruise Mach Number of 2.0, and a range of 4,000 nautical miles. Without the current existence of an SBJ the study of this vehicle requires a two-phased approach. Initially, a hypothetical baseline SBJ is designed which utilizes only current state of the art technology. Finally, an advanced SBJ propulsion system is designed and optimized which incorporates the advanced technologies under development within the UEETP. System benefits are then evaluated and compared to the program and design requirements. Although the program goals are only concerned with LTO-NO(x) and CO2 emissions, it is acknowledged that additional concerns for an SBJ include take-off noise, overland supersonic flight, and cruise NO(x) emissions at high altitudes. Propulsion system trade-offs in the conceptual design phase acknowledge these issues as well as the program goals. With the inclusion of UEETP technologies a propulsion system is designed which performs at 81% below the LTO-NO(x) rule, and reduces fuel burn by 23 percent

  17. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, left, meets with JPL Director Michael Watkins during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  18. III-V infrared research at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Ting, D. Z.; Hill, C. J.; Soibel, A.; Liu, John; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Nguyen, J.; Bandara, S. V.; Tidrow, M. Z.

    2009-08-01

    Jet Propulsion Laboratory is actively developing the III-V based infrared detector and focal plane arrays (FPAs) for NASA, DoD, and commercial applications. Currently, we are working on multi-band Quantum Well Infrared Photodetectors (QWIPs), Superlattice detectors, and Quantum Dot Infrared Photodetector (QDIPs) technologies suitable for high pixel-pixel uniformity and high pixel operability large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). In addition, we will present the latest advances in QDIPs and Superlattice infrared detectors at the Jet Propulsion Laboratory.

  19. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence turns and talks with Executive Director of the National Space Council Scott Pace during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  20. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, standing, explains the history of NASA's Jet Propulsion Laboratory and the use of the Mission Support Area to Vice President Mike Pence during a tour of JPL, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  1. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 2nd from left, his wife Karen, and daughter Charlotte are given a tour of NASA's Jet Propulsion Laboratory by JPL Director Michael Watkins, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  2. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, his wife Karen, and their daughter Charlotte shake hands with Mars Curiosity Mission ACE Walt Hoffman, right, during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  3. Fuel Effective Photonic Propulsion

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, N.; Srivarshini, S.

    2017-09-01

    With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation’s time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as ‘Star Shot’, aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.

  4. JP-8+100: The development of high-thermal-stability jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneghan, S.P.; Zabarnick, S.; Ballal, D.R.

    1996-09-01

    Jet fuel requirements have evolved over the years as a balance of the demands placed by advanced aircraft performance (technological need), fuel cost (economic factors), and fuel availability (strategic factors). In a modern aircraft, the jet fuel not only provides the propulsive energy for flight, but also is the primary coolant for aircraft and engine subsystems. To meet the evolving challenge of improving the cooling potential of jet fuel while maintaining the current availability at a minimal price increase, the US Air Force, industry, and academia have teamed to develop an additive package for JP-8 fuels. This paper describes themore » development of an additive package for JP-8, to produce JP-8+100. This new fuel offers a 55 C increase in the bulk maximum temperature (from 325 F to 425 F) and improves the heat sink capability by 50%. Major advances made during the development JP-8 + 100 fuel include the development of several new quantitative fuel analysis tests, a free radical theory of autooxidation, adaptation of new chemistry models to computational fluid dynamics programs, and a nonparametric statistical analysis to evaluate thermal stability. Hundreds of additives were tested for effectiveness, and a package of additives was then formulated for JP-8 fuel. This package has been tested for fuel system materials compatibility and general fuel applicability. To date, the flight testing ha shown an improvement in thermal stability of JP-8 fuel. This improvement has resulted in a significant reduction in fuel-related maintenance costs and a threefold increase in mean time between fuel-related failures. In this manner, a novel high-thermal-stability jet fuel for the 21st century has been successfully developed.« less

  5. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence is given instructions on how to drive a rover nicknamed "Scarecrow" by JPL Director Michael Watkins at NASA's Jet Propulsion Laboratory Mars Yard, Saturday, April 28, 2018 in Pasadena, California. Scarecrow is used to test mobility of rovers on Mars. Photo Credit: (NASA/Bill Ingalls)

  6. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 3rd from left, his wife Karen, and their daughter Charlotte meet with JPL Director Michael Watkins, and Mars Curiosity Mission ACE Walt Hoffman, right, during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  7. A cermet fuel reactor for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  8. Renewable jet fuel.

    PubMed

    Kallio, Pauli; Pásztor, András; Akhtar, M Kalim; Jones, Patrik R

    2014-04-01

    Novel strategies for sustainable replacement of finite fossil fuels are intensely pursued in fundamental research, applied science and industry. In the case of jet fuels used in gas-turbine engine aircrafts, the production and use of synthetic bio-derived kerosenes are advancing rapidly. Microbial biotechnology could potentially also be used to complement the renewable production of jet fuel, as demonstrated by the production of bioethanol and biodiesel for piston engine vehicles. Engineered microbial biosynthesis of medium chain length alkanes, which constitute the major fraction of petroleum-based jet fuels, was recently demonstrated. Although efficiencies currently are far from that needed for commercial application, this discovery has spurred research towards future production platforms using both fermentative and direct photobiological routes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, right, is presented a plaque by JPL Director Michael Watkins during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. The plaque presents a view of the Mars Science Laboratory rover Curiosity on the surface of Mars. Photo Credit: (NASA/Bill Ingalls)

  10. Jet fuel-induced immunotoxicity.

    PubMed

    Harris, D T; Sakiestewa, D; Titone, D; Robledo, R F; Young, R S; Witten, M

    2000-09-01

    Chronic exposure to jet fuel has been shown to cause human liver dysfunction, emotional dysfunction, abnormal electroencephalograms, shortened attention spans, and to decrease sensorimotor speed (3-5). Exposure to potential environmental toxicants such as jet fuel may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.), e.g., the immune system. Significant changes in immune function, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed 1 h/day for 7 days to a 1000-mg/m3 concentration of aerosolized jet fuel obtained from various sources (JP-8, JP-8+100 and Jet A1) and of differing compositions to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on the immune system. It was observed that exposure to all jet fuel sources examined had detrimental effects on the immune system. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in differential losses of immune cell populations in the thymus. Further, jet fuel exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low-concentration exposure of mice to aerosolized jet fuel, regardless of source or composition, caused significant deleterious effects on the immune system.

  11. Propulsion System Models for Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2014-01-01

    The conceptual design code NDARC (NASA Design and Analysis of Rotorcraft) was initially implemented to model conventional rotorcraft propulsion systems, consisting of turboshaft engines burning jet fuel, connected to one or more rotors through a mechanical transmission. The NDARC propulsion system representation has been extended to cover additional propulsion concepts, including electric motors and generators, rotor reaction drive, turbojet and turbofan engines, fuel cells and solar cells, batteries, and fuel (energy) used without weight change. The paper describes these propulsion system components, the architecture of their implementation in NDARC, and the form of the models for performance and weight. Requirements are defined for improved performance and weight models of the new propulsion system components. With these new propulsion models, NDARC can be used to develop environmentally-friendly rotorcraft designs.

  12. Publications of the Jet Propulsion Laboratory, 1981

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Over 500 externally distributed technical reports released during 1981 that resulted from scientific and engineering work performed, or managed by Jet Propulsion Laboratory are listed by primary author. Of the total number of entries, 311 are from the bimonthly Deep Space Network Progress Report, and its successor, the Telecommunications and Data Acquisition Progress Report.

  13. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, standing, explains the history of NASA's Jet Propulsion Laboratory and the use of the Mission Support Area to Vice President Mike Pence, right, and Executive Director of the National Space Council Scott Pace during a tour of JPL, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  14. Mixing enhancement of reacting parallel fuel jets in a supersonic combustor

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.

    1991-01-01

    Pursuant to a NASA-Langley development program for a scramjet HST propulsion system entailing the optimization of the scramjet combustor's fuel-air mixing and reaction characteristics, a numerical study has been conducted of the candidate parallel fuel injectors. Attention is given to a method for flow mixing-process and combustion-efficiency enhancement in which a supersonic circular hydrogen jet coflows with a supersonic air stream. When enhanced by a planar oblique shock, the injector configuration exhibited a substantial degree of induced vorticity in the fuel stream which increased mixing and chemical reaction rates, relative to the unshocked configuration. The resulting heat release was effective in breaking down the stable hydrogen vortex pair that had inhibited more extensive fuel-air mixing.

  15. Gene expression profiles in the rat central nervous system induced by JP-8 jet fuel vapor exposure.

    PubMed

    Lin, Baochuan; Ritchie, Glenn D; Rossi, John; Pancrazio, Joseph J

    2004-06-17

    Jet propulsion fuel-8 (JP-8) is the predominant fuel for military land vehicles and aircraft used in the US and NATO. Occupational exposure to jet fuel in military personnel has raised concern for the health risk associated with such exposure in the Department of Defense. Clinical studies of humans chronically exposed to jet fuel have suggested both neurotoxicity and neurobehavioral deficits. We utilized rat neurobiology U34 array to measure gene expression changes in whole brain tissue of rats exposed repeatedly to JP-8, under conditions that simulated possible occupational exposure (6 h/day for 91 days) to JP-8 vapor at 250, 500, and 1000 mg/m(3), respectively. Our studies revealed that the gene expression changes of exposure groups can be divided into two main categories according to their functions: (1). neurotransmitter signaling pathways; and (2). stress response. The implications of these gene expression changes are discussed.

  16. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, left, explains to U.S. Vice President Mike Pence, daughter of Mike Pence, Charlotte Pence, and wife of Mike Pence, Karen Pence the progress for the Mars 2020 mission while inside the Spacecraft Assembly Facility (SAF) during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  17. Flame ignition studies of conventional and alternative jet fuels and surrogate components

    NASA Astrophysics Data System (ADS)

    Liu, Ning

    Practical jet fuels are widely used in air-breathing propulsion, but the chemical mechanisms that control their combustion are not yet understood. Thousands of components are contained in conventional and alternative jet fuels, making thus any effort to model their combustion behavior a daunting task. That has been the motivation behind the development of surrogate fuels that contain typically a small number of neat components, whose physical properties and combustion behavior mimic those of the real jet fuel, and whose kinetics could be modeled with increased degree of confidence. Towards that end, a large number of experimental data are required both for the real fuels and the attendant surrogate components that could be used to develop and validate detailed kinetic models. Those kinetic models could be used then upon reduction to model a combustor and eventually optimize its performance. Among all flame phenomena, ignition is rather sensitive to the oxidative and pyrolytic propensity of the fuel as well as to its diffusivity. The counterflow configuration is ideal in probing both the fuel reactivity and diffusivity aspects of the ignition process and it was used in the present work to determine the ignition temperatures of premixed and non-premixed flames of a variety of fuels relevant to air-breathing propulsion. The experiments were performed at atmospheric pressure, elevated unburned fuel mixture temperatures, and various strain rates that were measured locally. Several recent kinetic models were used in direct numerical simulations of the experiments and the computed results were tested against the experimental data. Furthermore, through sensitivity, reaction path, and structure analyses of the computed flames, insight was provided into the dominant mechanisms that control ignition. It was found that ignition is primarily sensitive to fuel diffusion and secondarily sensitive to chemical kinetics and intermediate species diffusivities under the low fuel

  18. Project Icarus: Analysis of Plasma jet driven Magneto-Inertial Fusion as potential primary propulsion driver for the Icarus probe

    NASA Astrophysics Data System (ADS)

    Stanic, M.; Cassibry, J. T.; Adams, R. B.

    2013-05-01

    Hopes of sending probes to another star other than the Sun are currently limited by the maturity of advanced propulsion technologies. One of the few candidate propulsion systems for providing interstellar flight capabilities is nuclear fusion. In the past many fusion propulsion concepts have been proposed and some of them have even been explored in detail, Project Daedalus for example. However, as scientific progress in this field has advanced, new fusion concepts have emerged that merit evaluation as potential drivers for interstellar missions. Plasma jet driven Magneto-Inertial Fusion (PJMIF) is one of those concepts. PJMIF involves a salvo of converging plasma jets that form a uniform liner, which compresses a magnetized target to fusion conditions. It is an Inertial Confinement Fusion (ICF)-Magnetic Confinement Fusion (MCF) hybrid approach that has the potential for a multitude of benefits over both ICF and MCF, such as lower system mass and significantly lower cost. This paper concentrates on a thermodynamic assessment of basic performance parameters necessary for utilization of PJMIF as a candidate propulsion system for the Project Icarus mission. These parameters include: specific impulse, thrust, exhaust velocity, mass of the engine system, mass of the fuel required etc. This is a submission of the Project Icarus Study Group.

  19. Experimental and Modeling Studies of the Combustion Characteristics of Conventional and Alternative Jet Fuels. Final Report

    NASA Technical Reports Server (NTRS)

    Meeks, Ellen; Naik, Chitral V.; Puduppakkam, Karthik V.; Modak, Abhijit; Egolfopoulos, Fokion N.; Tsotsis, Theo; Westbrook, Charles K.

    2011-01-01

    The objectives of this project have been to develop a comprehensive set of fundamental data regarding the combustion behavior of jet fuels and appropriately associated model fuels. Based on the fundamental study results, an auxiliary objective was to identify differentiating characteristics of molecular fuel components that can be used to explain different fuel behavior and that may ultimately be used in the planning and design of optimal fuel-production processes. The fuels studied in this project were Fischer-Tropsch (F-T) fuels and biomass-derived jet fuels that meet certain specifications of currently used jet propulsion applications. Prior to this project, there were no systematic experimental flame data available for such fuels. One of the key goals has been to generate such data, and to use this data in developing and verifying effective kinetic models. The models have then been reduced through automated means to enable multidimensional simulation of the combustion characteristics of such fuels in real combustors. Such reliable kinetic models, validated against fundamental data derived from laminar flames using idealized flow models, are key to the development and design of optimal combustors and fuels. The models provide direct information about the relative contribution of different molecular constituents to the fuel performance and can be used to assess both combustion and emissions characteristics.

  20. Publications of the Jet Propulsion Laboratory, 1978

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This bibliography cites 958 externally distributed technical papers released during calendar year 1978, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. The publications are indexed by author, subject, publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first-listed) author.

  1. Current progress on TPFI nulling architectures at Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Gappinger, Robert O.; Wallace, J. Kent; Bartos, Randall D.; Macdonald, Daniel R.; Brown, Kenneth A.

    2005-01-01

    Infrared interferometric nulling is a promising technology for exoplanet detection. Nulling research for the Terrestrial Planet Finder Interferometer has been exploring a variety of interferometer architectures at the Jet Propulsion Laboratory (JPL).

  2. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, left, thanks JPL Deputy Director Lt. Gen. (Ret) Larry James, JPL Director Michael Watkins, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell , UAG Chairman, Admiral (Ret) James Ellis , and California Institute of Technology President Thomas Rosenbaum, right, for giving him a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  3. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, his wife Karen, and their daughter Charlotte are shown how to send a command to the Curiosity rover on Mars by Mars Curiosity Mission ACE Walt Hoffman during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Hoffman asked Charlotte Pence if she would do the honors of sending the command to the rover. Photo Credit: (NASA/Bill Ingalls)

  4. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, right, is shown the Mars 2020 spacecraft descent stage from inside the Spacecraft Assembly Facility (SAF) by JPL Director Michael Watkins, left, and NASA Mars Exploration Manager Li Fuk at NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Mars 2020 is a Mars rover mission by NASA's Mars Exploration Program with a planned launch in 2020. Photo Credit: (NASA/Bill Ingalls)

  5. Publications of the Jet Propulsion Laboratory, 1988

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1988, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: JPL publications in which the information is complete for a specific accomplishment; articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report; and articles published in the open literature.

  6. Publications of the Jet Propulsion Laboratory, 1985

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This bibliography describes and indexes by primary author the externally distributed technical reporting, released during calender year 1985, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: JPL publications in which the information is complete for a specific accomplisment; Articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report; and article published in the open literature.

  7. Rapid Response R&D for the Propulsion Directorate. Delivery Order 0019: Advanced Alternative Energy Technologies, Subtask: Life Cycle Greenhouse Gas Analysis of Advanced Jet Propulsion Fuels: Fischer-Tropsch Based SPK-1 Case Study

    DTIC Science & Technology

    2011-09-01

    carry finished jet fuel from the CBTL facility. The pipeline connects the CBTL facility to a petroleum refinery located in Wood River, Illinois...Under Option 1, all the blended jet fuel is transported via pipeline from the refinery in Wood River to Chicago’s O’Hare airport. Under Option 2...shipping F-T jet fuel to a refinery in Wood River, Illinois (near St. Louis, Missouri) for blending and final transport of the blended jet fuel to

  8. Publications of the Jet Propulsion Laboratory 1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A bibliography is presented which describes and indexes by author the externally distributed technical reporting, released during the calender year 1987, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Lab. Three classes of publications are included: (1) JPL publications in which the information is complete for a specific accomplishment; (2) Articles from the quarterly Telecommunications and Data Acquisition Progress Report; and (3) Articles published in the open literature.

  9. Distributed Propulsion Vehicles

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  10. Applying design principles to fusion reactor configurations for propulsion in space

    NASA Technical Reports Server (NTRS)

    Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. We applied three design principles (DP's) to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. We performed a preliminary rating of these configurations and concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS).

  11. Production of bio-jet fuel from microalgae

    NASA Astrophysics Data System (ADS)

    Elmoraghy, Marian

    The increase in petroleum-based aviation fuel consumption, the decrease in petroleum resources, the fluctuation of the crude oil price, the increase in greenhouse gas emission and the need for energy security are motivating the development of an alternate jet fuel. Bio-jet fuel has to be a drop in fuel, technically and economically feasible, environmentally friendly, greener than jet fuel, produced locally and low gallon per Btu. Bic jet fuel has been produced by blending petro-based jet fuel with microalgae biodiesel (Fatty Acid Methyl Ester, or simply FAME). Indoor microalgae growth, lipids extraction and transetrification to biodiesel are energy and fresh water intensive and time consuming. In addition, the quality of the biodiesel product and the physical properties of the bio-jet fuel blends are unknown. This work addressed these challenges. Minimizing the energy requirements and making microalgae growth process greener were accomplished by replacing fluorescent lights with light emitting diodes (LEDs). Reducing fresh water footprint in algae growth was accomplished by waste water use. Microalgae biodiesel production time was reduced using the one-step (in-situ transestrification) process. Yields up to 56.82 mg FAME/g dry algae were obtained. Predicted physical properties of in-situ FAME satisfied European and American standards confirming its quality. Lipid triggering by nitrogen deprivation was accomplished in order to increase the FAME production. Bio-jet fuel freezing points and heating values were measured for different jet fuel to biodiesel blend ratios.

  12. Biological and health effects of exposure to kerosene-based jet fuels and performance additives.

    PubMed

    Ritchie, Glenn; Still, Kenneth; Rossi, John; Bekkedal, Marni; Bobb, Andrew; Arfsten, Darryl

    2003-01-01

    Over 2 million military and civilian personnel per year (over 1 million in the United States) are occupationally exposed, respectively, to jet propulsion fuel-8 (JP-8), JP-8 +100 or JP-5, or to the civil aviation equivalents Jet A or Jet A-1. Approximately 60 billion gallon of these kerosene-based jet fuels are annually consumed worldwide (26 billion gallon in the United States), including over 5 billion gallon of JP-8 by the militaries of the United States and other NATO countries. JP-8, for example, represents the largest single chemical exposure in the U.S. military (2.53 billion gallon in 2000), while Jet A and A-1 are among the most common sources of nonmilitary occupational chemical exposure. Although more recent figures were not available, approximately 4.06 billion gallon of kerosene per se were consumed in the United States in 1990 (IARC, 1992). These exposures may occur repeatedly to raw fuel, vapor phase, aerosol phase, or fuel combustion exhaust by dermal absorption, pulmonary inhalation, or oral ingestion routes. Additionally, the public may be repeatedly exposed to lower levels of jet fuel vapor/aerosol or to fuel combustion products through atmospheric contamination, or to raw fuel constituents by contact with contaminated groundwater or soil. Kerosene-based hydrocarbon fuels are complex mixtures of up to 260+ aliphatic and aromatic hydrocarbon compounds (C(6) -C(17+); possibly 2000+ isomeric forms), including varying concentrations of potential toxicants such as benzene, n-hexane, toluene, xylenes, trimethylpentane, methoxyethanol, naphthalenes (including polycyclic aromatic hydrocarbons [PAHs], and certain other C(9)-C(12) fractions (i.e., n-propylbenzene, trimethylbenzene isomers). While hydrocarbon fuel exposures occur typically at concentrations below current permissible exposure limits (PELs) for the parent fuel or its constituent chemicals, it is unknown whether additive or synergistic interactions among hydrocarbon constituents, up to six

  13. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 2nd from right, is shown the Mars 2020 spacecraft descent stage from inside the Spacecraft Assembly Facility (SAF) by JPL Director Michael Watkins, to the Vice President's left, and NASA Mars Exploration Manager Li Fuk at NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Mars 2020 is a Mars rover mission by NASA's Mars Exploration Program with a planned launch in 2020. Photo Credit: (NASA/Bill Ingalls)

  14. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 2nd from left, poses for a group photograph with JPL Director Michael Watkins, left, JPL Deputy Director Lt. Gen. (Ret) Larry James, California Institute of Technology President Thomas Rosenbaum, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell, and UAG Chairman, Admiral (Ret) James Ellis, right, after having toured NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  15. Risk factors of jet fuel combustion products.

    PubMed

    Tesseraux, Irene

    2004-04-01

    Air travel is increasing and airports are being newly built or enlarged. Concern is rising about the exposure to toxic combustion products in the population living in the vicinity of large airports. Jet fuels are well characterized regarding their physical and chemical properties. Health effects of fuel vapors and liquid fuel are described after occupational exposure and in animal studies. Rather less is known about combustion products of jet fuels and exposure to those. Aircraft emissions vary with the engine type, the engine load and the fuel. Among jet aircrafts there are differences between civil and military jet engines and their fuels. Combustion of jet fuel results in CO2, H2O, CO, C, NOx, particles and a great number of organic compounds. Among the emitted hydrocarbons (HCs), no compound (indicator) characteristic for jet engines could be detected so far. Jet engines do not seem to be a source of halogenated compounds or heavy metals. They contain, however, various toxicologically relevant compounds including carcinogenic substances. A comparison between organic compounds in the emissions of jet engines and diesel vehicle engines revealed no major differences in the composition. Risk factors of jet engine fuel exhaust can only be named in context of exposure data. Using available monitoring data, the possibilities and limitations for a risk assessment approach for the population living around large airports are presented. The analysis of such data shows that there is an impact on the air quality of the adjacent communities, but this impact does not result in levels higher than those in a typical urban environment.

  16. Trends of jet fuel demand and properties

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1984-01-01

    Petroleum industry forecasts predict an increasing demand for jet fuels, a decrease in the gasoline-to-distillate (heavier fuel) demand ratio, and a greater influx of poorer quality petroleum in the next two to three decades. These projections are important for refinery product analyses. The forecasts have not been accurate, however, in predicting the recent, short term fluctuations in jet fuel and competing product demand. Changes in petroleum quality can be assessed, in part, by a review of jet fuel property inspections. Surveys covering the last 10 years show that average jet fuel freezing points, aromatic contents, and smoke points have trends toward their specification limits.

  17. Jet Propulsion Laboratory's Space Explorations. Part 1; History of JPL

    NASA Technical Reports Server (NTRS)

    Chau, Savio

    2005-01-01

    This slide presentation briefly reviews the history of the Jet Propulsion Laboratory from its founding by Dr von Karman in 1936 for research in rocketry through the post-Sputnik shift to unmanned space exploration in 1957. The presentation also reviews the major JPL missions with views of the spacecraft.

  18. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, standing, explains the history of NASA's Jet Propulsion Laboratory and the use of the Mission Support Area to Vice President Mike Pence, seated next to his wife Karen and daughter Charlotte Pence, during a tour of JPL, Saturday, April 28, 2018 in Pasadena, California. Joining the Vice President was, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell, left, UAG Chairman, Admiral (Ret) James Ellis, JPL Deputy Director Lt. Gen. (Ret) Larry James, and California Institute of Technology President Thomas Rosenbaum. Photo Credit: (NASA/Bill Ingalls)

  19. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 3rd from right, tours NASA's Jet Propulsion Laboratory along with his wife Karen, and daughter Charlotte, Saturday, April 28, 2018 in Pasadena, California. Joining the Vice President t and his family on the tour are: UAG Chairman, Admiral (Ret) James Ellis , left, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell, behind Mrs. Pence, California Institute of Technology President Thomas Rosenbaum, JPL Director Michael Watkins, and JPL Deputy Director Lt. Gen. (Ret) Larry James, right. Photo Credit: (NASA/Bill Ingalls)

  20. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence can be seen with his wife Karen Pence as they toured NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. The vice President was also joined by his daughter Charlotte Pence, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell , UAG Chairman, Admiral (Ret) James Ellis , Executive Director of the National Space Council Scott Pace, JPL Deputy Director Lt. Gen. (Ret) Larry James, and California Institute of Technology President Thomas Rosenbaum. Photo Credit: (NASA/Bill Ingalls)

  1. Urinary biomarkers of occupational jet fuel exposure among Air Force personnel.

    PubMed

    Smith, Kristen W; Proctor, Susan P; Ozonoff, A L; McClean, Michael D

    2012-01-01

    There is a potential for widespread occupational exposure to jet fuel among military and civilian personnel. Urinary metabolites of naphthalene have been suggested for use as short-term biomarkers of exposure to jet fuel (jet propulsion fuel 8 (JP8)). In this study, urinary biomarkers of JP8 were evaluated among US Air Force personnel. Personnel (n=24) were divided a priori into high, moderate, and low exposure groups. Pre- and post-shift urine samples were collected from each worker over three workdays and analyzed for metabolites of naphthalene (1- and 2-naphthol). Questionnaires and breathing-zone naphthalene samples were collected from each worker during the same workdays. Linear mixed-effects models were used to evaluate the exposure data. Post-shift levels of 1- and 2-naphthol varied significantly by a priori exposure group (levels in high group>moderate group>low group), and breathing-zone naphthalene was a significant predictor of post-shift levels of 1- and 2-naphthol, indicating that for every unit increase in breathing-zone naphthalene, there was an increase in naphthol levels. These results indicate that post-shift levels of urinary 1- and 2-naphthol reflect JP8 exposure during the work-shift and may be useful surrogates of JP8 exposure. Among the high exposed workers, significant job-related predictors of post-shift levels of 1- and 2-naphthol included entering the fuel tank, repairing leaks, direct skin contact with JP8, and not wearing gloves during the work-shift. The job-related predictors of 1- and 2-naphthol emphasize the importance of reducing inhalation and dermal exposure through the use of personal protective equipment while working in an environment with JP8.

  2. Acute Dermal Irritation Study of Six Jet Fuels in New Zealand White Rabbits: Comparison of Four Bio-Based Jet Fuels with Two Petroleum JP-8 Fuels

    DTIC Science & Technology

    2014-02-01

    NA 5c. PROGRAM ELEMENT NUMBER 62202F 6. AUTHOR(S) Sterner, Teresa R.1; Hurley, Jonathon M.2; Edwards, James T.3; Shafer, Linda M.4; Mattie , David R... Mattie , D.R. 2014. Acute Dermal Irritation Study of Ten Jet Fuels in New Zealand White Rabbits: Comparison of Synthetic and Bio -Based Jet Fuels with...AFRL-RH-WP-TR-2014-0046 ACUTE DERMAL IRRITATION STUDY OF SIX JET FUELS IN NEW ZEALAND WHITE RABBITS: COMPARISON OF FOUR BIO -BASED JET FUELS

  3. Fuzzy Evaluating Customer Satisfaction of Jet Fuel Companies

    NASA Astrophysics Data System (ADS)

    Cheng, Haiying; Fang, Guoyi

    Based on the market characters of jet fuel companies, the paper proposes an evaluation index system of jet fuel company customer satisfaction from five dimensions as time, business, security, fee and service. And a multi-level fuzzy evaluation model composing with the analytic hierarchy process approach and fuzzy evaluation approach is given. Finally a case of one jet fuel company customer satisfaction evaluation is studied and the evaluation results response the feelings of the jet fuel company customers, which shows the fuzzy evaluation model is effective and efficient.

  4. Mast cells mediate the immune suppression induced by dermal exposure to JP-8 jet fuel.

    PubMed

    Limón-Flores, Alberto Y; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E

    2009-11-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell-mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel-induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell "knock-in mice") restored JP-8-induced immune suppression. When, however, mast cells from prostaglandin E(2) (PGE(2))-deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell-derived PGE(2) was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8-induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel-induced immune suppression.

  5. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 5th from left, joined by his wife Karen Pence, left, and daughter Charlotte Pence. 2nd from left, view the Vehicle System Test Bed (VSTB) rover in the Mars Yard during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. NASA Mars Exploration Manager Li Fuk, 2nd from left, JPL Director Michael Watkins, Mars Curiosity Engineering Operations Team Chief Megan Lin, and MSL Engineer Sean McGill, right, helped explain to the Vice President and his family how they use these test rovers. Photo Credit: (NASA/Bill Ingalls)

  6. Publications of the Jet Propulsion Laboratory, 1979

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This bibliography includes 1004 technical reports, released during calendar year 1979, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications; (2) articles published in the open literature; and (3) articles from the bimonthly Deep Space Network Progress Report. The publications are indexed by: (1) author, (2) subject, and (3) publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first listed) author. Unless designated otherwise, all publications listed are unclassified.

  7. The Potential of Aluminium Metal Powder as a Fuel for Space Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Ismail, A. M.; Osborne, B.; Welch, C. S.

    Metal powder propulsion systems have been addressed intermittently since the Second World War, initially in the field of underwater propulsion where research in the application of propelling torpedoes continues until this day. During the post war era, researchers attempted to utilise metal powders as a fuel for ram jet applications in missiles. The 1960's and 1970's saw additional interest in the use of `pure powder' propellants, i.e. fluidised metal fuel and oxidiser, both in solid particulate form. Again the application was for employment in space-constrained missiles where the idea was to maximise the performance of high energy density powder propellants in order to enhance the missile's flight duration. Metal powder as possible fuel was investigated for in-situ resource utilisation propulsion systems post-1980's where the emphasis was on the use of gaseous oxygen or liquid oxygen combined with aluminium metal powder for use as a ``lunar soil propellant'' or carbon dioxide and magnesium metal powder as a ``Martian propellant''.Albeit aluminium metal powder propellants are lower in performance than cryogenic and Earth storable propellants, the former does have an advantage inasmuch that the propulsion system is generic, i.e. it can be powered with chemicals mined and processed on Earth, the Moon and Mars. Thus, due to the potential refuelling capability, the lower performing aluminium metal powder propellant would effectively possess a much higher change in velocity (V) for multiple missions than the cryogenic or Earth storable propellant which is only suitable for one planet or one mission scenario, respectively.One of the principal limitations of long duration human spaceflight beyond cis-lunar orbit is the lack of refuelling capabilities on distant planets resulting in the reliance on con- ventional non-cryogenic, propellants produced on Earth. If one could develop a reliable propulsion system operating on pro- pellants derived entirely of ingredients found on

  8. Thermal protection performance of opposing jet generating with solid fuel

    NASA Astrophysics Data System (ADS)

    Shen, Binxian; Liu, Weiqiang

    2018-03-01

    A light and small gas supply device, which uses fuel gas generating with solid fuel as coolant gas, is introduced for opposing jet thermal protection in hypersonic vehicles. A numerical study on heat flux reduction in hypersonic flow with opposing jet is conducted to investigate the cooling efficiency of fuel gas. Flow field and cooling efficiency at different jet temperatures, as well as the effect of fuel gas, are determined. Detailed results show that shock stand-off distance changes with an increase in jet pressure ratio and remains constant with an increase in jet temperature. Cooling efficiency weakens with an increase in jet temperature and can be strengthened by enhancing jet pressure. Lastly, a remarkable heat flux reduction is observed with fuel gas injection with respect to no fuel gas injection when jet temperature reaches 900 K, thereby proving the positive cooling efficiency of fuel gas.

  9. Results of Flight Tests of the Ercoupe Airplane with Auxiliary Jet Propulsion Supplied by Solid Propellant Jet Units

    DTIC Science & Technology

    1941-09-02

    detailed study of the performance and flight characteristics of the Prooune and a preliminary design layout of t’.c assembly for installing the jet...ti: represented a sealed donn study of the off«ot of auxiliary Jot propulsion on aircraft of the type of the n-2S. S. The blast fron the jet units...indefinitely. The exhaust noetic was made of coopar of euch dimensions as to aroid serious erosion during one run. -Urcmft bolt.t were used throughout

  10. Application of dual-fuel propulsion to a single stage AMLS vehicle

    NASA Technical Reports Server (NTRS)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1993-01-01

    As part of NASA's Advanced Manned Launch System (AMLS) study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate engine concept combining Russian RD-170 kerosene-fueled engines with SSME-derivative engines; the kerosene and hydrogen-fueled Russian RD-701 engine concept; and a dual-fuel, dual-expander engine concept. Analysis to determine vehicle weight and size characteristics was performed using conceptual level design techniques. A response surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicle concepts with respect to several important propulsion system and vehicle design parameters in order to achieve minimum empty weight. Comparisons were then made with a hydrogen-fueled reference, single-stage vehicle. The tools and methods employed in the analysis process are also summarized.

  11. CYTOGENETIC STUDIES IN MICE TREATED WITH THE JET FUELS, JET-A AND JP-8

    EPA Science Inventory

    Cytogenetic studies in mice treated with the jet fuels, Jet-A and JP-8
    Abstract
    The genotoxic potential of the jet fuels, Jet-A and JP-8, were examined in mice treated on the skin with a single dose of 240 ug/mouse. Peripheral blood smears were prepared at the start of the ...

  12. Jet Propellant 8 versus Alternative Jet Fuels: A Life-Cycle Perspective

    DTIC Science & Technology

    2011-01-01

    United States imports.26 The CBTL process uses three existing technologies to convert coal and biomass into liquid fuel: gasification , FT synthesis...and carbon capture and storage. Gasification converts coal and biomass into CO and H2, a mixture commonly referred to as “syngas.” FT synthesis...com- pare petroleum-derived jet fuel (i.e., JP-8) to an alternative jet fuel derived from a coal- biomass -to-liquid (CBTL) process. The EIO- LCA

  13. Space Exploration Initiative Fuels, Materials and Related Nuclear Propulsion Technologies Panel

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S. K.; Olsen, C.; Cooper, R.; Matthews, R. B.; Walter, C.; Titran, R. J.

    1993-01-01

    This report was prepared by members of the Fuels, Materials and Related Technologies Panel, with assistance from a number of industry observers as well as laboratory colleagues of the panel members. It represents a consensus view of the panel members. This report was not subjected to a thorough review by DOE, NASA or DoD, and the opinions expressed should not be construed to represent the official position of these organizations, individually or jointly. Topics addressed include: requirement for fuels and materials development for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP); overview of proposed concepts; fuels technology development plan; materials technology development plan; other reactor technology development; and fuels and materials requirements for advanced propulsion concepts.

  14. Mixing enhancement in a scramjet combustor using fuel jet injection swirl

    NASA Astrophysics Data System (ADS)

    Flesberg, Sonja M.

    The scramjet engine has proven to be a viable means of powering a hypersonic vehicle, especially after successful flights of the X-51 WaveRider and various Hy-SHOT test vehicles. The major challenge associated with operating a scramjet engine is the short residence time of the fuel and oxidizer in the combustor. The fuel and oxidizer have only milliseconds to mix, ignite and combust in the combustion chamber. Combustion cannot occur until the fuel and oxidizer are mixed on a molecular level. Therefore the improvement of mixing is of utmost interest since this can increase combustion efficiency. This study investigated mixing enhancement of fuel and oxidizer within the combustion chamber of a scramjet by introducing swirl to the fuel jet. The investigation was accomplished with numerical simulations using STAR-CCM+ computational fluid dynamic software. The geometry of the University of Virginia Supersonic Combustion Facility was used to model the isolator, combustor and nozzle of a scramjet engine for simulation purposes. Experimental data from previous research at the facility was used to verify the simulation model before investigating the effect of fuel jet swirl on mixing. The model used coaxial fuel jet with a swirling annular jet. Single coaxial fuel jet and dual coaxial fuel jet configurations were simulated for the investigation. The coaxial fuel jets were modelled with a swirling annular jet and non-swirling core jet. Numerical analysis showed that fuel jet swirl not only increased mixing and entrainment of the fuel with the oxidizer but the mixing occurred further upstream than without fuel jet swirl. The burning efficiency was calculated for the all the configurations. An increase in burning efficiency indicated an increase in the mixing of H2 with O2. In the case of the single fuel jet models, the maximum burning efficiency increase due to fuel injection jet swirl was 23.3%. The research also investigated the possibility that interaction between two

  15. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, left, explains the history of NASA's Jet Propulsion Laboratory and the use of the Mission Support Area to Vice President Mike Pence, seated 4th from left, during a tour of JPL, Saturday, April 28, 2018 in Pasadena, California. Joining the Vice President was, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell, left, UAG Chairman, Admiral (Ret) James Ellis, Executive Director of the National Space Council Scott Pace, wife of Mike Pence, Karen Pence, daughter of Mike Pence, Charlotte Pence, and JPL Deputy Director Lt. Gen. (Ret) Larry James. Photo Credit: (NASA/Bill Ingalls)

  16. Publications of the Jet Propulsion Laboratory, 1992

    NASA Technical Reports Server (NTRS)

    1994-01-01

    JPL Bibliography 39-33 describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1992, that resulted from scientific and engineering work performed or managed by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publication (92-series) in which the information is complete for a specific accomplishment; (2) articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report (42-series) (each collection of articles in this class of publication presents a periodic survey of current accomplishments by the Deep Space Network as well as other developments in Earth-based radio technology); and (3) articles published in the open literature.

  17. Jet Fuel-Associated Occupational Contact Dermatitis.

    PubMed

    Contestable, James J

    2017-03-01

    Occupational contact dermatitis is a ubiquitous problem. Sailors onboard U.S. Navy vessels are at high risk given the multitude of potential workplace exposures. Solvents, petrochemicals, and fuels are abundant and can cause irritant or allergic contact dermatitis. Symptoms of contact dermatitis can cause inability to work and, if chronic, may require a change in rating or job. Prevention of this issue requires patient education about the risks and correct personnel protective equipment. Even with preventative strategies in place, exposures and cases of contact dermatitis will occur. Treatment consists of topical steroids and immunomodulators, as well as barrier creams and emollients. The goal of treatment is to fully restore the skin's natural barrier and prevent further exposure. A classic case of jet fuel-associated contact dermatitis is reviewed. A literature review utilizing PubMed, Google Scholar, and Google Search was conducted to elucidate our understanding of this issue, current occupational health guidelines, preventative approaches, and treatments. This case report provides guidance and recommendations for providers who encounter contact dermatitis related to petrochemicals, such as jet fuel. The literature review revealed limited knowledge surrounding in vivo human skin effects of jet fuel, specifically JP-5. Even larger gaps were found in our understanding of, and guidelines for, protective modalities against jet fuel exposure and dermatitis. A case is presented to facilitate recognition of jet fuel contact dermatitis and guidance for treatment and prevention. Given our current limited knowledge and guidelines concerning protective equipment and skin protectants, multiple proposals for future studies are suggested. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  18. Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1995-01-01

    As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.

  19. Liquid hydrogen as a propulsion fuel, 1945-1959

    NASA Technical Reports Server (NTRS)

    Sloop, J. L.

    1978-01-01

    A historical review is presented on the research and development of liquid hydrogen for use as a propulsion fuel. The document is divided into three parts: Part 1 (1945-1950); Part 2 (1950-1957); and Part 3 (1957-1958), encompassing eleven topics. Two appendixes are included. Hydrogen Technology Through World War 2; and Propulsion Primer, Performance Parameters and Units.

  20. Acute toxicity evaluation of JP-8 jet fuel and JP-8 jet fuel containing additives. Final report, November 1995-February 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, R.E.; Kinead, E.R.; Feldmann, M.L.

    1996-11-01

    To reduce fuel fouling in current U.S Navy and Air Force aircraft systems and to provide additional heat sink and thermal stability for future systems, the Air Force is developing an improved JP-8 jet fuel (JP-8 + 100). Two companies (Betz and Mobil) have developed additive packages that are currently being tested in aircraft systems. To determine if the additive packages will produce health effects for flightline personnel, acute testing was performed on JP-8 and the two JP-8 + 100 jet fuels. A single oral dose at 5 mg jet fuel/kg body weight to five male and five female F-344more » rats, and a single dermal application of 2 g jet fuel/kg body weight applied to five male and five female NZW rabbits resulted in no deaths. No signs of toxic stress were observed, and all animals gained weight over the 14-day observation periods. Single treatment of 0.5 mL neat jet fuel to rabbit skin produced negative results for skin irritation. Guinea pigs tailed to elicit a sensitization response following repeated applications of the jet fuels. Inhalation vapor exposure to JP-8, JP-8 + 100 (Betz), and JP-8 (Mobil) were determined to be >3.43, >3.52, and >3.57 mg/L, respectively. LD% values for aerosol exposure to JP-8, JP-8 + 100 (Betz), and JP-8 + 100 (Mobil) were >4.44, >4.39, and >4.54 mg/L, respectively. Under the conditions of these tests, the additive packages did not potentiate the acute effects normally associated with JP-8 jet fuel exposures.« less

  1. 76 FR 49525 - Advisory Circular 20-24C, Approval of Propulsion Fuels and Lubricating Oils

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... Propulsion Fuels and Lubricating Oils AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of..., Approval of Propulsion Fuels and Lubricating Oils. This AC provides guidance on regulations and policy... approve aircraft, engines, or APUs to operate with specified propulsion fuels and lubricating oils. DATES...

  2. Publications of the Jet Propulsion Laboratory: 1990 and 1991

    NASA Technical Reports Server (NTRS)

    1993-01-01

    JPL Bibliography 39-32 describes and indexes by primary author the externally distributed technical reporting, released during calendar years 1990 and 1991, that resulted from scientific and engineering work performed or managed by the Jet Propulsion Laboratory (JPL). Three classes of publications are included: (1) JPL publications (90- and 91-series) in which the information is complete for a specific accomplishment; (2) articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report (42-series); and (3) articles published in the open literature.

  3. Publications of the Jet Propulsion Laboratory 1976

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The formalized technical reporting, released January through December 1975, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory is described and indexed. The following classes of publications are included: (1) technical reports; (2) technical memorandums; (3) articles from bi-monthly Deep Space Network (DSN) progress report; (4) special publications; and (5) articles published in the open literature. The publications are indexed by: (1) author, (2) subject, and (3) publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first-listed) author. Unless designated otherwise, all publications listed are unclassified.

  4. Publications of the Jet Propulsion Laboratory, 1980

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This bibliography cites by primary author the externally distributed technical reporting, released during calendar year 1980, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications (77-, 78-, 79-series, etc.), in which the information is complete for a specific accomplishment and can e tailored to wide or limited audiences and be presented in an established standard format or special format to meet unique requirements; (2) articles published in the open literature; and (3) articles from the bimonthly Deep Space Network (DSN) Progress Repot (42-series) and its successor, the Telecommunications and Data Acquisition (TDA) Progress Report (also 42-series).

  5. Publications of the Jet Propulsion Laboratory, 1980

    NASA Astrophysics Data System (ADS)

    1981-07-01

    This bibliography cites by primary author the externally distributed technical reporting, released during calendar year 1980, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications (77-, 78-, 79-series, etc.), in which the information is complete for a specific accomplishment and can e tailored to wide or limited audiences and be presented in an established standard format or special format to meet unique requirements; (2) articles published in the open literature; and (3) articles from the bimonthly Deep Space Network (DSN) Progress Report (42-series) and its successor, the Telecommunications and Data Acquisition (TDA) Progress Report (also 42-series).

  6. Dermal Exposure to Jet Fuel JP-8 Significantly Contributes to the Production of Urinary Naphthols in Fuel-Cell Maintenance Workers

    PubMed Central

    Chao, Yi-Chun E.; Kupper, Lawrence L.; Serdar, Berrin; Egeghy, Peter P.; Rappaport, Stephen M.; Nylander-French, Leena A.

    2006-01-01

    Jet propulsion fuel 8 (JP-8) is the major jet fuel used worldwide and has been recognized as a major source of chemical exposure, both inhalation and dermal, for fuel-cell maintenance workers. We investigated the contributions of dermal and inhalation exposure to JP-8 to the total body dose of U.S. Air Force fuel-cell maintenance workers using naphthalene as a surrogate for JP-8 exposure. Dermal, breathing zone, and exhaled breath measurements of naphthalene were obtained using tape-strip sampling, passive monitoring, and glass bulbs, respectively. Levels of urinary 1- and 2-naphthols were determined in urine samples and used as biomarkers of JP-8 exposure. Multiple linear regression analyses were conducted to investigate the relative contributions of dermal and inhalation exposure to JP-8, and demographic and work-related covariates, to the levels of urinary naphthols. Our results show that both inhalation exposure and smoking significantly contributed to urinary 1-naphthol levels. The contribution of dermal exposure was significantly associated with levels of urinary 2-naphthol but not with urinary 1-naphthol among fuel-cell maintenance workers who wore supplied-air respirators. We conclude that dermal exposure to JP-8 significantly contributes to the systemic dose and affects the levels of urinary naphthalene metabolites. Future work on dermal xenobiotic metabolism and toxicokinetic studies are warranted in order to gain additional knowledge on naphthalene metabolism in the skin and the contribution to systemic exposure. PMID:16451852

  7. Dermal exposure to jet fuel JP-8 significantly contributes to the production of urinary naphthols in fuel-cell maintenance workers.

    PubMed

    Chao, Yi-Chun E; Kupper, Lawrence L; Serdar, Berrin; Egeghy, Peter P; Rappaport, Stephen M; Nylander-French, Leena A

    2006-02-01

    Jet propulsion fuel 8 (JP-8) is the major jet fuel used worldwide and has been recognized as a major source of chemical exposure, both inhalation and dermal, for fuel-cell maintenance workers. We investigated the contributions of dermal and inhalation exposure to JP-8 to the total body dose of U.S. Air Force fuel-cell maintenance workers using naphthalene as a surrogate for JP-8 exposure. Dermal, breathing zone, and exhaled breath measurements of naphthalene were obtained using tape-strip sampling, passive monitoring, and glass bulbs, respectively. Levels of urinary 1- and 2-naphthols were determined in urine samples and used as biomarkers of JP-8 exposure. Multiple linear regression analyses were conducted to investigate the relative contributions of dermal and inhalation exposure to JP-8, and demographic and work-related covariates, to the levels of urinary naphthols. Our results show that both inhalation exposure and smoking significantly contributed to urinary 1-naphthol levels. The contribution of dermal exposure was significantly associated with levels of urinary 2-naphthol but not with urinary 1-naphthol among fuel-cell maintenance workers who wore supplied-air respirators. We conclude that dermal exposure to JP-8 significantly contributes to the systemic dose and affects the levels of urinary naphthalene metabolites. Future work on dermal xenobiotic metabolism and toxicokinetic studies are warranted in order to gain additional knowledge on naphthalene metabolism in the skin and the contribution to systemic exposure.

  8. GPS Data Analysis for Earth Orientation at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Zumberge, J.; Webb, F.; Lindqwister, U.; Lichten, S.; Jefferson, D.; Ibanez-Meier, R.; Heflin, M.; Freedman, A.; Blewitt, G.

    1994-01-01

    Beginning June 1992 and continuing indefinitely as part of our contribution to FLINN (Fiducial Laboratories for an International Natural Science Network), DOSE (NASA's Dynamics of the Solid Earth Program), and the IGS (International GPS Geodynamics Service), analysts at the Jet Propulsion Laboratory (JPL) have routinely been reducing data from a globally-distributed network of Rogue Global Positioning System (GPS) receivers.

  9. Test report : alternative fuels propulsion durability evaluation

    DOT National Transportation Integrated Search

    2012-08-28

    This document, prepared by Honeywell Aerospace, Phoenix, AZ (Honeywell), contains the final : test report (public version) for the U.S. Department of Transportation/Federal Aviation : Administration (USDOT/FAA) Alternative Fuels Propulsion Engine Dur...

  10. Development of solid-gas equilibrium propulsion system for small spacecraft

    NASA Astrophysics Data System (ADS)

    Chujo, Toshihiro; Mori, Osamu; Kubo, Yuki

    2017-11-01

    A phase equilibrium propulsion system is a kind of cold-gas jet in which the phase equilibrium state of the fuel is maintained in a tank and its vapor is ejected when a valve is opened. One such example is a gas-liquid equilibrium propulsion system that uses liquefied gas as fuel. This system was mounted on the IKAROS solar sail and has been demonstrated in orbit. The system has a higher storage efficiency and a lighter configuration than a high-pressure cold-gas jet because the vapor pressure is lower, and is suitable for small spacecraft. However, the system requires a gas-liquid separation device in order to avoid leakage of the liquid, which makes the system complex. As another example of a phase equilibrium propulsion system, we introduce a solid-gas equilibrium propulsion system, which uses a sublimable substance as fuel and ejects its vapor. This system has an even lower vapor pressure and does not require such a separation device, instead requiring only a filter to keep the solid inside the tank. Moreover, the system is much simpler and lighter, making it more suitable for small spacecraft, especially CubeSat-class spacecraft, and the low thrust of the system allows spacecraft motion to be controlled precisely. In addition, the thrust level can be controlled by controlling the temperature of the fuel, which changes the vapor pressure. The present paper introduces the concept of the proposed system, and describes ejection experiments and its evaluation. The basic function of the proposed system is demonstrated in order to verify its usefulness.

  11. A Strategy for an Enterprise-Wide Data Management Capability at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Fuhrman, D.

    2000-01-01

    The Jet Propulsion Laboratory (JPL) is a Federally Research and Development Center (FFRDC) operated by the California Institute of Technology that is engaged in the quest for knowledge about the solar system, the universe, and the Earth.

  12. Propulsion

    ERIC Educational Resources Information Center

    Air and Space, 1978

    1978-01-01

    An introductory discussion of aircraft propulsion is included along with diagrams and pictures of piston, turbojet, turboprop, turbofan, and jet engines. Also, a table on chemical propulsion is included. (MDR)

  13. Jet aircraft hydrocarbon fuels technology

    NASA Technical Reports Server (NTRS)

    Longwell, J. P. (Editor)

    1978-01-01

    A broad specification, referee fuel was proposed for research and development. This fuel has a lower, closely specified hydrogen content and higher final boiling point and freezing point than ASTM Jet A. The workshop recommended various priority items for fuel research and development. Key items include prediction of tradeoffs among fuel refining, distribution, and aircraft operating costs; combustor liner temperature and emissions studies; and practical simulator investigations of the effect of high freezing point and low thermal stability fuels on aircraft fuel systems.

  14. Ejector device for direct injection fuel jet

    DOEpatents

    Upatnieks, Ansis [Livermore, CA

    2006-05-30

    Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

  15. Compatibility of elastomers in alternate jet fuels

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.; Fedors, R. F.; Reilly, W. W.

    1979-01-01

    The compatibility of elastomeric compositions of known resistance to aircraft fuels was tested for potential use in Jet A type fuels obtainable from alternate sources, such as coal. Since such fuels were not available at the time, synthetic alternate fuels were prepared by adding tetralin to a petroleum based Jet A type fuel to simulate coal derived fuels which are expected to contain higher amounts of aromatic and hydroaromatic hydrocarbons. The elastomeric compounds tested were based on butadiene-acrylonitrile rubber, a castable Thiokol polysulfide rubber, and a castable fluorosilicone rubber. Batches of various cross-link densities of these rubbers were made and their chemical stress relaxation behavior in fuel, air, and nitrogen, their swelling properties, and response to mechanical testing were determined.

  16. Partitioning of Aromatic Constituents into Water from Jet Fuels.

    PubMed

    Tien, Chien-Jung; Shu, Youn-Yuen; Ciou, Shih-Rong; Chen, Colin S

    2015-08-01

    A comprehensive study of the most commonly used jet fuels (i.e., Jet A-1 and JP-8) was performed to properly assess potential contamination of the subsurface environment from a leaking underground storage tank occurred in an airport. The objectives of this study were to evaluate the concentration ranges of the major components in the water-soluble fraction of jet fuels and to estimate the jet fuel-water partition coefficients (K fw) for target compounds using partitioning experiments and a polyparameter linear free-energy relationship (PP-LFER) approach. The average molecular weight of Jet A-1 and JP-8 was estimated to be 161 and 147 g/mole, respectively. The density of Jet A-1 and JP-8 was measured to be 786 and 780 g/L, respectively. The distribution of nonpolar target compounds between the fuel and water phases was described using a two-phase liquid-liquid equilibrium model. Models were derived using Raoult's law convention for the activity coefficients and the liquid solubility. The observed inverse, log-log linear dependence of the K fw values on the aqueous solubility were well predicted by assuming jet fuel to be an ideal solvent mixture. The experimental partition coefficients were generally well reproduced by PP-LFER.

  17. Hybrid-Electric and Distributed Propulsion Technologies for Large Commercial Transports: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Del Rosario, Ruben; Jankovsky, Amy L.

    2015-01-01

    Develop and demonstrate technologies that will revolutionize commercial transport aircraft propulsion and accelerate development of all-electric aircraft architectures. Enable radically different propulsion systems that can meet national environmental and fuel burn reduction goals for subsonic commercial aircraft. Focus on future large regional jets and single-aisle twin (Boeing 737- class) aircraft for greatest impact on fuel burn, noise and emissions. Research horizon is long-term but with periodic spinoff of technologies for introduction in aircraft with more- and all-electric architectures. Research aligned with new NASA Aeronautics strategic R&T thrusts in areas of transition to low-carbon propulsion and ultra-efficient commercial transports.

  18. Jet fuels from synthetic crudes

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; Gallagher, J. P.

    1977-01-01

    An investigation was conducted to determine the technical problems in the conversion of a significant portion of a barrel of either a shale oil or a coal synthetic crude oil into a suitable aviation turbine fuel. Three syncrudes were used, one from shale and two from coal, chosen as representative of typical crudes from future commercial production. The material was used to produce jet fuels of varying specifications by distillation, hydrotreating, and hydrocracking. Attention is given to process requirements, hydrotreating process conditions, the methods used to analyze the final products, the conditions for shale oil processing, and the coal liquid processing conditions. The results of the investigation show that jet fuels of defined specifications can be made from oil shale and coal syncrudes using readily available commercial processes.

  19. IEC Thrusters for Space Probe Applications and Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miley, George H.; Momota, Hiromu; Wu Linchun

    Earlier conceptual design studies (Bussard, 1990; Miley et al., 1998; Burton et al., 2003) have described Inertial Electrostatic Confinement (IEC) fusion propulsion to provide a high-power density fusion propulsion system capable of aggressive deep space missions. However, this requires large multi-GW thrusters and a long term development program. As a first step towards this goal, a progression of near-term IEC thrusters, stating with a 1-10 kWe electrically-driven IEC jet thruster for satellites are considered here. The initial electrically-powered unit uses a novel multi-jet plasma thruster based on spherical IEC technology with electrical input power from a solar panel. In thismore » spherical configuration, Xe ions are generated and accelerated towards the center of double concentric spherical grids. An electrostatic potential well structure is created in the central region, providing ion trapping. Several enlarged grid opening extract intense quasi-neutral plasma jets. A variable specific impulse in the range of 1000-4000 seconds is achieved by adjusting the grid potential. This design provides high maneuverability for satellite and small space probe operations. The multiple jets, combined with gimbaled auxiliary equipment, provide precision changes in thrust direction. The IEC electrical efficiency can match or exceed efficiencies of conventional Hall Current Thrusters (HCTs) while offering advantages such as reduced grid erosion (long life time), reduced propellant leakage losses (reduced fuel storage), and a very high power-to-weight ratio. The unit is ideally suited for probing missions. The primary propulsive jet enables delicate maneuvering close to an object. Then simply opening a second jet offset 180 degrees from the propulsion one provides a 'plasma analytic probe' for interrogation of the object.« less

  20. Three-dimensional flow over a conical afterbody containing a centered propulsive jet: A numerical simulation

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.; Rothmund, H.

    1984-01-01

    The supersonic flow field over a body of revolution incident to the free stream is simulated numerically on a large, array processor (the CDC CYBER 205). The configuration is composed of a cone-cylinder forebody followed by a conical afterbody from which emanates a centered, supersonic propulsive jet. The free-stream Mach number is 2, the jet-exist Mach number is 2.5, and the jet-to-free-stream static pressure ratio is 3. Both the external flow and the exhaust are ideal air at a common total temperature.

  1. Effects of concurrent noise and jet fuel exposure on hearing loss.

    PubMed

    Kaufman, Laura R; LeMasters, Grace K; Olsen, Donna M; Succop, Paul

    2005-03-01

    We sought to examine the effects of occupational exposure to jet fuel on hearing in military workers. Noise-exposed subjects, with or without jet fuel exposure, underwent hearing tests. Work histories, recreational exposures, protective equipment, medical histories, alcohol, smoking, and demographics were collected by questionnaire. Jet fuel, solvent, and noise exposure data were collected from records. Fuel exposure estimates were less than 34% of the OSHA Threshold Limit Values. Subjects with 3 years of jet fuel exposure had a 70% increase in adjusted odds of hearing loss (OR = 1.7; 95% CI = 1.14-2.53) and the odds increased to 2.41 (95% CI = 1.04-5.57) for 12 years of noise and fuel exposure. These findings suggest that jet fuel has a toxic affect on the auditory system.

  2. Mathematical Model of the Jet Engine Fuel System

    NASA Astrophysics Data System (ADS)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  3. Autoxidation of jet fuels: Implications for modeling and thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneghan, S.P.; Chin, L.P.

    1995-05-01

    The study and modeling of jet fuel thermal deposition is dependent on an understanding of and ability to model the oxidation chemistry. Global modeling of jet fuel oxidation is complicated by several facts. First, liquid jet fuels are hard to heat rapidly and fuels may begin to oxidize during the heat-up phase. Non-isothermal conditions can be accounted for but the evaluation of temperature versus time is difficult. Second, the jet fuels are a mixture of many compounds that may oxidize at different rates. Third, jet fuel oxidation may be autoaccelerating through the decomposition of the oxidation products. Attempts to modelmore » the deposition of jet fuels in two different flowing systems showed the inadequacy of a simple two-parameter global Arrhenius oxidation rate constant. Discarding previous assumptions about the form of the global rate constants results in a four parameter model (which accounts for autoacceleration). This paper discusses the source of the rate constant form and the meaning of each parameter. One of these parameters is associated with the pre-exponential of the autoxidation chain length. This value is expected to vary inversely to thermal stability. We calculate the parameters for two different fuels and discuss the implication to thermal and oxidative stability of the fuels. Finally, we discuss the effect of non-Arrhenius behavior on current modeling of deposition efforts.« less

  4. Experimental test results of a generalized parameter fuel control

    NASA Technical Reports Server (NTRS)

    Batterton, P. G.; Gold, H.

    1973-01-01

    Considerable interest has been generated recently in low cost jet propulsion systems. One of the more complicated components of jet engines is the fuel control. Results of an effort to develop a simpler hydromechanical fuel control are presented. This prototype fuel control was installed on a J85-GE-13 jet engine. Results show that the fuel control provided satisfactory engine performance at sea level static conditions over its normal nonafterburning operating range, including startup. Results of both bench and engine tests are presented; the difficulties encountered are described.

  5. Visualization of supersonic diesel fuel jets using a shadowgraph technique

    NASA Astrophysics Data System (ADS)

    Pianthong, Kulachate; Behnia, Masud; Milton, Brian E.

    2001-04-01

    High-speed liquid jets have been widely used to cut or penetrate material. It has been recently conjectured that the characteristics of high-speed fuel jets may also be of benefit to engines requiring direct fuel injection into the combustion chamber. Important factors are combustion efficiency and emission control enhancement for better atomization. Fundamental studies of very high velocity liquid jets are therefore very important. The characteristics and behavior of supersonic liquid jets have been studied with the aid of a shadowgraph technique. The high-speed liquid jet (in the supersonic range) is generated by the use of a vertical, single stage powder gun. The performance of the launcher and its relation to the jet exit velocity, with a range of nozzle shapes, has been examined. This paper presents the visual evidence of supersonic diesel fuel jets (velocity around 2000 m/s) investigated by the shadowgraph method. An Argon jet has been used as a light source. With a rise time of 0.07 microseconds, light duration of 0.2 microseconds and the use of high speed Polaroid film, the shadowgraph method can effectively capture the hypersonic diesel fuel jet and its strong leading edge shock waves. This provides a clearer picture of each stage of the generation of hypersonic diesel fuel jets and makes the study of supersonic diesel fuel jet characteristics and the potential for auto-ignition possible. Also, in the experiment, a pressure relief section has been used to minimize the compressed air or blast wave ahead of the projectile. However, the benefit of using a pressure relief section in the design is not clearly known. To investigate this effect, additional experiments have been performed with the use of the shadowgraph method, showing the projectile leaving and traveling inside the nozzle at a velocity around 1100 m/s.

  6. Optimal dual-fuel propulsion for minimum inert weight or minimum fuel cost

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1973-01-01

    An analytical investigation of single-stage vehicles with multiple propulsion phases has been conducted with the phasing optimized to minimize a general cost function. Some results are presented for linearized sizing relationships which indicate that single-stage-to-orbit, dual-fuel rocket vehicles can have lower inert weight than similar single-fuel rocket vehicles and that the advantage of dual-fuel vehicles can be increased if a dual-fuel engine is developed. The results also indicate that the optimum split can vary considerably with the choice of cost function to be minimized.

  7. Immunotoxicity evaluation of jet a jet fuel in female rats after 28-day dermal exposure.

    PubMed

    Mann, Cynthia M; Peachee, Vanessa L; Trimmer, Gary W; Lee, Ji-Eun; Twerdok, Lorraine E; White, Kimber L

    2008-01-01

    The potential for jet fuel to modulate immune functions has been reported in mice following dermal, inhalation, and oral routes of exposure; however, a functional evaluation of the immune system in rats following jet fuel exposure has not been conducted. In this study potential effects of commercial jet fuel (Jet A) on the rat immune system were assessed using a battery of functional assays developed to screen potential immunotoxic compounds. Jet A was applied to the unoccluded skin of 6- to 7-wk-old female Crl:CD (SD)IGS BR rats at doses of 165, 330, or 495 mg/kg/d for 28 d. Mineral oil was used as a vehicle to mitigate irritation resulting from repeated exposure to jet fuel. Cyclophosphamide and anti-asialo GM1 were used as positive controls for immunotoxic effects. In contrast to reported immunotoxic effects of jet fuel in mice, dermal exposure of rats to Jet A did not result in alterations in spleen or thymus weights, splenic lymphocyte subpopulations, immunoglobulin (Ig) M antibody-forming cell response to the T-dependent antigen, sheep red blood cells (sRBC), spleen cell proliferative response to anti-CD3 antibody, or natural killer (NK) cell activity. In each of the immunotoxicological assays conducted, the positive control produced the expected results, demonstrating the assay was capable of detecting an effect if one had occurred. Based on the immunological parameters evaluated under the experimental conditions of the study, Jet A did not adversely affect immune responses of female rats. It remains to be determined whether the observed difference between this study and some other studies reflects a difference in the immunological response of rats and mice or is the result of other factors.

  8. Carbide fuels for nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Matthews, R. B.; Blair, H. T.; Chidester, K. M.; Davidson, K. V.; Stark, W. E.; Storms, E. K.

    1991-09-01

    A renewed interest in manned exploration of space has revitalized interest in the potential for advancing nuclear rocket technology developed during the 1960's. Carbide fuel performance, melting point, stability, fabricability and compatibility are key technology issues for advanced Nuclear Thermal Propulsion reactors. The Rover fuels development ended with proven carbide fuel forms with demonstrated operating temperatures up to 2700 K for over 100 minutes. The next generation of nuclear rockets will start where the Rover technology ended, but with a more rigorous set of operating requirements including operating lifetime to 10 hours, operating temperatures greater that 3000 K, low fission product release, and compatibility. A brief overview of Rover/NERVA carbide fuel development is presented. A new fuel form with the highest potential combination of operating temperature and lifetime is proposed that consists of a coated uranium carbide fuel sphere with built-in porosity to contain fission products. The particles are dispersed in a fiber reinforced ZrC matrix to increase thermal shock resistance.

  9. Kadenancy effect, acoustical resonance effect valveless pulse jet engine

    NASA Astrophysics Data System (ADS)

    Ismail, Rafis Suizwan; Jailani, Azrol; Haron, Muhammad Adli

    2017-09-01

    A pulse jet engine is a tremendously simple device, as far as moving parts are concerned, that is capable of using a range of fuels, an ignition device, and the ambient air to run an open combustion cycle at rates commonly exceeding 100 Hz. The pulse jet engine was first recognized as a worthy device for aeronautics applications with the introduction of the German V-1 Rocket, also known as the "Buzz Bomb." Although pulse jets are somewhat inefficient compared to other jet engines in terms of fuel usage, they have an exceptional thrust to weight ratio if the proper materials are chosen for its construction. For this reason, many hobbyists have adopted pulse jet engines for a propulsive device in RC planes, go-karts, and other recreational applications. The concept behind the design and function of propulsion devices are greatly inspired by the Newton's second and third laws. These laws quantitatively described thrust as a reaction force. Basically, whenever a mass is accelerated or expelled from one direction by a system, such a mass will exert the same force which will be equal in magnitude, however that will be opposite in direction over the same system. Thrust is that force utilized over a facade in a direction normal and perpendicular to the facade which is known as the thrust. This is the simplest explanation of the concept, on which propulsion devices functions. In mechanical engineering, any force that is orthogonal to the main load is generally referred to as thrust [1].

  10. Investigation of the General Electric I-40 Jet-Propulsion Engine in the Cleveland Altitude Wind Tunnel. 2 - Analysis of Compressor Performance Characteristics

    DTIC Science & Technology

    1946-11-18

    INVESTIGATION OF THE GENERAL ELECTRIC 1-40 JET -PROPULSION ENGINE IN THE CLEVELAND ALTITUDE WIND TUNNEL .; II - ANALYSIS OF COMPRESSOR PERFORMANCE...CHARACTERISTICS By Robert 0. Dietz, Jr. and Robert M. Gelsenheyner Aircraft Engine Research Laboratory 1 Cleveland, Ohio !f -NOT FM ED", P 0 W DESTROY...Command, Army Air Forces INVESTIGATION OF THE GENERAL ELECTRIC 1-40 JET -PROPULSION ENGINE IN THE CLEVELAND ALTITUDE WIND TUNNEL II - ANALYSIS OF

  11. Techno-economic and resource analysis of hydroprocessed renewable jet fuel.

    PubMed

    Tao, Ling; Milbrandt, Anelia; Zhang, Yanan; Wang, Wei-Cheng

    2017-01-01

    Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield) and overall process economics. This study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis indicate that most oils contain mainly C 16 and C 18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks-camelina, pennycress, jatropha, castor bean, and yellow grease-using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to jet hydrocarbons

  12. Techno-economic and resource analysis of hydroprocessed renewable jet fuel

    DOE PAGES

    Tao, Ling; Milbrandt, Anelia; Zhang, Yanan; ...

    2017-11-09

    Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield)more » and overall process economics. Our study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis, thus, indicate that most oils contain mainly C16 and C18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks - camelina, pennycress, jatropha, castor bean, and yellow grease - using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to

  13. Techno-economic and resource analysis of hydroprocessed renewable jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Ling; Milbrandt, Anelia; Zhang, Yanan

    Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield)more » and overall process economics. Our study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis, thus, indicate that most oils contain mainly C16 and C18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks - camelina, pennycress, jatropha, castor bean, and yellow grease - using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to

  14. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.

    PubMed

    Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick

    2016-01-01

    Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.

  15. Twin Jet

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  16. Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Schmitz, Paul C.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  17. Fuel Cell Propulsion Systems for an All-Electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  18. Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trammell, Michael P; Jolly, Brian C; Miller, James Henry

    ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.

  19. Barrier infrared detector research at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Ting, David Z.; Keo, Sam A.; Liu, John K.; Mumolo, Jason M.; Khoshakhlagh, Arezou; Soibel, Alexander; Nguyen, Jean; Höglund, Linda; Rafol, B., , Sir; Hill, Cory J.; Gunapala, Sarath D.

    2012-10-01

    The barrier infrared detector device architecture offers the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. The versatility of the antimonide material system, with the availability of three different types of band offsets for flexibility in device design, provides the ideal setting for implementing barrier infrared detectors. We describe the progress made at the NASA Jet Propulsion Laboratory in recent years in Barrier infrared detector research that resulted in high-performance quantum structure infrared detectors, including the type-II superlattice complementary barrier infrared detector (CBIRD), and the high operating quantum dot barrier infrared detector (HOT QD-BIRD).

  20. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    This paper describes and discusses the propulsion-system problems that will most likely be encountered if the specifications of hydrocarbon-based jet fuels must undergo significant changes in the future and, correspondingly, the advances in technology that will be required to minimize the adverse impact of these problems. Several investigations conducted are summarized. Illustrations are used to describe the relative effects of selected fuel properties on the behavior of propulsion-system components and fuel systems. The selected fuel properties are those that are most likely to be relaxed in future fuel specifications. Illustrations are also used to describe technological advances that may be needed in the future. Finally, the technological areas needing the most attention are described, and programs that are under way to address these needs are briefly discussed.

  1. Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou

    2012-01-01

    Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes these overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.

  2. Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou

    2012-01-01

    Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes thses overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.

  3. Jet Fuel Thermal Stability Investigations Using Ellipsometry

    NASA Technical Reports Server (NTRS)

    Nash, Leigh; Vasu, Subith S.; Klettlinger, Jennifer Lindsey

    2017-01-01

    Jet fuels are typically used for endothermic cooling in practical engines where their thermal stability is very important. In this work the thermal stability of Sasol IPK (a synthetic jet fuel) with varying levels of naphthalene has been studied on stainless steel substrates using spectroscopic ellipsometry in the temperature range 385-400 K. Ellipsometry is an optical technique that measures the changes in a light beam’s polarization and intensity after it reflects off of a thin film to determine the film’s thickness and optical properties. All of the tubes used were rated as thermally unstable by the color standard portion of the Jet Fuel Thermal Oxidation Test, and this was confirmed by the deposit thicknesses observed using ellipsometry. A new amorphous model on a stainless steel substrate was used to model the data and obtain the results. It was observed that, as would be expected, increasing the temperature of the tube increased the overall deposit amount for a constant concentration of naphthalene. The repeatability of these measurements was assessed using multiple trials of the same fuel at 385 K. Lastly, the effect of increasing the naphthalene concentration in the fuel at a constant temperature was found to increase the deposit thickness.In conclusion, ellipsometry was used to investigate the thermal stability of jet fuels on stainless steel substrate. The effects of increasing temperature and addition of naphthalene on stainless steel tubes with Sasol IPK fuel were investigated. It was found, as expected, that increasing temperature lead to an increase in deposit thickness. It wasAmerican Institute of Aeronautics and Astronautics6also found that increasing amounts of naphthalene increased the maximum deposit thickness. The repeatability of these measurements was investigated using multiple tests at the same conditions. The present work provides as a better quantitative tool compared to the widely used JFTOT technique. Future work will expand on the

  4. Effects of Jet Fuel Spills on the Microbial Community of Soil †

    PubMed Central

    Song, Hong-Gyu; Bartha, Richard

    1990-01-01

    Hydrocarbon residues, microbial numbers, and microbial activity were measured and correlated in loam soil contaminated by jet fuel spills resulting in 50 and 135 mg of hydrocarbon g of soil−1. Contaminated soil was incubated at 27°C either as well-aerated surface soil or as poorly aerated subsurface soil. In the former case, the effects of bioremediation treatment on residues, microbial numbers, and microbial activity were also assessed. Hydrocarbon residues were measured by quantitative gas chromatography. Enumerations included direct counts of metabolically active bacteria, measurement of mycelial length, plate counts of aerobic heterotrophs, and most probable numbers of hydrocarbon degraders. Activity was assessed by fluorescein diacetate (FDA) hydrolysis. Jet fuel disappeared much more rapidly from surface soil than it did from subsurface soil. In surface soil, microbial numbers and mycelial length were increased by 2 to 2.5 orders of magnitude as a result of jet fuel contamination alone and by 3 to 4 orders of magnitude as a result of the combination of jet fuel contamination and bioremediation. FDA hydrolysis was stimulated by jet fuel and bioremediation, but was inhibited by jet fuel alone. The latter was traced to an inhibition of the FDA assay by jet fuel biodegradation products. In subsurface soil, oxygen limitation strongly attenuated microbial responses to jet fuel. An increase in the most probable numbers of hydrocarbon degraders was accompanied by a decline in other aerobic heterotrophs, so that total plate counts changed little. The correlations between hydrocarbon residues, microbial numbers, and microbial activity help in elucidating microbial contributions to jet fuel elimination from soil. PMID:16348138

  5. Computer analysis of effects of altering jet fuel properties on refinery costs and yields

    NASA Technical Reports Server (NTRS)

    Breton, T.; Dunbar, D.

    1984-01-01

    This study was undertaken to evaluate the adequacy of future U.S. jet fuel supplies, the potential for large increases in the cost of jet fuel, and to what extent a relaxation in jet fuel properties would remedy these potential problems. The results of the study indicate that refiners should be able to meet jet fuel output requirements in all regions of the country within the current Jet A specifications during the 1990-2010 period. The results also indicate that it will be more difficult to meet Jet A specifications on the West Coast, because the feedstock quality is worse and the required jet fuel yield (jet fuel/crude refined) is higher than in the East. The results show that jet fuel production costs could be reduced by relaxing fuel properties. Potential cost savings in the East (PADDs I-IV) through property relaxation were found to be about 1.3 cents/liter (5 cents/gallon) in January 1, 1981 dollars between 1990 and 2010. However, the savings from property relaxation were all obtained within the range of current Jet A specifications, so there is no financial incentive to relax Jet A fuel specifications in the East. In the West (PADD V) the potential cost savings from lowering fuel quality were considerably greater than in the East. Cost savings from 2.7 to 3.7 cents/liter (10-14 cents/gallon) were found. In contrast to the East, on the West Coast a significant part of the savings was obtained through relaxation of the current Jet A fuel specifications.

  6. Thermal Stability Testing of a Fischer-Tropsch Fuel and Various Blends with Jet A

    NASA Technical Reports Server (NTRS)

    Klettlinger, Jennifer Suder; Surgenor, Angela; Yen, Chia

    2010-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline conventional Jet A, a commercial grade F-T jet fuel, and various blends of this F-T fuel in Jet A. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  7. SOLID SOLUTION CARBIDES ARE THE KEY FUELS FOR FUTURE NUCLEAR THERMAL PROPULSION

    NASA Technical Reports Server (NTRS)

    Panda, Binayak; Hickman, Robert R.; Shah, Sandeep

    2005-01-01

    Nuclear thermal propulsion uses nuclear energy to directly heat a propellant (such as liquid hydrogen) to generate thrust for space transportation. In the 1960 s, the early Rover/Nuclear Engine for Rocket Propulsion Application (NERVA) program showed very encouraging test results for space nuclear propulsion but, in recent years, fuel research has been dismal. With NASA s renewed interest in long-term space exploration, fuel researchers are now revisiting the RoverMERVA findings, which indicated several problems with such fuels (such as erosion, chemical reaction of the fuel with propellant, fuel cracking, and cladding issues) that must be addressed. It is also well known that the higher the temperature reached by a propellant, the larger the thrust generated from the same weight of propellant. Better use of fuel and propellant requires development of fuels capable of reaching very high temperatures. Carbides have the highest melting points of any known material. Efforts are underway to develop carbide mixtures and solid solutions that contain uranium carbide, in order to achieve very high fuel temperatures. Binary solid solution carbides (U, Zr)C have proven to be very effective in this regard. Ternary carbides such as (U, Zr, X) carbides (where X represents Nb, Ta, W, and Hf) also hold great promise as fuel material, since the carbide mixtures in solid solution generate a very hard and tough compact material. This paper highlights past experience with early fuel materials and bi-carbides, technical problems associated with consolidation of the ingredients, and current techniques being developed to consolidate ternary carbides as fuel materials.

  8. Chemistry and Transport Properties for Jet Fuel Combustion

    DTIC Science & Technology

    2013-04-01

    AFRL-OSR-VA-TR-2013-0168 Chemistry and Transport Properties for Jet Fuel Combustion Angela Violi University of Michigan...5a. CONTRACT NUMBER (U) Chemistry and Transport Properties for Jet Fuel Combustion 5b. GRANT NUMBER FA9550-09-1-0021 5c...combustors.   Although,  chemical  kinetic  mechanisms  of  hydrocarbons  have  been  widely  studied,  molecular   transport

  9. Experimental study on spray characteristics of alternate jet fuels using Phase Doppler Anemometry

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2013-11-01

    Gas-to-Liquid (GTL) fuels have gained global attention due to their cleaner combustion characteristics. The chemical and physical properties of GTL jet fuels are different from conventional jet fuels owing to the difference in their production methodology. It is important to study the spray characteristics of GTL jet fuels as the change of physical properties can affect atomization, mixing, evaporation and combustion process, ultimately affecting emission process. In this work, spray characteristics of two GTL synthetic jet fuels are studied using a pressure-swirl nozzle at different injection pressures and atmospheric ambient condition. Phase Doppler Anemometry (PDA) measurements of droplet size and velocity are compared with those of regular Jet A-1 fuel at several axial and radial locations downstream of the nozzle exit. Experimental results show that although the GTL fuels have different physical properties such as viscosity, density, and surface tension, among each other the resultant change in the spray characteristics is insignificant. Furthermore, the presented results show that GTL fuel spray characteristics exhibit close similarity to those of Jet A-1 fuel. Funded by Qatar Science and Technology Park.

  10. Tumorigenic Evaluation of Jet Fuels JP-TS and JP-7.

    DTIC Science & Technology

    1991-04-01

    DTIC AL-TR-1991 0020 3 ELECTE0 AD-A252 012 JUN 2 6 1992• • TUMORIGENIC EVALUATION OF JET FUELS JP-TS AND JP-7 E. R. Kinkead C. L. Gaworski C. D...Evaluation of Jet Fuels JP-TS and JP-7. The research described in this report began in March 1981 and was completed in February 1991 under U.S. Air Force...of jet engines in military and commercial aircraft has led to the development of a number of petroleum distillate fuels with special properties. These

  11. The influence of hydrocarbon composition and exposure conditions on jet fuel-induced immunotoxicity.

    PubMed

    Hilgaertner, Jianhua W; He, Xianghui; Camacho, Daniel; Badowski, Michael; Witten, Mark; Harris, David T

    2011-11-01

    Chronic jet fuel exposure could be detrimental to the health and well-being of exposed personnel, adversely affect their work performance and predispose these individuals to increased incidences of infectious disease, cancer and autoimmune disorders. Short-term (7 day) JP-8 jet fuel exposure has been shown to cause lung injury and immune dysfunction. Physiological alterations can be influenced not only by jet fuel exposure concentration (absolute amount), but also are dependent on the type of exposure (aerosol versus vapor) and the composition of the jet fuel (hydrocarbon composition). In the current study, these variables were examined with relation to effects of jet fuel exposure on immune function. It was discovered that real-time, in-line monitoring of jet fuel exposure resulted in aerosol exposure concentrations that were approximately one-eighth the concentration of previously reported exposure systems. Further, the effects of a synthetic jet fuel designed to eliminate polycyclic aromatic hydrocarbons were also examined. Both of these changes in exposure reduced but did not eliminate the deleterious effects on the immune system of exposed mice.

  12. Mast Cells Mediate the Immune Suppression Induced by Dermal Exposure to JP-8 Jet Fuel

    PubMed Central

    Limón-Flores, Alberto Y.; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E.

    2009-01-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell–mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel–induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell “knock-in mice”) restored JP-8–induced immune suppression. When, however, mast cells from prostaglandin E2 (PGE2)–deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell–derived PGE2 was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8–induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel–induced immune suppression. PMID:19726579

  13. Publications of the Jet Propulsion Laboratory, 1977. [NASA research and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites 900 externally distributed technical reports released during calendar year 1977, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Report topics cover 81 subject areas related in some way to the various NASA programs. The publications are indexed by: (1) author, (2) subject, and (3) publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first-listed) author.

  14. Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar

    2012-01-01

    A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).

  15. Spray Characterization of Gas-to-Liquid Synthetic Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza; GTL jet fuel Consortium Team

    2012-11-01

    Gas-to-Liquid (GTL) Synthetic Paraffinic Kerosene (SPK) fuel obtained from Fischer-Tropsch synthesis has grabbed the global attention due to its cleaner combustion characteristics. GTL fuels are expected to meet the vital qualities such as atomization, combustion and emission characteristics of conventional jet fuels. It is imperative to understand fuel atomization in order to gain insights on the combustion and emission aspects of an alternative fuel. In this work spray characteristics of GTL-SPK, which could be used as a drop-in fuel in aircraft gas turbine engines, is studied. This work outlines the spray experimental facility, the methodology used and the results obtained using two SPK's with different chemical compositions. The spray characteristics, such as droplet size and distribution, are presented at three differential pressures across a simplex nozzle and compared with that of the conventional Jet A-1 fuel. Experimental results clearly show that although the chemical composition is significantly different between SPK's, the spray characteristics are not very different. This could be attributed to the minimal difference in fluid properties between the SPK's. Also, the spray characteristics of SPK's show close resemblance to the spray characteristics of Jet A-1 fuel.

  16. Commercial jet fuel quality control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, K.H.

    1995-05-01

    The paper discusses the purpose of jet fuel quality control between the refinery and the aircraft. It describes fixed equipment, including various types of filters, and the usefulness and limitations of this equipment. Test equipment is reviewed as are various surveillance procedures. These include the Air Transport Association specification ATA 103, the FAA Advisory Circular 150/5230-4, the International Air Transport Association Guidance Material for Fuel Quality Control and Fuelling Service and the Guidelines for Quality Control at Jointly Operated Fuel Systems. Some past and current quality control problems are briefly mentioned.

  17. Aircraft Research and Technology for Future Fuels

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The potential characteristics of future aviation turbine fuels and the property effects of these fuels on propulsion system components are examined. The topics that are discussed include jet fuel supply and demand trends, the effects of refining variables on fuel properties, shekle oil processing, the characteristics of broadened property fuels, the effects of fuel property variations on combustor and fuel system performance, and combuster and fuel system technology for broadened property fuels.

  18. Near-term feasibility of alternative jet fuels

    DOT National Transportation Integrated Search

    2009-01-01

    This technical report documents the results of a joint study by the Massachusetts Institute of Technology (MIT) and the RAND Corporation on alternative fuels for commercial aviation. The study compared potential alternative jet fuels on the basis of ...

  19. Reduced Toxicity Fuel Satellite Propulsion System

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2001-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  20. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOEpatents

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  1. Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schobert, H.H.; Eser, S.; Song, C.

    There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation inmore » a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.« less

  2. Global Artificial Boundary Conditions for Computation of External Flow Problems with Propulsive Jets

    NASA Technical Reports Server (NTRS)

    Tsynkov, Semyon; Abarbanel, Saul; Nordstrom, Jan; Ryabenkii, Viktor; Vatsa, Veer

    1998-01-01

    We propose new global artificial boundary conditions (ABC's) for computation of flows with propulsive jets. The algorithm is based on application of the difference potentials method (DPM). Previously, similar boundary conditions have been implemented for calculation of external compressible viscous flows around finite bodies. The proposed modification substantially extends the applicability range of the DPM-based algorithm. In the paper, we present the general formulation of the problem, describe our numerical methodology, and discuss the corresponding computational results. The particular configuration that we analyze is a slender three-dimensional body with boat-tail geometry and supersonic jet exhaust in a subsonic external flow under zero angle of attack. Similarly to the results obtained earlier for the flows around airfoils and wings, current results for the jet flow case corroborate the superiority of the DPM-based ABC's over standard local methodologies from the standpoints of accuracy, overall numerical performance, and robustness.

  3. Investigations into the low temperature behavior of jet fuels: Visualization, modeling, and viscosity studies

    NASA Astrophysics Data System (ADS)

    Atkins, Daniel L.

    Aircraft operation in arctic regions or at high altitudes exposes jet fuel to temperatures below freeze point temperature specifications. Fuel constituents may solidify and remain within tanks or block fuel system components. Military and scientific requirements have been met with costly, low freeze point specialty jet fuels. Commercial airline interest in polar routes and the use of high altitude unmanned aerial vehicles (UAVs) has spurred interest in the effects of low temperatures and low-temperature additives on jet fuel. The solidification of jet fuel due to freezing is not well understood and limited visualization of fuel freezing existed prior to the research presented in this dissertation. Consequently, computational fluid dynamics (CFD) modeling that simulates jet fuel freezing and model validation were incomplete prior to the present work. The ability to simulate jet fuel freezing is a necessary tool for fuel system designers. An additional impediment to the understanding and simulation of jet fuel freezing has been the absence of published low-temperature thermo-physical properties, including viscosity, which the present work addresses. The dissertation is subdivided into three major segments covering visualization, modeling and validation, and viscosity studies. In the first segment samples of jet fuel, JPTS, kerosene, Jet A and Jet A containing additives, were cooled below their freeze point temperatures in a rectangular, optical cell. Images and temperature data recorded during the solidification process provided information on crystal habit, crystallization behavior, and the influence of the buoyancy-driven flow on freezing. N-alkane composition of the samples was determined. The Jet A sample contained the least n-alkane mass. The cooling of JPTS resulted in the least wax formation while the cooling of kerosene yielded the greatest wax formation. The JPTS and kerosene samples exhibited similar crystallization behavior and crystal habits during

  4. Bilateral Vestibular Dysfunction Associated With Chronic Exposure to Military Jet Propellant Type-Eight Jet Fuel

    PubMed Central

    Fife, Terry D.; Robb, Michael J. A.; Steenerson, Kristen K.; Saha, Kamala C.

    2018-01-01

    We describe three patients diagnosed with bilateral vestibular dysfunction associated with the jet propellant type-eight (JP-8) fuel exposure. Chronic exposure to aromatic and aliphatic hydrocarbons, which are the main constituents of JP-8 military aircraft jet fuel, occurred over 3–5 years’ duration while working on or near the flight line. Exposure to toxic hydrocarbons was substantiated by the presence of JP-8 metabolite n-hexane in the blood of one of the cases. The presenting symptoms were dizziness, headache, fatigue, and imbalance. Rotational chair testing confirmed bilateral vestibular dysfunction in all the three patients. Vestibular function improved over time once the exposure was removed. Bilateral vestibular dysfunction has been associated with hydrocarbon exposure in humans, but only recently has emphasis been placed specifically on the detrimental effects of JP-8 jet fuel and its numerous hydrocarbon constituents. Data are limited on the mechanism of JP-8-induced vestibular dysfunction or ototoxicity. Early recognition of JP-8 toxicity risk, cessation of exposure, and customized vestibular therapy offer the best chance for improved balance. Bilateral vestibular impairment is under-recognized in those chronically exposed to all forms of jet fuel. PMID:29867750

  5. Bilateral Vestibular Dysfunction Associated With Chronic Exposure to Military Jet Propellant Type-Eight Jet Fuel.

    PubMed

    Fife, Terry D; Robb, Michael J A; Steenerson, Kristen K; Saha, Kamala C

    2018-01-01

    We describe three patients diagnosed with bilateral vestibular dysfunction associated with the jet propellant type-eight (JP-8) fuel exposure. Chronic exposure to aromatic and aliphatic hydrocarbons, which are the main constituents of JP-8 military aircraft jet fuel, occurred over 3-5 years' duration while working on or near the flight line. Exposure to toxic hydrocarbons was substantiated by the presence of JP-8 metabolite n -hexane in the blood of one of the cases. The presenting symptoms were dizziness, headache, fatigue, and imbalance. Rotational chair testing confirmed bilateral vestibular dysfunction in all the three patients. Vestibular function improved over time once the exposure was removed. Bilateral vestibular dysfunction has been associated with hydrocarbon exposure in humans, but only recently has emphasis been placed specifically on the detrimental effects of JP-8 jet fuel and its numerous hydrocarbon constituents. Data are limited on the mechanism of JP-8-induced vestibular dysfunction or ototoxicity. Early recognition of JP-8 toxicity risk, cessation of exposure, and customized vestibular therapy offer the best chance for improved balance. Bilateral vestibular impairment is under-recognized in those chronically exposed to all forms of jet fuel.

  6. Immunotoxicological effects of JP-8 jet fuel exposure.

    PubMed

    Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M

    1997-01-01

    Chronic exposure to jet fuel has been shown to have adverse effects on human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans, and to decrease sensorimotor speed (3-5). Due to the decision by the United States Air Force to implement the widespread use of JP-8 jet fuel in its operations, a thorough understanding of its potential effects upon exposed personnel is both critical and necessary. Exposure to potential environmental toxicants such as JP-8 may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.); e.g., the immune system. Significant changes in immune consequences, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long-lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed for 1h/day for 7 days to varying concentrations of aerosolized JP-8 jet fuel to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on their immune systems. It was observed that even at exposure concentrations as low as 100 mg/m3 detrimental effects on the immune system occurred. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in losses of different immune cell subpopulations depending upon the immune organ being examined. Further, JP-8 exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low concentration exposure of mice to JP-8 jet fuel caused significant toxicological effects on the immune system. It appears that

  7. Laser Induced Fluorescence Detection of Gums in Jet Fuels

    DTIC Science & Technology

    1992-05-01

    Classification) Laser Induced Fluorescence Detection of GLus in Jet Fuels 12 PERSONAL AUTHOR(S) David W. Naegeli and Ralph H. Hill 13a. TYPE OF REPORT 13b...degraded jet fuel.( ) 47 REFERENCES 1. Fodor, G.E.; Naegeli , D.W.; Kohl, K.B.; Cuellar, J.P., Jr., Interim Report BFLRF No. 199, AD A163590, Belvoir Fuels...and Lubricants Research Facility, Southwest Research Institute, San Antonio, TX, June 1985. 2. Fodor, G.E.; Naegeli , D.W., Proceedings of the 2nd

  8. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression.

    PubMed

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X; Walterscheid, Jeffrey P; Ullrich, Stephen E

    2004-03-15

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependent manner. The release of biological response modifiers, particularly prostaglandin E2 (PGE2), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE2 secretion. Jet fuel-induced PGE2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin.

  9. Comparison of Turbulence Models for Nozzle-Afterbody Flows with Propulsive Jets

    NASA Technical Reports Server (NTRS)

    Compton, William B., III

    1996-01-01

    A numerical investigation was conducted to assess the accuracy of two turbulence models when computing non-axisymmetric nozzle-afterbody flows with propulsive jets. Navier-Stokes solutions were obtained for a Convergent-divergent non-axisymmetric nozzle-afterbody and its associated jet exhaust plume at free-stream Mach numbers of 0.600 and 0.938 at an angle of attack of 0 deg. The Reynolds number based on model length was approximately 20 x 10(exp 6). Turbulent dissipation was modeled by the algebraic Baldwin-Lomax turbulence model with the Degani-Schiff modification and by the standard Jones-Launder kappa-epsilon turbulence model. At flow conditions without strong shocks and with little or no separation, both turbulence models predicted the pressures on the surfaces of the nozzle very well. When strong shocks and massive separation existed, both turbulence models were unable to predict the flow accurately. Mixing of the jet exhaust plume and the external flow was underpredicted. The differences in drag coefficients for the two turbulence models illustrate that substantial development is still required for computing very complex flows before nozzle performance can be predicted accurately for all external flow conditions.

  10. Fuels research studies at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1982-01-01

    Fuels research studies carried out in a variety of areas related to aviation propulsion, ground transportation, and stationary power generation systems are discussed. The major efforts are directed to studies on fuels for jet aircraft. These studies involve fuels preparation, fuels analysis, and fuel quality evaluations. The scope and direction of research activities in these areas is discussed, descriptions of Lewis capabilities and facilities given, and results of recent research efforts reported.

  11. Combustor exhaust emissions with air-atomizing splash-groove fuel injectors burning Jet A and Diesel number 2 fuels

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Air-atomizing, splash-groove injectors were shown to improve primary-zone fuel spreading and reduce combustor exhaust emissions for Jet A and diesel number 2 fuels. With Jet A fuel large-orifice, splash-groove injectors the oxides-of-nitrogen emission index was reduced, but emissions of carbon monoxide, unburned hydrocarbons, or smoke were unaffected. Small-orifice, splash-groove injectors did not reduce oxides of nitrogen, but reduced the smoke number and carbon monoxide and unburned-hydrocarbon emission indices. With diesel number 2 fuel, the small-orifice, splash-groove injectors reduced oxides of nitrogen by 19 percent, smoke number by 28 percent, carbon monoxide by 75 percent, and unburned hydrocarbons by 50 percent. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. Combustor blowout limits were similar for diesel number 2 and Jet A fuels.

  12. Past, present and emerging toxicity issues for jet fuel.

    PubMed

    Mattie, David R; Sterner, Teresa R

    2011-07-15

    The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8 and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Past, present and emerging toxicity issues for jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattie, David R., E-mail: david.mattie@wpafb.af.mil; Sterner, Teresa R.

    2011-07-15

    The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8more » and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels.« less

  14. Suitability of Shale Fuels for Army Generator Sets.

    DTIC Science & Technology

    1981-12-01

    J.N., Owens, E.C., Naegeli , D.W., and Stavinoha, L.L., "Mili- tary Fuels Refined From Paraho-II Shale Oil," Interim Report AFLRL No. 131, March 1981...Temperature Jet Fuel", NAPTC-PE-112, Naval Air Propulsion Center, Trenton, NJ, August 1977. 40. Moses, C. A. and Naegeli , D. W., "Fuel Property Effects

  15. MICRONUCLEUS STUDIES IN THE PERIPHERAL BLOOD AND BONE MARROW OF MICE TREATED WITH JET FUELS, JP-8 AND JET-A

    EPA Science Inventory

    The potential adverse effects of dermal and inhalation exposure of jet fuels are important for health hazard evaluation in humans. In an animal model, the genotoxic potential of jet fuels, JP-8 and Jet-A, was investigated. Mice were treated dermally with either a single or multip...

  16. Review of Jet Fuel Life Cycle Assessment Methods and Sustainability Metrics

    DOT National Transportation Integrated Search

    2015-12-01

    The primary aim of this study is to help aviation jet fuel purchasers (primarily commercial airlines and the U.S. military) to understand the sustainability implications of their jet fuel purchases and provide guidelines for procuring sustainable fue...

  17. Advanced Thermally Stable Coal-Based Jet Fuels

    DTIC Science & Technology

    2008-02-01

    of hydrotreated refined chemical oil derived jet fuels in the pyrolytic regime. Preprints of Papers-American Chemical Society Division of Fuel...hydrogenation of a mixture of light cycle oil and refined chemical oil met or exceeded all but four JP-8 specifications. The fuel has excellent low-temperature...mixture of light cycle oil and refined chemical oil met or exceeded all but four JP-8 specifications. The fuel has excellent low-temperature viscosity

  18. Liquid Fuel Emulsion Jet-in-Crossflow Penetration and Dispersion Under High Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Gomez, Guillermo Andres

    The current work focuses on the jet-in-crossflow penetration and dispersion behavior of water-in-oil emulsions in a high pressure environment. Both fuel injection strategies of using a water-in-oil emulsion and a jet-in-crossflow have demonstrated unique benefits in improving gas turbine performance from an emissions and efficiency standpoint. A jet-in-crossflow is very practical for use in gas turbine engines, rocket propulsion, and aircraft engines since it utilizes already available crossflow air to atomize fuel. Injecting water into a combustion chamber in the form of a water-in-oil emulsion allows for pollutant emissions reduction while reducing efficiency loses that may result from using a separate water or steam injection circuit. Dispersion effects on oil droplets are expected, therefore investigating the distribution of both oil and water droplets in the crossflow is an objective in this work. Understanding the synchronization and injection behavior of the two strategies is of key interest due to their combined benefits. A water-to-oil ratio and an ambient pressure parameter are developed for emulsion jet-in-crossflow trajectories. To this end, a total of 24 emulsion jet-in-crossflow tests were performed with varying ambient pressures of 2-8 atm and momentum flux ratios of 50, 85, and 120. Sobel edge filtering was applied to each averaged image obtained from a high speed video of each test case. Averaged and filtered images were used to resolve top and bottom edges of the trajectory in addition to the overall peak intensity up to 40 mm downstream of the injection point. An optimized correlation was established and found to differ from literature based correlations obtained under atmospheric pressure conditions. Overall it was found that additional parameters were not necessary for the top edge and peak intensity correlations, but a need for a unique emulsion bottom edge and width trajectory correlation was recognized. In addition to investigating emulsion

  19. Phenol-selective mass spectrometric analysis of jet fuel.

    PubMed

    Zhu, Haoxuan; Janusson, Eric; Luo, Jingwei; Piers, James; Islam, Farhana; McGarvey, G Bryce; Oliver, Allen G; Granot, Ori; McIndoe, J Scott

    2017-08-21

    Bromobenzyl compounds react selectively with phenols via the Williamson ether synthesis. An imidazolium charge-tagged bromobenzyl compound can be used to reveal phenol impurities in jet fuel by analysis via electrospray ionization mass spectrometry. The complex matrix as revealed by Cold EI GC/MS analysis is reduced to a few simple sets of compounds in the charge-tagged ESI mass spectrum, primarily substituted phenols and thiols. Examination of jet fuels treated by different refinery methods reveals the efficacy of these approaches in removing these contaminants.

  20. Modeling of propulsive jet plumes--extension of modeling capabilities by utilizing wall curvature effects

    NASA Astrophysics Data System (ADS)

    Doerr, S. E.

    1984-06-01

    Modeling of aerodynamic interference effects of propulsive jet plumes, by using inert gases as substitute propellants, introduces design limits. To extend the range of modeling capabilities, nozzle wall curvature effects may be utilized. Numerical calculations, using the Method of Characteristics, were made and experimental data were taken to evaluate the merits of the theoretical predictions. A bibliography, listing articles that led to the present report, is included.

  1. Life-cycle analysis of camelina biodiesel and jet-fuel

    NASA Astrophysics Data System (ADS)

    Dangol, Namrata

    Camelina sativa (Camelina) could be a potential feedstock to help meet the goal of 36 billion gallons of biofuel production in the United States by 2022, as set forth by EISA of 2007. This research is focused on assessing the energy balance and greenhouse gas (GHG) emissions from camelina biodiesel grown and produced in the Pacific Northwest (PNW) region of the USA. Data were collected from a camelina farm in the region and compared to literature values. Energy used in camelina crushing and transesterification were measured at the University of Idaho. Life cycle analysis showed that use of camelina biodiesel reduces GHG emissions by 72% compared to 2005 baseline diesel fuel. Camelina biodiesel at B100 level, however, did not meet the ASTM D6751 specification for oxidative stability without any additives but could be corrected with proper additive. Camelina had a smaller seed size compared to canola and consequently required 23% more energy for crushing. Despite higher energy use for crushing, the net energy ratio for camelina biodiesel was found to be 3.68. From the agronomic standpoint, camelina can be incorporated as a rotational crop into low rainfall areas of the PNW. Wheat areas of PNW with annual rainfall from 19 to 38 cm (7.5--15") and currently incorporating fallow into their rotations were considered as potential areas for camelina. There were 846,500 hectares (2.1 million acres) of land available in the region that could potentially produce 443.0 million L of biodiesel (117.1 million gal) and 1.2 billion kg of meal per year. This meal quantity is about 12.1% of the potential camelina meal that could be used as livestock feed in the PNW. Therefore, it was concluded that the meal has adequate market to be consumed locally as livestock feed. This research also conducted the life cycle analysis of camelina jet fuel produced in the laboratory scale facility. The jet fuel was produced via deoxygenation of the camelina oil in an inert environment, in the

  2. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    PubMed Central

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  3. Main lines of scientific and technical research at the Soviet Jet Propulsion Research Institute (RNII), 1933 - 1942

    NASA Technical Reports Server (NTRS)

    Shchetinkov, Y. S.

    1977-01-01

    The rapid development of rocketry in the U.S.S.R. during the post-war years was due largely to pre-war activity; in particular, to investigations conducted in the Jet Propulsion Research Institute (RNII). The history of RNII commenced in 1933, resulting from the merger of two rocket research organizations. Previous research was continued in areas of solid-propellant rockets, jet-assisted take-off of aircraft, liquid propellant engines (generally with nitric acid as the oxidizer), liquid-propellant rockets (generally with oxgen as the oxidizer), ram jet engines, rockets with and without wings, and rocket planes. RNII research is described and summarized for the years 1933-1942.

  4. Development of an Impinging-jet Fuel-injection Valve Nozzle

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Hemmeter, G H

    1931-01-01

    During an investigation to determine the possibilities and limitations of a two-stroke-cycle engine and ignition, it was necessary to develop a fuel injection valve nozzle to produce a disk-shaped, well dispersed spray. Preliminary tests showed that two smooth jets impinging upon each other at an angle of 74 degrees gave a spray with the desired characteristics. Nozzles were built on this basis and, when used in fuel-injection valves, produced a spray that fulfilled the original requirements. The spray is so well dispersed that it can be carried along with an air stream of comparatively low velocity or entrained with the fuel jet from a round-hole orifice. The characteristics of the spray from an impinging-jet nozzle limits its application to situations where wide dispersion is required by the conditions in the engine cylinder and the combustion chamber.

  5. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and

  6. Correlation between in vivo and in vitro pulmonary responses to jet propulsion fuel-8 using precision-cut lung slices and a dynamic organ culture system.

    PubMed

    Hays, Allison M; Lantz, R Clark; Witten, Mark L

    2003-01-01

    In tissue slice models, interactions between the heterogeneous cell types comprising the lung parenchyma are maintained thus providing a controlled system for the study of pulmonary toxicology in vitro. However, validation of the model in vitro system must be affirmed. Previous reports, in in vivo systems, have demonstrated that Clara cells and alveolar type II cells are the targets following inhalation of JP-8 jet fuel. We have utilized the lung slice model to determine if cellular targets are similar following in vitro exposure to JP-8. Agar-filled adult rat lung explants were cored and precision cut, using the Brende/Vitron tissue slicer. Slices were cultured on titanium screens located as half-cylinders in cylindrical Teflon cradles that were loaded into standard scintillation vials and incubated at 37 degrees C. Slices were exposed to JP-8 jet fuel (0.5 mg/ml, 1.0 mg/ml, and 1.5 mg/ml in medium) for up to 24 hours. We determined ATP content using a luciferin-luciferase bioluminescent assay. No significant difference was found between the JP-8 jet fuel doses or time points, when compared to controls. Results were correlated with structural alterations following aerosol inhalation of JP-8. As a general observation, ultrastructural evaluation of alveolar type cells revealed an apparent increase in the number and size of surfactant secreting lamellar bodies that was JP-8 jet fuel-dose dependent. These results are similar to those observed following aerosol inhalation exposure. Thus, the lung tissue slice model appears to mimic in vivo effects of JP-8 and therefore is a useful model system for studying the mechanisms of lunginjury following JP-8 exposure.

  7. Reducing Propulsion Airframe Aeroacoustic Interactions With Uniquely Tailored Chevrons: 3. Jet-Flap Interaction

    NASA Technical Reports Server (NTRS)

    Thomas, Russ H.; Mengle, Vinod G.; Brunsniak, Leon; Elkoby, Ronen

    2006-01-01

    Propulsion airframe aeroacoustic (PAA) interactions, resulting from the integration of engine and airframe, lead to azimuthal asymmetries in the flow/acoustic field, e.g., due to the interaction between the exhaust jet flow and the pylon, the wing and its high-lift devices, such as, flaps and flaperons. In the first two parts of this series we have presented experimental results which show that isolated and installed nozzles with azimuthally varying chevrons (AVCs) can reduce noise more than conventional chevrons when integrated with a pylon and a wing with flaps at take-off conditions. In this paper, we present model-scale experimental results for the reduction of jet-flap interaction noise source due to these AVCs and document the PAA installation effects (difference in noise between installed and isolated nozzle configurations) at both approach and take-off conditions. It is found that the installation effects of both types of chevron nozzles, AVCs and conventional, are reversed at approach and take-off, in that there is more installed noise reduction at approach and less at take-off compared to that of the isolated nozzles. Moreover, certain AVCs give larger total installed noise benefits at both conditions compared to conventional chevrons. Phased microphone array results show that at approach conditions (large flap deflection, low jet speed and low ambient Mach number), chevrons gain more noise benefit from reducing jetflap interaction noise than they do from quieting the jet plume noise source which is already weak at these low jet speeds. In contrast, at take-off (small flap deflection, high jet speed and high ambient Mach number) chevrons reduce the dominant jet plume noise better than the reduction they create in jet-flap interaction noise source. In addition, fan AVCs with enhanced mixing near the pylon are found to reduce jet-flap interaction noise better than conventional chevrons at take-off.

  8. Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives.

    PubMed

    Jiménez-Díaz, Lorena; Caballero, Antonio; Pérez-Hernández, Natalia; Segura, Ana

    2017-01-01

    Bio-jet fuel has attracted a lot of interest in recent years and has become a focus for aircraft and engine manufacturers, oil companies, governments and researchers. Given the global concern about environmental issues and the instability of oil market, bio-jet fuel has been identified as a promising way to reduce the greenhouse gas emissions from the aviation industry, while also promoting energy security. Although a number of bio-jet fuel sources have been approved for manufacture, their commercialization and entry into the market is still a far way away. In this review, we provide an overview of the drivers for intensified research into bio-jet fuel technologies, the type of chemical compounds found in bio-jet fuel preparations and the current state of related pre-commercial technologies. The biosynthesis of hydrocarbons is one of the most promising approaches for bio-jet fuel production, and thus we provide a detailed analysis of recent advances in the microbial biosynthesis of hydrocarbons (with a focus on alkanes). Finally, we explore the latest developments and their implications for the future of research into bio-jet fuel technologies. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Integrated coke, asphalt and jet fuel production process and apparatus

    DOEpatents

    Shang, Jer Y.

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  10. Alternative jet fuel scenario analysis report

    DOT National Transportation Integrated Search

    2012-11-30

    This analysis presents a bottom up projection of the potential production of alternative aviation (jet) fuels in North America (United States, Canada, and Mexico) and the European Union in the next decade. The analysis is based on available pla...

  11. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  12. [Progress and prospect of bio-jet fuels industry in domestic and overseas].

    PubMed

    Qiao, Kai; Fu, Jie; Zhou, Feng; Ma, Huixia

    2016-10-25

    We reviewed the progress of the bio-jet fuels industry in recent years and systematically analyzed the technical routes that have been approved or in the pipeline for approval by ASTM D7566. In addition, we highlighted a novel pathway to produce drop-in fuel by near-critical hydrolysis of waste cooking oils or algal oils followed by catalytic decarboxylation. Also, we introduced the source of oils and fats feedstock and the domestic bio-jet fuel industry status during the 12th Five-Year-Plan period. Based on our own research, we discussed the prospect of the bio-jet fuel industry and future research needs.

  13. Thermal Stability of Jet Fuels: Kinetics of Forming Deposit Precursors

    NASA Technical Reports Server (NTRS)

    Naegeli, David W.

    1997-01-01

    The focus of this study was on the autoxidation kinetics of deposit precursor formation in jet fuels. The objectives were: (1) to demonstrate that laser-induced fluorescence is a viable kinetic tool for measuring rates of deposit precursor formation in jet fuels; (2) to determine global rate expressions for the formation of thermal deposit precursors in jet fuels; and (3) to better understand the chemical mechanism of thermal stability. The fuels were isothermally stressed in small glass ampules in the 120 to 180 C range. Concentrations of deposit precursor, hydroperoxide and oxygen consumption were measured over time in the thermally stressed fuels. Deposit precursors were measured using laser-induced fluorescence (LIF), hydroperoxides using a spectrophotometric technique, and oxygen consumption by the pressure loss in the ampule. The expressions, I.P. = 1.278 x 10(exp -11)exp(28,517.9/RT) and R(sub dp) = 2.382 x 10(exp 17)exp(-34,369.2/RT) for the induction period, I.P. and rate of deposit precursor formation R(sub dp), were determined for Jet A fuel. The results of the study support a new theory of deposit formation in jet fuels, which suggest that acid catalyzed ionic reactions compete with free radical reactions to form deposit precursors. The results indicate that deposit precursors form only when aromatics are present in the fuel. Traces of sulfur reduce the rate of autoxidation but increase the yield of deposit precursor. Free radical chemistry is responsible for hydroperoxide formation and the oxidation of sulfur compounds to sulfonic acids. Phenols are then formed by the acid catalyzed decomposition of benzylic hydroperoxides, and deposit precursors are produced by the reaction of phenols with aldehydes, which forms a polymer similar to Bakelite. Deposit precursors appear to have a phenolic resin-like structure because the LIF spectra of the deposit precursors were similar to that of phenolic resin dissolved in TAM.

  14. The impact of fuels on aircraft technology through the year 2000

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Reck, G. M.

    1980-01-01

    In the future, it may be necessary to use jet fuels with a broader range of properties in order to insure a more flexible and reliable supply and to minimize energy consumption and processing costs at the refinery. This paper describes research being conducted to (1) determine the potential range of properties for future jet fuels, (2) establish a data base of fuel property effects on propulsion system components, (3) evolve and evaluate advanced component technology that would permit the use of broader property fuels and (4) identify technical and economic trade-offs within the overall fuel production-air transportation system associated with variations in fuel properties.

  15. Activities of the Jet Propulsion Laboratory, 1 January - 31 December 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    There are many facets to the Jet Propulsion Laboratory, for JPL is an organization of multiple responsibilities and broad scope, of diverse talents and great enterprise. The Laboratory's philosophy, mission, and goals have been shaped by its ties to the California Institute of Technology (JPL's parent organization) and the National Aeronautics and Space Administration (JPL's principal sponsor). JPL's activities for NASA in planetary, Earth, and space sciences currently account for almost 75 percent of the Laboratory's overall effort. JPL Research activities in the following areas are discussed: (1) deep space exploration; (2) telecommunications systems; (3) Earth observations; (4) advanced technology; (5) defense programs; and (6) energy and technology applications.

  16. Simplified jet fuel reaction mechanism for lean burn combustion application

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Kundu, Krishna; Ghorashi, Bahman

    1993-01-01

    Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. Detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.

  17. A Review of Laser Ablation Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser thatmore » is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.« less

  18. Inhalation of Hydrocarbon Jet Fuel Suppress Central Auditory Nervous System Function.

    PubMed

    Guthrie, O'neil W; Wong, Brian A; McInturf, Shawn M; Reboulet, James E; Ortiz, Pedro A; Mattie, David R

    2015-01-01

    More than 800 million L/d of hydrocarbon fuels is used to power cars, boats, and jet airplanes. The weekly consumption of these fuels necessarily puts the public at risk for repeated inhalation exposure. Recent studies showed that exposure to hydrocarbon jet fuel produces lethality in presynaptic sensory cells, leading to hearing loss, especially in the presence of noise. However, the effects of hydrocarbon jet fuel on the central auditory nervous system (CANS) have not received much attention. It is important to investigate the effects of hydrocarbons on the CANS in order to complete current knowledge regarding the ototoxic profile of such exposures. The objective of the current study was to determine whether inhalation exposure to hydrocarbon jet fuel might affect the functions of the CANS. Male Fischer 344 rats were randomly divided into four groups (control, noise, fuel, and fuel + noise). The structural and functional integrity of presynaptic sensory cells was determined in each group. Neurotransmission in both peripheral and central auditory pathways was simultaneously evaluated in order to identify and differentiate between peripheral and central dysfunctions. There were no detectable effects on pre- and postsynaptic peripheral functions. However, the responsiveness of the brain was significantly depressed and neural transmission time was markedly delayed. The development of CANS dysfunctions in the general public and the military due to cumulative exposure to hydrocarbon fuels may represent a significant but currently unrecognized public health issue.

  19. Fuel-rich catalytic combustion: A fuel processor for high-speed propulsion

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Rollbuhler, R. James; Lezberg, Erwin A.

    1990-01-01

    Fuel-rich catalytic combustion of Jet-A fuel was studied over the equivalence ratio range 4.7 to 7.8, which yielded combustion temperatures of 1250 to 1060 K. The process was soot-free and the gaseous products were similar to those obtained in the iso-octane study. A carbon atom balance across the catalyst bed calculated for the gaseous products accounted for about 70 to 90 percent of the fuel carbon; the balance was condensed as a liquid in the cold trap. It was shown that 52 to 77 percent of the fuel carbon was C1, C2, and C3 molecules. The viability of using fuel-rich catalytic combustion as a technique for preheating a practical fuel to very high temperatures was demonstrated. Preliminary results from the scaled up version of the catalytic combustor produced a high-temperature fuel containing large amounts of hydrogen and carbon monoxide. The balance of the fuel was completely vaporized and in various stages of pyrolysis and oxidation. Visual observations indicate that there was no soot present.

  20. Fuel Microemulsions for Jet Engine Smoke Reduction

    DTIC Science & Technology

    1980-05-01

    ESL-TR-80-25 FUEL MICROEMULSIONS FOR JET ENGINE SMOKE REDUCTION LEVEL$: 0• D.W. NAEGELI , G.E. FODOR, C.A. MOSES MOBILE ENERGY DIVISION 1N•j SOUTHWEST...Moses, C.A, and D.W. Naegeli , "Fuel Property Effects on Combustor Per- formance," AS!E Paper 79-GT-178, San Diego, CA, January 1979. 17. Naegeli , D.W

  1. Experience with Data Science as an Intern with the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Whittell, J.; Mattmann, C. A.; Whitehall, K. D.; Ramirez, P.; Goodale, C. E.; Boustani, M.; Hart, A. F.; Kim, J.; Waliser, D. E.; Joyce, M. J.

    2013-12-01

    The Regional Climate Model Evaluation System (RCMES, http://rcmes.jpl.nasa.gov) at NASA's Jet Propulsion Laboratory seeks to improve regional climate model output by comparing past model predictions with Earth-orbiting satellite data (Mattmann et al. 2013). RCMES ingests satellite and RCM data and processes these data into a common format; as needed, the software queries the RCMES database for these datasets, on which it runs a series of statistical metrics including model-satellite comparisons. The development of the RCMES software relies on collaboration between climatologists and computer scientists, as evinced by RCMES longstanding work with CORDEX (Kim et al. 2012). Over a total of 17 weeks in 2011, 2012, and 2013, I worked as an intern at NASA's Jet Propulsion Laboratory in a supportive capacity for RCMES. A high school student, I had no formal background in either Earth science or computer technology, but was immersed in both fields. In 2011, I researched three earth-science data management projects, producing a high-level explanation of these endeavors. The following year, I studied Python, contributing a command-line user interface to the RCMES project code. In 2013, I assisted with data acquisition, wrote a file header information plugin, and the visualization tool GrADS. The experience demonstrated the importance of an interdisciplinary approach to data processing: to streamline data ingestion and processing, scientists must understand, at least on a high-level, any programs they might utilize while to best serve the needs of earth scientists, software engineers must understand the science behind the data they handle.

  2. Age-related differences in pulmonary inflammatory responses to JP-8 jet fuel aerosol inhalation.

    PubMed

    Wang, S; Young, R S; Witten, M L

    2001-02-01

    Our previous studies have demonstrated that JP-8 jet fuel aerosol inhalation induced lung injury and dysfunction. To further examine JP-8 jet fuel-induced inflammatory mechanisms, a total of 40 male C57BL/6 mice (young, 3.5 months; adult, 12 months; half in each age group) were randomly assigned to the exposure or control groups. Mice were nose-only exposed to room air or atmospheres of 1000 mg/m3 JP-8 jet fuel for 1 h/day for 7 days. Lung injury was assessed by pulmonary mechanics, respiratory permeability, lavaged cell profile, and chemical mediators in bronchoalveolar lavage fluid (BALF). The young and adult mice exposed to JP-8 jet fuel had similar values with regards to increased lung dynamic compliance, lung permeability, BALF cell count, and decreased PGE2. However, there were several different responses between the young-versus-adult mice with respect to BALF cell differential, TNF-alpha, and 8-iso-PGF2,, levels after exposure to JP-8 jet fuel. These data suggest that JP-8 jet fuel may have different inflammatory mechanisms leading to lung injury and dysfunction in the younger-versus-adult mice.

  3. Micro hollow cathode discharge jets utilizing solid fuel

    NASA Astrophysics Data System (ADS)

    Nikic, Dejan

    2017-10-01

    Micro hollow cathode discharge devices with a solid fuel layer embedded between the electrodes have demonstrated an enhanced jetting process. Outlined are series of experiments in various pressure and gas conditions as well as vacuum. Examples of use of these devices in series and parallel configurations are presented. Evidence of utilization of solid fuel is obtained through optical spectroscopy and analysis of remaining fuel layer.

  4. Electrolysis Propulsion for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.

    1997-01-01

    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

  5. Investigation of charge dissipation in jet fuel in a dielectric fuel tank

    NASA Astrophysics Data System (ADS)

    Kitanin, E. L.; Kravtsov, P. A.; Trofimov, V. A.; Kitanina, E. E.; Bondarenko, D. A.

    2017-09-01

    The electrostatic charge dissipation process in jet fuel in a polypropylene tank was investigated experimentally. Groundable metallic terminals were installed in the tank walls to accelerate the dissipation process. Several sensors and an electrometer with a current measuring range from 10-11 to 10-3 A were specifically designed to study the dissipation rates. It was demonstrated that thanks to the sensors and the electrometer one can obtain reliable measurements of the dissipation rate and look at how it is influenced by the number and locations of the terminals. Conductivity of jet fuel and effective conductivity of the tank walls were investigated in addition. The experimental data agree well with the numerical simulation results obtained using COMSOL software package.

  6. Jet Propulsion Laboratory: Annual Report 2007

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Many milestones are celebrated in the business of space exploration, but one of them that arrived this year has particular meaning for us. Half a century ago, on January 31, 1958, the Jet Propulsion Laboratory was responsible for creating America's first satellite, Explorer 1, and joined with the Army to launch it into orbit. That makes 2007 the 50th year we have been sending robotic craft from Earth to explore space. No other event before or since has had such a profound effect on JPL's basic identity, setting it on the path to become the world's leader in robotic solar system exploration. It is not lost on historians that Explorer 1, besides being America's first satellite, was also the first spacecraft from any country to deliver scientific results in its case, the discovery of the Van Allen Radiation Belts that surround Earth. Science, of course, has been the prime motivator for all the dozens of missions that we have lofted into space in the half-century since then. JPL has sent spacecraft to every planet in the solar system from Mercury to Neptune, some of them very sophisticated machines. But in one way or another, they all owe their heritage to the 31-pound bullet-shaped probe JPL shot into space in 1958. Although we have ranged far and wide across the solar system, we have a very strong contingent of satellites and instruments dedicated, like Explorer, to the environment of our home planet. JPL missions have been providing much of the data to establish the facts of global warming - most especially, the melting of ice sheets in Greenland and Antarctica. During the past year, JPL and our parent organization, the California Institute of Technology, have created a task force to focus the special capabilities of the Laboratory and campus on ways to better understand the physics of global change. While Earth is a chaotic and dynamic system capable of large natural variations, evidence is mounting that human activities are playing an increasingly important role

  7. From Mars to man - Biomedical research at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Beckenbach, E. S.

    1984-01-01

    In the course of the unmanned exploration of the solar system, which the California Institute of Technology's Jet Propulsion Laboratory has managed for NASA, major advances in computerized image processing, materials research, and miniature electronics design have been accomplished. This presentation shows some of the imaging results from space exploration missions, as well as biomedical research tasks based in these technologies. Among other topics, the use of polymeric microspheres in cancer therapy is discussed. Also included are ceramic applications to prosthesis development, laser applications in the treatment of coronary artery disease, multispectral imaging as used in the diagnosis of thermal burn injury, and some examples of telemetry systems as they can be involved in biological systems.

  8. The JPL Direct Methanol Liquid-feed PEM Fuel Cell

    NASA Technical Reports Server (NTRS)

    Halpert, G.; Surampudi, S.

    1994-01-01

    Recently, there has been a breakthrough in fuel cell technology in the Energy Storage Systems Group at the Jet Propulsion Laboratory with the develpment of a direct methanol, liquid-feed, solid polymer electrolyte membrane (PEM) fuel cell... The methanol liquid-feed, solid polymer electrolyte (PEM) design has numerous system level advantages over the gas-feed design. These include:...

  9. Numerical Propulsion System Simulation (NPSS): An Award Winning Propulsion System Simulation Tool

    NASA Technical Reports Server (NTRS)

    Stauber, Laurel J.; Naiman, Cynthia G.

    2002-01-01

    The Numerical Propulsion System Simulation (NPSS) is a full propulsion system simulation tool used by aerospace engineers to predict and analyze the aerothermodynamic behavior of commercial jet aircraft, military applications, and space transportation. The NPSS framework was developed to support aerospace, but other applications are already leveraging the initial capabilities, such as aviation safety, ground-based power, and alternative energy conversion devices such as fuel cells. By using the framework and developing the necessary components, future applications that NPSS could support include nuclear power, water treatment, biomedicine, chemical processing, and marine propulsion. NPSS will dramatically reduce the time, effort, and expense necessary to design and test jet engines. It accomplishes that by generating sophisticated computer simulations of an aerospace object or system, thus enabling engineers to "test" various design options without having to conduct costly, time-consuming real-life tests. The ultimate goal of NPSS is to create a numerical "test cell" that enables engineers to create complete engine simulations overnight on cost-effective computing platforms. Using NPSS, engine designers will be able to analyze different parts of the engine simultaneously, perform different types of analysis simultaneously (e.g., aerodynamic and structural), and perform analysis in a more efficient and less costly manner. NPSS will cut the development time of a new engine in half, from 10 years to 5 years. And NPSS will have a similar effect on the cost of development: new jet engines will cost about a billion dollars to develop rather than two billion. NPSS is also being applied to the development of space transportation technologies, and it is expected that similar efficiencies and cost savings will result. Advancements of NPSS in fiscal year 2001 included enhancing the NPSS Developer's Kit to easily integrate external components of varying fidelities, providing

  10. Dual-fuel propulsion - Why it works, possible engines, and results of vehicle studies. [on earth-to-orbit Space Shuttle flights

    NASA Technical Reports Server (NTRS)

    Martin, J. A.; Wilhite, A. W.

    1979-01-01

    The reasons why dual-fuel propulsion works are discussed. Various engine options are discussed, and vehicle mass and cost results are presented for earth-to-orbit vehicles. The results indicate that dual-fuel propulsion is attractive, particularly with the dual-expander engine. A unique orbit-transfer vehicle is described which uses dual-fuel propulsion. One Space Shuttle flight and one flight of a heavy-lift Shuttle derivative are used for each orbit-transfer vehicle flight, and the payload capability is quite attractive.

  11. Reduced Toxicity Fuel Satellite Propulsion System Including Plasmatron

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2003-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster. whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  12. America's first long-range-missile and space exploration program: The ORDCIT project of the Jet Propulsion Laboratory, 1943 - 1946: A memoir

    NASA Technical Reports Server (NTRS)

    Malina, F. J.

    1977-01-01

    Research and achievements of the wartime Jet Propulsion Laboratory are outlined. Accomplishments included development of the solid-propellant Private A and private R rockets and the liquid-propellant nitric acid-aniline WAC Corporal rocket.

  13. Alternative Practices to Improve Surface Fleet Fuel Efficiency

    DTIC Science & Technology

    2014-09-01

    GTGs . These GTGs are used onboard Ticonderoga-class cruisers (from Bennett 2014). Approximately 95-120 GPH less fuel is burned when operating one... GTG vice two. ..........................22 Figure 9. This shows the optimum speed to minimize fuel consumption for USS Chosin (CG 65). The TFP line...FITREP fitness report FY fiscal year GPH gallons per hour GTG gas turbine generator hr hour JP5 jet propulsion fuel, type 5 kts knots kW kilowatt

  14. Preliminary assessment of Malaysian micro-algae strains for the production of bio jet fuel

    NASA Astrophysics Data System (ADS)

    Chen, J. T.; Mustafa, E. M.; Vello, V.; Lim, P.; Nik Sulaiman, N. M.; Majid, N. Abdul; Phang, S.; Tahir, P. Md.; Liew, K.

    2016-10-01

    Malaysia is the main hub in South-East Asia and has one of the highest air traffic movements in the region. Being rich in biodiversity, Malaysia has long been touted as country rich in biodiversity and therefore, attracts great interests as a place to setup bio-refineries and produce bio-fuels such as biodiesel, bio-petrol, green diesel, and bio-jet fuel Kerosene Jet A-1. Micro-algae is poised to alleviate certain disadvantages seen in first generation and second generation feedstock. In this study, the objective is to seek out potential micro-algae species in Malaysia to determine which are suitable to be used as the feedstock to enable bio-jet fuel production in Malaysia. From 79 samples collected over 30 sites throughout Malaysia, six species were isolated and compared for their biomass productivity and lipid content. Their lipid contents were then used to derived the require amount of micro-algae biomass to yield 1 kg of certifiable jet fuel via the HEFA process, and to meet a scenario where Malaysia implements a 2% alternative (bio-) jet fuel requirement.

  15. PERSONAL EXPOSURE TO JP-8 JET FUEL VAPORS AND EXHAUST AT AIR FORCE BASES

    EPA Science Inventory

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and gro...

  16. Jet Fuel Exacerbated Noise-Induced Hearing Loss: Focus on Prediction of Central Auditory Processing Dysfunction

    DTIC Science & Technology

    2017-09-01

    to develop a multi-scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated noise induced hearing loss. In...scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated noise-induced hearing loss. Such hearing loss...project was to develop a multi-scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated NIHL. Herein we

  17. Study of a Tricarbide Grooved Ring Fuel Element for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Emrich, Bill; Tucker, Dennis; Barnes, Marvin; Donders, Nicolas; Benensky, Kelsa

    2018-01-01

    Deep space exploration, especially that of Mars, is on the horizon as the next big challenge for space exploration. Nuclear propulsion, through which high thrust and efficiency can be achieved, is a promising option for decreasing the cost and logistics of such a mission. Work on nu- clear thermal engines goes back to the days of the NERVA program. Currently, nuclear thermal propulsion is under development again in various forms to provide a superior propulsion system for deep space exploration. The authors have been working to develop a concept nuclear thermal engine that uses a grooved ring fuel element as an alternative to the traditional hexagonal rod design. The authors are also studying the use of carbide fuels. The concept was developed in order to increase surface area and heat transfer to the propellant. The use of carbides would also raise the operating temperature of the reactor. It is hoped that this could lead to a higher thrust to weight nuclear thermal engine. This paper describes the modeling of neutronics, heat transfer, and fluid dynamics of this alternative nuclear fuel element geometry. Fabrication experiments of grooved rings from carbide refractory metals are also presented along with material characterization and interactions with a hot hydrogen environment. Results of experiments and associated analysis are desired densities with some success in material distribution and reaching a solid solution. Future work is needed to improve distribution of material, minimize oxidation during the milling process, and de ne a fabrication process that will serve for constructing grooved ring fuel rods for large system tests.

  18. Multiphysics Modeling of a Single Channel in a Nuclear Thermal Propulsion Grooved Ring Fuel Element

    NASA Technical Reports Server (NTRS)

    Kim, Tony; Emrich, William J., Jr.; Barkett, Laura A.; Mathias, Adam D.; Cassibry, Jason T.

    2013-01-01

    In the past, fuel rods have been used in nuclear propulsion applications. A new fuel element concept that reduces weight and increases efficiency uses a stack of grooved discs. Each fuel element is a flat disc with a hole on the interior and grooves across the top. Many grooved ring fuel elements for use in nuclear thermal propulsion systems have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel element with a higher surface-area-to-volume ratio is ideal. When grooves are shallower, i.e., they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of turbulence with those of heat transfer, the effects on the cooler gas flowing through the grooves of the thermally excited solid can be predicted. Parametric studies were done to show how a pressure drop across the axial length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the behaviors that result from the manipulation of various parameters. Temperature profiles of the solid and gas showed that more structural optimization is needed to produce the desired results. Keywords: Nuclear Thermal Propulsion, Fuel Element, Heat Transfer, Computational Fluid Dynamics, Coupled Physics Computations, Finite Element Analysis

  19. Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.

    PubMed

    Falter, Christoph; Pitz-Paal, Robert

    2017-11-07

    The production of alternative fuels via the solar thermochemical pathway has the potential to provide supply security and to significantly reduce greenhouse gas emissions. H 2 O and CO 2 are converted to liquid hydrocarbon fuels using concentrated solar energy mediated by redox reactions of a metal oxide. Because attractive production locations are in arid regions, the water footprint and the land requirement of this fuel production pathway are analyzed. The water footprint consists of 7.4 liters per liter of jet fuel of direct demand on-site and 42.4 liters per liter of jet fuel of indirect demand, where the dominant contributions are the mining of the rare earth oxide ceria, the manufacturing of the solar concentration infrastructure, and the cleaning of the mirrors. The area-specific productivity is found to be 33 362 liters per hectare per year of jet fuel equivalents, where the land coverage is mainly due to the concentration of solar energy for heat and electricity. The water footprint and the land requirement of the solar thermochemical fuel pathway are larger than the best power-to-liquid pathways but an order of magnitude lower than the best biomass-to-liquid pathways. For the production of solar thermochemical fuels arid regions are best-suited, and for biofuels regions of a moderate and humid climate.

  20. Measurement and correlation of jet fuel viscosities at low temperatures

    NASA Technical Reports Server (NTRS)

    Schruben, D. L.

    1985-01-01

    Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations.

  1. Predicted exhaust emissions from a methanol and jet fueled gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Adelman, H. G.; Browning, L. H.; Pefley, R. K.

    1975-01-01

    A computer model of a gas turbine combustor has been used to predict the kinetic combustion and pollutant formation processes for methanol and simulated jet fuel. Use of the kinetic reaction mechanisms has also allowed a study of ignition delay and flammability limit of these two fuels. The NOX emissions for methanol were predicted to be from 69 to 92% lower than those for jet fuel at the same equivalence ratio which is in agreement with experimentally observed results. The high heat of vaporization of methanol lowers both the combustor inlet mixture temperatures and the final combustion temperatures. The lower combustion temperatures lead to low NOX emissions while the lower inlet mixture temperatures increase methanol's ignition delay. This increase in ignition delay dictates the lean flammability limit of methanol to be 0.8, while jet fuel is shown to combust at 0.4.

  2. Powder Extinguishants for Jet-Fuel Fires

    NASA Technical Reports Server (NTRS)

    Altman, R. L.; Mayer, L. A.; Ling, A. C.

    1986-01-01

    Mixtures of alkali metal dawsonite and metal halide show superior performance. In tests of new dry powder fire extinguishants, mixtures of potassium dawsonite with either stannous iodide or potassium iodide found effective for extinguishing jet-fuel fires on hot metal surfaces (up to 900 degrees C). Mixtures performed more effectively than either compound alone.

  3. Experimental verification of the thermodynamic properties for a jet-A fuel

    NASA Technical Reports Server (NTRS)

    Graciasalcedo, Carmen M.; Brabbs, Theodore A.; Mcbride, Bonnie J.

    1988-01-01

    Thermodynamic properties for a Jet-A fuel were determined by Shell Development Company in 1970 under a contract for NASA Lewis Research Center. The polynomial fit necessary to include Jet-A fuel (liquid and gaseous phases) in the library of thermodynamic properties of the NASA Lewis Chemical Equilibrium Program is calculated. To verify the thermodynamic data, the temperatures of mixtures of liquid Jet-A injected into a hot nitrogen stream were experimentally measured and compared to those calculated by the program. Iso-octane, a fuel for which the thermodynamic properties are well known, was used as a standard to calibrate the apparatus. The measured temperatures for the iso-octane/nitrogen mixtures reproduced the calculated temperatures except for a small loss due to the non-adiabatic behavior of the apparatus. The measurements for Jet-A were corrected for this heat loss and showed excellent agreement with the calculated temperatures. These experiments show that this process can be adequately described by the thermodynamic properties fitted for the Chemical Equilibrium Program.

  4. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline Clifford; Andre Boehman; Chunshan Song

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using knownmore » refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to

  5. Thermal Stability Testing of Fischer-Tropsch Fuel and Various Blends with Jet A, as Well as Aromatic Blend Additives

    NASA Technical Reports Server (NTRS)

    Klettlinger, J.; Rich, R.; Yen, C.; Surgenor, A.

    2011-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline conventional Jet A, a commercial grade F-T jet fuel, and various blends of this F-T fuel in Jet A. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  6. Infrared spectroscopy for the determination of hydrocarbon types in jet fuels

    NASA Technical Reports Server (NTRS)

    Buchar, C. S.

    1981-01-01

    The concentration of hydrocarbon types in conventional jet fuels and synfuels can be measured using a computerized infrared spectrophotometer. The computerized spectrophotometer is calibrated using a fuel of known aromatic and olefinic content. Once calibration is completed, other fuels can be rapidly analyzed using an analytical program built into the computer. The concentration of saturates can be calculated as 100 percent minus the sum of the aromatic and olefinic concentrations. The analysis of a number of jet fuels produced an average standard deviation of 1.76 percent for aromatic types and one of 3.99 percent for olefinic types. Other substances such as oils and organic mixtures can be analyzed for their hydrocarbon content.

  7. Characterization of a Heated Liquid Jet in Crossflow

    NASA Astrophysics Data System (ADS)

    Wiest, Heather K.

    The liquid jet in crossflow (LJICF) is a widely utilized fuel injection method for airbreathing propulsion devices such as low NO x gas turbine combustors, turbojet afterburners, scramjet/ramjet engines, and rotating detonation engines (RDE's). This flow field allows for efficient fuel-air mixing as aerodynamic forces from the crossflow augment atomization. Additionally, increases in the thermal demands of advanced aeroengines necessitates the use of fuel as a primary coolant. The resulting higher fuel temperatures can cause flash atomization of the liquid fuel as it is injected into a crossflow, potentially leading to a large reduction in the jet penetration. While many experimental works have characterized the overall atomization process of a room temperature liquid jet in an ambient temperature and pressure crossflow, the aggressive conditions associated with flash atomization especially in an air crossflow with elevated temperatures and pressures have been less studied in the community. A successful test campaign was conducted to study the effects of fuel temperature on a liquid jet injected transversely into a steady air crossflow at ambient as well as elevated temperature and pressure conditions. Modifications were made to an existing optically accessible rig, and a new fuel injector was designed for this study. Backlit imaging was utilized to record changes in the overall spray characteristics and jet trajectory as fuel temperature and crossflow conditioners were adjusted. Three primary analysis techniques were applied to the heated LJICF data: linear regression of detected edges to determine trajectory correlations, exploratory study of pixel intensity variations both temporally as well as spatially, and modal decomposition of the data. The overall objectives of this study was to assess the trajectory, breakup, and mixing of the LJICF undery varying jet and crossflow conditions, develop a trajectory correlation to predict changes in jet penetration due to

  8. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.

    PubMed

    Falter, Christoph; Batteiger, Valentin; Sizmann, Andreas

    2016-01-05

    Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered.

  9. Silanes as Fuel for Aerospace Propulsion

    NASA Astrophysics Data System (ADS)

    Simone, Domenico; Bruno, Claudio; Hidding, Bernhard

    In the light of recently revived interest in high energy density fuels for aerospace applications1,2), a new look is being given at unconventional fuels. Among the latter are hydrides, because their hydrogen content and density. Among hydrides silanes are of interest because of their combustion and energetic properties.Silanes are silicon hydrides organized in molecular chains similar to those of hydrocarbons; at STP, lower silanes (SiH4, Si2H6) are gaseous and extremely pyrophoric; with increasing chain length, silanes become liquid from trisilane (Si3H8) on, and therefore easily pumped. Another important feature of silanes is the large amount of hydrogen theoretically available by thermal decomposition: in fact at moderate temperatures (about 500 K) the chains begin to break and at 700 K their decomposition is complete, yielding silicon and gaseous hydrogen, useful for propulsion in combination with air nitrogen and oxygen. This last feature, if confirmed, could identify silanes not only as energy carriers but also components in bi-fuel systems. To assess their theoretical performance, simulations were conducted assuming silanes and/or their thermal decomposition products in combination with various oxidizers and air. Preliminary results are suggestive of their potential for some specialized applications, especially where compactness is at premium.

  10. Cleanup of a jet fuel spill

    NASA Astrophysics Data System (ADS)

    Fesko, Steve

    1996-11-01

    Eaton operates a corporate aircraft hanger facility in Battle Creek, Michigan. Tests showed that two underground storage tanks leaked. Investigation confirmed this release discharged several hundred gallons of Jet A kerosene into the soil and groundwater. The oil moved downward approximately 30 feet and spread laterally onto the water table. Test results showed kerosene in the adsorbed, free and dissolved states. Eaton researched and investigated three clean-up options. They included pump and treat, dig and haul and bioremediation. Jet fuel is composed of readily biodegradable hydrocarbon chains. This fact coupled with the depth to groundwater and geologic setting made bioremediation the low cost and most effective alternative. A recovery well was installed at the leading edge of the dissolved contamination. A pump moved water from this well into a nutrient addition system. Nutrients added included nitrogen, phosphorous and potassium. Additionally, air was sparged into the water. The water was discharged into an infiltration gallery installed when the underground storage tanks were removed. Water circulated between the pump and the infiltration basin in a closed loop fashion. This oxygenated, nutrient rich water actively and aggressively treated the soils between the bottom of the gallery and the top of the groundwater and the groundwater. The system began operating in August of 1993 and reduced jet fuel to below detection levels. In August of 1995 The State of Michigan issued a clean closure declaration to the site.

  11. MEETING IN VANCOUVER, B.C.: MICRONUCLEUS STUDIES IN THE PERIPHERAL BLOOD AND BONE MARROW OF MICE TREATED WITH JET FUELS, JP-8 AND JET-A

    EPA Science Inventory

    The potential adverse effects of dermal and inhalation exposure of jet fuels are important for health hazard evaluation in humans. In an animal model, the genotoxic potential of jet fuels, JP-8 and Jet-A, was investigated. Mice were treated dermally with either a single or multip...

  12. Electromagnetic thrusters for spacecraft prime propulsion

    NASA Technical Reports Server (NTRS)

    Rudolph, L. K.; King, D. Q.

    1984-01-01

    The benefits of electromagnetic propulsion systems for the next generation of US spacecraft are discussed. Attention is given to magnetoplasmadynamic (MPD) and arc jet thrusters, which form a subset of a larger group of electromagnetic propulsion systems including pulsed plasma thrusters, Hall accelerators, and electromagnetic launchers. Mission/system study results acquired over the last twenty years suggest that for future prime propulsion applications high-power self-field MPD thrusters and low-power arc jets have the greatest potential of all electromagnetic thruster systems. Some of the benefits they are expected to provide include major reductions in required launch mass compared to chemical propulsion systems (particularly in geostationary orbit transfer) and lower life-cycle costs (almost 50 percent less). Detailed schematic drawings are provided which describe some possible configurations for the various systems.

  13. Exposures to jet fuel and benzene during aircraft fuel tank repair in the U.S. Air Force.

    PubMed

    Carlton, G N; Smith, L B

    2000-06-01

    Jet fuel and benzene vapor exposures were measured during aircraft fuel tank entry and repair at twelve U.S. Air Force bases. Breathing zone samples were collected on the fuel workers who performed the repair. In addition, instantaneous samples were taken at various points during the procedures with SUMMA canisters and subsequent analysis by mass spectrometry. The highest eight-hour time-weighted average (TWA) fuel exposure found was 1304 mg/m3; the highest 15-minute short-term exposure was 10,295 mg/m3. The results indicate workers who repair fuel tanks containing explosion suppression foam have a significantly higher exposure to jet fuel as compared to workers who repair tanks without foam (p < 0.001). It is assumed these elevations result from the tendency for fuel, absorbed by the foam, to volatilize during the foam removal process. Fuel tanks that allow flow-through ventilation during repair resulted in lower exposures compared to those tanks that have only one access port and, as a result, cannot be ventilated efficiently. The instantaneous sampling results confirm that benzene exposures occur during fuel tank repair; levels up to 49.1 mg/m3 were found inside the tanks during the repairs. As with jet fuel, these elevated benzene concentrations were more likely to occur in foamed tanks. The high temperatures associated with fuel tank repair, along with the requirement to wear vapor-permeable cotton coveralls for fire reasons, could result in an increase in the benzene body burden of tank entrants.

  14. Mixing of Supersonic Jets in a RBCC Strutjet Propulsion System

    NASA Technical Reports Server (NTRS)

    Muller, S.; Hawk, Clark W.; Bakker, P. G.; Parkinson, D.; Turner, M.

    1998-01-01

    The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ingested air for successful operation in the ramjet and scramjet modes. It is desirable to delay this mixing process in the air-augmented mode of operation present during take-off and low speed flight. A scale model of the Strutjet device was built and tested to investigate the mixing of the streams as a function of distance from the Strut exit plane in simulated sea level take-off conditions. The Planar Laser Induced Fluorescence (PLIF) diagnostic method has been employed to observe the mixing of the turbine exhaust gas with the gases from both the primary rockets and the ingested air. The ratio of the pressure in the turbine exhaust to that in the rocket nozzle wall at the point where the two jets meet, is the independent variable in these experiments. Tests were accomplished at values of 1.0 (the original design point), 1.5 and 2.0 for this parameter at 8 locations downstream of the rocket nozzle exit. The results illustrate the development of the mixing zone from the exit plane of the strut to a distance of about 18 equivalent rocket nozzle exit diameters downstream (18"). These images show the turbine exhaust to be confined until a short distance downstream. The expansion into the ingested air is more pronounced at a pressure ratio of 1.0 and 1.5 and shows that mixing with this air would likely begin at a distance of 2" downstream of the nozzle exit plane. Of the pressure ratios tested in this research, 2.0 is the best value for delaying the mixing at the operating conditions considered.

  15. Study of a Tricarbide Grooved Ring Fuel Element for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Emrich, Bill; Tucker, Dennis; Barnes, Marvin; Donders, Nicolas; Benensky, Kelsa

    2018-01-01

    Deep space exploration, especially that of Mars, is on the horizon as the next big challenge for space exploration. Nuclear propulsion, through which high thrust and efficiency can be achieved, is a promising option for decreasing the cost and logistics of such a mission. Work on nuclear thermal engines goes back to the days of the NERVA program. Currently, nuclear thermal propulsion is under development again in various forms to provide a superior propulsion system for deep space exploration. The authors have been working to develop a concept nuclear thermal engine that uses a grooved ring fuel element as an alternative to the traditional hexagonal rod design. The authors are also studying the use of carbide fuels. The concept was developed in order to increase surface area and heat transfer to the propellant. The use of carbides would also raise the operating temperature of the reactor. It is hoped that this could lead to a higher thrust to weight nuclear thermal engine. This paper describes the modeling of neutronics, heat transfer, and fluid dynamics of this alternative nuclear fuel element geometry. Fabrication experiments of grooved rings from carbide refractory metals are also presented along with material characterization and interactions with a hot hydrogen environment. Results of experiments and associated analysis are discussed. The authors demonstrated success in reaching desired densities with some success in material distribution and reaching a solid solution. Future work is needed to improve distribution of material, minimize oxidation during the milling process, and define a fabrication process that will serve for constructing grooved ring fuel rods for large system tests.

  16. Advanced supersonic propulsion study. [with emphasis on noise level reduction

    NASA Technical Reports Server (NTRS)

    Sabatella, J. A. (Editor)

    1974-01-01

    A study was conducted to determine the promising propulsion systems for advanced supersonic transport application, and to identify the critical propulsion technology requirements. It is shown that noise constraints have a major effect on the selection of the various engine types and cycle parameters. Several promising advanced propulsion systems were identified which show the potential of achieving lower levels of sideline jet noise than the first generation supersonic transport systems. The non-afterburning turbojet engine, utilizing a very high level of jet suppression, shows the potential to achieve FAR 36 noise level. The duct-heating turbofan with a low level of jet suppression is the most attractive engine for noise levels from FAR 36 to FAR 36 minus 5 EPNdb, and some series/parallel variable cycle engines show the potential of achieving noise levels down to FAR 36 minus 10 EPNdb with moderate additional penalty. The study also shows that an advanced supersonic commercial transport would benefit appreciably from advanced propulsion technology. The critical propulsion technology needed for a viable supersonic propulsion system, and the required specific propulsion technology programs are outlined.

  17. End-to-End Information System design at the NASA Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Hooke, A. J.

    1978-01-01

    Recognizing a pressing need of the 1980s to optimize the two-way flow of information between a ground-based user and a remote space-based sensor, an end-to-end approach to the design of information systems has been adopted at the Jet Propulsion Laboratory. The objectives of this effort are to ensure that all flight projects adequately cope with information flow problems at an early stage of system design, and that cost-effective, multi-mission capabilities are developed when capital investments are made in supporting elements. The paper reviews the End-to-End Information System (EEIS) activity at the Laboratory, and notes the ties to the NASA End-to-End Data System program.

  18. Liquid phase products and solid deposit formation from thermally stressed model jet fuels

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Bittker, D. A.

    1984-01-01

    The relationship between solid deposit formation and liquid degradation product concentration was studied for the high temperature (400 C) stressing of three hydrocarbon model fuels. A Jet Fuel Thermal Oxidation Tester was used to simulate actual engine fuel system conditions. The effects of fuel type, dissolved oxygen concentration, and hot surface contact time (reaction time) were studied. Effects of reaction time and removal of dissolved oxygen on deposit formation were found to be different for n-dodecane and for 2-ethylnaphthalene. When ten percent tetralin is added to n-dodecane to give a simpler model of an actual jet fuel, the tetralin inhibits both the deposit formation and the degradation of n-dodecane. For 2-ethylnaphthalene primary product analyses indicate a possible self-inhibition at long reaction times of the secondary reactions which form the deposit precursors. The mechanism of the primary breakdown of these fuels is suggested and the primary products which participate in these precursor-forming reactions are identified. Some implications of the results to the thermal degradation of real jet fuels are given.

  19. Direct Coal -to-Liquids (CTL) for Jet Fuel Using Biomass-Derived Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Satya P.; Garbark, Daniel B.; Taha, Rachid

    Battelle has demonstrated a novel and potentially breakthrough technology for a direct coal-to-liquids (CTL) process for producing jet fuel using biomass-derived coal solvents (bio-solvents). The Battelle process offers a significant reduction in capital and operating costs and a substantial reduction in greenhouse gas (GHG) emissions, without requiring carbon capture and storage (CCS). The results of the project are the advancement of three steps of the hybrid coal/biomass-to-jet fuel process to the technology readiness level (TRL) of 5. The project objectives were achieved over two phases. In Phase 1, all three major process steps were explored and refined at bench-scale, including:more » (1) biomass conversion to high hydrogen-donor bio-solvent; (2) coal dissolution in biomass-derived bio-solvent, without requiring molecular H 2, to produce a synthetic crude (syncrude); and (3) two-stage catalytic hydrotreating/hydrogenation of syncrude to jet fuel and other distillates. In Phase 2, all three subsystems of the CTL process were scaled up to a pre-pilot scale, and an economic analysis was carried out. A total of over 40 bio-solvents were identified and prepared. The most unique attribute of Battelle’s bio-solvents is their ability to provide much-needed hydrogen to liquefy coal and thus increase its hydrogen content so much that the resulting syncrude is liquid at room temperature. Based on the laboratory-scale testing with bituminous coals from Ohio and West Virginia, a total of 12 novel bio-solvent met the goal of greater than 80% coal solubility, with 8 bio-solvents being as good as or better than a well-known but expensive hydrogen-donor solvent, tetralin. The Battelle CTL process was then scaled up to 1 ton/day (1TPD) at a pre-pilot facility operated in Morgantown, WV. These tests were conducted, in part, to produce enough material for syncrude-upgrading testing. To convert the Battelle-CTL syncrude into a form suitable as a blending stock for jet turbine

  20. Numerical Investigation on Sensitivity of Liquid Jet Breakup to Physical Fuel Properties with Experimental Comparison

    NASA Astrophysics Data System (ADS)

    Kim, Dokyun; Bravo, Luis; Matusik, Katarzyna; Duke, Daniel; Kastengren, Alan; Swantek, Andy; Powell, Christopher; Ham, Frank

    2016-11-01

    One of the major concerns in modern direct injection engines is the sensitivity of engine performance to fuel characteristics. Recent works have shown that even slight differences in fuel properties can cause significant changes in efficiency and emission of an engine. Since the combustion process is very sensitive to the fuel/air mixture formation resulting from disintegration of liquid jet, the precise assessment of fuel sensitivity on liquid jet atomization process is required first to study the impact of different fuels on the combustion. In the present study, the breaking process of a liquid jet from a diesel injector injecting into a quiescent gas chamber is investigated numerically and experimentally for different liquid fuels (n-dodecane, iso-octane, CAT A2 and C3). The unsplit geometric Volume-of-Fluid method is employed to capture the phase interface in Large-eddy simulations and results are compared against the radiography measurement from Argonne National Lab including jet penetration, liquid mass distribution and volume fraction. The breakup characteristics will be shown for different fuels as well as droplet PDF statistics to demonstrate the influences of the physical properties on the primary atomization of liquid jet. Supported by HPCMP FRONTIER award, US DOD, Office of the Army.

  1. Comparison of atomization characteristics of drop-in and conventional jet fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza; Micro Scale Thermo-Fluids Lab Team

    2016-11-01

    Surge in energy demand and stringent emission norms have been driving the interest on alternative drop-in fuels in aviation industry. The gas-to-liquid (GTL), synthetic paraffinic kerosene fuel derived from natural gas, has drawn significant attention as drop-in fuel due to its cleaner combustion characteristics when compared to other alternative fuels derived from various feedstocks. The fuel specifications such as chemical and physical properties of drop-in fuels are different from those of the conventional jet fuels, which can affect their atomization characteristics and in turn the combustion performance. The near nozzle liquid sheet dynamics of the drop-in fuel, GTL, is studied at different nozzle operating conditions and compared with that of the conventional Jet A-1 fuel. The statistical analysis of the near nozzle sheet dynamics shows that the drop-in fuel atomization characteristics are comparable to those of the conventional fuel. Furthermore, the microscopic spray characteristics measured using phase Doppler anemometry at downstream locations are slightly different between the fuels. Authors acknowledge the support by National Priorities Research Program (NPRP) of Qatar National Research Fund through the Grant NPRP-7-1449-2-523.

  2. The Oxidation and Ignition of Jet Fuels

    DTIC Science & Technology

    2017-01-03

    approved for public release. A series of experimental studies designed to elucidate the oxidative reactivity and ignition properties of jet fuel and its...3 2. Experimental Method……………………………………………..………………….……..4 2.1. Shock tube…………………………………………………….…………………….4 2.2. Mid-infrared... experimental kinetics database for larger hydrocarbon components, real transportation fuels, model fuel mixtures, and important intermediate species

  3. Jet Fuel Exposure and Neurological Health in Military Personnel

    DTIC Science & Technology

    2006-07-01

    relationship between JP-8 fuel exposure and adverse neurological outcomes in military personnel working in a cold climate environment. The research...with hypothesized neurocognitive and neurophysiologic performance outcomes . The project has two phases: Tier I is to conduct onsite exposure ...AD_________________ Award Number: W81XWH-06-1-0105 TITLE: Jet Fuel Exposure and Neurological

  4. The multidisciplinary design optimization of a distributed propulsion blended-wing-body aircraft

    NASA Astrophysics Data System (ADS)

    Ko, Yan-Yee Andy

    The purpose of this study is to examine the multidisciplinary design optimization (MDO) of a distributed propulsion blended-wing-body (BWB) aircraft. The BWB is a hybrid shape resembling a flying wing, placing the payload in the inboard sections of the wing. The distributed propulsion concept involves replacing a small number of large engines with many smaller engines. The distributed propulsion concept considered here ducts part of the engine exhaust to exit out along the trailing edge of the wing. The distributed propulsion concept affects almost every aspect of the BWB design. Methods to model these effects and integrate them into an MDO framework were developed. The most important effect modeled is the impact on the propulsive efficiency. There has been conjecture that there will be an increase in propulsive efficiency when there is blowing out of the trailing edge of a wing. A mathematical formulation was derived to explain this. The formulation showed that the jet 'fills in' the wake behind the body, improving the overall aerodynamic/propulsion system, resulting in an increased propulsive efficiency. The distributed propulsion concept also replaces the conventional elevons with a vectored thrust system for longitudinal control. An extension of Spence's Jet Flap theory was developed to estimate the effects of this vectored thrust system on the aircraft longitudinal control. It was found to provide a reasonable estimate of the control capability of the aircraft. An MDO framework was developed, integrating all the distributed propulsion effects modeled. Using a gradient based optimization algorithm, the distributed propulsion BWB aircraft was optimized and compared with a similarly optimized conventional BWB design. Both designs are for an 800 passenger, 0.85 cruise Mach number and 7000 nmi mission. The MDO results found that the distributed propulsion BWB aircraft has a 4% takeoff gross weight and a 2% fuel weight. Both designs have similar planform shapes

  5. Dermal exposure to jet fuel suppresses delayed-type hypersensitivity: a critical role for aromatic hydrocarbons.

    PubMed

    Ramos, Gerardo; Limon-Flores, Alberto Yairh; Ullrich, Stephen E

    2007-12-01

    Dermal exposure to military (JP-8) and/or commercial (Jet-A) jet fuel suppresses cell-mediated immune reactions. Immune regulatory cytokines and biological modifiers, including platelet activating factor (PAF), prostaglandin E(2), and interleukin-10, have been implicated in the pathway of events leading to immune suppression. It is estimated that approximately 260 different hydrocarbons are found in jet fuel, and the exact identity of the active immunotoxic agent(s) is unknown. The recent availability of synthetic jet fuel (S-8), which is refined from natural gas, and is devoid of aromatic hydrocarbons, made it feasible to design experiments to address this problem. Here we tested the hypothesis that the aromatic hydrocarbons present in jet fuel are responsible for immune suppression. We report that applying S-8 to the skin of mice does not upregulate the expression of epidermal cyclooxygenase-2 (COX-2) nor does it induce immune suppression. Adding back a cocktail of seven of the most prevalent aromatic hydrocarbons found in jet fuel (benzene, toluene, ethylbenzene, xylene, 1,2,4-trimethlybenzene, cyclohexylbenzene, and dimethylnaphthalene) to S-8 upregulated epidermal COX-2 expression and suppressed a delayed-type hypersensitivity (DTH) reaction. Injecting PAF receptor antagonists, or a selective cycloozygenase-2 inhibitor into mice treated with S-8 supplemented with the aromatic cocktail, blocked suppression of DTH, similar to data previously reported using JP-8. These findings identify the aromatic hydrocarbons found in jet fuel as the agents responsible for suppressing DTH, in part by the upregulation of COX-2, and the production of immune regulatory factors and cytokines.

  6. Empirical and Face Validity of Software Maintenance Defect Models Used at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Taber, William; Port, Dan

    2014-01-01

    At the Mission Design and Navigation Software Group at the Jet Propulsion Laboratory we make use of finite exponential based defect models to aid in maintenance planning and management for our widely used critical systems. However a number of pragmatic issues arise when applying defect models for a post-release system in continuous use. These include: how to utilize information from problem reports rather than testing to drive defect discovery and removal effort, practical model calibration, and alignment of model assumptions with our environment.

  7. Propulsion simulation for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Beerman, Henry P.; Chen, James; Krech, Robert H.; Lintz, Andrew L.; Rosen, David I.

    1990-01-01

    The feasibility of simulating propulsion-induced aerodynamic effects on scaled aircraft models in wind tunnels employing Magnetic Suspension and Balance Systems. The investigation concerned itself with techniques of generating exhaust jets of appropriate characteristics. The objectives were to: (1) define thrust and mass flow requirements of jets; (2) evaluate techniques for generating propulsive gas within volume limitations imposed by magnetically-suspended models; (3) conduct simple diagnostic experiments for techniques involving new concepts; and (4) recommend experiments for demonstration of propulsion simulation techniques. Various techniques of generating exhaust jets of appropriate characteristics were evaluated on scaled aircraft models in wind tunnels with MSBS. Four concepts of remotely-operated propulsion simulators were examined. Three conceptual designs involving innovative adaptation of convenient technologies (compressed gas cylinders, liquid, and solid propellants) were developed. The fourth innovative concept, namely, the laser-assisted thruster, which can potentially simulate both inlet and exhaust flows, was found to require very high power levels for small thrust levels.

  8. Temperature Profile in Fuel and Tie-Tubes for Nuclear Thermal Propulsion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishal Patel

    A finite element method to calculate temperature profiles in heterogeneous geometries of tie-tube moderated LEU nuclear thermal propulsion systems and HEU designs with tie-tubes is developed and implemented in MATLAB. This new method is compared to previous methods to demonstrate shortcomings in those methods. Typical methods to analyze peak fuel centerline temperature in hexagonal geometries rely on spatial homogenization to derive an analytical expression. These methods are not applicable to cores with tie-tube elements because conduction to tie-tubes cannot be accurately modeled with the homogenized models. The fuel centerline temperature directly impacts safety and performance so it must be predictedmore » carefully. The temperature profile in tie-tubes is also important when high temperatures are expected in the fuel because conduction to the tie-tubes may cause melting in tie-tubes, which may set maximum allowable performance. Estimations of maximum tie-tube temperature can be found from equivalent tube methods, however this method tends to be approximate and overly conservative. A finite element model of heat conduction on a unit cell can model spatial dependence and non-linear conductivity for fuel and tie-tube systems allowing for higher design fidelity of Nuclear Thermal Propulsion.« less

  9. Effect of hydroprocessing severity on characteristics of jet fuel from OSCO 2 and Paraho distillates

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Flores, F. J.; Seng, G. T.

    1981-01-01

    Jet A boiling range fuels and broad-property research fuels were produced by hydroprocessing shale oil distillates, and their properties were measured to characterize the fuels. The distillates were the fraction of whole shale oil boiling below 343 C from TOSCO 2 and Paraho syncrudes. The TOSCO 2 was hydroprocessed at medium severity, and the Paraho was hydroprocessed at high, medium, and low severities. Fuels meeting Jet A requirements except for the freezing point were produced from the medium severity TOSCO 2 and the high severity Paraho. Target properties of a broad property research fuel were met by the medium severity TOSCO 2 and the high severity Paraho except for the freezing point and a high hydrogen content. Medium and low severity Paraho jet fuels did not meet thermal stability and freezing point requirements.

  10. Transverse jet shear layer instabilities and their control

    NASA Astrophysics Data System (ADS)

    Karagozian, Ann

    2013-11-01

    The jet in crossflow, or transverse jet, is a canonical flowfield that has relevance to engineering systems ranging from dilution jets and film cooling for gas turbine engines to thrust vector control and fuel injection in high speed aerospace vehicles to environmental control of effluent from chimney and smokestack plumes. Over the years, our UCLA Energy and Propulsion Research Lab's studies on this flowfield have focused on the dynamics of the vorticity associated with equidensity and variable density jets in crossflow, including the stability characteristics of the jet's upstream shear layer. A range of different experimental diagnostics have been used to study the jet's upstream shear layer, whereby a transition from convectively unstable behavior at high jet-to-crossflow momentum flux ratios to absolutely unstable flow at low momentum flux and/or density ratios is identified. These differences in shear layer stability characteristics have a profound effect on how one employs external excitation to control jet penetration, spread, and mixing, depending on the flow regime and specific engineering application. These control strategies, and challenges for future research directions, will be identified in this presentation.

  11. H-mode fueling optimization with the supersonic deuterium jet in NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhanovskii, V A; Bell, M G; Bell, R E

    2008-06-18

    High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphitemore » Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi

  12. Aerodynamic Interactions of Propulsive Deceleration and Reaction Control System Jets on Mars-Entry Aeroshells

    NASA Astrophysics Data System (ADS)

    Alkandry, Hicham

    Future missions to Mars, including sample-return and human-exploration missions, may require alternative entry, descent, and landing technologies in order to perform pinpoint landing of heavy vehicles. Two such alternatives are propulsive deceleration (PD) and reaction control systems (RCS). PD can slow the vehicle during Mars atmospheric descent by directing thrusters into the incoming freestream. RCS can provide vehicle control and steering by inducing moments using thrusters on the hack of the entry capsule. The use of these PD and RCS jets, however, involves complex flow interactions that are still not well understood. The fluid interactions induced by PD and RCS jets for Mars-entry vehicles in hypersonic freestream conditions are investigated using computational fluid dynamics (CFD). The effects of central and peripheral PD configurations using both sonic and supersonic jets at various thrust conditions are examined in this dissertation. The RCS jet is directed either parallel or transverse to the freestream flow at different thrust conditions in order to examine the effects of the thruster orientation with respect to the center of gravity of the aeroshell. The physical accuracy of the computational method is also assessed by comparing the numerical results with available experimental data. The central PD configuration decreases the drag force acting on the entry capsule due to a shielding effect that prevents mass and momentum in the hypersonic freestream from reaching the aeroshell. The peripheral PD configuration also decreases the drag force by obstructing the flow around the aeroshell and creating low surface pressure regions downstream of the PD nozzles. The Mach number of the PD jets, however, does not have a significant effect on the induced fluid interactions. The reaction control system also alters the flowfield, surface, and aerodynamic properties of the aeroshell, while the jet orientation can have a significant effect on the control effectiveness

  13. Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers.

    PubMed

    Bartol, Ian K; Krueger, Paul S; Stewart, William J; Thompson, Joseph T

    2009-05-01

    Squid paralarvae (hatchlings) rely predominantly on a pulsed jet for locomotion, distinguishing them from the majority of aquatic locomotors at low/intermediate Reynolds numbers (Re), which employ oscillatory/undulatory modes of propulsion. Although squid paralarvae may delineate the lower size limit of biological jet propulsion, surprisingly little is known about the hydrodynamics and propulsive efficiency of paralarval jetting within the intermediate Re realm. To better understand paralarval jet dynamics, we used digital particle image velocimetry (DPIV) and high-speed video to measure bulk vortex properties (e.g. circulation, impulse, kinetic energy) and other jet features [e.g. average and peak jet velocity along the jet centerline (U(j) and U(jmax), respectively), jet angle, jet length based on the vorticity and velocity extents (L(omega) and L(V), respectively), jet diameter based on the distance between vorticity peaks (D(omega)), maximum funnel diameter (D(F)), average and maximum swimming speed (U and U(max), respectively)] in free-swimming Doryteuthis pealeii paralarvae (1.8 mm dorsal mantle length) (Re(squid)=25-90). Squid paralarvae spent the majority of their time station holding in the water column, relying predominantly on a frequent, high-volume, vertically directed jet. During station holding, paralarvae produced a range of jet structures from spherical vortex rings (L(omega)/D(omega)=2.1, L(V)/D(F)=13.6) to more elongated vortex ring structures with no distinguishable pinch-off (L(omega)/D(omega)=4.6, L(V)/D(F)=36.0). To swim faster, paralarvae increased pulse duration and L(omega)/D(omega), leading to higher impulse but kept jet velocity relatively constant. Paralarvae produced jets with low slip, i.e. ratio of jet velocity to swimming velocity (U(j)/U or U(jmax)/U(max)), and exhibited propulsive efficiency [eta(pd)=74.9+/-8.83% (+/-s.d.) for deconvolved data] comparable with oscillatory/undulatory swimmers. As slip decreased with speed

  14. Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products.

    PubMed

    Pierobon, Francesca; Eastin, Ivan L; Ganguly, Indroneil

    2018-01-01

    Bio-jet fuels are emerging as a valuable alternative to petroleum-based fuels for their potential for reducing greenhouse gas emissions and fossil fuel dependence. In this study, residual woody biomass from slash piles in the U.S. Pacific Northwest is used as a feedstock to produce iso-paraffinic kerosene, through the production of sugar and subsequent patented proprietary fermentation and upgrading. To enhance the economic viability and reduce the environmental impacts of iso-paraffinic kerosene, two co-products, activated carbon and lignosulfonate, are simultaneously produced within the same bio-refinery. A cradle-to-grave life cycle assessment (LCA) is performed for the residual woody biomass-based bio-jet fuel and compared against the cradle-to-grave LCA of petroleum-based jet fuel. This paper also discusses the differences in the environmental impacts of the residual biomass-based bio-jet fuel using two different approaches, mass allocation and system expansion, to partition the impacts between the bio-fuel and the co-products, which are produced in the bio-refinery. The environmental assessment of biomass-based bio-jet fuel reveals an improvement along most critical environmental criteria, as compared to its petroleum-based counterpart. However, the results present significant differences in the environmental impact of biomass-based bio-jet fuel, based on the partitioning method adopted. The mass allocation approach shows a greater improvement along most of the environmental criteria, as compared to the system expansion approach. However, independent of the partitioning approach, the results of this study reveal that more than the EISA mandated 60% reduction in the global warming potential could be achieved by substituting petroleum-based jet fuel with residual woody biomass-based jet fuel. Converting residual woody biomass from slash piles into bio-jet fuel presents the additional benefit of avoiding the impacts of slash pile burning in the forest, which

  15. Ultrasonic propulsion

    NASA Astrophysics Data System (ADS)

    Allison, Eric

    In this investigation, a propulsion system is introduced for propelling and guiding an object through a fluid. Thrust for forward motion and for turning is produced by acoustic waves generated by piezoelectric ultrasonic transducers. The principle of operation of the transducers is described, and methods are presented for the design of the entire system, including the transducers, signal generator, guidance and control system, and the power source. A wirelessly controlled proof-of-concept device was constructed. This device demonstrates the operation and practicality of the propulsion and guidance systems and illustrates that they may be employed in situations where the use of conventional propulsive devices such as propellers or jets is unfeasible.

  16. Bibliography of Books and Published Reports on Gas Turbines, Jet Propulsion, and Rocket Power Plants

    DTIC Science & Technology

    1951-06-01

    1946 R. H. Miller, Jet propulsion applied to helicopter rotors. J. Aeronaut. Sci. 13, 639 (1946). J. C. Sanders and N . Y , Sanders, Preliminary study of a...Circular 482) ~h r the Su hinte- n -• PDriceS~~~Washingon2. C. - rice2dt ’ Preface The purposeT o is Circular is to present references to published sources of...tl~e references are grouped according to subject matter. To aid in the use of the bibliography, there is included a brief intpodie4ion- n the

  17. Subacute effects of inhaled Jet Fuel-A (Jet A) on airway and immune function in female rats.

    PubMed

    Sweeney, Lisa M; Prues, Susan L; Reboulet, James E

    2013-04-01

    Two studies were conducted to assess the potential airway and immune effects following subacute (14 d) exposure of female rats to 500, 1000 or 2000 mg/m³ of Jet-A for 4 h/d. The first study used Sprague-Dawley rats; the second study included both Fischer 344 (F344) and Sprague-Dawley rats. In the first study, exposure to 2000 mg/m³ jet fuel may have caused significant upper airway inflammation on day 7 post-exposure, as indicated by elevated protein and lactate dehydrogenase in nasal lavage fluid, but any inflammation resolved by day 14 post-exposure. No significant impact on immune cell populations in the spleens was observed. The histological examination showed no evidence of infectious or toxic effect. In the second study, body weights of the F344 rats in the 2000 mg/m³ group were depressed, as compared to the controls, at the end of the exposure. Some lung lavage fluid markers were increased at 24 h after the final exposure, however, no test article-induced histological changes were observed in the lungs, nasal cavities, or any other tissue of any of the jet fuel exposed animals. Overall, these studies demonstrated limited evidence of effects of 14 d of exposure to Jet A on the airways, immune system, or any other organ or system of female Sprague-Dawley and F344 rats, with no remarkable differences between strains. The lack of identified significant airway or immune effects was in contrast to previous examinations of jet fuel for pulmonary toxicity in mice and rats and for immunotoxicity in mice.

  18. Flame deformation and entrainment associated with an isothermal transverse fuel jet

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.; Karagozian, A. R.

    1992-01-01

    This paper describes an analytical model of an incompressible, isothermal reacting jet in crossflow. The model represents the flow in the jet cross-section by a counter rotating vortex pair, a flow structure that has been observed to dominate the jet behavior. The reaction surface surrounding the fuel jet is represented as a composite of strained diffusion flames that are stretched and deformed by the vortex pair flow. The results shed new light on the interaction between the vortex pair circulation and flame structure evolution and their relation to the concept of entrainment.

  19. Large space antenna communications systems: Integrated Langley Research Center/Jet Propulsion Laboratory technology development activities. 1: Introduction

    NASA Technical Reports Server (NTRS)

    Campbell, T. G.

    1983-01-01

    The Jet Propulsion Laboratory and the Langley Research Center have been developing technology related to large space antennas (LSA) during the past several years. The need for a communication system research program became apparent during the recent studies for the Land Mobile Satellite System. This study indicated the need for additional research in (1) electromagnetic analysis methods, (2) design and development of multiple beam feed systems, and (3) the measurement methods for LSA reflectors.

  20. The impact of fuels on aircraft technology through the year 2000

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Reck, G. M.

    1980-01-01

    The impact that the supply, quality, and processing costs of future fuels may have on aircraft technology is assessed. The potential range of properties for future jet fuels is discussed along with the establishment of a data base of fuel property effects on propulsion system components. Also, the evolution and evaluation of advanced component technology that would permit the use of broader property fuels and the identification of technical and economic trade-offs within the overall fuel production-air transportation system associated with variations in fuel properties are examined.

  1. Further studies of fuels from alternate sources - fire extinguishment experiments with JP-5 jet turbine fuel derived from shale. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazlett, R.N.; Affens, W.A.; McLaren, G.W.

    1978-05-01

    Fire extinguishment experiments with JP-5 jet fuels derived from shale crude oil and also from petroleum (for comparison) were conducted at NRL's Chesapeake Bay facility. The experiments were conducted in a 40-foot diameter circular pool using Aqueous Film Forming Foam (AFFF) as the fire extinguishing agent. The results with both types of fuel were similar, and it was concluded that the techniques and agents for AFFF application, which have been developed for petroleum fuel fires, can also be used for shale derived jet fuel.

  2. Impact of Alternative Jet Fuels on Engine Exhaust Composition During the 2015 ECLIF Ground-Based Measurements Campaign.

    PubMed

    Schripp, Tobias; Anderson, Bruce; Crosbie, Ewan C; Moore, Richard H; Herrmann, Friederike; Oßwald, Patrick; Wahl, Claus; Kapernaum, Manfred; Köhler, Markus; Le Clercq, Patrick; Rauch, Bastian; Eichler, Philipp; Mikoviny, Tomas; Wisthaler, Armin

    2018-04-17

    The application of fuels from renewable sources ("alternative fuels") in aviation is important for the reduction of anthropogenic carbon dioxide emissions, but may also attribute to reduced release of particles from jet engines. The present experiment describes ground-based measurements in the framework of the ECLIF (Emission and Climate Impact of Alternative Fuels) campaign using an Airbus A320 (V2527-A5 engines) burning six fuels of chemically different composition. Two reference Jet A-1 with slightly different chemical parameters were applied and further used in combination with a Fischer-Tropsch synthetic paraffinic kerosene (FT-SPK) to prepare three semi synthetic jet fuels (SSJF) of different aromatic content. In addition, one commercially available fully synthetic jet fuel (FSJF) featured the lowest aromatic content of the fuel selection. Neither the release of nitrogen oxide or carbon monoxide was significantly affected by the different fuel composition. The measured particle emission indices showed a reduction up to 50% (number) and 70% (mass) for two alternative jet fuels (FSJF, SSJF2) at low power settings in comparison to the reference fuels. The reduction is less pronounced at higher operating conditions but the release of particle number and particle mass is still significantly lower for the alternative fuels than for both reference fuels. The observed correlation between emitted particle mass and fuel aromatics is not strict. Here, the H/C ratio is a better indicator for soot emission.

  3. A dermatotoxicokinetic model of human exposures to jet fuel.

    PubMed

    Kim, David; Andersen, Melvin E; Nylander-French, Leena A

    2006-09-01

    Workers, both in the military and the commercial airline industry, are exposed to jet fuel by inhalation and dermal contact. We present a dermatotoxicokinetic (DTK) model that quantifies the absorption, distribution, and elimination of aromatic and aliphatic components of jet fuel following dermal exposures in humans. Kinetic data were obtained from 10 healthy volunteers following a single dose of JP-8 to the forearm over a surface area of 20 cm2. Blood samples were taken before exposure (t = 0 h), after exposure (t = 0.5 h), and every 0.5 h for up to 3.5 h postexposure. The DTK model that best fit the data included five compartments: (1) surface, (2) stratum corneum (SC), (3) viable epidermis, (4) blood, and (5) storage. The DTK model was used to predict blood concentrations of the components of JP-8 based on dermal-exposure measurements made in occupational-exposure settings in order to better understand the toxicokinetic behavior of these compounds. Monte Carlo simulations of dermal exposure and cumulative internal dose demonstrated no overlap among the low-, medium-, and high-exposure groups. The DTK model provides a quantitative understanding of the relationship between the mass of JP-8 components in the SC and the concentrations of each component in the systemic circulation. The model may be used for the development of a toxicokinetic modeling strategy for multiroute exposure to jet fuel.

  4. Twin Jet Effects on Noise of Round and Rectangular Jets: Experiment and Model

    NASA Technical Reports Server (NTRS)

    Bozak, Rick

    2014-01-01

    Many subsonic and supersonic aircraft concepts proposed by NASA's Fundamental Aeronautics Program have asymmetric, integrated propulsion systems. The asymmetries in the exhaust of these propulsion systems create an asymmetric acoustic field. The asymmetries investigated in the current study are from twin jets and rectangular nozzles. Each effect produces its own variation of the acoustic field. An empirical model was developed to predict the acoustic field variation from round twin jets with twin jet spacing from 2.6 to 5.6, where s is the center-to-center spacing over the jet diameter. The model includes parameters to account for the effects of twin jet spacing, jet static temperature ratio, flight Mach number, frequency, and observer angle (both polar and azimuthal angles). The model was then applied to twin 2:1 and 8:1 aspect ratio nozzles to determine the impact of jet aspect ratio. For the round and rectangular jets, the use of the model reduces the average magnitude of the error over all frequencies, observation angles, and jet spacings by approximately 0.5dB when compared against the assumption of adding two jets incoherently.

  5. Jet Fuel Kerosene is not Immunosuppressive in Mice or Rats Following Inhalation for 28 Days

    PubMed Central

    White, Kimber L.; DeLorme, Michael P.; Beatty, Patrick W.; Smith, Matthew J.; Peachee, Vanessa L.

    2013-01-01

    Previous reports indicated that inhalation of JP-8 aviation turbine fuel is immunosuppressive. However, in some of those studies, the exposure concentrations were underestimated, and percent of test article as vapor or aerosol was not determined. Furthermore, it is unknown whether the observed effects are attributable to the base hydrocarbon fuel (jet fuel kerosene) or to the various fuel additives in jet fuels. The present studies were conducted, in compliance with Good Laboratory Practice (GLP) regulations, to evaluate the effects of jet fuel kerosene on the immune system, in conjunction with an accurate, quantitative characterization of the aerosol and vapor exposure concentrations. Two female rodent species (B6C3F1 mice and Crl:CD rats) were exposed by nose-only inhalation to jet fuel kerosene at targeted concentrations of 0, 500, 1000, or 2000 mg/m3 for 6 h daily for 28 d. Humoral, cell-mediated, and innate immune functions were subsequently evaluated. No marked effects were observed in either species on body weights, spleen or thymus weights, the T-dependent antibody-forming cell response (plaque assay), or the delayed-type hypersensitivity (DTH) response. With a few exceptions, spleen cell numbers and phenotypes were also unaffected. Natural killer (NK) cell activity in mice was unaffected, while the NK assessment in rats was not usable due to an unusually low response in all groups. These studies demonstrate that inhalation of jet fuel kerosene for 28 d at levels up to 2000 mg/m3 did not adversely affect the functional immune responses of female mice and rats. PMID:24028664

  6. Jet fuel kerosene is not immunosuppressive in mice or rats following inhalation for 28 days.

    PubMed

    White, Kimber L; DeLorme, Michael P; Beatty, Patrick W; Smith, Matthew J; Peachee, Vanessa L

    2013-01-01

    Previous reports indicated that inhalation of JP-8 aviation turbine fuel is immunosuppressive. However, in some of those studies, the exposure concentrations were underestimated, and percent of test article as vapor or aerosol was not determined. Furthermore, it is unknown whether the observed effects are attributable to the base hydrocarbon fuel (jet fuel kerosene) or to the various fuel additives in jet fuels. The present studies were conducted, in compliance with Good Laboratory Practice (GLP) regulations, to evaluate the effects of jet fuel kerosene on the immune system, in conjunction with an accurate, quantitative characterization of the aerosol and vapor exposure concentrations. Two female rodent species (B6C3F1 mice and Crl:CD rats) were exposed by nose-only inhalation to jet fuel kerosene at targeted concentrations of 0, 500, 1000, or 2000 mg/m(3) for 6 h daily for 28 d. Humoral, cell-mediated, and innate immune functions were subsequently evaluated. No marked effects were observed in either species on body weights, spleen or thymus weights, the T-dependent antibody-forming cell response (plaque assay), or the delayed-type hypersensitivity (DTH) response. With a few exceptions, spleen cell numbers and phenotypes were also unaffected. Natural killer (NK) cell activity in mice was unaffected, while the NK assessment in rats was not usable due to an unusually low response in all groups. These studies demonstrate that inhalation of jet fuel kerosene for 28 d at levels up to 2000 mg/m(3) did not adversely affect the functional immune responses of female mice and rats.

  7. Development and Validation of a Supersonic Helium-Air Coannular Jet Facility

    NASA Technical Reports Server (NTRS)

    Carty, Atherton A.; Cutler, Andrew D.

    1999-01-01

    Data are acquired in a simple coannular He/air supersonic jet suitable for validation of CFD (Computational Fluid Dynamics) codes for high speed propulsion. Helium is employed as a non-reacting hydrogen fuel simulant, constituting the core of the coannular flow while the coflow is composed of air. The mixing layer interface between the two flows in the near field and the plume region which develops further downstream constitute the primary regions of interest, similar to those present in all hypersonic air breathing propulsion systems. A computational code has been implemented from the experiment's inception, serving as a tool for model design during the development phase.

  8. Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.

    2011-07-01

    Experimental measurements in laboratory-scale turbulent burners with well-controlled boundary and flow configurations can provide valuable data for validating models of turbulence-chemistry interactions applicable to the design and analysis of practical combustors. This paper reports on the design of two canonical nonpremixed turbulent jet burners for use with undiluted gaseous and liquid hydrocarbon fuels, respectively. Previous burners of this type have only been developed for fuels composed of H2, CO, and/or methane, often with substantial dilution. While both new burners are composed of concentric tubes with annular pilot flames, the liquid-fuel burner has an additional fuel vaporization step and an electrically heated fuel vapor delivery system. The performance of these burners is demonstrated by interrogating four ethylene flames and one flame fueled by a simple JP-8 surrogate. Through visual observation, it is found that the visible flame lengths show good agreement with standard empirical correlations. Rayleigh line imaging demonstrates that the pilot flame provides a spatially homogeneous flow of hot products along the edge of the fuel jet. Planar imaging of OH laser-induced fluorescence reveals a lack of local flame extinction in the high-strain near-burner region for fuel jet Reynolds numbers (Re) less than 20 000, and increasingly common extinction events for higher jet velocities. Planar imaging of soot laser-induced incandescence shows that the soot layers in these flames are relatively thin and are entrained into vortical flow structures in fuel-rich regions inside of the flame sheet.

  9. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  10. Transverse liquid fuel jet breakup, burning, and ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hsi-shang

    1990-01-01

    An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flamemore » supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.« less

  11. Hydrocarbon group type determination in jet fuels by high performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1977-01-01

    Thirty-two jet and diesel fuel samples of varying chemical composition and physical properties were prepared from oil shale and coal syncrudes. Hydrocarbon types in these samples were determined by a fluorescent indicator adsorption analysis, and the results from three laboratories are presented and compared. Two methods of rapid high performance liquid chromatography were used to analyze some of the samples, and these results are also presented and compared. Two samples of petroleum-based Jet A fuel are similarly analyzed.

  12. Jet fuel property changes and their effect on producibility and cost in the U.S., Canada, and Europe

    NASA Technical Reports Server (NTRS)

    Varga, G. M., Jr.; Avella, A. J., Jr.; Cunningham, A. R.; Featherston, C. D.; Gorgol, J. F.; Graf, A. J.; Lieberman, M.; Oliver, G. A.

    1985-01-01

    The effects of changes in properties and blending stocks on the refinery output and cost of jet fuel in the U.S., Canada, and Europe were determined. Computerized refinery models that minimize production costs and incorporated a 1981 cost structure and supply/demand projections to the year 2010 were used. Except in the West U.S., no changes in jet fuel properties were required to meet all projected demands, even allowing for deteriorating crude qualities and changes in competing product demand. In the West U.S., property changes or the use of cracked blendstocks were projected to be required after 1990 to meet expected demand. Generally, relaxation of aromatics and freezing point, or the use of cracked stocks produced similar results, i.e., jet fuel output could be increased by up to a factor of three or its production cost lowered by up to $10/cu m. High quality hydrocracked stocks are now used on a limited basis to produce jet fuel. The conversion of U.S. and NATO military forces from wide-cut to kerosene-based jet fuel is addressed. This conversion resulted in increased costs of several hundred million dollars annually. These costs can be reduced by relaxing kerosene jet fuel properties, using cracked stocks and/or considering the greater volumetric energy content of kerosene jet fuel.

  13. Chronic effects on JP-8 jet fuel exposure on the lungs. Final technical report, 1 April 1991-31 March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witten, M.L.

    1994-06-02

    There are four major findings from the three years of work devoted to the effects of chronic JP-8 jet fuel exposure on the lungs and secondary organs. These findings are the following chronic exposure to JP-8 jet fuel alters pulmonary function and lung structures with an acute response with as little as seven days of low dose, approximately 500 mg/m3, exposure to JP-8 jet fuel; chronic exposure to JP-8 jet fuel increased liver, spleen, and kidney weights compared to controls. Microscopic evaluation of liver sections were normal; however, kidney and spleen had histological changes consistent with organic solvent exposure. Theremore » is a correlation between JP-8 jet fuel exposure-induced decreases in lung Substance P levels and lung neutral endopeptidase levels. Chronic exposure to JP-8 jet fuel caused a decrease in lung Substance P levels with a corresponding increase in lung neutral endopeptidase levels; and, there is a recovery process in the 56 day low dose JP-8 jet fuel-exposed lungs as marked by a return to baseline and longitudinal control 99mTcDTPA values. The 99mTcDTPA data was very consistent with our pathologic findings of very little lung injury in the 56 day low dose JP-8 jet fuel-exposed rats. We speculate that this finding indicates that there is a 'threshold' level of JP-8 jet fuel exposure that the lungs' defense mechanism(s) can tolerate.« less

  14. Market cost of renewable jet fuel adoption in the United States.

    DOT National Transportation Integrated Search

    2013-03-01

    The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet : fuel is consumed by the US aviation industry each year from 2018. We examine the cost to US airlines : of meeting this goal using renewable fuel produ...

  15. ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1982-01-01

    A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested.

  16. Aerosol spectral optical depths - Jet fuel and forest fire smokes

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Livingston, J. M.

    1990-01-01

    The Ames autotracking airborne sun photometer was used to investigate the spectral depth between 380 and 1020 nm of smokes from a jet fuel pool fire and a forest fire in May and August 1988, respectively. Results show that the forest fire smoke exhibited a stronger wavelength dependence of optical depths than did the jet fuel fire smoke at optical depths less than unity. At optical depths greater than or equal to 1, both smokes showed neutral wavelength dependence, similar to that of an optically thin stratus deck. These results verify findings of earlier investigations and have implications both on the climatic impact of large-scale smokes and on the wavelength-dependent transmission of electromagnetic signals.

  17. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaokun; Li, Teng; Tang, Kan

    2017-06-12

    The demand for bio-jet fuels to reduce carbon emissions is increasing substantially in the aviation sector, while the scarcity of high-density jet fuel components limits the use of bio-jet fuels in high-performance aircrafts compared with conventional jet fuels. In this paper, we report a novel biphasic tandem catalytic process (biTCP) for synthesizing cycloalkanes from renewable terpenoid biomass, such as 1,8-cineole. Multistep tandem reactions, including C–O ring opening by hydrolysis, dehydration, and hydrogenation, were carried out in the “one-pot” biTCP. 1,8-Cineole was efficiently converted to p-menthane at high yields (>99%) in the biTCP under mild reaction conditions. Finally, the catalytic reactionmore » mechanism is discussed.« less

  18. Dual-Mode Free-Jet Combustor

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Dippold, Vance F., III; Yungster, Shaye

    2017-01-01

    The dual-mode free-jet combustor concept, pictured in figure 1, is described. It was introduced in 2010 as a wide- operating-range propulsion device using a novel supersonic free-jet combustion process. The unique feature of the free-jet combustor pictured in figure 1a, is supersonic combustion in an unconfined free-jet that traverses a larger subsonic combustion chamber to a variable nozzle. During this mode of operation, the propulsive stream is not in contact with the combustor walls, and equilibrates to the combustion chamber pressure. To a first order, thermodynamic efficiency is similar to that of a traditional scramjet under the assumption of constant-pressure combustion. Qualitatively, a number of possible benefits to this approach are obvious.

  19. Reduced Toxicity Fuel Satellite Propulsion System Including Fuel Cell Reformer with Alcohols Such as Methanol

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2001-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  20. Parametric performance of a turbojet engine combustor using jet A and A diesel fuel

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Humenik, F. M.

    1979-01-01

    The performance of a single-can JT8D combustor was evaluated with Jet A and a high-aromatic diesel fuel over a parametric range of combustor-inlet conditions. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons, and NOx, as well as liner temperatures and smoke. At all conditions the use of diesel fuel instead of Jet A resulted in increases in smoke numbers and liner temperatures; gaseous emissions, on the other hand, did not differ significantly between the two fuels.

  1. Numerical Simulation and Industrial Experimental Research on the Coherent Jet with "CH4 + N2" Mixed Fuel Gas

    NASA Astrophysics Data System (ADS)

    Hu, Shaoyan; Zhu, Rong; Dong, Kai; Liu, Runzao

    2018-06-01

    Coherent jet technology is widely used in the electric arc furnace (EAF) steelmaking process to deliver more energy and momentum into the molten steel bath. Meanwhile, the characteristics of a coherent jet using pure CH4 as the fuel gas have been well investigated in previous studies. To reduce the consumption of CH4, coherent jet technology using "CH4 + N2" mixed fuel gas instead of pure CH4 was proposed and studied in detail by numerical simulation in the present work. The Eddy Dissipation Concept model, which has detailed chemical kinetic mechanisms, was adopted to model the fuel gas combustion reactions. Experimental measurements were carried out to validate the accuracy of the computational model. The present study shows that the jet characteristics of the main oxygen improve along with the increase of the CH4 ratio in fuel gas and with the increase of the flow rate of fuel gas. When the CH4 ratio in the fuel gas is 25 pct, the fuel gas flow rate only has a limited influence on the jet characteristics, unlike the rest of the fuel gas compositions, because a high N2 proportion deteriorates the combustion performance and leads to severe incomplete combustion. Moreover, a false potential core phenomenon was observed and explained in the present study. Based on the average values, the jet length of a coherent jet with 75 pct CH4 can achieve 89.8 pct of that with 100 pct CH4. Finally, an industrial experiment was carried out on a commercial 100t EAF using coherent jet with 75 pct CH4, showing that the average CH4 consumption was reduced from 3.84 to 3.05 Nm3 t-1 under the premise of no obvious changes in the other production indexes.

  2. Life cycle greenhouse gas emissions of sugar cane renewable jet fuel.

    PubMed

    Moreira, Marcelo; Gurgel, Angelo C; Seabra, Joaquim E A

    2014-12-16

    This study evaluated the life cycle GHG emissions of a renewable jet fuel produced from sugar cane in Brazil under a consequential approach. The analysis included the direct and indirect emissions associated with sugar cane production and fuel processing, distribution, and use for a projected 2020 scenario. The CA-GREET model was used as the basic analytical tool, while Land Use Change (LUC) emissions were estimated employing the GTAP-BIO-ADV and AEZ-EF models. Feedstock production and LUC impacts were evaluated as the main sources of emissions, respectively estimated as 14.6 and 12 g CO2eq/MJ of biofuel in the base case. However, the renewable jet fuel would strongly benefit from bagasse and trash-based cogeneration, which would enable a net life cycle emission of 8.5 g CO2eq/MJ of biofuel in the base case, whereas Monte Carlo results indicate 21 ± 11 g CO2eq/MJ. Besides the major influence of the electricity surplus, the sensitivity analysis showed that the cropland-pasture yield elasticity and the choice of the land use factor employed to sugar cane are relevant parameters for the biofuel life cycle performance. Uncertainties about these estimations exist, especially because the study relies on projected performances, and further studies about LUC are also needed to improve the knowledge about their contribution to the renewable jet fuel life cycle.

  3. Publications of the Jet Propulsion Laboratory, January through December 1974. [deep space network, Apollo project, information theory, and space exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Formalized technical reporting is described and indexed, which resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. The five classes of publications included are technical reports, technical memorandums, articles from the bimonthly Deep Space Network Progress Report, special publications, and articles published in the open literature. The publications are indexed by author, subject, and publication type and number.

  4. Oilseeds for use in biodiesel and drop-in renewable jet fuel

    USDA-ARS?s Scientific Manuscript database

    Oilseeds, primarily soybean and canola, are currently used as feedstocks for biodiesel production. Oilseeds can also be used to produce drop-in renewable jet fuel and diesel products. While soybean and canola are the most common oilseed crops used for renewable fuel production in the U.S., many othe...

  5. Effects of in utero JP-8 jet fuel exposure on the immune systems of pregnant and newborn mice.

    PubMed

    Harris, D T; Sakiestewa, D; He, X; Titone, D; Witten, M

    2007-10-01

    The US Air Force has implemented the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Previous work has reported that JP-8 exposure is immunosuppressive. In the present study, the effects of in-utero JP-8 jet fuel exposure in mice were examined to ascertain any potential effects of jet fuel exposure on female personnel and their offspring. Exposure by the aerosol route (at 1000 mg/m3 for 1 h/day; similar to exposures incurred by flight line personnel) commencing during the first (d7 to birth) or last (d15 to birth) trimester of pregnancy was analyzed. It was observed that even 6-8 weeks after the last jet fuel exposure that the immune system of the dams (mother of newborn mice) was affected (in accordance with previous reports on normal mice). That is, thymus organ weights and viable cell numbers were decreased, and immune function was depressed. A decrease in viable male offspring was found, notably more pronounced when exposure started during the first trimester of pregnancy. Regardless of when jet fuel exposure started, all newborn mice (at 6-8 weeks after birth) reported significant immunosuppression. That is, newborn pups displayed decreased immune organ weights, decreased viable immune cell numbers and suppressed immune function. When the data were analyzed in relation to the respective mothers of the pups the data were more pronounced. Although all jet fuel-exposed pups were immunosuppressed as compared with control pups, male offspring were more affected by jet fuel exposure than female pups. Furthermore, the immune function of the newborn mice was directly correlated to the immune function of their respective mothers. That is, mothers showing the lowest immune function after JP-8 exposure gave birth to pups displaying the greatest effects of jet fuel exposure on immune function. Mothers who showed the highest levels of immune function after in-utero JP-8

  6. Effect of Fuel Additives on Spray Performance of Alternative Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2015-11-01

    Role of alternative fuels on reducing the combustion pollutants is gaining momentum in both land and air transport. Recent studies have shown that addition of nanoscale metal particles as fuel additives to liquid fuels have a positive effect not only on their combustion performance but also in reducing the pollutant formation. However, most of those studies are still in the early stages of investigation with the addition of nanoparticles at low weight percentages. Such an addition can affect the hydrodynamic and thermo-physical properties of the fuel. In this study, the near nozzle spray performance of gas-to-liquid jet fuel with and without the addition of alumina nanoparticles are investigated at macro- and microscopic levels using optical diagnostic techniques. At macroscopic level, the addition of nanoparticles is seen to enhance the sheet breakup process when compared to that of the base fuel. Furthermore, the microscopic spray characteristics such as droplet size and velocity are also found to be affected. Although the addition of nanoscale metal particles at low weight percentages does not affect the bulk fluid properties, the atomization process is found to be affected in the near nozzle region. Funded by Qatar National Research Fund.

  7. Jet Propulsion Laboratory: Annual Report 2003

    NASA Technical Reports Server (NTRS)

    2004-01-01

    If you stepped outdoors on the final evening of 2003 and looked up into the night sky, many celestial events were taking place. A hundred million miles away from Earth, a dust storm swirled across the terracotta peaks and gullies of Mars, as two six-wheeled robots bore down on the planet. They were soon to join two orbital sentries already stationed there. A few hops across the inner solar system, another spacecraft was closing in on a ball of ice and rock spewing forth a hailstorm of dust grains, heated as it swung in toward the Sun. Closer in, two newly lofted space telescopes scanned the skies, their mirrors gathering photons that had crossed the empty vastness of space for billions of years, recording ancient events in unimaginably distant galaxies. And streaking overhead every few minutes directly above our home planet, a handful of satellites was recording the unfolding events of a tropical cyclone off the east coast of Africa and a blizzard that carpeted the northwestern United States. As 2003 drew to a close, the Jet Propulsion Laboratory was on the cusp of an extraordinarily busy period, a time when JPL will execute more fly-bys, landings, sample returns and other milestones than at any other time in its history. The exploration we undertake is important for its own sake. And it serves other purposes, none more important than inspiring the next generation of explorers. If the United States wishes to retain its status as a world leader, it must maintain the technological edge of its workforce. What we do here is the stuff of dreams that will inspire a new generation to continue the American legacy of exploration.

  8. Synthesis and analysis of jet fuel from shale oil and coal syncrudes

    NASA Technical Reports Server (NTRS)

    Gallagher, J. P.; Collins, T. A.; Nelson, T. J.; Pedersen, M. J.; Robison, M. G.; Wisinski, L. J.

    1976-01-01

    Thirty-two jet fuel samples of varying properties were produced from shale oil and coal syncrudes, and analyzed to assess their suitability for use. TOSCO II shale oil and H-COAL and COED syncrudes were used as starting materials. The processes used were among those commonly in use in petroleum processing-distillation, hydrogenation and catalytic hydrocracking. The processing conditions required to meet two levels of specifications regarding aromatic, hydrogen, sulfur and nitrogen contents at two yield levels were determined and found to be more demanding than normally required in petroleum processing. Analysis of the samples produced indicated that if the more stringent specifications of 13.5% hydrogen (min.) and 0.02% nitrogen (max.) were met, products similar in properties to conventional jet fuels were obtained. In general, shale oil was easier to process (catalyst deactivation was seen when processing coal syncrudes), consumed less hydrogen and yielded superior products. Based on these considerations, shale oil appears to be preferred to coal as a petroleum substitute for jet fuel production.

  9. Numerical investigation of the effect of the configuration of ExoMars landing platform propulsion system on the interaction of supersonic jets with the surface of Mars

    NASA Astrophysics Data System (ADS)

    Kagenov, Anuar; Glazunov, Anatoliy; Kostyushin, Kirill; Eremin, Ivan; Shuvarikov, Vladimir

    2017-10-01

    This paper presents the results of numerical investigations of the interaction with the Mars surface of four supersonic jets of ExoMars landing platform propulsion system. The cases of impingement of supersonic jets on a curved surface are considered depending on the values of propulsion system thrust. According to the results of numerical studies are obtained the values of normal stresses on the surface of Mars at altitudes of 1.0, 0.5 and 0.3 meter to the surface of the landing. To define the occurring shear stresses Mohr-Coulomb theory was used. The maximum values of shear stresses were defined for the following types of soil of Mars: drift material, crusty to cloddy material, blocky material, sand and Mojave Mars simulant. The conducted evaluations showed, regardless of the propulsion system configuration, that when the final stage of the controlled landing of the ExoMars landing platform, the erosion of the Mars regolith would be insignificant. The estimates are consistent with the available data from previous Mars missions.

  10. Effect of in vivo jet fuel exposure on subsequent in vitro dermal absorption of individual aromatic and aliphatic hydrocarbon fuel constituents.

    PubMed

    Muhammad, F; Monteiro-Riviere, N A; Baynes, R E; Riviere, J E

    2005-05-14

    The percutaneous absorption of topically applied jet fuel hydrocarbons (HC) through skin previously exposed to jet fuel has not been investigated, although this exposure scenario is the occupational norm. Pigs were exposed to JP-8 jet fuel-soaked cotton fabrics for 1 and 4 d with repeated daily exposures. Preexposed and unexposed skin was then dermatomed and placed in flow-through in vitro diffusion cells. Five cells with exposed skin and four cells with unexposed skin were dosed with a mixture of 14 different HC consisting of nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, ethyl benzene, o-xylene, trimethyl benzene (TMB), cyclohexyl benzene (CHB), naphthalene, and dimethyl naphthalene (DMN) in water + ethanol (50:50) as diluent. Another five cells containing only JP-8-exposed skin were dosed solely with diluent in order to determine the skin retention of jet fuel HC. The absorption parameters of flux, diffusivity, and permeability were calculated for the studied HC. The data indicated that there was a two-fold and four-fold increase in absorption of specific aromatic HC like ethyl benzene, o-xylene, and TMB through 1- and 4-dJP-8 preexposed skin, respectively. Similarly, dodecane and tridecane were absorbed more in 4-d than 1-dJP-8 preexposed skin experiments. The absorption of naphthalene and DMN was 1.5 times greater than the controls in both 1- and 4-d preexposures. CHB, naphthalene, and DMN had significant persistent skin retention in 4-d preexposures as compared to 1-d exposures that might leave skin capable of further absorption several days postexposure. The possible mechanism of an increase in HC absorption in fuel preexposed skin may be via lipid extraction from the stratum corneum as indicated by Fourier transform infrared (FTIR) spectroscopy. This study suggests that the preexposure of skin to jet fuel enhances the subsequent in vitro percutaneous absorption of HC, so single-dose absorption data for jet fuel HC from

  11. Cryochemical and CVD processing of shperical carbide fuels for propulsion reactors

    NASA Astrophysics Data System (ADS)

    Blair, H. Thomas; Carroll, David W.; Matthews, R. Bruce

    1991-01-01

    Many of the nuclear propulsion reactor concepts proposed for a manned mission to Mars use a coated spherical particle fuel form similar to that used in the Rover and NERVA propulsion reactors. The formation of uranium dicarbide microspheres using a cryochemical process and the coating of the UC2 spheres with zirconium carbide using chemical vapor deposition are being developed at Los Alamos National Laboratory. The cryochemical process is described with a discussion of the variables affecting the sphere formation and carbothermic reduction to produce UC2 spheres from UO2. Emphasis is placed on minimizing the wastes produced by the process. The ability to coat particles with ZrC was recaptured, and improvements in the process and equipment were developed. Volatile organometallic precursors were investigated as alternatives to the original ZrCl4 precursor.

  12. Testing Installed Propulsion For Shielded Exhaust Configurations

    NASA Technical Reports Server (NTRS)

    Bridges, James; Podboy, Gary G.; Brown, Clifford A.

    2016-01-01

    Jet-surface interaction (JSI) can be a significant factor in the exhaust noise of installed propulsion. Tests to further understanding and prediction of the acoustic impacts of JSI have been described. While there were many objectives for the NASA JSI1044 test, the overall objective was to prepare for a 2016 test validating the design of a low-noise, low-boom supersonic commercial airliner. In this paper we explore design requirements for a partial aircraft model to be used in subscale acoustic testing, especially focusing on the amount of shielding surface that must be provided to simulate the acoustic environment between propulsion exhaust system and observer. We document the dual-stream jets, both nozzle and flow conditions, which were tested to extend JSI acoustic modeling from simple single-stream jets to realistic dual-stream exhaust nozzles. Examples of observations found as surface geometry and flow conditions were varied were provided. And we have presented initial measurements of the installation impacts of integrating the propulsion on the airframe for a supersonic airliner with realistic airframe geometries and nozzles.

  13. Jet Fuel, Noise, and the Central Auditory Nervous System: A Literature Review.

    PubMed

    Warner, Rachelle; Fuente, Adrian; Hickson, Louise

    2015-09-01

    Prompted by the continued prevalence of hearing related disabilities accepted as eligible for compensation and treatment under Australian Department of Veterans' Affairs legislation, a review of recent literature regarding possible causation mechanisms and thus, possible prevention strategies, is timely. The emerging thoughts on the effects of a combination of jet fuel and noise exposure on the central auditory nervous system (CANS) have relevance in the military aviation context because of the high exposures to solvents (including fuels) and unique noise hazards related to weapons systems and military aircraft. This literature review aimed to identify and analyze the current knowledge base of the effects of combined exposure to JP-8 jet fuel (or its aromatic solvent components) and noise on the CANS in human populations. We reviewed articles examining electrophysiological and behavioral measurement of the CANS following combined exposures to jet fuel (or its aromatic constituents) and noise. A total of 6 articles met the inclusion criteria for the review and their results are summarized. The articles considered in this review indicate that assessment of the CANS should be undertaken as part of a comprehensive test battery for military members exposed to both noise and solvents in the workplace. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  14. Comprehensive two-dimensional gas chromatography for the analysis of synthetic and crude-derived jet fuels.

    PubMed

    van der Westhuizen, Rina; Ajam, Mariam; De Coning, Piet; Beens, Jan; de Villiers, André; Sandra, Pat

    2011-07-15

    Fully synthetic jet fuel (FSJF) produced via Fischer-Tropsch (FT) technology was recently approved by the international aviation fuel authorities. To receive approval, comparison of FSJF and crude-derived fuel and blends on their qualitative and quantitative hydrocarbon composition was of utmost importance. This was performed by comprehensive two-dimensional gas chromatography (GC×GC) in the reversed phase mode. The hydrocarbon composition of synthetic and crude-derived jet fuels is very similar and all compounds detected in the synthetic product are also present in crude-derived fuels. Quantitatively, the synthetic fuel consists of a higher degree of aliphatic branching with less than half the aromatic content of the crude-derived fuel. GC×GC analyses also indicated the presence of trace levels of hetero-atomic impurities in the crude-derived product that were absent in the synthetic product. While clay-treatment removed some of the impurities and improved the fuel stability, the crude-derived product still contained traces of cyclic and aromatic S-containing compounds afterwards. Lower level of aromatics and the absence of sulphur are some of the factors that contribute to the better fuel stability and environmental properties of the synthetic fuel. GC×GC was further applied for the analysis of products during Jet Fuel Thermal Oxidation Testing (JFTOT), which measures deposit formation of a fuel under simulated engine conditions. JFTOT showed the synthetic fuel to be much more stable than the crude-derived fuel. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. IET. Jet fuel tank being lowered into position below grade. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Jet fuel tank being lowered into position below grade. Two tanks already in place. Date: October 18, 1954. INEEL negative no. 12535 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  16. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  17. Jet Fuel Thermal Stability Investigations using Ellipsometry

    NASA Technical Reports Server (NTRS)

    Nash, Leigh; Klettlinger, Jennifer; Vasu, Subith

    2017-01-01

    Ellipsometry is an optical technique used to measure the thickness of thin films. This technique was used to measure the thickness of deposits created by heated jet fuel, specifically Sasol IPK on stainless steel tubes. A new amorphous model was used to iteratively determine the film thickness. This method was found to be repeatable, and the thickness of deposit increased with increasing temperature and increasing concentration of naphthalene.

  18. Highly Selective Upgrading of Biomass-Derived Alcohol Mixtures for Jet/Diesel-Fuel Components.

    PubMed

    Liu, Qiang; Xu, Guoqiang; Wang, Xicheng; Liu, Xiaoran; Mu, Xindong

    2016-12-20

    In light of the increasing concern about the energy and environmental problems caused by the combustion of petroleum-based fuels (e.g., jet and diesel fuels), the development of new procedures for their sustainable production from renewable biomass-derived platform compounds has attracted tremendous attention recently. Long-chain ketones/alcohols are promising fuel components owing to the fuel properties that closely resemble those of traditional fuels. The focus of this report is the production of long-chain ketones/alcohols by direct upgrading of biomass-derived short-chain alcohol mixtures (e.g., isopropanol-butanol-ethanol mixtures) in pure water. An efficient Pd catalyst system was developed for these highly selective transformations. Long-chain ketones/alcohols (C 8 -C 19 ), which can be used as precursors for renewable jet/diesel fuel, were obtained in good-to-high selectivity (>90 %) by using the developed Pd catalyst. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Identification of microorganisms isolated from jet fuel systems.

    PubMed

    Edmonds, P; Cooney, J J

    1967-03-01

    Seventy-two samples from jet aircraft fuel systems were examined for microbial contamination. Ten contaminated samples yielded 43 microorganisms which were classified into nine genera of bacteria and three genera of fungi. The predominant types, comprising about 37% of the isolated cultures, were identified as Bacillus spp. The remaining cultures were distributed among 11 genera, each of which represented 2 to 9% of the total isolates. Four cultures could not be assigned to a genus on the basis of the diagnostic criteria used. Only five isolates, in the genera Pseudomonas and Hormodendrum (Cladosporium), grew abundantly in a mineral salts solution with JP-4 fuel as the sole source of carbon. The presence of fuel utilizers in a fuel system may be a better index to potential problems that have been correlated with microbial contamination than the presence of aerobic sporeforming bacilli.

  20. Credit WCT. Photographic copy of photograph, oxidizer and fuel tank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Photographic copy of photograph, oxidizer and fuel tank assembly for engine tests being raised by crane for permanent installation in Test Stand "D" tower. Each tank held 170 gallons of propellants. (JPL negative 384-2029-B, 7 August 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  1. Effects of Fuel Composition on Combustion Stability and NO X Emissions for Traditional and Alternative Jet Fuels

    NASA Astrophysics Data System (ADS)

    Vijlee, Shazib Z.

    Synthetic jet fuels are studied to help understand their viability as alternatives to traditionally derived jet fuel. Two combustion parameters -- flame stability and NOX emissions -- are used to compare these fuels through experiments and models. At its core, this is a fuels study comparing how chemical makeup and behavior relate. Six 'real', complex fuels are studied in this work -- four are synthetic from alternative sources and two are traditional from petroleum sources. Two of the synthetic fuels are derived from natural gas and coal via the Fischer Tropsch catalytic process. The other two are derived from Camelina oil and tallow via hydroprocessing. The traditional military jet fuel, JP8, is used as a baseline as it is derived from petroleum. The sixth fuel is derived from petroleum and is used to study the effects of aromatic content on the synthetic fuels. The synthetic fuels lack aromatic compounds, which are an important class of hydrocarbons necessary for fuel handling systems to function properly. Several single-component fuels are studied (through models and/or experiments) to facilitate interpretation and understanding. The flame stability study first compares all the 'real', complex fuels for blowout. A toroidal stirred reactor is used to try and isolate temperature and chemical effects. The modeling study of blowout in the toroidal reactor is the key to understanding any fuel-based differences in blowout behavior. A detailed, reacting CFD model of methane is used to understand how the reactor stabilizes the flame and how that changes as the reactor approaches blowout. A 22 species reduced form of GRI 3.0 is used to model methane chemistry. The knowledge of the radical species role is utilized to investigate the differences between a highly aliphatic fuel (surrogated by iso-octane) and a highly aromatic fuel (surrogated by toluene). A perfectly stirred reactor model is used to study the chemical kinetic pathways for these fuels near blowout. The

  2. Delayed ignition and propulsion of catalytic microrockets based on fuel-induced chemical dealloying of the inner alloy layer.

    PubMed

    Jodra, Adrián; Soto, Fernando; Lopez-Ramirez, Miguel Angel; Escarpa, Alberto; Wang, Joseph

    2016-09-27

    The delayed ignition and propulsion of catalytic tubular microrockets based on fuel-induced chemical dealloying of an inner alloy layer is demonstrated. Such timed delay motor activation process relies on the preferential gradual corrosion of Cu from the inner Pt-Cu alloy layer by the peroxide fuel. The dealloying process exposes the catalytically active Pt surface to the chemical fuel, thus igniting the microrockets propulsion autonomously without external stimuli. The delayed motor activation relies solely on the intrinsic material properties of the micromotor and the surrounding solution. The motor activation time can thus be tailored by controlling the composition of the Cu-Pt alloy layer and the surrounding media, including the fuel and NaCl concentrations and local pH. Speed acceleration in a given fuel solution is also demonstrated and reflects the continuous exposure of the Pt surface. The versatile "blastoff" control of these chemical microrockets holds considerable promise for designing self-regulated chemically-powered nanomachines with a "built-in" activation mechanism for diverse tasks.

  3. Advanced development: Fuels

    NASA Astrophysics Data System (ADS)

    Ramohalli, K.

    1981-05-01

    The solar thermal fuels and chemicals program at Jet Propulsion Laboratory are described. High technology is developed and applied to displace fossil fuel (oil) use in the production/processing of valuable fuels and chemicals. The technical and economic feasibility is demonstrated to extent that enables the industry to participate and commercialize the product. A representative process, namely Furfural production with a bottoming of acetone, butanol and ethanol, is described. Experimental data from all solar production of furfural is discussed. Estimates are given to show the attractiveness of this process, considering its flexibility to be adaptable to dishes, troughs or central receivers. Peat, lignite and low rank coal processing, heavy oil stripping and innovative technologies for process diagnostics and control are mentioned as examples of current projects under intensive development.

  4. Advanced development: Fuels

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1981-01-01

    The solar thermal fuels and chemicals program at Jet Propulsion Laboratory are described. High technology is developed and applied to displace fossil fuel (oil) use in the production/processing of valuable fuels and chemicals. The technical and economic feasibility is demonstrated to extent that enables the industry to participate and commercialize the product. A representative process, namely Furfural production with a bottoming of acetone, butanol and ethanol, is described. Experimental data from all solar production of furfural is discussed. Estimates are given to show the attractiveness of this process, considering its flexibility to be adaptable to dishes, troughs or central receivers. Peat, lignite and low rank coal processing, heavy oil stripping and innovative technologies for process diagnostics and control are mentioned as examples of current projects under intensive development.

  5. Computing and information services at the Jet Propulsion Laboratory - A management approach to a diversity of needs

    NASA Technical Reports Server (NTRS)

    Felberg, F. H.

    1984-01-01

    The Jet Propulsion Laboratory, a research and development organization with about 5,000 employees, presents a complicated set of requirements for an institutional system of computing and informational services. The approach taken by JPL in meeting this challenge is one of controlled flexibility. A central communications network is provided, together with selected computing facilities for common use. At the same time, staff members are given considerable discretion in choosing the mini- and microcomputers that they believe will best serve their needs. Consultation services, computer education, and other support functions are also provided.

  6. Monitoring space shuttle air quality using the Jet Propulsion Laboratory electronic nose

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret Amy; Zhou, Hanying; Buehler, Martin G.; Manatt, Kenneth S.; Mowrey, Victoria S.; Jackson, Shannon P.; Kisor, Adam K.; Shevade, Abhijit V.; Homer, Margie L.

    2004-01-01

    A miniature electronic nose (ENose) has been designed and built at the Jet Propulsion Laboratory (JPL), Pasadena, CA, and was designed to detect, identify, and quantify ten common contaminants and relative humidity changes. The sensing array includes 32 sensing films made from polymer carbon-black composites. Event identification and quantification were done using the Levenberg-Marquart nonlinear least squares method. After successful ground training, this ENose was used in a demonstration experiment aboard STS-95 (October-November, 1998), in which the ENose was operated continuously for six days and recorded the sensors' response to the air in the mid-deck. Air samples were collected daily and analyzed independently after the flight. Changes in shuttle-cabin humidity were detected and quantified by the JPL ENose; neither the ENose nor the air samples detected any of the contaminants on the target list. The device is microgravity insensitive.

  7. Opportunities and challenges for developing an oilseed to renewable jet fuel industry

    USDA-ARS?s Scientific Manuscript database

    Military and commercial aviation have expressed interest in using renewable aviation biofuels, with an initial goal of 1 billion gallons of drop-in aviation biofuels by 2018. While these fuels could come from many sources, hydrotreated renewable jet fuel (HRJ) from vegetable oils have been demonstra...

  8. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1991-01-01

    The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.

  9. Heat transfer correlations for kerosene fuels and mixtures and physical properties for Jet A fuel

    NASA Technical Reports Server (NTRS)

    Ackerman, G. H.; Faith, L. E.

    1972-01-01

    Heat transfer correlations are reported for conventional Jet A fuel for both laminar and turbulent flow in circular tubes. Correlations were developed for cooling in turbine engines, but have broader applications in petroleum and chemical processing, and other industrial applications.

  10. The effects of oxygen scavenging on jet fuel thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneghan, S.P.; Williams, T.F.; Whitacre, S.

    1996-10-01

    Preliminary tests with a proposed oxygen scavenger (triphenyl-phosphine, TPP) have been done in closed static and flowing systems to study its effects on the oxidation and the deposit formation of jet fuel. TPP was found to significantly slow the oxidation of hexadecane or jet fuel at some temperatures/concentrations and increase the oxidation rate at other conditions. The additive helped decrease the formation of deposits at higher concentrations (200 mg/l) but not at lower concentrations. No evidence of phosphorous was observed in the deposits that were formed. Gas chomatography combined with mass spectrometry and atomic emission detection showed that TPP producedmore » the expected oxidation product (triphenylphosphineoxide) and an unexpected triphenylphosphine-sulfide. The GC/AED allowed A quantitative analysis of the conversion efficiency of TPP to TPPO upon stressing in a closed system.« less

  11. Advanced Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Bai, S. Don

    2000-01-01

    Design, propellant selection, and launch assistance for advanced chemical propulsion system is discussed. Topics discussed include: rocket design, advance fuel and high energy density materials, launch assist, and criteria for fuel selection.

  12. Environmental cost-benefit analysis of ultra low sulfur jet fuel.

    DOT National Transportation Integrated Search

    2011-12-01

    Aircraft emissions can reduce air quality, leading to adverse health impacts including : increased risk of premature mortality. A technically viable way to mitigate the health : impacts of aviation is the use of desulfurized jet fuel, as has been don...

  13. Analytic tests and their relation to jet fuel thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneghan, S.P.; Kauffman, R.E.

    1995-05-01

    The evaluation of jet fuel thermal stability (TS) by simple analytic procedures has long been a goal of fuels chemists. The reason is obvious: if the analytic chemist can determine which types of material cause his test to respond, the refiners will know which materials to remove to improve stability. Complicating this quest is the lack of an acceptable quantitative TS test with which to compare any analytic procedures. To circumvent this problem, we recently compiled the results of TS tests for 12 fuels using six separate test procedures. The results covering a range of flow and temperature conditions showmore » that TS is not as dependent on test conditions as previously thought. Also, comparing the results from these tests with several analytic procedures shows that either a measure of the number of phenols or the total sulfur present in jet fuels is strongly indicative of the TS. The phenols have been measured using a cyclic voltammetry technique and the polar material by gas chromatography (atomic emission detection) following a solid phase extraction on silica gel. The polar material has been identified as mainly phenols (by mass spectrometry identification). Measures of the total acid number or peroxide concentration have little correlation with TS.« less

  14. Propulsion Investigation for Zero and Near-Zero Emissions Aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Berton, Jeffrey J.; Brown, Gerald v.; Dolce, James L.; Dravid, Marayan V.; Eichenberg, Dennis J.; Freeh, Joshua E.; Gallo, Christopher A.; Jones, Scott M.; Kundu, Krishna P.; hide

    2009-01-01

    As world emissions are further scrutinized to identify areas for improvement, aviation s contribution to the problem can no longer be ignored. Previous studies for zero or near-zero emissions aircraft suggest aircraft and propulsion system sizes that would perform propulsion system and subsystems layout and propellant tankage analyses to verify the weight-scaling relationships. These efforts could be used to identify and guide subsequent work on systems and subsystems to achieve viable aircraft system emissions goals. Previous work quickly focused these efforts on propulsion systems for 70- and 100-passenger aircraft. Propulsion systems modeled included hydrogen-fueled gas turbines and fuel cells; some preliminary estimates combined these two systems. Hydrogen gas-turbine engines, with advanced combustor technology, could realize significant reductions in nitrogen emissions. Hydrogen fuel cell propulsion systems were further laid out, and more detailed analysis identified systems needed and weight goals for a viable overall system weight. Results show significant, necessary reductions in overall weight, predominantly on the fuel cell stack, and power management and distribution subsystems to achieve reasonable overall aircraft sizes and weights. Preliminary conceptual analyses for a combination of gas-turbine and fuel cell systems were also performed, and further studies were recommended. Using gas-turbine engines combined with fuel cell systems can reduce the fuel cell propulsion system weight, but at higher fuel usage than using the fuel cell only.

  15. Characteristics of transverse hydrogen jet in presence of multi air jets within scramjet combustor

    NASA Astrophysics Data System (ADS)

    Barzegar Gerdroodbary, M.; Fallah, Keivan; Pourmirzaagha, H.

    2017-03-01

    In this article, three-dimensional simulation is performed to investigate the effects of micro air jets on mixing performances of cascaded hydrogen jets within a scramjet combustor. In order to compare the efficiency of this technique, constant total fuel rate is injected through one, four, eight and sixteen arrays of portholes in a Mach 4.0 crossflow with a fuel global equivalence ratio of 0.5. In this method, micro air jets are released within fuel portholes to augment the penetration in upward direction. Extensive studies were performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Numerical studies on various air and fuel arrangements are done and the mixing rate and penetration are comprehensively investigated. Also, the flow feature of the fuel and air jets for different configuration is revealed. According to the obtained results, the influence of the micro air jets is significant and the presence of micro air jets increases the mixing rate about 116%, 77%, 56% and 41% for single, 4, 8 and 16 multi fuel jets, respectively. The maximum mixing rate of the hydrogen jet is obtained when the air jets are injected within the sixteen multi fuel jets. According to the circulation analysis of the flow for different air and fuel arrangements, it was found that the effects of air jets on flow structure are varied in various conditions and the presence of the micro jet highly intensifies the circulation in the case of 8 and 16 multi fuel jets.

  16. Structural integrity of a confinement vessel for testing nuclear fuels for space propulsion

    NASA Astrophysics Data System (ADS)

    Bergmann, V. L.

    Nuclear propulsion systems for rockets could significantly reduce the travel time to distant destinations in space. However, long before such a concept can become reality, a significant effort must be invested in analysis and ground testing to guide the development of nuclear fuels. Any testing in support of development of nuclear fuels for space propulsion must be safely contained to prevent the release of radioactive materials. This paper describes analyses performed to assess the structural integrity of a test confinement vessel. The confinement structure, a stainless steel pressure vessel with bolted flanges, was designed for operating static pressures in accordance with the ASME Boiler and Pressure Vessel Code. In addition to the static operating pressures, the confinement barrier must withstand static overpressures from off-normal conditions without releasing radioactive material. Results from axisymmetric finite element analyses are used to evaluate the response of the confinement structure under design and accident conditions. For the static design conditions, the stresses computed from the ASME code are compared with the stresses computed by the finite element method.

  17. Emission FTIR analyses of thin microscopic patches of jet fuel residues deposited on heated metal surfaces

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Vogel, P.

    1986-01-01

    The relationship of fuel stability to fuel composition and the development of mechanisms for deposit formation were investigated. Fuel deposits reduce heat transfer efficiency and increase resistance to fuel flow and are highly detrimental to aircraft performance. Infrared emission Fourier transform spectroscopy was chosen as the primary method of analysis because it was sensitive enough to be used in-situ on tiny patches of monolayers or of only a few molecular layers of deposits which generally proved completely insoluble in any nondestructive solvents. Deposits of four base fuels were compared; dodecane, a dodecane/tetralin blend, commercial Jet A fuel, and a broadened-properties jet fuel particularly rich in polynuclear aromatics. Every fuel in turn was provided with and without small additions of such additives as thiophene, furan, pyrrole, and copper and iron naphthenates.

  18. Testing Installed Propulsion for Shielded Exhaust Configurations

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Podboy, Gary G.; Brown, Clifford A.

    2016-01-01

    Jet-surface interaction (JSI) can be a significant factor in the exhaust noise of installed propulsion systems. Tests to further the understanding and prediction of the acoustic impacts of JSI have been described. While there were many objectives for the test, the overall objective was to prepare for a future test validating the design of a low-noise, lowboom supersonic commercial airliner. In this paper we explore design requirements for a partial aircraft model to be used in subscale acoustic testing, especially focusing on the amount of aircraft body that must be included to produce the acoustic environment between propulsion exhaust system and observer. We document the dual-stream jets, both nozzle and flow conditions, which were tested to extend JSI acoustic modeling from simple singlestream jets to realistic dual-stream exhaust nozzles. Sample observations are provided of changes to far-field sound as surface geometry and flow conditions were varied. Initial measurements are presented for integrating the propulsion on the airframe for a supersonic airliner with simulated airframe geometries and nozzles. Acoustic impacts of installation were modest, resulting in variations of less than 3 EPNdB in most configurations.

  19. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli: Production of Jet Fuel Precursor Monoterpenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun

    Monoterpenes (C 10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C 15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP productionmore » but also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes.« less

  20. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli: Production of Jet Fuel Precursor Monoterpenoids

    DOE PAGES

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun; ...

    2017-05-18

    Monoterpenes (C 10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C 15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP productionmore » but also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes.« less

  1. Plasma Jet Simulations Using a Generalized Ohm's Law

    NASA Technical Reports Server (NTRS)

    Ebersohn, Frans; Shebalin, John V.; Girimaji, Sharath S.

    2012-01-01

    Plasma jets are important physical phenomena in astrophysics and plasma propulsion devices. A currently proposed dual jet plasma propulsion device to be used for ISS experiments strongly resembles a coronal loop and further draws a parallel between these physical systems [1]. To study plasma jets we use numerical methods that solve the compressible MHD equations using the generalized Ohm s law [2]. Here, we will discuss the crucial underlying physics of these systems along with the numerical procedures we utilize to study them. Recent results from our numerical experiments will be presented and discussed.

  2. Spatial distribution of jet fuel in the vadoze zone of a heterogeneous and fractured soil.

    PubMed

    Tzovolou, D N; Benoit, Y; Haeseler, F; Klint, K E; Tsakiroglou, C D

    2009-04-01

    The goal of the present work is to screen and evaluate all available data before selecting and testing remediation technologies on heterogeneous soils polluted by jet fuel. The migration pathways of non-aqueous phase liquids (NAPLs) in the subsurface relate closely with soil properties. A case study is performed on the vadoze zone of a military airport of north-west Poland contaminated by jet fuel. Soil samples are collected from various depths of two cells, and on-site and off-site chemical analyses of hydrocarbons are conducted by using Pollut Eval apparatus and GC-MS, respectively. The geological conceptual model of the site along with microscopic and hydraulic properties of the porous matrix and fractures enable us to interpret the non-uniform spatial distribution of jet fuel constituents. The total concentration of the jet fuel and its main hydrocarbon families (n-paraffins, major aromatics) over the two cells is governed by the slow preferential flow of NAPL through the porous matrix, the rapid NAPL convective flow through vertical desiccation and sub-horizontal glaciotectonic fractures, and n-paraffin biodegradation in upper layers where the rates of oxygen transfer is not limited by complexities of the pore structure. The information collected is valuable for the selection, implementation and evaluation of two in situ remediation methods.

  3. Performance of Aqueous Film Forming Foam (AFFF) on Large-Scale Hydroprocessed Renewable Jet (HRJ) Fuel Fires

    DTIC Science & Technology

    2011-12-01

    aqueous film forming foam ( AFFF ) firefighting agents and equipment are capable of...AFRL-RX-TY-TR-2012-0012 PERFORMANCE OF AQUEOUS FILM FORMING FOAM ( AFFF ) ON LARGE-SCALE HYDROPROCESSED RENEWABLE JET (HRJ) FUEL FIRES...Performance of Aqueous Film Forming Foam ( AFFF ) on Large-Scale Hydroprocessed Renewable Jet (HRJ) Fuel Fires FA4819-09-C-0030 0602102F 4915 D0

  4. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  5. Characterization of inhalation exposure to jet fuel among U.S. Air Force personnel.

    PubMed

    Merchant-Borna, Kian; Rodrigues, Ema G; Smith, Kristen W; Proctor, Susan P; McClean, Michael D

    2012-07-01

    Jet propulsion fuel-8 (JP-8) is the primary jet fuel used by the US military, collectively consuming ~2.5 billion gallons annually. Previous reports suggest that JP-8 is potentially toxic to the immune, respiratory, and nervous systems. The objectives of this study were to evaluate inhalation exposure to JP-8 constituents among active duty United States Air Force (USAF) personnel while performing job-related tasks, identify significant predictors of inhalation exposure to JP-8, and evaluate the extent to which surrogate exposure classifications were predictive of measured JP-8 exposures. Seventy-three full-time USAF personnel from three different air force bases were monitored during four consecutive workdays where personal air samples were collected and analyzed for benzene, ethylbenzene, toluene, xylenes, total hydrocarbons (THC), and naphthalene. The participants were categorized a priori into high- and low-exposure groups, based on their exposure to JP-8 during their typical workday. Additional JP-8 exposure categories included job title groups and self-reported exposure to JP-8. Linear mixed-effects models were used to evaluate predictors of personal air concentrations. The concentrations of THC in air were significantly different between a priori exposure groups (2.6 mg m(-3) in high group versus 0.5 mg m(-3) in low, P < 0.0001), with similar differences observed for other analytes in air. Naphthalene was strongly correlated with THC (r = 0.82, P < 0.0001) and both were positively correlated with the relative humidity of the work environment. Exposures to THC and naphthalene varied significantly by job categories based on USAF specialty codes and were highest among personnel working in fuel distribution/maintenance, though self-reported exposure to JP-8 was an even stronger predictor of measured exposure in models that explained 72% (THC) and 67% (naphthalene) of between-worker variability. In fact, both self-report JP-8 exposure and a priori exposure groups

  6. Subtask 3.11 - Production of CBTL-Based Jet Fuels from Biomass-Based Feedstocks and Montana Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Ramesh

    The Energy & Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from Exxon Mobil, undertook Subtask 3.11 to use a recently installed bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. The process involves liquefaction of Rosebud mine coal (Montana coal) coupled with an upgrading scheme to produce a naphthenic fuel. The upgrading comprises catalytic hydrotreating and saturation to produce naphthenic fuel. A synthetic jet fuel was preparedmore » by blending equal volumes of naphthenic fuel with similar aliphatic fuel derived from biomass and 11 volume % of aromatic hydrocarbons. The synthetic fuel was tested using standard ASTM International techniques to determine compliance with JP-8 fuel. The composite fuel thus produced not only meets but exceeds the military aviation fuel-screening criteria. A 500-milliliter synthetic jet fuel sample which met internal screening criteria was submitted to the Air Force Research Laboratory (AFRL) at Wright–Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with U.S. Air Force-prescribed alternative aviation fuel initial screening criteria. The results show that this fuel meets or exceeds the key specification parameters for JP-8, a petroleum-based jet fuel widely used by the U.S. military. JP-8 specifications include parameters such as freeze point, density, flash point, and others; all of which were met by the EERC fuel sample. The fuel also exceeds the thermal stability specification of JP-8 fuel as determined by the quartz crystalline microbalance (QCM) test also performed at an independent laboratory as well as AFRL. This means that the EERC fuel looks and acts identically to petroleum-derived jet fuel and can

  7. Jet Propulsion with Special Reference to Thrust Augmenters

    NASA Technical Reports Server (NTRS)

    Schubauer, G B

    1933-01-01

    An investigation of the possibility of using thrust augmented jets as prime movers was carried out. The augmentation was to be effected by allowing the jet to mix with the surrounding air in the presence of bodies which deflect the air set in motion by the jet.

  8. Supreme Court Hears Privacy Case Between NASA and Jet Propulsion Laboratory Scientists

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    After NASA put into practice the 2004 Homeland Security Presidential Directive-12, known as HSPD-12, Dennis Byrnes talked to then-NASA administrator Michael Griffin. Byrnes recalls that Griffin told him in 2007 that if he didn’t like the agency's implementation of HSPD-12, he should go to court. That's exactly what Byrnes, an employee of the California Institute of Technology (Caltech) working as a senior engineer at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., did. Concerned about prying and open-ended background investigations of federal contractors through NASA's implementation of HSPD-12, he, along with lead plaintiff Robert Nelson and 26 other Caltech employees working at JPL, sued NASA. Following several lower court decisions, including an injunction issued by a U.S. federal appeals court in response to a plaintiff motion, the case made it all the way to the U.S. Supreme Court, which heard oral arguments on 5 October.

  9. Inhibition of jet fuel aliphatic hydrocarbon induced toxicity in human epidermal keratinocytes.

    PubMed

    Inman, A O; Monteiro-Riviere, N A; Riviere, J E

    2008-05-01

    Jet propellant (JP)-8, the primary jet fuel used by the U.S. military, consists of hydrocarbon-rich kerosene base commercial jet fuel (Jet-A) plus additives DC1-4A, Stadis 450 and diethylene glycol monomethyl ether. Human epidermal keratinocytes (HEK) were exposed to JP-8, aliphatic hydrocarbon (HC) fuel S-8 and aliphatic HC pentadecane (penta), tetradecane (tetra), tridecane (tri) and undecane (un) for 5 min. Additional studies were conducted with signal transduction pathway blockers parthenolide (P; 3.0 microm), isohelenin (I; 3.0 microm), SB 203580 (SB; 13.3 microm), substance P (SP; 3.0 microm) and recombinant human IL-10 (rHIL-10; 10 ng ml(-1)). In the absence of inhibitors, JP-8 and to a lesser extent un and S-8, had the greatest toxic effect on cell viability and inflammation suggesting, as least in vitro, that synthetic S-8 fuel is less irritating than the currently used JP-8. Each inhibitor significantly (P < 0.05) decreased HEK viability. DMSO, the vehicle for P, I and SB, had a minimal effect on viability. Overall, IL-8 production was suppressed at least 30% after treatment with each inhibitor. Normalizing data relative to control indicate which inhibitors suppress HC-mediated IL-8 to control levels. P was the most effective inhibitor of IL-8 release; IL-8 was significantly decreased after exposure to un, tri, tetra and penta but significantly increased after JP-8 exposure compared with controls. Inhibitors were not effective in suppressing IL-8 release in JP-8 exposures to control levels. This study shows that inhibiting NF-kappa B, which appears to play a role in cytokine production in HC-exposed HEK in vitro, may reduce the inflammatory effect of HC in vivo. Copyright (c) 2007 John Wiley & Sons, Ltd.

  10. JP-8 jet fuel exposure suppresses the immune response to viral infections.

    PubMed

    Harris, D T; Sakiestewa, D; Titone, D; He, X; Hyde, J; Witten, M

    2008-05-01

    The US Air Force has implemented the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Previous work has reported that JP-8 exposure is immunosuppressive. Exposure of mice to JP-8 for 1A h/day resulted in immediate secretion of two immunosuppressive agents, namely, interleukin-10 and prostaglandin E2. Thus, it was of interest to determine if jet fuel exposure might alter the immune response to infectious agents. The Hong Kong influenza model was used for these studies. Mice were exposed to 1000A mg/m(3) JP-8 (1A h/day) for 7A days before influenza viral infection. Animals were infected intra-nasally with virus and followed in terms of overall survival as well as immune responses. All surviving animals were killed 14A days after viral infection. In the present study, JP-8 exposure increased the severity of the viral infection by suppressing the anti-viral immune responses. That is, exposure of mice to JP-8 for 1A h/day for 7A days before infection resulted in decreased immune cell viability after exposure and infection, a greater than fourfold decrease in immune proliferative responses to mitogens, as well as an overall loss of CD3(+), CD4(+), and CD8(+) T cells from the lymph nodes, but not the spleens, of infected animals. These changes resulted in decreased survival of the exposed and infected mice, with only 33% of animals surviving as compared with 50% of mice infected but not jet fuel-exposed (and 100% of mice exposed only to JP-8). Thus, short-term, low-concentration JP-8 jet fuel exposures have significant suppressive effects on the immune system which can result in increased severity of viral infections.

  11. Jet fuel toxicity: skin damage measured by 900-MHz MRI skin microscopy and visualization by 3D MR image processing.

    PubMed

    Sharma, Rakesh; Locke, Bruce R

    2010-09-01

    The toxicity of jet fuels was measured using noninvasive magnetic resonance microimaging (MRM) at 900-MHz magnetic field. The hypothesis was that MRM can visualize and measure the epidermis exfoliation and hair follicle size of rat skin tissue due to toxic skin irritation after skin exposure to jet fuels. High-resolution 900-MHz MRM was used to measure the change in size of hair follicle, epidermis thickening and dermis in the skin after jet fuel exposure. A number of imaging techniques utilized included magnetization transfer contrast (MTC), spin-lattice relaxation constant (T1-weighting), combination of T2-weighting with magnetic field inhomogeneity (T2*-weighting), magnetization transfer weighting, diffusion tensor weighting and chemical shift weighting. These techniques were used to obtain 2D slices and 3D multislice-multiecho images with high-contrast resolution and high magnetic resonance signal with better skin details. The segmented color-coded feature spaces after image processing of the epidermis and hair follicle structures were used to compare the toxic exposure to tetradecane, dodecane, hexadecane and JP-8 jet fuels. Jet fuel exposure caused skin damage (erythema) at high temperature in addition to chemical intoxication. Erythema scores of the skin were distinct for jet fuels. The multicontrast enhancement at optimized TE and TR parameters generated high MRM signal of different skin structures. The multiple contrast approach made visible details of skin structures by combining specific information achieved from each of the microimaging techniques. At short echo time, MRM images and digitized histological sections confirmed exfoliated epidermis, dermis thickening and hair follicle atrophy after exposure to jet fuels. MRM data showed correlation with the histopathology data for epidermis thickness (R(2)=0.9052, P<.0002) and hair root area (R(2)=0.88, P<.0002). The toxicity of jet fuels on skin structures was in the order of tetradecane

  12. Swimming mechanics and propulsive efficiency in the chambered nautilus

    NASA Astrophysics Data System (ADS)

    Neil, Thomas R.; Askew, Graham N.

    2018-02-01

    The chambered nautilus (Nautilus pompilius) encounters severe environmental hypoxia during diurnal vertical movements in the ocean. The metabolic cost of locomotion (Cmet) and swimming performance depend on how efficiently momentum is imparted to the water and how long on-board oxygen stores last. While propulsive efficiency is generally thought to be relatively low in jet propelled animals, the low Cmet in Nautilus indicates that this is not the case. We measured the wake structure in Nautilus during jet propulsion swimming, to determine their propulsive efficiency. Animals swam with either an anterior-first or posterior-first orientation. With increasing swimming speed, whole cycle propulsive efficiency increased during posterior-first swimming but decreased during anterior-first swimming, reaching a maximum of 0.76. The highest propulsive efficiencies were achieved by using an asymmetrical contractile cycle in which the fluid ejection phase was relatively longer than the refilling phase, reducing the volume flow rate of the ejected fluid. Our results demonstrate that a relatively high whole cycle propulsive efficiency underlies the low Cmet in Nautilus, representing a strategy to reduce the metabolic demands in an animal that spends a significant part of its daily life in a hypoxic environment.

  13. An evaluation of very large airplanes and alternative fuels. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikolowsky, W.T.; Noggle, L.W.; Hederman, W.F.

    1976-12-01

    Very large airplanes using alternative fuels are examined in the context of existing and possible future Air Force missions. Synthetic jet fuel (JP), liquid methane, liquid hydrogen, and nuclear propulsion are the fuel alternatives selected for detailed analysis. Conceptual designs of airplanes using each of these fuels were developed and estimates were made of their lifecycle cost and life-cycle energy consumption. Mission analyses were performed to determine the effectiveness of the alternative airplanes in strategic airlift specifically and in the station-keeping role in general. Results indicate that for most military applications airplanes with gross weights in excess of one millionmore » pounds promise to be superior to any comtemporary airplanes in terms of cost-effectiveness and energy-hydrocarbon jet fuel, whether manufactured from oil shale, coal or crude oil, remains the most attractive aviation fuel for future Air Force use. Policy recommendations are made pertaining both to alternative fuels and to advanced-technology large airplanes. Future research and developments are also identified.« less

  14. Jet Propulsion Laboratory: Annual Report 2009

    NASA Technical Reports Server (NTRS)

    2010-01-01

    2009 was truly the year of astronomy at the Jet Propulsion Laboratory. While the world at large was celebrating the International Year of Astronomy, we were sending more telescopes into space than in any other year, ever. As these missions unfold, the astronomers are sure to change the way we see the universe. One of the newly lofted observatories is on a quest to find planets like our own Earth orbiting other stars. Another is a telescope that gathers infrared light to help discover objects ranging from near-Earth asteroids to galaxies in the deepest universe. We also contributed critical enabling technologies to yet two other telescopes sent into space by our partners in Europe. And astronauts returned to Earth with a JPL-built camera that had captured the Hubble Space Telescope's most memorable pictures over many years. And while it was an epic time for these missions, we were no less busy in our other research specialties. Earth's moon drew much attention from our scientists and engineers, with two JPL instruments riding on lunar orbiters; previously unseen views of shadowed craters were provided by radar imaging conducted with the giant dish antennas of the Deep Space Network, our worldwide communication portal to spacecraft around the solar system. At Mars, our rovers and orbiters were highly productive, as were missions targeting Saturn, comets and the asteroid belt. Here at our home planet, satellites and instruments continued to serve up important information on global climate change. But our main business is, of course, exploring. Many initiatives will keep us busy for years. In 2009, NASA gave approval to start planning a major flagship mission to Jupiter's moon Europa in search of conditions that could host life, working with our partners in Europe. In addition to our prospective Earth science projects, we have full slates of missions in Mars exploration, planetary exploration and space-based astronomy. This year's annual report continues our recent

  15. Iroquois Engine for the Avro Arrow in the Propulsion Systems Laboratory

    NASA Image and Video Library

    1957-08-21

    A researcher examines the Orenda Iroquois PS.13 turbojet in a Propulsion Systems Laboratory test chamber at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Iroquois was being developed to power the CF-105 Arrow fighter designed by the Avro Canada Company. Avro began design work on the Arrow jet fighter in 1952. The company’s Orenda branch suggested building a titanium-based PS.13 Iroquois engine after development problems arose with the British engines that Avro had originally intended to use. The 10-stage, 20,000-pound-thrust Iroquois would prove to be more powerful than any contemporary US or British turbojet. It was also significantly lighter and more fuel efficient. An Iroquois was sent to Cleveland in April 1957 so that Lewis researchers could study the engine’s basic performance for the air force in the Propulsion Systems Laboratory. The tests were run over a wide range of speeds and altitudes with variations in exhaust-nozzle area. Initial studies determined the Iroquois’s windmilling and ignition characteristics at high altitude. After operating for 64 minutes, the engine was reignited at altitudes up to the 63,000-foot limit of the facility. Various modifications were attempted to reduce the occurrence of stall but did not totally eradicate the problem. The Arrow jet fighter made its initial flight in March 1958 powered by a substitute engine. In February 1959, however, both the engine and the aircraft programs were cancelled. The world’s superpowers had quickly transitioned from bombers to ballistic missiles which rendered the Avro Arrow prematurely obsolete.

  16. Hydrocarbon group type determination in jet fuels by high performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1977-01-01

    Results are given for the analysis of some jet and diesel fuel samples which were prepared from oil shale and coal syncrudes. Thirty-two samples of varying chemical composition and physical properties were obtained. Hydrocarbon types in these samples were determined by fluorescent indicator adsorption (FIA) analysis, and the results from three laboratories are presented and compared. Recently, rapid high performance liquid chromatography (HPLC) methods have been proposed for hydrocarbon group type analysis, with some suggestion for their use as a replacement of the FIA technique. Two of these methods were used to analyze some of the samples, and these results are also presented and compared. Two samples of petroleum-based Jet A fuel are similarly analyzed.

  17. Loop system for creating jet fuel vapor standards used in the calibration of infrared spectrophotometers and gas chromatographs.

    PubMed

    Reboulet, James; Cunningham, Robert; Gunasekar, Palur G; Chapman, Gail D; Stevens, Sean C

    2009-02-01

    A whole body inhalation study of mixed jet fuel vapor and its aerosol necessitated the development of a method for preparing vapor only standards from the neat fuel. Jet fuel is a complex mixture of components which partitions between aerosol and vapor when aspirated based on relative volatility of the individual compounds. A method was desired which could separate the vapor portion from the aerosol component to prepare standards for the calibration of infrared spectrophotometers and a head space gas chromatography system. A re-circulating loop system was developed which provided vapor only standards whose composition matched those seen in an exposure system. Comparisons of nominal concentrations in the exposure system to those determined by infrared spectrophotometry were in 92-95% agreement. Comparison of jet fuel vapor concentrations determined by infrared spectrophotometry compared to head space gas chromatography yielded a 93% overall agreement in trial runs. These levels of agreement show the loop system to be a viable method for creating jet fuel vapor standards for calibrating instruments.

  18. Low-Cost Jet Fuel Starter Design Study

    DTIC Science & Technology

    1974-12-02

    2G 27 3^ 38 & 39 60 vi WflU I LIST OF TABLES (continued) TABLE NO, 7 D-l I>-2 TITLE PAGE NO, Sea Level Design Point Component...Improvements 60 Turbojet Performance Summary D-3 Turbofan Performance Summary D-5 vii 1 SECTION INTRODUCTION The purpose of this study was to define...temperature difference between the top and bot- tom of the starter, does not begin to have an effect until after 60 seconds from shutdown. The Jet fuel

  19. Flight and Preflight Tests of a Ram Jet Burning Magnesium Slurry Fuel and Utilizing a Solid-propellant Gas Generator for Fuel Expulsion

    NASA Technical Reports Server (NTRS)

    Bartlett, Walter, A , jr; Hagginbotham, William K , Jr

    1955-01-01

    Data obtained from the first flight test of a ram jet utilizing a magnesium slurry fuel are presented. The ram jet accelerated from a Mach number of 1.75 to a Mach number of 3.48 in 15.5 seconds. During this period a maximum values of air specific impulse and gross thrust coefficient were calculated to be 151 seconds and 0.658, respectively. The rocket gas generator used as a fuel-pumping system operated successfully.

  20. Conversion of crop seed oils to jet fuel and associated methods

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia M.; Thompson, David N.

    2010-05-18

    Aspects of the invention include methods to produce jet fuel from biological oil sources. The method may be comprised of two steps: hydrocracking and reforming. The process may be self-sufficient in heat and hydrogen.

  1. Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines.

    PubMed

    Xu, Zhanfeng; Bunker, Christopher E; Harrington, Peter de B

    2010-11-01

    Monitoring the changes of jet fuel physical properties is important because fuel used in high-performance aircraft must meet rigorous specifications. Near-infrared (NIR) spectroscopy is a fast method to characterize fuels. Because of the complexity of NIR spectral data, chemometric techniques are used to extract relevant information from spectral data to accurately classify physical properties of complex fuel samples. In this work, discrimination of fuel types and classification of flash point, freezing point, boiling point (10%, v/v), boiling point (50%, v/v), and boiling point (90%, v/v) of jet fuels (JP-5, JP-8, Jet A, and Jet A1) were investigated. Each physical property was divided into three classes, low, medium, and high ranges, using two evaluations with different class boundary definitions. The class boundaries function as the threshold to alarm when the fuel properties change. Optimal partial least squares discriminant analysis (oPLS-DA), fuzzy rule-building expert system (FuRES), and support vector machines (SVM) were used to build the calibration models between the NIR spectra and classes of physical property of jet fuels. OPLS-DA, FuRES, and SVM were compared with respect to prediction accuracy. The validation of the calibration model was conducted by applying bootstrap Latin partition (BLP), which gives a measure of precision. Prediction accuracy of 97 ± 2% of the flash point, 94 ± 2% of freezing point, 99 ± 1% of the boiling point (10%, v/v), 98 ± 2% of the boiling point (50%, v/v), and 96 ± 1% of the boiling point (90%, v/v) were obtained by FuRES in one boundaries definition. Both FuRES and SVM obtained statistically better prediction accuracy over those obtained by oPLS-DA. The results indicate that combined with chemometric classifiers NIR spectroscopy could be a fast method to monitor the changes of jet fuel physical properties.

  2. Project HyBuJET

    NASA Technical Reports Server (NTRS)

    Ramsay, Tom; Collet, Bill; Igar, Karyn; Kendall, Dewayne; Miklosovic, Dave; Reuss, Robyn; Ringer, Mark; Scheidt, Tony

    1990-01-01

    A conceptual Hypersonic Business Jet (HyBuJet) was examined. The main areas of concentration include: aerodynamics, propulsion, stability and control, mission profile, and atmospheric heating. In order to optimize for cruise conditions, a waverider configuration was chosen for the high lift drag ratio and low wave drag. The leading edge and lower surface of a waverider was mapped out from a known flow field and optimized for cruising at Mach 6 and at high altitudes. The shockwave generated by a waverider remains attached along the entire leading edge, allowing for a larger compression along the lower surface. Three turbofan ramjets were chosen as the propulsion of the aircraft due to the combination of good subsonic performance along with high speed propulsive capabilities. A combination of liquid silicon convective cooling for the leading edges with a highly radiative outer skin material was chosen to reduce the atmospheric heating to acceptable level.

  3. Preliminary Investigation of Performance and Starting Characteristics of Liquid Fluorine : Liquid Oxygen Mixtures with Jet Fuel

    NASA Technical Reports Server (NTRS)

    Rothenberg, Edward A; Ordin, Paul M

    1954-01-01

    The performance of jet fuel with an oxidant mixture containing 70 percent liquid fluorine and 30 percent liquid oxygen by weight was investigated in a 500-pound-thrust engine operating at a chamber pressure of 300 pounds per square inch absolute. A one-oxidant-on-one-fuel skewed-hole impinging-jet injector was evaluated in a chamber of characteristic length equal to 50 inches. A maximum experimental specific impulse of 268 pound-seconds per pound was obtained at 25 percent fuel, which corresponds to 96 percent of the maximum theoretical specific impulse based on frozen composition expansion. The maximum characteristic velocity obtained was 6050 feet per second at 23 percent fuel, or 94 percent of the theoretical maximum. The average thrust coefficient was 1.38 for the 500-pound thrust combustion-chamber nozzle used, which was 99 percent of the theoretical (frozen) maximum. Mixtures of fluorine and oxygen were found to be self-igniting with jet fuel with fluorine concentrations as low as 4 percent, when low starting propellant flow rated were used.

  4. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production.

    PubMed

    de Jong, Sierk; Antonissen, Kay; Hoefnagels, Ric; Lonza, Laura; Wang, Michael; Faaij, André; Junginger, Martin

    2017-01-01

    The introduction of renewable jet fuel (RJF) is considered an important emission mitigation measure for the aviation industry. This study compares the well-to-wake (WtWa) greenhouse gas (GHG) emission performance of multiple RJF conversion pathways and explores the impact of different co-product allocation methods. The insights obtained in this study are of particular importance if RJF is included as an emission mitigation instrument in the global Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Fischer-Tropsch pathways yield the highest GHG emission reduction compared to fossil jet fuel (86-104%) of the pathways in scope, followed by Hydrothermal Liquefaction (77-80%) and sugarcane- (71-75%) and corn stover-based Alcohol-to-Jet (60-75%). Feedstock cultivation, hydrogen and conversion inputs were shown to be major contributors to the overall WtWa GHG emission performance. The choice of allocation method mainly affects pathways yielding high shares of co-products or producing co-products which effectively displace carbon intensive products (e.g., electricity). Renewable jet fuel can contribute to significant reduction of aviation-related GHG emissions, provided the right feedstock and conversion technology are used. The GHG emission performance of RJF may be further improved by using sustainable hydrogen sources or applying carbon capture and storage. Based on the character and impact of different co-product allocation methods, we recommend using energy and economic allocation (for non-energy co-products) at a global level, as it leverages the universal character of energy allocation while adequately valuing non-energy co-products.

  5. DNS and LES/FMDF of turbulent jet ignition and combustion

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Jaberi, Farhad

    2014-11-01

    The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.

  6. From lignin to cycloparaffins and aromatics: directional synthesis of jet and diesel fuel range biofuels using biomass.

    PubMed

    Bi, Peiyan; Wang, Jicong; Zhang, Yajing; Jiang, Peiwen; Wu, Xiaoping; Liu, Junxu; Xue, He; Wang, Tiejun; Li, Quanxin

    2015-05-01

    The continual growth in commercial aviation fuels and more strict environmental legislations have led to immense interest in developing green aviation fuels from biomass. This paper demonstrated a controllable transformation of lignin into jet and diesel fuel range hydrocarbons, involving directional production of C8-C15 aromatics by the catalytic depolymerization of lignin into C6-C8 low carbon aromatic monomers coupled with the alkylation of aromatics, and the directional production of C8-C15 cycloparaffins by the hydrogenation of aromatics. The key step, the production of the desired C8-C15 aromatics with the selectivity up to 94.3%, was achieved by the low temperature alkylation reactions of the lignin-derived monomers using ionic liquid. The synthetic biofuels basically met the main technical requirements of conventional jet fuels. The transformation potentially provides a useful way for the development of cycloparaffinic and aromatic components in jet fuels using renewable lignocellulose biomass. Copyright © 2015. Published by Elsevier Ltd.

  7. Reduced Equations for Calculating the Combustion Rates of Jet-A and Methane Fuel

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2003-01-01

    Simplified kinetic schemes for Jet-A and methane fuels were developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) that is being developed at Glenn. These kinetic schemes presented here result in a correlation that gives the chemical kinetic time as a function of initial overall cell fuel/air ratio, pressure, and temperature. The correlations would then be used with the turbulent mixing times to determine the limiting properties and progress of the reaction. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentration of carbon monoxide as a function of fuel air ratio, pressure, and temperature. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates and the values obtained from the equilibrium correlations were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide, and NOx were obtained for both Jet-A fuel and methane.

  8. Effect of vehicle configuration on the performance of a submersible pulsed-jet vehicle at intermediate Reynolds number.

    PubMed

    Nichols, J Tyler; Krueger, Paul S

    2012-09-01

    Recent results have demonstrated that pulsed-jet propulsion can achieve propulsive efficiency greater than that for steady jets when short, high frequency pulses are used, and the pulsed-jet advantage increases as Reynolds number decreases into the intermediate range (∼50). An important aspect of propulsive performance, however, is the vehicle configuration. The nozzle configuration influences the jet speed and, in the case of pulsed-jets, the formation of the vortex rings with each jet pulse, which have important effects on thrust. Likewise, the hull configuration influences the vehicle speed through its effect on drag. To investigate these effects, several flow inlet, nozzle, and hull tail configurations were tested on a submersible, self-propelled pulsed-jet vehicle ('Robosquid' for short) for jet pulse length-to-diameter ratios (L/D) in the range 0.5-6 and pulsing duty cycles (St(L)) of 0.2 and 0.5. For the configurations tested, the vehicle Reynolds number (Re(υ)) ranged from 25 to 110. In terms of propulsive efficiency, changing between forward and aft-facing inlets had little effect for the conditions considered, but changing from a smoothly tapered aft hull section to a blunt tail increased propulsive efficiency slightly due to reduced drag for the blunt tail at intermediate Re(υ). Sharp edged orifices also showed increased vehicle velocity and propulsive efficiency in comparison to smooth nozzles, which was associated with stronger vortex rings being produced by the flow contraction through the orifice. Larger diameter orifices showed additional gains in propulsive efficiency over smaller orifices if the rate of mass flow was matched with the smaller diameter cases, but using the same maximum jet velocity with the larger diameter decreased the propulsive efficiency relative to the smaller diameter cases.

  9. Shock wave calibration of under-expanded natural gas fuel jets

    NASA Astrophysics Data System (ADS)

    White, T. R.; Milton, B. E.

    2008-10-01

    Natural gas, a fuel abundant in nature, cannot be used by itself in conventional diesel engines because of its low cetane number. However, it can be used as the primary fuel with ignition by a pilot diesel spray. This is called dual-fuelling. The gas may be introduced either into the inlet manifold or, preferably, directly into the cylinder where it is injected as a short duration, intermittent, sonic jet. For accurate delivery in the latter case, a constant flow-rate from the injector is required into the constantly varying pressure in the cylinder. Thus, a sonic (choked) jet is required which is generally highly under-expanded. Immediately at the nozzle exit, a shock structure develops which can provide essential information about the downstream flow. This shock structure, generally referred to as a “barrel” shock, provides a key to understanding the full injection process. It is examined both experimentally and numerically in this paper.

  10. Determination of total and polycyclic aromatic hydrocarbons in aviation jet fuel.

    PubMed

    Bernabei, M; Reda, R; Galiero, R; Bocchinfuso, G

    2003-01-24

    The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.

  11. Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2000-01-01

    The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.

  12. A Mixing Length Scale of Unlike Impinging Jets

    NASA Astrophysics Data System (ADS)

    Inoue, Chihiro; Fujii, Go; Daimon, Yu

    2017-11-01

    Bi-propellant thrusters in space propulsion systems often utilize unlike-doublet or triplet injectors. The impingement of hypergolic liquid jet streams of fuel and oxidizer involves the expanding sheet, droplet fragmentation, mixing, evaporation, and chemical reactions in liquid and gas phases, in which the rate controlling phenomenon is the mixing step. In this study, a defined length scale demonstrates the distribution of fuel and oxidizer, and therefore, represents their mixing states, allowing for providing a physical meaning of widely accepted practical indicator, so called Rupe factor, over half a century of injector design history. We concisely formulate the characteristic velocity in a consistent manner for doublet and triplet injectors as a function of propellant injection conditions. The validity of the present formulation is convinced by comparing with hot firing tests.

  13. Effect of fuel density and heating value on ram-jet airplane range

    NASA Technical Reports Server (NTRS)

    Henneberry, Hugh M

    1952-01-01

    An analytical investigation of the effects of fuel density and heating value on the cruising range of a ram-jet airplane was made. Results indicate that with present-day knowledge of chemical fuels, neither very high nor very low fuel densities have any advantages for long-range flight. Of the fuels investigated, the borohydrides and metallic boron have the greatest range potential. Aluminum and aluminum hydrocarbon slurries were inferior to pure hydrocarbon fuel and boron-hydrocarbon slurries were superior on a range basis. It was concluded that the practical difficulties associated with the use of liquid hydrogen fuel cannot be justified on a range basis.

  14. Minimum-fuel, three-dimensional flight paths for jet transports

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Kreindler, E.

    1985-01-01

    A number of studies dealing with fuel minimization are concerned with three-dimensional flight. However, only Neuman and Kreindler (1982) consider cases involving commercial jet transports. In the latter study, only the climb-out and descent portions of complete long-range flight paths below 10,000 ft altitude have been investigated. The present investigation is concerned with the computation of minimum-fuel nonturning and turning flight paths for climb-outs from 2000 to 10,000 ft for long-range flights (greater than 50 n mi), and for complete flight paths of lengths between 5 and 50 n mi.

  15. Comparative jet wake structure and swimming performance of salps.

    PubMed

    Sutherland, Kelly R; Madin, Laurence P

    2010-09-01

    Salps are barrel-shaped marine invertebrates that swim by jet propulsion. Morphological variations among species and life-cycle stages are accompanied by differences in swimming mode. The goal of this investigation was to compare propulsive jet wakes and swimming performance variables among morphologically distinct salp species (Pegea confoederata, Weelia (Salpa) cylindrica, Cyclosalpa sp.) and relate swimming patterns to ecological function. Using a combination of in situ dye visualization and particle image velocimetry (PIV) measurements, we describe properties of the jet wake and swimming performance variables including thrust, drag and propulsive efficiency. Locomotion by all species investigated was achieved via vortex ring propulsion. The slow-swimming P. confoederata produced the highest weight-specific thrust (T=53 N kg(-1)) and swam with the highest whole-cycle propulsive efficiency (eta(wc)=55%). The fast-swimming W. cylindrica had the most streamlined body shape but produced an intermediate weight-specific thrust (T=30 N kg(-1)) and swam with an intermediate whole-cycle propulsive efficiency (eta(wc)=52%). Weak swimming performance variables in the slow-swimming C. affinis, including the lowest weight-specific thrust (T=25 N kg(-1)) and lowest whole-cycle propulsive efficiency (eta(wc)=47%), may be compensated by low energetic requirements. Swimming performance variables are considered in the context of ecological roles and evolutionary relationships.

  16. Two-stage earth-to-orbit vehicles with dual-fuel propulsion in the Orbiter

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1982-01-01

    Earth-to-orbit vehicle studies of future replacements for the Space Shuttle are needed to guide technology development. Previous studies that have examined single-stage vehicles have shown advantages for dual-fuel propulsion. Previous two-stage system studies have assumed all-hydrogen fuel for the Orbiters. The present study examined dual-fuel Orbiters and found that the system dry mass could be reduced with this concept. The possibility of staging the booster at a staging velocity low enough to allow coast-back to the launch site is shown to be beneficial, particularly in combination with a dual-fuel Orbiter. An engine evaluation indicated the same ranking of engines as did a previous single-stage study. Propane and RP-1 fuels result in lower vehicle dry mass than methane, and staged-combustion engines are preferred over gas-generator engines. The sensitivity to the engine selection is less for two-stage systems than for single-stage systems.

  17. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Jayesh; Hess, Fernando; Horzen, Wessel van

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability ofmore » implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO 2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO 2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and process steam

  18. High-Energy Space Propulsion Based on Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Freeze, B.; Kirkpatrick, R. C.; Landrum, B.; Gerrish, H.; Schmidt, G. R.

    1999-01-01

    A conceptual study is made to explore the feasibility of applying magnetized target fusion (MTF) to space propulsion for omniplanetary travel. Plasma-jet driven MTF not only is highly amenable to space propulsion, but also has a number of very attractive features for this application: 1) The pulsed fusion scheme provides in situ a very dense hydrogenous liner capable of moderating the neutrons, converting more than 97% of the neutron energy into charged particle energy of the fusion plasma available for propulsion. 2) The fusion yield per pulse can be maintained at an attractively low level (< 1 GJ) despite a respectable gain in excess of 70. A compact, low-weight engine is the result. An engine with a jet power of 25 GW, a thrust of 66 kN, and a specific impulse of 77,000 s, can be achieved with an overall engine mass of about 41 metric tons, with a specific power density of 605 kW/kg, and a specific thrust density of 1.6 N/kg. The engine is rep-rated at 40 Hz to provide this power and thrust level. At a practical rep-rate limit of 200 Hz, the engine can deliver 128 GW jet power and 340 kN of thrust, at specific power and thrust density of 1,141 kW/kg and 3 N/kg respectively. 3) It is possible to operate the magnetic nozzle as a magnetic flux compression generator in this scheme, while attaining a high nozzle efficiency of 80% in converting the spherically radial momentum of the fusion plasma to an axial impulse. 4) A small fraction of the electrical energy generated from the flux compression is used directly to recharge the capacitor bank and other energy storage equipment, without the use of a highvoltage DC power supply. A separate electrical generator is not necessary. 5) Due to the simplicity of the electrical circuit and the components, involving mainly inductors, capacitors, and plasma guns, which are connected directly to each other without any intermediate equipment, a high rep-rate (with a maximum of 200 Hz) appears practicable. 6) All fusion related

  19. Carbon-13 and proton nuclear magnetic resonance analysis of shale-derived refinery products and jet fuels and of experimental referee broadened-specification jet fuels

    NASA Technical Reports Server (NTRS)

    Dalling, D. K.; Bailey, B. K.; Pugmire, R. J.

    1984-01-01

    A proton and carbon-13 nuclear magnetic resonance (NMR) study was conducted of Ashland shale oil refinery products, experimental referee broadened-specification jet fuels, and of related isoprenoid model compounds. Supercritical fluid chromatography techniques using carbon dioxide were developed on a preparative scale, so that samples could be quantitatively separated into saturates and aromatic fractions for study by NMR. An optimized average parameter treatment was developed, and the NMR results were analyzed in terms of the resulting average parameters; formulation of model mixtures was demonstrated. Application of novel spectroscopic techniques to fuel samples was investigated.

  20. PROPULSION AND POWER RAPID RESPONSE RESEARCH AND DEVELOPMENT (R&D) SUPPORT. Delivery Order 0011: Production Demonstration and Laboratory Evaluation of R-8 and R-8X Hydroprocessed Renewable Jet (HRJ) Fuel for the DoD Alternative Fuels Program

    DTIC Science & Technology

    2010-05-01

    alternative fuel from halophyte (Salicornia oil from sea plants) was also produced by the Syntroleum Corporation and termed R- 8X. Syntroleum processed...these bio- oils without catalyst change-out or processing optimization. Only a portion of the fit for purpose and characterization testing was...jet fuel, up to 50 volume %, just as F-T SPK is allowed to be used in MIL-DTL-83133F. b) The R-8 feedstock of fats, oils , and grease (FOG) was

  1. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  2. Experimental investigation of acoustic self-oscillation influence on decay process for underexpanded supersonic jet in submerged space

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. Yu.; Arefyev, K. Yu.; Ilchenko, M. A.

    2016-07-01

    Intensification of mixing between the gaseous working body ejected through a jet nozzle with ambient medium is an important scientific and technical problem. Effective mixing can increase the total efficiency of power and propulsion apparatuses. The promising approach, although poorly studied, is generation of acoustic self-oscillation inside the jet nozzle: this impact might enhance the decay of a supersonic jet and improve the mixing parameters. The paper presents peculiar properties of acoustic self-excitation in jet nozzle. The paper presents results of experimental study performed for a model injector with a set of plates placed into the flow channel, enabling the excitation of acoustic self-oscillations. The study reveals the regularity of under-expanded supersonic jet decay in submerged space for different flow modes. Experimental data support the efficiency of using the jet nozzle with acoustic self-oscillation in application to the systems of gas fuel supply. Experimental results can be used for designing new power apparatuses for aviation and space industry and for process plants.

  3. Modeling of gas turbine - solid oxide fuel cell systems for combined propulsion and power on aircraft

    NASA Astrophysics Data System (ADS)

    Waters, Daniel Francis

    This dissertation investigates the use of gas turbine (GT) engine integrated solid oxide fuel cells (SOFCs) to reduce fuel burn in aircraft with large electrical loads like sensor-laden unmanned air vehicles (UAVs). The concept offers a number of advantages: the GT absorbs many SOFC balance of plant functions (supplying fuel, air, and heat to the fuel cell) thereby reducing the number of components in the system; the GT supplies fuel and pressurized air that significantly increases SOFC performance; heat and unreacted fuel from the SOFC are recaptured by the GT cycle offsetting system-level losses; good transient response of the GT cycle compensates for poor transient response of the SOFC. The net result is a system that can supply more electrical power more efficiently than comparable engine-generator systems with only modest (<10%) decrease in power density. Thermodynamic models of SOFCs, catalytic partial oxidation (CPOx) reactors, and three GT engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed that account for equilibrium gas phase and electrochemical reaction, pressure losses, and heat losses in ways that capture `down-the-channel' effects (a level of fidelity necessary for making meaningful performance, mass, and volume estimates). Models are created in a NASA-developed environment called Numerical Propulsion System Simulation (NPSS). A sensitivity analysis identifies important design parameters and translates uncertainties in model parameters into uncertainties in overall performance. GT-SOFC integrations reduce fuel burn 3-4% in 50 kW systems on 35 kN rated engines (all types) with overall uncertainty <1%. Reductions of 15-20% are possible at the 200 kW power level. GT-SOFCs are also able to provide more electric power (factors >3 in some cases) than generator-based systems before encountering turbine inlet temperature limits. Aerodynamic drag effects of engine-airframe integration are by far the most important

  4. Evaluation of 10 Jet Fuels in the Salmonella-Escherichia coli Mutagenicity Assay

    DTIC Science & Technology

    2016-09-07

    4658), Valero 25% Aromatic JP8 (POSF 8457), KiOR Hydrotreated Kerosene/ Bio -Kerosene (POSF 10327), ARA ReadiJet (POSF 10328), Amyris Farnesane (POSF...JP8 (POSF 8457) * KiOR Hydrotreated Kerosene/ Bio -Kerosene (POSF 10327) * ARA ReadiJet (POSF 10328) * Amyris Farnesane (POSF 10329) * Virent HDO-SK...fuel/plate. Due to evidence of toxicity, KiOR Hydrotreated Kerosene/ Bio -Kerosene (POSF 10327) and Virent HDO-SK (POSF 10330) were used at

  5. Detection of DNA damage in workers exposed to JP-8 jet fuel.

    PubMed

    Krieg, Edward F; Mathias, Patricia I; Toennis, Christine A; Clark, John C; Marlow, Kate L; B'hymer, Clayton; Singh, Narendra P; Gibson, Roger L; Butler, Mary Ann

    2012-09-18

    The genotoxicity of jet propulsion fuel 8 (JP-8) was assessed in the leukocytes of archived blood specimens from U.S. Air Force personnel using the comet assay. No differences in mean comet assay measurements were found between low, moderate, and high exposure groups before or after a 4h work shift. Before the work shift, mean tail DNA and mean tail (Olive) moment increased as the concentration of benzene measured in end-exhaled breath increased, indicating that prior environmental or work-related exposures to benzene produced DNA damage. The number of cells with highly damaged DNA decreased as the pre-shift benzene concentration in breath increased. It is not clear why the decrease is occurring. Mean tail DNA and mean tail (Olive) moment decreased as the concentrations of benzene and naphthalene measured in breath immediately after the work shift increased. These inverse relationships may reflect a slower rate of absorption or a faster rate of expiration of benzene in the lung. The number of cells with highly damaged DNA increased as the concentration of urinary (2-methoxyethoxy)acetic acid (MEAA) increased. This relationship was not seen in urinary MEAA adjusted for creatinine. MEAA is a metabolite of the deicing agent 2-(2-methoxyethoxy)ethanol contained in JP-8. MEAA or a component of JP-8 correlated with MEAA may have a toxic effect on DNA. Published by Elsevier B.V.

  6. Transverse liquid fuel jet breakup, burning, and ignition. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Li, Hsi-Shang

    1990-01-01

    An analytical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion. Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, were used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic cross flow. Typical flame structures and concentration profiles were calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integration reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

  7. Volatile Organic Compounds in Blood as Biomarkers of Exposure to JP-8 Jet Fuel Among US Air Force Personnel.

    PubMed

    Maule, Alexis L; Proctor, Susan P; Blount, Benjamin C; Chambers, David M; McClean, Michael D

    2016-01-01

    This study aimed to evaluate blood volatile organic compound (VOC) levels as biomarkers of occupational jet propulsion fuel 8 (JP-8) exposure while controlling for smoking. Among 69 Air Force personnel, post-shift blood samples were analyzed for components of JP-8, including ethylbenzene, toluene, o-xylene, and m/p-xylene, and for the smoking biomarker, 2,5-dimethylfuran. JP-8 exposure was characterized based on self-report and measured work shift levels of total hydrocarbons in personal air. Multivariate regression was used to evaluate the relationship between JP-8 exposure and post-shift blood VOCs while controlling for potential confounding from smoking. Blood VOC concentrations were higher among US Air Force personnel who reported JP-8 exposure and work shift smoking. Breathing zone total hydrocarbons was a significant predictor of VOC blood levels, after controlling for smoking. These findings support the use of blood VOCs as a biomarker of occupational JP-8 exposure.

  8. Novel characterization of the aerosol and gas-phase composition of aerosolized jet fuel.

    PubMed

    Tremblay, Raphael T; Martin, Sheppard A; Fisher, Jeffrey W

    2010-04-01

    Few robust methods are available to characterize the composition of aerosolized complex hydrocarbon mixtures. The difficulty in separating the droplets from their surrounding vapors and preserving their content is challenging, more so with fuels, which contain hydrocarbons ranging from very low to very high volatility. Presented here is a novel method that uses commercially available absorbent tubes to measure a series of hydrocarbons in the vapor and droplets from aerosolized jet fuels. Aerosol composition and concentrations were calculated from the differential between measured total (aerosol and gas-phase) and measured gas-phase concentrations. Total samples were collected directly, whereas gas-phase only samples were collected behind a glass fiber filter to remove droplets. All samples were collected for 1 min at 400 ml min(-1) and quantified using thermal desorption-gas chromatography-mass spectrometry. This method was validated for the quantification of the vapor and droplet content from 4-h aerosolized jet fuel exposure to JP-8 and S-8 at total concentrations ranging from 200 to 1000 mg/m(3). Paired samples (gas-phase only and total) were collected every approximately 40 min. Calibrations were performed with neat fuel to calculate total concentration and also with a series of authentic standards to calculate specific compound concentrations. Accuracy was good when compared to an online GC-FID (gas chromatography-flame ionization detection) technique. Variability was 15% or less for total concentrations, the sum of all gas-phase compounds, and for most specific compound concentrations in both phases. Although validated for jet fuels, this method can be adapted to other hydrocarbon-based mixtures.

  9. FIELD-PRODUCED JP-8 STANDARD FOR CALIBRATION OF LOWER EXPLOSIVE LIMIT METERS USED BY JET FUEL TANK MAINTENANCE PERSONNEL

    EPA Science Inventory

    Thousands of military personnel and tens of thousands of civilian workers perform jet fuel tank entry procedures. Before entering the confined space of a jet fuel tank, OSHA regulations (29CFR1910.146) require the internal atmosphere be tested with a calibrated, direct-reading...

  10. Exhaust-stack nozzle area and shape for individual cylinder exhaust-gas jet-propulsion system

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Turner, Richard; Voss, Fred; Humble, Leroy V

    1943-01-01

    This report presents the results of an investigation conducted on the effect of exhaust-stack nozzle area, shape, and length on engine power, jet thrust, and gain in net thrust (engine propeller plus jet). Single-cylinder engine data were obtained using three straight stacks 25, 44, and 108 inches in length; an S-shaped stack, a 90 degree bend, a 180 degree bend, and a short straight stack having a closed branch faired into it. Each stack was fitted with nozzles varying in exit area from 0.91 square inch to the unrestricted area of the stack of 4.20 square inches. The engine was generally operated over a range of engine speeds from 1300 to 2100 r.p.m, inlet-manifold pressures from 22 to 30 inches of mercury absolute, and a fuel-air ratio of 0.08. The loss in engine power, the jet thrust, and the gain in net thrust are correlated in terms of several simple parameters. An example is given for determining the optimum nozzle area and the overall net thrust.

  11. Nuclear Cryogenic Propulsion Stage (NCPS) Fuel Element Testing in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2017-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). Last year NTREES was successfully used to satisfy a testing milestone for the Nuclear Cryogenic Propulsion Stage (NCPS) project and met or exceeded all required objectives.

  12. Stochastic techno-economic analysis of alcohol-to-jet fuel production.

    PubMed

    Yao, Guolin; Staples, Mark D; Malina, Robert; Tyner, Wallace E

    2017-01-01

    Alcohol-to-jet (ATJ) is one of the technical feasible biofuel technologies. It produces jet fuel from sugary, starchy, and lignocellulosic biomass, such as sugarcane, corn grain, and switchgrass, via fermentation of sugars to ethanol or other alcohols. This study assesses the ATJ biofuel production pathway for these three biomass feedstocks, and advances existing techno-economic analyses of biofuels in three ways. First, we incorporate technical uncertainty for all by-products and co-products though statistical linkages between conversion efficiencies and input and output levels. Second, future price uncertainty is based on case-by-case time-series estimation, and a local sensitivity analysis is conducted with respect to each uncertain variable. Third, breakeven price distributions are developed to communicate the inherent uncertainty in breakeven price. This research also considers uncertainties in utility input requirements, fuel and by-product outputs, as well as price uncertainties for all major inputs, products, and co-products. All analyses are done from the perspective of a private firm. The stochastic dominance results of net present values (NPV) and breakeven price distributions show that sugarcane is the lowest cost feedstock over the entire range of uncertainty with the least risks, followed by corn grain and switchgrass, with the mean breakeven jet fuel prices being $0.96/L ($3.65/gal), $1.01/L ($3.84/gal), and $1.38/L ($5.21/gal), respectively. The variation of revenues from by-products in corn grain pathway can significantly impact its profitability. Sensitivity analyses show that technical uncertainty significantly impacts breakeven price and NPV distributions. Technical uncertainty is critical in determining the economic performance of the ATJ fuel pathway. Technical uncertainty needs to be considered in future economic analyses. The variation of revenues from by-products plays a significant role in profitability. With the distribution of breakeven

  13. An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Kamal; Sung, Chih-Jen

    2010-04-15

    Ignition delay times of Jet-A/oxidizer and JP-8/oxidizer mixtures are measured using a heated rapid compression machine at compressed charge pressures corresponding to 7, 15, and 30 bar, compressed temperatures ranging from 650 to 1100 K, and equivalence ratios varying from 0.42 to 2.26. When using air as the oxidant, two oxidizer-to-fuel mass ratios of 13 and 19 are investigated. To achieve higher compressed temperatures for fuel lean mixtures (equivalence ratio of {proportional_to}0.42), argon dilution is also used and the corresponding oxidizer-to-fuel mass ratio is 84.9. For the conditions studied, experimental results show two-stage ignition characteristics for both Jet-A and JP-8.more » Variations of both the first-stage and overall ignition delays with compressed temperature, compressed pressure, and equivalence ratio are reported and correlated. It is noted that the negative temperature coefficient phenomenon becomes more prominent at relatively lower pressures. Furthermore, the first-stage-ignition delay is found to be less sensitive to changes in equivalence ratio and primarily dependent on temperature. (author)« less

  14. Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milbrandt, A.; Kinchin, C.; McCormick, R.

    The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.

  15. Experimental Investigation and Modeling of Scale Effects in Micro Jet Pumps

    NASA Astrophysics Data System (ADS)

    Gardner, William Geoffrey

    2011-12-01

    Since the mid-1990s there has been an active effort to develop hydrocarbon-fueled power generation and propulsion systems on the scale of centimeters or smaller. This effort led to the creation and expansion of a field of research focused around the design and reduction to practice of Power MEMS (microelectromechanical systems) devices, beginning first with microscale jet engines and a generation later more broadly encompassing MEMS devices which generate power or pump heat. Due to small device scale and fabrication techniques, design constraints are highly coupled and conventional solutions for device requirements may not be practicable. This thesis describes the experimental investigation, modeling and potential applications for two classes of microscale jet pumps: jet ejectors and jet injectors. These components pump fluids with no moving parts and can be integrated into Power MEMS devices to satisfy pumping requirements by supplementing or replacing existing solutions. This thesis presents models developed from first principles which predict losses experienced at small length scales and agree well with experimental results. The models further predict maximum achievable power densities at the onset of detrimental viscous losses.

  16. Propane-Fueled Jet Engine

    NASA Astrophysics Data System (ADS)

    Farwell, D. A.; Svenson, A. J.; Ramsier, R. D.

    2001-04-01

    We present our recent efforts to design, construct, and test a gas turbine, or jet, engine. Our design utilizes a turbocharger and ignition system from an automobile, and a flame tube/reaction chamber unit fabricated by hand from stainless steel. Once the engine is running, it is completely self-sustaining as long as there is a fuel supply, which in our case is propane. Air is forced into the intake where it is compressed and then injected into the combustion chamber where it is mixed with propane. The spark plugs ignite the air-propane mixture which burns to produce thrust at the exhaust. We have performed operational tests under different environmental conditions and with several turbochargers. We are currently working on adding a lubrication system to the engine, and will discuss our plan to experiment with the reaction chamber and flame tube design in an effort to improve performance and efficiency. *Corresponding author: rex@uakron.edu

  17. Optimizing carbon efficiency of jet fuel range alkanes from cellulose co-fed with polyethylene via catalytically combined processes.

    PubMed

    Zhang, Xuesong; Lei, Hanwu; Zhu, Lei; Zhu, Xiaolu; Qian, Moriko; Yadavalli, Gayatri; Yan, Di; Wu, Joan; Chen, Shulin

    2016-08-01

    Enhanced carbon yields of renewable alkanes for jet fuels were obtained through the catalytic microwave-induced co-pyrolysis and hydrogenation process. The well-promoted ZSM-5 catalyst had high selectivity toward C8-C16 aromatic hydrocarbons. The raw organics with improved carbon yield (∼44%) were more principally lumped in the jet fuel range at the catalytic temperature of 375°C with the LDPE to cellulose (representing waste plastics to lignocellulose) mass ratio of 0.75. It was also observed that the four species of raw organics from the catalytic microwave co-pyrolysis were almost completely converted into saturated hydrocarbons; the hydrogenation process was conducted in the n-heptane medium by using home-made Raney Ni catalyst under a low-severity condition. The overall carbon yield (with regards to co-reactants of cellulose and LDPE) of hydrogenated organics that mostly match jet fuels was sustainably enhanced to above 39%. Meanwhile, ∼90% selectivity toward jet fuel range alkanes was attained. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Partitioning behavior of aromatic components in jet fuel into diverse membrane-coated fibers.

    PubMed

    Baynes, Ronald E; Xia, Xin-Rui; Barlow, Beth M; Riviere, Jim E

    2007-11-01

    Jet fuel components are known to partition into skin and produce occupational irritant contact dermatitis (OICD) and potentially adverse systemic effects. The purpose of this study was to determine how jet fuel components partition (1) from solvent mixtures into diverse membrane-coated fibers (MCFs) and (2) from biological media into MCFs to predict tissue distribution. Three diverse MCFs, polydimethylsiloxane (PDMS, lipophilic), polyacrylate (PA, polarizable), and carbowax (CAR, polar), were selected to simulate the physicochemical properties of skin in vivo. Following an appropriate equilibrium time between the MCF and dosing solutions, the MCF was injected directly into a gas chromatograph/mass spectrometer (GC-MS) to quantify the amount that partitioned into the membrane. Three vehicles (water, 50% ethanol-water, and albumin-containing media solution) were studied for selected jet fuel components. The more hydrophobic the component, the greater was the partitioning into the membranes across all MCF types, especially from water. The presence of ethanol as a surrogate solvent resulted in significantly reduced partitioning into the MCFs with discernible differences across the three fibers based on their chemistries. The presence of a plasma substitute (media) also reduced partitioning into the MCF, with the CAR MCF system being better correlated to the predicted partitioning of aromatic components into skin. This study demonstrated that a single or multiple set of MCF fibers may be used as a surrogate for octanol/water systems and skin to assess partitioning behavior of nine aromatic components frequently formulated with jet fuels. These diverse inert fibers were able to assess solute partitioning from a blood substitute such as media into a membrane possessing physicochemical properties similar to human skin. This information may be incorporated into physiologically based pharmacokinetic (PBPK) models to provide a more accurate assessment of tissue dosimetry of

  19. Opposed jet diffusion flames of nitrogen-diluted hydrogen vs air - Axial LDA and CARS surveys; fuel/air rates at extinction

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Jarrett, Olin, Jr.; Antcliff, R. R.

    1989-01-01

    An experimental study of H-air counterflow diffusion flames (CFDFs) is reported. Coaxial tubular opposed jet burners were used to form dish-shaped CFDFs centered by opposing laminar jets of H2/N2 and air in an argon bath at 1 atm. Jet velocities for extinction and flame restoration limits are shown versus input H2 concentration. LDA velocity data and CARS temperature and absolute N2, O2 density data give detailed flame structure on the air side of the stagnation point. The results show that air jet velocity is a more fundamental and appropriate measure of H2-air CFDF extinction than input H2 mass flux or fuel jet velocity. It is proposed that the observed constancy of air jet velocity for fuel mixtures containing 80 to 100 percent H2 measure a maximum, kinetically controlled rate at which the CFDF can consume oxygen in air. Fuel velocity mainly measures the input jet momentum required to center an H2/N2 versus air CFDF.

  20. Subsonic Round and Rectangular Twin Jet Flow Effects

    NASA Technical Reports Server (NTRS)

    Bozak, Rick; Wernet, Mark

    2014-01-01

    Subsonic and supersonic aircraft concepts proposed by NASAs Fundamental Aeronautics Program have integrated propulsion systems with asymmetric nozzles. The asymmetry in the exhaust of these propulsion systems creates asymmetric flow and acoustic fields. The flow asymmetries investigated in the current study are from two parallel round, 2:1, and 8:1 aspect ratio rectangular jets at the same nozzle conditions. The flow field was measured with streamwise and cross-stream particle image velocimetry (PIV). A large dataset of single and twin jet flow field measurements was acquired at subsonic jet conditions. The effects of twin jet spacing and forward flight were investigated. For round, 2:1, and 8:1 rectangular twin jets at their closest spacings, turbulence levels between the two jets decreased due to enhanced jet mixing at near static conditions. When the flight Mach number was increased to 0.25, the flow around the twin jet model created a velocity deficit between the two nozzles. This velocity deficit diminished the effect of forward flight causing an increase in turbulent kinetic energy relative to a single jet. Both of these twin jet flow field effects decreased with increasing twin jet spacing relative to a single jet. These variations in turbulent kinetic energy correlate with changes in far-field sound pressure level.

  1. A new approach for bio-jet fuel generation from palm oil and limonene in the absence of hydrogen.

    PubMed

    Zhang, Jingjing; Zhao, Chen

    2015-12-18

    The traditional methodology includes a carbon-chain shortening strategy to produce bio-jet fuel from lipids via a two-stage process with hydrogen. Here, we propose a new solution using a carbon-chain filling strategy to convert C10 terpene and lipids to jet fuel ranged hydrocarbons with aromatic hydrocarbon ingredients in the absence of hydrogen.

  2. Applications of photoacoustic techniques to the study of jet fuel residue

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.

    1983-01-01

    It has been known for many years that fuels for jet aircraft engines demonstrate thermal instability. One manifestation of this thermal instability is the formation of deleterious fuel-derived thermally-induced deposits on surfaces of the aircraft's fuel-handling system. The results of an investigation of the feasibility of applying photoacoustic techniques to the study of the physical properties of these thermal deposits are presented. Both phase imaging and magnitude imaging and spectroscopy were investigated. It is concluded that the use of photoacoustic techniques in the study of films of the type encountered in this investigation is not practical.

  3. Reflectors used to calibrate the DC-8's AirSAR seen here setup in the Costa Rican rain forest by scientist Paul Siqueira from NASA’s Jet Propulsion Lab

    NASA Image and Video Library

    2004-03-05

    Reflectors setup in the La Selva region of the Costa Rican rain forest by scientist Paul Siqueira from NASA’s Jet Propulsion Lab. These reflectors are used by JPL scientists onboard Dryden's DC-8 aircraft to calibrate the Airborne Synthetic Aperture Radar (AirSAR) system. Scientists place these reflectors at known points on the ground, allowing researchers onboard the aircraft to verify their data. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. The radar, developed by NASA's Jet Propulsion Laboratory, can penetrate clouds and also collect data at night. Its high-resolution sensors operate at multiple wavelengths and modes, allowing AirSAR to see beneath treetops, through thin sand, and dry snow pack. AirSAR's 2004 campaign is a collaboration of many U.S. and Central American institutions and scientists, including NASA; the National Science Foundation; the Smithsonian Institution; National Geographic; Conservation International; the Organization of Tropical Studies; the Central American Commission for Environment and Development; and the Inter-American Development Bank.

  4. JPL-20180430-JPLf-0001-Vice President Pence Visits NASA Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-30

    Vice President Mike Pence toured NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California on Saturday, April 28 with his wife, Karen, and their daughter, Charlotte. JPL is the birthplace of numerous past, present and future robotic missions. Pence saw and heard more about JPL missions, which support the nation’s goals of furthering exploration of the Moon and Mars. JPL Director Mike Watkins led the tour for Pence and his guests. Vice President Pence toured JPL’s Mission Control where engineers communicate with spacecraft across the solar system through NASA’s Deep Space Network. While there, Charlotte Pence uplinked commands to the Mars Curiosity rover to execute its next science activities. The signal took about seven minutes to reach the rover, which is about 80-million miles from Earth. Pence also saw the Spacecraft Assembly Facility, where the Mars 2020 mission hardware is being assembled in a giant “clean room.” Mars 2020 will not only look for signs of habitable conditions on Mars in the ancient past, but will also search for signs of past microbial life itself.

  5. Measurement of the Diffusion Coefficient of Water in RP-3 and RP-5 Jet Fuels Using Digital Holography Interferometry

    NASA Astrophysics Data System (ADS)

    Li, Chaoyue; Feng, Shiyu; Shao, Lei; Pan, Jun; Liu, Weihua

    2018-04-01

    The diffusion coefficient of water in jet fuel was measured employing double-exposure digital holographic interferometry to clarify the diffusion process and make the aircraft fuel system safe. The experimental method and apparatus are introduced in detail, and the digital image processing program is coded in MATLAB according to the theory of the Fourier transform. At temperatures ranging from 278.15 K to 333.15 K in intervals of 5 K, the diffusion coefficient of water in RP-3 and RP-5 jet fuels ranges from 2.6967 × 10 -10 m2·s-1 to 8.7332 × 10 -10 m2·s-1 and from 2.3517 × 10 -10 m2·s-1 to 8.0099 × 10-10 m2·s-1, respectively. The relationship between the measured diffusion coefficient and temperature can be well fitted by the Arrhenius law. The diffusion coefficient of water in RP-3 jet fuel is higher than that of water in RP-5 jet fuel at the same temperature. Furthermore, the viscosities of the two jet fuels were measured and found to be expressible in the form of the Arrhenius equation. The relationship among the diffusion coefficient, viscosity and temperature is analyzed according to the classic prediction model, namely the Stokes-Einstein correlation, and this correlation is further revised via experimental data to obtain a more accurate predication result.

  6. Supersonic cruise vehicle research/business jet

    NASA Technical Reports Server (NTRS)

    Kelly, R. J.

    1980-01-01

    A comparison study of a GE-21 variable propulsion system with a Multimode Integrated Propulsion System (MMIPS) was conducted while installed in small M = 2.7 supersonic cruise vehicles with military and business jet possibilities. The 1984 state of the art vehicles were sized to the same transatlantic range, takeoff distance, and sideline noise. The results indicate the MMIPS would result in a heavier vehicle with better subsonic cruise performance. The MMIPS arrangement with one fan engine and two satellite turbojet engines would not be appropriate for a small supersonic business jet because of design integration penalties and lack of redundancy.

  7. FAR-TECH's Nanoparticle Plasma Jet System and its Application to Disruptions, Deep Fueling, and Diagnostics

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2012-10-01

    Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.

  8. Fuel-rich catalytic combustion of Jet-A fuel-equivalence ratios 5.0 to 8.0

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Gracia-Salcedo, Carmen M.

    1989-01-01

    Fuel-rich catalytic combustion (E.R. greater than 5.0) is a unique technique for preheating a hydrocarbon fuel to temperatures much higher than those obtained by conventional heat exchangers. In addition to producing very reactive molecules, the process upgrades the structure of the fuel by the formation of hydrogen and smaller hydrocarbons and produces a cleaner burning fuel by removing some of the fuel carbon from the soot formation chain. With fuel-rich catalytic combustion as the first stage of a two stage combustion system, enhanced fuel properties can be utilized by both high speed engines, where time for ignition and complete combustion is limited, and engines where emission of thermal NO sub x is critical. Two-stage combustion (rich-lean) has been shown to be effective for NO sub x reduction in stationary burners where residence times are long enough to burn-up the soot formed in the first stage. Such residence times are not available in aircraft engines. Thus, the soot-free nature of the present process is critical for high speed engines. The successful application of fuel-rich catalytic combustion to Jet-A, a multicomponent fuel used in gas turbine combustors, is discusssed.

  9. Attitude Control Propulsion Components, Volume 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Attitude control propulsion components are described, including hydrazine thrusters, hydrazine thruster and cold gas jet valves, and pressure and temperature transducers. Component-ordered data are presented in tabular form; the manufacturer and specific space program are included.

  10. PROTOZOA IN SUBSURFACE SEDIMENTS FROM SITE CONTAMI- NATED WITH AVIATION GASOLINE OR JET FUEL

    EPA Science Inventory

    Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. Boreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation ga...

  11. Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.; Howard, Richard H.; Rader, Jordan D.

    This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examinationmore » facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.« less

  12. Oscillatory bursting of gel fuel droplets in a reacting environment.

    PubMed

    Miglani, Ankur; Nandagopalan, Purushothaman; John, Jerin; Baek, Seung Wook

    2017-06-12

    Understanding the combustion behavior of gel fuel droplets is pivotal for enhancing burn rates, lowering ignition delay and improving the operational performance of next-generation propulsion systems. Vapor jetting in burning gel fuel droplets is a crucial process that enables an effective transport (convectively) of unreacted fuel from the droplet domain to the flame zone and accelerates the gas-phase mixing process. Here, first we show that the combusting ethanol gel droplets (organic gellant laden) exhibit a new oscillatory jetting mode due to aperiodic bursting of the droplet shell. Second, we show how the initial gellant loading rate (GLR) leads to a distinct shell formation which self-tunes temporally to burst the droplet at different frequencies. Particularly, a weak-flexible shell is formed at low GLR that undergoes successive rupture cascades occurring in same region of the droplet. This region weakens due to repeated ruptures and causes droplet bursting at progressively higher frequencies. Contrarily, high GLRs facilitate a strong-rigid shell formation where consecutive cascades occur at scattered locations across the droplet surface. This leads to droplet bursting at random frequencies. This method of modulating jetting frequency would enable an effective control of droplet trajectory and local fuel-oxidizer ratio in any gel-spray based energy formulation.

  13. Combustion Temperature Measurement by Spontaneous Raman Scattering in a Jet-A Fueled Gas Turbine Combustor Sector

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; DeGroot, Wilhelmus A.; Locke, Randy J.; Anderson, Robert C.

    2002-01-01

    Spontaneous vibrational Raman scattering was used to measure temperature in an aviation combustor sector burning jet fuel. The inlet temperature ranged from 670 K (750 F) to 756 K (900 F) and pressures from 13 to 55 bar. With the exception of a discrepancy that we attribute to soot, good agreement was seen between the Raman-derived temperatures and the theoretical temperatures calculated from the inlet conditions. The technique used to obtain the temperature uses the relationship between the N2 anti-Stokes and Stokes signals, within a given Raman spectrum. The test was performed using a NASA-concept fuel injector and Jet-A fuel over a range of fuel/air ratios. This work represents the first such measurements in a high-pressure, research aero-combustor facility.

  14. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels.

    PubMed

    Lobo, Prem; Hagen, Donald E; Whitefield, Philip D

    2011-12-15

    Rising fuel costs, an increasing desire to enhance security of energy supply, and potential environmental benefits have driven research into alternative renewable fuels for commercial aviation applications. This paper reports the results of the first measurements of particulate matter (PM) emissions from a CFM56-7B commercial jet engine burning conventional and alternative biomass- and, Fischer-Tropsch (F-T)-based fuels. PM emissions reductions are observed with all fuels and blends when compared to the emissions from a reference conventional fuel, Jet A1, and are attributed to fuel properties associated with the fuels and blends studied. Although the alternative fuel candidates studied in this campaign offer the potential for large PM emissions reductions, with the exception of the 50% blend of F-T fuel, they do not meet current standards for aviation fuel and thus cannot be considered as certified replacement fuels. Over the ICAO Landing Takeoff Cycle, which is intended to simulate aircraft engine operations that affect local air quality, the overall PM number-based emissions for the 50% blend of F-T fuel were reduced by 34 ± 7%, and the mass-based emissions were reduced by 39 ± 7%.

  15. Physical and chemical behavior of flowing endothermic jet fuels

    NASA Astrophysics Data System (ADS)

    Ward, Thomas Arthur

    Hydrocarbon fuels have been used as cooling media for aircraft jet engines for decades. However, modern aircraft engines are reaching a practical heat transfer limit beyond which the convective heat transfer provided by fuels is no longer adequate. One solution is to use an endothermic fuel that absorbs heat through a series of pyrolytic chemical reactions. However, many of the physical and chemical processes involved in endothermic fuel degradation are not well understood. The purpose of this dissertation is to study different characteristics of endothermic fuels using experiments and computational models. In the first section, data from three flow experiments using heated Jet-A fuel and additives were analyzed (with the aid of CFD calculations) to study the effects of treated surfaces on surface deposition. Surface deposition is the primary impediment in creating an operational endothermic fuel heat exchanger system, because deposits can obstruct fuel pathways causing a catastrophic system failure. As heated fuel flows through a fuel system, trace species within the fuel react with dissolved O2 to form surface deposits. At relatively higher fuel temperatures, the dissolved O2 is depleted, and pyrolytic chemistry becomes dominant (at temperatures greater than ˜500 °C). In the first experiment, the dissolved O2 consumption of heated fuel was measured on different surface types over a range of temperatures. It is found that use of treated tubes significantly delays oxidation of the fuel. In the second experiment, the treated length of tubing was progressively increased, which varied the characteristics of the thermal-oxidative deposits formed. In the third experiment, pyrolytic surface deposition in either fully treated or untreated tubes is studied. It is found that the treated surface significantly reduced the formation of surface deposits for both thermal oxidative and pyrolytic degradation mechanisms. Moreover, it is found that the chemical reactions resulting

  16. The costs of production of alternative jet fuel: A harmonized stochastic assessment.

    PubMed

    Bann, Seamus J; Malina, Robert; Staples, Mark D; Suresh, Pooja; Pearlson, Matthew; Tyner, Wallace E; Hileman, James I; Barrett, Steven

    2017-03-01

    This study quantifies and compares the costs of production for six alternative jet fuel pathways using consistent financial and technical assumptions. Uncertainty was propagated through the analysis using Monte Carlo simulations. The six processes assessed were HEFA, advanced fermentation, Fischer-Tropsch, aqueous phase processing, hydrothermal liquefaction, and fast pyrolysis. The results indicate that none of the six processes would be profitable in the absence of government incentives, with HEFA using yellow grease, HEFA using tallow, and FT revealing the lowest mean jet fuel prices at $0.91/liter ($0.66/liter-$1.24/liter), $1.06/liter ($0.79/liter-$1.42/liter), and $1.15/liter ($0.95/liter-$1.39/liter), respectively. This study also quantifies plant performance in the United States with a Renewable Fuel Standard policy analysis. Results indicate that some pathways could achieve positive NPV with relatively high likelihood under existing policy supports, with HEFA and FPH revealing the highest probability of positive NPV at 94.9% and 99.7%, respectively, in the best-case scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Simulation model of the integrated flight/propulsion control system, displays, and propulsion system for ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Chung, W. Y. William; Borchers, Paul F.; Franklin, James A.

    1995-01-01

    A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.

  18. BREATH MEASUREMENT OF TOTAL BODY BURDEN OF JP-8 JET FUEL FOR EPIDEMIOLOGICAL STUDY

    EPA Science Inventory

    A complex epidemiological investigation of the effects of acute exposure to JP-8 jet fuel in the U.S. Air Force was performed through the study of about 350 human subjects across six Air Force bases. The focus was on fuels system maintenance personnel as the "exposed"...

  19. Aircraft dual-shaft jet engine with indirect action fuel flow controller

    NASA Astrophysics Data System (ADS)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with an aircraft single-jet engine's control system, based on a fuel flow controller. Considering the engine as controlled object and its thrust the most important operation effect, from the multitude of engine's parameters only its rotational speed n is measurable and proportional to its thrust, so engine's speed has become the most important controlled parameter. Engine's control system is based on fuel injection Qi dosage, while the output is engine's speed n. Based on embedded system's main parts' mathematical models, the author has described the system by its block diagram with transfer functions; furthermore, some Simulink-Matlab simulations are performed, concerning embedded system quality (its output parameters time behavior) and, meanwhile, some conclusions concerning engine's parameters mutual influences are revealed. Quantitative determinations are based on author's previous research results and contributions, as well as on existing models (taken from technical literature). The method can be extended for any multi-spool engine, single- or twin-jet.

  20. Ototoxic potential of JP-8 and a Fischer-Tropsch synthetic jet fuel following subacute inhalation exposure in rats.

    PubMed

    Fechter, Laurence D; Gearhart, Caroline A; Fulton, Sherry

    2010-07-01

    This study was undertaken to identify the ototoxic potential of two jet fuels presented alone and in combination with noise. Rats were exposed via a subacute inhalation paradigm to JP-8 jet fuel, a kerosene-based fuel refined from petroleum, and a synthetic fuel produced by the Fischer-Tropsch (FT) process. Although JP-8 contains small ( approximately 5%) concentrations of aromatic hydrocarbons some of which known to be ototoxic, the synthetic fuel does not. The objectives of this study were to identify a lowest observed adverse effect level and a no observed adverse effect level for each jet fuel and to provide some preliminary, but admittedly, indirect evidence concerning the possible role of the aromatic hydrocarbon component of petroleum-based jet fuel on hearing. Rats (n = 5-19) received inhalation exposure to JP-8 or to FT fuel for 4 h/day on five consecutive days at doses of 500, 1000, and 2000 mg/m(3). Additional groups were exposed to various fuel concentrations followed by 1 h of an octave band of noise, noise alone, or no exposure to fuel or noise. Significant dose-related impairment in the distortion product otoacoustic emissions (DPOAE) was seen in subjects exposed to combined JP-8 plus noise exposure when JP-8 levels of at least 1000 mg/m(3) were presented. No noticeable impairment was observed at JP-8 levels of 500 mg/m(3) + noise. In contrast to the effects of JP-8 on noise-induced hearing loss, FT exposure had no effect by itself or in combination with noise exposure even at the highest exposure level tested. Despite an observed loss in DPOAE amplitude seen only when JP-8 and noise were combined, there was no loss in auditory threshold or increase in hair cell loss in any exposure group.

  1. Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations.

    PubMed

    Tracey, Rebecca; Manikkam, Mohan; Guerrero-Bosagna, Carlos; Skinner, Michael K

    2013-04-01

    Environmental compounds have been shown to promote epigenetic transgenerational inheritance of disease. The current study was designed to determine if a hydrocarbon mixture involving jet fuel (JP-8) promotes epigenetic transgenerational inheritance of disease. Gestating F0 generation female rats were transiently exposed during the fetal gonadal development period. The direct exposure F1 generation had an increased incidence of kidney abnormalities in both females and males, prostate and pubertal abnormalities in males, and primordial follicle loss and polycystic ovarian disease in females. The first transgenerational generation is the F3 generation, and the jet fuel lineage had an increased incidence of primordial follicle loss and polycystic ovarian disease in females, and obesity in both females and males. Analysis of the jet fuel lineage F3 generation sperm epigenome identified 33 differential DNA methylation regions, termed epimutations. Observations demonstrate hydrocarbons can promote epigenetic transgenerational inheritance of disease and sperm epimutations, potential biomarkers for ancestral exposures. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Hydrocarbons (Jet Fuel JP-8) Induce Epigenetic Transgenerational Inheritance of Obesity, Reproductive Disease and Sperm Epimutations

    PubMed Central

    Tracey, Rebecca; Manikkam, Mohan; Guerrero-Bosagna, Carlos; Skinner, Michael K.

    2012-01-01

    Environmental compounds have been shown to promote epigenetic transgenerational inheritance of disease. The current study was designed to determine if a hydrocarbon mixture involving jet fuel (JP-8) promotes epigenetic transgenerational inheritance of disease. Gestating F0 generation female rats were transiently exposed during the fetal gonadal development period. The direct exposure F1 generation had an increased incidence of kidney abnormalities in both females and males, prostate and pubertal abnormalities in males, and primordial follicle loss and polycystic ovarian disease in females. The first transgenerational generation is the F3 generation, and the jet fuel lineage had an increased incidence of primordial follicle loss and polycystic ovarian disease in females, and obesity in both females and males. Analysis of the jet fuel lineage F3 generation sperm epigenome identified 33 differential DNA methylation regions, termed epimutations. Observations demonstrate hydrocarbons can promote epigenetic transgenerational inheritance of disease and sperm epimutations, potential biomarkers for ancestral exposures. PMID:23453003

  3. Topical absorption and toxicity studies of jet fuel hydrocarbons in skin

    NASA Astrophysics Data System (ADS)

    Muhammad, Faqir

    Kerosene-based fuels have been used for many decades. Over 2 million military and civilian personnel each year are occupationally exposed to various jet fuel mixtures. Dermatitis is one of the major health concerns associated with these exposures. In the past, separate absorption and toxicity studies have been conducted to find the etiology of such skin disorders. There was a need for integrated absorption and toxicity studies to define the causative constituents of jet fuel responsible for skin irritation. The focus of this thesis was to study the percutaneous absorption and to identify the hydrocarbons (HC) causing irritation in jet fuels so that preventive measures could be taken in the future. The initial study was conducted to understand the possible mechanism for additive interactions on hydrocarbon absorption/disposition in silastic, porcine skin and isolated perfused porcine skin flap (IPPSF) models. The influence of JP-8 (100) additives (MDA, BHT, 8Q405) on the dermal kinetics of 14C-naphthalene and 14C/3H-dodecane as markers of HC absorption was evaluated. This study indicated that individual and combination of additives influenced marker disposition in different membranes. MDA was a significant suppressor while BHT was a significant enhancer of naphthalene absorption in IPPSF. The 8Q405 significantly reduced naphthalene content in dosed silastic and skin indicating a direct interaction between additive and marker HC. Similarly, the individual MDA and BHT significantly retained naphthalene in the stratum corneum of porcine skin, but the combination of both of these additives statistically decreased the marker retention in the stratum corneum suggesting a potential biological interaction. This study concluded that all components of a chemical mixture should be assessed since the effects of single components administered alone or as pairs may be confounded when all are present in the complete mixture. However, this study indicated that the marker HC

  4. Fusion for Space Propulsion and Plasma Liner Driven MTF

    NASA Technical Reports Server (NTRS)

    Thio, Y.C. Francis; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a low atomic weight propellant cannot overcome the problem. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. There are similarities as well as differences at the system level between applying fusion to propulsion and to terrestrial electrical power generation. The differences potentially provide a wider window of opportunities for applying fusion to propulsion. For example, pulsed approaches to fusion may be attractive for the propulsion application. This is particularly so

  5. Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

    1984-01-01

    A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

  6. An evaluation of the relative fire hazards of jet A and jet B for commercial flight

    NASA Technical Reports Server (NTRS)

    Hibbard, R. R.; Hacker, P. T.

    1973-01-01

    The relative fire hazards of Jet A and Jet B aircraft fuels are evaluated. The evaluation is based on a consideration of the presence of and/or the generation of flammable mixtures in fuel systems, the ignition characteristics, and the flame propagation rates for the two fuel types. Three distinct aircraft operating regimes where fuel type may be a factor in fire hazards are considered. These are: (1) ground handling and refueling, (2) flight, and (3) crash. The evaluation indicates that the overall fire hazards for Jet A are less than for Jet B fuel.

  7. Cryogenic and Simulated Fuel Jet Breakup in Argon, Helium and Nitrogen Gas Flows

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1995-01-01

    Two-phase flow atomization of liquid nitrogen jets was experimentally investigated. They were co-axially injected into high-velocity gas flows of helium, nitrogen and argon, respectively, and atomized internally inside a two-fluid fuel nozzle. Cryogenic sprays with relatively high specific surface areas were produced, i.e., ratios of surface area to volume were fairly high. This was indicated by values of reciprocal Sauter mean diameters, RSMD's, as measured with a scattered- light scanning instrument developed at NASA Lewis Research Center. Correlating expressions were derived for the three atomizing gases over a gas temperature range of 111 to 422 K. Also, the correlation was extended to include waterjet breakup data that had been previously obtained in simulating fuel jet breakup in sonic velocity gas flow. The final correlating expression included a new dimensionless molecular-scale acceleration group. It was needed to correlate RSMD data, for LN2 and H2O sprays, with the fluid properties of the liquid jets and atomizing gases used in this investigation.

  8. Modelling and Analysis of a Regenerative Fuel Cell Propulsion System for a High Altitude Long Endurance UAV

    NASA Technical Reports Server (NTRS)

    Simpson, Mike B.

    2004-01-01

    In the search to bridge current gaps in surveillance and communication technologies, a new type of, aircraft is currently undergoing design. The idea of a High Altitude Long Endurance (HALE) aircraft is already a few decades old, but has only recently become realizable. A relay and collector of information at altitudes of 65,000 feet and higher could greatly improve standards of data exchange, homeland security, and research of the air, land and sea. NASA, as a major force in propulsion research, is exploring methods of powering an autonomous aircraft for days, weeks, or even months without refueling. Such a task requires not only high energy density, but also the ability to make use of renewable energy sources to regenerate power. Hydrogen is one of the most energy dense fuels available. Fuel cells make use of hydrogen by harnessing the energy released as it combines with oxygen to produce electricity and water. Fuel cells are envisioned to occupy future propulsion systems in cooperation with solar cells where the photovoltaic arrays harness sunlight into power which can electrolize the water byproduct into reusable hydrogen and oxygen. Modeling this type of system requires adequate assumptions of support hardware and daily transients in operation. The performance of a regenerative fuel cell propulsion system lies in the flight characteristics (altitude, density, temperature, latitude, etc.). Each subsystem is defined by many parameters which can be varied across wide ranges. Statistical and probabilistic analyses bring forward a wealth of information that can be utilized in the design process. This is necessary since the required technologies are relatively young and barely, if yet, capable. Once the modeling is complete, a design space exploration of this highly constrained scenario can be utilized to find the optimal design. The model will become an interactive environment with which experiments and tests can be run. When linked

  9. First Breakthrough for Future Air-Breathing Magneto-Plasma Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Göksel, B.; Mashek, I. Ch

    2017-04-01

    A new breakthrough in jet propulsion technology since the invention of the jet engine is achieved. The first critical tests for future air-breathing magneto-plasma propulsion systems have been successfully completed. In this regard, it is also the first time that a pinching dense plasma focus discharge could be ignited at one atmosphere and driven in pulse mode using very fast, nanosecond electrostatic excitations to induce self-organized plasma channels for ignition of the propulsive main discharge. Depending on the capacitor voltage (200-600 V) the energy input at one atmosphere varies from 52-320 J/pulse corresponding to impulse bits from 1.2-8.0 mNs. Such a new pulsed plasma propulsion system driven with one thousand pulses per second would already have thrust-to-area ratios (50-150 kN/m²) of modern jet engines. An array of thrusters could enable future aircrafts and airships to start from ground and reach altitudes up to 50km and beyond. The needed high power could be provided by future compact plasma fusion reactors already in development by aerospace companies. The magneto-plasma compressor itself was originally developed by Russian scientists as plasma fusion device and was later miniaturized for supersonic flow control applications. So the first breakthrough is based on a spin-off plasma fusion technology.

  10. Investigation of air solubility in jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Rupprecht, S. D.; Faeth, G. M.

    1981-01-01

    The solubility and density properties of saturated mixtures of fuels and gases were measured. The fuels consisted of Jet A and dodecane, the gases were air and nitrogen. The test range included pressures of 1.03 to 10.34 MPa and temperatures of 298 to 373 K. The results were correlated successfully, using the Soave equation of state. Over this test range, dissolved gas concentrations were roughly proportional to pressure and increased slightly with increasing temperature. Mixture density was relatively independent of dissolved gas concentration.

  11. A review of nuclear thermal propulsion carbide fuel corrosion and key issues

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; El-Genk, Mohamed S.

    1994-01-01

    Corrosion (mass loss) of carbide nuclear fuels due to their exposure to hot hydrogen in nuclear thermal propulsion engine systems greatly impacts the performance, thrust-to-weight and life of such systems. This report provides an overview of key issues and processes associated with the corrosion of carbide materials. Additionally, past pertinent development reactor test observations, as well as related experimental work and analysis modeling efforts are reviewed. At the conclusion, recommendations are presented, which provide the foundation for future corrosion modeling and verification efforts.

  12. Tactical Approaches for Trading Science Objectives Against Measurements and Mission Design: Science Traceability Techniques at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Nash, A. E., III

    2017-12-01

    The most common approaches to identifying the most effective mission design to maximize science return from a potential set of competing alternative design approaches are often inefficient and inaccurate. Recently, Team-X at the Jet Propulsion Laboratory undertook an effort to improve both the speed and quality of science - measurement - mission design trade studies. We will report on the methodology & processes employed and their effectiveness in trade study speed and quality. Our results indicate that facilitated subject matter expert peers are the keys to speed and quality improvements in the effectiveness of science - measurement - mission design trade studies.

  13. Mixing augmentation of transverse hydrogen jet by injection of micro air jets in supersonic crossflow

    NASA Astrophysics Data System (ADS)

    Anazadehsayed, A.; Barzegar Gerdroodbary, M.; Amini, Y.; Moradi, R.

    2017-08-01

    In this study, the influences of the micro air jet on the mixing of the sonic transverse hydrogen through micro-jets subjected to a supersonic crossflow are investigated. A three-dimensional numerical study has been performed to reveal the affects of micro air jet on mixing of the hydrogen jet in a Mach 4.0 crossflow with a global equivalence ratio of 0.5. Parametric studies were conducted on the various air jet conditions by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Complex jet interactions were found in the downstream region with a variety of flow features depending upon the angle of micro air jet. These flow features were found to have subtle effects on the mixing of hydrogen jets. Results indicate a different flow structure as air jet is presented in the downstream of the fuel jet. According to the results, without air, mixing occurs at a low rate. When the air jet is presented in the downstream of fuel jet, significant increase (up to 300%) occurs in the mixing performance of the hydrogen jet at downstream. In multi fuel jets, the mixing performance of the fuel jet is increased more than 200% when the micro air jet is injected. Consequently, an enhanced mixing zone occurs downstream of the injection slots which leads to flame-holding.

  14. Design and evaluation of an integrated Quiet, Clean General Aviation Turbofan (QCGAT) engine and aircraft propulsion system

    NASA Technical Reports Server (NTRS)

    German, J.; Fogel, P.; Wilson, C.

    1980-01-01

    The design was based on the LTS-101 engine family for the core engine. A high bypass fan design (BPR=9.4) was incorporated to provide reduced fuel consumption for the design mission. All acoustic and pollutant emissions goals were achieved. A discussion of the preliminary design of a business jet suitable for the developed propulsion system is included. It is concluded that large engine technology can be successfully applied to small turbofans, and noise or pollutant levels need not be constraints for the design of future small general aviation turbofan engines.

  15. Photographic copy of photograph, aerial view looking south at Jet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, aerial view looking south at Jet Propulsion Laboratory, Edwards Test Station complex in 1959, shortly after completion of Test Stand 'D' construction and installation of underground tunnel system. Test Stand 'D' is in the foreground, Test Stand 'A' complex in the background. Roads are as yet unpaved. (JPL negative no. 384-1917-B, 28 May 1959) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  16. Short-term exposure to JP-8 jet fuel results in long-term immunotoxicity.

    PubMed

    Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M

    1997-01-01

    Chronic exposure to jet fuel has been shown to have adverse effects on human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans, and to decrease sensorimotor speed. Due to the decision by the United States Air Force to implement the widespread use of JP-8 jet fuel in its operations, a thorough understanding of its potential effects upon exposed personnel is both critical and necessary. Exposure to potential environmental toxicants such as JP-8 may have significant effects on host systems beyond those readily visible (i.e., physiology, cardiology, respiratory, etc.); e.g., the immune system. Previous studies have shown that short-term, low concentration JP-8 exposure had significant effects on the immune system, which should have serious consequences for the exposed host in terms of susceptibility to infectious agents. If these alterations in immune function were long-lasting, it might also result in an increased likelihood of development and/or progression of cancer, as well as autoimmune disease. In the current study, mice were exposed for 1 h/day for 7 days to a moderate (1000 mg/m3) and a high (2500 mg/m3) concentration of aerosolized JP-8 jet fuel to stimulate occupational exposures. One to 28 days after the last exposure the mice were analyzed for effects of the exposure on their immune systems. It was observed that decrease in viable immune cell numbers and immune organ weights found at 24 h after exposure persisted for extended periods of time. Further, JP-8 exposure resulted in significantly decreased immune infection, as analyzed by mitogenesis assays, which persisted for up to 4 weeks post-exposure. Thus, short-term exposure of mice to JP-8 jet fuel caused significant toxicological effects on the immune system, which were long-lasting and persistent. It appears that the immune system may be the most sensitive indicator of toxicological damage due to JP-8 exposure. Such long

  17. Binder Jetting: A Novel Solid Oxide Fuel-Cell Fabrication Process and Evaluation

    NASA Astrophysics Data System (ADS)

    Manogharan, Guha; Kioko, Meshack; Linkous, Clovis

    2015-03-01

    With an ever-growing concern to find a more efficient and less polluting means of producing electricity, fuel cells have constantly been of great interest. Fuel cells electrochemically convert chemical energy directly into electricity and heat without resorting to combustion/mechanical cycling. This article studies the solid oxide fuel cell (SOFC), which is a high-temperature (100°C to 1000°C) ceramic cell made from all solid-state components and can operate under a wide range of fuel sources such as hydrogen, methanol, gasoline, diesel, and gasified coal. Traditionally, SOFCs are fabricated using processes such as tape casting, calendaring, extrusion, and warm pressing for substrate support, followed by screen printing, slurry coating, spray techniques, vapor deposition, and sputter techniques, which have limited control in substrate microstructure. In this article, the feasibility of engineering the porosity and configuration of an SOFC via an additive manufacturing (AM) method known as binder jet printing was explored. The anode, cathode and oxygen ion-conducting electrolyte layers were fabricated through AM sequentially as a complete fuel cell unit. The cell performance was measured in two modes: (I) as an electrolytic oxygen pump and (II) as a galvanic electricity generator using hydrogen gas as the fuel. An analysis on influence of porosity was performed through SEM studies and permeability testing. An additional study on fuel cell material composition was conducted to verify the effects of binder jetting through SEM-EDS. Electrical discharge of the AM fabricated SOFC and nonlinearity of permeability tests show that, with additional work, the porosity of the cell can be modified for optimal performance at operating flow and temperature conditions.

  18. The Utility of Naphthyl-Keratin Adducts as Biomarkers for Jet-Fuel Exposure

    EPA Science Inventory

    We investigated the association between biomarkers of dermal exposure, naphthyl-keratin adducts (NKA), and urine naphthalene biomarker levels in 105 workers routinely exposed to jet-fuel. A moderate correlation was observed between NKA and urine naphthalene levels (p = 0.061). Th...

  19. Combustor exhaust-emissions and blowout-limits with diesel number 2 and Jet A fuels utilizing air-atomizing and pressure-atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    The effect of fuel properties on exhaust emissions and blowout limits of a high-pressure combustor segment is evaluated using a splash-groove air-atomizing fuel injector and a pressure-atomizing simplex fuel nozzle to burn both diesel number 2 and Jet A fuels. Exhaust emissions and blowout data are obtained and compared on the basis of the aromatic content and volatility of the two fuels. Exhaust smoke number and emission indices for oxides of nitrogen, carbon monoxide, and unburned hydrocarbons are determined for comparison. As compared to the pressure-atomizing nozzle, the air-atomizing nozzle is found to reduce nitrogen oxides by 20%, smoke number by 30%, carbon monoxide by 70%, and unburned hydrocarbons by 50% when used with diesel number 2 fuel. The higher concentration of aromatics and lower volatility of diesel number 2 fuel as compared to Jet A fuel appears to have the most detrimental effect on exhaust emissions. Smoke number and unburned hydrocarbons are twice as high with diesel number 2 as with Jet A fuel.

  20. Bench-Scale Monolith Autothermal Reformer Catalyst Screening Evaluations in a Micro-Reactor With Jet-A Fuel

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.; Yen, Judy C.H.; Budge, John R.

    2006-01-01

    Solid oxide fuel cell systems used in the aerospace or commercial aviation environment require a compact, light-weight and highly durable catalytic fuel processor. The fuel processing method considered here is an autothermal reforming (ATR) step. The ATR converts Jet-A fuel by a reaction with steam and air forming hydrogen (H2) and carbon monoxide (CO) to be used for production of electrical power in the fuel cell. This paper addresses the first phase of an experimental catalyst screening study, looking at the relative effectiveness of several monolith catalyst types when operating with untreated Jet-A fuel. Six monolith catalyst materials were selected for preliminary evaluation and experimental bench-scale screening in a small 0.05 kWe micro-reactor test apparatus. These tests were conducted to assess relative catalyst performance under atmospheric pressure ATR conditions and processing Jet-A fuel at a steam-to-carbon ratio of 3.5, a value higher than anticipated to be run in an optimized system. The average reformer efficiencies for the six catalysts tested ranged from 75 to 83 percent at a constant gas-hourly space velocity of 12,000 hr 1. The corresponding hydrocarbon conversion efficiency varied from 86 to 95 percent during experiments run at reaction temperatures between 750 to 830 C. Based on the results of the short-duration 100 hr tests reported herein, two of the highest performing catalysts were selected for further evaluation in a follow-on 1000 hr life durability study in Phase II.

  1. Jet Surface Interaction Scrubbing Noise from High Aspect-Ratio Rectangular Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bozak, Richard F.

    2015-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity of the airframe. Distributed propulsion system with exhaust configurations that resemble a high aspect ratio rectangular jet are among geometries of interest. Nearby solid surfaces could provide noise shielding for the purpose of reduced community noise. Interaction of high-speed jet exhaust with structure could also generate new sources of sound as a result of flow scrubbing past the structure, and or scattered noise from sharp edges. The present study provides a theoretical framework to predict the scrubbing noise component from a high aspect ratio rectangular exhaust in proximity of a solid surface. The analysis uses the Greens function (GF) to the variable density Pridmore-Brown equation in a transversely sheared mean flow. Sources of sound are defined as the auto-covariance function of second-rank velocity fluctuations in the jet plume, and are modeled using a RANS-based acoustic analogy approach. Acoustic predictions are presented in an 8:1 aspect ratio rectangular exhaust at three subsonic Mach numbers. The effect of nearby surface on the scrubbing noise component is shown on both reflected and shielded sides of the plate.

  2. Occupational health and safety assessment of exposure to jet fuel combustion products in air medical transport.

    PubMed

    MacDonald, Russell D; Thomas, Laura; Rusk, Frederick C; Marques, Shauna D; McGuire, Dan

    2010-01-01

    Transport medicine personnel are potentially exposed to jet fuel combustion products. Setting-specific data are required to determine whether this poses a risk. This study assessed exposure to jet fuel combustion products, compared various engine ignition scenarios, and determined methods to minimize exposure. The Beechcraft King Air B200 turboprop aircraft equipped with twin turbine engines, using a kerosene-based jet fuel (Jet A-1), was used to measure products of combustion during boarding, engine startup, and flight in three separate engine start scenarios ("shielded": internal engine start, door closed; "exposed": ground power unit start, door open; and "minimized": ground power unit right engine start, door open). Real-time continuous monitoring equipment was used for oxygen, carbon dioxide, carbon monoxide, nitrogen dioxide, hydrogen sulfide, sulfur dioxide, volatile organic compounds, and particulate matter. Integrated methods were used for aldehydes, polycyclic aromatic hydrocarbons, volatile organic compounds, and aliphatic hydrocarbons. Samples were taken in the paramedic breathing zone for approximately 60 minutes, starting just before the paramedics boarded the aircraft. Data were compared against regulated time-weighted exposure thresholds to determine the presence of potentially harmful products of combustion. Polycyclic aromatic hydrocarbons, aldehydes, volatile organic compounds, and aliphatic hydrocarbons were found at very low concentrations or beneath the limits of detection. There were significant differences in exposures to particulates, carbon monoxide, and total volatile organic compound between the "exposed" and "minimized" scenarios. Elevated concentrations of carbon monoxide and total volatile organic compounds were present during the ground power unit-assisted dual-engine start. There were no appreciable exposures during the "minimized" or "shielded" scenarios. Air medical personnel exposures to jet fuel combustion products were

  3. Enhanced fuel efficiency on tractor-trailers using synthetic jet-based active flow control

    NASA Astrophysics Data System (ADS)

    Amitay, Michael; Menicovich, David; Gallardo, Daniele

    2016-04-01

    The application of piezo-electrically-driven synthetic-jet-based active flow control to reduce drag on tractor-trailers was explored experimentally in wind tunnel testing as well as full-scale road tests. Aerodynamic drag accounts for more than 50% of the usable energy at highway speeds, a problem that applies primarily to trailer trucks. Therefore, a reduction in aerodynamic drag results in large saving of fuel and reduction in CO2 emissions. The active flow control technique that is being used relies on a modular system comprised of distributed, small, highly efficient actuators. These actuators, called synthetic jets, are jets that are synthesized at the edge of an orifice by a periodic motion of a piezoelectric diaphragm(s) mounted on one (or more) walls of a sealed cavity. The synthetic jet is zero net mass flux (ZNMF), but it allows momentum transfer to flow. It is typically driven near diaphragm and/or cavity resonance, and therefore, small electric input [O(10W)] is required. Another advantage of this actuator is that no plumbing is required. The system doesn't require changes to the body of the truck, can be easily reconfigured to various types of vehicles, and consumes small amounts of electrical power from the existing electrical system of the truck. Preliminary wind tunnel results showed up to 18% reduction in fuel consumption, whereas road tests also showed very promising results.

  4. Nuclear Cryogenic Propulsion Stage (NCPS) Fuel Element Testing in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2017-01-01

    To satisfy the Nuclear Cryogenic Propulsion Stage (NCPS) testing milestone, a graphite composite fuel element using a uranium simulant was received from the Oakridge National Lab and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) at various operating conditions. The nominal operating conditions required to satisfy the milestone consisted of running the fuel element for a few minutes at a temperature of at least 2000 K with flowing hydrogen. This milestone test was successfully accomplished without incident.

  5. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are

  6. Analyzing hydrotreated renewable jet fuel (HRJ) feedstock availability using crop simulation modeling

    USDA-ARS?s Scientific Manuscript database

    While hydrotreated renewable jet fuel (HRJ) has been demonstrated for use in commercial and military aviation, a challenge to large-scale adoption is availability of cost competitive feedstocks. Brassica oilseed crops like Brassica napus, B. rapa, B. juncea, B. carinata, Sinapis alba, and Camelina s...

  7. NASA's hypersonic propulsion program: History and direction

    NASA Technical Reports Server (NTRS)

    Wander, Steve

    1992-01-01

    Research into hypersonic propulsion; i.e., supersonic combustion, was seriously initiated at the Langley Research Center in the 1960's with the Hypersonic Research Engine (HRE) project. This project was designed to demonstrate supersonic combustion within the context of an engine module consisting of an inlet, combustor, and nozzle. In addition, the HRE utilized both subsonic and supersonic combustion (dual-mode) to demonstrate smooth operation over a Mach 4 to 7 speed range. The propulsion program thus concentrated on fundamental supersonic combustion studies and free jet propulsion tests for the three dimensional fixed geometry engine design to demonstrate inlet and combustor integration and installed performance potential. The developmental history of the program is presented. Additionally, the HRE program's effect on the current state of hypersonic propulsion is discussed.

  8. FY2015 Propulsion Materials Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machinesmore » [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less

  9. Photographic copy of photograph, aerial view looking north at Jet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, aerial view looking north at Jet Propulsion Laboratory, Edwards Test Station complex in 1959, shortly after completion of 'D' stand construction and installation of underground tunnel system. Test stands 'A,' 'B,' 'C,' and 'D' are in view; the Control and Recording Center (Building 4221/E-22) is still under construction. (JPL negative no. 384-1917-A, 28 May 1959) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  10. Evaluation of Jet Fuel Induced Hearing Loss in Rats

    DTIC Science & Technology

    2011-10-13

    flow of approximately 20 liters per minute (lpm) through the nebulizer. This air flow coupled with the nebulizer nozzle design created an...inch PVC pipe contained the spray pattern. The pipe was initially reduced in size to accept an orifice plate which can be used to measure flow rate...chamber flow . Two drain ports were used to remove residual jet fuel which accumulated after a day‟s exposure. To achieve the 10 1500 mg/m 3

  11. Past, Present and Emerging Toxicity Issues for Jet Fuel

    DTIC Science & Technology

    2011-01-01

    Statistically significant dominant lethal effects were not observed for either mice or rats (Air Force, 1978). However, because of the small sample...Adams, M.M., 2004. Immunological and hematological effects observed in B6C3F1 mice exposed to JP-8 jet fuel for 14 days. J. Toxicol. Environ. Health A...acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with

  12. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  13. Subacute Effects of Inhaled Jet Fuel-A (JET A) on Airway and Immune Function in Rats

    DTIC Science & Technology

    2012-07-16

    the source of the oil used in its manufacture. This study used fuel provided by five of the major oil companies ( blend POSF-4658, Chevron, Shell Oil... using a Hastings (Model 40) monitor. The chamber system schematic is depicted in Figure 4. Figure 4. Schematic of exposure control system...were used due to concerns that the air control animals (Group 2) might be unintentionally exposed to background levels of Jet A. Group 2 was exposed

  14. Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames. Appendix E

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2000-01-01

    The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.

  15. Investigation of the I-40 Jet-Propulsion Engine in the Cleveland Altitude Wind Tunnel. V - Operational Characteristics. 5; Operational Characteristics

    NASA Technical Reports Server (NTRS)

    Golladay, Richard L.; Gendler, Stanley L.

    1947-01-01

    An investigation has been conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of the I-40 jet-propulsion engine over a range of pressure altitudes from 10,000 to 50,000 feet and ram-pressure ratios from 1.00 to 1.76. Engine operational data were obtained with the engine in the standard configuration and with various modifications of the fuel system, the electrical system, and the combustion chambers. The effects of altitude and airspeed on operating speed range, starting, windmilli.ng, acceleration, speed regulation, cooling, and vibration of the standard and modified engines were determined, and damage to parts was noted. Maximum engine speed was obtainable at all altitudes and airspeeds wi th each fuel-control system investigated. The minimum idling speed was raised by increases in altitude and airspeed. The lowest minimum stable speeds were obtained with the standard configuration using 40-gallon nozzles with individual metering plugs. The engine was started normally at altitudes as high as 20,000 feet with all of the fuel systems and ignition combinations except one. Ignition at 70,000 feet was difficult and, although successful ignition occurred, acceleration was slow and usually characterized by excessive tail-pipe temperature. During windmilling investigations of the engine equipped with the standard fuel system, the engine could not be started at ram-pressure ratios of 1.1 to 1.7 at altitudes of 10,000, 20,000 and 30,000 feet. When equipped with the production barometric and Monarch 40-gallon nozzles, the engine accelerated in 12 seconds from an engine speed of 6000 rpm to 11,000 rpm at 20,000 feet and an average tail-pipe temperature of 11000 F. At the same altitude and temperature, all the engine configurations had approximately the same rate of acceleration. The Woodward governor produced the safest accelerations, inasmuch as it could be adjusted to automatically prevent acceleration blow out. The engine speed was

  16. Soot Formation in Hydrocarbon/Air Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Faeth, G. M.

    1994-01-01

    Soot processes within hydrocarbon/air diffusion flames are important because they affect the durability and performance of propulsion systems, the hazards of unwanted fires, the pollutant and particulate emissions from combustion processes, and the potential for developing computational combustion. Motivated by these observations, this investigation involved an experimental study of the structure and soot properties of round laminar jet diffusion flames, seeking an improved understanding of soot formation (growth and nucleation) within diffusion flames. The present study extends earlier work in this laboratory concerning laminar smoke points (l) and soot formation in acetylene/air laminar jet diffusion flames (2), emphasizing soot formation in hydrocarbon/air laminar jet diffusion flames for fuels other than acetylene. In the flame system, acetylene is the dominant gas species in the soot formation region and both nucleation and growth were successfully attributed to first-order reactions of acetylene, with nucleation exhibiting an activation energy of 32 kcal/gmol while growth involved negligible activation energy and a collision efficiency of O.53%. In addition, soot growth in the acetylene diffusion flames was comparable to new soot in premixed flame (which also has been attributed to first-order acetylene reactions). In view of this status, a major issue is the nature of soot formation processes in diffusion flame involving hydrocarbon fuels other than acetylene. In particular, information is needed about th dominant gas species in the soot formation region and the impact of gas species other than acetylene on soot nucleation and growth.

  17. Fire Safety Tests Comparing Synthetic Jet and Diesel Fuels with JP-8 (POSTPRINT)

    DTIC Science & Technology

    2010-04-01

    about 25% aromatics and 75% saturated (paraffin and naphthene ) hydro- carbons [5]. JP-8 is produced from jet fuel A by adding a corrosion inhibitor...4529a 43.9 44.2 Lubricity (mm) ASTM D – 5001 0.58 0.92 Acidity (mg KOH/g) ASTM D – 3242 0.004 0.003 SPK fuels taken from Moses [7], diesel fuels taken...this occurred the burnback pan was removed from the agent pan. The flames in the agent pan were allowed to break up the foam blanket and propagate until

  18. Environmental Quality Research-Fate of Toxic Jet Fuel Components in Aquatic Systems

    DTIC Science & Technology

    1981-12-01

    literature suggests that the maximum growt rate of Chlorella vulgaris is almost certainly between 1.5 and 2.5 days at water temperatures near 25°C...the results of an investigation of the potential toxic effects of the jet fuel JP-4 (petroleum-based and shale-based) on the aqueous environ- ment... investigated included fuel/ H 2 0 ratios and mixing times. Hydrocarbon composition of the WSF of JP-4, both petroleum e.nd shale-derived, appears to be

  19. Proteomic analysis of the renal effects of simulated occupational jet fuel exposure.

    PubMed

    Witzmann, F A; Bauer, M D; Fieno, A M; Grant, R A; Keough, T W; Lacey, M P; Sun, Y; Witten, M L; Young, R S

    2000-03-01

    We analyzed protein expression in the cytosolic fraction prepared from whole kidneys in male Swiss-Webster mice exposed 1 h/day for five days to aerosolized JP-8 jet fuel at a concentration of 1000 mg/m3, simulating military occupational exposure. Kidney cytosol samples were solubilized and separated via large-scale, high-resolution two-dimensional electrophoresis (2-DE) and gel patterns scanned, digitized and processed for statistical analysis. Significant changes in soluble kidney proteins resulted from jet fuel exposure. Several of the altered proteins were identified by peptide mass finger-printing and related to ultrastructural abnormalities, altered protein processing, metabolic effects, and paradoxical stress protein/detoxification system responses. These results demonstrate a significant but comparatively moderate JP-8 effect on protein expression in the kidney and provide novel molecular evidence of JP-8 nephrotoxicity. Human risk is suggested by these data but conclusive assessment awaits a noninvasive search for biomarkers in JP-8 exposed humans.

  20. Development of ultrasonic electrostatic microjets for distributed propulsion and microflight

    NASA Astrophysics Data System (ADS)

    Amirparviz, Babak

    This dissertation details the first attempt to design and fabricate a distributed micro propulsion system based on acoustic streaming. A novel micro propulsion method is suggested by combining Helmholtz resonance, acoustic streaming and flow entrainment and thrust augmentation. In this method, oscillatory motion of an electrostatically actuated diaphragm creates a high frequency acoustic field inside the cavity of a Helmholtz resonator. The initial fluid motion velocity is amplified by the Helmholtz resonator structure and creates a jet flow at the exit nozzle. Acoustic streaming is the phenomenon responsible for primary jet stream creation. Primary jets produced by a few resonators can be combined in an ejector configuration to induce flow entrainment and thrust augmentation. Basic governing equations for the electrostatic actuator, deformation of the diaphragm and the fluid flow inside the resonator are derived. These equations are linearized and used to derive an equivalent electrical circuit model for the operation of the device. Numerical solution of the governing equations and simulation of the circuit model are used to predict the performance of the experimental systems. Thrust values as high as 30.3muN are expected per resonator. A micro machined electrostatically-driven high frequency Helmholtz resonator prototype is designed and fabricated. A new micro fabrication technique is developed for bulk micromachining and in particular fabrication of the resonator. Geometric stops for wet anisotropic etching of silicon are introduced for the fist time for structure formation. Arrays of high frequency (>60kHz) micro Helmholtz resonators are fabricated. In one sample more than 1000 resonators cover the surface of a four-inch silicon wafer and in effect convert it to a distributed propulsion system. A high yield (>85%) micro fabrication process is presented for realization of this propulsion system taking advantage of newly developed deep glass micromachining and

  1. Lubricity of well-characterized jet and broad-cut fuels by ball-on-cylinder machine

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Kim, W. S.

    1984-01-01

    A ball-on-cylinder machine (BOCM) was used to measure the lubricity of fuels. The fuels tested were well-characterized fuels available from other programs at the NASA Lewis Research Center plus some in-house mildly hydroprocessed shale fuels from other programs included Jet-A, ERBS fuel, ERBS blends, and blend stock. The BOCM tests were made before and after clay treatment of some of these fuels with both humidified air and dry nitrogen as the preconditioning and cover gas. As expected, clay treatment always reduced fuel lubricity. Using nitrogen preconditioning and cover gas always resulted in a smaller wear scar diameter than when humidified air was used. Also observed was an indication of lower lubricity with lower boiling range fuels and lower aromatic fuels. Gas chromatographic analysis indicted changes in BOCM-stressed fuels.

  2. Cost and fuel consumption per nautical mile for two engine jet transports using OPTIM and TRAGEN

    NASA Technical Reports Server (NTRS)

    Wiggs, J. F.

    1982-01-01

    The cost and fuel consumption per nautical mile for two engine jet transports are computed using OPTIM and TRAGEN. The savings in fuel and direct operating costs per nautical mile for each of the different types of optimal trajectories over a standard profile are shown.

  3. Comparison of several Brassica species in the north central U.S. for potential jet fuel feedstock

    USDA-ARS?s Scientific Manuscript database

    Hydrotreated renewable jet fuel (HRJ) derived from crop oils has been commercially demonstrated but full-scale production has been hindered by feedstock costs that make the product more costly than petroleum-based fuels. Maintaining low feedstock costs while developing crops attractive to farmers to...

  4. IN-SITU AIR INJECTION, SOIL VACUUM EXTRACTION AND ENHANCED BIODEGRADATION: A CASE STUDY IN A JP-4 JET FUEL CONTAMINATED SITE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) and the U.S. Coast Guard (USCG) conducted a joint demonstration of in situ remediation of a JP-4 jet fuel spill at the USCG Support Center in Elizabeth City, North Carolina. The jet fuel was trapped beneath a clay layer that ext...

  5. Mixing of Pure Air Jets with a Reacting Fuel-Rich Crossflow

    NASA Technical Reports Server (NTRS)

    Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.

    1997-01-01

    Jets in a crossflow play an integral role in practical combustion systems such as can and annular gas turbine combustors in conventional systems, and the Rich-burn/Quick-mix/Lean-burn (RQL) combustor utilized in stationary applications and proposed for advanced subsonic and supersonic transports. The success of the RQL combustor rests with the performance of the quick-mixing section that bridges the rich and lean zones. The mixing of jet air with a rich crossflow to bring the reaction to completion in the lean zone must be performed rapidly and thoroughly in order to decrease the extent of near-stoichiometric fluid pocket formation. Fluid pockets at near-stoichiometric equivalence ratios are undesirable because the high temperatures attained accelerate pollutant formation kinetics associated with nitric oxide (NO). The present study develops a model experiment designed to reveal the processes that occur when jet air is introduced into hot effluent emanating from a fuel-rich reaction zone.

  6. Supersonic Injection of Aerated Liquid Jet

    NASA Astrophysics Data System (ADS)

    Choudhari, Abhijit; Sallam, Khaled

    2016-11-01

    A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.

  7. Greenhouse gas emissions and land use change from Jatropha curcas-based jet fuel in Brazil.

    PubMed

    Bailis, Robert E; Baka, Jennifer E

    2010-11-15

    This analysis presents a comparison of life-cycle GHG emissions from synthetic paraffinic kerosene (SPK) produced as jet fuel substitute from jatropha curcas feedstock cultivated in Brazil against a reference scenario of conventional jet fuel. Life cycle inventory data are derived from surveys of actual Jatropha growers and processors. Results indicate that a baseline scenario, which assumes a medium yield of 4 tons of dry fruit per hectare under drip irrigation with existing logistical conditions using energy-based coproduct allocation methodology, and assumes a 20-year plantation lifetime with no direct land use change (dLUC), results in the emissions of 40 kg CO₂e per GJ of fuel produced, a 55% reduction relative to conventional jet fuel. However, dLUC based on observations of land-use transitions leads to widely varying changes in carbon stocks ranging from losses in excess of 50 tons of carbon per hectare when Jatropha is planted in native cerrado woodlands to gains of 10-15 tons of carbon per hectare when Jatropha is planted in former agro-pastoral land. Thus, aggregate emissions vary from a low of 13 kg CO₂e per GJ when Jatropha is planted in former agro-pastoral lands, an 85% decrease from the reference scenario, to 141 kg CO₂e per GJ when Jatropha is planted in cerrado woodlands, a 60% increase over the reference scenario. Additional sensitivities are also explored, including changes in yield, exclusion of irrigation, shortened supply chains, and alternative allocation methodologies.

  8. Propulsion and Energetics Panel Working Group 13 on Alternative Jet Engine Fuels. Volume 2. Main Report

    DTIC Science & Technology

    1982-07-01

    twenty years the only economically available fuels for aircraft gas turbine engines will be those from the processing of conventional crude petroleum...alternative fuels in new aircraft engines. i.e. problems ir, combustors. turbines . and afterburners. and methods for their solution. - Fuel system...required expertise assigned to each task group. The three areas were. Supply and demand scenarios for aviation turbine fuels in the NATO Nations for the

  9. ZnO-based microrockets with light-enhanced propulsion.

    PubMed

    Dong, Renfeng; Wang, Chun; Wang, Qinglong; Pei, Allen; She, Xueling; Zhang, Yuxian; Cai, Yuepeng

    2017-10-12

    Improving the propulsion of artificial micro-nanomotors represents an exciting nanotechnology challenge, especially considering their cargo delivery ability and fuel efficiency. In light of the excellent photocatalytic performance of zinc oxide (ZnO) and chemical catalytic properties of platinum (Pt), ZnO-Pt microrockets with light-enhanced propulsion have been developed by atomic layer deposition (ALD) technology. The velocity of such microrockets is dramatically doubled upon irradiation by 77 mW cm -2 ultraviolet (UV) light in 10% H 2 O 2 and is almost 3 times higher than the classic poly(3,4-ethylenedioxythiophene)-Pt microrockets (PEDOT-Pt microrockets) even in 6% H 2 O 2 under the same UV light. In addition, such micromotors not only retain the standard approach to improve propulsion by varying the fuel concentration, but also demonstrate a simple way to enhance the movement velocity by adjusting the UV light intensity. High reversibility and controllable "weak/strong" propulsion can be easily achieved by switching the UV irradiation on or off. Finally, light-enhanced propulsion has been investigated by electrochemical measurements which further confirm the enhanced photocatalytic properties of ZnO and Pt. The successful demonstration of ZnO-based microrockets with excellent light-enhanced propulsion is significant for developing highly efficient synthetic micro-nanomotors which have strong delivery ability and economic fuel requirements for future practical applications in the micro-nanoscale world.

  10. Fuel Preheat Effects on Soot-Field Structure in Laminar Gas Jet Diffusion Flames Burning in 0-g and 1-g

    NASA Technical Reports Server (NTRS)

    Konsur, Bogdan; Megaridis, Constantine M.; Griffin, Devon W.

    1999-01-01

    An experimental investigation conducted at the 2.2-s drop tower of the NASA Lewis Research Center is presented to quantify the influence of moderate fuel preheat on soot-field structure within 0-g laminar gas jet diffusion flames. Parallel work in 1-g is also presented to delineate the effect of elevated fuel temperatures on soot-field structure in buoyant flames. The experimental methodology implements jet diffusion flames of nitrogen-diluted acetylene fuel burning in quiescent air at atmospheric pressure. Fuel preheat of approximately 100 K in the 0-g laminar jet diffusion flames is found to reduce soot loadings in the annular region, but causes an increase in soot volume fractions at the centerline. In addition, fuel preheat reduces the radial extent of the soot field in 0-g. In 1-g, the same fuel preheat levels have a more moderated influence on soot loadings in the annular region, but are also seen to enhance soot concentrations near the axis low in the flame. The increased soot loadings near the flame centerline, as caused by fuel preheat, are consistent with the hypothesis that preheat levels of approximately 100 K enhance fuel pyrolysis rates. The results show that the growth stage of particles transported along the soot annulus is shortened both in 1-g and 0-g when elevated fuel temperatures are used.

  11. Comparative electrophysiological evaluation of hippocampal function following repeated inhalation exposures to JP-8, Jet A, JP-5, and the synthetic Fischer Tropsch fuel.

    PubMed

    Rohan, Joyce G; McInturf, Shawn M; Miklasevich, Molly K; Gut, Chester P; Grimm, Michael D; Reboulet, James E; Howard, William R; Mumy, Karen L

    2018-01-01

    Exposure to fuels continues to be a concern in both military and general populations. The aim of this study was to examine effects of in vivo rat repeated exposures to different types of jet fuel utilizing microelectrode arrays for comparative electrophysiological (EP) measurements in hippocampal slices. Animals were exposed to increasing concentrations of four jet fuels, Jet Propellant (JP)-8, Jet A, JP-5, or synthetic Fischer Tropsch (FT) fuel via whole-body inhalation for 20 d (6 hr/d, 5 d/week for 28 d) and synaptic transmission as well as behavioral performance were assessed. Our behavioral studies indicated no significant changes in behavioral performance in animals exposed to JP-8, Jet A, or JP-5. A significant deviation in learning pattern during the Morris water maze task was observed in rats exposed to the highest concentration of FT (2000 mg/m 3 ). There were also significant differences in the EP profile of hippocampal neurons from animals exposed to JP-8, Jet A, JP-5, or FT compared to control air. However, these differences were not consistent across fuels or dose dependent. As expected, patterns of EP alterations in brain slices from JP-8 and Jet A exposures were more similar compared to those from JP-5 and FT. Further longitudinal investigations are needed to determine if these EP effects are transient or persistent. Such studies may dictate if and how one may use EP measurements to indicate potential susceptibility to neurological impairments, particularly those that result from inhalation exposure to chemicals or mixtures.

  12. Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.

  13. Urinary polycyclic aromatic hydrocarbon (OH-PAH) metabolite concentrations and the effect of GST polymorphisms among US Air Force personnel exposed to jet fuel.

    PubMed

    Rodrigues, Ema G; Smith, Kristen; Maule, Alexis L; Sjodin, Andreas; Li, Zheng; Romanoff, Lovisa; Kelsey, Karl; Proctor, Susan; McClean, Michael D

    2014-05-01

    To evaluate the association between inhalation exposure to jet propulsion fuel 8 (JP-8) and urinary metabolites among US Air Force (USAF) personnel, and investigate the role of glutathione S-transferase polymorphisms. Personal air samples were collected from 37 full-time USAF personnel during 4 consecutive workdays and analyzed for JP-8 constituents and total hydrocarbons. Pre- and postshift urine samples were collected each day and analyzed for polycyclic aromatic hydrocarbon urinary metabolites. Work shift exposure to total hydrocarbons was significantly associated with postshift urinary 1-naphthol (β = 0.17; P = <0.0001), 2-naphthol (β = 0.09; P = 0.005), and 2-hydroxyfluorene concentrations (β = 0.08; P = 0.006), and a significant gene-environment interaction was observed with glutathione S-transferase mu-1. USAF personnel experience inhalation exposure to JP-8, which is associated with absorption of JP-8 constituents while performing typical job-related tasks, and in our data the glutathione S-transferase mu-1 polymorphism was associated with differential metabolism of naphthalene.

  14. FY2016 Propulsion Materials Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines and Fuels) teams to develop strategies thatmore » overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less

  15. Alternative Fuels

    DTIC Science & Technology

    2009-06-11

    equipment when supplying jet fuel not practicable or cost effective Unclassified 5 erna ve ue s ocus Petroleum Crude Oil (declining discovery / production...on Jet A/A-1 Approved fuels, DXXXX Unclassified 6 JP-8/5 (Commercial Jet Fuel, ASTM Spec) DARPA Alternative Jet Fuels • Agricultural crop oils ...canola, jatropha, soy, palm , etc.) Alternative fuels – University of North Dakota EERC – UOP – General Electric (GE) t i o n C o s t t i o n C o s t

  16. Development of arcjet and ion propulsion for spacecraft stationkeeping

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Curran, Francis M.; Haag, Thomas W.; Patterson, Michael J.; Pencil, Eric J.; Rawlin, Vincent K.; Sankovic, John M.

    1992-01-01

    Near term flight applications of arc jet and ion thruster satellite station-keeping systems as well as development activities in Europe, Japan, and the United States are reviewed. At least two arc jet and three ion propulsion flights are scheduled during the 1992-1995 period. Ground demonstration technology programs are focusing on the development of kW-class hydrazine and ammonia arc jets and xenon ion thrusters. Recent work at NASA LeRC on electric thruster and system integration technologies relating to satellite station keeping and repositioning will also be summarized.

  17. An investigation of air solubility in Jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1981-01-01

    Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.

  18. Application of selection techniques to electric-propulsion options on an advanced synchronous satellite

    NASA Technical Reports Server (NTRS)

    Holcomb, L. B.; Degrey, S. P.

    1973-01-01

    This paper addresses the comparison of several candidate auxiliary-propulsion systems and system combinations for an advanced synchronous satellite. Economic selection techniques, evolved at the Jet Propulsion Laboratory, are used as a basis for system option comparisons. Electric auxiliary-propulsion types considered include pulsed plasma and ion bombardment, with hydrazine systems used as a state-of-the-art reference. Current as well as projected electric-propulsion system performance data are used, as well as projected hydrazine system costs resulting from NASA standardization program projections.

  19. Oregon Fires

    Atmospheric Science Data Center

    2014-05-15

    ... were aided by earlier dry conditions and fed by heavy fuel loads, regeneration timbers, and large tracts of beetle-killed dead woods. ... path 44. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission ... MISR Team. Text acknowledgment: Clare Averill (Raytheon/Jet Propulsion Laboratory). Animation acknowledgment: Michael Garay (UCLA/Jet ...

  20. Design of Long-Endurance Unmanned Airplanes Incorporating Solar and Fuel Cell Propulsion

    NASA Technical Reports Server (NTRS)

    Youngblood, James W.; Talay, Theodore A.; Pegg, Robert J.

    1984-01-01

    Preliminary performance analysis and conceptual design are described for a class of unmanned airplanes possessing multi-day endurance capability. A mixed-mode electric power system incorporates solar cells for daytime energy production and a non-regenerative H2-02 fuel cell to supply energy for night flight. The power system provides energy for all onboard systems, including propulsion., payload, and avionics. Excess solar energy is available during significant portions of the day, and may be used for climbing, maneuvering, or payload functions. By jettisoning fuel cell reactant product (water) during flight, vehicle endurance may be increased under certain conditions. Empirical structure sizing algorithms are combined with low-Reynolds number aerodynamics algorithms to estimate airplane size and geometry to meet prescribed mission requirements. Initial calculations for summertime, high-altitude flight (above 40,000 ft (12 km)) at moderate latitude (31 deg N) indicate that mission endurance of several days may be possible for configurations having wing loadings on the order of 0.9 to 1.3 lb/ft(exp 2). These aircraft tend to be somewhat smaller than solar-powered aircraft previously conceived for multi-month endurance utilizing regenerative fuel cell systems for night flight.

  1. Diagram of a Hydrogen Fuel System on NACA’s Martin B-57B Canberra

    NASA Image and Video Library

    1957-02-21

    This diagram shows a hydrogen fuel system designed by researchers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory and installed on a Martin B-57B Canberra aircraft. Lewis researchers accelerated their studies of high energy propellants in the early 1950s. In late 1954, Lewis researchers studied the combustion characteristics of gaseous hydrogen in a turbojet combustor. It was found that the hydrogen provided a very high efficiency. Almost immediately thereafter, Associate Director Abe Silverstein became focused on the possibilities of hydrogen for aircraft propulsion. That fall, Silverstein secured a contract to work with the air force to examine the practicality of liquid hydrogen aircraft. A B-57B Canberra was obtained by the air force especially for this project, referred to as Project Bee. The aircraft was powered by two Wright J65 engines, one of which was modified so that it could be operated using either traditional or liquid hydrogen propellants. The engine and its liquid hydrogen fuel system were tested extensively in the Altitude Wind Tunnel and the Four Burner Area test cells in 1955 and 1956. A B-57B flight program was planned to test the system on an actual aircraft. The aircraft would take off using jet fuel, switch to liquid hydrogen while over Lake Erie, then after burning the hydrogen supply switch back to jet fuel for the landing. The third test flight, in February 1957, was a success, and the ensuing B-57B flights remain the only demonstration of hydrogen-powered aircraft.

  2. Nuclear electric propulsion technologies - Overview of the NASA/DoE/DoD Nuclear Electric Propulsion Workshop

    NASA Technical Reports Server (NTRS)

    Barnett, John W.

    1991-01-01

    Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.

  3. Photographic copy of photograph, aerial view looking down at Jet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, aerial view looking down at Jet Propulsion Laboratory, Edwards Test Station complex in 1961, with north toward the top of the view. Dd test station has been added to Test Stand 'D,' liquid nitrogen storage facility E-63 has been built, as well as several adjuncts to Test Stand 'C' behind earth barriers, such as oxidizer facility at 4263/E-64 and hydrogen tank at 4264/E-65. (JPL negative no. 384-3003-A, 12 December 1961) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  4. Top-Mounted Propulsion Test Plans (TMP17)

    NASA Technical Reports Server (NTRS)

    Bridges, James; Henderson, Brenda; Huff, Dennis

    2017-01-01

    NASA recently completed a study of propulsion cycles and nozzle types applicable to a 70-passenger, M1.6 supersonic airliner, paying especial attention to the noise produced during landing and take-off. The results of the study were validated in a model-scale test at NASA Glenn last summer. The findings of that study and test, along with other studies, have resulted in a new strategy for achieving the Commercial Supersonic Technologys goals for noise and performance. Key to that strategy is moving the propulsion to the top-side of the vehicle and modifying the nozzle and inlet to maximally shield the propulsion noise while maintaining efficient operation. Installed exhaust configurations have been designed to minimize the exhaust noise using new acoustic design tools. A test planned for the fall of 2017 will validate both the new design tools and the low-noise concept using a new translating phased array. During the test, questions regarding modifications of convected waves in the jet near-field that are key to new understandings of aft jet noise will be addressed. Also, to better tie rig results to real-world measurements, a model-scale version of a nozzle that was flight tested by Glenn Research Center in 2001 will be tested.

  5. A performance application study of a jet-flap helicopter rotor

    NASA Technical Reports Server (NTRS)

    Sullivan, R. J.; Laforge, S.; Holchin, B. W.

    1972-01-01

    A performance study was made of the application of a jet-flap to a reaction-drive rotor for a heavy-lift helicopter mission and for a high-speed-helicopter maneuverability (200 knots, 2g) mission. The results of the study are as follows: As a result of the increase in maximum airfoil lift coefficient achieved by the jet-flap, rotor solidity is reduced with the jet-flap to approximately 59% of a nonjet-flap rotor. As a result of the saving in rotor solidity, and hence in rotor weight, the jet-flap configuration had a 21% higher productivity than a nonjet-flap configuration. Of the three propulsion systems studied utilizing a jet-flap (hot cycle, warm cycle, cold cycle) the hot cycle gave the largest increase in productivity. The 200 knot 2g mission is performed best with a warm cycle propulsion system. The jet-flap permits designing for a rotor blade loading coefficient C sub T/sigma = .170 at 2g without encountering blade stall. The jet-flap rotor permits a 200 knot 2g maneuver without suffering the penalty of an unreasonable rotor solidity that would be required by a nonjet-flap rotor.

  6. Jet-A fuel evaporation analysis in conical tube injectors

    NASA Technical Reports Server (NTRS)

    Lai, M.-C.; Chue, T.-H.; Zhu, G.; Sun, H.; Tacina, R.; Chun, K.; Hicks, Y.

    1991-01-01

    A simple one-dimensional drop-life-history analysis and a multidimensional spray calculation using KIVA-II code are applied to the vaporization of Jet-A fuel in multiple tube injectors. Within the assumptions of the analysis, the one-dimensional results are useful for design purposes. The pressure-atomizer breakup models do not accurately predict the dropsize measured experimentally or deduced from the one-dimensional analysis. Cold flow visualization and dropsize measurements show that capillary wave breakup mechanism plays an important role in the spray angle and droplet impingement on the tube wall.

  7. Life cycle water footprint analysis for rapeseed derived jet fuel in North Dakota

    USDA-ARS?s Scientific Manuscript database

    Rapeseed is a promising feedstock source for hydroprocessed esters and fatty acids (HEFA) jet fuel production to address energy security and climate change mitigation. However, concerns have been raised about its impact on water as large scale biofuels production may place pressure on fresh water su...

  8. Long-term exposure to jet fuel: an investigation on occupationally exposed workers with special reference to the nervous system.

    PubMed

    Knave, B; Persson, H E; Goldberg, J M; Westerholm, P

    1976-09-01

    In the present study the results of a neurological and neurophysiological health examination of 29 aircraft factory workers chronically exposed to jet fuel vapors are presented. The exposed subjects were classified into a heavily exposed and a less heavily exposed group. The examination included a standardized clinical neurological examination, measurements of the conduction velocities in the peripheral nerves, and threshold determinations of vibratory sensations in the extremities. All 13 persons examined in the heavily exposed group and 7 of the 16 in the less heavily exposed group stated that they had repeatedly experienced acute effects (dizziness, respiratory tract symptoms, heart palpitations, a feeling of pressure on the chest, nausea, headache) of the jet fuel vapors in the inhaled air. A high rate of symptoms indicative of neurasthenia and psychasthenia and symptoms and signs indicative of polyneuropathy was observed both in the heavily exposed group and in the two groups combined in comparison with reference groups. Considering the presented facts concerning (a) the acute effects on repeated occasions, (b) the high rates of symptoms indicative of neurasthenia and psychasthenia and symptoms and signs indicative of polyneuropathy, and (c) the differences in the observations made between the two groups with varying degrees of exposure to jet fuel, the authors interpreted the results as indicative of a possible effect of long-term exposure to jet fuel on the nervous system.

  9. Combustor exhaust-emissions and blowout-limits with diesel number 2 and jet A fuels utilizing air-atomizing and pressure atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Experimental tests with diesel number 2 and Jet A fuels were conducted in a combustor segment to obtain comparative data on exhaust emissions and blowout limits. An air-atomizing nozzle was used to inject the fuels. Tests were also made with diesel number 2 fuel using a pressure-atomizing nozzle to determine the effectiveness of the air-atomizing nozzle in reducing exhaust emissions. Test conditions included fuel-air ratios of 0.008 to 0.018, inlet-air total pressures and temperatures of 41 to 203 newtons per square centimeter and 477 to 811 K, respectively, and a reference velocity of 21.3 meters per second. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. This was attributed to diesel number 2 having a higher concentration of aromatics and lower volatility than Jet A fuel. Oxides of nitrogen, carbon monoxide, and blowout limits were approximately the same for the two fuels. The air-atomizing nozzle, as compared with the pressure-atomizing nozzle, reduced oxides-of-nitrogen by 20 percent, smoke number by 30 percent, carbon monoxide by 70 percent, and unburned hydrocarbons by 50 percent when used with diesel number 2 fuel.

  10. Overview of fuel inventory in JET with the ITER-like wall

    NASA Astrophysics Data System (ADS)

    Widdowson, A.; Coad, J. P.; Alves, E.; Baron-Wiechec, A.; Barradas, N. P.; Brezinsek, S.; Catarino, N.; Corregidor, V.; Heinola, K.; Koivuranta, S.; Krat, S.; Lahtinen, A.; Likonen, J.; Matthews, G. F.; Mayer, M.; Petersson, P.; Rubel, M.; Contributors, JET

    2017-08-01

    Post mortem analyses of JET ITER-Like-Wall tiles and passive diagnostics have been completed after each of the first two campaigns (ILW-1 and ILW-2). They show that the global fuel inventory is still dominated by co-deposition; hence plasma parameters and sputtering processes affecting material migration influence the distribution of retained fuel. In particular, differences between results from the two campaigns may be attributed to a greater proportion of pulses run with strike points in the divertor corners, and having about 300 discharges in hydrogen at the end of ILW-2. Recessed and remote areas can contribute to fuel retention due to the larger areas involved, e.g. recessed main chamber walls, gaps in castellated Be main chamber tiles and material migration to remote divertor areas. The fuel retention and material migration due to the bulk W Tile 5 during ILW-1 are presented. Overall these tiles account for only a small percentage of the global accountancy for ILW-1.

  11. Hybrid propulsion technology program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.

  12. Effect of high surface area activated carbon on thermal degradation of jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gergova, K.; Eser, S.; Arumugam, R.

    1995-05-01

    Different solid carbons added to jet fuel during thermal stressing cause substantial changes in pyrolytic degradation reactions. Activated carbons, especially high surface area activated carbons were found to be very effective in suppressing solid deposition on metal reactor walls during stressing at high temperatures (425 and 450{degrees}C). The high surface area activated carbon PX-21 prevented solid deposition on reactor walls even after 5h at 450{degrees}C. The differences seen in the liquid product composition when activated carbon is added indicated that the carbon surfaces affect the degradation reactions. Thermal stressing experiments were carried out on commercial petroleum-derived JPTS jet fuel. Wemore » also used n-octane and n-dodecane as model compounds in order to simplify the study of the chemical changes which take place upon activated carbon addition. In separate experiments, the presence of a hydrogen donor, decalin, together with PX-21 was also studied.« less

  13. Occupational Jet Fuel Exposure and Invasive Cancer Occurrence in the United States Air Force, 1989-2003

    DTIC Science & Technology

    2007-01-01

    Krishnadasan, A., Kennedy, N., Morgenstern, H., Ritz , B. Estimated effects of solvents and mineral oils on cancer incidence and mortality in a cohort of...aerospace workers. Am J Ind Med 2005; 48: 249-58. 25. Carlton , GN and Smith, LB. Exposures to jet fuel and benzene during aircraft fuel tank repair in

  14. Data base for the prediction of airframe/propulsion system interference effects

    NASA Technical Reports Server (NTRS)

    Mcmillan, O. J.; Perkins, E. W.; Kuhn, G. D.; Perkins, S. C., Jr.

    1979-01-01

    Supersonic tactical aircraft with highly integrated jet propulsion systems were investigated. Primary attention was given to those interference effects which impact the external aerodynamics of the aircraft.

  15. IMPLEMENTATION OF NATURAL ATTENUATION AT A JP-4 JET FUEL RELEASE AFTER ACTIVE REMEDIATION

    EPA Science Inventory

    After eighteen months of active remediation at a JP-4 jet-fuel spill, a residual of unremediated hydrocarbon remained. Further site characterization was conducted to evaluate the contribution of natural attenuation to control exposure to hazards associated with the residual cont...

  16. Worldwide Life Cycle Analysis (LCA) of Greenhouse Gas (GHG) Emissions from Petroleum Jet Fuel

    DOT National Transportation Integrated Search

    2017-11-09

    The main objective of this project was to calculate greenhouse gas emissions estimates for petroleum jet fuels for the recent past and for future scenarios in the coming decades. Results were reported globally and broken out by world regions, and the...

  17. Vapor-Driven Propulsion of Catalytic Micromotors

    NASA Astrophysics Data System (ADS)

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-08-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.

  18. Vapor-Driven Propulsion of Catalytic Micromotors

    PubMed Central

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-01-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors. PMID:26285032

  19. State Relationships of Laminar Permanently-Blue Opposed-Jet Hydrocarbon-Fueled Diffusion Flames. Appendix D

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2000-01-01

    The structure and state relationships of laminar soot-free (permanently-blue) diffusion flames at various strain rates were studied experimentally using an opposed-jet configuration, motivated by the importance of soot-free hydrocarbon-fueled diffusion flames for many practical applications. Measurements of gas velocities, temperatures and compositions were carried out along the stagnation stream line. Flame conditions studied included propylene- and 1,3-butadiene-fueled opposed-jet diffusion flames having a stoichiometric mixture fractions of 0.7 and strain rates of 60-240 s (exp -1) at normal temperature and pressure. It was found that oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures for these flames were found to exist over broad ranges of strain rates. In addition, current measurements, as well as previous measurements and predictions of ethylene-fueled permanently-blue diffusion flames, all having a stoichiometric mixture fraction of 0.7, were combined to establish generalized state relationships for permanently-blue diffusion flames for this stoichiometric mixture fraction. The combined measurements and predictions support relatively universal generalized state relationships for N2, CO2, H2O and fuel over a broad range of strain rates and fuel types. State relationships for O2 in the fuel-rich region, and for CO in the fuel-lean region, however, are functions of strain rate and fuel type. State relationships for H2 and temperature exhibit less universality, mainly due to the increased experimental uncertainties for these variables. The existence of state relationships for soot-free hydrocarbon-fueled

  20. Engineering improved bio-jet fuel tolerance in Escherichia coli using a transgenic library from the hydrocarbon-degrader Marinobacter aquaeolei.

    PubMed

    Tomko, Timothy A; Dunlop, Mary J

    2015-01-01

    Recent metabolic engineering efforts have generated microorganisms that can produce biofuels, including bio-jet fuels, however these fuels are often toxic to cells, limiting production yields. There are natural examples of microorganisms that have evolved mechanisms for tolerating hydrocarbon-rich environments, such as those that thrive near natural oil seeps and in oil-polluted waters. Using genomic DNA from the hydrocarbon-degrading microbe Marinobacter aquaeolei, we constructed a transgenic library that we expressed in Escherichia coli. We exposed cells to inhibitory levels of pinene, a monoterpene that can serve as a jet fuel precursor with chemical properties similar to existing tactical fuels. Using a sequential strategy with a fosmid library followed by a plasmid library, we were able to isolate a region of DNA from the M. aquaeolei genome that conferred pinene tolerance when expressed in E. coli. We determined that a single gene, yceI, was responsible for the tolerance improvements. Overexpression of this gene placed no additional burden on the host. We also tested tolerance to other monoterpenes and showed that yceI selectively improves tolerance. The genomes of hydrocarbon-tolerant microbes represent a rich resource for tolerance engineering. Using a transgenic library, we were able to identify a single gene that improves E. coli's tolerance to the bio-jet fuel precursor pinene.

  1. Liquid Oxygen/Liquid Methane Integrated Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Banker, Brian; Ryan, Abigail

    2016-01-01

    The proposed paper will cover ongoing work at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) on integrated power and propulsion for advanced human exploration. Specifically, it will present findings of the integrated design, testing, and operational challenges of a liquid oxygen / liquid methane (LOx/LCH4) propulsion brassboard and Solid Oxide Fuel Cell (SOFC) system. Human-Mars architectures point to an oxygen-methane economy utilizing common commodities, scavenged from the planetary atmosphere and soil via In-Situ Resource Utilization (ISRU), and common commodities across sub-systems. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth) increasing commonality between spacecraft subsystems such as power and propulsion can result in tremendous launch mass and volume savings. Historically, propulsion and fuel cell power subsystems have had little interaction outside of the generation (fuel cell) and consumption (propulsion) of electrical power. This was largely due to a mismatch in preferred commodities (hypergolics for propulsion; oxygen & hydrogen for fuel cells). Although this stove-piped approach benefits from simplicity in the design process, it means each subsystem has its own tanks, pressurization system, fluid feed system, etc. increasing overall spacecraft mass and volume. A liquid oxygen / liquid methane commodities architecture across propulsion and power subsystems would enable the use of common tankage and associated pressurization and commodity delivery hardware for both. Furthermore, a spacecraft utilizing integrated power and propulsion could use propellant residuals - propellant which could not be expelled from the tank near depletion due to hydrodynamic considerations caused by large flow demands of a rocket engine - to generate power after all propulsive maneuvers are complete thus utilizing

  2. Propulsive jet simulation with air and helium in launcher wake flows

    NASA Astrophysics Data System (ADS)

    Stephan, Sören; Radespiel, Rolf

    2017-06-01

    The influence on the turbulent wake of a generic space launcher model due to the presence of an under-expanded jet is investigated experimentally. Wake flow phenomena represent a significant source of uncertainties in the design of a space launcher. Especially critical are dynamic loads on the structure. The wake flow is investigated at supersonic (M=2.9) and hypersonic (M=5.9) flow regimes. The jet flow is simulated using air and helium as working gas. Due to the lower molar mass of helium, higher jet velocities are realized, and therefore, velocity ratios similar to space launchers can be simulated. The degree of under-expansion of the jet is moderate for the supersonic case (p_e/p_∞ ≈ 5) and high for the hypersonic case (p_e/p_∞ ≈ 90). The flow topology is described by Schlieren visualization and mean-pressure measurements. Unsteady pressure measurements are performed to describe the dynamic wake flow. The influences of the under-expanded jet and different jet velocities are reported. On the base fluctuations at a Strouhal number, around St_D ≈ 0.25 dominate for supersonic free-stream flows. With air jet, a fluctuation-level increase on the base is observed for Strouhal numbers above St_D ≈ 0.75 in hypersonic flow regime. With helium jet, distinct peaks at higher frequencies are found. This is attributed to the interactions of wake flow and jet.

  3. Gum and deposit formation from jet-turbine and diesel fuels at 130C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, F.R.; Lan, Bosco Y.

    1986-01-01

    The ultimate objective of this work is to devise an accelerated test to compare rates of soluble gum and deposit formation from jet-turbine and diesel fuels in storage and of hard deposits in engines. This paper describes rates of oxygen absorption and gum formation in air at 130 C. For a single fuel or hydrocarbon, the rate of gum formation is closely proportional to the oxygen absorbed, even when this rate varies with purification and additives. In general, pure hydrocarbons absorb oxygen much faster than the fuels, but the fuels and 2-ethylnaphthalene give more gum for the oxygen absorbed thanmore » the other pure hydrocarbons. Gum has two main sources; one appears to be associated with the chain termination mechanism in oxidation, the other coupling of fuel molecules in the absence of oxygen. Other possibilities are discussed.« less

  4. Transpiration cooling in the locality of a transverse fuel jet for supersonic combustors

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton; Capriotti, Diego P.; Byington, Carl S.

    1990-01-01

    The objective of the current work was to determine the feasibility of transpiration cooling for the relief of the local heating rates in the region of a sonic, perpendicular, fuel jet of gaseous hydrogen. Experiments were conducted to determine the interaction between the cooling required and flameholding limits of a transverse jet in a high-enthalpy, Mach 3 flow in both open-jet and direct-connect test mode. Pulsed shadowgraphs were used to illustrate the flow field. Infrared thermal images indicated the surface temperatures, and the OH(-) emission of the flame was used to visualize the limits of combustion. Wall, static presures indicated the location of the combustion within the duct and were used to calculate the combustion efficiency. The results from both series of tests at facility total temperatures of 1700 K and 2000 K are presented.

  5. Long-term fuel retention in JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Heinola, K.; Widdowson, A.; Likonen, J.; Alves, E.; Baron-Wiechec, A.; Barradas, N.; Brezinsek, S.; Catarino, N.; Coad, P.; Koivuranta, S.; Krat, S.; Matthews, G. F.; Mayer, M.; Petersson, P.; Contributors, JET

    2016-02-01

    Post-mortem studies with ion beam analysis, thermal desorption, and secondary ion mass spectrometry have been applied for investigating the long-term fuel retention in the JET ITER-like wall components. The retention takes place via implantation and co-deposition, and the highest retention values were found to correlate with the thickness of the deposited impurity layers. From the total amount of retained D fuel over half was detected in the divertor region. The majority of the retained D is on the top surface of the inner divertor, whereas the least retention was measured in the main chamber on the mid-plane of the inner wall limiter. The recessed areas of the inner wall showed significant contribution to the main chamber total retention. Thermal desorption spectroscopy analysis revealed the energetic T from DD reactions being implanted in the divertor. The total T inventory was assessed to be \\gt 0.3 {{mg}}.

  6. Supersonic Coaxial Jet Experiment for CFD Code Validation

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Carty, A. A.; Doerner, S. E.; Diskin, G. S.; Drummond, J. P.

    1999-01-01

    A supersonic coaxial jet facility has been designed to provide experimental data suitable for the validation of CFD codes used to analyze high-speed propulsion flows. The center jet is of a light gas and the coflow jet is of air, and the mixing layer between them is compressible. Various methods have been employed in characterizing the jet flow field, including schlieren visualization, pitot, total temperature and gas sampling probe surveying, and RELIEF velocimetry. A Navier-Stokes code has been used to calculate the nozzle flow field and the results compared to the experiment.

  7. LOX/hydrocarbon auxiliary propulsion system study

    NASA Technical Reports Server (NTRS)

    Orton, G. F.; Mark, T. D.; Weber, D. D.

    1982-01-01

    Liquid oxygen (LOX)/hydrocarbon propulsion concepts for a "second generation' orbiter auxiliary propulsion system was evaluated. The most attractive fuel and system design approach identified, and the technology advancements that are needed to provide high confidence for a subsequent system development were determined. The fuel candidates were ethanol, methane, propane, and ammonia. Even though ammonia is not a hydrocarbon, it was included for evaluation because it is clean burning and has a good technology base. The major system design options were pump versus pressure feed, cryogenic versus ambient temperature RCS propellant feed, and the degree of OMS-RCS integration. Ethanol was determined to be the best fuel candidate. It is an earth-storable fuel with a vapor pressure slightly higher than monomethyl hydrazine. A pump-fed OMS was recommended because of its high specific impulse, enabling greater velocity change and greater payload capability than a pressure fed system.

  8. Experimental Study of Propulsion Performance by Single-Pulse Rotating Detonation with Gaseous Fuels-Oxygen Mixtures

    NASA Astrophysics Data System (ADS)

    Toshimitsu, Kazuhiko; Hara, Kosei; Mikajiri, Shuuto; Takiguchi, Naoki

    2016-12-01

    A rotating detonation engine (RDE) is one of candidates of aerospace engines for supersonic cruse, which is better for propulsion system than a pulse detonation engine (PDE) from the view of continuous thrust and simple structure. The propulsion performance of a proto-type RDE and a PDE by single pulse explosion with methane-oxygen is investigated. Furthermore, the performance of the RDE with acetylene-oxygen gas mixtures is investigated. Its impulse is estimated through ballistic pendulum method with maximum displacement and damping ratio. The comparison of specific impulses of the mixture gases at atmospheric pressure is shown. The specific impulses of the RDE and the PDE are almost same with methane-oxygen gas. Furthermore, the fuel-base specific impulse of the RDE with acetylene-oxygen gas is about over twice as large as one of methane-oxygen, and its maximum specific impulse is 1100 seconds.

  9. Bus Propulsion Alternatives Overview

    DOT National Transportation Integrated Search

    1982-04-01

    The Urban Mass Transportation Administration (UMTA) is currently investigating propulsion alternatives which would conserve petroleum-based fuels and would be practical for use by U.S. transit operators. A discussion of these alternatives (electric p...

  10. Electrolysis Propulsion Provides High-Performance, Inexpensive, Clean Spacecraft Propulsion

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.

    1999-01-01

    An electrolysis propulsion system consumes electrical energy to decompose water into hydrogen and oxygen. These gases are stored in separate tanks and used when needed in gaseous bipropellant thrusters for spacecraft propulsion. The propellant and combustion products are clean and nontoxic. As a result, costs associated with testing, handling, and launching can be an order of magnitude lower than for conventional propulsion systems, making electrolysis a cost-effective alternative to state-of-the-art systems. The electrical conversion efficiency is high (>85 percent), and maximum thrust-to-power ratios of 0.2 newtons per kilowatt (N/kW), a 370-sec specific impulse, can be obtained. A further advantage of the water rocket is its dual-mode potential. For relatively high thrust applications, the system can be used as a bipropellant engine. For low thrust levels and/or small impulse bit requirements, cold gas oxygen can be used alone. An added innovation is that the same hardware, with modest modifications, can be converted into an energy-storage and power-generation fuel cell, reducing the spacecraft power and propulsion system weight by an order of magnitude.

  11. The mechanics of locomotion in the squid Loligo pealei: locomotory function and unsteady hydrodynamics of the jet and intramantle pressure.

    PubMed

    Anderson, E J; DeMont, M E

    2000-09-01

    High-speed, high-resolution digital video recordings of swimming squid (Loligo pealei) were acquired. These recordings were used to determine very accurate swimming kinematics, body deformations and mantle cavity volume. The time-varying squid profile was digitized automatically from the acquired swimming sequences. Mantle cavity volume flow rates were determined under the assumption of axisymmetry and the condition of incompressibility. The data were then used to calculate jet velocity, jet thrust and intramantle pressure, including unsteady effects. Because of the accurate measurements of volume flow rate, the standard use of estimated discharge coefficients was avoided. Equations for jet and whole-cycle propulsive efficiency were developed, including a general equation incorporating unsteady effects. Squid were observed to eject up to 94 % of their intramantle working fluid at relatively high swimming speeds. As a result, the standard use of the so-called large-reservoir approximation in the determination of intramantle pressure by the Bernoulli equation leads to significant errors in calculating intramantle pressure from jet velocity and vice versa. The failure of this approximation in squid locomotion also implies that pressure variation throughout the mantle cannot be ignored. In addition, the unsteady terms of the Bernoulli equation and the momentum equation proved to be significant to the determination of intramantle pressure and jet thrust. Equations of propulsive efficiency derived for squid did not resemble Froude efficiency. Instead, they resembled the equation of rocket motor propulsive efficiency. The Froude equation was found to underestimate the propulsive efficiency of the jet period of the squid locomotory cycle and to overestimate whole-cycle propulsive efficiency when compared with efficiencies calculated from equations derived with the squid locomotory apparatus in mind. The equations for squid propulsive efficiency reveal that the refill

  12. Piloted simulation tests of propulsion control as backup to loss of primary flight controls for a mid-size jet transport

    NASA Technical Reports Server (NTRS)

    Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane

    1995-01-01

    Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.

  13. Comparison of gaseous exhaust indices of the F109 turbofan using three different blends of petroleum-based Jet-A and camelina-based Jet-A

    NASA Astrophysics Data System (ADS)

    Kozak, Brian John

    This research project focused on the collection and comparison of gaseous exhaust emissions of the F109 turbofan engine using petroleum-based Jet-A and two different blends of camelina-based Jet-A. Simulated landing and takeoff cycles were used to collect gaseous exhaust emissions. Unburned hydrocarbon (HC), nitrogen oxide (NOx), and carbon moNOxide (CO) exhaust indices (EIm) were calculated using ICAO Annex 16 Volume II formulae. Statistical analyses were performed on the Elm data. There was no significant difference in HC EIm and CO EI m among the three fuels at takeoff thrust. There were significant differences among the fuels for NOx EIm. 50% Jet-A 50% camelina produced the highest NOx EIm, then 75% Jet-A 25% camelina and finally Jet-A. At climb thrust, both blends of camelina fuel produced higher NOx EIm but no difference in CO EIm and HC EIm as Jet-A. At approach thrust, both blends of camelina fuel produced higher NOx EIm, lower CO EIm, and no difference in HC EIm as Jet-A. At idle thrust, there was no significant difference among the fuels for NOx EIm. There were significant differences among the fuels for HC EIm. Jet-A and 50% Jet-A 50% both produced higher HC EIm as 75% Jet-A 25% camelina. There were significant differences among the fuels for CO EI m. Jet-A produced the highest CO EIm, then 75% Jet-A 25% camelina and finally 50% Jet-A 50% camelina.

  14. Preliminary survey of propulsion using chemical energy stored in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Baldwin, Lionel V; Blackshear, Perry L

    1958-01-01

    Ram-jet cycles that use the chemical energy of dissociated oxygen for propulsion in the ionosphere are presented. After a review of the properties and compositions of the upper atmosphere, the external drag, recombination kinetics, and aerodynamic-heating problems of an orbiting ram jet are analyzed. The study indicates that the recombination ram jet might be useful for sustaining a satellite at an altitude of about 60 miles. Atmospheric composition and recombination-rate coefficients were too uncertain for more definite conclusions. The ram jet is a marginal device even in the optimistic view.

  15. Aviation fuels outlook

    NASA Technical Reports Server (NTRS)

    Momenthy, A. M.

    1980-01-01

    Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the U.S. refineries fuel specification would not significantly alter jet fuel availability.

  16. Benefits of advanced propulsion technology for the advanced supersonic transport

    NASA Technical Reports Server (NTRS)

    Hines, R. W.; Sabatella, J. A.

    1973-01-01

    Future supersonic transports will have to provide improvement in the areas of economics, range, and emissions relative to the present generation of supersonic transports, as well as meeting or improving upon FAR 36 noise goals. This paper covers the promising propulsion systems including variable-cycle engine concepts for long-range supersonic commercial transport application. The benefits of applying advanced propulsion technology to solve the economic and environmental problems are reviewed. The advanced propulsion technologies covered are in the areas of structures, materials, cooling techniques, aerodynamics, variable engine geometry, jet noise suppressors, acoustic treatment, and low-emission burners. The results of applying the advanced propulsion technology are presented in terms of improvement in overall system takeoff gross weight and return on investment.

  17. Chemical Processing of Non-Crop Plants for Jet Fuel Blends Production

    NASA Technical Reports Server (NTRS)

    Kulis, M. J.; Hepp, A. F.; McDowell, M.; Ribita, D.

    2009-01-01

    The use of Biofuels has been gaining in popularity over the past few years due to their ability to reduce the dependence on fossil fuels. Biofuels as a renewable energy source can be a viable option for sustaining long-term energy needs if they are managed efficiently. We describe our initial efforts to exploit algae, halophytes and other non-crop plants to produce synthetics for fuel blends that can potentially be used as fuels for aviation and non-aerospace applications. Our efforts have been dedicated to crafting efficient extraction and refining processes in order to extract constituents from the plant materials with the ultimate goal of determining the feasibility of producing biomass-based jet fuel from the refined extract. Two extraction methods have been developed based on communition processes, and liquid-solid extraction techniques. Refining procedures such as chlorophyll removal and transesterification of triglycerides have been performed. Gas chromatography in tandem with mass spectroscopy is currently being utilized in order to qualitatively determine the individual components of the refined extract. We also briefly discuss and compare alternative methods to extract fuel-blending agents from alternative biofuels sources.

  18. Propulsion Research at the Propulsion Research Center of the NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Blevins, John; Rodgers, Stephen

    2003-01-01

    The Propulsion Research Center of the NASA Marshall Space Flight Center is engaged in research activities aimed at providing the bases for fundamental advancement of a range of space propulsion technologies. There are four broad research themes. Advanced chemical propulsion studies focus on the detailed chemistry and transport processes for high-pressure combustion, and on the understanding and control of combustion stability. New high-energy propellant research ranges from theoretical prediction of new propellant properties through experimental characterization propellant performance, material interactions, aging properties, and ignition behavior. Another research area involves advanced nuclear electric propulsion with new robust and lightweight materials and with designs for advanced fuels. Nuclear electric propulsion systems are characterized using simulated nuclear systems, where the non-nuclear power source has the form and power input of a nuclear reactor. This permits detailed testing of nuclear propulsion systems in a non-nuclear environment. In-space propulsion research is focused primarily on high power plasma thruster work. New methods for achieving higher thrust in these devices are being studied theoretically and experimentally. Solar thermal propulsion research is also underway for in-space applications. The fourth of these research areas is advanced energetics. Specific research here includes the containment of ion clouds for extended periods. This is aimed at proving the concept of antimatter trapping and storage for use ultimately in propulsion applications. Another activity in this involves research into lightweight magnetic technology for space propulsion applications.

  19. Characteristics of strongly-forced turbulent jets and non-premixed jet flames

    NASA Astrophysics Data System (ADS)

    Lakshminarasimhan, K.; Clemens, N. T.; Ezekoye, O. A.

    2006-10-01

    Previous researchers have demonstrated that strong pulsations of the fuel flow rate can significantly reduce the flame length and luminosity of laminar/transitional non-premixed jet flames. The physical mechanisms responsible for these changes are investigated experimentally in acoustically-forced jet flows where the peak velocity fluctuations are up to eight times the mean flow velocity. Both reacting and non-reacting flows were studied and Reynolds numbers, based on the mean flow properties, ranged from 800 to 10,000 (corresponding to peak Reynolds numbers of 1,450-23,000), and forcing frequencies ranged from 290 to 1,140 Hz. Both the first and second organ-pipe resonance modes of the fuel delivery tube were excited to obtain these frequencies. An analysis of the acoustic forcing characteristics within the resonance tube is provided in order to understand the source of the high amplitude forcing. Flow visualization of jets with first resonant forcing confirms the presence of large-scale coherent vortices and strong reverse flow near the exit of the fuel tube. With second-resonant forcing, however, vortices are not emitted from the tube as they are drawn back into the fuel tube before they can fully form. Increased fine-scale turbulence is associated with both resonant cases, but particularly at second resonance. The power spectra of the velocity fluctuations for a resonantly pulsed jet show the presence of an inertial subrange indicating that the flow becomes fully turbulent even for mean-Reynolds-number jets that are nominally laminar. It is shown that these pulsed jet flows exhibit strong similarities to synthetic jets and that the Strouhal number, based on the maximum velocity at the fuel tube exit, is the dominant parameter for scaling these flows. The Strouhal number determines the downstream location where the coherent vortices breakdown, and is found to provide better collapse of flame length data (both current and previous) than other parameters that have

  20. Development of a physiologically based pharmacokinetic model for inhalation of jet fuels in the rat.

    PubMed

    Martin, Sheppard A; Campbell, Jerry L; Tremblay, Raphael T; Fisher, Jeffrey W

    2012-01-01

    The pharmacokinetic behavior of the majority of jet fuel constituents has not been previously described in the framework of a physiologically based pharmacokinetic (PBPK) model for inhalation exposure. Toxic effects have been reported in multiple organ systems, though exposure methods varied across studies, utilizing either vaporized or aerosolized fuels. The purpose of this work was to assess the pharmacokinetics of aerosolized and vaporized fuels, and develop a PBPK model capable of describing both types of exposures. To support model development, n-tetradecane and n-octane exposures were conducted at 89 mg/m(3) aerosol+vapor and 1000-5000 ppm vapor, respectively. Exposures to JP-8 and S-8 were conducted at ~900-1000 mg/m(3), and ~200 mg/m(3) to a 50:50 blend of both fuels. Sub-models were developed to assess the behavior of representative constituents and grouped unquantified constituents, termed "lumps", accounting for the remaining fuel mass. The sub-models were combined into the first PBPK model for petroleum and synthetic jet fuels. Inhalation of hydrocarbon vapors was described with simple gas-exchange assumptions for uptake and exhalation. For aerosol droplets systemic uptake occurred in the thoracic region. Visceral tissues were described using perfusion and diffusion-limited equations. The model described kinetics at multiple fuel concentrations, utilizing a chemical "lumping" strategy to estimate parameters for fractions of speciated and unspeciated hydrocarbons and gauge metabolic interactions. The model more accurately simulated aromatic and lower molecular weight (MW) n-alkanes than some higher MW chemicals. Metabolic interactions were more pronounced at high (~2700-1000 mg/m(3)) concentrations. This research represents the most detailed assessment of fuel pharmacokinetics to date.

  1. (2-methoxyethoxy)acetic acid: a urinary biomarker of exposure for jet fuel JP-8.

    PubMed

    B'hymer, Clayton; Mathias, Patricia; Krieg, Edward; Cheever, Kenneth L; Toennis, Christine A; Clark, John C; Kesner, James S; Gibson, Roger L; Butler, Mary Ann

    2012-05-01

    To demonstrate the utility of the urinary metabolite (2-methoxyethoxy)acetic acid (MEAA) as a biomarker of exposure. 2-(2-methoxyethoxy)ethanol [diethylene glycol monomethyl ether] is an anti-icing agent used in the formulation of JP-8, and it is added at a known uniform 0.1% (v/v) concentration to each batch lot. JP-8 is a kerosene-based fuel containing different compounds that vary in the content of every batch/lot of fuel; thus, MEAA has the potential to be a more specific and a consistent quantitative biomarker for JP-8 exposure. MEAA was used to measure exposure of jet propulsion fuel 8 (JP-8) in United States Air Force (USAF) personnel working at six airbases within the United States. Post-shift urine specimens from various personnel including high (n = 98), moderate (n = 38), and low (n = 61) exposure workgroup categories were collected and analyzed by a gas chromatographic-mass spectrometric test method. The three exposure groups were evaluated for the number per group positive for MEAA, and a statistical analysis consisted of pair-wise t-tests for unequal variances was used to test for the differences in mean MEAA concentrations between the exposure groups. The number of samples detected as positive for MEAA exposure, that is, those above the test method's limit of detection (LOD = 0.1 μg/ml), were 92 (93.9%), 13 (34.2%), and 2 (3.3%) for the high, moderate, and low exposure workgroup categories, respectively. The mean urinary MEAA level was significantly greater in the high exposure category (6.8 μg/ml), compared to the moderate (0.42 μg/ml) and the low (0.07 μg/ml) exposure categories. The maximum concentration of urinary MEAA was 110 μg/ml for the high exposure category, while 4.8 μg/ml and 0.2 μg/ml maximum levels were found in the moderate and low exposure categories, respectively. This study demonstrated that urinary MEAA can be used as an accurate biomarker of exposure for JP-8 workers and clearly distinguished the differences in JP-8

  2. JP-8 jet fuel exposure potentiates tumor development in two experimental model systems.

    PubMed

    Harris, D T; Sakiestewa, D; Titone, D; He, X; Hyde, J; Witten, M

    2007-11-01

    The US Air Force has implemented the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Previous work has reported that JP-8 exposure is immunosuppressive. Exposure of mice to JP-8 for 1 h/day resulted in immediate secretion of two immunosuppressive agents; namely, interleukin-10 (IL-10) and prostaglandin E2 (PGE2). Thus, it was of interest to determine if jet fuel exposure might promote tumor growth and metastasis. The syngeneic B16 tumor model was used for these studies. Animals were injected intravenously with tumor cells, and lung colonies were enumerated. Animals were also examined for metastatic spread of the tumor. Mice were either exposed to 1000 mg/m3 JP-8 (1 h/ day) for 7 days before tumor injection or were exposed to JP-8 at the time of tumor injection. All animals were killed 17 days after tumor injection. In the present study, JP8 exposure potentiated the growth and metastases of B16 tumors in an animal model. Exposure of mice to JP-8 for 1 h/day before tumor induction resulted in an approximately 8.7-fold increase in tumors, whereas those mice exposed to JP8 at the time of tumor induction had a 5.6-fold increase in tumor numbers. Thus, low concentration JP-8 jet fuel exposures have significant immune suppressive effects on the immune system that can result in increased tumor formation and metastases. We have now extended the observations to an experimental subcutaneous tumor model. JP8 exposure at the time of tumor induction in this model did not affect the growth of the tumor. However, JP8-exposed, tumor-bearing animals died at an accelerated rate as compared with air-exposed, tumor-bearing mice.

  3. Ionic liquid propellants: future fuels for space propulsion.

    PubMed

    Zhang, Qinghua; Shreeve, Jean'ne M

    2013-11-11

    Use of green propellants is a trend for future space propulsion. Hypergolic ionic liquid propellants, which are environmentally-benign while exhibiting energetic performances comparable to hydrazine, have shown great potential to meet the requirements of developing nontoxic high-performance propellant formulations for space propulsion applications. This Concept article presents a review of recent advances in the field of ionic liquid propellants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce G. Schnitzler

    Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selectedmore » over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse ({approx}900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial

  5. Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop

    NASA Technical Reports Server (NTRS)

    Clark, John S. (Editor)

    1991-01-01

    Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.

  6. Implementation of an Online Database for Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    David B. Owen, II; McRight, Patrick S.; Cardiff, Eric H.

    2009-01-01

    The Johns Hopkins University, Chemical Propulsion Information Analysis Center (CPIAC) has been working closely with NASA Goddard Space Flight Center (GSFC); NASA Marshall Space Flight Center (MSFC); the University of Alabama at Huntsville (UAH); The Johns Hopkins University, Applied Physics Laboratory (APL); and NASA Jet Propulsion Laboratory (JPL) to capture satellite and spacecraft propulsion system information for an online database tool. The Spacecraft Chemical Propulsion Database (SCPD) is a new online central repository containing general and detailed system and component information on a variety of spacecraft propulsion systems. This paper only uses data that have been approved for public release with unlimited distribution. The data, supporting documentation, and ability to produce reports on demand, enable a researcher using SCPD to compare spacecraft easily, generate information for trade studies and mass estimates, and learn from the experiences of others through what has already been done. This paper outlines the layout and advantages of SCPD, including a simple example application with a few chemical propulsion systems from various NASA spacecraft.

  7. METHOD OF LIQUID-LIQUID EXTRACTION OF BLOOD SURROGATES FOR ASSESSING HUMAN EXPOSURE TO JET FUEL

    EPA Science Inventory

    A baseline method of liquid?liquid extraction for assessing human exposure to JP-8 jet fuel was established by extracting several representative compounds ranging from very volatile to semi-volatile organic compounds, including benzene, toluene, nonane, decane, undecane, tridec...

  8. Agronomic comparison of several brassica species in the U.S. Corn Belt as feedstock for hydrotreated jet fuel

    USDA-ARS?s Scientific Manuscript database

    Through a patented process developed in the U.S., hydrotreated renewable jet fuel (HRJ) derived from plant oils has been commercially demonstrated. However, full-scale production has not yet come to fruition because HRJ is not economically competitive with petroleum-based fuels due to high feedstock...

  9. Mixing and Flow-field Characteristics of Strongly-forced Transitional / Turbulent Jets and Jet Flames

    NASA Astrophysics Data System (ADS)

    Lakshminarasimhan, Krishna

    2005-11-01

    Strong pulsations of the fuel flow rate have previously been shown to dramatically alter the flame length and luminosity of nonpremixed jet flames. The mechanisms responsible for such changes are explored experimentally in nonreacting and reacting strongly pulsed jets by using cinematographic PIV and acetone PLIF. The large amplitude forcing was obtained by pulsing the flow using a solenoid valve at the organ-pipe resonance frequency of the fuel delivery tube. The velocity fluctuations in the flow produced by the resonant pulsing of the jet can reach to about 8 times that of the mean flow. The jet characteristics were studied for Reynolds numbers based on mean flow velocity ranging between 800 and 2400. The PIV shows that with strong pulsations the jet exhibits significant reverse flow into the fuel delivery tube and an increase in turbulence in the near-field region. The acetone PLIF imaging was performed inside and outside the fuel tube in order to study the effects of pulsations on the mixing. These measurements showed significant in-tube partial premixing due to the reverse flow near the nozzle exit as well as enhanced mixing due to coherent vortical structures and increased turbulence.

  10. Conversion of microalgae to jet fuel: process design and simulation.

    PubMed

    Wang, Hui-Yuan; Bluck, David; Van Wie, Bernard J

    2014-09-01

    Microalgae's aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II's thermodynamic data manager. Hydrotreating is analyzed within PRO/II's case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230°C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Fuel Regression Characteristics of Cascaded Multistage Impinging-Jet (CAMUI) Type Hybrid Rocket

    NASA Astrophysics Data System (ADS)

    Itoh, Mitsunori; Maeda, Takenori; Kakikura, Akihito; Kaneko, Yudai; Mori, Kazuhiro; Nakashima, Takuji; Wakita, Masashi; Uematsu, Tsutomu; Totani, Tsuyoshi; Oshima, Nobuyuki; Nagata, Harunori

    A series of lab-scale firing tests was conducted to investigate the fuel regression characteristics of Cascaded Multistage Impinging-jet (CAMUI) type hybrid rocket. The alternative fuel grain used in this rocket consists of a number of cylindrical fuel blocks with two ports, which were aligned along the axis of the combustion chamber with a small gap. The ports are aligned staggered with respect to ones of neighboring blocks so that the combustion gas flow impinges on the forward-end surface of each block. In this fuel grain, forward-end surfaces, back-end surfaces and ports of fuel blocks contribute as burning surfaces. Polyethylene and LOX were used as a propellant, and the tests were conducted at the chamber pressure of 0.5 2MPa and the mass flux of 50 200kg/m2s. Main results obtained in this study are in the followings: The regression rate of each surface was obtained as a function of the propellant mass flux and local equivalent ratio of the combustion gas. At back-end surfaces the regression rate has a high sensitivity on the gap height of neighboring fuel blocks. These fuel regression characteristics will contribute as fundamental data to improve the optimum design of the fuel grain.

  12. Fluid dynamic problems associated with air-breathing propulsive systems

    NASA Technical Reports Server (NTRS)

    Chow, W. L.

    1979-01-01

    A brief account of research activities on problems related to air-breathing propulsion is made in this final report for the step funded research grant NASA NGL 14-005-140. Problems include the aircraft ejector-nozzle propulsive system, nonconstant pressure jet mixing process, recompression and reattachment of turbulent free shear layer, supersonic turbulent base pressure, low speed separated flows, transonic boattail flow with and without small angle of attack, transonic base pressures, Mach reflection of shocks, and numerical solution of potential equation through hodograph transformation.

  13. The Jet Propulsion Laboratory Electric and Hybrid Vehicle System Research and Development Project, 1977-1984: A Review

    NASA Technical Reports Server (NTRS)

    Kurtz, D.; Roan, V.

    1985-01-01

    The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development.

  14. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment.

    PubMed

    Crawford, Jordan T; Shan, Chin Wei; Budsberg, Erik; Morgan, Hannah; Bura, Renata; Gustafson, Rick

    2016-01-01

    Infrastructure compatible hydrocarbon biofuel proposed to qualify as renewable transportation fuel under the U.S. Energy Independence and Security Act of 2007 and Renewable Fuel Standard (RFS2) is evaluated. The process uses a hybrid poplar feedstock, which undergoes dilute acid pretreatment and enzymatic hydrolysis. Sugars are fermented to acetic acid, which undergoes conversion to ethyl acetate, ethanol, ethylene, and finally a saturated hydrocarbon end product. An unfermentable lignin stream may be burned for steam and electricity production, or gasified to produce hydrogen. During biofuel production, hydrogen gas is required and may be obtained by various methods including lignin gasification. Both technical and economic aspects of the biorefinery are analyzed, with different hydrogen sources considered including steam reforming of natural gas and gasification of lignin. Cash operating costs for jet fuel production are estimated to range from 0.67 to 0.86 USD L -1 depending on facility capacity. Minimum fuel selling prices with a 15 % discount rate are estimated to range from 1.14 to 1.79 USD L -1 . Capacities of 76, 190, and 380 million liters of jet fuel per year are investigated. Capital investments range from 356 to 1026 million USD. A unique biorefinery is explored to produce a hydrocarbon biofuel with a high yield from bone dry wood of 330 L t -1 . This yield is achieved chiefly due to the use of acetogenic bacteria that do not produce carbon dioxide as a co-product during fermentation. Capital investment is significant in the biorefinery in part because hydrogen is required to produce a fully de-oxygenated fuel. Minimum selling price to achieve reasonable returns on investment is sensitive to capital financing options because of high capital costs. Various strategies, such as producing alternative, intermediate products, are investigated with the intent to reduce risk in building the proposed facility. It appears that producing and selling these

  15. Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor.

    PubMed

    Puckett, Sean D; Pacey, Gilbert E

    2009-04-15

    The quantitative measurement of jet fuel additives in the field is of interest to the Air Force. The "smart nozzle" project was designed as a state-of-the-art diagnostics package attached to a single-point refueling nozzle for assessing key fuel properties as the fuel is dispensed. The objective of the work was to show proof of concept that a layer-by-layer thin film and long period grating fibers could be used to detect the presence of water in jet fuel. The data for the nafion/PDMA film and a long period grating fiber is a combination capable of quantitative measurement of water in kerosene. The average response (spectral loss wavelength shift) to the kerosene sample ranged from -6.0 for 15 ppm to -126.5 for 60 ppm water. The average calculated value for the check standard was 21.71 and ranged from 21.25 to 22.00 with a true value of 22.5 ppm water. Potential interferences were observed and are judged to be insignificant in real samples.

  16. The Low-Noise Potential of Distributed Propulsion on a Catamaran Aircraft

    NASA Technical Reports Server (NTRS)

    Posey, Joe W.; Tinetti, A. F.; Dunn, M. H.

    2006-01-01

    The noise shielding potential of an inboard-wing catamaran aircraft when coupled with distributed propulsion is examined. Here, only low-frequency jet noise from mid-wing-mounted engines is considered. Because low frequencies are the most difficult to shield, these calculations put a lower bound on the potential shielding benefit. In this proof-of-concept study, simple physical models are used to describe the 3-D scattering of jet noise by conceptualized catamaran aircraft. The Fast Scattering Code is used to predict noise levels on and about the aircraft. Shielding results are presented for several catamaran type geometries and simple noise source configurations representative of distributed propulsion radiation. Computational analyses are presented that demonstrate the shielding benefits of distributed propulsion and of increasing the width of the inboard wing. Also, sample calculations using the FSC are presented that demonstrate additional noise reduction on the aircraft fuselage by the use of acoustic liners on the inboard wing trailing edge. A full conceptual aircraft design would have to be analyzed over a complete mission to more accurately quantify community noise levels and aircraft performance, but the present shielding calculations show that a large acoustic benefit could be achieved by combining distributed propulsion and liner technology with a twin-fuselage planform.

  17. EXHALED HUMAN BREATH MEASUREMENT OF JET FUEL CONSTITUENTS: DISTINGUISHING BETWEEN INHALATION AND DERMAL EXPOSURE ROUTES

    EPA Science Inventory

    In response to anecdotal reports, perceived health issues, and widespread complaints, the U.S. military launched an investigation into the occupational and environmental human exposure to jet fuel. The work described in the presentation assesses the correlation between two breat...

  18. Experimental and computational study of methane counterflow diffusion flames perturbed by trace amounts of either jet fuel or a 6-component surrogate under non-sooting conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bufferand, H.; Tosatto, L.; La Mantia, B.

    2009-08-15

    The chemical structure of a methane counterflow diffusion flame and of the same flame doped with 1000 ppm (molar) of either jet fuel or a 6-component jet fuel surrogate was analyzed experimentally, by gas sampling via quartz microprobes and subsequent GC/MS analysis, and computationally using a semi-detailed kinetic mechanism for the surrogate blend. Conditions were chosen to ensure that all three flames were non-sooting, with identical temperature profiles and stoichiometric mixture fraction, through a judicious selection of feed stream composition and strain rate. The experimental dataset provides a glimpse of the pyrolysis and oxidation behavior of jet fuel in amore » diffusion flame. The jet fuel initial oxidation is consistent with anticipated chemical kinetic behavior, based on thermal decomposition of large alkanes to smaller and smaller fragments and the survival of ring-stabilized aromatics at higher temperatures. The 6-component surrogate captures the same trend correctly, but the agreement is not quantitative with respect to some of the aromatics such as benzene and toluene. Various alkanes, alkenes and aromatics among the jet fuel components are either only qualitatively characterized or could not be identified, because of the presence of many isomers and overlapping spectra in the chromatogram, leaving 80% of the carbon from the jet fuel unaccounted for in the early pyrolysis history of the parent fuel. Computationally, the one-dimensional code adopted a semi-detailed kinetic mechanism for the surrogate blend that is based on an existing hierarchically constructed kinetic model for alkanes and simple aromatics, extended to account for the presence of tetralin and methylcyclohexane as reference fuels. The computational results are in reasonably good agreement with the experimental ones for the surrogate behavior, with the greatest discrepancy in the concentrations of aromatics and ethylene. (author)« less

  19. Evaluation of the Occupational Risks from Jet Fuel (Toxicity Screening Battery)

    DTIC Science & Technology

    2012-09-01

    1α may serve as a marker of epidermal damage or stress due to irritation in this in vitro model. As an alternative to the 3-dimensional human skin...AFRL-RH-FS-SR-2013-0003 Final Report: Evaluation of the Occupational Risks from Jet Fuel (Toxicity Screening Battery) David R. Mattie...2. REPORT TYPE Special Report 3. DATES COVERED (From - To) Oct 2010 – Dec 2011 4. TITLE AND SUBTITLE Evaluation of the Occupational Risks from

  20. Toxicological profile for jet fuels (JP-4 and JP-7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    This statement was prepared to give you information about jet fuels JP-4 and JP-7 and to emphasize the human effects that may result from exposure to them. The Environmental Protection Agency (EPA) has identified 1,397 hazardous waste sites as the most serious in the nation. These sites make up the National Priorities List (NPL) and are the sites targeted for long-term federal clean-up activities. JP-4 has been found in at least 4 of these sites. JP-7 has not been found in any NPL site.