Sample records for jet reactors

  1. Improving Jet Reactor Configuration for Production of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Povitsky, Alex

    2000-01-01

    The jet mixing reactor has been proposed for the industrial production of fullerene carbon nanotubes. Here we study the flowfield of this reactor using the SIMPLER algorithm. Hot peripheral jets are used to enhance heating of the central jet by mixing with the ambiance of reactor. Numerous configurations of peripheral jets with various number of jets, distance between nozzles, angles between the central jet and a peripheral jets, and twisted configuration of nozzles are considered. Unlike the previous studies of jet mixing, the optimal configuration of peripheral jets produces strong non-uniformity of the central jet in a cross-section. The geometrical shape of reactor is designed to obtain a uniform temperature of a catalyst.

  2. Method for producing H.sub.2 using a rotating drum reactor with a pulse jet heat source

    DOEpatents

    Paulson, Leland E.

    1990-01-01

    A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300.degree. to 1400.degree. F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices.

  3. Method of production H/sub 2/ using a rotating drum reactor with a pulse jet heat source

    DOEpatents

    Paulson, L.E.

    1988-05-13

    A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300/degree/ to 1400/degree/F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices. 1 fig.

  4. Lagrangian Approach to Jet Mixing and Optimization of the Reactor for Production of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Povitsky, Alex; Salas, Manuel D.

    2001-01-01

    This study was motivated by an attempt to optimize the High Pressure carbon oxide (HiPco) process for the production of carbon nanotubes from gaseous carbon oxide, The goal is to achieve rapid and uniform heating of catalyst particles by an optimal arrangement of jets. A mixed Eulerian and Lagrangian approach is implemented to track the temperature of catalyst particles along their trajectories as a function of time. The FLUENT CFD software with second-order upwind approximation of convective terms and an algebraic multigrid-based solver is used. The poor performance of the original reactor configuration is explained in terms of features of particle trajectories. The trajectories most exposed to the hot jets appear to be the most problematic for heating because they either bend towards the cold jet interior or rotate upwind of the mixing zone. To reduce undesirable slow and/or oscillatory heating of catalyst particles, a reactor configuration with three central jets is proposed and the optimal location of the central and peripheral nozzles is determined.

  5. Biodegradation of Jet Fuel-4 (JP-4) in Sequencing Batch Reactors

    DTIC Science & Technology

    1992-06-01

    nalw~eo %CUMENTATION PAGE__ _ _ _ _ _ _ _ _O 74S Ab -A258 020 L AW POi~W6 DATI .~ TYP AIMqm ,-& 0 U. glbs A~ I ma"&LFUN Mu BIODEGRADATION OF JET FUEL...Specific Objectives of This Proposal Are: 1. To assess the ability of C. resinae , P. chrysosporium and selected bacterial consortia to degrade individual...chemical components of JP-4. 2. To develop a sequencing batch reactor that utilizes C. resinae to degrade chemical components of JP-4 in contaminated

  6. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  7. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, J. R. (Inventor)

    1985-01-01

    A jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A TEMP, responsive to the heat from the coolant in the secondary flow path, automatically pumps the withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature. At this lower temperature, the TEMP/jet jump combination ceases its circulation boosting operation. The TEMP/jet pump combination is automatic, self-regulating and provides an emergency pumping system free of moving parts.

  8. Control of reactor coolant flow path during reactor decay heat removal

    DOEpatents

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  9. Numerical Investigation of a Novel Microscale Swirling Jet Reactor for Medical Sensor Applications

    NASA Astrophysics Data System (ADS)

    Ogus, G.; Baelmans, M.; Lammertyn, J.; Vanierschot, M.

    2018-03-01

    A microscale swirler and corresponding reactor for a recent detection and analysis tool for healthcare applications, Fiber optic-surface plasmon resonance (FO-SPR), is presented in this study. The sensor is a 400 μm diameter needle that works as a detector for certain particles. Currently, the detection process relies on diffusion of particles towards the sensor and hence diagnostic time is rather long. The aim of this study is to decrease that diagnostic time by introducing convective mixing in the reactor by means of a swirling inlet flow. This will increase the particle deposition on the FO-SPR sensor and hence an increase in detection rate, as this rate strongly depends on the aimed particle concentration near the sensor. As the flow rates are rather low and the length scales are small, the flow in such reactors is laminar. In this study, robustly controllable mixing features of a swirling jet flow is used to increase the particle concentration near the sensor. A numerical analysis (CFD) is performed to characterize the flow and a detailed analysis of flow structures depending on the flow rate are reported.

  10. Performance and emissions of a catalytic reactor with propane, diesel, and Jet A fuels

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1977-01-01

    Tests were made to determine the performance and emissions of a catalytic reactor operated with propane, No. 2 diesel, and Jet A fuels. A 12-cm diameter and 16-cm long catalytic reactor using a proprietary noble metal catalyst was operated at an inlet temperature of 800 K, a pressure of 300,000 Pa and reference velocities of 10 to 15 m/s. No significant differences between the performance of the three fuels were observed when 98.5 percent purity propane was used. The combustion efficiency for 99.8-percent purity propane tested later was significantly lower, however. The diesel fuel contained 135 ppm of bound nitrogen and consequently produced the highest NOx emissions of the three fuels. As much as 85 percent of the bound nitrogen was converted to NOx. Steady-state emissions goals based on half the most stringent proposed automotive standards were met when the reactor was operated at an adiabatic combustion temperature higher than 1350 K with all fuels except the 99.8-percent purity propane. With that fuel, a minimum temperature of 1480 K was required.

  11. Submerged Gas Jet Penetration: A Study of Bubbling Versus Jetting and Side Versus Bottom Blowing in Copper Bath Smelting

    NASA Astrophysics Data System (ADS)

    Kapusta, Joël P. T.

    2017-06-01

    Although the bottom blowing ShuiKouShan process has now been widely implemented in China, in both lead and copper smelters, some doubts, questions, and concerns still seem to prevail in the metallurgical community outside China. In the author's opinion, part of these doubts and concerns could be addressed by a better general understanding of key concepts of submerged gas injection, including gas jet trajectory and penetration, and the concept, application, and benefits of sonic injection in jetting regime. To provide some answers, this article first offers a discussion on the historical developments of the theory and mathematical characterization of submerged gas jet trajectory, including the proposed criteria for the transition from bubbling to jetting regime and the application of the Prandtl-Meyer theory to submerged gas jets. A second part is devoted to a quantitative study of submerged gas jet penetration in copper bath smelting, including a comparison between bubbling and jetting regimes, and side versus bottom blowing. In the specific cases studied, the calculated gas jet axis trajectory length in jetting regime is 159 cm for bottom blowing, whereas it varies between 129 and 168 cm for side blowing for inclination angles of +18° to -30° to the horizontal. This means that side blowing in the jetting regime would provide a deeper penetration and longer gas jet trajectory than generally obtained by conventional bath smelting vessels such as the Noranda and Teniente reactors. The theoretical results of this study do corroborate the successful high-intensity practice of the slag make converting process at Glencore Nickel in Canada that operates under high oxygen shrouded injection in the jetting regime, and this would then suggest that retrofitting conventional low-pressure, side-blowing tuyeres of bath smelting and converting reactors with sonic injectors in jetting regime certainly appears as a valuable option for process intensification with higher oxygen

  12. Rapid Confined Mixing with Transverse Jets Part 1: Single Jet

    NASA Astrophysics Data System (ADS)

    Salazar, David; Forliti, David

    2012-11-01

    Transverse jets have been studied extensively due to their relevance and efficiency in fluid mixing applications. Gas turbine burners, film cooling, and chemical reactors are some examples of rapid transverse jet mixing. Motivated by a lack of universal scaling laws for confined and unconfined transverse jets, a newly developed momentum transfer parameter was found to improve correlation of literature data. Jet column drag and entrainment arguments for momentum transfer are made to derive the parameter. A liquid-phase mixing study was conducted to investigate confined mixing for a low number of jets. Planar laser induced fluorescence was implemented to measure mixture fraction for a single confined transverse jet. Time-averaged cross-sectional images were taken with a light sheet located three diameters downstream of transverse injection. A mixture of water and sodium fluorescein was used to distinguish jet fluid from main flow fluid for the test section images. Image data suggest regimes for under- and overpenetration of jet fluid into the main flow. The scaling parameter is found to correlate optimum unmixedness for multiple diameter ratios at a parameter value of 0.75. Distribution A: Public Release, Public Affairs Clearance Number: 12655.

  13. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.

    PubMed

    Trujillo, Francisco Javier; Knoerzer, Kai

    2011-11-01

    High power ultrasound reactors have gained a lot of interest in the food industry given the effects that can arise from ultrasonic-induced cavitation in liquid foods. However, most of the new food processing developments have been based on empirical approaches. Thus, there is a need for mathematical models which help to understand, optimize, and scale up ultrasonic reactors. In this work, a computational fluid dynamics (CFD) model was developed to predict the acoustic streaming and induced heat generated by an ultrasonic horn reactor. In the model it is assumed that the horn tip is a fluid inlet, where a turbulent jet flow is injected into the vessel. The hydrodynamic momentum rate of the incoming jet is assumed to be equal to the total acoustic momentum rate emitted by the acoustic power source. CFD velocity predictions show excellent agreement with the experimental data for power densities higher than W(0)/V ≥ 25kWm(-3). This model successfully describes hydrodynamic fields (streaming) generated by low-frequency-high-power ultrasound. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  14. Numerical Analysis of an Impinging Jet Reactor for the CVD and Gas-Phase Nucleation of Titania

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Stewart, Gregory D.; Collins, Joshua; Rosner, Daniel E.

    1994-01-01

    We model a cold-wall atmospheric pressure impinging jet reactor to study the CVD and gas-phase nucleation of TiO2 from a titanium tetra-iso-propoxide (TTIP)/oxygen dilute source gas mixture in nitrogen. The mathematical model uses the computational code FIDAP and complements our recent asymptotic theory for high activation energy gas-phase reactions in thin chemically reacting sublayers. The numerical predictions highlight deviations from ideality in various regions inside the experimental reactor. Model predictions of deposition rates and the onset of gas-phase nucleation compare favorably with experiments. Although variable property effects on deposition rates are not significant (approximately 11 percent at 1000 K), the reduction rates due to Soret transport is substantial (approximately 75 percent at 1000 K).

  15. The Joint European Torus (JET)

    NASA Astrophysics Data System (ADS)

    Rebut, Paul-Henri

    2017-02-01

    This paper addresses the history of JET, the Tokamak that reached the highest performances and the experiment that so far came closest to the eventual goal of a fusion reactor. The reader must be warned, however, that this document is not a comprehensive study of controlled thermonuclear fusion or even of JET. The next step on this road, the ITER project, is an experimental reactor. Actually, several prototypes will be required before a commercial reactor can be built. The fusion history is far from been finalised. JET is still in operation some 32 years after the first plasma and still has to provide answers to many questions before ITER takes the lead on research. Some physical interpretations of the observed phenomena, although coherent, are still under discussion. This paper also recalls some basic physics concepts necessary to the understanding of confinement: a knowledgeable reader can ignore these background sections. This fascinating story, comprising successes and failures, is imbedded in the complexities of twentieth and the early twenty-first centuries at a time when world globalization is evolving and the future seems loaded with questions. The views here expressed on plasma confinement are solely those of the author. This is especially the case for magnetic turbulence, for which other scientists may have different views.

  16. Calculated performance of a mercury-compressor-jet powered airplane using a nuclear reactor as an energy source

    NASA Technical Reports Server (NTRS)

    Doyle, R B

    1951-01-01

    An analysis was made at a flight Mach number of 1.5, an altitude of 45,000 feet, a turbine-inlet temperature of 1460 degrees R, of a mercury compressor-jet powered airplane using a nuclear reactor as an energy source. The calculations covered a range of turbine-exhaust and turbine-inlet pressures and condenser-inlet Mach numbers. For a turbine--inlet pressure of 40 pounds per square inch absolute, a turbine-exhaust pressure of 14 pounds per square inch absolute, and a condenser-inlet Mach number of 0.23 the calculated airplane gross weight required to carry a 20,000 pound payload was 322000 pounds and the reactor heat release per unit volume was 8.9 kilowatts per cubic inch. These do not represent optimum operating conditions.

  17. Modeling of the oxidation of methyl esters—Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor

    PubMed Central

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2013-01-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes. PMID:23710076

  18. Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachs, Marius; Schmitt, Adeliene; Schmidt, Jochen

    2015-05-22

    Recently additive manufacturing processes such as selective laser sintering (SLS) of polymers have gained more importance for industrial applications [1]. Tailor-made modification of polymers is essential in order to make these processes more efficient and to cover the industrial demands. The so far used polymer materials show weak performance regarding the mechanical stability of processed parts. To overcome this limitation, a new route to functionalize the surface of commercially available polymer particles (PA12; PE-HD; PP) using an atmospheric plasma jet in combination with a fluidized bed reactor has been investigated. Consequently, an improvement of adhesion and wettability [2] of themore » polymer surface without restraining the bulk properties of the powder is achieved. The atmospheric plasma jet process can provide reactive species at moderate temperatures which are suitable for polymer material. The functionalization of the polymer powders improves the quality of the devices build in a SLS-process.« less

  19. Benchmark studies of thermal jet mixing in SFRs using a two-jet model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omotowa, O. A.; Skifton, R.; Tokuhiro, A.

    To guide the modeling, simulations and design of Sodium Fast Reactors (SFRs), we explore and compare the predictive capabilities of two numerical solvers COMSOL and OpenFOAM in the thermal jet mixing of two buoyant jets typical of the outlet flow from a SFR tube bundle. This process will help optimize on-going experimental efforts at obtaining high resolution data for V and V of CFD codes as anticipated in next generation nuclear systems. Using the k-{epsilon} turbulence models of both codes as reference, their ability to simulate the turbulence behavior in similar environments was first validated for single jet experimental datamore » reported in literature. This study investigates the thermal mixing of two parallel jets having a temperature difference (hot-to-cold) {Delta}T{sub hc}= 5 deg. C, 10 deg. C and velocity ratios U{sub c}/U{sub h} = 0.5, 1. Results of the computed turbulent quantities due to convective mixing and the variations in flow field along the axial position are presented. In addition, this study also evaluates the effect of spacing ratio between jets in predicting the flow field and jet behavior in near and far fields. (authors)« less

  20. Improved vortex reactor system

    DOEpatents

    Diebold, James P.; Scahill, John W.

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  1. Improved vortex reactor system

    DOEpatents

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  2. Bench-Scale Monolith Autothermal Reformer Catalyst Screening Evaluations in a Micro-Reactor With Jet-A Fuel

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.; Yen, Judy C.H.; Budge, John R.

    2006-01-01

    Solid oxide fuel cell systems used in the aerospace or commercial aviation environment require a compact, light-weight and highly durable catalytic fuel processor. The fuel processing method considered here is an autothermal reforming (ATR) step. The ATR converts Jet-A fuel by a reaction with steam and air forming hydrogen (H2) and carbon monoxide (CO) to be used for production of electrical power in the fuel cell. This paper addresses the first phase of an experimental catalyst screening study, looking at the relative effectiveness of several monolith catalyst types when operating with untreated Jet-A fuel. Six monolith catalyst materials were selected for preliminary evaluation and experimental bench-scale screening in a small 0.05 kWe micro-reactor test apparatus. These tests were conducted to assess relative catalyst performance under atmospheric pressure ATR conditions and processing Jet-A fuel at a steam-to-carbon ratio of 3.5, a value higher than anticipated to be run in an optimized system. The average reformer efficiencies for the six catalysts tested ranged from 75 to 83 percent at a constant gas-hourly space velocity of 12,000 hr 1. The corresponding hydrocarbon conversion efficiency varied from 86 to 95 percent during experiments run at reaction temperatures between 750 to 830 C. Based on the results of the short-duration 100 hr tests reported herein, two of the highest performing catalysts were selected for further evaluation in a follow-on 1000 hr life durability study in Phase II.

  3. Effect of Jet Injection Angle and Number of Jets on Mixing and Emissions From a Reacting Crossflow at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    St.John, D.; Samuelsen, G. S.

    2000-01-01

    The mixing of air jets into hot, fuel-rich products of a gas turbine primary zone is an important step in staged combustion. Often referred to as "quick quench," the mixing occurs with chemical conversion and substantial heat release. An experiment has been designed to simulate and study this process, and the effect of varying the entry angle (0 deg, 22.5 deg and 45 deg from normal) and number of the air jets (7, 9, and 11) into the main flow, while holding the jet-to-crossflow mass-low ratio, MR, and momentum-flux ratio, J, constant (MR = 2.5;J = 25). The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from orifices equally spaced around the perimeter. A specially designed reactor, operating on propane, presents a uniform mixture to a module containing air jet injection tubes that can be changed to vary orifice geometry. Species concentrations of O2, CO, CO2, NO(x) and HC were obtained one duct diameter upstream (in the rich zone), and primarily one duct radius downstream. From this information, penetration of the jet, the spatial extent of chemical reaction, mixing, and the optimum jet injection angle and number of jets can be deduced.

  4. Rapid preparation of high electrochemical performance LiFePO4/C composite cathode material with an ultrasonic-intensified micro-impinging jetting reactor.

    PubMed

    Dong, Bin; Huang, Xiani; Yang, Xiaogang; Li, Guang; Xia, Lan; Chen, George

    2017-11-01

    A joint chemical reactor system referred to as an ultrasonic-intensified micro-impinging jetting reactor (UIJR), which possesses the feature of fast micro-mixing, was proposed and has been employed for rapid preparation of FePO 4 particles that are amalgamated by nanoscale primary crystals. As one of the important precursors for the fabrication of lithium iron phosphate cathode, the properties of FePO 4 nano particles significantly affect the performance of the lithium iron phosphate cathode. Thus, the effects of joint use of impinging stream and ultrasonic irradiation on the formation of mesoporous structure of FePO 4 nano precursor particles and the electrochemical properties of amalgamated LiFePO 4 /C have been investigated. Additionally, the effects of the reactant concentration (C=0.5, 1.0 and 1.5molL -1 ), and volumetric flow rate (V=17.15, 51.44, and 85.74mLmin -1 ) on synthesis of FePO 4 ·2H 2 O nucleus have been studied when the impinging jetting reactor (IJR) and UIJR are to operate in nonsubmerged mode. It was affirmed from the experiments that the FePO 4 nano precursor particles prepared using UIJR have well-formed mesoporous structures with the primary crystal size of 44.6nm, an average pore size of 15.2nm, and a specific surface area of 134.54m 2 g -1 when the reactant concentration and volumetric flow rate are 1.0molL -1 and 85.74mLmin -1 respectively. The amalgamated LiFePO 4 /C composites can deliver good electrochemical performance with discharge capacities of 156.7mAhg -1 at 0.1C, and exhibit 138.0mAhg -1 after 100 cycles at 0.5C, which is 95.3% of the initial discharge capacity. Copyright © 2017. Published by Elsevier B.V.

  5. Impurity re-distribution in the corner regions of the JET divertor

    NASA Astrophysics Data System (ADS)

    Widdowson, A.; Coad, J. P.; Alves, E.; Baron-Wiechec, A.; Barradas, N. P.; Catarino, N.; Corregidor, V.; Heinola, K.; Krat, S.; Likonen, J.; Matthews, G. F.; Mayer, M.; Petersson, P.; Rubel, M.; Contributors, JET

    2017-12-01

    The International Thermonuclear Experimental Reactor (ITER) will use a mixture of deuterium (D) and tritium (T) as the fuel to generate power. Since T is both radioactive and expensive the Joint European Torus (JET) has been at the forefront of research to discover how much T is used and where it may be retained within the main reaction chamber. Until the year 2010 the JET plasma facing components were constructed of carbon fibre composites. During the JET carbon (C) phases impurities accumulated at the corners of the divertor located towards the bottom of the chamber in regions shadowed from the plasma where they are very difficult to reach and remove. This build-up of C and the associated H-isotope (including T) retention were of particular concern for future fusion reactors therefore, in 2010 JET changed the wall protection to (mainly) Be and the divertor to tungsten (W)—the JET ITER-like wall (ILW)—the choice of materials for ITER. This paper reveals that with the JET ILW impurities are still accumulating in the shadowed regions, with Be being the majority element, though the overall quantities are very much reduced from those in the C phases. Material will be transported into the shadowed regions principally when the plasma strike points are on the corner tiles, but particles typically have about a 75% probability of reflection from line-of sight surfaces, and multiple reflection/scattering results in deposition over all surfaces.

  6. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less

  7. Ammonia chemistry in a flameless jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zieba, Mariusz; Schuster, Anja; Scheffknecht, Guenter

    2009-10-15

    In this paper, the nitrogen chemistry in an ammonia (NH{sub 3}) doped flameless jet is investigated using a kinetic reactor network model. The reactor network model is used to explain the main differences in ammonia chemistry for methane (CH{sub 4})-containing fuels and methane-free fuels. The chemical pathways of nitrogen oxides (NO{sub x}) formation and destruction are identified using rate-of-production analysis. The results show that in the case of natural gas, ammonia reacts relatively late at fuel lean condition leading to high NO{sub x} emissions. In the pre-ignition zone, the ammonia chemistry is blocked due to the absence of free radicalsmore » which are consumed by methane-methyl radical (CH{sub 3}) conversion. In the case of methane-free gas, the ammonia reacted very rapidly and complete decomposition was reached in the fuel rich region of the jet. In this case the necessary radicals for the ammonia conversion are generated from hydrogen (H{sub 2}) oxidation. (author)« less

  8. High-efficiency treatment of PTA wastewater using a biogas jet assisted anaerobic fluidized bed reactor.

    PubMed

    Zhang, Wei; Feng, Yangyang; Chen, Yingwen; Li, Peiwen; Zhu, Shemin; Shen, Shubao

    2018-02-05

    In this paper, a new type of biogas jet assisted anaerobic fluidized bed reactor loaded with a polypropylene carrier has been proposed. There was a clear improvement in the fluidized state due to the biogas assisted input when the gas/water ratio was set at 1:3 with a suitable carrier loading of 60%. When the circulating water flow is 30 L/min assisted with biogas 10 L/min, the mixing time shortens from 26 to 18 s. The performance of anaerobic biodegradation on wastewater treatment was improved largely. The chemical oxygen demand (COD) and terepthallic acid removal efficiencies were at 85.4% and 84%, respectively, at hydraulic retention time of 20 h, even when the influent COD concentration was as high as 4224 mg/L. In addition, plenty of microorganisms, attached to the carriers and assumed to be the reason behind the organic biodegradation efficiency of the proposed system, were observed using scanning electron microscopy.

  9. Jet Mixing in a Reacting Cylindrical Crossflow

    NASA Technical Reports Server (NTRS)

    Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.

    1995-01-01

    This paper addresses the mixing of air jets into the hot, fuel-rich products of a gas turbine primary zone. The mixing, as a result, occurs in a reacting environment with chemical conversion and substantial heat release. The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from round orifices. A specially designed reactor, operating on propane, presents a uniform mixture without swirl to mixing modules consisting of 8, 9, 10, and 12 holes at a momentum-flux ratio of 57 and a jet-to-mainstream mass-flow ratio of 2.5. Concentrations of O2, CO2, CO, and HC are obtained upstream, downstream, and within the orifice plane. O2 profiles indicate jet penetration while CO2, CO, and HC profiles depict the extent of reaction. Jet penetration is observed to be a function of the number of orifices and is found to affect the mixing in the reacting system. The results demonstrate that one module (the 12-hole) produces near-optimal penetration defined here as a jet penetration closest to the module half-radius, and hence the best uniform mixture at a plane one duct radius from the orifice leading edge.

  10. Vortex flows with suspended separation regions and long-range untwisted central jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramovich, G.N.; Trofimov, R.S.

    1988-05-01

    A study is made of possible physicoaerodynamic configurations of vortical flow with suspended separation regions and untwisted central jets. Such flows are encountered in power plants (heat exchangers, combustion chambers, and chemical reactors) and in nature (tornadoes). The basic configurations of several flows of this type are described, including the structure of a flow formed by coaxial cocurrent twisted jets, the flow in a conical swirl chamber with the formation of an untwisted long-range axial jet, the flow pattern in a gas turbine engine chamber, and some considerations regarding the aerodynamics of a tornado.

  11. Synthesis of superior fast charging-discharging nano-LiFePO4/C from nano-FePO4 generated using a confined area impinging jet reactor approach.

    PubMed

    Liu, Xiao-min; Yan, Pen; Xie, Yin-Yin; Yang, Hui; Shen, Xiao-dong; Ma, Zi-Feng

    2013-06-14

    LiFePO4/C nanocomposites with excellent electrochemical performance is synthesized from nano-FePO4, generated by a novel method using a confined area impinging jet reactor (CIJR). When discharged at 80 C (13.6 Ag(-1)), the LiFePO4/C delivers a discharge capacity of 95 mA h g(-1), an energy density of 227 W h kg(-1) and a power density of 34 kW kg(-1).

  12. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  13. Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schobert, H.H.; Eser, S.; Song, C.

    There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation inmore » a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.« less

  14. DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H{alpha} macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jetsmore » that were also caught in He II 304 A snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T {approx} 10{sup 4} - 10{sup 5} K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.« less

  15. Jet in jet in M87

    NASA Astrophysics Data System (ADS)

    Sob'yanin, Denis Nikolaevich

    2017-11-01

    New high-resolution Very Long Baseline Interferometer observations of the prominent jet in the M87 radio galaxy show a persistent triple-ridge structure of the transverse 15-GHz profile with a previously unobserved ultra-narrow central ridge. This radio structure can reflect the intrinsic structure of the jet, so that the jet as a whole consists of two embedded coaxial jets. A relativistic magnetohydrodynamic model is considered in which an inner jet is placed inside a hollow outer jet and the electromagnetic fields, pressures and other physical quantities are found. The entire jet is connected to the central engine that plays the role of a unipolar inductor generating voltage between the jets and providing opposite electric currents, and the charge neutrality and current closure together with the electromagnetic fields between the jets can contribute to the jet stabilization. The constant voltage is responsible for the similar widening laws observed for the inner and outer jets. This jet-in-jet structure can indicate simultaneous operation of two different jet-launching mechanisms, one relating to the central supermassive black hole and the other to the surrounding accretion disc. An inferred magnetic field of 80 G at the base is sufficient to provide the observed jet luminosity.

  16. The jet-disk symbiosis without maximal jets: 1D hydrodynamical jets revisited

    NASA Astrophysics Data System (ADS)

    Crumley, Patrick; Ceccobello, Chiara; Connors, Riley M. T.; Cavecchi, Yuri

    2017-05-01

    In this work we discuss the recent criticism by Zdziarski (2016, A&A, 586, A18) of the maximal jet model derived in Falcke & Biermann (1995, A&A, 293, 665). We agree with Zdziarski that in general a jet's internal energy is not bounded by its rest-mass energy density. We describe the effects of the mistake on conclusions that have been made using the maximal jet model and show when a maximal jet is an appropriate assumption. The maximal jet model was used to derive a 1D hydrodynamical model of jets in agnjet, a model that does multiwavelength fitting of quiescent/hard state X-ray binaries and low-luminosity active galactic nuclei. We correct algebraic mistakes made in the derivation of the 1D Euler equation and relax the maximal jet assumption. We show that the corrections cause minor differences as long as the jet has a small opening angle and a small terminal Lorentz factor. We find that the major conclusion from the maximal jet model, the jet-disk symbiosis, can be generally applied to astrophysical jets. We also show that isothermal jets are required to match the flat radio spectra seen in low-luminosity X-ray binaries and active galactic nuclei, in agreement with other works.

  17. OVERVIEW OF NEUTRON MEASUREMENTS IN JET FUSION DEVICE.

    PubMed

    Batistoni, P; Villari, R; Obryk, B; Packer, L W; Stamatelatos, I E; Popovichev, S; Colangeli, A; Colling, B; Fonnesu, N; Loreti, S; Klix, A; Klosowski, M; Malik, K; Naish, J; Pillon, M; Vasilopoulou, T; De Felice, P; Pimpinella, M; Quintieri, L

    2017-10-05

    The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. First operation with the JET International Thermonuclear Experimental Reactor-like walla)

    NASA Astrophysics Data System (ADS)

    Neu, R.; Arnoux, G.; Beurskens, M.; Bobkov, V.; Brezinsek, S.; Bucalossi, J.; Calabro, G.; Challis, C.; Coenen, J. W.; de la Luna, E.; de Vries, P. C.; Dux, R.; Frassinetti, L.; Giroud, C.; Groth, M.; Hobirk, J.; Joffrin, E.; Lang, P.; Lehnen, M.; Lerche, E.; Loarer, T.; Lomas, P.; Maddison, G.; Maggi, C.; Matthews, G.; Marsen, S.; Mayoral, M.-L.; Meigs, A.; Mertens, Ph.; Nunes, I.; Philipps, V.; Pütterich, T.; Rimini, F.; Sertoli, M.; Sieglin, B.; Sips, A. C. C.; van Eester, D.; van Rooij, G.; JET-EFDA Contributors

    2013-05-01

    To consolidate International Thermonuclear Experimental Reactor (ITER) design choices and prepare for its operation, Joint European Torus (JET) has implemented ITER's plasma facing materials, namely, Be for the main wall and W in the divertor. In addition, protection systems, diagnostics, and the vertical stability control were upgraded and the heating capability of the neutral beams was increased to over 30 MW. First results confirm the expected benefits and the limitations of all metal plasma facing components (PFCs) but also yield understanding of operational issues directly relating to ITER. H-retention is lower by at least a factor of 10 in all operational scenarios compared to that with C PFCs. The lower C content (≈ factor 10) has led to much lower radiation during the plasma burn-through phase eliminating breakdown failures. Similarly, the intrinsic radiation observed during disruptions is very low, leading to high power loads and to a slow current quench. Massive gas injection using a D2/Ar mixture restores levels of radiation and vessel forces similar to those of mitigated disruptions with the C wall. Dedicated L-H transition experiments indicate a 30% power threshold reduction, a distinct minimum density, and a pronounced shape dependence. The L-mode density limit was found to be up to 30% higher than for C allowing stable detached divertor operation over a larger density range. Stable H-modes as well as the hybrid scenario could be re-established only when using gas puff levels of a few 1021 es-1. On average, the confinement is lower with the new PFCs, but nevertheless, H factors up to 1 (H-Mode) and 1.3 (at βN≈3, hybrids) have been achieved with W concentrations well below the maximum acceptable level.

  19. Twin Jet

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  20. Comparison of attrition test methods: ASTM standard fluidized bed vs jet cup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, R.; Goodwin, J.G. Jr.; Jothimurugesan, K.

    2000-05-01

    Attrition resistance is one of the key design parameters for catalysts used in fluidized-bed and slurry phase types of reactors. The ASTM fluidized-bed test has been one of the most commonly used attrition resistance evaluation methods; however, it requires the use of 50 g samples--a large amount for catalyst development studies. Recently a test using the jet cup requiring only 5 g samples has been proposed. In the present study, two series of spray-dried iron catalysts were evaluated using both the ASTM fluidized-bed test and a test based on the jet cup to determine this comparability. It is shown thatmore » the two tests give comparable results. This paper, by reporting a comparison of the jet-cup test with the ASTM standard, provides a basis for utilizing the more efficient jet cup with confidence in catalyst attrition studies.« less

  1. Reactor control rod timing system

    DOEpatents

    Wu, Peter T. K.

    1982-01-01

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  2. Fluid sampling system for a nuclear reactor

    DOEpatents

    Lau, Louis K.; Alper, Naum I.

    1994-01-01

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  3. Fluid sampling system for a nuclear reactor

    DOEpatents

    Lau, L.K.; Alper, N.I.

    1994-11-22

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  4. Applying design principles to fusion reactor configurations for propulsion in space

    NASA Technical Reports Server (NTRS)

    Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. We applied three design principles (DP's) to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. We performed a preliminary rating of these configurations and concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS).

  5. Jet angularity measurements for single inclusive jet production

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Lee, Kyle; Ringer, Felix

    2018-04-01

    We study jet angularity measurements for single-inclusive jet production at the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth interpolation between different traditional jet shape observables. We establish a factorization theorem within Soft Collinear Effective Theory (SCET) where we consistently take into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For comparison, we elaborate on the differences to jet angularities measured on an exclusive jet sample. All the necessary ingredients for the resummation at next-to-leading logarithmic (NLL) accuracy are presented within the effective field theory framework. We expect semiinclusive jet angularity measurements to be feasible at the LHC and we present theoretical predictions for the relevant kinematic range. In addition, we investigate the potential impact of jet angularities for quark-gluon discrimination.

  6. Deflection of jets induced by jet-cloud and jet-galaxy interactions

    NASA Astrophysics Data System (ADS)

    Mendoza, S.; Longair, M. S.

    2001-06-01

    The model first introduced by Raga & Cantó in which astrophysical jets are deflected on passing through an isothermal high-density region is generalized by taking into account gravitational effects on the motion of the jet as it crosses the high-density cloud. The problem is also generalized for relativistic jets in which gravitational effects induced by the cloud are neglected. Two further cases, classical and relativistic, are discussed for the cases in which the jet is deflected on passing through the interstellar gas of a galaxy in which a dark matter halo dominates the gravitational potential. The criteria for the stability of jets due to the formation of internal shocks are also discussed.

  7. Reactor control rod timing system. [LMFBR

    DOEpatents

    Wu, P.T.K.

    1980-03-18

    A fluid driven jet-edge whistle timing system is described for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  8. Decolourization of Rhodamine B: A swirling jet-induced cavitation combined with NaOCl.

    PubMed

    Mancuso, Giuseppe; Langone, Michela; Laezza, Marco; Andreottola, Gianni

    2016-09-01

    A hydrodynamic cavitation reactor (Ecowirl) based on swirling jet-induced cavitation has been used in order to allow the degradation of a waste dye aqueous solution (Rhodamine B, RhB). Cavitation generated by Ecowirl reactor was directly compared with cavitation generated by using multiple hole orifice plates. The effects of operating conditions and parameters such as pressure, pH of dye solution, initial concentration of RhB and geometry of the cavitating devices on the degradation rate of RhB were discussed. In similar operative conditions, higher extents of degradation (ED) were obtained using Ecowirl reactor rather than orifice plate. An increase in the ED from 8.6% to 14.7% was observed moving from hole orifice plates to Ecowirl reactor. Intensification in ED of RhB by using hydrodynamic cavitation in presence of NaOCl as additive has been studied. It was found that the decolourization was most efficient for the combination of hydrodynamic cavitation and chemical oxidation as compared to chemical oxidation and hydrodynamic cavitation alone. The value of ED of 83.4% was reached in 37min using Ecowirl combined with NaOCl (4.0mgL(-1)) as compared to the 100min needed by only mixing NaOCl at the same concentration. At last, the energetic consumptions of the cavitation devices have been evaluated. Increasing the ED and reducing the treatment time, Ecowirl reactor resulted to be more energy efficient as compared to hole orifice plates, Venturi and other swirling jet-induced cavitation devices, as reported in literature. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effect of high surface area activated carbon on thermal degradation of jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gergova, K.; Eser, S.; Arumugam, R.

    1995-05-01

    Different solid carbons added to jet fuel during thermal stressing cause substantial changes in pyrolytic degradation reactions. Activated carbons, especially high surface area activated carbons were found to be very effective in suppressing solid deposition on metal reactor walls during stressing at high temperatures (425 and 450{degrees}C). The high surface area activated carbon PX-21 prevented solid deposition on reactor walls even after 5h at 450{degrees}C. The differences seen in the liquid product composition when activated carbon is added indicated that the carbon surfaces affect the degradation reactions. Thermal stressing experiments were carried out on commercial petroleum-derived JPTS jet fuel. Wemore » also used n-octane and n-dodecane as model compounds in order to simplify the study of the chemical changes which take place upon activated carbon addition. In separate experiments, the presence of a hydrogen donor, decalin, together with PX-21 was also studied.« less

  10. Hydrodynamic Stability Analysis of Multi-jet Effects in Swirling Jet Combustors

    NASA Astrophysics Data System (ADS)

    Emerson, Benjamin; Lieuwen, Tim

    2016-11-01

    Many practical combustion devices use multiple swirling jets to stabilize flames. However, much of the understanding of swirling jet dynamics has been generated from experimental and computational studies of single reacting, swirling jets. A smaller body of literature has begun to explore the effects of multi-jet systems and the role of jet-jet interactions on the macro-system dynamics. This work uses local temporal and spatio-temporal stability analyses to isolate the hydrodynamic interactions of multiple reacting, swirling jets, characterized by jet diameter, D, and spacing, L. The results first identify the familiar helical modes in the single jet. Comparison to the multi-jet configuration reveals these same familiar modes simultaneously oscillating in each of the jets. Jet-jet interaction is mostly limited to a spatial synchronization of each jet's oscillations at the jet spacing values analyzed here (L/D =3.5). The presence of multiple jets vs a single jet has little influence on the temporal and absolute growth rates. The biggest difference between the single and multi-jet configurations is the presence of nearly degenerate pairs of hydrodynamic modes in the multi-jet case, with one mode dominated by oscillations in the inner jet, and the other in the outer jets. The close similarity between the single and multi-jet hydrodynamics lends insight into experiments from our group.

  11. DEFE0023863 Final Report, Technology for GHG Emission Reduction and CostCompetitive MilSpec Jet Fuel Production using CTL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartvigsen, Joseph J; Dimick, Paul; Laumb, Jason D

    Ceramatec Inc, in collaboration with IntraMicron (IM), the Energy & Environmental Research Center (EERC) and Sustainable Energy Solutions, LLC (SES), have completed a three-year research project integrating their respective proprietary technologies in key areas to demonstrate production of a jet fuel from coal and biomass sources. The project goals and objectives were to demonstrate technology capable of producing a “commercially-viable quantity” of jet fuel and make significant progress toward compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements. The Ceramatec led team completed the demonstration of nominalmore » 2 bbl/day Fischer-Tropsch (FT) synthesis pilot plant design, capable of producing a nominal 1 bbl/day in the Jet-A/JP-8 fraction. This production rate would have a capacity of 1,000 gallons of jet fuel per month and provide the design basis of a 100 bbl/day module producing over 2,000 gallons of jet fuel per day. Co-gasification of coal-biomass blends enables a reduction of lifecycle greenhouse gas emissions from equivalent conventional petroleum derived fuel basis. Due to limits of biomass availability within an economic transportation range, implementation of a significant biomass feed fraction will require smaller plants than current world scale CTL and GTL FT plants. Hence a down-scaleable design is essential. The pilot plant design leverages Intramicron’s MicroFiber Entrapped Catalyst (MFEC) support which increases the catalyst bed thermal conductivity two orders of magnitude, allowing thermal management of the FT reaction exotherm in much larger reactor tubes. In this project, single tube reactors having 4.5 inch outer diameter and multi-tube reactors having 4 inch outer diameters were operated, with productivities as high as 1.5 gallons per day per linear foot of reactor tube. A significant reduction in tube count results from the use of large

  12. Fuzzy jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  13. Fuzzy jets

    DOE PAGES

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; ...

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  14. Design, Operation, and Modeling of a Vertical APCVD Reactor for Silicon Carbide Film Growth

    NASA Technical Reports Server (NTRS)

    DeAnna, Russell G.; Fleischman, Aaron J.; Zorman, Christian A.; Mehregany, Mehran

    1998-01-01

    An atmospheric pressure chemical vapor deposition (APCVD) reactor utilizing a unique vertical geometry which enables 3C-SiC films to be grown on two, 4-inch diameter Si wafers has been constructed. Contrary to expectations, 3C-SiC films grown in this reactor are thickest at the downstream end of the substrates. To better understand the reason for the thickness distribution on the wafers, an axisymmetric finite-element model of the gas flow in the reactor was constructed. The model uses the ANSYS53 Flowtran package and includes compressible and temperature-dependent fluid properties in laminar or turbulent flow. It does not include reaction chemistry or unsteady flow. The ANSYS53 results predict that the cool, inlet fluid falls through the inlet pipe and the warm, diffuser region like a jet. This jet impinges on top of the susceptor and gets diverted to the reactor side walls, where it flows to the bottom of the reactor, turns, and slowly rises along the face of the susceptor. This may explain why the SiC films are thickest at the downstream side of the wafers, as gas containing fresh reactants first passes over this region. Modeling results are presented for both one atmosphere and one half atmosphere reactor pressure.

  15. The AGHS at JET and preparations for a future DT campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.; JET-EFDA, Culham Science Centre, Abingdon

    2015-03-15

    The Active Gas Handling System (AGHS) at JET is a unique facility enabling JET to perform reactor like, DT operations. As a future DT experimental campaign (DTE2) is scheduled for 2017 this paper provides a brief overview of the AGHS and a summary of ongoing work supporting the currently JET experimental campaign. In order to improve tritium accountancy a solid state based detector for tritium is being developed. Another important upgrade concerns tritium injection, 4 existing GIMs (Tritium Gas Introduction Module) will inject a mix of D and T rather than T{sub 2} in the divertor region rather than inmore » the torus mid plane enabling a far better control and variability of the introduction of tritium into the plasma. An overview of the scale of DTE2 is included as well as an example of some of the upgrades currently being undertaken to fully exploit the learning opportunities for ITER and DEMO DTE2 provides. (authors)« less

  16. Experimental investigation of turbulent wall jet

    NASA Astrophysics Data System (ADS)

    Andre, Matthieu A.; Bardet, Philippe M.

    2011-11-01

    Water jet flowing on a flat plate surrounded by quiescent air constitutes a standard case for the study of the interaction between turbulence and the liquid-air interface. This is of particular interest in the understanding of heat and mass transfers across interfaces. The structure of the surface has a great influence on the rate of the transfers which is critical for chemical processes like separation or absorption; pool-type nuclear reactor; climate modeling etc. This study focuses on high Froude (8 to 12) and Weber (3300 to 7400) numbers at which the surface exhibits small wavelength and large amplitude deformations, such as ligaments, surface break up with air entrainment and droplets projection. The experiment features a high velocity (up to 7.5 m/s) water wall jet (19.05mm thick at the nozzle exit) flowing on a flat plate (Re =105 to 1 . 5 .105). High speed movies and PLIF visualization show the evolution of the surface from smooth to 2D structures, then 3D disturbances as the turbulence arising from the wall interacts with the surface.

  17. Far Noise Field of Air Jets and Jet Engines

    NASA Technical Reports Server (NTRS)

    Callaghan, Edmund E; Coles, Willard D

    1957-01-01

    An experimental investigation was conducted to study and compare the acoustic radiation of air jets and jet engines. A number of different nozzle-exit shapes were studied with air jets to determine the effect of exit shape on noise generation. Circular, square, rectangular, and elliptical convergent nozzles and convergent-divergent and plug nozzles were investigated. The spectral distributions of the sound power for the engine and the air jet were in good agreement for the case where the engine data were not greatly affected by reflection or jet interference effects. Such power spectra for a subsonic or slightly choked engine or air jet show that the peaks of the spectra occur at a Strouhal number of 0.3.

  18. Removal of floating dust in glow discharge using plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ticos, C. M.; Jepu, I.; Lungu, C. P.

    2010-07-05

    Dust can be an inconvenient source of impurities in plasma processing reactors and in many cases it can cause damage to the plasma-treated surfaces. A technique for dust expulsion out of the trapping region in plasma is presented here, based on the wind force exerted on dust particles by a pulsed plasma jet. Its applicability is demonstrated by removing floating dust in the sheath of parallel-plate capacitive radio-frequency plasma.

  19. Stretched Inertial Jets

    NASA Astrophysics Data System (ADS)

    Ghabache, Elisabeth; Antkowiak, Arnaud; Seon, Thomas; Villermaux, Emmanuel

    2015-11-01

    Liquid jets often arise as short-lived bursting liquid flows. Cavitation or impact-driven jets, bursting champagne bubbles, shaped-charge jets, ballistospores or drop-on-demand inkjet printing are a few examples where liquid jets are suddenly released. The trademark of all these discharge jets is the property of being stretched, due to the quenching injection. the present theoretical and experimental investigation, the structure of the jet flow field will be unraveled experimentally for a few emblematic occurrences of discharge jets. Though the injection markedly depends on each flow configuration, the jet velocity field will be shown to be systematically and rapidly attracted to the universal stretching flow z/t. The emergence of this inertial attractor actually only relies on simple kinematic ingredients, and as such is fairly generic. The universality of the jet velocity structure will be discussed.

  20. Factorization for jet radius logarithms in jet mass spectra at the LHC

    DOE PAGES

    Kolodrubetz, Daniel W.; Pietrulewicz, Piotr; Stewart, Iain W.; ...

    2016-12-14

    To predict the jet mass spectrum at a hadron collider it is crucial to account for the resummation of logarithms between the transverse momentum of the jet and its invariant mass m J . For small jet areas there are additional large logarithms of the jet radius R, which affect the convergence of the perturbative series. We present an analytic framework for exclusive jet production at the LHC which gives a complete description of the jet mass spectrum including realistic jet algorithms and jet vetoes. It factorizes the scales associated with m J , R, and the jet veto, enablingmore » in addition the systematic resummation of jet radius logarithms in the jet mass spectrum beyond leading logarithmic order. We discuss the factorization formulae for the peak and tail region of the jet mass spectrum and for small and large R, and the relations between the different regimes and how to combine them. Regions of experimental interest are classified which do not involve large nonglobal logarithms. We also present universal results for nonperturbative effects and discuss various jet vetoes.« less

  1. Synthetic Jets in Cross-flow. Part 1; Round Jet

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Milanovic, Ivana M.

    2003-01-01

    Results of an experimental investigation on synthetic jets from round orifices with and without cross-flow are presented. Jet Reynolds number up to 46,000 with a fully turbulent approach boundary layer, and Stokes number up to 400. are covered. The threshold of stroke length for synthetic jet formation. in the absence of the cross-flow, is found to be Lo /D approximately 0.5. Above Lo /D is approximately 10, the profiles of normalized centerline mean velocity appear to become invariant. It is reasoned that the latter threshold may be related to the phenomenon of saturation of impulsively generated vortices. In the presence of the cross-flow, the penetration height of a synthetic jet is found to depend on the momentum- flux ratio . When this ratio is defined in terms of the maximum jet velocity and the cross-flow velocity. not only all data collapse but also the jet trajectory is predicted well by correlation equation available for steady jets-in-cross-flow. Distributions of mean velocity, streamwise vorticity as well as turbulence intensity for a synthetic jet in cross-flow are found to be similar to those of a steady jet-in-cross-flow. A pair of counter-rotating streamwise vortices, corresponding to the bound vortex pair of the steady case, is clearly observed. Mean velocity distribution exhibits a dome of low momentum fluid pulled up from the boundary layer, and the entire domain is characterized by high turbulence.

  2. Multiple jet study data correlations. [data correlation for jet mixing flow of air jets

    NASA Technical Reports Server (NTRS)

    Walker, R. E.; Eberhardt, R. G.

    1975-01-01

    Correlations are presented which allow determination of penetration and mixing of multiple cold air jets injected normal to a ducted subsonic heated primary air stream. Correlations were obtained over jet-to-primary stream momentum flux ratios of 6 to 60 for locations from 1 to 30 jet diameters downstream of the injection plane. The range of geometric and operating variables makes the correlations relevant to gas turbine combustors. Correlations were obtained for the mixing efficiency between jets and primary stream using an energy exchange parameter. Also jet centerplane velocity and temperature trajectories were correlated and centerplane dimensionless temperature distributions defined. An assumption of a Gaussian vertical temperature distribution at all stations is shown to result in a reasonable temperature field model. Data are presented which allow comparison of predicted and measured values over the range of conditions specified above.

  3. Active Region Jets II: Triggering and Evolution of Violent Jets

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Panesar, Navdeep K.; Martinez, Francisco

    2017-08-01

    We study a series of X-ray-bright, rapidly evolving active-region coronal jets outside the leading sunspot of AR 12259, using Hinode/XRT, SDO/AIA and HMI, and IRIS/SJ data. The detailed evolution of such rapidly evolving “violent” jets remained a mystery after our previous investigation of active region jets (Sterling et al. 2016, ApJ, 821, 100). The jets we investigate here erupt from three localized subregions, each containing a rapidly evolving (positive) minority-polarity magnetic-flux patch bathed in a (majority) negative-polarity magnetic-flux background. At least several of the jets begin with eruptions of what appear to be thin (thickness ˜<2‧‧) miniature-filament (minifilament) “strands” from a magnetic neutral line where magnetic flux cancelation is ongoing, consistent with the magnetic configuration presented for coronal-hole jets in Sterling et al. (2015, Nature, 523, 437). For some jets strands are difficult/ impossible to detect, perhaps due to their thinness, obscuration by surrounding bright or dark features, or the absence of erupting cool-material minifilaments in those jets. Tracing in detail the flux evolution in one of the subregions, we find bursts of strong jetting occurring only during times of strong flux cancelation. Averaged over seven jetting episodes, the cancelation rate was ~1.5×10^19 Mx/hr. An average flux of ~5×10^18 Mx canceled prior to each episode, arguably building up ~10^28—10^29 ergs of free magnetic energy per jet. From these and previous observations, we infer that flux cancelation is the fundamental process responsible for the pre-eruption buildup and triggering of at least many jets in active regions, quiet regions, and coronal holes.

  4. Active control of continuous air jet with bifurcated synthetic jets

    NASA Astrophysics Data System (ADS)

    Dančová, Petra; Vít, Tomáš; Jašíková, Darina; Novosád, Jan

    The synthetic jets (SJs) have many significant applications and the number of applications is increasing all the time. In this research the main focus is on the primary flow control which can be used effectively for the heat transfer increasing. This paper deals with the experimental research of the effect of two SJs worked in the bifurcated mode used for control of an axisymmetric air jet. First, the control synthetic jets were measured alone. After an adjustment, the primary axisymmetric jet was added in to the system. For comparison, the primary flow without synthetic jets control was also measured. All experiments were performed using PIV method whereby the synchronization between synthetic jets and PIV system was necessary to do.

  5. Intra-jet shocks in two counter-streaming, weakly collisional plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryutov, D. D.; Kugland, N. L.; Park, H.-S.

    2012-07-15

    Counterstreaming laser-generated plasma jets can serve as a test-bed for the studies of a variety of astrophysical phenomena, including collisionless shock waves. In the latter problem, the jet's parameters have to be chosen in such a way as to make the collisions between the particles of one jet with the particles of the other jet very rare. This can be achieved by making the jet velocities high and the Coulomb cross-sections correspondingly low. On the other hand, the intra-jet collisions for high-Mach-number jets can still be very frequent, as they are determined by the much lower thermal velocities of themore » particles of each jet. This paper describes some peculiar properties of intra-jet hydrodynamics in such a setting: the steepening of smooth perturbations and shock formation affected by the presence of the 'stiff' opposite flow; the role of a rapid electron heating in shock formation; ion heating by the intrajet shock. The latter effect can cause rapid ion heating which is consistent with recent counterstreaming jet experiments by Ross et al.[Phys. Plasmas 19, 056501 (2012)].« less

  6. Rapid Confined Mixing Using Transverse Jets Part 2: Multiple Jets

    NASA Astrophysics Data System (ADS)

    Forliti, David; Salazar, David

    2012-11-01

    An experimental study has been conducted at the Air Force Research Laboratory at Edwards Air Force Base to investigate the properties of confined mixing devices that employ transverse jets. The experiment considers the mixing of water with a mixture of water and fluorescein, and planar laser induced fluorescence was used to measure instantaneous mixture fraction distributions in the cross section view. Part one of this study presents the scaling law development and results for a single confined transverse jet. Part two will describe the results of configurations including multiple transverse jets. The different regimes of mixing behavior, ranging from under to overpenetration of the transverse jets, are characterized in terms of a new scaling law parameter presented in part one. The level of unmixedness, a primary metric for mixing device performance, is quantified for different jet diameters, number of jets, and relative flow rates. It is apparent that the addition of a second transverse jet provides enhanced scalar uniformity in the main pipe flow cross section compared to a single jet. Three and six jet configurations also provide highly uniform scalar distributions. Turbulent scalar fluctuation intensities, spectral features, and spatial eigenfunctions using the proper orthogonal decomposition will be presented. Distribution A: Public Release, Public Affairs Clearance Number: 12656.

  7. Turbulence measurements in axisymmetric jets of air and helium. I - Air jet. II - Helium jet

    NASA Technical Reports Server (NTRS)

    Panchapakesan, N. R.; Lumley, J. L.

    1993-01-01

    Results are presented of measurements on turbulent round jets of air and of helium of the same nozzle momentum efflux, using, for the air jets, x-wire hot-wire probes mounted on a moving shuttle and, for He jets, a composite probe consisting of an interference probe of the Way-Libby type and an x-probe. Current models for scalar triple moments were evaluated. It was found that the performance of the model termed the Full model, which includes all terms except advection, was very good for both the air and the He jets.

  8. Spiral jet

    NASA Astrophysics Data System (ADS)

    Istomin, Ya N.

    2018-05-01

    We show that a quasi-cylindrical configuration of a jet in the central region, where direct electric current flows, is confined in a radial equilibrium by a spiral wave at the periphery of a jet. A spiral wave means that in a coordinate system moving with the velocity of the matter along the axis of the jet, all quantities are proportional to exp {ik∥z + imϕ}, z is the longitudinal coordinate, and ϕ is the azimuthal angle. The luminosity of such a jet corresponds to observations. It is also shown that the jet slowly expands with distance z from its base by the power law, R(z) ∝ zk, where the exponent k varies from ≃0.5 to ≃1.

  9. Understanding jet noise.

    PubMed

    Karabasov, S A

    2010-08-13

    Jets are one of the most fascinating topics in fluid mechanics. For aeronautics, turbulent jet-noise modelling is particularly challenging, not only because of the poor understanding of high Reynolds number turbulence, but also because of the extremely low acoustic efficiency of high-speed jets. Turbulent jet-noise models starting from the classical Lighthill acoustic analogy to state-of-the art models were considered. No attempt was made to present any complete overview of jet-noise theories. Instead, the aim was to emphasize the importance of sound generation and mean-flow propagation effects, as well as their interference, for the understanding and prediction of jet noise.

  10. Control of jet noise

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan

    1993-01-01

    This reports describes experiments conducted at the High-Speed Jet Facility at the University of Southern California on supersonic jets. The goal of the study was to develop methods for controlling the noise emitted from supersonic jets by passive and/or active means. Work by Seiner et al (1991) indicates that eddy Mach wave radiation is the dominant noise source in a heated high speed jet. Eddy Mach radiation is caused by turbulent eddies traveling at supersonic speed in the shear layer of the jet. The convection velocity of the eddies decays with increasing distance from the nozzle exit due to the mixing of the jet stream with the ambient fluid. Once the convection speed reaches subsonic velocities, eddy Mach wave radiation ceases. To control noise, a rapid decay of the convection velocity is desired. This may be accomplished by enhanced mixing in the jet. In this study, small aspect ratio rectangular jet nozzles were tested. A flapping mode was noticed in the jets. By amplifying screech components of the jets and destabilizing the jet columns with a collar device, the flapping mode was excited. The result was a rapid decay of the jet velocity. A reduction in eddy Mach radiation in rectangular supersonic jets may be achieved with this device.

  11. Jet-A reaction mechanism study for combustion application

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Kundu, Krishna; Acosta, Waldo

    1991-01-01

    Simplified chemical kinetic reaction mechanisms for the combustion of Jet A fuel was studied. Initially, 40 reacting species and 118 elementary chemical reactions were chosen based on a literature review. Through a sensitivity analysis with the use of LSENS General Kinetics and Sensitivity Analysis Code, 16 species and 21 elementary chemical reactions were determined from this study. This mechanism is first justified by comparison of calculated ignition delay time with the available shock tube data, then it is validated by comparison of calculated emissions from the plug flow reactor code with in-house flame tube data.

  12. Exotic interactions among C-jets and Pb-jets

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The C-jets and Pb-jets were surveyed on the part of Chacaltaya emulsion chamber No.19 amounting to an exposure of 28.8 sq m yr. It is shown that the adopted events make up an unbiased sample of C-jets for sigma sub E gamma TeV. Mini-Centauro interaction gives the most natural explanation for the eight pinaught-less C-jets with three or more constituent shower core. Out of the eight double-cored pinaught-less events, three are found to have visible invariant masses 1.8 GeV/c. Three Pb-jets-lower are composed of double cores whose respective visible transverse momenta are greater than 0.5 GeV/c, suggesting that they are of Geminion origin or chiron origin. The energies of the parent particles are estimated to be 100 to 200 TeV for all three kinds of events. The implications of this energy estimate and the frequency of observed exotic events are discussed.

  13. Blowout Jets: Hinode X-Ray Jets that Don't Fit the Standard Model

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-01-01

    Nearly half of all H-alpha macrospicules in polar coronal holes appear to be miniature filament eruptions. This suggests that there is a large class of X-ray jets in which the jet-base magnetic arcade undergoes a blowout eruption as in a CME, instead of remaining static as in most solar X-ray jets, the standard jets that fit the model advocated by Shibata. Along with a cartoon depicting the standard model, we present a cartoon depicting the signatures expected of blowout jets in coronal X-ray images. From Hinode/XRT movies and STEREO/EUVI snapshots in polar coronal holes, we present examples of (1) X-ray jets that fit the standard model, and (2) X-ray jets that do not fit the standard model but do have features appropriate for blowout jets. These features are (1) a flare arcade inside the jet-base arcade in addition to the small flare arcade (bright point) outside that standard jets have, (2) a filament of cool (T is approximately 80,000K) plasma that erupts from the core of the jetbase arcade, and (3) an extra jet strand that should not be made by the reconnection for standard jets but could be made by reconnection between the ambient unipolar open field and the opposite-polarity leg of the filament-carrying flux-rope core field of the erupting jet-base arcade. We therefore infer that these non-standard jets are blowout jets, jets made by miniature versions of the sheared-core-arcade eruptions that make CMEs

  14. Velocity field near the jet orifice of a round jet in a crossflow

    NASA Technical Reports Server (NTRS)

    Fearn, R. L.; Benson, J. P.

    1979-01-01

    Experimentally determined velocities at selected locations near the jet orifice are presented and analyzed for a round jet in crossflow. Jet-to-crossflow velocity ratios of four and eight were studied experimentally for a round subsonic jet of air exhausting perpendicularly through a flat plate into a subsonic crosswind of the same temperature. Velocity measurements were made in cross sections to the jet plume located from one to four jet diameters from the orifice. Jet centerline and vortex properties are presented and utilized to extend the results of a previous study into the region close to the jet orifice.

  15. Utilization of useless pesticides in a plasma reactor

    NASA Astrophysics Data System (ADS)

    Lozhechnik, A. V.; Mossé, A. L.; Savchin, V. V.; Skomorokhov, D. S.; Khvedchin, I. V.

    2011-09-01

    Investigations on destruction of isophene C14H18O7N2 and the butyl ether of 2,4-dichlorophenoxyacetic acid (Cl2C6H3OCH2COOCH2CH(CH3)2) are performed. The plasma treatment of toxic waste is implemented in a plasma reactor with a three-jet mixing chamber. Air is used as the plasma-forming gas.

  16. The free jet as a simulator of forward velocity effects on jet noise

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Tester, B. J.; Tanna, H. K.

    1978-01-01

    A thorough theoretical and experimental study of the effects of the free-jet shear layer on the transmission of sound from a model jet placed within the free jet to the far-field receiver located outside the free-jet flow was conducted. The validity and accuracy of the free-jet flight simulation technique for forward velocity effects on jet noise was evaluated. Transformation charts and a systematic computational procedure for converting measurements from a free-jet simulation to the corresponding results from a wind-tunnel simulation, and, finally, to the flight case were provided. The effects of simulated forward flight on jet mixing noise, internal noise and shock-associated noise from model-scale unheated and heated jets were established experimentally in a free-jet facility. It was illustrated that the existing anomalies between full-scale flight data and model-scale flight simulation data projected to the flight case, could well be due to the contamination of flight data by engine internal noise.

  17. NASA Jet Noise Research

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  18. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  19. Interaction of argon and helium plasma jets and jets arrays with account for gravity

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu.; Naidis, George V.; Panov, Vladislav A.; Wang, Ruixue; Zhao, Yong; Shao, Tao

    2018-06-01

    In this paper, we discuss results from an experimental and computational study of the properties of a single jet and two-tube jet arrays operating in argon and helium. The jets are positioned horizontally. It was shown in experiments that the helium plasma plume bends upward and the plumes in the two-tubes jet array tend to divert due to the jet-jet interaction. To investigate these potential interactions, a computational study was performed of one- and two-tube argon and helium jet arrays having variable spacing. The effects of buoyancy forces on the jet-to-jet interaction of the plasma plumes are also investigated. Velocities of ionization waves inside and outside the tubes are estimated and compared for the argon and helium ionization waves. We show that in helium jet-jet interactions primarily depend on the spacing between the tubes and on the buoyancy forces. The helium plumes tend to merge into one single stream before dissipating, while the argon plasma plumes are less sensitive to the spacing of the jet tubes.

  20. Jets in Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Dowling, Tim

    2018-05-01

    Jet streams, "jets" for short, are remarkably coherent streams of air found in every major atmosphere. They have a profound effect on a planet's global circulation, and have been an enigma since the belts and zones of Jupiter were discovered in the 1600s. The study of jets, including what processes affect their size, strength, direction, shear stability, and predictability, are active areas of research in geophysical fluid dynamics. Jet research is multidisciplinary and global, involving collaborations between observers, experimentalists, numerical modelers, and applied mathematicians. Jets in atmospheres have strong analogies with shear instability in nonneutral plasmas, and these connections are highlighted throughout the article. The article begins with a description of four major challenges that jet researchers face: nonlinearity, non-intuitive wave physics, non-constant-coefficients, and copious nondimensional numbers. Then, two general fluid-dynamical tenets, the practice of rendering expressions dimensionally homogeneous (nondimensional), and the universal properties of shocks are applied to the open question of what controls the on-off switch of shear instability. The discussion progresses to how the physics of jets varies in equatorial, midlatitude, and polar regions, and how jets are observed to behave in each of these settings. The all-in-one conservation law of potential vorticity (PV), which combines the conservation laws of mass, momentum, and thermal energy into a single expression, is the common language of jet research. Earth and Uranus have weak retrograde equatorial jets, but most planets exhibit super-rotating equatorial jets, which require eddies to transport momentum up gradient in a non-intuitive manner. Jupiter and Saturn exhibit multiple alternating jets in their midlatitudes. The theory for why jets are invariably zonal (east-west orientated) is reviewed, and the particular challenges that Jupiter's sharp westward jets present to existing

  1. Jet noise suppression

    NASA Astrophysics Data System (ADS)

    Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.

    1991-08-01

    The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.

  2. Control of jet noise

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan

    1992-01-01

    To investigate the possibility of active control of jet noise, knowledge of the noise generation mechanisms in natural jets is essential. Once these mechanisms are determined, active control can be used to manipulate the noise production processes. We investigated the evolution of the flow fields and the acoustic fields of rectangular and circular jets. A predominant flapping mode was found in the supersonic rectangular jets. We hope to increase the spreading of supersonic jets by active control of the flapping mode found in rectangular supersonic jets.

  3. Water Jetting

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Hi-Tech Inc., a company which manufactures water jetting equipment, needed a high pressure rotating swivel, but found that available hardware for the system was unsatisfactory. They were assisted by Marshall, which had developed water jetting technology to clean the Space Shuttles. The result was a completely automatic water jetting system which cuts rock and granite and removes concrete. Labor costs have been reduced; dust is suppressed and production has been increased.

  4. Aeroacoustic Experiments with Twin Jets

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.; Henderson, Brenda S.

    2012-01-01

    While the noise produced by a single jet is azimuthally symmetric, multiple jets produce azimuthally varying far-field noise. The ability of one jet to shield another reduces the noise radiated in the plane of the jets, while often increasing the noise radiated out of the plane containing the jets. The present study investigates the shielding potential of twin jet configurations over subsonic and over-expanded supersonic jet conditions with simulated forward flight. The experiments were conducted with 2 in. throat diameter nozzles at four jet spacings from 2.6d to 5.5d in center-to-center distance, where d is the nozzle throat diameter. The current study found a maximum of 3 dB reduction in overall sound pressure level relative to two incoherent jets in the peak jet noise direction in the plane containing the jets. However, an increase of 3 dB was found perpendicular to the plane containing the jets. In the sideline direction, shielding is observed for all jet spacings in this study.

  5. Studies of jet mass in dijet and W/Z + jet events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    Invariant mass spectra for jets reconstructed using the anti-kt and Cambridge-Aachen algorithms are studied for different jet "grooming" techniques in data corresponding to an integrated luminosity of 5 inverse femtobarns, recorded with the CMS detector in proton-proton collisions at the LHC at a center-of-mass energy of 7 TeV. Leading-order QCD predictions for inclusive dijet and W/Z+jet production combined with parton-shower Monte Carlo models are found to agree overall with the data, and the agreement improves with the implementation of jet grooming methods used to distinguish merged jets of large transverse momentum from softer QCD gluon radiation.

  6. Solar Active Region Coronal Jets. II. Triggering and Evolution of Violent Jets

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Martinez, Francisco

    2017-07-01

    We study a series of X-ray-bright, rapidly evolving active region coronal jets outside the leading sunspot of AR 12259, using Hinode/X-ray telescope, Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI), and Interface Region Imaging Spectrograph (IRIS) data. The detailed evolution of such rapidly evolving “violent” jets remained a mystery after our previous investigation of active region jets. The jets we investigate here erupt from three localized subregions, each containing a rapidly evolving (positive) minority-polarity magnetic-flux patch bathed in a (majority) negative-polarity magnetic-flux background. At least several of the jets begin with eruptions of what appear to be thin (thickness ≲ 2\\prime\\prime ) miniature-filament (minifilament) “strands” from a magnetic neutral line where magnetic flux cancelation is ongoing, consistent with the magnetic configuration presented for coronal-hole jets in Sterling et al. (2016). Some jets strands are difficult/impossible to detect, perhaps due to, e.g., their thinness, obscuration by surrounding bright or dark features, or the absence of erupting cool-material minifilaments in those jets. Tracing in detail the flux evolution in one of the subregions, we find bursts of strong jetting occurring only during times of strong flux cancelation. Averaged over seven jetting episodes, the cancelation rate was ˜ 1.5× {10}19 Mx hr-1. An average flux of ˜ 5× {10}18 Mx canceled prior to each episode, arguably building up ˜1028-1029 erg of free magnetic energy per jet. From these and previous observations, we infer that flux cancelation is the fundamental process responsible for the pre-eruption build up and triggering of at least many jets in active regions, quiet regions, and coronal holes.

  7. Twin Jet Effects on Noise of Round and Rectangular Jets: Experiment and Model

    NASA Technical Reports Server (NTRS)

    Bozak, Rick

    2014-01-01

    Many subsonic and supersonic aircraft concepts proposed by NASA's Fundamental Aeronautics Program have asymmetric, integrated propulsion systems. The asymmetries in the exhaust of these propulsion systems create an asymmetric acoustic field. The asymmetries investigated in the current study are from twin jets and rectangular nozzles. Each effect produces its own variation of the acoustic field. An empirical model was developed to predict the acoustic field variation from round twin jets with twin jet spacing from 2.6 to 5.6, where s is the center-to-center spacing over the jet diameter. The model includes parameters to account for the effects of twin jet spacing, jet static temperature ratio, flight Mach number, frequency, and observer angle (both polar and azimuthal angles). The model was then applied to twin 2:1 and 8:1 aspect ratio nozzles to determine the impact of jet aspect ratio. For the round and rectangular jets, the use of the model reduces the average magnitude of the error over all frequencies, observation angles, and jet spacings by approximately 0.5dB when compared against the assumption of adding two jets incoherently.

  8. Multiple jet study

    NASA Technical Reports Server (NTRS)

    Walker, R. E.; Kors, D. L.

    1973-01-01

    Test data is presented which allows determination of jet penetration and mixing of multiple cold air jets into a ducted subsonic heated mainstream flow. Jet-to-mainstream momentum flux ratios ranged from 6 to 60. Temperature profile data is presented at various duct locations up to 24 orifice diameters downstream of the plane of jet injection. Except for two configurations, all geometries investigated had a single row of constant diameter orifices located transverse to the main flow direction. Orifice size and spacing between orifices were varied. Both of these were found to have a significant effect on jet penetration and mixing. The best mixing of the hot and cold streams was achieved with duct height.

  9. Jet simulations and gamma-ray burst afterglow jet breaks

    NASA Astrophysics Data System (ADS)

    van Eerten, H. J.; Meliani, Z.; Wijers, R. A. M. J.; Keppens, R.

    2011-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on circumstances, the radio jet break may be postponed significantly. Using high-accuracy adaptive mesh fluid simulations in one dimension, coupled to a detailed synchrotron radiation code, we demonstrate that this is true even for the standard fireball model and hard-edged jets. We confirm these effects with a simulation in two dimensions. The frequency dependence of the jet break is a result of the angle dependence of the emission, the changing optical depth in the self-absorbed regime and the shape of the synchrotron spectrum in general. In the optically thin case the conventional analysis systematically overestimates the jet break time, leading to inferred opening angles that are underestimated by a factor of ˜1.3 and explosion energies that are underestimated by a factor of ˜1.7, for explosions in a homogeneous environment. The methods presented in this paper can be applied to adaptive mesh simulations of arbitrary relativistic fluid flows. All analysis presented here makes the usual assumption of an on-axis observer.

  10. Design of Aerosol Coating Reactors: Precursor Injection

    PubMed Central

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Particles are coated with thin shells to facilitate their processing and incorporation into liquid or solid matrixes without altering core particle properties (coloristic, magnetic, etc.). Here, computational fluid and particle dynamics are combined to investigate the geometry of an aerosol reactor for continuous coating of freshly-made titanium dioxide core nanoparticles with nanothin silica shells by injection of hexamethyldisiloxane (HMDSO) vapor downstream of TiO2 particle formation. The focus is on the influence of HMDSO vapor jet number and direction in terms of azimuth and inclination jet angles on process temperature and coated particle characteristics (shell thickness and fraction of uncoated particles). Rapid and homogeneous mixing of core particle aerosol and coating precursor vapor facilitates synthesis of core-shell nanoparticles with uniform shell thickness and high coating efficiency (minimal uncoated core and free coating particles). PMID:23658471

  11. Mixing augmentation of transverse hydrogen jet by injection of micro air jets in supersonic crossflow

    NASA Astrophysics Data System (ADS)

    Anazadehsayed, A.; Barzegar Gerdroodbary, M.; Amini, Y.; Moradi, R.

    2017-08-01

    In this study, the influences of the micro air jet on the mixing of the sonic transverse hydrogen through micro-jets subjected to a supersonic crossflow are investigated. A three-dimensional numerical study has been performed to reveal the affects of micro air jet on mixing of the hydrogen jet in a Mach 4.0 crossflow with a global equivalence ratio of 0.5. Parametric studies were conducted on the various air jet conditions by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Complex jet interactions were found in the downstream region with a variety of flow features depending upon the angle of micro air jet. These flow features were found to have subtle effects on the mixing of hydrogen jets. Results indicate a different flow structure as air jet is presented in the downstream of the fuel jet. According to the results, without air, mixing occurs at a low rate. When the air jet is presented in the downstream of fuel jet, significant increase (up to 300%) occurs in the mixing performance of the hydrogen jet at downstream. In multi fuel jets, the mixing performance of the fuel jet is increased more than 200% when the micro air jet is injected. Consequently, an enhanced mixing zone occurs downstream of the injection slots which leads to flame-holding.

  12. Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling

    DOE PAGES

    Al Rashidi, Mariam J.; Thion, Sebastien; Togbe, Casimir; ...

    2016-06-22

    This study is concerned with the identification and quantification of species generated during the combustion of cyclopentane in a jet stirred reactor (JSR). Experiments were carried out for temperatures between 740 and 1250 K, equivalence ratios from 0.5 to 3.0, and at an operating pressure of 10 atm. The fuel concentration was kept at 0.1% and the residence time of the fuel/O 2/N 2 mixture was maintained at 0.7 s. The reactant, product, and intermediate species concentration profiles were measured using gas chromatography and Fourier transform infrared spectroscopy. The concentration profiles of cyclopentane indicate inhibition of reactivity between 850-1000 Kmore » for φ=2.0 and φ=3.0. This behavior is interesting, as it has not been observed previously for other fuel molecules, cyclic or non-cyclic. A kinetic model including both low- and high-temperature reaction pathways was developed and used to simulate the JSR experiments. The pressure-dependent rate coefficients of all relevant reactions lying on the PES of cyclopentyl + O 2, as well as the C-C and C-H scission reactions of the cyclopentyl radical were calculated at the UCCSD(T)-F12b/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. The simulations reproduced the unique reactivity trend of cyclopentane and the measured concentration profiles of intermediate and product species. Furthermore, sensitivity and reaction path analyses indicate that this reactivity trend may be attributed to differences in the reactivity of allyl radical at different conditions, and it is highly sensitive to the C-C/C-H scission branching ratio of the cyclopentyl radical decomposition.« less

  13. Submerged jet mixing in nuclear waste tanks: a correlation for jet velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daas, M.; Srivastava, R.; Roelant, D.

    2007-07-01

    Experimental studies were carried out in jet-stirred slurry tanks to correlate the influence of nozzle diameter, initial jet flow velocity, submerged depth of jet, tank diameter and slurry properties on the jet axial velocity. The tanks used in the experimental work had diameters of 0.3 m (1-ft) and 2.13 m (7-ft). The fluids emerged from nozzles of 0.003 m and 0.01 m in diameter, 1/8-inch and 3/8-inch respectively. The examined slurries were non-Newtonian and contained 5 weight percent total insoluble solids. The axial velocities along the centerline of a submerged jet stream were measured at different jet flow rates andmore » at various distances from the nozzle orifice (16 to 200 nozzle diameters) utilizing electromagnetic velocity meter. A new simplified correlation was developed to describe the jet axial velocity in submerged jet stirred tanks utilizing more than 350 data points. The Buckingham Pi theorem and non-linear regression method of multivariate approximation, in conjunction with the Gauss-Jordan elimination method, were used to develop the new correlation. The new correlation agreed well with the experimental data obtained from the current study. Good agreement was also possible with literature data except at large distances from the nozzle as the model slightly overestimated the jet axial velocity. The proposed correlation incorporates the contributions of system geometry, fluid properties, and external forces. Furthermore, it provides reasonable estimates of jet axial velocity. (authors)« less

  14. AC electrified jets in a flow-focusing device: Jet length scaling

    PubMed Central

    García-Sánchez, Pablo; Alzaga-Gimeno, Javier; Baret, Jean-Christophe

    2016-01-01

    We use a microfluidic flow-focusing device with integrated electrodes for controlling the production of water-in-oil drops. In a previous work, we reported that very long jets can be formed upon application of AC fields. We now study in detail the appearance of the long jets as a function of the electrical parameters, i.e., water conductivity, signal frequency, and voltage amplitude. For intermediate frequencies, we find a threshold voltage above which the jet length rapidly increases. Interestingly, this abrupt transition vanishes for high frequencies of the signal and the jet length grows smoothly with voltage. For frequencies below a threshold value, we previously reported a transition from a well-behaved uniform jet to highly unstable liquid structures in which axisymmetry is lost rather abruptly. These liquid filaments eventually break into droplets of different sizes. In this work, we characterize this transition with a diagram as a function of voltage and liquid conductivity. The electrical response of the long jets was studied via a distributed element circuit model. The model allows us to estimate the electric potential at the tip of the jet revealing that, for any combination of the electrical parameters, the breakup of the jet occurs at a critical value of this potential. We show that this voltage is around 550 V for our device geometry and choice of flow rates. PMID:27375826

  15. AC electrified jets in a flow-focusing device: Jet length scaling.

    PubMed

    Castro-Hernández, Elena; García-Sánchez, Pablo; Alzaga-Gimeno, Javier; Tan, Say Hwa; Baret, Jean-Christophe; Ramos, Antonio

    2016-07-01

    We use a microfluidic flow-focusing device with integrated electrodes for controlling the production of water-in-oil drops. In a previous work, we reported that very long jets can be formed upon application of AC fields. We now study in detail the appearance of the long jets as a function of the electrical parameters, i.e., water conductivity, signal frequency, and voltage amplitude. For intermediate frequencies, we find a threshold voltage above which the jet length rapidly increases. Interestingly, this abrupt transition vanishes for high frequencies of the signal and the jet length grows smoothly with voltage. For frequencies below a threshold value, we previously reported a transition from a well-behaved uniform jet to highly unstable liquid structures in which axisymmetry is lost rather abruptly. These liquid filaments eventually break into droplets of different sizes. In this work, we characterize this transition with a diagram as a function of voltage and liquid conductivity. The electrical response of the long jets was studied via a distributed element circuit model. The model allows us to estimate the electric potential at the tip of the jet revealing that, for any combination of the electrical parameters, the breakup of the jet occurs at a critical value of this potential. We show that this voltage is around 550 V for our device geometry and choice of flow rates.

  16. Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail

    NASA Technical Reports Server (NTRS)

    Childs, Robert E.; Stremel, Paul M.; Garcia, Joseph A.; Heineck, James T.; Kushner, Laura K.; Storms, Bruce L.

    2016-01-01

    This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.

  17. Sensitivity of jet substructure to jet-induced medium response

    NASA Astrophysics Data System (ADS)

    Milhano, Guilherme; Wiedemann, Urs Achim; Zapp, Korinna Christine

    2018-04-01

    Jet quenching in heavy ion collisions is expected to be accompanied by recoil effects, but unambiguous signals for the induced medium response have been difficult to identify so far. Here, we argue that modern jet substructure measurements can improve this situation qualitatively since they are sensitive to the momentum distribution inside the jet. We show that the groomed subjet shared momentum fraction zg, and the girth of leading and subleading subjets signal recoil effects with dependencies that are absent in a recoilless baseline. We find that recoil effects can explain most of the medium modifications to the zg distribution observed in data. Furthermore, for jets passing the Soft Drop Condition, recoil effects induce in the differential distribution of subjet separation ΔR12 a characteristic increase with ΔR12, and they introduce a characteristic enhancement of the girth of the subleading subjet with decreasing zg. We explain why these qualitatively novel features, that we establish in JEWEL+PYTHIA simulations, reflect generic physical properties of recoil effects that should therefore be searched for as telltale signatures of jet-induced medium response.

  18. Characteristics of transverse hydrogen jet in presence of multi air jets within scramjet combustor

    NASA Astrophysics Data System (ADS)

    Barzegar Gerdroodbary, M.; Fallah, Keivan; Pourmirzaagha, H.

    2017-03-01

    In this article, three-dimensional simulation is performed to investigate the effects of micro air jets on mixing performances of cascaded hydrogen jets within a scramjet combustor. In order to compare the efficiency of this technique, constant total fuel rate is injected through one, four, eight and sixteen arrays of portholes in a Mach 4.0 crossflow with a fuel global equivalence ratio of 0.5. In this method, micro air jets are released within fuel portholes to augment the penetration in upward direction. Extensive studies were performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Numerical studies on various air and fuel arrangements are done and the mixing rate and penetration are comprehensively investigated. Also, the flow feature of the fuel and air jets for different configuration is revealed. According to the obtained results, the influence of the micro air jets is significant and the presence of micro air jets increases the mixing rate about 116%, 77%, 56% and 41% for single, 4, 8 and 16 multi fuel jets, respectively. The maximum mixing rate of the hydrogen jet is obtained when the air jets are injected within the sixteen multi fuel jets. According to the circulation analysis of the flow for different air and fuel arrangements, it was found that the effects of air jets on flow structure are varied in various conditions and the presence of the micro jet highly intensifies the circulation in the case of 8 and 16 multi fuel jets.

  19. The remarkable AGN jets

    NASA Astrophysics Data System (ADS)

    Komissarov, Serguei

    The jets from active galactic nuclei exhibit stability which seems to be far superior compared to that of terrestrial and laboratory jets. They manage to propagate over distances up to a billion of initial jet radii. Yet this may not be an indication of some exotic physics but mainly a reflection of the specific environment these jets propagate through. The key property of this environment is a rapid decline of density and pressure along the jet, which promotes its rapid expansion. Such an expansion can suppress global instabilities, which require communication across the jet, and hence ensure its survival over huge distances. At kpc scales, some AGN jets do show signs of strong instabilities and even turn into plumes. This could be a result of the flattening of the external pressure distribution in their host galaxies or inside the radio lobes. In this regard, we discuss the possible connection between the stability issue and the Fanaroff-Riley classification of extragalactic radio sources. The observations of AGN jets on sub-kpc scale do not seem to support their supposed lack of causal connectivity. When interpreted using simple kinematic models, they reveal a rather perplexing picture with more questions than answers on the jets dynamics.

  20. Magnetosheath jets: MMS observations of internal structures and jet interactions with ambient plasma

    NASA Astrophysics Data System (ADS)

    Plaschke, F.; Karlsson, T.; Hietala, H.; Archer, M. O.; Voros, Z.; Nakamura, R.; Magnes, W.; Baumjohann, W.; Torbert, R. B.; Russell, C. T.; Giles, B. L.

    2017-12-01

    The dayside magnetosheath downstream of the quasi-parallel bow shock is commonly permeated by high-speed jets. Under low IMF cone angle conditions, large scale jets alone (with cross-sectional diameters of over 2 Earth radii) have been found to impact the subsolar magnetopause once every 6 minutes - smaller scale jets occurring much more frequently. The consequences of jet impacts on the magnetopause can be significant: they may trigger local reconnection and waves, alter radiation belt electron drift paths, disturb the geomagnetic field, and potentially generate diffuse throat aurora at the dayside ionosphere. Although some basic statistical properties of jets are well-established, their internal structure and interactions with the surrounding magnetosheath plasma are rather unknown. We present Magnetospheric Multiscale (MMS) observations which reveal a rich jet-internal structure of high-amplitude plasma moment and magnetic field variations and associated currents. These variations/structures are generally found to be in thermal and magnetic pressure balance; they mostly (but not always) convect with the plasma flow. Small velocity differences between plasma and structures are revealed via four-spacecraft timing analysis. Inside a jet core region, where the plasma velocity maximizes, structures are found to propagate forward (i.e., with the jet), whereas backward propagation is found outside that core region. Although super-magnetosonic flows are detected by MMS in the spacecraft frame of reference, no fast shock is seen as the jet plasma is sub-magnetosonic with respect to the ambient magnetosheath plasma. Instead, the fast jet plasma pushes ambient magnetosheath plasma ahead of the jet out of the way, possibly generating anomalous sunward flows in the vicinity, and modifies the magnetic field aligning it with the direction of jet propagation.

  1. Deformations of free jets

    NASA Astrophysics Data System (ADS)

    Paruchuri, Srinivas

    This thesis studies three different problems. First we demonstrate that a flowing liquid jet can be controllably split into two separate subfilaments through the applications of a sufficiently strong tangential stress to the surface of the jet. In contrast, normal stresses can never split a liquid jet. We apply these results to observations of uncontrolled splitting of jets in electric fields. The experimental realization of controllable jet splitting would provide an entirely novel route for producing small polymeric fibers. In the second chapter we present an analytical model for the bending of liquid jets and sheets from temperature gradients, as recently observed by Chwalek et al. [Phys. Fluids, 14, L37 (2002)]. The bending arises from a local couple caused by Marangoni forces. The dependence of the bending angle on experimental parameters is presented, in qualitative agreement with reported experiments. The methodology gives a simple framework for understanding the mechanisms for jet and sheet bending. In chapter 4 we address the discrepancy between hydrodynamic theory of liquid jets, and the snap-off of narrow liquid jets observed in molecular dynamics (MD) simulations [23]. This has been previously attributed to the significant role of thermal fluctuations in nanofluidic systems. We argue that hydrodynamic description of such systems should include corrections to the Laplace pressure which result from the failure of the sharp interface assumption when the jet diameter becomes small enough. We show that this effect can in principle give rise to jet shapes similar to those observed in MD simulations, even when thermal fluctuations are completely neglected. Finally we summarize an algorithm developed to simulate droplet impact on a smooth surface.

  2. Jets Galore

    NASA Image and Video Library

    2010-11-04

    This enhanced image, one of the closest taken of comet Harley 2 by NASA EPOXI mission, shows jets and where they originate from the surface. There are jets outgassing from the sunward side, the night side, and along the terminator.

  3. Hard-rock jetting. Part 2. Rock type decides jetting economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pols, A.C.

    1977-02-07

    In Part 2, Koninklijke Shell Exploratie en Produktie Laboratorium presents the results of jet-drilling laminated formations. Shell concludes that (1) hard, laminated rock cannot be jet-drilled satisfactorily without additional mechanical cutting aids, (2) the increase in penetration rate with bit-pressure drop is much lower for impermeable rock than it is for permeable rock, (3) drilling mud can have either a positive or a negative effect on penetration rate in comparison with water, depending on the material drilled, and (4) hard, isotropic, sedimentary, impermeable rock can be drilled using jets at higher rates than with conventional means. However, jetting becomes profitablemore » only in the case of expensive rigs.« less

  4. Titanium nitride plasma-chemical synthesis with titanium tetrachloride raw material in the DC plasma-arc reactor

    NASA Astrophysics Data System (ADS)

    Kirpichev, D. E.; Sinaiskiy, M. A.; Samokhin, A. V.; Alexeev, N. V.

    2017-04-01

    The possibility of plasmochemical synthesis of titanium nitride is demonstrated in the paper. Results of the thermodynamic analysis of TiCl4 - H2 - N2 system are presented; key parameters of TiN synthesis process are calculated. The influence of parameters of plasma-chemical titanium nitride synthesis process in the reactor with an arc plasmatron on characteristics on the produced powders is experimentally investigated. Structure, chemical composition and morphology dependencies on plasma jet enthalpy, stoichiometric excess of hydrogen and nitrogen in a plasma jet are determined.

  5. Real jet effects on dual jets in a crossflow

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.

    1984-01-01

    A 6-ft by 6-ft wind tunnel section was modification to accommodate the 7-ft wide NASA dual-jet flate model in an effort to determine the effects of nonuniform and/or noncircular jet exhaust profiles on the pressure field induced on a nearby surface. Tests completed yield surface pressure measurements for a 90 deg circular injector producing exit profiles representative of turbofan nozzles (such as the TF-34 nozzle). The measurements were obtained for both tandem and side-by-side jet configurations, jet spacing of S/D =2, and velocity ratios of R=2.2 and 4.0. Control tests at the same mass flow rate but with uniform exit velocity profiles were also conducted, for comparison purposes. Plots for 90 deg injection and R=2.2 show that the effects of exit velocity profile nonuniformity are quite significant.

  6. Study Of Boosted W-Jets And Higgs-Jets With the SiFCC Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shin-Shan; Chekanov, Sergei; Gray, Lindsey

    We study the detector performance in the reconstruction of hadronically-decaying W bosons and Higgs bosons at very high energy proton colliders using a full GEANT4 simulation of the SiFCC detector. The W and Higgs bosons carry transverse momentum in the multi-TeV range, which results in collimated decay products that are reconstructed as a single jet. We present a measurement of the energy response and resolution of boosted W-jets and Higgs-jets and show the separation of two sub-jets within the boosted boson jet.

  7. Dripping and jetting regimes in co-flowing capillary jets: unforced measurements and response to driving

    NASA Astrophysics Data System (ADS)

    Baroud, Charles; Cordero, Maria-Luisa; Gallaire, Francois

    2011-11-01

    We study the breakup of drops in a co-flowing jet, within the confinement of a microfluidic channel. The breakup can occur right after the nozzle (dripping) or through the generation of a liquid jet that breaks up a long distance from the nozzle (jetting). Traditionally, these two regimes have been considered to reflect an absolutely unstable jet or a convectively unstable jet, respectively. We first provide measurements of the frequency of oscillation and breakup of the liquid jet; the dispersion relation thus obtained compares well with existing theories for convective instabilities in the case of the jetting regime. However, the theories in the absolutely unstable mode fail to predict the evolution of the frequency and drop size in the dripping regime. We also test the jet response to an external forcing, using a focused laser to locally heat the jet. The dripping regime is found to be insensitive to the perturbation and the frequency of drop formation remains unaltered. In contrast, the jetting regime locks to the external frequency, which translates into a modification of the drop size in agreement with the dispersion relations. This confirms the convective nature of the jetting regime. Permanent address: Universidad de Chile.

  8. Validation of a reduced-order jet model for subsonic and underexpanded hydrogen jets

    DOE PAGES

    Li, Xuefang; Hecht, Ethan S.; Christopher, David M.

    2016-01-01

    Much effort has been made to model hydrogen releases from leaks during potential failures of hydrogen storage systems. A reduced-order jet model can be used to quickly characterize these flows, with low computational cost. Notional nozzle models are often used to avoid modeling the complex shock structures produced by the underexpanded jets by determining an “effective” source to produce the observed downstream trends. In our work, the mean hydrogen concentration fields were measured in a series of subsonic and underexpanded jets using a planar laser Rayleigh scattering system. Furthermore, we compared the experimental data to a reduced order jet modelmore » for subsonic flows and a notional nozzle model coupled to the jet model for underexpanded jets. The values of some key model parameters were determined by comparisons with the experimental data. Finally, the coupled model was also validated against hydrogen concentrations measurements for 100 and 200 bar hydrogen jets with the predictions agreeing well with data in the literature.« less

  9. Resolving boosted jets with XCone

    DOE PAGES

    Thaler, Jesse; Wilkason, Thomas F.

    2015-12-01

    We show how the recently proposed XCone jet algorithm smoothly interpolates between resolved and boosted kinematics. When using standard jet algorithms to reconstruct the decays of hadronic resonances like top quarks and Higgs bosons, one typically needs separate analysis strategies to handle the resolved regime of well-separated jets and the boosted regime of fat jets with substructure. XCone, by contrast, is an exclusive cone jet algorithm that always returns a fixed number of jets, so jet regions remain resolved even when (sub)jets are overlapping in the boosted regime. In this paper, we perform three LHC case studies $-$ dijet resonances,more » Higgs decays to bottom quarks, and all-hadronic top pairs$-$ that demonstrate the physics applications of XCone over a wide kinematic range.« less

  10. Simulations of Solar Jets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar

  11. Airframe-Jet Engine Integration Noise

    NASA Technical Reports Server (NTRS)

    Tam, Christopher; Antcliff, Richard R. (Technical Monitor)

    2003-01-01

    It has been found experimentally that the noise radiated by a jet mounted under the wing of an aircraft exceeds that of the same jet in a stand-alone environment. The increase in noise is referred to as jet engine airframe integration noise. The objectives of the present investigation are, (1) To obtain a better understanding of the physical mechanisms responsible for jet engine airframe integration noise or installation noise. (2) To develop a prediction model for jet engine airframe integration noise. It is known that jet mixing noise consists of two principal components. They are the noise from the large turbulence structures of the jet flow and the noise from the fine scale turbulence. In this investigation, only the effect of jet engine airframe interaction on the fine scale turbulence noise of a jet is studied. The fine scale turbulence noise is the dominant noise component in the sideline direction. Thus we limit out consideration primarily to the sideline.

  12. Influence of oxygen in atmospheric-pressure argon plasma jet on sterilization of Bacillus atrophaeous spores

    NASA Astrophysics Data System (ADS)

    Lim, Jin-Pyo; Uhm, Han S.; Li, Shou-Zhe

    2007-09-01

    A nonequilibrium Ar /O2 plasma discharge at atmospheric pressure was carried out in a coaxial cylindrical reactor with a stepped electrode configuration powered by a 13.56MHz rf power supplier. The argon glow discharge with high electron density produces oxygen reactive species in large quantities. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. The decimal reduction time (D values) of the Ar /O2 plasma jet at an exposure distance of 0.5-1.5cm ranges from 5 to 57s. An actinometric comparison of the sterilization data shows that atomic oxygen radicals play a significant role in plasma sterilization. When observed under a scanning electron microscope, the average size of the spores appears to be greatly reduced due to chemical reactions with the oxygen radicals.

  13. Development of a Jet Noise Prediction Method for Installed Jet Configurations

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Thomas, Russell H.

    2003-01-01

    This paper describes development of the Jet3D noise prediction method and its application to heated jets with complex three-dimensional flow fields and installation effects. Noise predictions were made for four separate flow bypass ratio five nozzle configurations tested in the NASA Langley Jet Noise Laboratory. These configurations consist of a round core and fan nozzle with and without pylon, and an eight chevron core nozzle and round fan nozzle with and without pylon. Predicted SPL data were in good agreement with experimental noise measurements up to 121 inlet angle, beyond which Jet3D under predicted low frequency levels. This is due to inherent limitations in the formulation of Lighthill's Acoustic Analogy used in Jet3D, and will be corrected in ongoing development. Jet3D did an excellent job predicting full scale EPNL for nonchevron configurations, and captured the effect of the pylon, correctly predicting a reduction in EPNL. EPNL predictions for chevron configurations were not in good agreement with measured data, likely due to the lower mixing and longer potential cores in the CFD simulations of these cases.

  14. Phenomenology of single-inclusive jet production with jet radius and threshold resummation

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohui; Moch, Sven-Olaf; Ringer, Felix

    2018-03-01

    We perform a detailed study of inclusive jet production cross sections at the LHC and compare the QCD theory predictions based on the recently developed formalism for threshold and jet radius joint resummation at next-to-leading logarithmic accuracy to inclusive jet data collected by the CMS Collaboration at √{S }=7 and 13 TeV. We compute the cross sections at next-to-leading order in QCD with and without the joint resummation for different choices of jet radii R and observe that the joint resummation leads to crucial improvements in the description of the data. Comprehensive studies with different parton distribution functions demonstrate the necessity of considering the joint resummation in fits of those functions based on the LHC jet data.

  15. Operation in the turbulent jet field of a linear array of multiple rectangular jets using a two-dimensional jet (Variation of mean velocity field)

    NASA Astrophysics Data System (ADS)

    Fujita, Shigetaka; Harima, Takashi

    2016-03-01

    The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s) was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194) operated by the linearized constant temperature anemometers (DANTEC), and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.

  16. Real-Time Processing System for the JET Hard X-Ray and Gamma-Ray Profile Monitor Enhancement

    NASA Astrophysics Data System (ADS)

    Fernandes, Ana M.; Pereira, Rita C.; Neto, André; Valcárcel, Daniel F.; Alves, Diogo; Sousa, Jorge; Carvalho, Bernardo B.; Kiptily, Vasily; Syme, Brian; Blanchard, Patrick; Murari, Andrea; Correia, Carlos M. B. A.; Varandas, Carlos A. F.; Gonçalves, Bruno

    2014-06-01

    The Joint European Torus (JET) is currently undertaking an enhancement program which includes tests of relevant diagnostics with real-time processing capabilities for the International Thermonuclear Experimental Reactor (ITER). Accordingly, a new real-time processing system was developed and installed at JET for the gamma-ray and hard X-ray profile monitor diagnostic. The new system is connected to 19 CsI(Tl) photodiodes in order to obtain the line-integrated profiles of the gamma-ray and hard X-ray emissions. Moreover, it was designed to overcome the former data acquisition (DAQ) limitations while exploiting the required real-time features. The new DAQ hardware, based on the Advanced Telecommunication Computer Architecture (ATCA) standard, includes reconfigurable digitizer modules with embedded field-programmable gate array (FPGA) devices capable of acquiring and simultaneously processing data in real-time from the 19 detectors. A suitable algorithm was developed and implemented in the FPGAs, which are able to deliver the corresponding energy of the acquired pulses. The processed data is sent periodically, during the discharge, through the JET real-time network and stored in the JET scientific databases at the end of the pulse. The interface between the ATCA digitizers, the JET control and data acquisition system (CODAS), and the JET real-time network is provided by the Multithreaded Application Real-Time executor (MARTe). The work developed allowed attaining two of the major milestones required by next fusion devices: the ability to process and simultaneously supply high volume data rates in real-time.

  17. CYTOGENETIC STUDIES IN MICE TREATED WITH THE JET FUELS, JET-A AND JP-8

    EPA Science Inventory

    Cytogenetic studies in mice treated with the jet fuels, Jet-A and JP-8
    Abstract
    The genotoxic potential of the jet fuels, Jet-A and JP-8, were examined in mice treated on the skin with a single dose of 240 ug/mouse. Peripheral blood smears were prepared at the start of the ...

  18. Investigations of needle-free jet injections.

    PubMed

    Schramm-Baxter, J R; Mitragotri, S

    2004-01-01

    Jet injection is a needle-free drug delivery method in which a high-speed stream of fluid impacts the skin and delivers drugs. Although a number of jet injectors are commercially available, especially for insulin delivery, they have a low market share compared to needles possibly due to occasional pain associated with jet injection. Jets employed by the traditional jet injectors penetrate deep into the dermal and sub-dermal regions where the nerve endings are abundantly located. To eliminate the pain associated with jet injections, we propose to utilize microjets that penetrate only into the superficial region of the skin. However, the choice of appropriate jet parameters for this purpose is challenging owing to the multiplicity of factors that determine the penetration depth. Here, we describe the dependence of jet injections into human skin on the power of the jet. Dermal delivery of liquid jets was quantified using two measurements, penetration of a radiolabeled solute, mannitol, into skin and the shape of jet dispersion in the skin which was visualized using sulforhodamine B. The dependence of the amount of liquid delivered in the skin and the geometric measurements of jet dispersion on nozzle diameter and jet velocity was captured by a single parameter, jet power.

  19. Jetting Through the Primordial Universe

    NASA Astrophysics Data System (ADS)

    Kunnawalkam Elayavalli, Raghav

    Collisions of heavy ion nuclei at relativistic speeds (close to the speed of light), sometimes referred to as the "little bang", can recreate conditions similar to the early universe. This high temperature and very dense form of matter, now known to consist of de-confined quarks and gluons is named the quark gluon plasma (QGP). An early signature of the QGP, both theorized and seen in experiments, was the aspect of "jet quenching" and understanding that phenomenon will be the main focus of this thesis. The concept behind quenching is that a high energetic quark or gluon jet undergoes significant energy loss due to the overall structure modifications related to its fragmentation and radiation patterns as it traverses the medium. The term jet, parameterized by a fixed lateral size or the jet radius, represents the collimated spray of particles arising from an initial parton. In this thesis, Run1 experimental data from pp and heavy ion collisions at the CERN LHC is analyzed with the CMS detector. Analysis steps involved in the measurement of the inclusive jet cross section in pp, pPb and PbPb systems are outlined in detail. The pp jet cross section is compared with next to leading order theoretical calculations supplemented with non perturbative corrections for three different jet radii highlighting better comparisons for larger radii jets. Measurement of the jet yield followed by the nuclear modification factors in proton-lead at 5.02 TeV and lead-lead collisions at 2.76 TeV are presented. Since pp data at 5.02 TeV was not available in Run1, an extrapolation method is performed to derive a reference pp spectra. A new data driven technique is introduced to estimate and correct for the fake jet contribution in PbPb for low transverse momenta jets. The nuclear modification factors studied in this thesis show jet quenching to be attributed to final state effects, have a strong correlation to the event centrality, a weak inverse correlation to the jet transverse momenta

  20. Characteristics and generation of secondary jets and secondary gigantic jets

    NASA Astrophysics Data System (ADS)

    Lee, Li-Jou; Huang, Sung-Ming; Chou, Jung-Kung; Kuo, Cheng-Ling; Chen, Alfred B.; Su, Han-Tzong; Hsu, Rue-Rou; Frey, Harald U.; Takahashi, Yukihiro; Lee, Lou-Chuang

    2012-06-01

    Secondary transient luminous events (TLEs) recorded by the ISUAL-FORMOSAT2 mission can either be secondary jets or secondary gigantic jets (GJs), depending on their terminal altitudes. The secondary jets emerge from the cloud top beneath the preceding sprites and extend upward to the base of the sprites at ˜50 km. The secondary jets likely are negative electric discharges with vertically straight luminous columns, morphologically resembling the trailing jet of the type-I GJs. The number of luminous columns in a secondary jet seems to be affected by the size of the effective capacitor plate formed near the base of the preceding sprites and the charge distribution left behind by the sprite-inducing positive cloud-to-ground discharges. The secondary GJs originate from the cloud top under the shielding area of the preceding sprites, and develop upward to reach the lower ionosphere at ˜90 km. The observed morphology of the secondary GJs can either be the curvy shifted secondary GJs extending outside the region occupied by the preceding sprites or the straight pop-through secondary GJs developing through the center of the preceding circular sprites. A key factor in determining the terminal height of the secondary TLEs appears to be the local ionosphere boundary height that established by the preceding sprites. The abundance and the distribution of the negative charge in the thundercloud following the sprite-inducing positive cloud-to-ground discharges may play important role in the generation of the secondary TLEs.

  1. VISCOUS BOUNDARY LAYERS OF RADIATION-DOMINATED, RELATIVISTIC JETS. II. THE FREE-STREAMING JET MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlin, Eric R.; Begelman, Mitchell C., E-mail: eric.coughlin@colorado.edu, E-mail: mitch@jila.colorado.edu

    2015-08-10

    We analyze the interaction of a radiation-dominated jet and its surroundings using the equations of radiation hydrodynamics in the viscous limit. In a previous paper we considered the two-stream scenario, which treats the jet and its surroundings as distinct media interacting through radiation viscous forces. Here we present an alternative boundary layer model, known as the free-streaming jet model—where a narrow stream of fluid is injected into a static medium—and present solutions where the flow is ultrarelativistic and the boundary layer is dominated by radiation. It is shown that these jets entrain material from their surroundings and that their coresmore » have a lower density of scatterers and a harder spectrum of photons, leading to observational consequences for lines of sight that look “down the barrel of the jet.” These jetted outflow models may be applicable to the jets produced during long gamma-ray bursts and super-Eddington phases of tidal disruption events.« less

  2. Experimental and modeling studies of a biofuel surrogate compound: laminar burning velocities and jet-stirred reactor measurements of anisole

    DOE PAGES

    Wagnon, Scott W.; Thion, Sebastien; Nilsson, Elna J. K.; ...

    2017-11-23

    Lignocellulosic biomass is a promising alternative fuel source which can promote energy security, reduce greenhouse gas emissions, and minimize fuel consumption when paired with advanced combustion strategies. Pyrolysis is used to convert lignocellulosic biomass into a complex mixture of phenolic-rich species that can be used in a transportation fuel. Anisole (or methoxybenzene) can be used as a surrogate to represent these phenolic-rich species. Anisole also has attractive properties as a fuel component for use in advanced spark-ignition engines because of its high blending research octane number of 120. Presented in the current work are new measurements of laminar burning velocities,more » jet-stirred reactor (JSR) speciation of anisole/O 2/N 2 mixtures, and the development and validation of a detailed chemical kinetic mechanism for anisole. Homogeneous, steady state, fixed gas temperature, perfectly stirred reactor CHEMKIN simulations were used to validate the mechanism against the current JSR measurements and published JSR experiments from CNRS-Nancy. Pyrolysis and oxidation simulations were based on the experimental reactant compositions and thermodynamic state conditions including P = 1 bar and T = 675–1275 K. The oxidation compositions studied in this work span fuel-lean (φ = 0.5), stoichiometric, and fuel rich (φ = 2.0) equivalence ratios. Laminar burning velocities were measured on a heat flux stabilized burner at an unburnt T = 358 K, P = 1 bar and simulated using the CHEMKIN premixed laminar flame speed module. Ignition delay times of anisole were then simulated at conditions relevant to advanced combustion strategies. Current laminar burning velocity measurements and predicted ignition delay times were compared to gasoline components (e.g., n-heptane, iso-octane, and toluene) and gasoline surrogates to highlight differences and similarities in behavior. Reaction path analysis and sensitivity analysis were used to explain the pathways relevant to

  3. Experimental and modeling studies of a biofuel surrogate compound: laminar burning velocities and jet-stirred reactor measurements of anisole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagnon, Scott W.; Thion, Sebastien; Nilsson, Elna J. K.

    Lignocellulosic biomass is a promising alternative fuel source which can promote energy security, reduce greenhouse gas emissions, and minimize fuel consumption when paired with advanced combustion strategies. Pyrolysis is used to convert lignocellulosic biomass into a complex mixture of phenolic-rich species that can be used in a transportation fuel. Anisole (or methoxybenzene) can be used as a surrogate to represent these phenolic-rich species. Anisole also has attractive properties as a fuel component for use in advanced spark-ignition engines because of its high blending research octane number of 120. Presented in the current work are new measurements of laminar burning velocities,more » jet-stirred reactor (JSR) speciation of anisole/O 2/N 2 mixtures, and the development and validation of a detailed chemical kinetic mechanism for anisole. Homogeneous, steady state, fixed gas temperature, perfectly stirred reactor CHEMKIN simulations were used to validate the mechanism against the current JSR measurements and published JSR experiments from CNRS-Nancy. Pyrolysis and oxidation simulations were based on the experimental reactant compositions and thermodynamic state conditions including P = 1 bar and T = 675–1275 K. The oxidation compositions studied in this work span fuel-lean (φ = 0.5), stoichiometric, and fuel rich (φ = 2.0) equivalence ratios. Laminar burning velocities were measured on a heat flux stabilized burner at an unburnt T = 358 K, P = 1 bar and simulated using the CHEMKIN premixed laminar flame speed module. Ignition delay times of anisole were then simulated at conditions relevant to advanced combustion strategies. Current laminar burning velocity measurements and predicted ignition delay times were compared to gasoline components (e.g., n-heptane, iso-octane, and toluene) and gasoline surrogates to highlight differences and similarities in behavior. Reaction path analysis and sensitivity analysis were used to explain the pathways relevant to

  4. Radio Emission from Three-dimensional Relativistic Hydrodynamic Jets: Observational Evidence of Jet Stratification

    NASA Astrophysics Data System (ADS)

    Aloy, Miguel-Angel; Gómez, José-Luis; Ibáñez, José-María; Martí, José-María; Müller, Ewald

    2000-01-01

    We present the first radio emission simulations from high-resolution three-dimensional relativistic hydrodynamic jets; these simulations allow us to study the observational implications of the interaction between the jet and the external medium. This interaction gives rise to a stratification of the jet in which a fast spine is surrounded by a slow high-energy shear layer. The stratification (in particular, the large specific internal energy and slow flow in the shear layer) largely determines the emission from the jet. If the magnetic field in the shear layer becomes helical (e.g., resulting from an initial toroidal field and an aligned field component generated by shear), the emission shows a cross section asymmetry, in which either the top or the bottom of the jet dominates the emission. This, as well as limb or spine brightening, is a function of the viewing angle and flow velocity, and the top/bottom jet emission predominance can be reversed if the jet changes direction with respect to the observer or if it presents a change in velocity. The asymmetry is more prominent in the polarized flux because of field cancellation (or amplification) along the line of sight. Recent observations of jet cross section emission asymmetries in the blazar 1055+018 can be explained by assuming the existence of a shear layer with a helical magnetic field.

  5. Perspectives on jet noise

    NASA Technical Reports Server (NTRS)

    Ribner, H. S.

    1981-01-01

    Jet noise is a byproduct of turbulence. Until recently turbulence was assumed to be known statistically, and jet noise was computed therefrom. As a result of new findings though on the behavior of vortices and instability waves, a more integrated view of the problem has been accepted lately. After presenting a simple view of jet noise, the paper attempts to resolve the apparent differences between Lighthill's and Lilley's interpretations of mean-flow shear, and examines a number of ad hoc approaches to jet noise suppression.

  6. Iron Catalyst Chemistry in High Pressure Carbon Monoxide Nanotube Reactor

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Povitsky, Alexander; Dateo, Christopher; Gokcen, Tahir; Smalley, Richard E.

    2001-01-01

    The high-pressure carbon monoxide (HiPco) technique for producing single wall carbon nanotubes (SWNT) is analyzed using a chemical reaction model coupled with properties calculated along streamlines. Streamline properties for mixing jets are calculated by the FLUENT code using the k-e turbulent model for pure carbon monixide. The HiPco process introduces cold iron pentacarbonyl diluted in CO, or alternatively nitrogen, at high pressure, ca. 30 atmospheres into a conical mixing zone. Hot CO is also introduced via three jets at angles with respect to the axis of the reactor. Hot CO decomposes the Fe(CO)5 to release atomic Fe. Cluster reaction rates are from Krestinin, et aI., based on shock tube measurements. Another model is from classical cluster theory given by Girshick's team. The calculations are performed on streamlines that assume that a cold mixture of Fe(CO)5 in CO is introduced along the reactor axis. Then iron forms clusters that catalyze the formation of SWNTs from the Boudouard reaction on Fe-containing clusters by reaction with CO. To simulate the chemical process along streamlines that were calculated by the fluid dynamics code FLUENT, a time history of temperature and dilution are determined along streamlines. Alternative catalyst injection schemes are also evaluated.

  7. Aerodynamic drag characterization and deposition studies of irregular particles. Part 3: Analysis of flow and temperature field inside the Combustion Deposition Entrained Reactor (CDER)

    NASA Astrophysics Data System (ADS)

    Celik, I.; Katragadda, S.; Nagarajan, R.

    1990-01-01

    An experimental and numerical analysis was performed of the temperature and flow field involved in co-axial, confined, non-reacting heated jets in a drop tube reactor. An electrically heated 2-inch (50.8 mm) diameter drop tube reactor was utilized to study the jet characteristics. Profiles of gas temperature, typically in the range of 800 to 1600 K were measured in the mixing zone of the jet with a K-Type thermocouple. Measured temperatures were corrected for conduction, convection, and radiation heat losses. Because of limited access to the mixing zone, characterization of the flow field at high temperatures with laser Doppler or hot wire anemometry were impractical. A computer program which solves the full equations of motion and energy was employed to simulate the temperature and flow fields. The location of the recirculation region, the flow regimes, and the mixing phenomena were studied. The wall heating, laminar and turbulent flow regimes were considered in the simulations. The predictions are in fairly good agreement with the corrected temperature measurements provided that the flow is turbulent. The results of this study demonstrate how a numerical method and measurement can be used together to analyze the flow conditions inside a reactor which has limited access because of very high temperatures.

  8. Nonlinear Dynamics in Viscoelastic Jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2008-11-01

    Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.

  9. Nonlinear Dynamics in Viscoelastic Jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2009-03-01

    Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.

  10. Identifying Jets Using Artifical Neural Networks

    NASA Astrophysics Data System (ADS)

    Rosand, Benjamin; Caines, Helen; Checa, Sofia

    2017-09-01

    We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.

  11. The Aeroacoustics of Supersonic Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    1994-01-01

    Instability waves have been established as the dominant source of mixing noise radiating into the downstream arc of a supersonic jet when the waves have phase velocities that are supersonic relative to ambient conditions. Recent theories for supersonic jet noise have used the concepts of growing and decaying linear instability waves for predicting radiated noise. This analysis is extended to the prediction of noise radiation from supersonic coaxial jets. Since the analysis requires a known mean flow and the coaxial jet mean flow is not described easily in terms of analytic functions, a numerical prediction is made for its development. The Reynolds averaged, compressible, boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed for the effects of velocity and temperature ratios and Mach number. Both normal and inverted velocity profile coaxial jets are considered. Comparisons with measurements for both single and coaxial jets show good agreement. The results from mean flow and stability calculations are used to predict the noise radiation from coaxial jets with different operating conditions. Comparisons are made between different coaxial jets and a single equivalent jet with the same total thrust, mass flow, and exit area. Results indicate that normal velocity profile jets can have noise reductions compared to the single equivalent jet. No noise reductions are found for inverted velocity profile jets operated at the minimum noise condition compared to the single equivalent jet. However, it is inferred that changes in area ratio may provide noise reduction benefits for inverted velocity profile jets.

  12. Description of Jet Breakup

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1996-01-01

    In this article we review recent results on the breakup of cylindrical jets of a Newtonian fluid. Capillary forces provide the main driving mechanism and our interest is in the description of the flow as the jet pinches to form drops. The approach is to describe such topological singularities by constructing local (in time and space) similarity solutions from the governing equations. This is described for breakup according to the Euler, Stokes or Navier-Stokes equations. It is found that slender jet theories can be applied when viscosity is present, but for inviscid jets the local shape of the jet at breakup is most likely of a non-slender geometry. Systems of one-dimensional models of the governing equations are solved numerically in order to illustrate these differences.

  13. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a) A...

  14. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...

  15. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...

  16. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a) A...

  17. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a) A...

  18. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...

  19. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a) A...

  20. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...

  1. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a) A...

  2. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...

  3. High-resolution time-resolved experiments on mixing and entrainment of buoyant jets in stratified environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manera, Annalisa; Bardet, Philippe; Petrov, Victor

    Fluid jets interacting with a stratified layer play an important role in the safety of several reactor designs. In the containment of nuclear power plants, fluid jets dominate the transport and mixing of gaseous species and consequent hydrogen distribution in case of a severe accident. The mixing phenomena in the containment are driven by buoyant high-momentum injections (jets) and low momentum injection plumes. Mixing near the postulated break is initially dominated by high flow velocities. Plumes with moderate flow velocities are instead relevant in the break compartment during the long-term pressurization phase, or in any of the apertures between twomore » connected compartments if the mass flows are sufficiently high and the density differences between efflux and ambient are sufficiently low. Phenomena of interest include free plumes (as produced by the efflux from the break compartment in a larger room or directly from a break flow), wall plumes (such those produced by low mass flows through inter-compartment apertures), and propagating stratification fronts in the ambient (for any stably stratified conditions). These phenomena have been highly ranked about nuclear reactor design, especially regarding of safety protocols. During a Pressurized Thermal Shock (PTS) scenario, the interaction between the cold ECCS injection plume and the stratified fluid present in the cold (or hot) leg is important in order to determine the temperature at the time-dependent temperature at the inlet of the reactor pressure vessel (RPV) and the potential to cause a thermal shock on the RPV wall. In sodium-cooled fast reactors (SFRs), core channels are typically hydro-dynamically isolated so that there exists a considerable temperature variation at the exit of adjacent fuel assemblies. All the above phenomena are characterized by the interaction of buoyant jets with the stratified flow. In stratified layers baroclinic forces create significant redistribution of turbulent kinetic

  4. Physics of liquid jets

    NASA Astrophysics Data System (ADS)

    Eggers, Jens; Villermaux, Emmanuel

    2008-03-01

    Jets, i.e. collimated streams of matter, occur from the microscale up to the large-scale structure of the universe. Our focus will be mostly on surface tension effects, which result from the cohesive properties of liquids. Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science, for example in nuclear fission, DNA sampling, medical diagnostics, sprays, agricultural irrigation and jet engine technology. Liquid jets thus serve as a paradigm for free-surface motion, hydrodynamic instability and singularity formation leading to drop breakup. In addition to their practical usefulness, jets are an ideal probe for liquid properties, such as surface tension, viscosity or non-Newtonian rheology. They also arise from the last but one topology change of liquid masses bursting into sprays. Jet dynamics are sensitive to the turbulent or thermal excitation of the fluid, as well as to the surrounding gas or fluid medium. The aim of this review is to provide a unified description of the fundamental and the technological aspects of these subjects.

  5. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  6. Relativistic Jets from Collapsars

    NASA Astrophysics Data System (ADS)

    Aloy, M. A.; Müller, E.; Ibáñez, J. M.; Martí, J. M.; MacFadyen, A.

    2000-03-01

    Using a collapsar progenitor model of MacFadyen & Woosley, we have simulated the propagation of an axisymmetric jet through a collapsing rotating massive star with the GENESIS multidimensional relativistic hydrodynamic code. The jet forms as a consequence of an assumed (constant or variable) energy deposition in the range of 1050-1051 ergs s-1 within a 30 deg cone around the rotation axis. The jet flow is strongly beamed (approximately less than a few degrees), spatially inhomogeneous, and time dependent. The jet reaches the surface of the stellar progenitor (R*=2.98x1010 cm) intact. At breakout, the maximum Lorentz factor of the jet flow is 33. After breakout, the jet accelerates into the circumstellar medium, whose density is assumed to decrease exponentially and then become constant, ρext=10-5 g cm-3. Outside the star, the flow begins to expand laterally also (v~c), but the beam remains very well collimated. At a distance of 2.54 R*, where the simulation ends, the Lorentz factor has increased to 44.

  7. Free compressible jet investigation

    NASA Astrophysics Data System (ADS)

    De Gregorio, Fabrizio

    2014-03-01

    The nozzle pressure ratio (NPR) effect on a supersonic turbulent jet was investigated. A dedicated convergent/divergent nozzle together with a flow feeding system was designed and manufactured. A nozzle Mach exit of M j = 1.5 was selected in order to obtain a convective Mach number of M c = 0.6. The flow was investigated for over-expanded, correctly expanded and under-expanded jet conditions. Mach number, total temperature and flow velocity measurements were carried out in order to characterise the jet behaviour. The inlet conditions of the jet flow were monitored in order to calculate the nozzle exit speed of sound and evaluate the mean Mach number distribution starting from the flow velocity data. A detailed analysis of the Mach results obtained by a static Pitot probe and by a particle image velocimetry measurement system was carried out. The mean flow velocity was investigated, and the axial Mach decay and the spreading rate were associated with the flow structures and with the compressibility effects. Aerodynamics of the different jet conditions was evaluated, and the shock cells structures were detected and discussed correlating the jet structure to the flow fluctuation and local turbulence. The longitudinal and radial distribution of the total temperature was investigated, and the temperature profiles were analysed and discussed. The total temperature behaviour was correlated to the turbulent phenomena and to the NPR jet conditions. Self-similarity condition was encountered and discussed for the over-expanded jet. Compressibility effects on the local turbulence, on the turbulent kinetic energy and on the Reynolds tensor were discussed.

  8. Flow cytometer jet monitor system

    DOEpatents

    Van den Engh, Ger

    1997-01-01

    A direct jet monitor illuminates the jet of a flow cytometer in a monitor wavelength band which is substantially separate from the substance wavelength band. When a laser is used to cause fluorescence of the substance, it may be appropriate to use an infrared source to illuminate the jet and thus optically monitor the conditions within the jet through a CCD camera or the like. This optical monitoring may be provided to some type of controller or feedback system which automatically changes either the horizontal location of the jet, the point at which droplet separation occurs, or some other condition within the jet in order to maintain optimum conditions. The direct jet monitor may be operated simultaneously with the substance property sensing and analysis system so that continuous monitoring may be achieved without interfering with the substance data gathering and may be configured so as to allow the front of the analysis or free fall area to be unobstructed during processing.

  9. Indirect Liquefaction of Coal-Biomass Mixture for Production of Jet Fuel with High Productivity and Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwal, Santosh K; McCabe, Kevin

    Coal to liquids (CTL) and coal-biomass to liquids (CBTL) processes were advanced by testing and demonstrating Southern Research’s sulfur tolerant nickel-based reforming catalyst and Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to clean, upgrade and convert syngas predominantly to jet fuel range hydrocarbon liquids, thereby minimizing expensive cleanup and wax upgrading operations. The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream and simulated syngas testing/demonstration. Reformer testing was performed to (1) reform tar and light hydrocarbons, (2) decompose ammonia in the presence H2S,more » and (3) deliver the required H2 to CO ratio for FT synthesis. FT Testing was performed to produce a product primarily containing C5-C20 liquid hydrocarbons and no C21+ waxy hydrocarbons with productivity greater than 0.7 gC5+/g catalyst/h, and at least 70% diesel and jet fuel range (C8-C20) hydrocarbon selectivity in the liquid product. A novel heat-exchange reactor system was employed to enable the use of the highly active FT catalyst and larger diameter reactors that results in cost reduction for commercial systems. Following laboratory development and testing, SR’s laboratory reformer was modified to operate in a Class 1 Div. 2 environment, installed at NCCC, and successfully tested for 125 hours using raw syngas. The catalyst demonstrated near equilibrium reforming (~90%) of methane and complete reforming/decomposition of tar and ammonia in the presence of up to 380 ppm H2S. For FT synthesis, SR modified and utilized a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport gasifier (TRIG). The test-rig developed in a previous project (DE-FE0010231) was modified to receive up to 7.5 lb/h raw syngas augmented with bottled syngas to adjust the H

  10. Azimuthal correlations for inclusive 2-jet, 3-jet, and 4-jet events in pp collisions at $$\\sqrt{s}= $$ 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    Azimuthal correlations between the two jets with the largest transverse momentamore » $$ {p_{\\mathrm{T}}} $$ in inclusive 2-, 3-, and 4-jet events are presented for several regions of the leading jet $$ {p_{\\mathrm{T}}} $$ up to 4 TeV. For 3- and 4-jet scenarios, measurements of the minimum azimuthal angles between any two of the three or four leading $$ {p_{\\mathrm{T}}} $$ jets are also presented. The analysis is based on data from proton-proton collisions collected by the CMS Collaboration at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$$^{-1}$$. Calculations based on leading-order matrix elements supplemented with parton showering and hadronization do not fully describe the data, so next-to-leading-order calculations matched with parton shower and hadronization models are needed to better describe the measured distributions. Furthermore, we show that azimuthal jet correlations are sensitive to details of the parton showering, hadronization, and multiparton interactions. A next-to-leading-order calculation matched with parton showers in the MC@NLO method, as implemented in HERWIG 7, gives a better overall description of the measurements than the POWHEG method.« less

  11. Noise shielding by a hot subsonic jet

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Parthasarathy, S. P.

    1981-01-01

    An analysis is conducted of the shielding of the noise emitted by a high speed round jet by a hot, subsonic, semicircular jet. A plane wave front in the primary jet is resolved into elementary plane waves which undergo multiple reflections at the jet boundaries of the primary and the shielding jets. The jet boundaries are idealized to be vortex sheets. The far field sound is evaluated asymptotically by a superposition of the waves that penetrate the shielding jet. The angular directivities are plotted for several values of jet temperature and velocity to examine the effectiveness of shielding by the semicircular jet layer.

  12. Transfer of a cold atmospheric pressure plasma jet through a long flexible plastic tube

    NASA Astrophysics Data System (ADS)

    Kostov, Konstantin G.; Machida, Munemasa; Prysiazhnyi, Vadym; Honda, Roberto Y.

    2015-04-01

    This work proposes an experimental configuration for the generation of a cold atmospheric pressure plasma jet at the downstream end of a long flexible plastic tube. The device consists of a cylindrical dielectric chamber where an insulated metal rod that serves as high-voltage electrode is inserted. The chamber is connected to a long (up to 4 m) commercial flexible plastic tube, equipped with a thin floating Cu wire. The wire penetrates a few mm inside the discharge chamber, passes freely (with no special support) along the plastic tube and terminates a few millimeters before the tube end. The system is flushed with Ar and the dielectric barrier discharge (DBD) is ignited inside the dielectric chamber by a low frequency ac power supply. The gas flow is guided by the plastic tube while the metal wire, when in contact with the plasma inside the DBD reactor, acquires plasma potential. There is no discharge inside the plastic tube, however an Ar plasma jet can be extracted from the downstream tube end. The jet obtained by this method is cold enough to be put in direct contact with human skin without an electric shock. Therefore, by using this approach an Ar plasma jet can be generated at the tip of a long plastic tube far from the high-voltage discharge region, which provides the safe operation conditions and device flexibility required for medical treatment.

  13. Inductive Measurement of Plasma Jet Electrical Conductivity (MSFC Center Director's discretionary Fund). Part 2

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2001-01-01

    Measurement of plasma jet electrical conductivity has utility in the development of explosively driven magnetohydrodynamic (MHD) energy converters as well as magnetic flux compression reaction chambers for nuclear/chemical pulse propulsion and power. Within these types of reactors, the physical parameter of critical importance to underlying MHD processes is the magnetic Reynolds number, the value of which depends upon the product of plasma electrical conductivity and velocity. Therefore, a thorough understanding of MHD phenomena at high magnetic Reynolds number is essential, and methods are needed for the accurate and reliable measurement of electrical conductivity in high-speed plasma jets. It is well known that direct measurements using electrodes suffer from large surface resistance, and an electrodeless technique is desired. To address this need, an inductive probing scheme, originally developed for shock tube studies, has been adapted. In this method, the perturbation of an applied magnetic field by a plasma jet induces a voltage in a search coil, which, in turn, can be used to infer electrical conductivity through the inversion of a Fredholm integral equation of the first kind. A 1-in.-diameter probe using a light-gas gun. Exploratory laboratory experiments were carried out using plasma jets expelled from 15-g shaped charges. Measured conductivities were in the range of 4 kS/m for unseeded octol charges and 26 kS/m for seeded octol charges containing 2-percent potassium carbonate by mass.

  14. A comparison of the noise produced by a small jet on a moving vehicle with that in a free jet. [jet mixing noise

    NASA Technical Reports Server (NTRS)

    Norum, T. D.

    1978-01-01

    A 2.54 cm (1.00 in.) nozzle supplied with nitrogen was mounted above an automobile and driven over an asphalt roadway past stationary microphones in an attempt to quantify the effects of the vehicle motion on jet mixing noise. The nozzle was then tested in the Langley anechoic noise facility with a large free jet simulating the relative motion. The results are compared for these two methods of investigating forward speed effects on jet mixing noise. The vehicle results indicate a noise with forward speed throughout the Doppler-shifted static spectrum. This decrease across the entire frequency range was also apparent in the free-jet results. The similarity of the results indicates that the effects of flight on jet mixing noise can be predicted by simulation of forward speed with a free jet. Overall sound pressure levels were found to decrease with forward speed at all observation angles for both methods of testing.

  15. W + Jet Production at Cdf

    NASA Astrophysics Data System (ADS)

    Messina, Andrea

    2007-01-01

    The cross section for the inclusive production of W bosons in association with jets in pbar {p} collisions at √ {s} = 1.96\\ TeV using the Collider Detector at Fermilab (CDF II) is presented. The measurement is based on an integrated luminosity of 320 pb-1, and includes events with up to 4 or more jets. In each jet multiplicity sample the differential and cumulative cross sections with respect to the transverse energy of the ith-jet are measured. For W + ≥ 2 jets the differential cross section with respect to the 2-leading jets invariant mass mj1j2 and angular separation ΔRj1j2 is also reported. The data are compared to predictions from Monte Carlo simulations.

  16. Influence of oxygen in atmospheric-pressure argon plasma jet on sterilization of Bacillus atrophaeous spores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Jin-Pyo; Uhm, Han S.; Li, Shou-Zhe

    2007-09-15

    A nonequilibrium Ar/O{sub 2} plasma discharge at atmospheric pressure was carried out in a coaxial cylindrical reactor with a stepped electrode configuration powered by a 13.56 MHz rf power supplier. The argon glow discharge with high electron density produces oxygen reactive species in large quantities. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as freemore » from toxic biological warfare agents. The decimal reduction time (D values) of the Ar/O{sub 2} plasma jet at an exposure distance of 0.5-1.5 cm ranges from 5 to 57 s. An actinometric comparison of the sterilization data shows that atomic oxygen radicals play a significant role in plasma sterilization. When observed under a scanning electron microscope, the average size of the spores appears to be greatly reduced due to chemical reactions with the oxygen radicals.« less

  17. Simultaneous Cotton-Mouton and Faraday rotation angle measurements on JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boboc, A.; Zabeo, L.; Murari, A.

    The change in the ellipticity of a laser beam that passes through plasma due to the Cotton-Mouton effect can provide additional information on the plasma density. This approach, complementary to the more traditional interferometric methods, has been implemented recently using the JET interferometer-polarimeter with a new setup. Routine Cotton-Mouton phase shift measurements are made on the vertical central chords simultaneously with the Faraday rotation angle data. These new data are used to provide robust line-integrated density measurements in difficult plasma scenarios, with strong Edge Localized Modes (ELMs) or pellets. These always affect interferometry, causing fringe jumps and preventing good controlmore » of the plasma density. A comparison of line-integrated density from polarimetry and interferometry measurements shows an agreement within 10%. Moreover, in JET the measurements can be performed close to a reactor relevant range of parameters, in particular, at high densities and temperatures. This provides a unique opportunity to assess the quality of the Faraday rotation and Cotton-Mouton phase shift measurements where both effects are strong and mutual nonlinear interaction between the two effects takes place.« less

  18. Effects of Fuel Composition on Combustion Stability and NO X Emissions for Traditional and Alternative Jet Fuels

    NASA Astrophysics Data System (ADS)

    Vijlee, Shazib Z.

    Synthetic jet fuels are studied to help understand their viability as alternatives to traditionally derived jet fuel. Two combustion parameters -- flame stability and NOX emissions -- are used to compare these fuels through experiments and models. At its core, this is a fuels study comparing how chemical makeup and behavior relate. Six 'real', complex fuels are studied in this work -- four are synthetic from alternative sources and two are traditional from petroleum sources. Two of the synthetic fuels are derived from natural gas and coal via the Fischer Tropsch catalytic process. The other two are derived from Camelina oil and tallow via hydroprocessing. The traditional military jet fuel, JP8, is used as a baseline as it is derived from petroleum. The sixth fuel is derived from petroleum and is used to study the effects of aromatic content on the synthetic fuels. The synthetic fuels lack aromatic compounds, which are an important class of hydrocarbons necessary for fuel handling systems to function properly. Several single-component fuels are studied (through models and/or experiments) to facilitate interpretation and understanding. The flame stability study first compares all the 'real', complex fuels for blowout. A toroidal stirred reactor is used to try and isolate temperature and chemical effects. The modeling study of blowout in the toroidal reactor is the key to understanding any fuel-based differences in blowout behavior. A detailed, reacting CFD model of methane is used to understand how the reactor stabilizes the flame and how that changes as the reactor approaches blowout. A 22 species reduced form of GRI 3.0 is used to model methane chemistry. The knowledge of the radical species role is utilized to investigate the differences between a highly aliphatic fuel (surrogated by iso-octane) and a highly aromatic fuel (surrogated by toluene). A perfectly stirred reactor model is used to study the chemical kinetic pathways for these fuels near blowout. The

  19. Conversion of microalgae to jet fuel: process design and simulation.

    PubMed

    Wang, Hui-Yuan; Bluck, David; Van Wie, Bernard J

    2014-09-01

    Microalgae's aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II's thermodynamic data manager. Hydrotreating is analyzed within PRO/II's case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230°C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Jet fuel-induced immunotoxicity.

    PubMed

    Harris, D T; Sakiestewa, D; Titone, D; Robledo, R F; Young, R S; Witten, M

    2000-09-01

    Chronic exposure to jet fuel has been shown to cause human liver dysfunction, emotional dysfunction, abnormal electroencephalograms, shortened attention spans, and to decrease sensorimotor speed (3-5). Exposure to potential environmental toxicants such as jet fuel may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.), e.g., the immune system. Significant changes in immune function, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed 1 h/day for 7 days to a 1000-mg/m3 concentration of aerosolized jet fuel obtained from various sources (JP-8, JP-8+100 and Jet A1) and of differing compositions to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on the immune system. It was observed that exposure to all jet fuel sources examined had detrimental effects on the immune system. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in differential losses of immune cell populations in the thymus. Further, jet fuel exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low-concentration exposure of mice to aerosolized jet fuel, regardless of source or composition, caused significant deleterious effects on the immune system.

  1. Progress Toward Improving Jet Noise Predictions in Hot Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Kenzakowski, Donald C.

    2007-01-01

    An acoustic analogy methodology for improving noise predictions in hot round jets is presented. Past approaches have often neglected the impact of temperature fluctuations on the predicted sound spectral density, which could be significant for heated jets, and this has yielded noticeable acoustic under-predictions in such cases. The governing acoustic equations adopted here are a set of linearized, inhomogeneous Euler equations. These equations are combined into a single third order linear wave operator when the base flow is considered as a locally parallel mean flow. The remaining second-order fluctuations are regarded as the equivalent sources of sound and are modeled. It is shown that the hot jet effect may be introduced primarily through a fluctuating velocity/enthalpy term. Modeling this additional source requires specialized inputs from a RANS-based flowfield simulation. The information is supplied using an extension to a baseline two equation turbulence model that predicts total enthalpy variance in addition to the standard parameters. Preliminary application of this model to a series of unheated and heated subsonic jets shows significant improvement in the acoustic predictions at the 90 degree observer angle.

  2. Computational Modeling And Analysis Of Synthetic Jets

    NASA Technical Reports Server (NTRS)

    Mittal, Rajat; Cattafesta, Lou

    2005-01-01

    In the last report we focused on the study of 3D synthetic jets of moderate jet aspect-ratio. Jets in quiescent and cross-flow cases were investigated. Since most of the synthetic jets in practical applications are found to be of large aspect ratio, the focus was shifted to studying synthetic jets of large aspect ratio. In the current year, further progress has been made by studying jets of aspect ratio 8 and infinity. Some other aspects of the jet, like the vorticity flux is looked into apart from analyzing the vortex dynamics, velocity profiles and the other dynamical characteristics of the jet which allows us to extract some insight into the effect of these modifications on the jet performance. Also, efforts were made to qualitatively validate the simulated results with the NASA Langley test cases at higher jet Reynolds number for the quiescent jet case.

  3. Characterisation of MR reactor pond in nNRC 'Kurchatov institute' before dismantling work

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepanov, Alexey; Simirsky, Yury; Semin, Ilya

    2013-07-01

    In this work complex α-, β-, γ-spectrometric research of water, bottom slimes and deposits on walls of the reactor pond and the storage pond of the MR reactor was made. Identify, that the main dose forming radionuclide, during dismantling work on the reactor MR, is Cs-137. It is shown, that specific activity of radionuclides in bottom slimes considerably exceed specific activity of radionuclides in water from ponds, and near to high level radioactive waste. It is detected that decreasing the water level in reactor ponds on 1 m, increase the exposure dose rate at a distance 1 m from themore » pond in 2 times. The observed increase in exposure dose rate can be explained by contribution on dose rate the cesium-137 deposed on walls of the storage pond. Effectiveness of cleaning of walls of the pool of storage from deposits by a water jet of high pressure is investigated. (authors)« less

  4. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pease, Leonard F.; Bamberger, Judith A.; Minette, Michael J.

    This report evaluates the physics of the upwell flow in pulse jet mixed systems in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Although the initial downward flow and radial flow from jets characteristic of pulse jet mixers (PJMs) has been analyzed, the upwells have received considerably less attention despite having significant implications for vessel mixing. Do the upwells behave like jets? How do the upwells scale? When will the central upwell break through? What proportion of the vessel is blended by the upwells themselves? Indeed, how the physics of the central upwell is affected by multiple PJMs (e.g.,more » six in the proposed mixing vessels), non-Newtonian rheology, and significant multicomponent solids loadings remain unexplored.« less

  5. An experimental study of multiple jet mixing

    NASA Technical Reports Server (NTRS)

    Krothapalli, D.; Baganoff, D.; Karamcheti, K.

    1979-01-01

    Measurements of an incompressible jet issuing from an array of rectangular lobes, equally spaced with their small dimensions in a line, both as a free jet, and as a confined jet, are carried out in three parts: (1) on a single rectangular free jet, (2) on the same jet in a multiple free jet configuration, and (3) on the same jet in a multiple jet configuration with confining surfaces (two parallel plates are symmetrically placed perpendicular to the long dimension of each lobe covering the entire flow field under consideration). In the case of a single rectangular free jet, the flow field of the jet is characterized by the presence of three distinct regions in the axial mean velocity decay and are referred to as: potential core region, two dimensional type region, and axisymmetric type region. In the case of a multiple free jet, the flow field for downstream distance X greater than 60D (D = width of a lobe) resembles that of a jet exiting from a two dimensional nozzle with its short dimension being the long dimension of the lobe.

  6. Flow Channel Influence of a Collision-Based Piezoelectric Jetting Dispenser on Jet Performance

    PubMed Central

    Deng, Guiling; Li, Junhui; Duan, Ji’an

    2018-01-01

    To improve the jet performance of a bi-piezoelectric jet dispenser, mathematical and simulation models were established according to the operating principle. In order to improve the accuracy and reliability of the simulation calculation, a viscosity model of the fluid was fitted to a fifth-order function with shear rate based on rheological test data, and the needle displacement model was fitted to a nine-order function with time based on real-time displacement test data. The results show that jet performance is related to the diameter of the nozzle outlet and the cone angle of the nozzle, and the impacts of the flow channel structure were confirmed. The approach of numerical simulation is confirmed by the testing results of droplet volume. It will provide a reliable simulation platform for mechanical collision-based jet dispensing and a theoretical basis for micro jet valve design and improvement. PMID:29677140

  7. Superfast Cosmic Jet "Hits the Wall"

    NASA Astrophysics Data System (ADS)

    1999-01-01

    A superfast jet of subatomic particles presumably powered by the gravitational energy of a black hole has collided with nearby material, been slowed dramatically and released much of its energy in the collision, radio astronomers report. The astronomers used the National Science Foundation's Very Large Array (VLA) radio telescope to observe the jet's motion. This is the first time such a collision has been seen within our own Milky Way Galaxy, and the collision may shed new light on the physics of cosmic jets. Robert Hjellming, Michael Rupen and Frank Ghigo of the National Radio Astronomy Observatory (NRAO); Amy Mioduszewski of the Joint Institute for VLBI in Europe; Don Smith of MIT's Space Research Lab; Alan Harmon of Marshall Space Flight Center, and Elizabeth Waltman of the Naval Research Laboratory reported their findings today at the American Astronomical Society's meeting in Austin, TX. The cosmic jet comes from an object called XTE J1748-288, at least 30,000 light-years away in the constellation Sagittarius, near the center of the Milky Way. XTE J1748-288, discovered on June 4, 1998, by Don Smith, using the RXTE satellite, is a "black hole candidate," probably consisting of a black hole drawing material from a companion star and accelerating jets of material outward in the process. A series of VLA images showed a "blob" of material in the jet moving at an apparent speed at least 50 percent greater than that of light. This is only the third such "superluminal" jet seen in our own Galaxy. The apparent faster-than-light motion is an illusion created by geometric effects when jets move at nearly the speed of light and are aligned so that their motion is somewhat toward Earth. The two other Milky Way objects whose jets show such rapid motion are dubbed "microquasars," because their behavior mimics that of quasars -- much larger objects seen at the cores of very distant galaxies. A series of VLA images showed material ejected as a jet from the core of XTE J1748

  8. Corkscrew Structures and Precessing Jets

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra

    2005-07-01

    Collimated jets are one of the most intriguing, yet poorly understood phenomena in astrophysics. Jets have been found in a wide variety of object classes which include AGNs, YSOs, massive X-ray binaries {e.g. SS433}, black hole X-ray transients, symbiotic stars, supersoft X-ray sources, and finally, planetary and preplanetary nebulae {PNs & PPNs}. In the case of PNs and PPNs, we have propsoed that wobbling collimated jets are the universal mechanism which can shape the wide variety of bipolar and multipolar morphologies seen in these objects. Most of our knowledge of post-AGB jets is indirectly inferred from their effects on the circumstellar envelopes of the progenitor AGB stars and, for that reason, these jets remain very poorly understood. Thus the mechanism that powers and collimates these jet-like post-AGB outflows remains as one of the most important, unsolved issues in post-AGB evolution. We propose an archival study of two bipolar PPNs, motivated by two recent discoveries which indicate that precessing jets are likely to be operational in them, and that the properties of the jets and the bipolar lobes produced by them, may be directly measured. One of these is IRAS16342-3814 {IRAS1634}, previously imaged with WPFC2, in which new Adaptive Optics {AO} observations at near-IR wavelengths show a remarkable corkscrew-shaped structure, the tell-tale signature of a precessing jet. Inspection of WFPC2 images of another PPN, OH231.8+4.2 in which we have recently discovered a A-type companion to the central mass-losing star, shows a sinuous nebulosity in a broad-band continuum image, resembling a corkscrew structure. We will use the latter to constrain the phsyical properties of the jet {precession period, opening angle, jet beam diameter, temporal history} in OH231.8. Using the multi-wavelength data on both sources, we will build models of the density distribution of the lobes and their interiors. In the case of IRAS1634, these models will be used to investigate the

  9. Development of an Empirical Methods for Predicting Jet Mixing Noise of Cold Flow Rectangular Jets

    NASA Technical Reports Server (NTRS)

    Russell, James W.

    1999-01-01

    This report presents an empirical method for predicting the jet mixing noise levels of cold flow rectangular jets. The report presents a detailed analysis of the methodology used in development of the prediction method. The empirical correlations used are based on narrow band acoustic data for cold flow rectangular model nozzle tests conducted in the NASA Langley Jet Noise Laboratory. There were 20 separate nozzle test operating conditions. For each operating condition 60 Hz bandwidth microphone measurements were made over a frequency range from 0 to 60,000 Hz. Measurements were performed at 16 polar directivity angles ranging from 45 degrees to 157.5 degrees. At each polar directivity angle, measurements were made at 9 azimuth directivity angles. The report shows the methods employed to remove screech tones and shock noise from the data in order to obtain the jet mixing noise component. The jet mixing noise was defined in terms of one third octave band spectral content, polar and azimuth directivity, and overall power level. Empirical correlations were performed over the range of test conditions to define each of these jet mixing noise parameters as a function of aspect ratio, jet velocity, and polar and azimuth directivity angles. The report presents the method for predicting the overall power level, the average polar directivity, the azimuth directivity and the location and shape of the spectra for jet mixing noise of cold flow rectangular jets.

  10. Acoustics of Excited Jets: A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Brown, Cliffard A.

    2005-01-01

    The idea that a jet may be excited by external forcing is not new. The first published demonstration of a jet responding to external pressure waves occurred in the mid-1800's. It was not, however, until the 1950's, with the advent of commercial jet aircraft, that interest in the subject greatly increased. Researchers first used excited jets to study the structure of the jet and attempt to determine the nature of the noise sources. The jet actuators of the time limited the range (Reynolds and Mach numbers) of jets that could be excited. As the actuators improved, more realistic jets could be studied. This has led to a better understanding of how jet excitation may be used not only as a research tool to understand the flow properties and noise generation process, but also as a method to control jet noise.

  11. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pease, Leonard F.; Bamberger, Judith A.; Minette, Michael J.

    2015-08-01

    This report evaluates the physics of the upwell flow in pulse jet mixed systems in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Although the initial downward flow and radial flow from pulse jet mixers (PJMs) has been analyzed in some detail, the upwells have received considerably less attention despite having significant implications for vessel mixing. Do the upwells behave like jets? How do the upwells scale? When will the central upwell breakthrough? What proportion of the vessel is blended by the upwells themselves? Indeed, how the physics of the central upwell is affected by multiple PJMs (e.g., sixmore » in the proposed mixing vessels), non-Newtonian rheology, and significant multicomponent solids loadings remain unexplored. The central upwell must satisfy several criteria to be considered a free jet. First, it must travel for several diameters in a nearly constant direction. Second, its velocity must decay with the inverse of elevation. Third, it should have an approximately Gaussian profile. Fourth, the influence of surface or body forces must be negligible. A combination of historical data in a 12.75 ft test vessel, newly analyzed data from the 8 ft test vessel, and conservation of momentum arguments derived specifically for PJM operating conditions demonstrate that the central upwell satisfies these criteria where vigorous breakthrough is achieved. An essential feature of scaling from one vessel to the next is the requirement that the underlying physics does not change adversely. One may have confidence in scaling if (1) correlations and formulas capture the relevant physics; (2) the underlying physics does not change from the conditions under which it was developed to the conditions of interest; (3) all factors relevant to scaling have been incorporated, including flow, material, and geometric considerations; and (4) the uncertainty in the relationships is sufficiently narrow to meet required specifications. Although the central

  12. Experimental and Theoretical Studies of Axisymmetric Free Jets

    NASA Technical Reports Server (NTRS)

    Love, Eugene S.; Grigsby, Carl E.; Lee, Louise P.; Woodling, Mildred J.

    1959-01-01

    Some experimental and theoretical studies have been made of axisymmetric free jets exhausting from sonic and supersonic nozzles into still air and into supersonic streams with a view toward problems associated with propulsive jets and the investigation of these problems. For jets exhausting into still air, consideration is given to the effects of jet Mach number, nozzle divergence angle, and jet static pressure ratio upon jet structure, jet wavelength, and the shape and curvature of the jet boundary. Studies of the effects of the ratio of specific heats of the jets are included are observations pertaining to jet noise and jet simulation. For jets exhausting into supersonic streams, an attempt has been made to present primarily theoretical certain jet interference effects and in formulating experimental studies. The primary variables considered are jet Mach number, free stream Mach number, jet static pressure ratio, ratio of specific heats of the jet, nozzle exit angle, and boattail angle. The simulation problem and the case of a hypothetical hypersonic vehicle are examined, A few experimental observations are included.

  13. Large Eddy Simulation of a cooling impinging jet to a turbulent crossflow

    NASA Astrophysics Data System (ADS)

    Georgiou, Michail; Papalexandris, Miltiadis

    2015-11-01

    In this talk we report on Large Eddy Simulations of a cooling impinging jet to a turbulent channel flow. The impinging jet enters the turbulent stream in an oblique direction. This type of flow is relevant to the so-called ``Pressurized Thermal Shock'' phenomenon that can occur in pressurized water reactors. First we elaborate on issues related to the set-up of the simulations of the flow of interest such as, imposition of turbulent inflows, choice of subgrid-scale model and others. Also, the issue of the commutator error due to the anisotropy of the spatial cut-off filter induced by non-uniform grids is being discussed. In the second part of the talk we present results of our simulations. In particular, we focus on the high-shear and recirculation zones that are developed and on the characteristics of the temperature field. The budget for the mean kinetic energy of the resolved-scale turbulent velocity fluctuations is also discussed and analyzed. Financial support has been provided by Bel V, a subsidiary of the Federal Agency for Nuclear Control of Belgium.

  14. Ejector Noise Suppression with Auxiliary Jet Injection

    NASA Technical Reports Server (NTRS)

    Berman, Charles H.; Andersen, Otto P., Jr.

    1997-01-01

    An experimental program to reduce aircraft jet turbulence noise investigated the interaction of small auxiliary jets with a larger main jet. Significant reductions in the far field jet noise were obtained over a range of auxiliary jet pressures and flow rates when used in conjunction with an acoustically lined ejector. While the concept is similar to that of conventional ejector suppressors that use mechanical mixing devices, the present approach should improve thrust and lead to lower weight and less complex noise suppression systems since no hardware needs to be located in the main jet flow. A variety of auxiliary jet and ejector configurations and operating conditions were studied. The best conditions tested produced peak to peak noise reductions ranging from 11 to 16 dB, depending on measurement angle, for auxiliary jet mass flows that were 6.6% of the main jet flow with ejectors that were 8 times the main jet diameter in length. Much larger reductions in noise were found at the original peak frequencies of the unsuppressed jet over a range of far field measurement angles.

  15. Sweeping Jet Actuator in a Quiescent Environment

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Melton, Latunia P.

    2013-01-01

    This study presents a detailed analysis of a sweeping jet (fluidic oscillator) actuator. The sweeping jet actuator promises to be a viable flow control actuator candidate due to its simple, no moving part structure and its high momentum, spatially oscillating flow output. Hot-wire anemometer and particle image velocimetry measurements were carried out with an emphasis on understanding the actuator flow field in a quiescent environment. The time averaged, fluctuating, and instantaneous velocity measurements are provided. A modified actuator concept that incorporates high-speed solenoid valves to control the frequency of oscillation enabled phase averaged measurements of the oscillating jet. These measurements reveal that in a given oscillation cycle, the oscillating jet spends more time on each of the Coanda surfaces. In addition, the modified actuator generates four different types of flow fields, namely: a non oscillating downward jet, a non oscillating upward jet, a non oscillating straight jet, and an oscillating jet. The switching from an upward jet to a downward jet is accomplished by providing a single pulse from the solenoid valve. Once the flow is switched, the flow stays there until another pulse is received. The oscillating jet is compared with a non oscillating straight jet, which is a typical planar turbulent jet. The results indicate that the oscillating jet has a higher (5 times) spreading rate, more flow entrainment, and higher velocity fluctuations (equal to the mean velocity).

  16. Jet trajectories and surface pressures induced on a body of revolution with various dual jet configurations

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Jakubowski, A. K.; Aoyagi, K.

    1983-01-01

    A jet in a cross flow is of interest in practical situations including jet-powered VTOL aircraft. Three aspects of the problem have received little prior study. First is the effect of the angle of the jet to the crossflow. Second is the performance of dual-jet configurations. The third item for further study is a jet injected from a body of revolution as opposed to a flat plate. The Test Plan for this work was designed to address these three aspects. The experiments were conducted in the 7 x 10 tunnel at NASA Ames at velocities 14.5 - 35.8 m/sec (47.6 - 117.4 ft/sec). Detailed pressure distributions are presented for single and dual jets over a range of velocity ratios from 3 to 8, spacings from 2 to 6 diameters and injection angles of 90, 75 and 60 degrees. Some flowfield measurements are also presented, and it is shown that a simple analysis is capable of predicting the trajectories of the jets.

  17. Fluid dynamic aspects of jet noise generation. [noise measurement of jet blast effects from supersonic jet flow in convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Barra, V.; Panunzio, S.

    1976-01-01

    Jet engine noise generation and noise propagation was investigated by studying supersonic nozzle flow of various nozzle configurations in an experimental test facility. The experimental facility was constructed to provide a coaxial axisymmetric jet flow of unheated air. In the test setup, an inner primary flow exhausted from a 7 in. exit diameter convergent--divergent nozzle at Mach 2, while a secondary flow had a 10 in. outside diameter and was sonic at the exit. The large dimensions of the jets permitted probes to be placed inside the jet core without significantly disturbing the flow. Static pressure fluctuations were measured for the flows. The nozzles were designed for shock free (balanced) flow at Mach 2. Data processing techniques and experimental procedures were developed in order to study induced disturbances at the edge of the supersonic flows, and the propagation of those disturbances throughout the flows. Equipment used (specifications are given) to record acoustic levels (far field noise) is described. Results and conclusions are presented and discussed. Diagrams of the jet flow fields are included along with photographs of the test stand.

  18. Transient gas jets into liquids

    NASA Astrophysics Data System (ADS)

    Lin, Jane Ming-Chin

    An experimental investigation of the development of high velocity, impulsively initiated gas jets into liquid was conducted in an effort to understand some of the physical processes that occur for a jet of very light fluid into a dense ambient atmosphere. Four gases, refrigerants 12 and 22, nitrogen, and helium were injected into water at nozzle exit Mach numbers from 1.0 to 2.2.The study showed that a gas jet into water develops in at least three stages: startup, transition, and global steady state. The startup is characterized by bubble growth; the growth rate is well predicted by classical bubble-growth theory. Jet transition is marked by axially directed flow, which penetrates through the startup bubble and which forms a cylindrical protrusion along the axis of symmetry. A combination of strong recirculating flow and liquid entrainment causes the startup bubble to deflate and to lift off and move downstream. In the steady state, instantaneous photographs show small-scale fluctuations of the jet boundary, but time-averaged photographs show the expected conical spreading of the steady jet; the measured spreading angles range from 18-25 degrees.However, the most significant finding of this study is that under some conditions, the gas jet into liquid never reaches the global steady state. Instead, the jet boundary exhibits chugging: large nonlinear oscillations which lead to irregular collapses of the gas column followed by explosive outward bursts of gas. The unsteadiness observed is much more violent than the familiar fluctuations typical of constant-density jets. The length scale of the motion is generally on the order of several jet diameters; the time scale is on the order of the period for bubble collapse.It was found that the amplitude and frequency of chugging are strongly dependent on the ratio of the liquid density to the gas density, the jet Mach number, and the operating pressure ratio. The conditions under which unsteadiness occurs were determined

  19. Development of phased twin flip-flop jets

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Rice, Edward J.

    1993-01-01

    The flip-flop nozzle is a device that can produce an oscillating jet flow without any moving parts. There is now a renewed interest in such nozzles due to their potential for use as excitation devices in practical applications. An experiment aimed at developing twin flip-flop jets that operate at prescribed frequencies and phase differences was performed. The phasing was achieved using two different nozzle interconnection schemes. In one configuration the two jets flapped in-phase and in another they flapped out-of-phase with respect to each other. In either configuration the frequencies of oscillation of both jets were equal. When one of the jets was run at a constant high velocity and the velocity of the second jet was increased gradually, the higher velocity jet determined the frequency of oscillation of both jets. The two flip-flop jet configurations described could be used to excite a primary jet flow in either an anti-symmetric (sinuous) or a symmetric (varicose) mode.

  20. Characteristics of strongly-forced turbulent jets and non-premixed jet flames

    NASA Astrophysics Data System (ADS)

    Lakshminarasimhan, K.; Clemens, N. T.; Ezekoye, O. A.

    2006-10-01

    Previous researchers have demonstrated that strong pulsations of the fuel flow rate can significantly reduce the flame length and luminosity of laminar/transitional non-premixed jet flames. The physical mechanisms responsible for these changes are investigated experimentally in acoustically-forced jet flows where the peak velocity fluctuations are up to eight times the mean flow velocity. Both reacting and non-reacting flows were studied and Reynolds numbers, based on the mean flow properties, ranged from 800 to 10,000 (corresponding to peak Reynolds numbers of 1,450-23,000), and forcing frequencies ranged from 290 to 1,140 Hz. Both the first and second organ-pipe resonance modes of the fuel delivery tube were excited to obtain these frequencies. An analysis of the acoustic forcing characteristics within the resonance tube is provided in order to understand the source of the high amplitude forcing. Flow visualization of jets with first resonant forcing confirms the presence of large-scale coherent vortices and strong reverse flow near the exit of the fuel tube. With second-resonant forcing, however, vortices are not emitted from the tube as they are drawn back into the fuel tube before they can fully form. Increased fine-scale turbulence is associated with both resonant cases, but particularly at second resonance. The power spectra of the velocity fluctuations for a resonantly pulsed jet show the presence of an inertial subrange indicating that the flow becomes fully turbulent even for mean-Reynolds-number jets that are nominally laminar. It is shown that these pulsed jet flows exhibit strong similarities to synthetic jets and that the Strouhal number, based on the maximum velocity at the fuel tube exit, is the dominant parameter for scaling these flows. The Strouhal number determines the downstream location where the coherent vortices breakdown, and is found to provide better collapse of flame length data (both current and previous) than other parameters that have

  1. The resonance of twin supersonic jets

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.

    1989-01-01

    This paper presents an analytical study of the resonant interaction between twin supersonic jets. An instability wave model is used to describe the large scale coherent structures in the jet mixing layers. A linearized shock cell model is also given for the jets when operating off design. The problem's geometry admits four types of normal modes associated with each azimuthal mode number in the single jet. The stability of these modes is examined for both a vortex sheet model of the jet and a jet flow represented by realistic profiles. The growth rates of each mode number and type are found to vary with jet separation and mixing layer thickness and Strouhal number. Contours of equal pressure level are obtained for each mode. The region close to the symmetry axis is found to have the greatest pressure fluctuation amplitude.

  2. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Chang, Chau-Lyan; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    Classic tonal screech noise created by under-expanded supersonic jets; Long Penetration Mode (LPM) supersonic phenomenon -Under-expanded counter-flowing jet in supersonic free stream -Demonstrated in several wind tunnel tests -Modeled in several computational fluid dynamics (CFD) simulations; Discussion of LPM acoustics feedback and fluid interactions -Analogous to the aero-acoustics interactions seen in screech jets; Lessons Learned: Applying certain methodologies to LPM -Developed and successfully demonstrated in the study of screech jets -Discussion of mechanically induced excitation in fluid oscillators in general; Conclusions -Large body of work done on jet screech, other aero-acoustic phenomenacan have direct application to the study and applications of LPM cold flow jets

  3. Acoustically excited heated jets. 1: Internal excitation

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    The effects of relatively strong upstream acoustic excitation on the mixing of heated jets with the surrounding air are investigated. To determine the extent of the available information on experiments and theories dealing with acoustically excited heated jets, an extensive literature survey was carried out. The experimental program consisted of flow visualization and flowfield velocity and temperature measurements for a broad range of jet operating and flow excitation conditions. A 50.8-mm-diam nozzle was used for this purpose. Parallel to the experimental study, an existing theoretical model of excited jets was refined to include the region downstream of the jet potential core. Excellent agreement was found between theory and experiment in moderately heated jets. However, the theory has not yet been confirmed for highly heated jets. It was found that the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions and that the threshold excitation level increases with increasing jet temperature. Furthermore, the preferential Strouhal number is found not to change significantly with a change of the jet operating conditions. Finally, the effects of the nozzle exit boundary layer thickness appear to be similar for both heated and unheated jets at low Mach numbers.

  4. Identifying a new particle with jet substructures

    DOE PAGES

    Han, Chengcheng; Kim, Doojin; Kim, Minho; ...

    2017-01-09

    Here, we investigate a potential of determining properties of a new heavy resonance of mass O(1)TeV which decays to collimated jets via heavy Standard Model intermediary states, exploiting jet substructure techniques. Employing the Z gauge boson as a concrete example for the intermediary state, we utilize a "merged jet" defined by a large jet size to capture the two quarks from its decay. The use of the merged jet bene ts the identification of a Z-induced jet as a single, reconstructed object without any combinatorial ambiguity. We also find that jet substructure procedures may enhance features in some kinematic observablesmore » formed with subjet four-momenta extracted from a merged jet. This observation motivates us to feed subjet momenta into the matrix elements associated with plausible hypotheses on the nature of the heavy resonance, which are further processed to construct a matrix element method (MEM)-based observable. For both moderately and highly boosted Z bosons, we demonstrate that the MEM in combination with jet substructure techniques can be a very powerful tool for identifying its physical properties. Finally, we discuss effects from choosing different jet sizes for merged jets and jet-grooming parameters upon the MEM analyses.« less

  5. Jet Measurements for Development of Jet Noise Prediction Tools

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2006-01-01

    The primary focus of my presentation is the development of the jet noise prediction code JeNo with most examples coming from the experimental work that drove the theoretical development and validation. JeNo is a statistical jet noise prediction code, based upon the Lilley acoustic analogy. Our approach uses time-average 2-D or 3-D mean and turbulent statistics of the flow as input. The output is source distributions and spectral directivity.

  6. 21 CFR 880.5475 - Jet lavage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Jet lavage. 880.5475 Section 880.5475 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... Jet lavage. (a) Identification. A jet lavage is a device used to clean a wound by a pulsatile jet of...

  7. 21 CFR 880.5475 - Jet lavage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Jet lavage. 880.5475 Section 880.5475 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... Jet lavage. (a) Identification. A jet lavage is a device used to clean a wound by a pulsatile jet of...

  8. Experimental studies of shock-induced particle jetting

    NASA Astrophysics Data System (ADS)

    Xue, Kun; Du, Kaiyuan; Shi, Xiaoliang

    2018-05-01

    The dispersion of particle rings or shells by a radially divergent shock front trailed by the pressurized gases takes the form of hierarchical particle jetting. Through a semi-two-dimensional configuration, we characterize the evolution of the jetting pattern using the boundary tracking technique. In contrast to the refined filamentary jetting spread induced by the dispersal of soft and ductile flour particles, the hard and brittle quartz sand particles are dispersed into a finger-like branched pattern with much fewer jets. The interplay between the primary and secondary jets suffices to reverse the flour jetting pattern, which by contrast is negligible in the quartz sand jetting. The distinct jetting patterns displayed by the flour and quartz sand particles are related with the distinguishable networks of force chains invoked in two particles which dictate the nucleation of jets.

  9. An experimental study of a plunging liquid jet induced air carryunder and dispersion

    NASA Astrophysics Data System (ADS)

    Bonetto, F.; Drew, D. A.; Lahey, R. T., Jr.

    1993-03-01

    A good understanding of the air carryunder and bubble dispersion process associated with a plunging liquid jet is vital if one is to be able to quantify such diverse phenomena as sea surface chemistry, the meteorological significance of breaking ocean waves (e.g., mitigation of the greenhouse effect due to the absorption of CO2 by the oceans), the performance of certain type of chemical reactors, and a number of other important maritime-related applications. The absorption of greenhouse gases into the ocean has been hypothesized to be highly dependent upon the air carryunder that occurs due to breaking waves. This process can be approximated with a plunging liquid jet. Moreover, the air entrainment process due to the breaking bow waves of surface ships may cause long (i.e., up to 5 km in length) wakes. Naturally, easily detectable wakes are undesirable for naval warships. In addition, the air carryunder that occurs at most hydraulic structures in rivers is primarily responsible for the large air/water mass transfer that is associated with these structures. Also, air entrainment plays an important role in the slug flow regime. In particular, the liquid film surrounding a Taylor bubble has a flow in the opposite direction from the Taylor bubble. This liquid film can be thought of as a plunging liquid jet that produces a surface depression in the rear part of the Taylor bubble.

  10. Capillary instability of elliptic liquid jets

    NASA Astrophysics Data System (ADS)

    Amini, Ghobad; Dolatabadi, Ali

    2011-08-01

    Instability of a liquid jet issuing from an elliptic nozzle in Rayleigh mode is investigated and its behavior is compared with a circular jet. Mathematical solution of viscous free-surface flow for asymmetric geometry is complicated if 3-D analytical solutions are to be obtained. Hence, one-dimensional Cosserat (directed curve) equations are used which can be assumed as a low order form of Navier-Stokes equations for slender jets. Linear solution is performed using perturbation method. Temporal dispersion equation is derived to find the most unstable wavelength responsible for the jet breakup. The obtained results for a circular jet (i.e., an ellipse with an aspect ratio of one) are compared with the classical results of Rayleigh and Weber for inviscid and viscous cases, respectively. It is shown that in the Rayleigh regime, which is the subject of this research, symmetric perturbations are unstable while asymmetric perturbations are stable. Consequently, spatial analysis is performed and the variation of growth rate under the effect of perturbation frequencies for various jet velocities is demonstrated. Results reveal that in comparison with a circular jet, the elliptic jet is more unstable. Furthermore, among liquid jets with elliptical cross sections, those with larger ellipticities have a larger instability growth rate.

  11. Launching of Active Galactic Nuclei Jets

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander

    As black holes accrete gas, they often produce relativistic, collimated outflows, or jets. Jets are expected to form in the vicinity of a black hole, making them powerful probes of strong-field gravity. However, how jet properties (e.g., jet power) connect to those of the accretion flow (e.g., mass accretion rate) and the black hole (e.g., black hole spin) remains an area of active research. This is because what determines a crucial parameter that controls jet properties—the strength of large-scale magnetic flux threading the black hole—remains largely unknown. First-principles computer simulations show that due to this, even if black hole spin and mass accretion rate are held constant, the simulated jet powers span a wide range, with no clear winner. This limits our ability to use jets as a quantitative diagnostic tool of accreting black holes. Recent advances in computer simulations demonstrated that accretion disks can accumulate large-scale magnetic flux on the black hole, until the magnetic flux becomes so strong that it obstructs gas infall and leads to a magnetically-arrested disk (MAD). Recent evidence suggests that central black holes in jetted active galactic nuclei and tidal disruptions are surrounded by MADs. Since in MADs both the black hole magnetic flux and the jet power are at their maximum, well-defined values, this opens up a new vista in the measurements of black hole masses and spins and quantitative tests of accretion and jet theory.

  12. Gas Jets

    NASA Technical Reports Server (NTRS)

    Chaplygin, S.

    1944-01-01

    A brief summary of the contents of this paper is presented here. In part I the differential equations of the problem of a gas flow in two dimensions is derived and the particular integrals by which the problem on jets is solved are given. Use is made of the same independent variables as Molenbroek used, but it is found to be more suitable to consider other functions. The stream function and velocity potential corresponding to the problem are given in the form of series. The investigation on the convergence of these series in connection with certain properties of the functions entering them forms the subject of part II. In part III the problem of the outflow of a gas from an infinite vessel with plane walls is solved. In part IV the impact of a gas jet on a plate is considered and the limiting case where the jet expands to infinity changing into a gas flow is taken up in more detail. This also solved the equivalent problem of the resistance of a gaseous medium to the motion of a plate. Finally, in part V, an approximate method is presented that permits a simpler solution of the problem of jet flows in the case where the velocities of the gas (velocities of the particles in the gas) are not very large.

  13. Reducing Coal Dust With Water Jets

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lewis, E. V.

    1985-01-01

    Jets also cool and clean cutting equipment. Modular pick-and-bucket miner suffers from disadvantage: Creates large quantities of potentially explosive coal dust. Dust clogs drive chain and other parts and must be removed by hand. Picks and bucket lips become overheated by friction and be resharpened or replaced frequently. Addition of oscillating and rotating water jets to pick-and-bucket machine keeps down dust, cools cutting edges, and flushes machine. Rotating jets wash dust away from drive chain. Oscillating jets cool cutting surfaces. Both types of jet wet airborne coal dust; it precipitates.

  14. Characteristics of polar coronal hole jets

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, K.; Bemporad, A.; Banerjee, D.; Gupta, G. R.; Teriaca, L.

    2014-01-01

    Context. High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. Aims: We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. Methods: Stack plots were used to find the drift and flow speeds of the jets. A toymodel was developed by assuming that the observed jet is generated by a sequence of single reconnection events where single unresolved blobs of plasma are ejected along open field lines, then expand and fall back along the same path, following a simple ballistic motion. Results: We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be ≈27 km s-1. The average outward speed of the first jet is ≈171 km s-1, well below the escape speed, hence if simple ballistic motion is considered, the plasma will not escape the Sun. The second jet was observed in the south polar coronal hole with three XRT filters, namely, C-poly, Al-poly, and Al-mesh filters. Many small-scale (≈3″-5″) fast (≈200-300 km s-1) ejections of plasma were observed on the same day; they propagated outwards. We observed that the stronger jet drifted at all altitudes along the jet with the same drift speed of ≃7 km s-1. We also observed that the bright point associated with the first jet is a part of sigmoid structure. The time of appearance of the sigmoid and that of the ejection of plasma from the bright

  15. Assessment of Current Jet Noise Prediction Capabilities

    NASA Technical Reports Server (NTRS)

    Hunter, Craid A.; Bridges, James E.; Khavaran, Abbas

    2008-01-01

    An assessment was made of the capability of jet noise prediction codes over a broad range of jet flows, with the objective of quantifying current capabilities and identifying areas requiring future research investment. Three separate codes in NASA s possession, representative of two classes of jet noise prediction codes, were evaluated, one empirical and two statistical. The empirical code is the Stone Jet Noise Module (ST2JET) contained within the ANOPP aircraft noise prediction code. It is well documented, and represents the state of the art in semi-empirical acoustic prediction codes where virtual sources are attributed to various aspects of noise generation in each jet. These sources, in combination, predict the spectral directivity of a jet plume. A total of 258 jet noise cases were examined on the ST2JET code, each run requiring only fractions of a second to complete. Two statistical jet noise prediction codes were also evaluated, JeNo v1, and Jet3D. Fewer cases were run for the statistical prediction methods because they require substantially more resources, typically a Reynolds-Averaged Navier-Stokes solution of the jet, volume integration of the source statistical models over the entire plume, and a numerical solution of the governing propagation equation within the jet. In the evaluation process, substantial justification of experimental datasets used in the evaluations was made. In the end, none of the current codes can predict jet noise within experimental uncertainty. The empirical code came within 2dB on a 1/3 octave spectral basis for a wide range of flows. The statistical code Jet3D was within experimental uncertainty at broadside angles for hot supersonic jets, but errors in peak frequency and amplitude put it out of experimental uncertainty at cooler, lower speed conditions. Jet3D did not predict changes in directivity in the downstream angles. The statistical code JeNo,v1 was within experimental uncertainty predicting noise from cold subsonic

  16. Filament Eruptions, Jets, and Space Weather

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Sterling, Alphonse; Robe, Nick; Falconer, David; Cirtain, Jonathan

    2013-01-01

    Previously, from chromospheric H alpha and coronal X-ray movies of the Sun's polar coronal holes, it was found that nearly all coronal jets (greater than 90%) are one or the other of two roughly equally common different kinds, different in how they erupt: standard jets and blowout jets (Yamauchi et al 2004, Apl, 605, 5ll: Moore et all 2010, Apj, 720, 757). Here, from inspection of SDO/AIA He II 304 A movies of 54 polar x-ray jets observed in Hinode/XRT movies, we report, as Moore et al (2010) anticipated, that (1) most standard x-ray jets (greater than 80%) show no ejected plasma that is cool enough (T is less than or approximately 10(exp 5K) to be seen in the He II 304 A movies; (2) nearly all blownout X-ray jets (greater than 90%) show obvious ejection of such cool plasma; (3) whereas when cool plasma is ejected in standard X-ray jets, it shows no lateral expansion, the cool plasma ejected in blowout X-ray jets shows strong lateral expansion; and (4) in many blowout X-ray jets, the cool plasma ejection displays the erupting-magnetic-rope form of clasic filament eruptions and is thereby seen to be a miniature filament eruption. The XRT movies also showed most blowout X-ray jets to be larger and brighter, and hence to apparently have more energy, than most standard X-ray jets. These observations (1) confirm the dichotomy of coronal jets, (2) agree with the Shibata model for standard jets, and (3) support the conclusion of Moore et al (2010) that in blowout jets the magnetic-arch base of the jet erupts in the manner of the much larger magnetic arcades in which the core field, the field rooted along the arcade's polarity inversion line, is sheared and twisted (sigmoid), often carries a cool-plasma filament, and erupts to blowout the arcade, producing a CME. From Hinode/SOT Ca II movies of the polar limb, Sterling et al (2010, ApJ, 714, L1) found that chromospheric Type-II spicules show a dichotomy of eruption dynamics similar to that found here for the cool

  17. Jet impact on a soap film

    NASA Astrophysics Data System (ADS)

    Kirstetter, Geoffroy; Raufaste, Christophe; Celestini, Franck

    2012-09-01

    We experimentally investigate the impact of a liquid jet on a soap film. We observe that the jet never breaks the film and that two qualitatively different steady regimes may occur. The first one is a refractionlike behavior obtained at small incidence angles when the jet crosses the film and is deflected by the film-jet interaction. For larger incidence angles, the jet is absorbed by the film, giving rise to a new class of flows in which the jet undulates along the film with a characteristic wavelength. Besides its fundamental interest, this paper presents a different way to guide a micrometric flow of liquid in the inertial regime and to probe foam stability submitted to violent perturbations at the soap film scale.

  18. Jet impact on a soap film.

    PubMed

    Kirstetter, Geoffroy; Raufaste, Christophe; Celestini, Franck

    2012-09-01

    We experimentally investigate the impact of a liquid jet on a soap film. We observe that the jet never breaks the film and that two qualitatively different steady regimes may occur. The first one is a refractionlike behavior obtained at small incidence angles when the jet crosses the film and is deflected by the film-jet interaction. For larger incidence angles, the jet is absorbed by the film, giving rise to a new class of flows in which the jet undulates along the film with a characteristic wavelength. Besides its fundamental interest, this paper presents a different way to guide a micrometric flow of liquid in the inertial regime and to probe foam stability submitted to violent perturbations at the soap film scale.

  19. Plasma flow patterns in and around magnetosheath jets

    NASA Astrophysics Data System (ADS)

    Plaschke, Ferdinand; Hietala, Heli

    2018-05-01

    The magnetosheath is commonly permeated by localized high-speed jets downstream of the quasi-parallel bow shock. These jets are much faster than the ambient magnetosheath plasma, thus raising the question of how that latter plasma reacts to incoming jets. We have performed a statistical analysis based on 662 cases of one THEMIS spacecraft observing a jet and another (second) THEMIS spacecraft providing context observations of nearby plasma to uncover the flow patterns in and around jets. The following results are found: along the jet's path, slower plasma is accelerated and pushed aside ahead of the fastest core jet plasma. Behind the jet core, plasma flows into the path to fill the wake. This evasive plasma motion affects the ambient magnetosheath, close to the jet's path. Diverging and converging plasma flows ahead and behind the jet are complemented by plasma flows opposite to the jet's propagation direction, in the vicinity of the jet. This vortical plasma motion results in a deceleration of ambient plasma when a jet passes nearby.

  20. Jet energy calibration at the LHC

    DOE PAGES

    Schwartzman, Ariel

    2015-11-10

    In this study, jets are one of the most prominent physics signatures of high energy proton–proton (p–p) collisions at the Large Hadron Collider (LHC). They are key physics objects for precision measurements and searches for new phenomena. This review provides an overview of the reconstruction and calibration of jets at the LHC during its first Run. ATLAS and CMS developed different approaches for the reconstruction of jets, but use similar methods for the energy calibration. ATLAS reconstructs jets utilizing input signals from their calorimeters and use charged particle tracks to refine their energy measurement and suppress the effects of multiplemore » p–p interactions ( pileup). CMS, instead, combines calorimeter and tracking information to build jets from particle flow objects. Jets are calibrated using Monte Carlo (MC) simulations and a residual in situ calibration derived from collision data is applied to correct for the differences in jet response between data and Monte Carlo.« less

  1. On the structure of pulsed plasma jets

    NASA Astrophysics Data System (ADS)

    Cavolowsky, John Arthur

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and inhancing combustion. Having shown the ability to ignite lean fuel mixtures, is now offers the potential for real-time control of combustion processes. The fluid mechanical and chemical properties of such jets are explored. The fluid mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. The turbulent, thermal evolution of the jet was explored using high speed laser schlieren cinematography. By examine plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. Molecular beam mass spectroscopy was used to determine temperature and species concentration in the jet. Both noncombustible and combustible jets were studied. Species measurements in combustible jets revealed significant concentrations of radicals and products of complete as well as incomplete combustion.

  2. Jet Topics: Disentangling Quarks and Gluons at Colliders

    NASA Astrophysics Data System (ADS)

    Metodiev, Eric M.; Thaler, Jesse

    2018-06-01

    We introduce jet topics: a framework to identify underlying classes of jets from collider data. Because of a close mathematical relationship between distributions of observables in jets and emergent themes in sets of documents, we can apply recent techniques in "topic modeling" to extract jet topics from the data with minimal or no input from simulation or theory. As a proof of concept with parton shower samples, we apply jet topics to determine separate quark and gluon jet distributions for constituent multiplicity. We also determine separate quark and gluon rapidity spectra from a mixed Z -plus-jet sample. While jet topics are defined directly from hadron-level multidifferential cross sections, one can also predict jet topics from first-principles theoretical calculations, with potential implications for how to define quark and gluon jets beyond leading-logarithmic accuracy. These investigations suggest that jet topics will be useful for extracting underlying jet distributions and fractions in a wide range of contexts at the Large Hadron Collider.

  3. Jet Noise Scaling in Dual Stream Nozzles

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2010-01-01

    Power spectral laws in dual stream jets are studied by considering such flows a superposition of appropriate single-stream coaxial jets. Noise generation in each mixing region is modeled using spectral power laws developed earlier for single stream jets as a function of jet temperature and observer angle. Similarity arguments indicate that jet noise in dual stream nozzles may be considered as a composite of four single stream jets representing primary/secondary, secondary/ambient, transition, and fully mixed zones. Frequency filter are designed to highlight spectral contribution from each jet. Predictions are provided at an area ratio of 2.0--bypass ratio from 0.80 to 3.40, and are compared with measurements within a wide range of velocity and temperature ratios. These models suggest that the low frequency noise in unheated jets is dominated by the fully mixed region at all velocity ratios, while the high frequency noise is dominated by the secondary when the velocity ratio is larger than 0.80. Transition and fully mixed jets equally dominate the low frequency noise in heated jets. At velocity ratios less than 0.50, the high frequency noise from primary/bypass becomes a significant contributing factor similar to that in the secondary/ambient jet.

  4. Ultra-High Bypass Ratio Jet Noise

    NASA Technical Reports Server (NTRS)

    Low, John K. C.

    1994-01-01

    The jet noise from a 1/15 scale model of a Pratt and Whitney Advanced Ducted Propulsor (ADP) was measured in the United Technology Research Center anechoic research tunnel (ART) under a range of operating conditions. Conditions were chosen to match engine operating conditions. Data were obtained at static conditions and at wind tunnel Mach numbers of 0.2, 0.27, and 0.35 to simulate inflight effects on jet noise. Due to a temperature dependence of the secondary nozzle area, the model nozzle secondary to primary area ratio varied from 7.12 at 100 percent thrust to 7.39 at 30 percent thrust. The bypass ratio varied from 10.2 to 11.8 respectively. Comparison of the data with predictions using the current Society of Automotive Engineers (SAE) Jet Noise Prediction Method showed that the current prediction method overpredicted the ADP jet noise by 6 decibels. The data suggest that a simple method of subtracting 6 decibels from the SAE Coaxial Jet Noise Prediction for the merged and secondary flow source components would result in good agreement between predicted and measured levels. The simulated jet noise flight effects with wind tunnel Mach numbers up to 0.35 produced jet noise inflight noise reductions up to 12 decibels. The reductions in jet noise levels were across the entire jet noise spectra, suggesting that the inflight effects affected all source noise components.

  5. Protostellar Jets: The Revolution with ALMA

    NASA Astrophysics Data System (ADS)

    Podio, Linda

    2017-11-01

    Fast and collimated molecular jets as well as slower wide-angle outflows are observed since the earliest stages of the formation of a new star, when the protostellar embryo accretes most of its final mass from the dense parental envelope. Early theoretical studies suggested that jets have a key role in this process as they can transport away angular momentum thus allowing the star to form without reaching its break-up speed. However, an observational validation of these theories is still challenging as it requires to investigate the interface between jets and disks on scales of fractions to tens of AUs. For this reason, many questions about the origin and feedback of protostellar jets remain unanswered, e.g. are jets ubiquitous at the earliest stages of star formation? Are they launched by a magneto-centrifugal mechanism as suggested by theoretical models? Are they able to remove (enough) angular momentum? What is the jet/outflow feedback on the forming star-disk system in terms of transported mass/momentum and shock-induced chemical alterations? The advent of millimetre interferometers such as NOEMA and ALMA with their unprecedented combination of angular resolution and sensitivity are now unraveling the core of pristine jet-disk systems. While NOEMA allows to obtain the first statistically relevant surveys of protostellar jet properties and ubiquity, recent ALMA observations provide the first solid signatures of jet rotation and new insight on the chemistry of the protostellar region. I will review the most recent and exciting results obtained in the field and show how millimetre interferometry is revolutionising our comprehension of protostellar jets.

  6. Rebounding of a shaped-charge jet

    NASA Astrophysics Data System (ADS)

    Proskuryakov, E. V.; Sorokin, M. V.; Fomin, V. M.

    2007-09-01

    The phenomenon of rebounding of a shaped-charge jet from the armour surface with small angles between the jet axis and the target surface is considered. Rebounding angles as a function of jet velocity are obtained in experiments for a copper shaped-charge jet. An engineering calculation technique is developed. The results calculated with the use of this technique are in reasonable agreement with experimental data.

  7. Immunotoxicity evaluation of jet a jet fuel in female rats after 28-day dermal exposure.

    PubMed

    Mann, Cynthia M; Peachee, Vanessa L; Trimmer, Gary W; Lee, Ji-Eun; Twerdok, Lorraine E; White, Kimber L

    2008-01-01

    The potential for jet fuel to modulate immune functions has been reported in mice following dermal, inhalation, and oral routes of exposure; however, a functional evaluation of the immune system in rats following jet fuel exposure has not been conducted. In this study potential effects of commercial jet fuel (Jet A) on the rat immune system were assessed using a battery of functional assays developed to screen potential immunotoxic compounds. Jet A was applied to the unoccluded skin of 6- to 7-wk-old female Crl:CD (SD)IGS BR rats at doses of 165, 330, or 495 mg/kg/d for 28 d. Mineral oil was used as a vehicle to mitigate irritation resulting from repeated exposure to jet fuel. Cyclophosphamide and anti-asialo GM1 were used as positive controls for immunotoxic effects. In contrast to reported immunotoxic effects of jet fuel in mice, dermal exposure of rats to Jet A did not result in alterations in spleen or thymus weights, splenic lymphocyte subpopulations, immunoglobulin (Ig) M antibody-forming cell response to the T-dependent antigen, sheep red blood cells (sRBC), spleen cell proliferative response to anti-CD3 antibody, or natural killer (NK) cell activity. In each of the immunotoxicological assays conducted, the positive control produced the expected results, demonstrating the assay was capable of detecting an effect if one had occurred. Based on the immunological parameters evaluated under the experimental conditions of the study, Jet A did not adversely affect immune responses of female rats. It remains to be determined whether the observed difference between this study and some other studies reflects a difference in the immunological response of rats and mice or is the result of other factors.

  8. Effects of Jet Swirl on Mixing of a Light Gas Jet in a Supersonic Airstream

    NASA Technical Reports Server (NTRS)

    Doerner, Steven E.; Cutler, Andrew D.

    1999-01-01

    A non reacting experiment was performed to investigate the effects of jet swirl on mixing of a light gas jet in a supersonic airstream. The experiment consisted of two parts. The first part was an investigation of the effects of jet swirl and skew on the mixing and penetration of a 25 deg. supersonic jet injected from a flat surface (flush wall injection) into a supersonic ducted airflow. Specifically, the objective was to determine whether the jet would mix more rapidly if the jet were swirling, and whether swirl, with and without skew, causes the injectant-air plume to have a net circulation (i.e., a single or dominant vortex). The second part was a preliminary study of the mixing of swirling jets injected from the base of a skewed ramp. The hypothesis was that favorable interactions between vorticity generated by the swirling jet and vortices generated by the ramp could produce mixing enhancements. Both parts of the experiment were conducted at equal injectant mass flow rate and total pressure. The results for the flush wall injection cases indicate that, except relatively close to the injection point, swirl, with or without skew, does not enhance the mixing of the jet, and can in fact reduce penetration. In addition, a plume with significant net circulation is not generated, as had previously been believed. The results for the ramp cases indicated no improvements in mixing in comparison with the baseline (swept ramp injector) case. However, it was not possible to determine the vorticity mechanisms underlying the poor performance, since no measurements of vorticity were made. Thus, since many geometric parameters were chosen arbitrarily, the results are inconclusive for this class of injector.

  9. STOL landing thrust: Reverser jet flowfields

    NASA Technical Reports Server (NTRS)

    Kotansky, D. R.; Glaze, L. W.

    1987-01-01

    Analysis tools and modeling concepts for jet flow fields encountered upon use of thrust reversers for high performance military aircraft are described. A semi-empirical model of the reverser ground wall jet interaction with the uniform cross flow due to aircraft forward velocity is described. This ground interaction model is used to demonstrate exhaust gas ingestion conditions. The effects of control of exhaust jet vector angle, lateral splay, and moving versus fixed ground simulation are discussed. The Adler/Baron jet-in-cross flow model is used in conjunction with three dimensional panel methods to investigate the upper surface jet induced flow field.

  10. Formation mechanism of shock-induced particle jetting.

    PubMed

    Xue, K; Sun, L; Bai, C

    2016-08-01

    The shock dissemination of granular rings or shells is characterized by the formation of coherent particle jets that have different dimensions from those associated with the constituent grains. In order to identify the mechanisms governing the formation of particle jets, we carry out the simulations of the shock dispersal of quasi-two-dimensional particle rings based on the discrete-element method. The evolution of the particle velocities and contact forces on the time scales ranging from microseconds to milliseconds reveals a two-stage development of particle jets before they are expelled from the outer surface. Much effort is made to understand the particle agglomeration around the inner surface that initiates the jet formation. The shock interaction with the innermost particle layers generates a heterogeneous network of force chains with clusters of strong contacts regularly spaced around the inner surface. Momentum alongside the stresses is primarily transmitted along the strong force chains. Therefore, the clustering of strong force chains renders the agglomeration of fast-moving particles connected by strong force chains. The fast-moving particle clusters subsequently evolve into the incipient particle jets. The following competition among the incipient jets that undergo unbalanced growth leads to substantial elimination of the minor jets and the significant multiplication of the major jets, the number of jets thus varying with time. Moreover, the number of jets is found to increase with the strength of the shock loading due to an increased number of jets surviving the retarding effect of major jets.

  11. Laser-Sharp Jet Splits Water

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A jet of gas firing out of a very young star can be seen ramming into a wall of material in this infrared image from NASA's Spitzer Space Telescope.

    The young star, called HH 211-mm, is cloaked in dust and can't be seen. But streaming away from the star are bipolar jets, color-coded blue in this view. The pink blob at the end of the jet to the lower left shows where the jet is hitting a wall of material. The jet is hitting the wall so hard that shock waves are being generated, which causes ice to vaporize off dust grains. The shock waves are also heating material up, producing energetic ultraviolet radiation. The ultraviolet radiation then breaks the water vapor molecules apart.

    The red color at the end of the lower jet represents shock-heated iron, sulfur and dust, while the blue color in both jets denotes shock-heated hydrogen molecules.

    HH 211-mm is part of a cluster of about 300 stars, called IC 348, located 1,000 light-years away in the constellation Perseus.

    This image is a composite of infrared data from Spitzer's infrared array camera and its multiband imaging photometer. Light with wavelengths of 3.6 and 4.5 microns is blue; 8-micron-light is green; and 24-micron light is red.

  12. Development of Jet Noise Power Spectral Laws

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2011-01-01

    High-quality jet noise spectral data measured at the Aero-Acoustic Propulsion Laboratory (AAPL) at NASA Glenn is used to develop jet noise scaling laws. A FORTRAN algorithm was written that provides detailed spectral prediction of component jet noise at user-specified conditions. The model generates quick estimates of the jet mixing noise and the broadband shock-associated noise (BBSN) in single-stream, axis-symmetric jets within a wide range of nozzle operating conditions. Shock noise is emitted when supersonic jets exit a nozzle at imperfectly expanded conditions. A successful scaling of the BBSN allows for this noise component to be predicted in both convergent and convergent-divergent nozzles. Configurations considered in this study consisted of convergent and convergent- divergent nozzles. Velocity exponents for the jet mixing noise were evaluated as a function of observer angle and jet temperature. Similar intensity laws were developed for the broadband shock-associated noise in supersonic jets. A computer program called sJet was developed that provides a quick estimate of component noise in single-stream jets at a wide range of operating conditions. A number of features have been incorporated into the data bank and subsequent scaling in order to improve jet noise predictions. Measurements have been converted to a lossless format. Set points have been carefully selected to minimize the instability-related noise at small aft angles. Regression parameters have been scrutinized for error bounds at each angle. Screech-related amplification noise has been kept to a minimum to ensure that the velocity exponents for the jet mixing noise remain free of amplifications. A shock-noise-intensity scaling has been developed independent of the nozzle design point. The computer program provides detailed narrow-band spectral predictions for component noise (mixing noise and shock associated noise), as well as the total noise. Although the methodology is confined to single

  13. Instability of rectangular jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Thies, Andrew T.

    1993-01-01

    The instability of rectangular jets is investigated using a vortex-sheet model. It is shown that such jets support four linearly independent families of instability waves. Within each family there are infinitely many modes. A way to classify these modes according to the characteristics of their mode shapes or eigenfunctions is proposed. It is demonstrated that the boundary element method can be used to calculate the dispersion relations and eigenfunctions of these instability wave modes. The method is robust and efficient. A parametric study of the instability wave characteristics has been carried out. A sample of the numerical results is reported here. It is found that the first and third modes of each instability wave family are corner modes. The pressure fluctuations associated with these instability waves are localized near the corners of the jet. The second mode, however, is a center mode with maximum fluctuations concentrated in the central portion of the jet flow. The center mode has the largest spatial growth rate. It is anticipated that as the instability waves propagate downstream the center mode would emerge as the dominant instability of the jet.

  14. Sweeping Jet Optimization Studies

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Koklu, Mehti; Andino, Marlyn; Lin, John C.; Edelman, Louis

    2016-01-01

    Progress on experimental efforts to optimize sweeping jet actuators for active flow control (AFC) applications with large adverse pressure gradients is reported. Three sweeping jet actuator configurations, with the same orifice size but di?erent internal geometries, were installed on the flap shoulder of an unswept, NACA 0015 semi-span wing to investigate how the output produced by a sweeping jet interacts with the separated flow and the mechanisms by which the flow separation is controlled. For this experiment, the flow separation was generated by deflecting the wing's 30% chord trailing edge flap to produce an adverse pressure gradient. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the three actuator configurations. The actuator with the largest jet deflection angle, at the pressure ratios investigated, was the most efficient at controlling flow separation on the flap of the model. Oil flow visualization studies revealed that the flow field controlled by the sweeping jets was more three-dimensional than expected. The results presented also show that the actuator spacing was appropriate for the pressure ratios examined.

  15. Jet propulsion for airplanes

    NASA Technical Reports Server (NTRS)

    Buckingham, Edgar

    1924-01-01

    This report is a description of a method of propelling airplanes by the reaction of jet propulsion. Air is compressed and mixed with fuel in a combustion chamber, where the mixture burns at constant pressure. The combustion products issue through a nozzle, and the reaction of that of the motor-driven air screw. The computations are outlined and the results given by tables and curves. The relative fuel consumption and weight of machinery for the jet, decrease as the flying speed increases; but at 250 miles per hour the jet would still take about four times as much fuel per thrust horsepower-hour as the air screw, and the power plant would be heavier and much more complicated. Propulsion by the reaction of a simple jet can not compete with air screw propulsion at such flying speeds as are now in prospect.

  16. Renewable jet fuel.

    PubMed

    Kallio, Pauli; Pásztor, András; Akhtar, M Kalim; Jones, Patrik R

    2014-04-01

    Novel strategies for sustainable replacement of finite fossil fuels are intensely pursued in fundamental research, applied science and industry. In the case of jet fuels used in gas-turbine engine aircrafts, the production and use of synthetic bio-derived kerosenes are advancing rapidly. Microbial biotechnology could potentially also be used to complement the renewable production of jet fuel, as demonstrated by the production of bioethanol and biodiesel for piston engine vehicles. Engineered microbial biosynthesis of medium chain length alkanes, which constitute the major fraction of petroleum-based jet fuels, was recently demonstrated. Although efficiencies currently are far from that needed for commercial application, this discovery has spurred research towards future production platforms using both fermentative and direct photobiological routes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Combustion-transition interaction in a jet flame

    NASA Astrophysics Data System (ADS)

    Yule, A. J.; Chigier, N. A.; Ralph, S.; Boulderstone, R.; Ventura, J.

    1980-01-01

    The transition between laminar and turbulent flow in a round jet flame is studied experimentally. Comparison is made between transition in non-burning and burning jets and between jet flames with systematic variation in initial Reynolds number and equivalence ratio. Measurements are made using laser anemometry, miniature thermocouples, ionization probes, laser-schlieren and high speed cine films. Compared with the cold jet, the jet flame has a longer potential core, undergoes a slower transition to turbulence, has lower values of fluctuating velocity near the burner but higher values further downstream, contains higher velocity gradients in the mixing layer region although the total jet width does not alter greatly in the first twenty diameters. As in the cold jet, transitional flow in the flame contains waves and vortices and these convolute and stretch the initially laminar interface burning region. Unlike the cold jet, which has Kelvin-Helmholtz instabilities, the jet flame can contain at least two initial instabilities; an inner high frequency combustion driven instability and an outer low frequency instability which may be influenced by buoyancy forces.

  18. Probing jets from young embedded sources

    NASA Astrophysics Data System (ADS)

    Nisini, Brunella

    2017-08-01

    Jets are intimately related to the process of star formation and disc accretion. Our present knowledge of this key ingredient in protostars mostly relies on observations of optical jets from T Tauri stars, where the original circumstellar envelope has been already cleared out. However, to understand how jets are originally formed and how their properties evolve with time, detailed observations of young accreting protostars, i.e. the class 0/I sources, are mandatory. The study of class0/I jets will be revolutionised by JWST, able to penetrate protostars dusty envelopes with unprecedented sensitivity and resolution. However, complementary information on parameters inferred from lines in different excitation regimes, for at least a representative sample of a few bright sources, is essential for a correct interpretation of the JWST results. Here we propose to observe four prototype bright jets from class0/I sources with the WFC3 in narrow band filters in order to acquire high angular resolution images in the [OI]6300A, [FeII]1.25 and [FeII]1.64um lines. These images will be used to: 1) provide accurate extinction maps of the jets that will be an important archival reference for any future observation on these jets. 2) measure key parameters as the mass flux, the iron abundance and the jet collimation on the hot gas component of the jets. These information will provide an invaluable reference frame for a comparison with similar parameters measured by JWST in a different gas regime. In addition, these observations will allow us to confront the properties of class 0/I jets with those of the more evolved T Tauri stars.

  19. Mechanisms of Plasma Acceleration in Coronal Jets

    NASA Astrophysics Data System (ADS)

    Soto, N.; Reeves, K.; Savcheva, A. S.

    2016-12-01

    Jets are small explosions that occur frequently in the Sun possibly driven by the local reconfiguration of the magnetic field, or reconnection. There are two types of coronal jets: standard jets and blowout jets. The purpose of this project is to determine which mechanisms accelerate plasma in two different jets, one that occurred in January 17, 2015 at the disk of the sun and another in October 24, 2015 at the limb. Two possible acceleration mechanisms are chromospheric evaporation and magnetic acceleration. Using SDO/AIA, Hinode/XRT and IRIS data, we create height-time plots, and calculate the velocities of each wavelength for both jets. We calculate the potential magnetic field of the jet and the general region around it to gain a more detailed understanding of its structure, and determine if the jet is likely to be either a standard or blowout jet. Finally, we calculate the magnetic field strength for different heights along the jet spire, and use differential emission measures to calculate the plasma density. Once we have these two values, we calculate the Alfven speed. When analyzing our results we are looking for certain patterns in our velocities. If the plasma in a jet is accelerated by chromospheric evaporation, we expect the velocities to increase as function of temperature, which is what we observed in the October 24th jet. The magnetic models for this jet also show the Eiffel Tower shaped structure characteristic of standard jets, which tend to have plasma accelerated by this mechanism. On the other hand, if the acceleration mechanism were magnetic acceleration, we would expect the velocities to be similar regardless of temperature. For the January 17th jet, we saw that along the spire, the velocities where approximately 200 km/s in all wavelengths, but the velocities of hot plasma detected at the base were closer to the Alfven speed, which was estimated to be about 2,000 km/s. These observations suggest that the plasma in the January 17th jet is

  20. Comparison of animated jet stream visualizations

    NASA Astrophysics Data System (ADS)

    Nocke, Thomas; Hoffmann, Peter

    2016-04-01

    The visualization of 3D atmospheric phenomena in space and time is still a challenging problem. In particular, multiple solutions of animated jet stream visualizations have been produced in recent years, which were designed to visually analyze and communicate the jet and related impacts on weather circulation patterns and extreme weather events. This PICO integrates popular and new jet animation solutions and inter-compares them. The applied techniques (e.g. stream lines or line integral convolution) and parametrizations (color mapping, line lengths) are discussed with respect to visualization quality criteria and their suitability for certain visualization tasks (e.g. jet patterns and jet anomaly analysis, communicating its relevance for climate change).

  1. Numerical studies of solar chromospheric jets

    NASA Astrophysics Data System (ADS)

    Iijima, Haruhisa

    2016-03-01

    The solar chromospheric jet is one of the most characteristic structures near the solar surface. The quantitative understanding of chromospheric jets is of substantial importance for not only the partially ionized phenomena in the chromosphere but also the energy input and dissipation processes in the corona. In this dissertation, the formation and dynamics of chromospheric jets are investigated using the radiation magnetohydrodynamic simulations. We newly develop a numerical code for the radiation magnetohydrodynamic simulations of the comprehensive modeling of solar atmosphere. Because the solar chromosphere is highly nonlinear, magnetic pressure dominated, and turbulent, a robust and high-resolution numerical scheme is required. In Chapter 2, we propose a new algorithm for the simulation of magnetohydrodynamics. Through the test problems and accuracy analyses, the proposed scheme is proved to satisfy the requirements. In Chapter 3, the effect of the non-local radiation energy transport, Spitzer-type thermal conduction, latent heat of partial ionization and molecule formation, and gravity are implemented to the magnetohydrodynamic code. The numerical schemes for the radiation transport and thermal conduction is carefully chosen in a view of the efficiency and compatibility with the parallel computation. Based on the developed radiation magnetohydrodynamic code, the formation and dynamics of chromospheric jets are investigated. In Chapter 4, we investigate the dependence of chromospheric jets on the coronal temperature in the two-dimensional simulations. Various scale of chromospheric jets with the parabolic trajectory are found with the maximum height of 2-8 Mm, lifetime of 2-7 min, maximum upward velocity of 10- 50 km/s, and deceleration of 100-350 m/s2. We find that chromospheric jets are more elongated under the cool corona and shorter under the hot corona. We also find that the pressure gradient force caused by the periodic shock waves accelerates some of the

  2. A Laboratory Astrophysical Jet to Study Canonical Flux Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Setthivoine

    Understanding the interaction between plasma flows and magnetic fields remains a fundamental problem in plasma physics, with important applications to astrophysics, fusion energy, and advanced space propulsion. For example, flows are of primary importance in astrophysical jets even if it is not fully understood how jets become so long without becoming unstable. Theories for the origin of magnetic fields in the cosmos rely on flowing charged fluids that should generate magnetic fields, yet this remains to be demonstrated experimentally. Fusion energy reactors can be made smaller with flows that improve stability and confinement. Advanced space propulsion could be more efficientmore » with collimated and stable plasma flows through magnetic nozzles but must eventually detach from the nozzle. In all these cases, there appears to be a spontaneous emergence of flowing and/or magnetic structures, suggesting a form of self-organization in plasmas. Beyond satisfying simple intellectual curiosity, understanding plasma self-organization could enable the development of methods to control plasma structures for fusion energy, space propulsion, and other applications. The research project has therefore built a theory and an experiment to investigate the interaction between magnetic fields and plasma flows. The theory is called canonical field theory for short, and the experiment is called Mochi after a rice cake filled with surprising, yet delicious fillings.« less

  3. Extending acoustic data measured with small-scale supersonic model jets to practical aircraft exhaust jets

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Wen

    2010-06-01

    Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions within the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center, in partnership with GE Aviation, is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to develop a scaling methodology for using data obtained from small- and moderate-scale experiments which exhibits the independence of the jet sizes to the measured noise levels. The experimental results presented in this thesis have shown reasonable agreement between small-scale and moderate-scale jet acoustic data, as well as between heated jets and heat-simulated ones. As the scaling methodology is validated, it will be extended to using acoustic data measured with small-scale supersonic model jets to the prediction of the most important components of full-scale engine noise. When comparing the measured acoustic spectra with a microphone array set at different radial locations, the characteristics of the jet noise source distribution may induce subtle inaccuracies, depending on the conditions of jet operation. A close look is taken at the details of the noise generation region in order to better understand the mismatch between spectra measured at various acoustic field radial locations. A processing methodology was developed to correct the effect of the noise source distribution and efficiently compare near-field and far-field spectra with unprecedented accuracy. This technique then demonstrates that the measured noise levels in the physically restricted space of an anechoic chamber can be appropriately

  4. All-Water-Jet Coal Excavator

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.

    1985-01-01

    Version of jaw miner operates without mechanical cutting and crushing. Forward-pointing jets of water dislodge and break up coal. Rearward-pointing jets further break up coal and force particles into slurry chamber. Oscillatingjet mechanism itself stays within "jaw" structure and protected from wear and tear associated with coal handling. All-jet machine generates even less dust than anger, therefore poses lesser explosion or health hazard.

  5. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    NASA Astrophysics Data System (ADS)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    Plasma plumes, or plasma jets, belong to a large family of gas discharges whereby the discharge plasma is extended beyond the plasma generation region into the surrounding ambience, either by a field (e.g. electromagnetic, convective gas flow, or shock wave) or a gradient of a directionless physical quantity (e.g. particle density, pressure, or temperature). This physical extension of a plasma plume gives rise to a strong interaction with its surrounding environment, and the interaction alters the properties of both the plasma and the environment, often in a nonlinear and dynamic fashion. The plasma is therefore not confined by defined physical walls, thus extending opportunities for material treatment applications as well as bringing in new challenges in science and technology associated with complex open-boundary problems. Some of the most common examples may be found in dense plasmas with very high dissipation of externally supplied energy (e.g. in electrical, optical or thermal forms) and often in or close to thermal equilibrium. For these dense plasmas, their characteristics are determined predominantly by strong physical forces of different fields, such as electrical, magnetic, thermal, shock wave, and their nonlinear interactions [1]. Common to these dense plasma plumes are significant macroscopic plasma movement and considerable decomposition of solid materials (e.g. vaporization). Their applications are numerous and include detection of elemental traces, synthesis of high-temperature materials and welding, laser--plasma interactions, and relativistic jets in particle accelerators and in space [2]-[4]. Scientific challenges in the understanding of plasma jets are exciting and multidisciplinary, involving interweaving transitions of all four states of matter, and their technological applications are wide-ranging and growing rapidly. Using the Web of Science database, a search for journal papers on non-fusion plasma jets reveals that a long initial phase up

  6. RF atmospheric plasma jet surface treatment of paper

    NASA Astrophysics Data System (ADS)

    Pawlat, Joanna; Terebun, Piotr; Kwiatkowski, Michał; Diatczyk, Jaroslaw

    2016-09-01

    A radio frequency RF atmospheric pressure plasma jet was used to enhance the wettability of cellulose-based paper of 90 g m-2 and 160 g m-2 grammage as a perspective platform for antibiotic sensitivity tests. Helium and argon were the carrier gases for oxygen and nitrogen; pure water and rapeseed oil were used for goniometric tests. The influence of the flow rate and gas type, the power of the discharge, and distance from the nozzle was examined. The surface structure was observed using an optical microscope. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra were investigated in order to determine whether cellulose degradation processes occurred. The RF plasma jet allowed us to decrease the surface contact angle without drastic changes in other features of the tested material. Experiments confirmed the significant influence of the distance between the treated sample and reactor nozzle, especially for treatment times longer than 15 s due to the greater concentration of reactive species at the surface of the sample, which decreases with distance—and their accumulation effect with time. The increase of discharge power plays an important role in decreasing the surface contact angle for times longer than 10 s. Higher power had a positive effect on the amount of generated active particles and facilitated the ignition of discharge. However, a too high value can cause a rise in temperature of the material and heat-caused damage.

  7. Novel laboratory simulations of astrophysical jets

    NASA Astrophysics Data System (ADS)

    Brady, Parrish Clawson

    This thesis was motivated by the promise that some physical aspects of astrophysical jets and collimation processes can be scaled to laboratory parameters through hydrodynamic scaling laws. The simulation of astrophysical jet phenomena with laser-produced plasmas was attractive because the laser- target interaction can inject energetic, repeatable plasma into an external environment. Novel laboratory simulations of astrophysical jets involved constructing and using the YOGA laser, giving a 1064 nm, 8 ns pulse laser with energies up to 3.7 + 0.2 J . Laser-produced plasmas were characterized using Schlieren, interferometry and ICCD photography for their use in simulating jet and magnetosphere physics. The evolution of the laser-produced plasma in various conditions was compared with self-similar solutions and HYADES computer simulations. Millimeter-scale magnetized collimated outflows were produced by a centimeter scale cylindrically symmetric electrode configuration triggered by a laser-produced plasma. A cavity with a flared nozzle surrounded the center electrode and the electrode ablation created supersonic uncollimated flows. This flow became collimated when the center electrode changed from an anodeto a cathode. The plasma jets were in axially directed permanent magnetic fields with strengths up to 5000 Gauss. The collimated magnetized jets were 0.1-0. 3 cm wide, up to 2.0 cm long, and had velocities of ~4.0 × 10 6 cm/s. The dynamics of the evolution of the jet were compared qualitatively and quantitatively with fluxtube simulations from Bellan's formulation [6] giving a calculated estimate of ~2.6 × 10 6 cm/s for jet evolution velocity and evidence for jet rotation. The density measured with interferometry was 1.9 ± 0.2 × 10 17 cm -3 compared with 2.1 × 10 16 cm -3 calculated with Bellan's pressure balance formulation. Kinks in the jet column were produced consistent with the Kruskal-Shafranov condition which allowed stable and symmetric jets to form with

  8. Gamma-Ray Burst Jet Breaks Revisited

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-Gao; Zhang, Bing; Liang, En-Wei; Lu, Rui-Jing; Lin, Da-Bin; Li, Jing; Li, Long

    2018-06-01

    Gamma-ray Burst (GRB) collimation has been inferred with the observations of achromatic steepening in GRB light curves, known as jet breaks. Identifying a jet break from a GRB afterglow light curve allows a measurement of the jet opening angle and true energetics of GRBs. In this paper, we re-investigate this problem using a large sample of GRBs that have an optical jet break that is consistent with being achromatic in the X-ray band. Our sample includes 99 GRBs from 1997 February to 2015 March that have optical and, for Swift GRBs, X-ray light curves that are consistent with the jet break interpretation. Out of the 99 GRBs we have studied, 55 GRBs are found to have temporal and spectral behaviors both before and after the break, consistent with the theoretical predictions of the jet break models, respectively. These include 53 long/soft (Type II) and 2 short/hard (Type I) GRBs. Only 1 GRB is classified as the candidate of a jet break with energy injection. Another 41 and 3 GRBs are classified as the candidates with the lower and upper limits of the jet break time, respectively. Most jet breaks occur at 90 ks, with a typical opening angle θj = (2.5 ± 1.0)°. This gives a typical beaming correction factor {f}b-1∼ 1000 for Type II GRBs, suggesting an even higher total GRB event rate density in the universe. Both isotropic and jet-corrected energies have a wide span in their distributions: log(Eγ,iso/erg) = 53.11 with σ = 0.84 log(EK,iso/erg) = 54.82 with σ = 0.56 log(Eγ/erg) = 49.54 with σ = 1.29 and log(EK/erg) = 51.33 with σ = 0.58. We also investigate several empirical correlations (Amati, Frail, Ghirlanda, and Liang–Zhang) previously discussed in the literature. We find that in general most of these relations are less tight than before. The existence of early jet breaks and hence small opening angle jets, which were detected in the Swfit era, is most likely the source of scatter. If one limits the sample to jet breaks later than 104 s, the Liang

  9. [Kelvin-Helmholtz instability in protostellar jets

    NASA Technical Reports Server (NTRS)

    Stone, James; Hardee, Philip

    1996-01-01

    NASA grant NAG 5 2866, funded by the Astrophysics Theory Program, enabled the study the Kelvin-Helmholtz instability in protostellar jets. In collaboration with co-investigator Philip Hardee, the PI derived the analytic dispersion relation for the instability in including a cooling term in the energy equation which was modeled as one of two different power laws. Numerical solutions to this dispersion relation over a wide range of perturbation frequencies, and for a variety of parameter values characterizing the jet (such as Mach number, and density ratio) were found It was found that the growth rates and wavelengths associated with unstable roots of the dispersion relation in cooling jets are significantly different than those associated with adiabatic jets, which have been studied previously. In collaboration with graduate student Jianjun Xu (funded as a research associate under this grant), hydrodynamical simulations were used to follow the growth of the instability into the nonlinear regime. It was found that asymmetric surface waves lead to large amplitude, sinusoidal distortions of the jet, and ultimately to disruption Asymmetric body waves, on the other hand, result in the formation of shocks in the jet beam in the nonlinear regime. In cooling jets, these shocks lead to the formation of dense knots and filaments of gas within the jet. For sufficiently high perturbation frequencies, however, the jet cannot respond and it remains symmetric. Applying these results to observed systems, such as the Herbig-Haro jets HH34, HH111 and HH47 which have been observed with the Hubble Space Telescope, we predicted that some of the asymmetric structures observed in these systems could be attributed to the K-H modes, but that perturbations on timescales associated with the inner disk (about 1 year) would be too rapid to cause disruption. Moreover, it was discovered that weak shock 'spurs' in the ambient gas produced by ripples in the jet surface due to nonlinear, modes of

  10. The Properties of Extragalactic Radio Jets

    NASA Astrophysics Data System (ADS)

    Finke, Justin

    2018-01-01

    I show that by assuming a standard Blandford-Konigl jet, it is possible to determine the speed (bulk Lorentz factor) and orientation (angle to the line of sight) of self-similar parsec-scale blazar jets by using four measured quantities: the core radio flux, the extended radio flux, the magnitude of the core shift between two frequencies, and the apparent jet opening angle. Once the bulk Lorentz factor and angle to the line of sight of a jet are known, it is possible to compute their Doppler factor, magnetic field, and intrinsic jet opening angle. I use data taken from the literature and marginalize over nuisance parameters associated with the electron distribution and equipartition, to compute these quantities, albeit with large errors. The results have implications for the resolution of the TeV BL Lac Doppler factor crisis and the production of jets from magnetically arrested disks.

  11. Pinching solutions of slender cylindrical jets

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.; Orellana, Oscar

    1993-01-01

    Simplified equations for slender jets are derived for a circular jet of one fluid flowing into an ambient second fluid, the flow being confined in a circular tank. Inviscid flows are studied which include both surface tension effects and Kelvin-Helmholtz instability. For slender jets a coupled nonlinear system of equations is found for the jet shape and the axial velocity jump across it. The equations can break down after a finite time and similarity solutions are constructed, and studied analytically and numerically. The break-ups found pertain to the jet pinching after a finite time, without violation of the slender jet ansatz. The system is conservative and admissible singular solutions are those which conserve the total energy, mass, and momentum. Such solutions are constructed analytically and numerically, and in the case of vortex sheets with no surface tension certain solutions are given in closed form.

  12. Whither ink jet? Current patent trends

    NASA Astrophysics Data System (ADS)

    Pond, Stephen F.; Karz, Robert S.

    1995-04-01

    The status and potential of ink jet technology is discernible in its major technical literature forum: worldwide patents. Most ink jet technical activity is focused in commercial research and development laboratories where proprietary considerations make patents the norm for publication. Currently there are about 2,000 ink jet disclosures issued annually with over 200 enterprises represented. Ink jet patent activity is increasing about 25% per year driven by a rapidly expanding base of products, applications, and revenue. An analysis of the ink jet patent literature reveals a few major themes (i.e. continuous ink jet, piezoelectric drop-on-demand, and thermal ink jet) and numerous minor ones (i.e. electrohydro-dynamic extraction, magnetic drop-on-demand, Hertz continuous, acoustic ink printing). Patents bear witness to transformations in the industry as dominant players of the 1970's have given way to new leaders in the 1990's. They also foretell important commercial developments in ink jet's near term future. When studied in aggregate, the patent record reveals patterns for the industry in general as well as for individual companies. It becomes possible to use the patent data base not only to identify technical approaches and problems for specific firms, but also to track progress and monitor changing strategies. In addition, international filing patterns can provide insights into industry priorities. This paper presents an overview of ink jet technology as revealed by the patent literature. It will include a 25 year perspective, a review of trends over the past five years, and a survey of today's most active companies and their technical approaches. With this analysis, it will be shown that the information inherent in the patent record is more than the sum of its individual disclosures. Indeed, by using it, we can outlook whither goes ink jet.

  13. Aeroacoustics of Turbulent High-Speed Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1996-01-01

    Aeroacoustic noise generation in a supersonic round jet is studied to understand in particular the effect of turbulence structure on the noise without numerically compromising the turbulence itself. This means that direct numerical simulations (DNS's) are needed. In order to use DNS at high enough Reynolds numbers to get sufficient turbulence structure we have decided to solve the temporal jet problem, using periodicity in the direction of the jet axis. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. Therefore in order to answer some questions about the turbulence we will partially compromise the overall structure of the jet. The first section of chapter 1 describes some work on the linear stability of a supersonic round jet and the implications of this for the jet noise problem. In the second section we present preliminary work done using a TVD numerical scheme on a CM5. This work is only two-dimensional (plane) but shows very interesting results, including weak shock waves. However this is a nonviscous computation and the method resolves the shocks by adding extra numerical dissipation where the gradients are large. One wonders whether the extra dissipation would influence small turbulent structures like small intense vortices. The second chapter is an extensive discussion of preliminary numerical work using the spectral method to solve the compressible Navier-Stokes equations to study turbulent jet flows. The method uses Fourier expansions in the azimuthal and streamwise direction and a 1-D B-spline basis representation in the radial direction. The B-spline basis is locally supported and this ensures block diagonal matrix equations which are solved in O(N) steps. A very accurate highly resolved DNS of a turbulent jet flow is expected.

  14. An evaluation of the relative fire hazards of jet A and jet B for commercial flight

    NASA Technical Reports Server (NTRS)

    Hibbard, R. R.; Hacker, P. T.

    1973-01-01

    The relative fire hazards of Jet A and Jet B aircraft fuels are evaluated. The evaluation is based on a consideration of the presence of and/or the generation of flammable mixtures in fuel systems, the ignition characteristics, and the flame propagation rates for the two fuel types. Three distinct aircraft operating regimes where fuel type may be a factor in fire hazards are considered. These are: (1) ground handling and refueling, (2) flight, and (3) crash. The evaluation indicates that the overall fire hazards for Jet A are less than for Jet B fuel.

  15. Magnetically driven jets and winds

    NASA Technical Reports Server (NTRS)

    Lovelace, R. V. E.; Berk, H. L.; Contopoulos, J.

    1991-01-01

    Four equations for the origin and propagation of nonrelativistic jets and winds are derived from the basic conservation laws of ideal MHD. The axial current density is negative in the vicinity of the axis and positive at larger radii; there is no net current because this is energetically favored. The magnetic field is essential for the jet solutions in that the zz-component of the magnetic stress acts, in opposition to gravity, to drive matter through the slow magnetosonic critical point. For a representative self-consistent disk/jet solution relevant to a protostellar system, the reaction of the accreted mass expelled in the jets is 0.1, the ratio of the power carried by the jets to the disk luminosity is 0.66, and the ratio of the boundary layer to disk luminosities is less than about 0.13. The star's rotation rate decreases with time even for rotation rates much less than the breakup rate.

  16. Radiatively driven relativistic jets in Schwarzschild space-time

    NASA Astrophysics Data System (ADS)

    Vyas, Mukesh K.; Chattopadhyay, Indranil

    2018-06-01

    Context. Aims: We carry out a general relativistic study of radiatively driven conical fluid jets around non-rotating black holes and investigate the effects and significance of radiative acceleration, as well as radiation drag. Methods: We apply relativistic equations of motion in curved space-time around a Schwarzschild black hole for axis-symmetric one-dimensional jet in steady state, plying through the radiation field of the accretion disc. Radiative moments are computed using information of curved space-time. Slopes of physical variables at the sonic points are found using L'Hôpital's rule and employing Runge-Kutta's fourth order method to solve equations of motion. The analysis is carried out using the relativistic equation of state of the jet fluid. Results: The terminal speed of the jet depends on how much thermal energy is converted into jet momentum and how much radiation momentum is deposited onto the jet. Many classes of jet solutions with single sonic points, multiple sonic points, as well as those having radiation driven internal shocks are obtained. Variation of all flow variables along the jet-axis has been studied. Highly energetic electron-proton jets can be accelerated by intense radiation to terminal Lorentz factors γT 3. Moderate terminal speed vT 0.5 is obtained for moderately luminous discs. Lepton dominated jets may achieve γT 10. Conclusions: Thermal driving of the jet itself and radiation driving by accretion disc photons produce a wide-ranging jet solutions starting from moderately strong jets to the relativistic ones. Interplay of intensity, the nature of the radiation field, and the energetics of the jet result in a variety of jet solutions. We show that radiation field is able to induce steady shocks in jets, one of the criteria to explain high-energy power-law emission observed in spectra of some of the astrophysical objects.

  17. Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways

    DOE PAGES

    Han, Jeongwoo; Tao, Ling; Wang, Michael

    2017-01-24

    To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. Here, this study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2more » options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2, and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing

  18. Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways.

    PubMed

    Han, Jeongwoo; Tao, Ling; Wang, Michael

    2017-01-01

    To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. This study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2 options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2 , and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2 e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol

  19. Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jeongwoo; Tao, Ling; Wang, Michael

    To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. Here, this study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2more » options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2, and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing

  20. MHD supernova jets: the missing link

    NASA Technical Reports Server (NTRS)

    Meier, David L.; Nakamura, Masanori

    2003-01-01

    We review recent progress in the theory of jet production, with particular emphasis on the possibility of 1) powerful jets being produced in the first few seconds after collapse of a supernova core and 2)those jets being responsible for the aysmmetric explosion itself.

  1. AGN feedback compared: jets versus radiation

    NASA Astrophysics Data System (ADS)

    Cielo, Salvatore; Bieri, Rebekka; Volonteri, Marta; Wagner, Alexander Y.; Dubois, Yohan

    2018-06-01

    Feedback by active galactic nuclei (AGNs) is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM (interstellar medium) interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGNs of 1043 and 1046 erg s-1, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarefies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20 {per cent} in 20 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.01-0.1 M⊙ yr-1, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGNs modulate their own duty cycle in a feedback/feeding cycle.

  2. Tone-excited jet: Theory and experiments

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Lepicovsky, J.; Tam, C. K. W.; Morris, P. J.; Burrin, R. H.

    1982-01-01

    A detailed study to understand the phenomenon of broadband jet-noise amplification produced by upstream discrete-tone sound excitation has been carried out. This has been achieved by simultaneous acquisition of the acoustic, mean velocity, turbulence intensities, and instability-wave pressure data. A 5.08 cm diameter jet has been tested for this purpose under static and also flight-simulation conditions. An open-jet wind tunnel has been used to simulate the flight effects. Limited data on heated jets have also been obtained. To improve the physical understanding of the flow modifications brought about by the upstream discrete-tone excitation, ensemble-averaged schlieren photographs of the jets have also been taken. Parallel to the experimental study, a mathematical model of the processes that lead to broadband-noise amplification by upstream tones has been developed. Excitation of large-scale turbulence by upstream tones is first calculated. A model to predict the changes in small-scale turbulence is then developed. By numerically integrating the resultant set of equations, the enhanced small-scale turbulence distribution in a jet under various excitation conditions is obtained. The resulting changes in small-scale turbulence have been attributed to broadband amplification of jet noise. Excellent agreement has been found between the theory and the experiments. It has also shown that the relative velocity effects are the same for the excited and the unexcited jets.

  3. Small Hot Jet Acoustic Rig Validation

    NASA Technical Reports Server (NTRS)

    Brown, Cliff; Bridges, James

    2006-01-01

    The Small Hot Jet Acoustic Rig (SHJAR), located in the Aeroacoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center in Cleveland, Ohio, was commissioned in 2001 to test jet noise reduction concepts at low technology readiness levels (TRL 1-3) and develop advanced measurement techniques. The first series of tests on the SHJAR were designed to prove its capabilities and establish the quality of the jet noise data produced. Towards this goal, a methodology was employed dividing all noise sources into three categories: background noise, jet noise, and rig noise. Background noise was directly measured. Jet noise and rig noise were separated by using the distance and velocity scaling properties of jet noise. Effectively, any noise source that did not follow these rules of jet noise was labeled as rig noise. This method led to the identification of a high frequency noise source related to the Reynolds number. Experiments using boundary layer treatment and hot wire probes documented this noise source and its removal, allowing clean testing of low Reynolds number jets. Other tests performed characterized the amplitude and frequency of the valve noise, confirmed the location of the acoustic far field, and documented the background noise levels under several conditions. Finally, a full set of baseline data was acquired. This paper contains the methodology and test results used to verify the quality of the SHJAR rig.

  4. Plasma-Jet-Driven Magneto-Inertial Fusion (PJMIF): Physics and Design for a Plasma Liner Formation Experiment

    NASA Astrophysics Data System (ADS)

    Hsu, Scott; Cassibry, Jason; Witherspoon, F. Douglas

    2014-10-01

    Spherically imploding plasma liners are a potential standoff compression driver for magneto-inertial fusion, which is a hybrid of and operates in an intermediate density between those of magnetic and inertial fusion. We propose to use an array of merging supersonic plasma jets to form a spherically imploding plasma liner. The jets are to be formed by pulsed coaxial guns with contoured electrodes that are placed sufficiently far from the location of target compression such that no hardware is repetitively destroyed. As such, the repetition rate can be higher (e.g., 1 Hz) and ultimately the power-plant economics can be more attractive than most other MIF approaches. During the R&D phase, a high experimental shot rate at reasonably low cost (e.g., < 1 k/shot) may be achieved with excellent diagnostic access, thus enabling a rapid learning rate. After some background on PJMIF and its prospects for reactor-relevant energy gain, this poster describes the physics objectives and design of a proposed 60-gun plasma-liner-formation experiment, which will provide experimental data on: (i) scaling of peak liner ram pressure versus initial jet parameters, (ii) liner non-uniformity characterization and control, and (iii) control of liner profiles for eventual gain optimization.

  5. Turbulent mixing noise from supersonic jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Chen, Ping

    1994-01-01

    There is now a substantial body of theoretical and experimental evidence that the dominant part of the turbulent noise of supersonic jets is generated directly by the large turbulence structures/instability waves of the jet flow. Earlier, Tam and Burton provided a description of the physical mechanism by which supersonically traveling instability waves can generate sound efficiently. They used the method of matched asymptotic expansions to construct an instability wave solution which is valid in the far field. The present work is an extension of the theory of Tam and Burton. It is argued that the instability wave spectrum of the jet may be regarded as generated by stochastic white noise excitation at the nozzle lip region. The reason why the excitation has white noise characteristics is that near the nozzle lip region the flow in the jet mixing layer has no intrinsic length and time scales. The present stochastic wave model theory of supersonic jet noise contains a single unknown multiplicative constant. Comparisons between the calculated noise directivities at selected Strouhal numbers and experimental measurements of a Mach 2 jet at different jet temperatures have been carried out. Favorable agreements are found.

  6. Subsonic Round and Rectangular Twin Jet Flow Effects

    NASA Technical Reports Server (NTRS)

    Bozak, Rick; Wernet, Mark

    2014-01-01

    Subsonic and supersonic aircraft concepts proposed by NASAs Fundamental Aeronautics Program have integrated propulsion systems with asymmetric nozzles. The asymmetry in the exhaust of these propulsion systems creates asymmetric flow and acoustic fields. The flow asymmetries investigated in the current study are from two parallel round, 2:1, and 8:1 aspect ratio rectangular jets at the same nozzle conditions. The flow field was measured with streamwise and cross-stream particle image velocimetry (PIV). A large dataset of single and twin jet flow field measurements was acquired at subsonic jet conditions. The effects of twin jet spacing and forward flight were investigated. For round, 2:1, and 8:1 rectangular twin jets at their closest spacings, turbulence levels between the two jets decreased due to enhanced jet mixing at near static conditions. When the flight Mach number was increased to 0.25, the flow around the twin jet model created a velocity deficit between the two nozzles. This velocity deficit diminished the effect of forward flight causing an increase in turbulent kinetic energy relative to a single jet. Both of these twin jet flow field effects decreased with increasing twin jet spacing relative to a single jet. These variations in turbulent kinetic energy correlate with changes in far-field sound pressure level.

  7. The Impact of Subsonic Twin Jets on Airport Noise

    NASA Technical Reports Server (NTRS)

    Bozak, Richard, F.

    2012-01-01

    Subsonic and supersonic aircraft concepts proposed through NASA s Fundamental Aeronautics Program have multiple engines mounted near one another. Engine configurations with multiple jets introduce an asymmetry to the azimuthal directivity of the jet noise. Current system noise predictions add the jet noise from each jet incoherently, therefore, twin jets are estimated by adding 3 EPNdB to the far-field noise radiated from a single jet. Twin jet effects have the ability to increase or decrease the radiated noise to different azimuthal observation locations. Experiments have shown that twin jet effects are reduced with forward flight and increasing spacings. The current experiment investigates the impact of spacing, and flight effects on airport noise for twin jets. Estimating the jet noise radiated from twin jets as that of a single jet plus 3 EPNdB may be sufficient for horizontal twin jets with an s/d of 4.4 and 5.5, where s is the center-to-center spacing and d is the jet diameter. However, up to a 3 EPNdB error could be present for jet spacings with an s/d of 2.6 and 3.2.

  8. Exploring Jets from a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-06-01

    What are the feeding and burping habits of the supermassive black holes peppering the universe? In a new study, observations of one such monster reveal more about the behavior of its powerful jets.Beams from BehemothsAcross the universe, supermassive black holes of millions to billions of solar masses lie at the centers of galaxies, gobbling up surrounding material. But not all of the gas and dust that spirals in toward a black hole is ultimately swallowed! A large fraction of it can instead be flung out into space again, in the form of enormous, powerful jets that extend for thousands or even millions of light-years in opposite directions.M87, shown in this Hubble image, is a classic example of a nearby (55 million light-years distant) supermassive black hole with a visible, collimated jet. Its counter-jet isnt seen because relativistic effects make the receding jet appear less bright. [The Hubble Heritage Team (STScI/AURA) and NASA/ESA]What causes these outflows to be tightly beamed collimated in the form of jets, rather than sprayed out in all directions? Does the pressure of the ambient medium the surrounding gas and dust that the jet is injected into play an important role? In what regions do these jets accelerate and decelerate? There are many open questions that scientists hope to understand by studying some of the active black holes with jets that live closest to us.Eyes on a Nearby GiantIn a new study led by Satomi Nakahara (The Graduate University for Advanced Studies in Japan), a team of scientists has used multifrequency Very Long Baseline Array (VLBA) and Very Long Array (VLA) images to explore jets emitted from a galaxy just 100 million light-years away: NGC 4261.This galaxys (relatively) close distance as well as the fact that were viewing it largely from the side, so we can clearly see both of its polar jets allows us to observe in detail the structure and intensity of its jets as a function of their distance from the black hole. Nakahara and

  9. Magnetic Fields in Blazar Jets: Jet-Alignment of Radio and Optical Polarization over 20-30 Years

    NASA Astrophysics Data System (ADS)

    Wills, Beverley J.; Aller, M. F.; Caldwell, C.; Aller, H. D.

    2012-01-01

    Blazars are highly active nuclei of distant galaxies. They produce synchrotron-emitting relativistic jets on scales of less than a parsec to many Kpc. When viewed head-on, as opposed to in the plane of the sky, the jet motion appears superluminal, and the emission is Doppler boosted. Blazars show rapid radio and optical variability in flux density and polarization. There are two types of blazars that can have strong synchrotron continua: some quasars with strong broad emission lines, and BL Lac objects with weak or undetected broad lines. We have compiled optical linear polarization measurements of more than 100 blazars, including archival data from McDonald Observatory. While the optical data are somewhat sparsely sampled, The University of Michigan Radio Astronomical Observatory observed many blazars over 20-30 years, often well-sampled over days to weeks, enabling quasi-simultaneous comparison of optical and radio polarization position angles (EVPAs). We also collected data on jet direction -- position angles of the jet component nearest the radio core. The project is unique in examining the polarization and jet behavior over many years. BL Lac objects tend to have stable optically thin EVPA in the jet direction, meaning magnetic field is perpendicular to jet flow, often interpreted as the magnetic field compressed by shocks. In quasar-blazars optical and radio EVPA often changes between parallel or perpendicular to the jet direction, even in the same object. The underlying B field of the jet is is parallel to the flow, with approximately 90 degree changes resulting from shocks. For both BL Lac objects & quasars, the scatter in EVPA usually increases from low frequencies (4.8 GHz) through 14.5 GHz through optical. The wide optical-radio frequency range allows us to investigate optical depth effects and the spatial origin of radio and optical emission.

  10. Study of J/ψ Production in Jets.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez, G; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Komarov, I; Koppenburg, P; Kosmyntseva, A; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, T; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Gonzalo, D; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevens, H; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zucchelli, S

    2017-05-12

    The production of J/ψ mesons in jets is studied in the forward region of proton-proton collisions using data collected with the LHCb detector at a center-of-mass energy of 13 TeV. The fraction of the jet transverse momentum carried by the J/ψ meson, z(J/ψ)≡p_{T}(J/ψ)/p_{T}(jet), is measured using jets with p_{T}(jet)>20  GeV in the pseudorapidity range 2.5<η(jet)<4.0. The observed z(J/ψ) distribution for J/ψ mesons produced in b-hadron decays is consistent with expectations. However, the results for prompt J/ψ production do not agree with predictions based on fixed-order nonrelativistic QCD. This is the first measurement of the p_{T} fraction carried by prompt J/ψ mesons in jets at any experiment.

  11. Probing nuclear matter with jet conversions

    NASA Astrophysics Data System (ADS)

    Liu, W.; Fries, R. J.

    2008-05-01

    We discuss the flavor of leading jet partons as a valuable probe of nuclear matter. We point out that the coupling of jets to nuclear matter naturally leads to an alteration of jet chemistry even at high transverse momentum pT. In particular, quantum chromodynamics (QCD) jets coupling to a chemically equilibrated quark gluon plasma in nuclear collisions will lead to hadron ratios at high transverse momentum pT that can differ significantly from their counterparts in p+p collisions. Flavor measurements could complement energy loss as a way to study interactions of hard QCD jets with nuclear matter. Roughly speaking they probe the inverse mean free path 1/λ while energy loss probes the average squared momentum transfer μ2/λ. We present some estimates for the rate of jet conversions in a consistent Fokker-Planck framework and their impact on future high-pT identified hadron measurements at RHIC and LHC. We also suggest some novel observables to test flavor effects.

  12. Study of jet transverse momentum and jet rapidity dependence of dijet azimuthal decorrelations with the DO detector

    NASA Astrophysics Data System (ADS)

    Chakravarthula, Kiran

    In a collision experiment involving highly energetic particles such as hadrons, processes at high momentum transfers can provide information useful for many studies involving Quantum Chromodynamics (QCD). One way of analyzing these interactions is through angular distributions. In hadron-hadron collisions, the angular distribution between the two leading jets with the largest transverse momentum (pT) is affected by the production of additional jets. While soft radiation causes small differences in the azimuthal angular distribution of the two leading jets produced in a collision event, additional hard jets produced in the event have more pronounced influence on the distribution of the two leading jets produced in the collision. Thus, the dijet azimuthal angular distribution can serve as a variable that can be used to study the transition from soft to hard QCD processes in a collision event. This dissertation presents a triple-differential study involving the azimuthal angular distribution and the jet transverse momenta, and jet rapidities of the first two leading jets. The data used for this research are obtained from proton-antiproton (pp¯) collisions occurring at a center of mass energy of 1.96 TeV, using the DØ detector in Run II of the Tevatron Collider at the Fermi National Accelerator Laboratory (FNAL) in Illinois, USA. Comparisons are made to perturbative QCD (pQCD) predictions at next-to-leading order (NLO).

  13. Validation of the Small Hot Jet Acoustic Rig for Jet Noise Research

    NASA Technical Reports Server (NTRS)

    Bridges, James; Brown, Clifford A.

    2005-01-01

    The development and acoustic validation of the Small Hot Jet Aeroacoustic Rig (SHJAR) is documented. Originally conceived to support fundamental research in jet noise, the rig has been designed and developed using the best practices of the industry. While validating the rig for acoustic work, a method of characterizing all extraneous rig noise was developed. With this in hand, the researcher can know when the jet data being measured is being contaminated and design the experiment around this limitation. Also considered is the question of uncertainty, where it is shown that there is a fundamental uncertainty of 0.5dB or so to the best experiments, confirmed by repeatability studies. One area not generally accounted for in the uncertainty analysis is the variation which can result from differences in initial condition of the nozzle shear layer. This initial condition was modified and the differences in both flow and sound were documented. The bottom line is that extreme caution must be applied when working on small jet rigs, but that highly accurate results can be made independent of scale.

  14. Observational features of equatorial coronal hole jets

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Bothmer, V.; Patsourakos, S.; Zimbardo, G.

    2010-03-01

    Collimated ejections of plasma called "coronal hole jets" are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower heliographic latitudes. In this paper we present some observations of "equatorial coronal hole jets" made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet events are selected by requiring at least some visibility in both COR1 and EUVI instruments. We report 15 jet events, and we discuss their main features. For one event, the uplift velocity has been determined as about 200 km s-1, while the deceleration rate appears to be about 0.11 km s-2, less than solar gravity. The average jet visibility time is about 30 min, consistent with jet observed in polar regions. On the basis of the present dataset, we provisionally conclude that there are not substantial physical differences between polar and equatorial coronal hole jets.

  15. Tests on Thrust Augmenters for Jet Propulsion

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Shoemaker, James M

    1932-01-01

    This series of tests was undertaken to determine how much the reaction thrust of a jet could be increased by the use of thrust augmenters and thus to give some indication as to the feasibility of jet propulsion for airplanes. The tests were made during the first part of 1927 at the Langley Memorial Aeronautical Laboratory. A compressed air jet was used in connection with a series of annular guides surrounding the jet to act as thrust augmenters. The results show that, although it is possible to increase the thrust of a jet, the increase is not large enough to affect greatly the status of the problem of the application of jet propulsion to airplanes.

  16. Top-quark loop corrections in Z+jet and Z + 2 jet production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John M.; Keith Ellis, R.

    2017-01-01

    The sophistication of current predictions formore » $Z+$jet production at hadron colliders necessitates a re-evaluation of any approximations inherent in the theoretical calculations. In this paper we address one such issue, the inclusion of mass effects in top-quark loops. We ameliorate an existing calculation of $Z+1$~jet and $Z+2$~jet production by presenting exact analytic formulae for amplitudes containing top-quark loops that enter at next-to-leading order in QCD. Although approximations based on an expansion in powers of $$1/m_t^2$$ can lead to poor high-energy behavior, an exact treatment of top-quark loops demonstrates that their effect is small and has limited phenomenological interest.« less

  17. Plane boundary effects on characteristics of propeller jets

    NASA Astrophysics Data System (ADS)

    Wei, Maoxing; Chiew, Yee-Meng; Hsieh, Shih-Chun

    2017-10-01

    The flow properties of a propeller jet in the presence of a plane bed boundary were investigated using the particle image velocimetry technique. Three clearance heights, Z b = 2 D p, D p, and 0.5 D p, where D p = propeller diameter, were used to examine boundary effects on the development of the jet. In each case, the mean flow properties and turbulence characteristics were measured in a larger field of view than those used in past studies. Both the streamwise and transverse flow fields were measured to obtain the three-dimensional characteristics of the propeller jet. Similar to a confined offset jet, the propeller jet also exhibits a wall attachment behavior when it is placed near a plane boundary. As a result, in contrast to its unconfined counterpart, the confined propeller jet features three regions, namely the free jet, impingement and wall jet regions. The study shows that the extent of each region varies under different clearance heights. The development of the mean flow and turbulence characteristics associated with varying clearance heights are compared to illustrate boundary effects in these regions. In the impingement region, the measured transverse flow fields provide new insights on the lateral motions induced by the impingement of the swirling jet. In the wall jet region, observations reveal that the jet behaves like a typical three-dimensional wall jet and its axial velocity profiles show good agreement with the classical wall jet similarity function.

  18. Observation of medium induced modifications of jet fragmentation in PbPb collisions using isolated-photon-tagged jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    Measurements of fragmentation functions for jets associated with an isolated photon are presented for the first time in pp and PbPb collisions. The analysis uses data collected with the CMS detector at the CERN LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Fragmentation functions are obtained for jets with pmore » $$_\\mathrm{T}^\\text{jet} >$$ 30 GeV in events containing an isolated photon with p$$_\\mathrm{T}^\\gamma>$$ 60 GeV, using charged tracks with transverse momentum p$$_\\mathrm{T}^\\text{trk} >$$ 1 GeV in a cone around the jet axis. The association with an isolated photon constrains the initial p$$_\\mathrm{T}$$ and azimuthal angle of the parton whose shower produced the jet. For central PbPb collisions, modifications of the jet fragmentation functions are observed when compared to those measured in pp collisions, while no significant differences are found in the 50% most peripheral collisions. Jets in central PbPb events show an excess (depletion) of low (high) p$$_\\mathrm{T}$$ particles, with a transition around 3 GeV.« less

  19. Velocity field of a round jet in a cross flow for various jet injection angles and velocity ratios. [Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Fearn, R. L.; Weston, R. P.

    1979-01-01

    A subsonic round jet injected from a flat plate into a subsonic crosswind of the same temperature was investigated. Velocity and pressure measurements in planes perpendicular to the path of the jet were made for nominal jet injection angles of 45 deg, 60 deg, 75 deg, 90 deg, and 105 deg and for jet/cross flow velocity ratios of four and eight. The velocity measurements were obtained to infer the properties of the vortex pair associated with a jet in a cross flow. Jet centerline and vortex trajectories were determined and fit with an empirical equation that includes the effects of jet injection angle, jet core length, and jet/cross flow velocity ratios.

  20. Dynamic interaction of a downward plane jet and a cough jet with respect to particle transmission: An analytical and experimental study.

    PubMed

    Cao, Guangyu; Liu, Shichao; Boor, Brandon E; Novoselac, Atila

    2017-08-01

    A cough jet can travel beyond the breathing zone of the source person, and thus, infectious viral- and bacterial-laden particles can be transported from the source person to others in close proximity. To reduce the interpersonal transmission of coughed particles, the objective of this study was to analytically and experimentally investigate the performance of downward plane jets with various discharge velocities. Chamber measurements were conducted to examine the interaction between a transient cough jet (discharge velocities of 12 m/sec and 16 m/sec) and a steady downward plane jet (discharge velocities from 1.0-8.5 m/sec) with respect to the transport of and human exposure to coughed particles. The results show that a relatively high-speed cough can easily penetrate a downward plane jet with a discharge velocity of less than 6 m/sec. A downward plane jet with a discharge velocity of 8.5 m/sec can bend the cough jet to a certain extent. In this study, momentum comparison of the cough jet and the downward plane jet shows that the value of personal exposure to coughed particles depends on the ratio of jet momentums. The results show that when the two momentums are equivalent or if the downward plane jet has a greater momentum, the cough jet is deflected downward and does not reach the breathing zone of the target thermal dummy. Using the ratio of the two momentums, it may be estimated whether the transmission of a cough jet can be controlled. A trajectory model was developed based on the ratio of the two momentums of a cough jet and a downward jet and was validated using the experimental data. In addition, the predicted trajectory of the cough jet agreed well with the results from smoke visualization experiments. This model can be used to guide the design of downward plane jet systems for protection of occupants from coughed particles.

  1. More Macrospicule Jets in On-Disk Coronal Holes

    NASA Astrophysics Data System (ADS)

    Adams, Mitzi; Sterling, Alphonse; Moore, Ronald

    2015-04-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or at disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of about ten jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 Å, examine the magnetic field configuration and flux changes in the jet area, and discuss the probable trigger mechanism of these events. We reported on another jet in this same coronal hole on 2011 February 27, ~13:04 UT (Adams et al 2014, ApJ, 783: 11). That jet is a previously unrecognized variety of blowout jet, in which the base-edge bright point is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field. In contrast, in the presently-accepted "standard" picture for blowout jets, the base-edge bright point is made by interchange reconnection of initially-closed erupting jet-base field with ambient open field. This poster presents further evidence of the production of the base-edge bright point in blowout jets by internal reconnection. Our observations suggest that most of the bigger and brighter EUV jets in coronal holes are blowout jets of the new-found variety.

  2. More Macrospicule Jets in On-Disk Coronal Holes

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2015-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of about ten jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration and flux changes in the jet area, and discuss the probable trigger mechanism of these events. We reported on another jet in this same coronal hole on 2011 February 27, (is) approximately 13:04 UT (Adams et al 2014, ApJ, 783: 11). That jet is a previously-unrecognized variety of blowout jet, in which the base-edge bright point is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field. In contrast, in the presently-accepted 'standard' picture for blowout jets, the base-edge bright point is made by interchange reconnection of initially-closed erupting jet-base field with ambient open field. This poster presents further evidence of the production of the base-edge bright point in blowout jets by internal reconnection. Our observations suggest that most of the bigger and brighter EUV jets in coronal holes are blowout jets of the new-found variety.

  3. Geometrical and Kinematic Parameters of the Jet of the Blazar S5 0716+71 in a Helical-Jet Model

    NASA Astrophysics Data System (ADS)

    Butuzova, M. S.

    2018-02-01

    Periodic variations of the position angle of the inner jet of the blazar S5 0716+71 suggest a helical structure for the jet. The geometrical parameters of a model helical jet are determined. It is shown that, when the trajectories of the jet components are non-ballistic, the angle between their velocity vectors and the line of sight lies in a broader interval than is the case for ballistic motions of the components, in agreement with available estimates. The contradictory results for the apparent speeds of components in the inner and outer jet at epochs 2004 and 2008-2010 can be explained in such a model. The ratio of the apparent speeds in the inner and outer jet are used to derive a lower limit for the physical speed of the components ( β > 0.999) and to determine the pitch angle of the helical jet ( p = 5.5°). The derived parameters can give rise to the conditions required to observe high speeds (right to 37 c) for individual jet components.

  4. Predictions for boson-jet observables and fragmentation function ratios from a hybrid strong/weak coupling model for jet quenching

    DOE PAGES

    Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; ...

    2016-03-09

    We have previously introduced a hybrid strong/weak coupling model for jet quenching in heavy ion collisions in which we describe the production and fragmentation of jets at weak coupling, using Pythia, and describe the rate at which each parton in the jet shower loses energy as it propagates through the strongly coupled plasma, dE/dx, using an expression computed holographically at strong coupling. The model has a single free parameter that we fit to a single experimental measurement. We then confront our model with experimental data on many other jet observables, focusing in this paper on boson-jet observables, finding that itmore » provides a good description of present jet data. Next, we provide the predictions of our hybrid model for many measurements to come, including those for inclusive jet, dijet, photon-jet and Z-jet observables in heavy ion collisions with energy √s = 5 : 02 ATeV coming soon at the LHC. As the statistical uncertainties on near-future measurements of photon-jet observables are expected to be much smaller than those in present data, with about an order of magnitude more photon-jet events expected, predictions for these observables are particularly important. We find that most of our pre- and post-dictions do not depend sensitively on the form we choose for the rate of energy loss dE/dx of the partons in the shower. This gives our predictions considerable robustness. To better discriminate between possible forms for the rate of energy loss, though, we must turn to intrajet observables. Here, we focus on ratios of fragmentation functions. Finally, we close with a suggestion for a particular ratio, between the fragmentation functions of inclusive and associated jets with the same kinematics in the same collisions, which is particularly sensitive to the x- and E-dependence of dE/dx, and hence may be used to learn which mechanism of parton energy loss best describes the quenching of jets.« less

  5. Chandra enables study of x-ray jets

    PubMed Central

    Schwartz, Daniel

    2010-01-01

    The exquisite angular resolution of the Chandra x-ray telescope has enabled the detection and study of resolved x-ray jets in a wide variety of astronomical systems. Chandra has detected extended jets in our galaxy from protostars, symbiotic binaries, neutron star pulsars, black hole binaries, extragalactic jets in radio sources, and quasars. The x-ray data play an essential role in deducing the emission mechanism of the jets, in revealing the interaction of jets with the intergalactic or intracluster media, and in studying the energy generation budget of black holes. PMID:20378839

  6. Dual-Mode Free-Jet Combustor

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Dippold, Vance F., III; Yungster, Shaye

    2017-01-01

    The dual-mode free-jet combustor concept, pictured in figure 1, is described. It was introduced in 2010 as a wide- operating-range propulsion device using a novel supersonic free-jet combustion process. The unique feature of the free-jet combustor pictured in figure 1a, is supersonic combustion in an unconfined free-jet that traverses a larger subsonic combustion chamber to a variable nozzle. During this mode of operation, the propulsive stream is not in contact with the combustor walls, and equilibrates to the combustion chamber pressure. To a first order, thermodynamic efficiency is similar to that of a traditional scramjet under the assumption of constant-pressure combustion. Qualitatively, a number of possible benefits to this approach are obvious.

  7. Origin of Pre-Coronal-Jet Minifilaments: Flux Cancellation

    NASA Technical Reports Server (NTRS)

    Panesar, Navdeep K.; Sterling, Alphonse; Moore, Ronald L.

    2017-01-01

    Coronal jets are frequent magnetically channeled narrow eruptions. All coronal jets observed in EUV and X-ray images show a bright spire with a base brightening, also known as jet bright point (JBP). Recent studies of jets show that coronal jets are driven by small-scale filament eruptions (e.g. Hong et al. 2011, Shen et al. 2012, Adams et al. 2014, Sterling et al. 2015). We recently investigated the triggering mechanism of ten on-disk quiet-region coronal jet eruptions and found that magnetic flux cancellation at the neutral line of minifilaments is the main cause of quiet-region jet eruptions (Panesar et al.2016).

  8. Status of jet noise

    NASA Technical Reports Server (NTRS)

    Banerian, G.

    1977-01-01

    The fundamentals of jet noise generation and suppression have been studied in great detail over the past twenty-five years. Considerable progress has been made recently in our understanding of this subject, though some aspects of it remain perplexing. The importance of accounting for the influence of the jets mean flow in shrouding acoustic sources is now recognized and the large amount of information obtained on jet noise reduction schemes, e.g., the internal mixer nozzle, the inverted profile nozzle and multi-element suppressors, has helped clarify trends and identify remaining issues. Current understanding of inflight effects is limited and in need of much more attention.

  9. The liquid fuel jet in subsonic crossflow

    NASA Technical Reports Server (NTRS)

    Nguyen, T. T.; Karagozian, A. R.

    1990-01-01

    An analytical/numerical model is described which predicts the behavior of nonreacting and reacting liquid jets injected transversely into subsonic cross flow. The compressible flowfield about the elliptical jet cross section is solved at various locations along the jet trajectory by analytical means for free-stream local Mach number perpendicular to jet cross section smaller than 0.3 and by numerical means for free-stream local Mach number perpendicular to jet cross section in the range 0.3-1.0. External and internal boundary layers along the jet cross section are solved by integral and numerical methods, and the mass losses due to boundary layer shedding, evaporation, and combustion are calculated and incorporated into the trajectory calculation. Comparison of predicted trajectories is made with limited experimental observations.

  10. Lab experiments investigating astrophysical jet physics

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2014-10-01

    Dynamics relevant to astrophysical plasmas is being investigated in lab experiments having similar physics and topology, but much smaller time and space scales. High speed movies and numerical simulations both show that highly collimated MHD-driven plasma flows are a critical feature; these collimated flows can be considered to be a lab version of an astrophysical jet. Having both axial and azimuthal magnetic fields, the jet is effectively an axially lengthening plasma-confining flux tube with embedded helical magnetic field (flux rope). The jet velocity is in good agreement with an MHD acceleration model. Axial stagnation of the jet compresses embedded azimuthal magnetic flux and so results in jet self-collimation. Jets kink when they breach the Kruskal-Shafranov stability limit. The lateral acceleration of a sufficiently strong kink can provide an effective gravity which provides the environment for a spontaneously-developing, fine-scale, extremely fast Rayleigh-Taylor instability that erodes the current channel to be smaller than the ion skin depth. This cascade from the ideal MHD scale of the kink to the non-MHD ion skin depth scale can result in a fast magnetic reconnection whereby the jet breaks off from its source electrode. Supported by USDOE and NSF.

  11. Mixing and Flow-field Characteristics of Strongly-forced Transitional / Turbulent Jets and Jet Flames

    NASA Astrophysics Data System (ADS)

    Lakshminarasimhan, Krishna

    2005-11-01

    Strong pulsations of the fuel flow rate have previously been shown to dramatically alter the flame length and luminosity of nonpremixed jet flames. The mechanisms responsible for such changes are explored experimentally in nonreacting and reacting strongly pulsed jets by using cinematographic PIV and acetone PLIF. The large amplitude forcing was obtained by pulsing the flow using a solenoid valve at the organ-pipe resonance frequency of the fuel delivery tube. The velocity fluctuations in the flow produced by the resonant pulsing of the jet can reach to about 8 times that of the mean flow. The jet characteristics were studied for Reynolds numbers based on mean flow velocity ranging between 800 and 2400. The PIV shows that with strong pulsations the jet exhibits significant reverse flow into the fuel delivery tube and an increase in turbulence in the near-field region. The acetone PLIF imaging was performed inside and outside the fuel tube in order to study the effects of pulsations on the mixing. These measurements showed significant in-tube partial premixing due to the reverse flow near the nozzle exit as well as enhanced mixing due to coherent vortical structures and increased turbulence.

  12. Microscopic Processes in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.; hide

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  13. Experiments in dilution jet mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.; Berenfeld, A.

    1983-01-01

    Experimental results are given on the mixing of a single row of jets with an isothermal mainstream in a straight duct, to include flow and geometric variations typical of combustion chambers in gas turbine engines. The principal conclusions reached from these experiments were: at constant momentum ratio, variations in density ratio have only a second-order effect on the profiles; a first-order approximation to the mixing of jets with a variable temperature mainstream can be obtained by superimposing the jets-in-an isothermal-crossflow and mainstream profiles; flow area convergence, especially injection-wall convergence, significantly improves the mixing; for opposed rows of jets, with the orifice centerlines in-line, the optimum ratio of orifice spacing to duct height is one half of the optimum value for single side injection at the same momentum ratio; and for opposed rows of jets, with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is twice the optimum value for single side injection at the same momentum ratio.

  14. Experiments in dilution jet mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.; Berenfeld, A.

    1983-01-01

    Experimental results are presented on the mixing of a single row of jets with an isothermal mainstream in a straight duct, with flow and geometric variations typical of combustion chambers in gas turbine engines included. It is found that at a constant momentum ratio, variations in the density ratio have only a second-order effect on the profiles. A first-order approximation to the mixing of jets with a variable temperature mainstream can, it is found, be obtained by superimposing the jets-in-an-isothermal-crossflow and mainstream profiles. Another finding is that the flow area convergence, especially injection-wall convergence, significantly improves the mixing. For opposed rows of jets with the orifice cone centerlines in-line, the optimum ratio of orifice spacing to duct height is determined to be 1/2 of the optimum value for single injection at the same momentum ratio. For opposed rows of jets with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is found to be twice the optimum value for single side injection at the same momentum ratio.

  15. Behavior of turbulent gas jets in an axisymmetric confinement

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Ahmed, S. A.

    1985-01-01

    The understanding of the mixing of confined turbulent jets of different densities with air is of great importance to many industrial applications, such as gas turbine and Ramjet combustors. Although there have been numerous studies on the characteristics of free gas jets, little is known of the behavior of gas jets in a confinement. The jet, with a diameter of 8.73 mm, is aligned concentrically in a tube of 125 mm diameter, thus giving a confinement ratio of approximately 205. The arrangement forms part of the test section of an open-jet wind tunnel. Experiments are carried out with carbon dioxide, air and helium/air jets at different jet velocities. Mean velocity and turbulence measurements are made with a one-color, one-component laser Doppler velocimeter operating in the forward scatter mode. Measurements show that the jets are highly dissipative. Consequently, equilibrium jet characteristics similar to those found in free air jets are observed in the first two diameters downstream of the jet. These results are independent of the fluid densities and velocities. Decay of the jet, on the other hand, is a function of both the jet fluid density and momentum. In all the cases studied, the jet is found to be completely dissipated in approximately 30 jet diameters, thus giving rise to a uniform flow with a very high but constant turbulence field across the confinement.

  16. A mathematical model for jet engine combustor pollutant emissions

    NASA Technical Reports Server (NTRS)

    Boccio, J. L.; Weilerstein, G.; Edelman, R. B.

    1973-01-01

    Mathematical modeling for the description of the origin and disposition of combustion-generated pollutants in gas turbines is presented. A unified model in modular form is proposed which includes kinetics, recirculation, turbulent mixing, multiphase flow effects, swirl and secondary air injection. Subelements of the overall model were applied to data relevant to laboratory reactors and practical combustor configurations. Comparisons between the theory and available data show excellent agreement for basic CO/H2/Air chemical systems. For hydrocarbons the trends are predicted well including higher-than-equilibrium NO levels within the fuel rich regime. Although the need for improved accuracy in fuel rich combustion is indicated, comparisons with actual jet engine data in terms of the effect of combustor-inlet temperature is excellent. In addition, excellent agreement with data is obtained regarding reduced NO emissions with water droplet and steam injection.

  17. Electrohydrodynamic (EHD) stimulation of jet breakup

    NASA Technical Reports Server (NTRS)

    Crowley, J. M.

    1982-01-01

    Electrohydrodynamic (EHD) excitation of liquid jets offers an alternative to piezoelectric excitation without the complex frequency response caused by piezoelectric and mechanical resonances. In an EHD exciter, an electrode near the nozzle applies an alternating Coulomb force to the jet surface, generating a disturbance which grows until a drop breaks off downstream. This interaction is modelled quite well by a linear, long wave model of the jet together with a cylindrical electric field. The breakup length, measured on a 33 micrometer jet, agrees quite well with that predicted by the theory, and increases with the square of the applied voltage, as expected. In addition, the frequency response is very smooth, with pronounced nulls occurring only at frequencies related to the time which the jet spends inside the exciter.

  18. Dilution jet mixing program, supplementary report

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; White, C.

    1986-01-01

    The velocity and temperature distributions predicted by a 3-D numerical model and experimental measurements are compared. Empirical correlations for the jet velocity trajectory developed are presented. The measured velocity distributions for all test cases of phase through phase 3 are presented in the form of contour and oblique plots. quantification of the effects of the following on the jet mixing characteristics with a confined crossflow are: (1) orifice geometry momentum flux ratio and density ratio; (2) nonuniform mainstream temperature and velocity profiles upstream of dilution orifices; (3) cold versus hot jet injection; (4) cross-stream flow are a convergence as encountered in practical dilution zone geometries; (5) 2-D slot versus circular orifices; (6) discrete noncirculcer orifices; (7) single-sided versus opposed jets; (8) single row of jets.

  19. Performance Comparison of Sweeping/Steady Jet Actuators

    NASA Astrophysics Data System (ADS)

    Hirsch, Damian; Mercier, Justin; Noca, Flavio; Gharib, Morteza

    2015-11-01

    Flow control through the use of steady jet actuators has been used on various aircraft models since the late 1950's. However, the focus of recent studies has shifted towards the use of sweeping jets (fluidic oscillators) rather than steady jet actuators. In this work, experiments using various jet actuator designs were conducted at GALCIT's Lucas Wind Tunnel on a NACA 0012 vertical tail model similar to that of the Boeing 767 vertical stabilizer at Reynolds numbers ranging from 0.5 to 1.2 million. The rudder angle was fixed at 20 degrees. A total of 32 jet actuators were installed along the wingspan perpendicular to the trailing edge and the rudder shoulder of the vertical stabilizer. It is known that these types of flow control prevent separation. However, the goal of this work is to compare different jet designs and evaluate their performance. Parameters such as the number of actuators, their volumetric flow, and the wind tunnel speed were varied. The lift generation capabilities of steady and sweeping jet actuators were then compared. Another set of experiments was conducted to compare a new sweeping jet actuator design with one of the standard versions. Supported by Boeing.

  20. Growth rate measurement in free jet experiments

    NASA Astrophysics Data System (ADS)

    Charpentier, Jean-Baptiste; Renoult, Marie-Charlotte; Crumeyrolle, Olivier; Mutabazi, Innocent

    2017-07-01

    An experimental method was developed to measure the growth rate of the capillary instability for free liquid jets. The method uses a standard shadow-graph imaging technique to visualize a jet, produced by extruding a liquid through a circular orifice, and a statistical analysis of the entire jet. The analysis relies on the computation of the standard deviation of a set of jet profiles, obtained in the same experimental conditions. The principle and robustness of the method are illustrated with a set of emulated jet profiles. The method is also applied to free falling jet experiments conducted for various Weber numbers and two low-viscosity solutions: a Newtonian and a viscoelastic one. Growth rate measurements are found in good agreement with linear stability theory in the Rayleigh's regime, as expected from previous studies. In addition, the standard deviation curve is used to obtain an indirect measurement of the initial perturbation amplitude and to identify beads on a string structure on the jet. This last result serves to demonstrate the capability of the present technique to explore in the future the dynamics of viscoelastic liquid jets.

  1. Magnetic Untwisting in Most Solar X-Ray Jets

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Sterling, Alphonse; Falconer, David; Robe, Dominic

    2013-01-01

    From 54 X-ray jets observed in the polar coronal holes by Hinode's X-Ray Telescope (XRT) during coverage in movies from Solar Dynamic Observatory's Atmospheric Imaging Assembly (AIA) taken in its He II 304 Å band at a cadence of 12 s, we have established a basic characteristic of solar X-ray jets: untwisting motion in the spire. In this presentation, we show the progression of few of these X-ray jets in XRT images and track their untwisting in AIA He II images. From their structure displayed in their XRT movies, 19 jets were evidently standard jets made by interchange reconnection of the magnetic-arcade base with ambient open field, 32 were evidently blowout jets made by blowout eruption of the base arcade, and 3 were of ambiguous form. As was anticipated from the >10,000 km span of the base arcade in most polar X-ray jets and from the disparity of standard jets and blowout jets in their magnetic production, few of the standard X-ray jets (3 of 19) but nearly all of the blowout X-ray jets (29 of 32) carried enough cool (T is approximately 105 K) plasma to be seen in their He II movies. In the 32 X-ray jets that showed a cool component, the He II movies show 10-100 km/s untwisting motions about the axis of the spire in all 3 standard jets and in 26 of the 29 blowout jets. Evidently, the open magnetic field in nearly all blowout X-ray jets and probably in most standard X-ray jets carries transient twist. This twist apparently relaxes by propagating out along the open field as a torsional wave. High-resolution spectrograms and Dopplergrams have shown that most Type-II spicules have torsional motions of 10-30 km/s. Our observation of similar torsional motion in X-ray jets strengthens the case for Type-II spicules being made in the same way as X-ray jets, by blowout eruption of a twisted magnetic arcade in the spicule base and/or by interchange reconnection of the twisted base arcade with the ambient open field. This work was funded by NASA's Heliophysics Division

  2. Blazars: The accelerating inner jet model.

    NASA Astrophysics Data System (ADS)

    Georganopoulos, M.; Marscher, A. P.

    1996-05-01

    The standard interpretation of the nonthermal continuum radiation of blazars from radio to gamma -rays is thought to be synchrotron and inverse Compton radiation from a relativistic jet. The inner jet of a blazar is the section of the jet that connects the central engine with the VLBI core of the radio jet. This is a small (la 1 pc) region where the jet is formed, collimated and accelerated to speeds close to that of light. In the accelerating inner jet model ultrarelativistic plasma is generated continuously near the central engine of the AGN and is accelerated hydrodynamically. An external hydrostatic and/or magnetohydrodynamic pressure collimates the flow. In this work a simple relativistic hydrodynamic scheme that produces a simultaneously accelerating and converging flow is coupled with a detailed calculation of the evolution of the electron energy distribution and synchrotron emissivity due to relativistic electrons radiating in a mostly random magnetic field. Higher frequency radiation emanates from smaller distances from the central engine, implying shorter flux variation timescales at higher frequencies, as observed. The velocity of the jet increases with distance; this implies larger Doppler boosting for greater distances down the jet up to the point where the Lorentz factor Gamma la theta (-1) , where theta is the angle between the velocity vector and the line of sight, and therefore at lower frequencies. This can explain some of the differences between RBLs and XBLs as a line-of-sight orientation effect. A square density wave is propagated with the jet velocity and the variability thus induced is studied, taking into account time delay effects. The model is found to agree qualitatively with the observed steady state spectra as well as with the observed variability properties of BL Lac objects.

  3. Experimental and theoretical study of combustion jet ignition

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Ghoniem, A. F.; Oppenheim, A. K.

    1983-01-01

    A combustion jet ignition system was developed to generate turbulent jets of combustion products containing free radicals and to discharge them as ignition sources into a combustible medium. In order to understand the ignition and the inflammation processes caused by combustion jets, the studies of the fluid mechanical properties of turbulent jets with and without combustion were conducted theoretically and experimentally. Experiments using a specially designed igniter, with a prechamber to build up and control the stagnation pressure upstream of the orifice, were conducted to investigate the formation processes of turbulent jets of combustion products. The penetration speed of combustion jets has been found to be constant initially and then decreases monotonically as turbulent jets of combustion products travel closer to the wall. This initial penetration speed to combustion jets is proportional to the initial stagnation pressure upstream of the orifice for the same stoichiometric mixture. Computer simulations by Chorin's Random Vortex Method implemented with the flame propagation algorithm for the theoretical model of turbulent jets with and without combustion were performed to study the turbulent jet flow field. In the formation processes of the turbulent jets, the large-scale eddy structure of turbulence, the so-called coherent structure, dominates the entrainment and mixing processes. The large-scale eddy structure of turbulent jets in this study is constructed by a series of vortex pairs, which are organized in the form of a staggered array of vortex clouds generating local recirculation flow patterns.

  4. Discrete element modeling of shock-induced particle jetting

    NASA Astrophysics Data System (ADS)

    Xue, Kun; Cui, Haoran

    2018-05-01

    The dispersal of particle shell or ring by divergent impulsive loads takes the form of coherent particle jets with the dimensions several orders larger than that of constituent grain. Particle-scale simulations based on the discrete element method have been carried out to reveal the evolution of jets in semi-two-dimensional rings before they burst out of the external surface. We identify two key events which substantially change the resulted jetting pattern, specifically, the annihilation of incipient jets and the tip-slipping of jets, which become active in different phases of jet evolution. Parametric investigations have been done to assess the correlations between the jetting pattern and a variety of structural parameters. Overpressure, the internal and outer diameters of ring as well as the packing density are found to have effects on the jet evolution with different relative importance.

  5. Turbulent swirling jets with excitation

    NASA Technical Reports Server (NTRS)

    Taghavi, Rahmat; Farokhi, Saeed

    1988-01-01

    An existing cold-jet facility at NASA Lewis Research Center was modified to produce swirling flows with controllable initial tangential velocity distribution. Two extreme swirl profiles, i.e., one with solid-body rotation and the other predominated by a free-vortex distribution, were produced at identical swirl number of 0.48. Mean centerline velocity decay characteristics of the solid-body rotation jet flow exhibited classical decay features of a swirling jet with S - 0.48 reported in the literature. However, the predominantly free-vortex distribution case was on the verge of vortex breakdown, a phenomenon associated with the rotating flows of significantly higher swirl numbers, i.e., S sub crit greater than or equal to 0.06. This remarkable result leads to the conclusion that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field. The relative size (i.e., diameter) of the vortex core emerging from the nozzle and the corresponding tangential velocity distribution are also controlling factors. Excitability of swirling jets is also investigated by exciting a flow with a swirl number of 0.35 by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak r.m.s. amplitude and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4.

  6. Electric jets following the occurrence of sprites

    NASA Astrophysics Data System (ADS)

    Lee, L.; Chou, J.; Huang, S.; Chang, S.; Wu, Y.; Lee, Y.; Kuo, C.; Chen, A. B.; Su, H.; Hsu, R.; Frey, H. U.; Mende, S. B.; Takahashi, Y.; Lee, L.

    2010-12-01

    Sprites are discharges occurring at the altitudes ~40 to 90 km, which are usually associated with positive cloud-to-ground lightning (+CGs). Electric jets, which include blue jets (BJs) with the terminal altitude of ~40km and gigantic jets (GJs) emanating to the lower ionosphere, are upward discharges from the cloud tops toward the upper atmosphere. From previous ground observations, it has been reported that the secondary discharges (“palm-tree” [Heavner, 2000] or “sprite-initiated secondary TLEs” [Marshall and Inan, 2007]) following sprites occurred in altitudes between the cloud top and the bottom of the sprite. From July 2004 to June 2010, ISUAL has recorded dozens of events which resemble the secondary TLEs. From image and photometric data recorded by ISUAL, all these secondary TLEs have the characteristics of jets, so we call these events “secondary jets”. These secondary jets are categorized into two groups according to their emanating horizontal positions in relative to the sprites. Group-I secondary jets occurred in the cloud top region which is directly below the sprites. The terminal altitude is ~ 40-50km for most of group-I secondary jets. Several group-I secondary jets appear to originate from the cloud top region below the symmetric center of the clustering sprites and then propagate toward the lower ionosphere. While the group-II secondary jets originate from region outside the shielding area of the clustering sprites. In this paper, the image and the photometric characteristics of the secondary jets will be presented and the possible generating mechanisms will be discussed.

  7. Jet Propellant 8 versus Alternative Jet Fuels: A Life-Cycle Perspective

    DTIC Science & Technology

    2011-01-01

    United States imports.26 The CBTL process uses three existing technologies to convert coal and biomass into liquid fuel: gasification , FT synthesis...and carbon capture and storage. Gasification converts coal and biomass into CO and H2, a mixture commonly referred to as “syngas.” FT synthesis...com- pare petroleum-derived jet fuel (i.e., JP-8) to an alternative jet fuel derived from a coal- biomass -to-liquid (CBTL) process. The EIO- LCA

  8. Effect of Temperature on Jet Velocity Spectra

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Wernet, Mark P.

    2007-01-01

    Statistical jet noise prediction codes that accurately predict spectral directivity for both cold and hot jets are highly sought both in industry and academia. Their formulation, whether based upon manipulations of the Navier-Stokes equations or upon heuristic arguments, require substantial experimental observation of jet turbulence statistics. Unfortunately, the statistics of most interest involve the space-time correlation of flow quantities, especially velocity. Until the last 10 years, all turbulence statistics were made with single-point probes, such as hotwires or laser Doppler anemometry. Particle image velocimetry (PIV) brought many new insights with its ability to measure velocity fields over large regions of jets simultaneously; however, it could not measure velocity at rates higher than a few fields per second, making it unsuitable for obtaining temporal spectra and correlations. The development of time-resolved PIV, herein called TR-PIV, has removed this limitation, enabling measurement of velocity fields at high resolution in both space and time. In this paper, ground-breaking results from the application of TR-PIV to single-flow hot jets are used to explore the impact of heat on turbulent statistics of interest to jet noise models. First, a brief summary of validation studies is reported, undertaken to show that the new technique produces the same trusted results as hotwire at cold, low-speed jets. Second, velocity spectra from cold and hot jets are compared to see the effect of heat on the spectra. It is seen that heated jets possess 10 percent more turbulence intensity compared to the unheated jets with the same velocity. The spectral shapes, when normalized using Strouhal scaling, are insensitive to temperature if the stream-wise location is normalized relative to the potential core length. Similarly, second order velocity correlations, of interest in modeling of jet noise sources, are also insensitive to temperature as well.

  9. Jet-impingement heat transfer in gas turbine systems.

    PubMed

    Han, B; Goldstein, R J

    2001-05-01

    A review of jet-impingement heat transfer in gas turbine systems is presented. Characteristics of the different flow regions for submerged jets--free jet, stagnation flow, and wall jet--are reviewed. Heat transfer characteristics of both single and multiple jets are discussed with consideration of the effects of important parameters relevant to gas turbine systems including curvature of surfaces, crossflow, angle of impact, and rotation.

  10. Aeroelastic instability in a jet plate interaction

    NASA Astrophysics Data System (ADS)

    Antoine, Maxime; Hémon, Pascal; de Langre, Emmanuel

    2007-11-01

    A flexible sheet subject to a normal impinging air jet can oscillate. We present a simple experiment that shows that added damping generated by the jet is responsible for this aeroelastic instability. The cases of planar jet and circular jet are studied. A model is presented to describe this instability and the results agree well with the experimental observations. The nozzle geometry is found to be a dominant parameter that drives the critical distance between the jet and the sheet, under which the instability develops. To cite this article: M. Antoine et al., C. R. Mecanique 335 (2007).

  11. An inkjet vision measurement technique for high-frequency jetting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation ofmore » high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.« less

  12. Tagging partially reconstructed objects with jet substructure

    DOE PAGES

    Freytsis, Marat; Volansky, Tomer; Walsh, Jonathan R.

    2016-08-24

    Here, we present a new tagger which aims at identifying partially reconstructed objects, in which only some of the constituents are collected in a single jet. As an example, we also focus on top decays in which either part of the hadronically decaying W or the b jet is soft or falls outside of the top jet cone. Furthermore, we construct an observable to identify remnant substructure from the decay and employ aggressive jet grooming to reject QCD backgrounds. The tagger is complementary to existing ones and works well in the intermediate boost regime where jet substructure techniques usually fail.more » It is anticipated that a similar tagger can be used to identify non-QCD hadronic jets, such as those expected from hidden valleys.« less

  13. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations(DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those, of a spatially evolving jet, a temporal jet problem was solved, using periodicity ill the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible application to active noise suppression. In addition, the data generated can be used to compute various turbulence quantities such as mean velocities

  14. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations (DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those of a spatially evolving jet, a temporal jet problem was solved, using periodicity in the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible appli(,a- tion to active noise suppression. In addition, the data generated can be used to compute, various turbulence quantities such as mean

  15. Enceladus Jet Orientations: Effects of Surface Structure

    NASA Astrophysics Data System (ADS)

    Helfenstein, P.; Porco, C.; DiNino, D.

    2013-12-01

    Jetting activity across the South Polar Terrain (SPT) of Enceladus is now known to erupt directly from tiger-stripe rifts and associated fracture systems. However, details of the vent conduit geometry are hidden below the icy surface. The three-dimensional orientations of the erupting jets may provide important clues. Porco et al. (2013, Lunar Planet. Sci. Conf. 44th, p.1775) surveyed jet locations and orientations as imaged at high resolution (< 1.3 km/pixel) by Cassini ISS from 2005 through May 2012. Ninety-eight (98) jets were identified either on the main trunks or branches of the 4 tiger-stripes. The azimuth angles of the jets are seen to vary across the SPT. Here, we use histogram analysis of the survey data to test if the jet azimuths are influenced by their placement relative to surface morphology and tectonic structures. Azimuths are measured positive counterclockwise with zero pointing along the fracture in the direction of the sub-Saturn hemisphere, and rosette histograms were binned in 30° increments. Overall, the jet azimuths are not random and only about 11% of them are co-aligned with the tiger stripe valley. There are preferred diagonal orientations between 105°-165° and again between 255°-345°. These trends are dominant along the Damascus and Baghdad tiger-stripes where more than half of the jets are found. Histograms for Cairo and Alexandria show less-distinct trends, fewer jets being measured there, but combining data from both suggests a different pattern of preferred orientations; from 45°-75° and 265°-280°. Many possible factors could affect the orientations of jets, for example, the conduit shape, the presence of obstacles like narrow medial ridges called 'shark-fins' along tiger-stripe valleys, the possibility that jets may breach the surface at some point other than the center of a tiger-stripe, and the presence of structural fabrics or mechanical weaknesses, such as patterns of cross-cutting fractures. The dominance of diagonally

  16. Optimal Jet Finder (v1.0 C++)

    NASA Astrophysics Data System (ADS)

    Chumakov, S.; Jankowski, E.; Tkachov, F. V.

    2006-10-01

    We describe a C++ implementation of the Optimal Jet Definition for identification of jets in hadronic final states of particle collisions. We explain interface subroutines and provide a usage example. The source code is available from http://www.inr.ac.ru/~ftkachov/projects/jets/. Program summaryTitle of program: Optimal Jet Finder (v1.0 C++) Catalogue identifier: ADSB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSB_v2_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: any computer with a standard C++ compiler Tested with:GNU gcc 3.4.2, Linux Fedora Core 3, Intel i686; Forte Developer 7 C++ 5.4, SunOS 5.9, UltraSPARC III+; Microsoft Visual C++ Toolkit 2003 (compiler 13.10.3077, linker 7.10.30777, option /EHsc), Windows XP, Intel i686. Programming language used: C++ Memory required:˜1 MB (or more, depending on the settings) No. of lines in distributed program, including test data, etc.: 3047 No. of bytes in distributed program, including test data, etc.: 17 884 Distribution format: tar.gz Nature of physical problem: Analysis of hadronic final states in high energy particle collision experiments often involves identification of hadronic jets. A large number of hadrons detected in the calorimeter is reduced to a few jets by means of a jet finding algorithm. The jets are used in further analysis which would be difficult or impossible when applied directly to the hadrons. Grigoriev et al. [D.Yu. Grigoriev, E. Jankowski, F.V. Tkachov, Phys. Rev. Lett. 91 (2003) 061801] provide brief introduction to the subject of jet finding algorithms and a general review of the physics of jets can be found in [R. Barlow, Rep. Prog. Phys. 36 (1993) 1067]. Method of solution: The software we provide is an implementation of the so-called Optimal Jet Definition (OJD). The theory of OJD was developed in [F.V. Tkachov, Phys. Rev. Lett. 73 (1994) 2405; Erratum, Phys. Rev. Lett. 74 (1995) 2618; F.V. Tkachov, Int. J. Modern Phys

  17. Flow Coupling Effects in Jet-in-Crossflow Flowfields

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Liscinsky, D. S.; Holdeman, J. D.

    1996-01-01

    The combustor designer is typically required to design liner orifices that effectively mix air jets with crossflow effluent. CFD combustor analysis is typically used in the design process; however the jets are usually assumed to enter the combustor with a uniform velocity and turbulence profile. The jet-mainstream flow coupling is usually neglected because of the computational expense. This CFD study was performed to understand the effect of jet-mainstream flow coupling, and to assess the accuracy of jet boundary conditions that are commonly used in combustor internal calculations. A case representative of a plenum-fed quick-mix section of a Rich Burn/Quick Mix/Lean Burn combustor (i.e. a jet-mainstream mass-flow ratio of about 3 and a jet-mainstream momentum-flux ratio of about 30) was investigated. This case showed that the jet velocity entering the combustor was very non-uniform, with a low normal velocity at the leading edge of the orifice and a high normal velocity at the trailing edge of the orifice. Three different combustor-only cases were analyzed with uniform inlet jet profile. None of the cases matched the plenum-fed calculations. To assess liner thickness effects, a thin-walled case was also analyzed. The CFD analysis showed the thin-walled jets had more penetration than the thick-walled jets.

  18. Increasing jet entrainment, mixing and spreading

    DOEpatents

    Farrington, Robert B.

    1994-01-01

    A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

  19. Self-similar semi-analytical RMHD jet model: first steps towards a more comprehensive jet modelling for data fitting

    NASA Astrophysics Data System (ADS)

    Markoff, Sera; Ceccobello, Chiara; Heemskerk, Martin; Cavecchi, Yuri; Polko, Peter; Meier, David

    2017-08-01

    Jets are ubiquitous and reveal themselves at different scales and redshifts, showing an extreme diversity in energetics, shapes and emission. Indeed jets are found to be characteristic features of black hole systems, such as X-ray binaries (XRBs) and active galactic nuclei (AGN), as well as of young stellar objects (YSOs) and gamma-ray bursts (GRBs). Observations suggest that jets are an energetically important component of the system that hosts them, because the jet power appears to be comparable to the accretion power. Significant evidence has been found of the impact of jets not only in the immediate proximity of the central object, but as well on their surrounding environment, where they deposit the energy extracted from the accretion flow. Moreover, the inflow/outflow system produces radiation over the entire electromagnetic spectrum, from radio to X-rays. Therefore it is a compelling problem to be solved and deeply understood. I present a new integration scheme to solve radial self-similar, stationary, axisymmetric relativistic magneto-hydro-dynamics (MHD) equations describing collimated, relativistic outflows crossing smoothly all the singular points (the Alfvén point and the modified slow/fast points). For the first time, the integration can be performed all the way from the disk mid-plane to downstream of the modified fast point. I will discuss an ensemble of jet solutions showing diverse jet dynamics (jet Lorentz factor ~ 1-10) and geometric properties (i.e. shock height ~ 103 - 107 gravitational radii), which makes our model suitable for application to many different systems where a relativistic jet is launched.

  20. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Chang, Chau-Lyan.; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    The authors provide a brief overview of the classic tonal screech noise problem created by underexpanded supersonic jets, briefly describing the fluid dynamic-acoustics feedback mechanism that has been long established as the basis for this well-known aeroacoustics problem. This is followed by a description of the Long Penetration Mode (LPM) supersonic underexpanded counterflowing jet phenomenon which has been demonstrated in several wind tunnel tests and modeled in several computational fluid dynamics (CFD) simulations. The authors provide evidence from test and CFD analysis of LPM that indicates that acoustics feedback and fluid interaction seen in LPM are analogous to the aeroacoustics interactions seen in screech jets. Finally, the authors propose applying certain methodologies to LPM which have been developed and successfully demonstrated in the study of screech jets and mechanically induced excitation in fluid oscillators for decades. The authors conclude that the large body of work done on jet screech, other aeroacoustic phenomena, and fluid oscillators can have direct application to the study and applications of LPM counterflowing supersonic cold flow jets.

  1. Radiative Processes in Jets

    NASA Astrophysics Data System (ADS)

    Vila, Gabriela S.

    Relativistic jets and collimated outflows are ubiquitous phenomena in astrophysical settings, from young stellar objects up to Active Galactic Nuclei. The observed emission from some of these jets can cover the whole electromagnetic spectrum, from radio to gamma-rays. The relevant features of the spectral energy distributions depend on the nature of the source and on the characteristics of the surrounding environment. Here the author reviews the main physical processes that command the interactions between populations of relativistic particles locally accelerated in the jets, with matter, radiation and magnetic fields. Special attention is given to the conditions that lead to the dominance of the different radiative mechanisms. Examples from various types of sources are used to illustrate these effects.

  2. Effect of Microjet Injection on Supersonic Jet Noise

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Podboy, G. G.

    2010-01-01

    The effect of microjet (jet) injection on the noise from supersonic jets is investigated. Three convergent-divergent (C-D) nozzles and one convergent nozzle, all having the same exit diameters, are used in the study. The jets are injected perpendicular to the primary jet close to the nozzle lip from six equally-spaced ports having a jet-to-primary-jet diameter ratio of 0.0054. Effects in the over-expanded, fully expanded as well as underexpanded flow regimes are explored. Relative to the effect on subsonic jets, larger reductions in the overall sound pressure level (OASPL) are achieved in most supersonic conditions. The largest reductions are typically associated with suppression of screech and transonic tones. For a shock-free, fully expanded case, the OASPL reductions achieved are comparable to that in the subsonic case; the same correlation, found for subsonic jet noise reduction at shallow observation angle, applies.

  3. Re: Penetration Behavior of Opposed Rows of Staggered Secondary Air Jets Depending on Jet Penetration Coefficient and Momentum Flux Ratio

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.

    2016-01-01

    The purpose of this article is to explain why the extension of the previously published C = (S/Ho)sqrt(J) scaling for opposed rows of staggered jets wasn't directly successful in the study by Choi et al. (2016). It is not surprising that staggered jets from opposite sides do not pass each other at the expected C value, because Ho/D and sqrt(J) are much larger than the maximum in previous studies. These, and large x/D's, tend to suggest development of 2-dimensional flow. Although there are distinct optima for opposed rows of in-line jets, single-side injection, and opposed rows of staggered jets based on C, opposed rows of staggered jets provide as good or better mixing performance, at any C value, than opposed rows of in-line jets or jets from single-side injection.

  4. The Mochi LabJet Experiment for Measurements of Canonical Helicity Injection in a Laboratory Astrophysical Jet

    NASA Astrophysics Data System (ADS)

    You, Setthivoine; von der Linden, Jens; Sander Lavine, Eric; Carroll, Evan Grant; Card, Alexander; Quinley, Morgan; Azuara-Rosales, Manuel

    2018-06-01

    The Mochi device is a new pulsed power plasma experiment designed to produce long, collimated, stable, magnetized plasma jets when set up in the LabJet configuration. The LabJet configuration aims to simulate an astrophysical jet in the laboratory by mimicking an accretion disk threaded by a poloidal magnetic field with concentric planar electrodes in front of a solenoidal coil. The unique setup consists of three electrodes, each with azimuthally symmetric gas slits. Two of the electrodes are biased independently with respect to the third electrode to control the radial electric field profile across the poloidal bias magnetic field. This design approximates a shear azimuthal rotation profile in an accretion disk. The azimuthally symmetric gas slits provide a continuously symmetric mass source at the footpoint of the plasma jet, so any azimuthal rotation of the plasma jet is not hindered by a discrete number of gas holes. The initial set of diagnostics consists of current Rogowski coils, voltage probes, magnetic field probe arrays, an interferometer and ion Doppler spectroscopy, supplemented by a fast ion gauge and a retarding grid energy analyzer. The measured parameters of the first plasmas are ∼1022 m‑3, ∼0.4 T, and 5–25 eV, with velocities of ∼20–80 km s‑1. The combination of a controllable electric field profile, a flared poloidal magnetic field, and azimuthally symmetric mass sources in the experiment successfully produces short-lived (∼10 μs, ≳5 Alfvén times) collimated magnetic jets with a ∼10:1 aspect ratio and long-lived (∼100 μs, ≳40 Alfvén times) flow-stabilized, collimated, magnetic jets with a ∼30:1 aspect ratio.

  5. Measurements of jet-related observables at the LHC

    NASA Astrophysics Data System (ADS)

    Kokkas, P.

    2015-11-01

    During the first years of the LHC operation a large amount of jet data was recorded by the ATLAS and CMS experiments. In this review several measurements of jet-related observables are presented, such as multi-jet rates and cross sections, ratios of jet cross sections, jet shapes and event shape observables. All results presented here are based on jet data collected at a centre-of-mass energy of 7 TeV. Data are compared to various Monte Carlo generators, as well as to theoretical next-to-leading-order calculations allowing a test of perturbative Quantum Chromodynamics in a previously unexplored energy region.

  6. Analysis of multiple jets in a cross-flow

    NASA Astrophysics Data System (ADS)

    Isaac, K. M.; Schetz, J. A.

    1982-12-01

    The analysis of Campbell and Schetz (1973) is extended to the study of multiple jets in a cross flow, where the interaction of two jets is taken into account by a modification of the drag coefficient that is sensed by each jet. Results show that the rear jet trajectory is significantly modified by the presence of the front one even when the jets are spaced far apart. The analysis is applicable to such phenomena as the exhaust of chimney stack smoke into a wind and the lift jets of a V/STOL aircraft during takeoff or landing in strong winds.

  7. PHYSICAL PARAMETERS OF STANDARD AND BLOWOUT JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pucci, Stefano; Romoli, Marco; Poletto, Giannina

    2013-10-10

    The X-ray Telescope on board the Hinode mission revealed the occurrence, in polar coronal holes, of much more numerous jets than previously indicated by the Yohkoh/Soft X-ray Telescope. These plasma ejections can be of two types, depending on whether they fit the standard reconnection scenario for coronal jets or if they include a blowout-like eruption. In this work, we analyze two jets, one standard and one blowout, that have been observed by the Hinode and STEREO experiments. We aim to infer differences in the physical parameters that correspond to the different morphologies of the events. To this end, we adoptmore » spectroscopic techniques and determine the profiles of the plasma temperature, density, and outflow speed versus time and position along the jets. The blowout jet has a higher outflow speed, a marginally higher temperature, and is rooted in a stronger magnetic field region than the standard event. Our data provide evidence for recursively occurring reconnection episodes within both the standard and the blowout jet, pointing either to bursty reconnection or to reconnection occurring at different locations over the jet lifetimes. We make a crude estimate of the energy budget of the two jets and show how energy is partitioned among different forms. Also, we show that the magnetic energy that feeds the blowout jet is a factor of 10 higher than the magnetic energy that fuels the standard event.« less

  8. Control of Jet Noise Through Mixing Enhancement

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark; Brown, Cliff

    2003-01-01

    The idea of using mixing enhancement to reduce jet noise is not new. Lobed mixers have been around since shortly after jet noise became a problem. However, these designs were often a post-design fix that rarely was worth its weight and thrust loss from a system perspective. Recent advances in CFD and some inspired concepts involving chevrons have shown how mixing enhancement can be successfully employed in noise reduction by subtle manipulation of the nozzle geometry. At NASA Glenn Research Center, this recent success has provided an opportunity to explore our paradigms of jet noise understanding, prediction, and reduction. Recent advances in turbulence measurement technology for hot jets have also greatly aided our ability to explore the cause and effect relationships of nozzle geometry, plume turbulence, and acoustic far field. By studying the flow and sound fields of jets with various degrees of mixing enhancement and subsequent noise manipulation, we are able to explore our intuition regarding how jets make noise, test our prediction codes, and pursue advanced noise reduction concepts. The paper will cover some of the existing paradigms of jet noise as they relate to mixing enhancement for jet noise reduction, and present experimental and analytical observations that support these paradigms.

  9. Multiplicities of Hadrons Within Jets at STAR

    NASA Astrophysics Data System (ADS)

    Wheeler, Suzanne; Drachenberg, Jim; STAR Collaboration

    2017-09-01

    Jet measurements have long been tools used to understand QCD phenomena. There is still much to be learned from the production of hadrons inside of jets. In particular, hadron yields within jets from proton-proton collisions have been proposed as a way to unearth more information on gluon fragmentation functions. In 2011, the STAR experiment at RHIC collected 23 pb-1 of data from proton-proton collisions at √{ s} = 500 GeV. The jets of most interest for gluon fragmentation functions are those with transverse momentum around 6-15 GeV/c. Large acceptance charged particle tracking and electromagnetic calorimetry make STAR an excellent jet detector. Time-of-flight and specific energy loss in the tracking system allow particle identification on the various types of hadrons within the jets, e.g., distinguishing pions from kaons and protons. An integral part of analyzing the data collected is understanding how the finite resolutions of the various detector subsystems influence the measured jet and hadron kinematics. For this reason, Monte Carlo simulations can be used to track the shifting of the hadron and jet kinematics between the generator level and the detector reconstruction level. The status of this analysis will be presented. We would like to acknowledge the Ronald E. McNair program for supporting this research.

  10. Forward jet and particle production at HERA

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Bähr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beck, M.; Beglarian, A.; Behnke, O.; Behrend, H.-J.; Beier, C.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Biddulph, P.; Bizot, J. C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Brown, D. P.; Brückner, W.; Bruel, P.; Bruncko, D.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Calvet, D.; Campbell, A. J.; Carli, T.; Chabert, E.; Charlet, M.; Clarke, D.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davidsson, M.; De Roeck, A.; De Wolf, E. A.; Delcourt, B.; Demirchyan, R.; Diaconu, C.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Donovan, K. T.; Dowell, J. D.; Droutskoi, A.; Ebert, J.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Enzenberger, M.; Erdmann, M.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Fleischer, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gerhards, R.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haustein, V.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herynek, I.; Hewitt, K.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hurling, S.; Ibbotson, M.; İşsever, Ç.; Itterbeck, H.; Jacquet, M.; Jaffre, M.; Jansen, D. M.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kästli, H. K.; Kander, M.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnik, O.; Katzy, J.; Kaufmann, O.; Kausch, M.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, K.; Küpper, A.; Küster, H.; Kuhlen, M.; Kurča, T.; Laforge, B.; Lahmann, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Lemaitre, V.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobo, G.; Lobodzinska, E.; Lubimov, V.; Lüke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krüger, H.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martin, G.; Martyn, H.-U.; Martyniak, J.; Maxfield, S. J.; McMahon, S. J.; McMahon, T. R.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Mikochi, S.; Milstead, D.; Moeck, J.; Mohr, R.; Mohrdieck, S.; Moreau, F.; Morris, J. V.; Müller, D.; Müller, K.; Murín, P.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nikitin, D.; Nix, O.; Nowak, G.; Nunnemann, T.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panassik, V.; Pascaud, C.; Passaggio, S.; Patel, G. D.; Pawletta, H.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pöschl, R.; Pope, G.; Povh, B.; Rabbertz, K.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Scheins, J.; Schleif, S.; Schleper, P.; Schmidt, D.; Schmidt, D.; Schoeffel, L.; Schröder, V.; Schultz-Coulon, H.-C.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Sirois, Y.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Spaskov, V.; Specka, A.; Spiekermann, J.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Swart, M.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P. D.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Haecke, A.; Van Mechelen, P.; Vazdik, Y.; Villet, G.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wittmann, E.; Wobisch, M.; Wollatz, H.; Wünsch, E.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; zurNedden, M.; H1 Collaboration

    1999-01-01

    Single particles and jets in deeply inelastic scattering at low x are measured with the H1 detector in the region away from the current jet and towards the proton remnant, known as the forward region. Hadronic final state measurements in this region are expected to be particularly sensitive to QCD evolution effects. Jet cross sections are presented as a function of Bjorken- x for forward jets produced with a polar angle to the proton direction, θjet, in the range 7° < θjet < 20°. Azimuthal correlations are studied between the forward jet and the scattered lepton. Charged and neutral single particle production in the forward region are measured as a function of Bjorken- x, in the range 5° < θ < 25°, for particle transverse momenta larger than 1 GeV. QCD based Monte Carlo predictions and analytical calculations based on BFKL, CCFM and DGLAP evolution are compared to the data. Predictions based on the DGLAP approach fail to describe the data, except for those which allow for a resolved photon contribution.

  11. Columnar Transitions in Microscale Evaporating Liquid Jets

    NASA Astrophysics Data System (ADS)

    Hunter, Hanif; Glezer, Ari

    2007-11-01

    Microscale evaporating liquid jets that are injected into a quiescent gaseous medium having adjustable ambient pressure are investigated over a range of jet speeds using a shadowgraph technique. The jets are formed by a laser-drilled 10 μm nozzle from a small-scale pressurized reservoir, and sub-atmospheric ambient pressure is maintained using a controllable, metered Venturi pump. The near-field jet features are captured by shadowgraph imaging using a pulsed ND-Yag laser and a 12 bit CCD camera where the field of view measured 200 μm on the side. As the ambient pressure is reduced, the jet column undergoes a series of spectacular transitions that are first marked by the appearance of vapor bubbles within the jet column. The transitions progress from columnar instabilities to series of column bifurcations to high-order branching and film formation and culminate in conical atomization of the jet column. In addition to the effects of the ambient pressure, the present investigation also considers effects of the liquid surface tension and vapor pressure on the onset, evolution, and hysteresis of the columnar transitions.

  12. Macrospicule Jets in On-Disk Coronal Holes

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2014-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of six jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration, and postulate the probable trigger mechanism of these events. We recently reported on another jet in the same coronal hole on 2011 February 27, approximately 13:04 Universal Time (Adams et al 2014, Astrophysical Journal, 783: 11); this jet is a previously-unrecognized variety of blowout jet. In this variety, the reconnection bright point is not made by interchange reconnection of initially-closed erupting field in the base of the jet with ambient open field. Instead, there is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field.

  13. First Results of the Testing of the Liquid Gallium Jet Limiter Concept for ISTTOK

    NASA Astrophysics Data System (ADS)

    Gomes, R. B.; Fernandes, H.; Silva, C.; Borba, D.; Carvalho, B.; Varandas, C.; Lielausis, O.; Klyukin, A.; Platacis, E.; Mikelsons, A.; Platnieks, I.

    2006-12-01

    The use of liquid metals as plasma facing components in tokamaks has recently experienced a renewed interest stimulated by their advantages to the development of a fusion reactor. Liquid metals have been proposed to solve problems related to the erosion and neutronic activation of solid walls submitted to high power loads allowing an efficient heat exhaustion from fusion devices. Presently the most promising materials are Lithium and Gallium. ISTTOK, a small size tokamak, will be used to test the behavior of a liquid Gallium jet in the vacuum chamber and its influence on the plasma. This paper presents a description of the conceived setup as well as experimental results. The liquid Gallium jet is generated by hydrostatic pressure and injected in a radial position close to a moveable stainless steel limiter. Both the jet and the limiter positions are variable allowing for a controlled exposure of the liquid Gallium to the edge plasma. The main components of the Gallium loop are a MHD pump, the liquid metal injector and a filtering system. The MHD pump is of the induction type, based on rotating permanent magnets. The injector is build from a ¼″ stainless steel pipe ended by a shaping nozzle. A setup has been developed to introduce oxide-free Gallium inside the loop's main supply tank. Raw liquid metal is placed inside a chamber heated and degassed under high vacuum while clean Gallium is extracted from the main body of the liquefied metal. Prior to installation on the tokamak, the experimental rig has been implemented using a Pyrex tube as test chamber to investigate the stability of the Gallium jet and its break-up length for several nozzle sizes. Results are presented in this paper. This rig was also useful to assess the behavior of the overall implemented apparatus.

  14. The Photospheric Footprints of Coronal Hole Jets

    NASA Astrophysics Data System (ADS)

    Muglach, Karin

    2016-10-01

    Coronal jets are transient, collimated ejections of plasma that are a common feature of solar X-ray and EUV image sequences. Of special interest are jets in coronal holes due to their possible contribution to the solar wind outflow. From a sample of 35 jet events I will investigate the photospheric signatures at the footpoints of these jets. White light images from the HMI on board SDO are used to derive the plane-of-sky flow field using local correlation tracking, and HMI magnetograms show the development of the magnetic flux. Both the evolution of the magnetic field and flows allow one to study the photospheric driver of these jets. One particularly interesting example demonstrates that the untwisting jet involves a tiny filament whose eruption is most likely triggered by the emergence of a small magnetic bipole close to one of its legs.

  15. Analysis of High Speed Jets Produced by a Servo Tube Driven Liquid Jet Injector

    NASA Astrophysics Data System (ADS)

    Portaro, Rocco; Ng, Hoi Dick

    2017-11-01

    In today's healthcare environment many types of medication must be administered through the use of hypodermic needles. Although this practice has been in use for many years, drawbacks such as accidental needle stick injuries, transmission of deadly viruses and bio-hazardous waste are still present. This study focuses on improving a needle free technology known as liquid jet injection, through the implementation of a linear servo tube actuator for the construction of a fully closed loop liquid jet injection system. This device has the ability to deliver both micro- and macro- molecules, high viscosity fluids whilst providing real time control of the jet pressure profile for accurate depth and dispersion control. The experiments are conducted using a prototype that consists of a 3 kW servo tube actuator, coupled to a specially designed injection head allowing nozzle size and injection volume to be varied. The device is controlled via a high speed servo amplifier and FPGA. The high speed jets emanating from the injector are assessed via high speed photography and through the use of a force transducer. Preliminary results indicate that the system allows for accurate shaping of the jet pressure profile, making it possible to target different tissue depths/types accurately.

  16. Coronal Jets from Minifilament Eruptions in Active Regions

    NASA Astrophysics Data System (ADS)

    Sterling, A. C.; Martinez, F.; Falconer, D. A.; Moore, R. L.

    2016-12-01

    Solar coronal jets are transient (frequently of lifetime 10 min) features that shoot out from near the solar surface, become much longer than their width, and occur in all solar regions, including coronal holes, quiet Sun, and active regions (e.g., Shimojo et al. 1996, Certain et al. 2007). Sterling et al. (2015) and other studies found that in coronal holes and in quiet Sun the jets result when small-scale filaments, called ``minifilaments,'' erupt onto nearby open or high-reaching field lines. Additional studies found that coronal-jet-onset locations (and hence presumably the minifilament-eruption-onset locations) coincided with locations of magnetic-flux cancellation. For active region (AR) jets however the situation is less clear. Sterling et al. (2016) studied jets in one active region over a 24-hour period; they found that some AR jets indeed resulted from minifilament eruptions, usually originating from locations of episodes of magnetic-flux cancelation. In some cases however they could not determine whether flux was emerging or canceling at the polarity inversion line from which the minifilament erupted; and for other jets of that region minifilaments were not conclusively apparent prior to jet occurrence. Here we further study AR jets, by observing them in a single AR over a one-week period, using X-ray images from Hinode/XRT and EUV/UV images from SDO/AIA, and line-of-sight magnetograms and white-light intensity-grams from SDO/HMI. We initially identified 13 prominent jets in the XRT data, and examined corresponding AIA and HMI data. For at least several of the jets, our findings are consistent with the jets resulting from minifilament eruptions, and originating from sights of magnetic-field cancelation. Thus our findings support that, at least in many cases, AR coronal jets result from the same physical processes that produce coronal jets in quiet-Sun and coronal-hole regions. FM was supportedby the Research Experience for Undergraduates (REU) program at

  17. Jovian Jet Stream

    NASA Image and Video Library

    2018-05-31

    See a jet stream speeding through Jupiter's atmosphere in this new view taken by NASA's Juno spacecraft. The jet stream, called Jet N2, was captured along the dynamic northern temperate belts of the gas giant planet. It is the white stream visible from top left to bottom right in the image. The color-enhanced image was taken at 10:34 p.m. PST on May 23 (1:34 a.m. EST on May 24), as Juno performed its 13th close flyby of Jupiter. At the time the image was taken, the spacecraft was about 3,516 miles (5,659 kilometers) from the tops of the clouds of the planet at a northern latitude of 32.9 degrees. Citizen scientists Gerald Eichstädt and Seán Doran created this image using data from the spacecraft's JunoCam imager. The view is a composite of several separate JunoCam images that were re-projected, blended, and healed. https://photojournal.jpl.nasa.gov/catalog/PIA22422

  18. Experimental evidence of multimaterial jet formation with lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolaie, Ph.; Stenz, C.; Tikhonchuk, V.

    2010-11-15

    Laser-produced multimaterial jets have been investigated at the Prague Asterix Laser System laser [K. Jungwirth et al., Phys. Plasmas 8, 2495 (2001)]. The method of jet production is based on the laser-plasma ablation process and proved to be easy to set up and robust. The possibility of multimaterial laboratory jet production is demonstrated and complex hydrodynamic flows in the jet body are obtained. Two complementary diagnostics in the optical ray and x-ray ranges provide detailed information about jet characteristics. The latter are in agreement with estimates and two-dimensional radiation hydrodynamic simulation results. The experiment provides a proof of principle thatmore » a velocity field could be produced and controlled in the jet body. It opens a possibility of astrophysical jet structure modeling in laboratory.« less

  19. Atomization of a High Speed Jet

    NASA Astrophysics Data System (ADS)

    Xu, Zhiliang; Samulyak, Roman; Li, Xiaolin; Tzanos, Constantine

    2005-11-01

    We present a numerical study of the jet breakup and spray formation in a diesel engine by the Front Tracking method. The mechanisms of jet breakup and spray formation of a high speed diesel jet injected through a circular nozzle are the key to design a fuel efficient, nonpolluting diesel engine. Many parameters such as the nuzzle shape, the velocity and the turbulence of the jet and the thermodynamic states of liquid and gas could be contributing causes for jet breakup. We conduct the simulations for the jet breakup within a 2D axis-symmetric geometry. Our goal is to model the spray at a micro-physical level, with the creation of individual droplets. The problem is multiscale. The droplets are a few microns in size. The nozzle is about 0.2 mm in diameter and 1 mm in length. In order to resolve various physical patterns such as vortex, shock waves, vacuum and track droplets and spray, the Burger-Colella adaptive mesh refinement technique is used. We model mixed vapor-liquid region through a heterogeneous model with dynamic vapor bubble insertion. On the liquid/vapor interface, a phase transition problem is solved numerically.

  20. Alfven Waves observed in Polar Jets

    NASA Astrophysics Data System (ADS)

    Cirtain, J.

    2007-12-01

    Data collected on X-ray jets during a polar coronal hole observation campaign has revealed that some events have two distinct velocity components, one near the Alfv\\acute{e}n speed (~ 800 km sec-1) and the other near the sound speed (200 km sec-1). Previous reports indicate the incidence of jet formation to be only a few per day, with average radial speeds of 200 km sec-1. With the X-Ray Telescope (XRT) we detect an average of 10 events per hour. These jets are approximately 2 × 103 - 2 × 104 km wide and than 1 × 105 km long. The jet lifetimes range from 100 - 2500 secs. A large percentage of these jets are associated with small footpoint flares (1). The large number of events, coupled with the high velocities of the apparent outflows, indicate that these jets may contribute significantly to the high-speed solar wind from coronal holes. These observations provide unique and important evidence for the generation of Alfvén waves during reconnection and are possibly the first evidence of Alfv´n wave observations driving the high speed solar wind.

  1. Radiatively-driven general relativistic jets

    NASA Astrophysics Data System (ADS)

    Vyas, Mukesh K.; Chattopadhyay, Indranil

    2018-02-01

    We use moment formalism of relativistic radiation hydrodynamics to obtain equations of motion of radial jets and solve them using polytropic equation of state of the relativistic gas. We consider curved space-time around black holes and obtain jets with moderately relativistic terminal speeds. In addition, the radiation field from the accretion disc, is able to induce internal shocks in the jet close to the horizon. Under combined effect of thermal as well as radiative driving, terminal speeds up to 0.75 (units of light speed) are obtained.

  2. Studies of inclusive four-jet production with two b -tagged jets in proton-proton collisions at 7 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; De Visscher, S.; Delaere, C.; Delcourt, M.; Forthomme, L.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; El-khateeb, E.; Mahmoud, M. A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asawatangtrakuldee, C.; Asin, I.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Goebel, K.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Parida, B.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Behnamian, H.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; De Remigis, P.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Oh, S. B.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Gavrilenko, M.; Golutvin, I.; Karjavin, V.; Korenkov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Voytishin, N.; Yuldashev, B. S.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Chistov, R.; Rusinov, V.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Khein, L.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Lukina, O.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Bowen, J.; Bruner, C.; Castle, J.; Kenny, R. P.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Luo, J.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2016-12-01

    Measurements are presented of the cross section for the production of at least four jets, of which at least two originate from b quarks, in proton-proton collisions. Data collected with the CMS detector at the LHC at a center-of-mass energy of 7 TeV are used, corresponding to an integrated luminosity of 3 pb-1 . The cross section is measured as a function of the jet transverse momentum for pT>20 GeV , and of the jet pseudorapidity for |η | <2.4 (b jets), 4.7 (untagged jets). The correlations in azimuthal angle and pT between the jets are also studied. The inclusive cross section is measured to be σ (p p →2 b +2 j +X )=69 ±3 (stat )±24 (syst ) nb . The η and pT distributions of the four jets and the correlations between them are well reproduced by event generators that combine perturbative QCD calculations at next-to-leading-order accuracy with contributions from parton showers and multiparton interactions.

  3. Increasing jet entrainment, mixing and spreading

    DOEpatents

    Farrington, R.B.

    1994-08-16

    A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 11 figs.

  4. Infrared imaging results of an excited planar jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrington, R.B.

    1991-12-01

    Planar jets are used for many applications including heating, cooling, and ventilation. Generally such a jet is designed to provide good mixing within an enclosure. In building applications, the jet provides both thermal comfort and adequate indoor air quality. Increased mixing rates may lead to lower short-circuiting of conditioned air, elimination of dead zones within the occupied zone, reduced energy costs, increased occupant comfort, and higher indoor air quality. This paper discusses using an infrared imaging system to show the effect of excitation of a jet on the spread angle and on the jet mixing efficiency. Infrared imaging captures amore » large number of data points in real time (over 50,000 data points per image) providing significant advantages over single-point measurements. We used a screen mesh with a time constant of approximately 0.3 seconds as a target for the infrared camera to detect temperature variations in the jet. The infrared images show increased jet spread due to excitation of the jet. Digital data reduction and analysis show change in jet isotherms and quantify the increased mixing caused by excitation. 17 refs., 20 figs.« less

  5. Jet and electromagnetic tomography (JET) of extreme phases of matter in heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinz, Ulrich

    2015-08-31

    The Ohio State University (OSU) group contributed to the deliverables of the JET Collaboration three major products: 1. The code package iEBE-VISHNU for modeling the dynamical evolution of the soft medium created in relativistic heavy-ion collisions, from its creation all the way to final freeze-out using a hybrid approach that interfaces a free-streaming partonic pre-equilbrium stage with a (2+1)-dimensional viscous relativistic fluid dynamical stage for the quark-gluon plasma (QGP) phase and the microscopic hadron cascade UrQMD for the hadronic rescattering and freeze-out stage. Except for UrQMD, all dynamical evolution components and interfaces were developed at OSU and tested and implementedmore » in collaboration with the Duke University group. 2. An electromagnetic radiation module for the calculation of thermal photon emission from the QGP and hadron resonance gas stages of a heavy-ion collision, with emission rates that have been corrected for viscous effects in the expanding medium consistent with the bulk evolution. The electromagnetic radiation module was developed under OSU leadership in collaboration with the McGill group and has been integrated in the iEBE-VISHNU code package. 3. An interface between the Monte Carlo jet shower evolution and hadronization codes developed by the Wayne State University (WSU), McGill and Texas A&M groups and the iEBE-VISHNU bulk evolution code, for performing jet quenching and jet shape modification studies in a realistically modeled evolving medium that was tuned to measured soft hadron data. Building on work performed at OSU for the theoretical framework used to describe the interaction of jets with the medium, initial work on the jet shower Monte Carlo was started at OSU and moved to WSU when OSU Visiting Assistant Professor Abhijit Majumder accepted a tenure track faculty position at WSU in September 2011. The jet-hydro interface was developed at OSU and WSU and tested and implemented in collaboration with the Mc

  6. Investigating the anatomy of magnetosheath jets - MMS observations

    NASA Astrophysics Data System (ADS)

    Karlsson, Tomas; Plaschke, Ferdinand; Hietala, Heli; Archer, Martin; Blanco-Cano, Xóchitl; Kajdič, Primož; Lindqvist, Per-Arne; Marklund, Göran; Gershman, Daniel J.

    2018-04-01

    We use Magnetosphere Multiscale (MMS) mission data to investigate a small number of magnetosheath jets, which are localized and transient increases in dynamic pressure, typically due to a combined increase in plasma velocity and density. For two approximately hour-long intervals in November, 2015 we found six jets, which are of two distinct types. (a) Two of the jets are associated with the magnetic field discontinuities at the boundary between the quasi-parallel and quasi-perpendicular magnetosheath. Straddling the boundary, the leading part of these jets contains an ion population similar to the quasi-parallel magnetosheath, while the trailing part contains ion populations similar to the quasi-perpendicular magnetosheath. Both populations are, however, cooler than the surrounding ion populations. These two jets also have clear increases in plasma density and magnetic field strength, correlated with a velocity increase. (b) Three of the jets are found embedded within the quasi-parallel magnetosheath. They contain ion populations similar to the surrounding quasi-parallel magnetosheath, but with a lower temperature. Out of these three jets, two have a simple structure. For these two jets, the increases in density and magnetic field strength are correlated with the dynamic pressure increases. The other jet has a more complicated structure, and no clear correlations between density, magnetic field strength and dynamic pressure. This jet has likely interacted with the magnetosphere, and contains ions similar to the jets inside the quasi-parallel magnetosheath, but shows signs of adiabatic heating. All jets are associated with emissions of whistler, lower hybrid, and broadband electrostatic waves, as well as approximately 10 s period electromagnetic waves with a compressional component. The latter have a Poynting flux of up to 40 µW m-2 and may be energetically important for the evolution of the jets, depending on the wave excitation mechanism. Only one of the jets is

  7. The regimes of twin-fluid jet-in-crossflow at atmospheric and jet-engine operating conditions

    NASA Astrophysics Data System (ADS)

    Tan, Zu Puayen; Bibik, Oleksandr; Shcherbik, Dmitriy; Zinn, Ben T.; Patel, Nayan

    2018-02-01

    The "Twin-Fluid Jet-in-Crossflow (TF-JICF)" is a nascent variation of the classical JICF, in which a liquid jet is co-injected with an annular sleeve of gas into a gaseous crossflow. Jet-engine designers are interested in using TF-JICF for liquid-fuel injection and atomization in the next-generation combustors because it is expected to minimize combustor-damaging auto-ignition and fuel-coking tendencies. However, experimental data of TF-JICF are sparse. Furthermore, a widely accepted TF-JICF model that correlates the spray's penetration to the combined liquid-gas momentum-flux ratio (Jeff) is increasingly showing discrepancy with emerging results, suggesting a gap in the current understanding of TF-JICF. This paper describes an investigation that addressed the gap by experimentally characterizing the TF-JICF produced by a single injector across wide ranges of operating conditions (i.e., jet-A injectant, crossflow of air, crossflow Weber number = 175-1050, crossflow pressure Pcf = 1.8-9.5 atm, momentum-flux ratio J = 5-40, and air-nozzle dP = 0%-150% of Pcf). These covered the conditions previously used to develop the Jeff model, recently reported conditions that produced Jeff discrepancies, and high-pressure conditions found in jet-engines. Dye-based shadowgraph was used to acquire high-resolution (13.52 μm/pixel) images of the TF-JICF, which revealed wide-ranging characteristics such as the disrupted Rayleigh-Taylor jet instabilities, air-induced jet corrugations, spray-bifurcations, and prompt-atomization. Analyses of the data showed that contrary to the literature, the TF-JICF's penetration is not monotonically related to Jeff. A new conceptual framework for TF-JICF is proposed, where the flow configuration is composed of four regimes, each having different penetration trends, spray structures, and underlying mechanisms.

  8. [Radiation conditions and radiation risks for cosmonauts flying to Mars using electrical jet microthrusters].

    PubMed

    Shafirkin, A V; Kolomenskiĭ, A V

    2008-01-01

    According to recent workups, the Mars mission spacecraft will be designed with an electrical jet microthrusters rather than a power reactor facility. The article contains analysis of the main sources of radiation hazard during the exploration mission using this cost-efficient, ecological, easy-to-operate propulsion powered by solar arrays. In addition, the authors make predictions of the generalized doses of ionizing radiation for mission durations of 730 and 900 days behind various shielding thicknesses, and on the Martian surface. Calculation algorithms are described and radiation risks are estimated for the crew life span and possible life time reduction in consequence of participation in the mission.

  9. Domestic wastewater treatment by a submerged MBR (membrane bio-reactor) with enhanced air sparging.

    PubMed

    Chang, I S; Judd, S J

    2003-01-01

    The air sparging technique has been recognised as an effective way to control membrane fouling. However, its application to a submerged MBR (Membrane Bio-Reactor) has not yet been reported. This paper deals with the performances of air sparging on a submerged MBR for wastewater treatment. Two kinds of air sparging techniques were used respectively. First, air is injected into the membrane tube channels so that mixed liquor can circulate in the bioreactor (air-lift mode). Second, a periodic air-jet into the membrane tube is introduced (air-jet mode). Their applicability was evaluated with a series of lab-scale experiments using domestic wastewater. The flux increased from 23 to 33 l m(-2) h(-1) (43% enhancement) when air was injected for the air-lift module. But further increase of flux was not observed as the gas flow increased. The Rc/(Rc+Rf), ratio of cake resistance (Rc) to sum of Rc and Rf (internal fouling resistance), was 23%, indicating that the Rc is not the predominant resistance unlike other MBR studies. It showed that the cake layer was removed sufficiently due to the air injection. Thus, an increase of airflow could not affect the flux performance. The air-jet module suffered from a clogging problem with accumulated sludge inside the lumen. Because the air-jet module has characteristics of dead end filtration, a periodic air-jet was not enough to blast all the accumulated sludge out. But flux was greater than in the air-lift module if the clogging was prevented by an appropriate cleaning regime such as periodical backwashing.

  10. Risk factors of jet fuel combustion products.

    PubMed

    Tesseraux, Irene

    2004-04-01

    Air travel is increasing and airports are being newly built or enlarged. Concern is rising about the exposure to toxic combustion products in the population living in the vicinity of large airports. Jet fuels are well characterized regarding their physical and chemical properties. Health effects of fuel vapors and liquid fuel are described after occupational exposure and in animal studies. Rather less is known about combustion products of jet fuels and exposure to those. Aircraft emissions vary with the engine type, the engine load and the fuel. Among jet aircrafts there are differences between civil and military jet engines and their fuels. Combustion of jet fuel results in CO2, H2O, CO, C, NOx, particles and a great number of organic compounds. Among the emitted hydrocarbons (HCs), no compound (indicator) characteristic for jet engines could be detected so far. Jet engines do not seem to be a source of halogenated compounds or heavy metals. They contain, however, various toxicologically relevant compounds including carcinogenic substances. A comparison between organic compounds in the emissions of jet engines and diesel vehicle engines revealed no major differences in the composition. Risk factors of jet engine fuel exhaust can only be named in context of exposure data. Using available monitoring data, the possibilities and limitations for a risk assessment approach for the population living around large airports are presented. The analysis of such data shows that there is an impact on the air quality of the adjacent communities, but this impact does not result in levels higher than those in a typical urban environment.

  11. Analysis of liquid-metal-jet impingement cooling in a corner region and for a row of jets

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1975-01-01

    A conformal mapping method was used to analyze liquid-metal-jet impingement heat transfer. The jet flow region and energy equation are transformed to correspond to uniform flow in a parallel plate channel with nonuniform heat addition along a portion of one wall. The exact solution for the wall-temperature distribution was obtained in the transformed channel, and the results are mapped back into the physical plane. Two geometries are analyzed. One is for a single slot jet directed either into an interior corner formed by two flat plates, or over the external sides of the corner; the flat plates are uniformly heated, and the corner can have various included angles. The heat-transfer coefficient at the stagnation point at the apex of the plates is obtained as a function of the corner angle, and temperature distributions are calculated along the heated walls. The second geometry is an infinite row of uniformly spaced parallel slot jets impinging normally against a uniformly heated plate. The heat-transfer behavior is obtained as a function of the spacing between the jets. Results are given for several jet Peclet numbers from 5 to 50.

  12. A new look for the Southern Hemisphere jet stream

    NASA Astrophysics Data System (ADS)

    Gallego, David; Ribera, Pedro; Garcia-Herrera, Ricardo; Hernandez, Emiliano; Gimeno, Luis

    2005-05-01

    A new jet stream description, defined as the geostrophic streamline of maximum average velocity is proposed. An objective algorithm for detecting and tracking the jet has been developed, tested and applied to the NCEP/NCAR 200-hPa geopotential height in the Southern Hemisphere for the period 1958 2002. The results show the variability of the double character of the Southern Hemisphere jet, with a marked seasonality. During the warm season, a single jet can be found around 40°S, while autumn and winter are characterized by a clear double jet structure, with a strong and dominant subtropical jet located around 30°S and a polar front jet, progressively displaced toward southern latitudes and reaching 60°S by the end of the cold season. In general, a trend toward slower subtropical jets and stronger polar front jets has been detected during the study period. The Southern Annular Mode appears as a main modulator of the latitude and strength of the polar front jet, influencing to a minor extent its subtropical counterpart. The ENSO cycle strongly modifies the latitude and specially the strength of the subtropical jet, affecting its preferred wavenumber as well. Nevertheless, the effect of this oscillation seems fairly restricted in the Pacific, thus limiting the ability of this jet to drive the El Niño teleconnections along the Southern Hemisphere. The consistency of the results, when compared with previous jet climatologies, suggests that the new approach is a reliable jet-tracking method, thus providing a new tool to analyze climatic variability at hemispheric scales.

  13. Intraoperative echocardiographic detection of regurgitant jets after valve replacement

    NASA Technical Reports Server (NTRS)

    Morehead, A. J.; Firstenberg, M. S.; Shiota, T.; Qin, J.; Armstrong, G.; Cosgrove, D. M. 3rd; Thomas, J. D.

    2000-01-01

    BACKGROUND: Paravalvular jets, documented by intraoperative transesophageal echocardiography, have prompted immediate valve explantation by others, yet the significance of these jets is unknown. METHODS: Twenty-seven patients had intraoperative transesophageal two-dimensional color Doppler echocardiography, performed to assess the number and area of regurgitant jets after valve replacement, before and after protamine. Patients were grouped by first time versus redo operation, valve position and type. RESULTS: Before protamine, 55 jets were identified (2.04+/-1.4 per patient) versus 29 jets after (1.07+/-1.2 per patient, p = 0.0002). Total jet area improved from 2.0+/-2.2 cm2 to 0.86+/-1.7 cm2 with protamine (p<0.0001). In all patients jet area decreased (average decrease, 70.7%+/-27.0%). First time and redo operations had similar improvements in jet number and area (both p>0.6). Furthermore, mitral and mechanical valves each had more jets and overall greater jet area when compared to aortic and tissue valves, respectively. CONCLUSIONS: Following valve replacement, multiple jets are detected by intraoperative transesophageal echocardiography. They are more common and larger in the mitral position and with mechanical valves. Improvement occurs with reversal of anticoagulation.

  14. Synthetic Jet Flow Field Database for CFD Validation

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Chen, Fang Jenq; Neuhart, Dan; Harris, Jerome

    2004-01-01

    An oscillatory zero net mass flow jet was generated by a cavity-pumping device, namely a synthetic jet actuator. This basic oscillating jet flow field was selected as the first of the three test cases for the Langley workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control. The purpose of this workshop was to assess the current CFD capabilities to predict unsteady flow fields of synthetic jets and separation control. This paper describes the characteristics and flow field database of a synthetic jet in a quiescent fluid. In this experiment, Particle Image Velocimetry (PIV), Laser Doppler Velocimetry (LDV), and hot-wire anemometry were used to measure the jet velocity field. In addition, the actuator operating parameters including diaphragm displacement, internal cavity pressure, and internal cavity temperature were also documented to provide boundary conditions for CFD modeling.

  15. Multiple Mode Actuation of a Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Pack, LaTunia G.; Seifert, Avi

    2001-01-01

    The effects of multiple mode periodic excitation on the evolution of a circular turbulent jet were studied experimentally. A short, wide-angle diffuser was attached to the jet exit. Streamwise and cross-stream excitations were introduced at the junction between the jet exit and the diffuser inlet on opposing sides of the jet. The introduction of high amplitude, periodic excitation in the streamwise direction enhances the mixing and promotes attachment of the jet shear-layer to the diffuser wall. Cross-stream excitation applied over a fraction of the jet circumference can deflect the jet away from the excitation slot. The two modes of excitation were combined using identical frequencies and varying the relative phase between the two actuators in search of an optimal response. It is shown that, for low and moderate periodic momentum input levels, the jet deflection angles depend strongly on the relative phase between the two actuators. Optimum performance is achieved when the phase difference is pi +/- pi/6. The lower effectiveness of the equal phase excitation is attributed to the generation of an azimuthally symmetric mode that does not produce the required non-axisymmetric vectoring. For high excitation levels, identical phase becomes more effective, while phase sensitivity decreases. An important finding was that with proper phase tuning, two unsteady actuators can be combined to obtain a non-linear response greater than the superposition of the individual effects.

  16. Emergence and equilibration of jets in planetary turbulence

    NASA Astrophysics Data System (ADS)

    Constantinou, Navid; Ioannou, Petros; Farrell, Brian

    2013-04-01

    Spatially and temporally coherent large scale jets that are not forced directly at the jet scale are prominent feature of rotating turbulence. A familiar example is the midlatitude jet in the Earth's atmosphere and the banded winds of the giants planets. These jets arise and are supported by the systematic organisation of the turbulent Reynolds stresses. Understanding the mechanism producing the required eddy momentum flux convergence, and how the jets and associated eddy field mutually adjust to maintain a steady jet structure at finite amplitude, constitute fundamental theoretical problems. Stochastic Structural Stability Theory (SSST) gives an explanation for jet formation that is fundamentally based on the interaction between jets and their associated field of turbulent eddies. SSST combines the full dynamics of the zonal mean flow with the second order statistics of the turbulent field obtained from a stochastic turbulence model (STM). The quasi-linear (QL) approximation to the full nonlinear dynamics (NL) results when the perturbation-perturbation interactions are parameterized in the perturbation equations, while interaction between the perturbations and the zonal mean flow is retained in the zonal mean equation. SSST consists of an infinite ensemble of perturbations evolving under QL. Therefore, SSST provides a set of dynamical equations for the mean flow and the second order statistics of the second cummulant of the perturbation vorticity field, which are autonomous and fluctuation free and can facilitate analytic study of turbulent equilibria and their stability as a function of parameters. Thus, jet formation in homogeneous beta-turbulence can be identified with an SSST structural instability of a homogeneous (mean flow free) SSTT equilibrium. We investigate the emergence and equilibration of jets from homogeneous barotropic beta-plane turbulence in the absence of coherent external forcing. SSST predicts that infinitesimal perturbations with zonal jet

  17. Jet dynamics post drop impact on a deep pool

    NASA Astrophysics Data System (ADS)

    Michon, Guy-Jean; Josserand, Christophe; Séon, Thomas

    2017-02-01

    We investigate experimentally the jet formed by the collapse of a cavity created by the impact of a drop on a pool of the same aqueous liquid. We show that jets can emerge with very different shapes and velocities, depending on the impact parameters, thus generating droplets with various initial sizes and velocities. After presenting the jet velocity and top drop radius variation as a function of the impact parameters, we discuss the influence of the liquid parameters on the jet velocity. This allows us to define two different regimes: the singular jet and the cavity jet regimes, where the mechanisms leading to the cavity retraction and subsequent jet dynamics are drastically different. In particular, we demonstrate that in the first regime, a singular capillary wave collapse sparks the whole jet dynamics, making the jet's fast, thin, liquid parameters dependent and barely reproducible. On the contrary, in the cavity jet regime, defined for higher impact Froude numbers, the jets are fat and slow. We show that jet velocity is simply proportional to the capillary velocity √{γ /ρlDd }, where γ is the liquid surface tension, ρl the liquid density, and Dd the impacting drop diameter, and it is in particular independent of viscosity, impact velocity, and gravity, even though the cavity is larger than the capillary length. Finally, we demonstrate that capillary wave collapse and cavity retraction are correlated in the singular regime and decorrelated in the cavity jet regime.

  18. On the structure and stability of magnetic tower jets

    DOE PAGES

    Huarte-Espinosa, M.; Frank, A.; Blackman, E. G.; ...

    2012-09-05

    Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales <~ 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models,more » the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Here, unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.« less

  19. How much information is in a jet?

    NASA Astrophysics Data System (ADS)

    Datta, Kaustuv; Larkoski, Andrew

    2017-06-01

    Machine learning techniques are increasingly being applied toward data analyses at the Large Hadron Collider, especially with applications for discrimination of jets with different originating particles. Previous studies of the power of machine learning to jet physics have typically employed image recognition, natural language processing, or other algorithms that have been extensively developed in computer science. While these studies have demonstrated impressive discrimination power, often exceeding that of widely-used observables, they have been formulated in a non-constructive manner and it is not clear what additional information the machines are learning. In this paper, we study machine learning for jet physics constructively, expressing all of the information in a jet onto sets of observables that completely and minimally span N-body phase space. For concreteness, we study the application of machine learning for discrimination of boosted, hadronic decays of Z bosons from jets initiated by QCD processes. Our results demonstrate that the information in a jet that is useful for discrimination power of QCD jets from Z bosons is saturated by only considering observables that are sensitive to 4-body (8 dimensional) phase space.

  20. Radial flow pulse jet mixer

    DOEpatents

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  1. Coronal Jets from Minifilament Eruptions in Active Regions

    NASA Technical Reports Server (NTRS)

    Martinez, Francisco; Sterling, Alphonse C.; Falconer, David A.; Moore, Ronald L.

    2016-01-01

    Solar coronal jets are transient (frequently of lifetime approx.10 min) features that shoot out from near the solar surface, become much longer than their width, and occur in all solar regions, including coronal holes, quiet Sun, and active regions (e.g., Shimojo et al. 1996, Cirtain et al. 2007). Sterling et al. (2015) and other studies found that in coronal holes and in quiet Sun the jets result when small-scale filaments, called "minifilaments" erupt onto nearby open or high-reaching field lines. Additional studies found that coronal-jet-onset locations (and hence presumably the minifilament-eruption-onset locations) coincided with locations of magnetic-flux cancelation. For active region (AR) jets however the situation is less clear. Sterling et al. (2016) studied jets in one active region over a 24-hour period; they found that some AR jets indeed resulted from minifilament eruptions, usually originating from locations of episodes of magnetic-flux cancelation. In some cases however they could not determine whether flux was emerging or canceling at the polarity inversion line from which the minifilament erupted, and for other jets of that region minifilaments were not conclusively apparent prior to jet occurrence. Here we further study AR jets, by observing them in a single AR over a one-week period, using X-ray images from Hinode/XRT and EUV/UV images from SDO/AIA, and line-of-sight magnetograms and white-light intensity-grams from SDO/HMI. We initially identified 13 prominent jets in the XRT data, and examined corresponding AIA and HMI data. For at least several of the jets, our findings are consistent with the jets resulting from minifilament eruptions, and originating from sites of magnetic-field cancelation.

  2. Fabrication of micro/nano-structures by electrohydrodynamic jet technique

    NASA Astrophysics Data System (ADS)

    Wang, Dazhi; Zhao, Xiaojun; Lin, Yigao; Ren, Tongqun; Liang, Junsheng; Liu, Chong; Wang, Liding

    2017-12-01

    Electrohydrodynamic jet (E-Jet) is an approach to the fabrication of micro/nano-structures by the use of electrical forces. In this process, the liquid is subjected to electrical and mechanical forces to form a liquid jet, which is further disintegrated into droplets. The major advantage of the E-Jet technique is that the sizes of the jet formed can be at the nanoscale far smaller than the nozzle size, which can realize high printing resolution with less risk of nozzle blockage. The E-Jet technique, which mainly includes E-Jet deposition and E-Jet printing, has a wide range of applications in the fabrication of micro/nano-structures for micro/nano-electromechanical system devices. This technique is also considered a micro/nano-fabrication method with a great potential for commercial use. This study mainly reviews the E-Jet deposition/printing fundamentals, fabrication process, and applications.

  3. Tangential synthetic jets for separation control

    NASA Astrophysics Data System (ADS)

    Esmaeili Monir, H.; Tadjfar, M.; Bakhtian, A.

    2014-02-01

    A numerical study of separation control has been made to investigate aerodynamic characteristics of a NACA23012 airfoil with a tangential synthetic jet. Simulations are carried out at the chord Reynolds number of Re=2.19×106. The present approach relies on solving the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. The turbulence model used in the present computation is the Spalart-Allmaras one-equation model. All computations are performed with a finite volume based code. Stall characteristics are significantly improved by controlling the formation of separation vortices in the flow. We placed the synthetic jet at the 12% chord, xj=0.12c, where we expected the separation to occur. Two distinct jet oscillating frequencies: Fj+=0.159 and Fj+=1 were considered. We studied the effect of blowing ratio, Vj/U∞, where it was varied from 0 to 5. The inclined angle of the synthetic jet was varied from αj=0° up to αj=83°. For the non-zero inclined angles, the local maximum in the aerodynamic performance, Cl/Cd, of 6.89 was found for the inclined angle of about 43°. In the present method, by means of creating a dent on the airfoil, linear momentum is transferred to the flow system in tangential direction to the airfoil surface. Thus the absolute maximum of 11.19 was found for the tangential synthetic jet at the inclined angle of the jet of 0°. The mechanisms involved for a tangential jet appear to behave linearly, as by multiplying the activation frequency of the jet by a factor produces the same multiplication factor in the resulting frequency in the flow. However, the mechanisms involved in the non-zero inclined angle cases behave nonlinearly when the activation frequency is multiplied.

  4. Measurement of jet quenching with semi-inclusive hadron-jet distributions in central Pb-Pb collisions at √{s_{NN}}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Chunhui, Z.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadlovska, S.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Luz, P. H. F. N. D.; Ma, R.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Masui, H.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seeder, K. S.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2015-09-01

    We report the measurement of a new observable of jet quenching in central Pb-Pb collisions at √{s_{NN}}=2.76 TeV, based on the semi-inclusive rate of charged jets recoiling from a high transverse momentum (high- p T) charged hadron trigger. Jets are measured using collinear-safe jet reconstruction with infrared cutoff for jet constituents of 0.15 GeV, for jet resolution parameters R = 0 .2, 0 .4 and 0 .5. Underlying event background is corrected at the event-ensemble level, without imposing bias on the jet population. Recoil jet spectra are reported in the range 20 < p T,jet ch < 100 GeV. Reference distributions for pp collisions at √{s}=2.76 TeV are calculated using Monte Carlo and NLO pQCD methods, which are validated by comparing with measurements in pp collisions at √{s}=7 TeV. The recoil jet yield in central Pb-Pb collisions is found to be suppressed relative to that in pp collisions. No significant medium-induced broadening of the intra-jet energy profile is observed within 0.5 radians relative to the recoil jet axis. The angular distribution of the recoil jet yield relative to the trigger axis is found to be similar in central Pb-Pb and pp collisions, with no significant medium-induced acoplanarity observed. Large-angle jet deflection, which may provide a direct probe of the nature of the quasi-particles in hot QCD matter, is explored. [Figure not available: see fulltext.

  5. Simulations of Jetted Relativistic Blastwaves in Astrophysics

    NASA Astrophysics Data System (ADS)

    Salmonson, Jay; Fragile, Chris; Anninos, Peter

    2005-10-01

    We present new 2D relativistic hydrodynamic simulations of jetted blastwaves using the Cosmos++ astrophysics code. In particular, we simulate the asymmetric outflow resulting from the giant flare of December 27, 2004 from SGR 1806-20. We find that the asymmetric radio nebula observed to expand over the months following the flare cannot be explained by a simple ballistic ejection of material during the flare, but requires angular dependence of the energy injection with respect to the jet axis. In addition, we present simulations of jetted blastwaves of the relativistic afterglows resulting from gamma-ray bursts. Evolving these jetted blastwaves from Lorentz factors of order 10, we explore the dependence of observed lightcurves on initial jet opening angle, energy distribution, and observer angle with respect to the jet axis. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  6. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Technical Reports Server (NTRS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.; hide

    2016-01-01

    Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.

  7. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Technical Reports Server (NTRS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  8. Origin of superluminal radio jets in microquasars

    NASA Astrophysics Data System (ADS)

    Yadav, J. S.; Bhandare, R. S.

    In Microquasars, superluminal radio jets are seen at large distances from few hundred AU to 5000 AU with very high radio luminosity. We suggest that these superluminal jets are due to internal shocks which form in the previously generated slowly moving wind (from the accretion disk or the companion star) with beta < 0.01 as the fast moving discrete jet with beta sim 1 catches up and interacts with it. The black hole X-ray binaries with transient radio emission (mostly LMXBs) produce superluminal jets with beta_app > 1 when the accretion rate is high and the bolometric luminosity, L_bol approaches the Eddington Luminosity, L_Edd. On the other hand, the black hole X-ray binaries with persistent radio emission (mostly HMXBs) produce superluminal jets with beta_app < 1 at relatively low accretion rate. Our work here brings Galactic microquasars closer to extragalactic AGNs and quasars as the environment plays an important role in the formation of superluminal jets.

  9. Dichotomy of X-Ray Jets in Solar Coronal Holes

    NASA Astrophysics Data System (ADS)

    Robe, D. M.; Moore, R. L.; Falconer, D. A.

    2012-12-01

    It has been found that there are two different types of X-ray jets observed in the Sun's polar coronal holes: standard jets and blowout jets. A proposed model of this dichotomy is that a standard jet is produced by a burst of reconnection of the ambient magnetic field with the opposite-polarity leg of the base arcade. In contrast, it appears that a blowout jet is produced when the interior of the arcade has so much pent-up free magnetic energy in the form of shear and twist in the interior field that the external reconnection unleashes the interior field to erupt open. In this project, X-ray movies of the polar coronal holes taken by Hinode were searched for X-ray jets. Co-temporal movies taken by the Solar Dynamics Observatory in 304 Å emission from He II, showing solar plasma at temperatures around 80,000 K, were examined for whether the identified blowout jets carry much more He II plasma than the identified standard jets. It was found that though some jets identified as standard from the X-ray movies could be seen in the He II 304 Å movies, the blowout jets carried much more 80,000 K plasma than did most standard jets. This finding supports the proposed model for the morphology and development of the two types of jets.

  10. Experimental exploration of underexpanded supersonic jets

    NASA Astrophysics Data System (ADS)

    André, Benoît; Castelain, Thomas; Bailly, Christophe

    2014-01-01

    Two underexpanded free jets at fully expanded Mach numbers = 1.15 and 1.50 are studied. Schlieren visualizations as well as measurements of static pressure, Pitot pressure and velocity are performed. All these experimental techniques are associated to obtain an accurate picture of the jet flow development. In particular, expansion, compression and neutral zones have been identified in each shock cell. Particle lag is considered by integrating the equation of motion for particles in a fluid flow and it is found that the laser Doppler velocimetry is suitable for investigating shock-containing jets. Even downstream of the normal shock arising in the = 1.50 jet, the measured gradual velocity decrease is shown to be relevant.

  11. Precise predictions for V+jets dark matter backgrounds

    NASA Astrophysics Data System (ADS)

    Lindert, J. M.; Pozzorini, S.; Boughezal, R.; Campbell, J. M.; Denner, A.; Dittmaier, S.; Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, N.; Huss, A.; Kallweit, S.; Maierhöfer, P.; Mangano, M. L.; Morgan, T. A.; Mück, A.; Petriello, F.; Salam, G. P.; Schönherr, M.; Williams, C.

    2017-12-01

    High-energy jets recoiling against missing transverse energy (MET) are powerful probes of dark matter at the LHC. Searches based on large MET signatures require a precise control of the Z(ν {\\bar{ν }})+ jet background in the signal region. This can be achieved by taking accurate data in control regions dominated by Z(ℓ ^+ℓ ^-)+ jet, W(ℓ ν )+ jet and γ + jet production, and extrapolating to the Z(ν {\\bar{ν }})+ jet background by means of precise theoretical predictions. In this context, recent advances in perturbative calculations open the door to significant sensitivity improvements in dark matter searches. In this spirit, we present a combination of state-of-the-art calculations for all relevant V+ jets processes, including throughout NNLO QCD corrections and NLO electroweak corrections supplemented by Sudakov logarithms at two loops. Predictions at parton level are provided together with detailed recommendations for their usage in experimental analyses based on the reweighting of Monte Carlo samples. Particular attention is devoted to the estimate of theoretical uncertainties in the framework of dark matter searches, where subtle aspects such as correlations across different V+ jet processes play a key role. The anticipated theoretical uncertainty in the Z(ν {\\bar{ν }})+ jet background is at the few percent level up to the TeV range.

  12. Characterization of high speed synthetic jet actuators

    NASA Astrophysics Data System (ADS)

    Pikcilingis, Lucia

    Over the last 20 years, synthetic jets have been studied as a means for aerodynamic active flow control. Specifically, synthetic jets provide momentum transfer with zero-net mass flux, which has been proven to be effective for controlling flow fields. A synthetic jet is created by the periodic formation of vortex rings at its orifice due to the periodic motion of a piezoelectric disk(s). The present study seeks to optimize the performance of a synthetic jet actuator by utilizing different geometrical parameters such as disk thickness, orifice width and length, cavity height and cavity diameter, and different input parameters such as driving voltage and frequency. Two apparatuses were used with a cavity diameter of either 80 mm or 160 mm. Piezoelectric-based disks were provided by the Mide Corporation. Experiments were conducted using several synthetic jet apparatuses designed for various geometrical parameters utilizing a dual disk configuration. Velocity and temperature measurements were acquired at the center of the synthetic jet orifice using a temperature compensated hotwire and thermocouple probe. The disk(s) displacement was measured at the center of the disk with a laser displacement sensor. It was shown that the synthetic jets, having the 80 mm cavity diameter, are capable of exceeding peak velocities of 200 m/s with a relatively large orifice of dimensions AR = 12, hc* = 3, and hn* = 4. In addition, the conditions at which the disks were manufactured had minimal effect on the performance of the jet, except for the pair with overnight resting time as opposed to less than an hour resting time for the control units. Altering the tab style of the disks, where the tab allows the electrical circuit to be exposed for external power connection, showed that a thin fragile tab versus a tab of the same thickness as the disk has minimal effect on the performance but affects the durability of the disk due to the fragility or robustness of the tab. The synthetic jets

  13. The aeroacoustics of supersonic jets

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; McLaughlin, Dennis K.

    1995-01-01

    This research project was a joint experimental/computational study of noise in supersonic jets. The experiments were performed in a low to moderate Reynolds number anechoic supersonic jet facility. Computations have focused on the modeling of the effect of an external shroud on the generation and radiation of jet noise. This report summarizes the results of the research program in the form of the Masters and Doctoral theses of those students who obtained their degrees with the assistance of this research grant. In addition, the presentations and publications made by the principal investigators and the research students is appended.

  14. Coherent structures in axisymmetric jets

    NASA Astrophysics Data System (ADS)

    Durao, D. F. G.; Nina, M. N. R.; Pita, G.

    Laser Doppler anemometry has been used to measure the mean and rms values of the axial and radial velocity components in jets with Reynolds numbers of up to 28,700. It is shown that even in flows that are not excited externally, coherent structures with Strouhal numbers of about 0.33 and 0.55 can be detected. The coherent structures associated with the higher Strouhal number are shown to result from vorticity at the edge of the jet. The oscillation associated with the lower Strouhal number is related to eddy breakdown and to the preferred vibration mode of axisymmetric jets.

  15. Trajectory and Breakup of Cryogenic Jets in Crossflow

    NASA Astrophysics Data System (ADS)

    Richards, William

    This study investigated the breakup processes of subcritical cryogenic jets injected in to subsonic crossflows of heated air. The crossflow speed, temperature, and jet velocity were varied to demonstrate the effect of thermal differences on a jet in crossflow. High speed back-lit photography and Mie scattering were used to examine the primary breakup regimes, trajectory, and breakup points. The breakup regimes show little change from jets in crossflow near thermodynamic equilibrium. Penetration of the jet increased with an increase in crossflow temperature. The breakup points in the streamwise direction followed trends previously observed for conventional jets. While the height of column fracture did not increase with momentum flux ratio as much as would be expected, its dependence matched that of the trajectory correlation. It is hypothesized that the observed differences are due to the development of a sheath of evaporated fluid around the main liquid core of the jet.

  16. Tickling a high speed round jet

    NASA Astrophysics Data System (ADS)

    Arakeri, Vijay; Krothapalli, Anjaneyulu; Siddavaram, Vikram; Alkislar, Mehmet

    2001-11-01

    We have experimentally studied the effect of tickling a Mach 0.9 round jet with a set of microjets.Two dimensional velocity field measurements with PIV show a significant reduction in the turbulent intensities in the developing region of the jet with the activation of the microjets.Quantitatively,the axial and normal turbulence intensities are reduced by about 15respectively;even a larger effect is found on the magnitude of the correlation of axial and normal fluctuation intensities with a reduction of almost 40possible with a mass flow rate of the microjets being only about one percent of the main jet mass flow rate and hence justifying the use of the term `tickling`.The above findings are difficult to explain on the basis of stability considerations since there is very little change in the mean profile.Physically,the observed effect could be due to the alteration of the large eddy structures,which are so natural to a round jet,by the presence of the microjets.Exact nature of this interaction may be clarified with three dimensional PIV studies.It is expected that the tickling of the jet done as presently could have a favourable reflection in the aeroacoustics characteristics of the main jet.

  17. Formation of Bipolar Lobes by Jets

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2002-04-01

    I conduct an analytical study of the interaction of jets, or a collimated fast wind (CFW), with a previously blown asymptotic giant branch (AGB) slow wind. Such jets (or CFWs) are supposedly formed when a compact companion, a main-sequence star, or a white dwarf accretes mass from the AGB star, forms an accretion disk, and blows two jets. This type of flow, which I think shapes bipolar planetary nebulae (PNs), requires three-dimensional gasdynamical simulations, which are limited in the parameter space they can cover. By imposing several simplifying assumptions, I derive simple expressions which reproduce some basic properties of lobes in bipolar PNs and which can be used to guide future numerical simulations. I quantitatively apply the results to two proto-PNs. I show that the jet interaction with the slow wind can form lobes which are narrow close to, and far away from, the central binary system, and which are wider somewhere in between. Jets that are recollimated and have constant cross section can form cylindrical lobes with constant diameter, as observed in several bipolar PNs. Close to their source, jets blown by main-sequence companions are radiative; only further out they become adiabatic, i.e., they form high-temperature, low-density bubbles that inflate the lobes.

  18. Resonant ion acceleration by plasma jets: Effects of jet breaking and the magnetic-field curvature.

    PubMed

    Artemyev, A V; Vasiliev, A A

    2015-05-01

    In this paper we consider resonant ion acceleration by a plasma jet originating from the magnetic reconnection region. Such jets propagate in the background magnetic field with significantly curved magnetic-field lines. Decoupling of ion and electron motions at the leading edge of the jet results in generation of strong electrostatic fields. Ions can be trapped by this field and get accelerated along the jet front. This mechanism of resonant acceleration resembles surfing acceleration of charged particles at a shock wave. To describe resonant acceleration of ions, we use adiabatic theory of resonant phenomena. We show that particle motion along the curved field lines significantly influences the acceleration rate. The maximum gain of energy is determined by the particle's escape from the system due to this motion. Applications of the proposed mechanism to charged-particle acceleration in the planetary magnetospheres and the solar corona are discussed.

  19. Stable Liquid Jets Bouncing off Soft Gels

    NASA Astrophysics Data System (ADS)

    Daniel, Dan; Yao, Xi; Aizenberg, Joanna

    2018-01-01

    A liquid jet can stably bounce off a sufficiently soft gel by following the contour of the dimple created upon impact. This new phenomenon is insensitive to the wetting properties of the gels and was observed for different liquids over a wide range of surface tensions, γ =24 -72 mN /m . In contrast, other jet rebound phenomena are typically sensitive to γ : only a high γ jet rebounds off a hard solid (e.g. superhydrophobic surface) and only a low γ jet bounces off a liquid bath. This is because an air layer must be stabilized between the two interfaces. For a soft gel, no air layer is necessary and the jet rebound remains stable even when there is direct liquid-gel contact.

  20. Measurements of jet quenching with semi-inclusive hadron+jet distributions in Au + Au collisions at s N N = 200 GeV

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2017-08-14

    Here, the STAR Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum hadron trigger, in central and peripheral Au+Au collisions at √ sNN = 200 GeV. Charged jets are reconstructed with the anti-k T algorithm for jet radii R between 0.2 and 0.5 and with low infrared cutoff of track constituents (p T > 0.2 GeV/c). A novel mixed-event technique is used to correct the large uncorrelated background present in heavy ion collisions. Corrected recoil jet distributions are reported at midrapidity, for charged-jet transverse momentum p ch T,jet < 30 GeV/c. Comparison ismore » made to similar measurements for Pb+Pb collisions at √s = 2.76 TeV, to calculations for p+p collisions at √s = 200 GeV based on the pythia Monte Carlo generator and on a next-to-leading order perturbative QCD approach, and to theoretical calculations incorporating jet quenching. The recoil jet yield is suppressed in central relative to peripheral collisions, with the magnitude of the suppression corresponding to medium-induced charged energy transport out of the jet cone of 2.8 ± 0.2(stat) ± 1.5(sys) GeV/c, for 10 < p ch T,jet < 20 GeV/c and R = 0.5. No medium-induced change in jet shape is observed for R < 0.5. The azimuthal distribution of low-p ch T,jet recoil jets may be enhanced at large azimuthal angles to the trigger axis, due to scattering off quasiparticles in the hot QCD medium. As a result, measurement of this distribution gives a 90% statistical confidence upper limit to the yield enhancement at large deflection angles in central Au + Au collisions of 50 ± 30(sys)% of the large-angle yield in p+p collisions predicted by pythia.« less

  1. Measurements of jet quenching with semi-inclusive hadron+jet distributions in Au + Au collisions at s N N = 200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.

    Here, the STAR Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum hadron trigger, in central and peripheral Au+Au collisions at √ sNN = 200 GeV. Charged jets are reconstructed with the anti-k T algorithm for jet radii R between 0.2 and 0.5 and with low infrared cutoff of track constituents (p T > 0.2 GeV/c). A novel mixed-event technique is used to correct the large uncorrelated background present in heavy ion collisions. Corrected recoil jet distributions are reported at midrapidity, for charged-jet transverse momentum p ch T,jet < 30 GeV/c. Comparison ismore » made to similar measurements for Pb+Pb collisions at √s = 2.76 TeV, to calculations for p+p collisions at √s = 200 GeV based on the pythia Monte Carlo generator and on a next-to-leading order perturbative QCD approach, and to theoretical calculations incorporating jet quenching. The recoil jet yield is suppressed in central relative to peripheral collisions, with the magnitude of the suppression corresponding to medium-induced charged energy transport out of the jet cone of 2.8 ± 0.2(stat) ± 1.5(sys) GeV/c, for 10 < p ch T,jet < 20 GeV/c and R = 0.5. No medium-induced change in jet shape is observed for R < 0.5. The azimuthal distribution of low-p ch T,jet recoil jets may be enhanced at large azimuthal angles to the trigger axis, due to scattering off quasiparticles in the hot QCD medium. As a result, measurement of this distribution gives a 90% statistical confidence upper limit to the yield enhancement at large deflection angles in central Au + Au collisions of 50 ± 30(sys)% of the large-angle yield in p+p collisions predicted by pythia.« less

  2. Simulations of Solar Jets Confined by Coronal Loops

    NASA Technical Reports Server (NTRS)

    Wyper, P. F.; De Vore, C. R.

    2016-01-01

    Coronal jets are collimated, dynamic events that occur over a broad range of spatial scales in the solar corona. In the open magnetic field of coronal holes, jets form quasi-radial spires that can extend far out into the heliosphere, while in closed-field regions the jet outflows are confined to the corona. We explore the application of the embedded-bipole model to jets occurring in closed coronal loops. In this model, magnetic free energy is injected slowly by footpoint motions that introduce twist within the closed dome of the jet source region, and is released rapidly by the onset of an ideal kink-like instability. Two length scales characterize the system: the width (N) of the jet source region and the footpoint separation (L) of the coronal loop that envelops the jet source. We find that both the conditions for initiation and the subsequent dynamics are highly sensitive to the ratio L/N. The longest-lasting and most energetic jets occur along long coronal loops with large L/N ratios, and share many of the features of open-field jets, while smaller L/N ratios produce shorter-duration, less energetic jets that are affected by reflections from the far-loop footpoint. We quantify the transition between these behaviors and show that our model replicates key qualitative and quantitative aspects of both quiet Sun and active-region loop jets. We also find that there connection between the closed dome and surrounding coronal loop is very extensive: the cumulative reconnected flux at least matches the total flux beneath the dome for small L/N, and is more than double that value for large L/N.

  3. SIMULATIONS OF SOLAR JETS CONFINED BY CORONAL LOOPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyper, P. F.; DeVore, C. R., E-mail: peter.f.wyper@nasa.gov, E-mail: c.richard.devore@nasa.gov

    Coronal jets are collimated, dynamic events that occur over a broad range of spatial scales in the solar corona. In the open magnetic field of coronal holes, jets form quasi-radial spires that can extend far out into the heliosphere, while in closed-field regions the jet outflows are confined to the corona. We explore the application of the embedded-bipole model to jets occurring in closed coronal loops. In this model, magnetic free energy is injected slowly by footpoint motions that introduce twist within the closed dome of the jet source region, and is released rapidly by the onset of an idealmore » kink-like instability. Two length scales characterize the system: the width (N) of the jet source region and the footpoint separation (L) of the coronal loop that envelops the jet source. We find that both the conditions for initiation and the subsequent dynamics are highly sensitive to the ratio L/N. The longest-lasting and most energetic jets occur along long coronal loops with large L/N ratios, and share many of the features of open-field jets, while smaller L/N ratios produce shorter-duration, less energetic jets that are affected by reflections from the far-loop footpoint. We quantify the transition between these behaviors and show that our model replicates key qualitative and quantitative aspects of both quiet Sun and active-region loop jets. We also find that the reconnection between the closed dome and surrounding coronal loop is very extensive: the cumulative reconnected flux at least matches the total flux beneath the dome for small L/N, and is more than double that value for large L/N.« less

  4. Variable density mixing in turbulent jets with coflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charonko, John James; Prestridge, Katherine Philomena

    Two sets of experiments are performed to study variable-density effects in turbulent round jets with co flow at density ratios, s = 4.2 and s = 1.2. 10,000 instantaneous realisations of simultaneous 2-D PIV and PLIF at three axial locations in the momentumdominated region of the jet allow us to calculate the full t.k.e. budgets, providing insights into the mechanisms of density fluctuation correlations both axially and radially in a non- Boussinesq flow. The strongest variable-density effects are observed within the velocity half-width of the jet, r ~u1/2 . Variable density effects decrease the Reynolds stresses via increased turbulent massmore » flux in the heavy jet, as shown by previous jet centreline measurements. Radial pro les of turbulent flux show that in the lighter jet t.k.e. is moving away from the centreline, while in the heavy jet it is being transported both inwards towards the centreline and radially outwards. Negative t.k.e. production is observed in the heavy jet, and we demonstrate that this is caused by both reduced gradient stretching in the axial direction and increased turbulent mass fluxes. Large differences in advection are also observed between the two jets. The air jet has higher total advection caused by strong axial components, while density fluctuations in the heavy jet reduce the axial advection signi cantly. The budget mechanisms in the non-Boussinesq regime are best understood using effective density and velocity half-width, ρeff ¯u 3 1,CL/r ~u1/2,eff , a modi cation of previous scaling.« less

  5. Variable density mixing in turbulent jets with coflow

    DOE PAGES

    Charonko, John James; Prestridge, Katherine Philomena

    2017-07-24

    Two sets of experiments are performed to study variable-density effects in turbulent round jets with co flow at density ratios, s = 4.2 and s = 1.2. 10,000 instantaneous realisations of simultaneous 2-D PIV and PLIF at three axial locations in the momentumdominated region of the jet allow us to calculate the full t.k.e. budgets, providing insights into the mechanisms of density fluctuation correlations both axially and radially in a non- Boussinesq flow. The strongest variable-density effects are observed within the velocity half-width of the jet, r ~u1/2 . Variable density effects decrease the Reynolds stresses via increased turbulent massmore » flux in the heavy jet, as shown by previous jet centreline measurements. Radial pro les of turbulent flux show that in the lighter jet t.k.e. is moving away from the centreline, while in the heavy jet it is being transported both inwards towards the centreline and radially outwards. Negative t.k.e. production is observed in the heavy jet, and we demonstrate that this is caused by both reduced gradient stretching in the axial direction and increased turbulent mass fluxes. Large differences in advection are also observed between the two jets. The air jet has higher total advection caused by strong axial components, while density fluctuations in the heavy jet reduce the axial advection signi cantly. The budget mechanisms in the non-Boussinesq regime are best understood using effective density and velocity half-width, ρeff ¯u 3 1,CL/r ~u1/2,eff , a modi cation of previous scaling.« less

  6. Tracking the global jet streams through objective analysis

    NASA Astrophysics Data System (ADS)

    Gallego, D.; Peña-Ortiz, C.; Ribera, P.

    2009-12-01

    Although the tropospheric jet streams are probably the more important single dynamical systems in the troposphere, their study at climatic scale has been usually troubled by the difficulty of characterising their structure. During the last years, a deal of effort has been made in order to construct long-term scale objective climatologies of the jet stream or at least to understand the variability of the westerly flux in the upper troposphere. A main problem with studying the jets is the necessity of using highly derivated fields as the potential vorticity or even the analysis of chemical tracers. Despite their utility, these approaches are very problematic to construct an automatic searching algorithm because of the difficulty of defining criteria for these extremely noisy fields. Some attempts have been addressed trying to use only the wind field to find the jet. This direct approach avoids the use of derivate variables, but it must contain some stringent criteria to filter the large number of tropospheric wind maxima not related to the jet currents. This approach has offered interesting results for the relatively simple structure of the Southern Hemisphere tropospheric jets (Gallego et al. Clim. Dyn, 2005). However, the much more complicated structure of its northern counterpart has resisted the analysis with the same degree of detail by using the wind alone. In this work we present a new methodology able to characterise the position, strength and altitude of the jet stream at global scale on a daily basis. The method is based on the analysis of the 3-D wind field alone and it searches, at each longitude, relative wind maxima in the upper troposphere between the levels of 400 and 100 hPa. An ad-hoc defined density function (dependent on the season and the longitude) of the detection positions is used as criteria to filter spurious wind maxima not related to the jet. The algorithm has been applied to the NCEP/NCAR reanalysis and the results show that the basic

  7. Production of bio-jet fuel from microalgae

    NASA Astrophysics Data System (ADS)

    Elmoraghy, Marian

    The increase in petroleum-based aviation fuel consumption, the decrease in petroleum resources, the fluctuation of the crude oil price, the increase in greenhouse gas emission and the need for energy security are motivating the development of an alternate jet fuel. Bio-jet fuel has to be a drop in fuel, technically and economically feasible, environmentally friendly, greener than jet fuel, produced locally and low gallon per Btu. Bic jet fuel has been produced by blending petro-based jet fuel with microalgae biodiesel (Fatty Acid Methyl Ester, or simply FAME). Indoor microalgae growth, lipids extraction and transetrification to biodiesel are energy and fresh water intensive and time consuming. In addition, the quality of the biodiesel product and the physical properties of the bio-jet fuel blends are unknown. This work addressed these challenges. Minimizing the energy requirements and making microalgae growth process greener were accomplished by replacing fluorescent lights with light emitting diodes (LEDs). Reducing fresh water footprint in algae growth was accomplished by waste water use. Microalgae biodiesel production time was reduced using the one-step (in-situ transestrification) process. Yields up to 56.82 mg FAME/g dry algae were obtained. Predicted physical properties of in-situ FAME satisfied European and American standards confirming its quality. Lipid triggering by nitrogen deprivation was accomplished in order to increase the FAME production. Bio-jet fuel freezing points and heating values were measured for different jet fuel to biodiesel blend ratios.

  8. Streaked Thomson Scattering on Laboratory Plasma Jets

    NASA Astrophysics Data System (ADS)

    Banasek, Jacob; Byvank, Tom; Rocco, Sophia; Kusse, Bruce; Hammer, David

    2017-10-01

    Streaked Thomson scattering measurements have been performed on plasma jets created from a 15 μm thick radial Al or Ti foil load on COBRA, a 1 MA pulsed power machine. The goal was to measure the electron temperatures inside the center of the plasma jet created by the radial foil. The laser used for these measurements had a maximum energy of 10 J at 526.5 nm in a 3 ns duration pulse. Early experiments showed using the full energy significantly heats the 5 ×1018 cm-3 jet by inverse bremsstrahlung radiation. Here we used a streak camera to record the scattered spectrum and measure the evolving electron temperature of this laser heated jet. Analysis of the streak camera image showed that the electron temperature of the Al jet was increased from about 25 eV to 80-100 eV within about 2 ns. The Ti jets showed even stronger interaction with the laser, being heated to over 150 eV, and showed some heating even when only 1 J of laser energy was used. Also, the ion-acoustic peaks in the scattered spectrum from the Ti jets were significantly narrower than those from Al jets. Initial results will also be presented with scattered spectra taken at two different times within a single experiment by splitting the probe beam. This research is supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement DE-NA0001836.

  9. Characterization of Three-Stream Jet Flow Fields

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2016-01-01

    Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10 percent) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50 percent of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65 percent of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.

  10. Characterization of Three-Stream Jet Flow Fields

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2016-01-01

    Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10%) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50% of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65% of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.

  11. Measurements of jet quenching with semi-inclusive hadron+jet distributions in Au+Au collisions at √{sN N}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, P. M.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2017-08-01

    The STAR Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum hadron trigger, in central and peripheral Au +Au collisions at √{sNN}=200 GeV. Charged jets are reconstructed with the anti-kT algorithm for jet radii R between 0.2 and 0.5 and with low infrared cutoff of track constituents (pT>0.2 GeV / c ). A novel mixed-event technique is used to correct the large uncorrelated background present in heavy ion collisions. Corrected recoil jet distributions are reported at midrapidity, for charged-jet transverse momentum pT,jet ch<30 GeV / c . Comparison is made to similar measurements for Pb +Pb collisions at √{s }=2.76 TeV, to calculations for p +p collisions at √{s }=200 GeV based on the pythia Monte Carlo generator and on a next-to-leading order perturbative QCD approach, and to theoretical calculations incorporating jet quenching. The recoil jet yield is suppressed in central relative to peripheral collisions, with the magnitude of the suppression corresponding to medium-induced charged energy transport out of the jet cone of 2.8 ±0.2 (stat )±1.5 (sys ) GeV /c , for 10 jet ch<20 GeV /c and R =0.5 . No medium-induced change in jet shape is observed for R <0.5 . The azimuthal distribution of low-pT,jet ch recoil jets may be enhanced at large azimuthal angles to the trigger axis, due to scattering off quasiparticles in the hot QCD medium. Measurement of this distribution gives a 90% statistical confidence upper limit to the yield enhancement at large deflection angles in central Au +Au collisions of 50 ±30 (sys )% of the large-angle yield in p +p collisions predicted by pythia.

  12. Hydrodynamical Simulations of the Jet in the Symbiotic Star MWC 560. 3; Application to X-ray Jets in Symbiotic Stars

    NASA Technical Reports Server (NTRS)

    Stute, Matthias; Sahai, Raghvendra

    2007-01-01

    In Papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high-density ambient medium. Since the pulsed emission of the jet creates internal shocks and since the jet velocity is very high, the jet bow shock and the internal shocks are heated to high temperatures and should therefore emit X-ray radiation. In this paper, we investigate in detail the X-ray properties of the jets in our models. We have focused our study on the total X-ray luminosity and its temporal variability, the resulting spectra, and the spatial distribution of the emission. Temperature and density maps from our hydrodynamical simulations with radiative cooling presented in the second paper are used, together with emissivities calculated with the atomic database ATOMDB. The jets in our models show extended and variable X-ray emission, which can be characterized as a sum of hot and warm components with temperatures that are consistent with observations of CH Cyg and R Aqr. The X-ray spectra of our model jets show emission-line features that correspond to observed features in the spectra of CH Cyg. The innermost parts of our pulsed jets show iron line emission in the 6.4-6.7 keV range, which may explain such emission from the central source in R Aqr. We conclude that MWC 560 should be detectable with Chandra or XMM-Newton, and such X-ray observations will prove crucial for understanding jets in symbiotic stars.

  13. Chemical vapor deposition reactor. [providing uniform film thickness

    NASA Technical Reports Server (NTRS)

    Chern, S. S.; Maserjian, J. (Inventor)

    1977-01-01

    An improved chemical vapor deposition reactor is characterized by a vapor deposition chamber configured to substantially eliminate non-uniformities in films deposited on substrates by control of gas flow and removing gas phase reaction materials from the chamber. Uniformity in the thickness of films is produced by having reactive gases injected through multiple jets which are placed at uniformally distributed locations. Gas phase reaction materials are removed through an exhaust chimney which is positioned above the centrally located, heated pad or platform on which substrates are placed. A baffle is situated above the heated platform below the mouth of the chimney to prevent downdraft dispersion and scattering of gas phase reactant materials.

  14. Studies of inclusive four-jet production with two b -tagged jets in proton-proton collisions at 7 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.

    Here, measurements are presented of the cross section for the production of at least four jets, of which at least two originate from b quarks, in proton-proton collisions. Data collected with the CMS detector at the LHC at a center-of-mass energy of 7 TeV are used, corresponding to an integrated luminosity of 3 pb -1. The cross section is measured as a function of the jet transverse momentum for p T > 20 GeV, and of the jet pseudorapidity for |η| < 2.4 (b jets), 4.7 (untagged jets). The correlations in azimuthal angle and pT between the jets are also studied.more » The inclusive cross section is measured to be σ(pp → 2b + 2j + X) = 69 ± 3(stat) ± 24(syst) nb. The η and p T distributions of the four jets and the correlations between them are well reproduced by event generators that combine perturbative QCD calculations at next-to-leading-order accuracy with contributions from parton showers and multiparton interactions.« less

  15. Studies of inclusive four-jet production with two b -tagged jets in proton-proton collisions at 7 TeV

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2016-12-08

    Here, measurements are presented of the cross section for the production of at least four jets, of which at least two originate from b quarks, in proton-proton collisions. Data collected with the CMS detector at the LHC at a center-of-mass energy of 7 TeV are used, corresponding to an integrated luminosity of 3 pb -1. The cross section is measured as a function of the jet transverse momentum for p T > 20 GeV, and of the jet pseudorapidity for |η| < 2.4 (b jets), 4.7 (untagged jets). The correlations in azimuthal angle and pT between the jets are also studied.more » The inclusive cross section is measured to be σ(pp → 2b + 2j + X) = 69 ± 3(stat) ± 24(syst) nb. The η and p T distributions of the four jets and the correlations between them are well reproduced by event generators that combine perturbative QCD calculations at next-to-leading-order accuracy with contributions from parton showers and multiparton interactions.« less

  16. Prediction of Turbulent Jet Mixing Noise Reduction by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2008-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the confrol volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on perfectly expanded hot supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  17. Analysis of stratified and closely spaced jets exhausting into a crossflow. [aerodynamic characteristics of lift-jet, vectored thrust, and lift fan V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Ziegler, H.; Woller, P. T.

    1973-01-01

    Procedures have been developed for determining the flow field about jets with velocity stratification exhausting into a crossflow. Jets with three different types of exit velocity stratification have been considered: (1) jets with a relatively high velocity core; (2) jets with a relatively low velocity core; and (3) jets originating from a vaned nozzle. The procedure developed for a jet originating from a high velocity core nozzle is to construct an equivalent nozzle having the same mass flow and thrust but having a uniform exit velocity profile. Calculations of the jet centerline and induced surface static pressures have been shown to be in good agreement with test data for a high velocity core nozzle. The equivalent ideal nozzle has also been shown to be a good representation for jets with a relatively low velocity core and for jets originating from a vaned nozzle in evaluating jet-induced flow fields. For the singular case of a low velocity core nozzle, namely a nozzle with a dead air core, and for the vaned nozzle, an alternative procedure has been developed. The internal mixing which takes place in the jet core has been properly accounted for in the equations of motion governing the jet development. Calculations of jet centerlines and induced surface static pressures show good agreement with test data these nozzles.

  18. Transverse jet shear layer instabilities and their control

    NASA Astrophysics Data System (ADS)

    Karagozian, Ann

    2013-11-01

    The jet in crossflow, or transverse jet, is a canonical flowfield that has relevance to engineering systems ranging from dilution jets and film cooling for gas turbine engines to thrust vector control and fuel injection in high speed aerospace vehicles to environmental control of effluent from chimney and smokestack plumes. Over the years, our UCLA Energy and Propulsion Research Lab's studies on this flowfield have focused on the dynamics of the vorticity associated with equidensity and variable density jets in crossflow, including the stability characteristics of the jet's upstream shear layer. A range of different experimental diagnostics have been used to study the jet's upstream shear layer, whereby a transition from convectively unstable behavior at high jet-to-crossflow momentum flux ratios to absolutely unstable flow at low momentum flux and/or density ratios is identified. These differences in shear layer stability characteristics have a profound effect on how one employs external excitation to control jet penetration, spread, and mixing, depending on the flow regime and specific engineering application. These control strategies, and challenges for future research directions, will be identified in this presentation.

  19. Modelling Oil Droplet Breakup in a Turbulent Jet

    NASA Astrophysics Data System (ADS)

    Philip, Rachel; Hewitt, Ian; Howell, Peter

    2017-11-01

    In a deep-sea oil spill, a broken pipe near the seabed can result in the release of a turbulent oil jet into the surrounding ocean. The jet's shearing motion will typically cause the oil to break up into smaller droplets, which are then more readily dispersed and decomposed by sea microbes. In order to understand this natural clean-up process, we develop analytical and numerical models for the drop size distribution at different locations in the jet. This involves examining and unifying disparate scales, from the macroscopic jet to the microscopic droplets. We first examine the turbulent jet and we can use its self-similarity to simplify our models. We then turn to the droplet scale, considering the rate at which drops are deformed and broken up. Droplet deformation is precipitated by the jet's turbulent mixing and shearing and thus depends on the macroscopic jet models. We combine these large and small scale models to determine the droplet size distribution, as it varies with jet location. By varying the initial conditions and parameters in these models, we obtain insights into the factors affecting this droplet breakup process and how it may be optimised.

  20. Thunderstorm Charge Structures Producing Negative Gigantic Jets

    NASA Astrophysics Data System (ADS)

    Boggs, L.; Liu, N.; Riousset, J. A.; Shi, F.; Rassoul, H.

    2016-12-01

    Here we present observational and modeling results that provide insight into thunderstorm charge structures that produce gigantic jet discharges. The observational results include data from four different thunderstorms producing 9 negative gigantic jets from 2010 to 2014. We used radar, very high frequency (VHF) and low frequency (LF) lightning data to analyze the storm characteristics, charge structures, and lightning activity when the gigantic jets emerged from the parent thunderstorms. A detailed investigation of the evolution of one of the charge structures by analyzing the VHF data is also presented. The newly found charge structure obtained from the observations was analyzed with fractal modeling and compared with previous fractal modeling studies [Krehbiel et al., Nat. Geosci., 1, 233-237, 2008; Riousset et al., JGR, 115, A00E10, 2010] of gigantic jet discharges. Our work finds that for normal polarity thunderstorms, gigantic jet charge structures feature a narrow upper positive charge region over a wide middle negative charge region. There also likely exists a `ring' of negative screening charge located around the perimeter of the upper positive charge. This is different from previously thought charge structures of the storms producing gigantic jets, which had a very wide upper positive charge region over a wide middle negative charge region, with a very small negative screening layer covering the cloud top. The newly found charge structure results in leader discharge trees in the fractal simulations that closely match the parent flashes of gigantic jets inside and outside the thundercloud. The previously used charge structures, while vital to the understanding of gigantic jet initiation and the role of charge imbalances inside the cloud, do not produce leader discharge trees that agree with observed gigantic jet discharges.Finally, the newly discovered gigantic jet charge structures are formed near the end of a convective pulse [Meyer et al., JGR, 118

  1. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  2. Effects of core turbulence on jet excitability

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.; Raman, Ganesh; Rice, Edward J.

    1989-01-01

    The effects of varying freestream core turbulence on the evolution of a circular jet with and without tonal excitation are examined. Measurements are made on an 8.8 cm diameter jet at a Mach number of 0.3. The jet is excitated by plane waves at Strouhal number 0.5. For the excited and unexcited cases the turbulence level is varied by screens and grids placed upstream of the nozzle exit. The experiment results are compared with a theoretical model which incorporates a variable core turbulence and considers the energy interactions between the mean flow, the turbulence and the forced component. Both data and theory indicate that increasing the freestream turbulence diminishes the excitability of the jet and reduces the effect of excitation on the spreading rate of the jet.

  3. A Connection Between Corona and Jet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    The structure immediately around a supermassive black hole at the heart of an active galaxy can tell us about how material flows in and out of these monsters but this region is hard to observe! A new study provides us with clues of what might be going on in these active and energetic cores of galaxies.In- and OutflowsIn active galactic nuclei (AGN), matter flows both in and out. As material flows toward the black hole via its surrounding accretion disk, much of this gas and dust can then be expelled from the vicinity via highly collimated jets.Top: The fraction of X-rays that is reflected decreases as jet power increases. Bottom: the distance between the corona and the reflecting part of the disk increases as jet power increases. [Adapted from King et al. 2017]To better understand this symbiosis between accretion and outflows, we examine whats known as the corona the hot, X-ray-emitting gas thats located in the closest regions around the black hole. But because the active centers of galaxies are generally obscured by surrounding gas and dust, its difficult for us to learn about the structure of these inner regions near the black hole.Where are the X-rays of the corona produced: in the inner accretion flow, or at the base of the jet? How far away is this corona from the disk? And how does the coronas behavior relate to that of the jet?Reflected ObservationsTo address some of these questions, a group of scientists led by Ashley King (Einstein Fellow at Stanford University) has analyzed X-ray observations from NuSTAR and XMM-Newton of over 40 AGN. The team examined the reflections of the X-rays off of the accretion disk and used two measurements to learn about the structure around the black hole:the fraction of the coronas X-rays that are reflected by the disk, andthe time lag between the original and reflected X-rays, which reveals the distance from the corona to the reflecting part of the disk.A visualization of the authors model for an AGN. The accretion disk is

  4. Disinfection of gram-negative and gram-positive bacteria using DynaJets® hydrodynamic cavitating jets.

    PubMed

    Loraine, Gregory; Chahine, Georges; Hsiao, Chao-Tsung; Choi, Jin-Keun; Aley, Patrick

    2012-05-01

    Cavitating jet technologies (DynaJets®) were investigated as a means of disinfection of gram-negative Escherichia coli, Klebsiellapneumoniae, Pseudomonas syringae, and Pseudomonas aeruginosa, and gram-positive Bacillus subtilis. The hydrodynamic cavitating jets were found to be very effective in reducing the concentrations of all of these species. In general, the observed rates of disinfection of gram-negative species were higher than for gram-positive species. However, different gram-negative species also showed significant differences (P. syringae 6-log(10) reduction, P. aeruginosa 2-log(10) reduction) under the same conditions. Disinfection of E. coli repeatedly showed five orders of magnitude reduction in concentration within 45-60-min at low nozzle pressure (2.1 bar). Optimization of nozzle design and operating pressures increased disinfection rates per input energy by several orders of magnitude. The power efficiencies of the hydrodynamic cavitating jets were found to be 10-100 times greater than comparable ultrasonic systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Axial plasma jet characterization on a microsecond x-pinch

    NASA Astrophysics Data System (ADS)

    Jaar, G. S.; Appartaim, R. K.

    2018-06-01

    The jets produced on a microsecond x-pinch (quarter period T1/4 ˜ 1 μs, dI/dt ˜ 0.35 kA/ns) have been studied through light-field schlieren imaging and optical framing photographs across 4 different materials: Al, Ti, Mo, and W. The axial velocity of the jets was measured and exhibited no dependence on atomic number (Z) of the wire material. There may be a dependence on another factor(s), namely, the current rise rate. The average axial jet velocity across all four materials was measured to be 2.9 ± 0.5 × 106 cm/s. The average jet diameter and the average radial jet expansion rate displayed inverse relationships with Z, which may be attributed to radiative cooling and inertia. Asymmetry between the anode and cathode jet behavior was observed and is thought to be caused by electron beam activity. The mean divergence angle of the jet was found to vary with wire material and correlated inversely with the thermal conductivity of the cold wire. Optical images indicated a two-layer structure in Al jets which may be caused by standing shocks and resemble phenomena observed in astrophysical jet formation and collimation. Kinks in the jets have also been observed which may be caused by m = 1 MHD instability modes or by the interaction of the jet with the electrode plasma.

  6. Laboratory studies of volcanic jets

    NASA Astrophysics Data System (ADS)

    Kieffer, Susan Werner; Sturtevant, Bradford

    1984-09-01

    The study of the fluid dynamics of violent volcanic eruptions by laboratory experiment is described, and the important fluid-dynamic processes that can be examined in laboratory models are discussed in detail. In preliminary experiments, pure gases are erupted from small reservoirs. The gases used are Freon 12 and Freon 22, two gases of high molecular weight and high density that are good analogs of heavy and particulate-laden volcanic gases; nitrogen, a moderate molecular weight, moderate density gas for which the thermodynamic properties are well known; and helium, a low molecular weight, lowdensity gas that is used as a basis for comparison with the behavior of the heavier gases and as an analog of steam, the gas that dominates many volcanic eruptions. Transient jets erupt from the reservoir into the laboratory upon rupture of a thin diaphragm at the exit of a convergent nozzle. The gas accelerates from rest in the reservoir to high velocity in the jet. Reservoir pressures and geometries are such that the fluid velocity in the jets is initially supersonic and later decays to subsonic. The measured reservoir pressure decreases as the fluid expands through repetitively reflecting rarefaction waves, but for the conditions of these experiments, a simple steady-discharge model is sufficient to explain the pressure decay and to predict the duration of the flow. Density variations in the flow field have been visualized with schlieren and shadowgraph photography. The observed structure of the jet is correlated with the measured pressure history. The starting vortex generated when the diaphragm ruptures becomes the head of the jet. Though the exit velocity is sonic, the flow head in the helium jet decelerates to about one-third of sonic velocity in the first few nozzle diameters, the nitrogen head decelerates to about three-fourths of sonic velocity, while Freon maintains nearly sonic velocity. The impulsive acceleration of reservoir fluid into the surrounding atmosphere

  7. Deformation and Breakup of Two Fluid Jets

    NASA Astrophysics Data System (ADS)

    Doshi, Pankaj; Ramkrishna, Doraiswamy; Basaran, Osman

    2001-11-01

    Two fluid jets consists of an inner liquid core surrounded by an annulus of outer immiscible liquid. The perturbation in the inner and outer interphase could cause capillary instability resulting in large deformation and breakup of the jet into drops. The jet breakup and drop size distribution is largely influenced by the properties of inner and outer fluid phases. Out of the various jet breakup phenomena one with most technological importance is the one in which inner interphase ruptures followed by the outer interphase resulting in the formation of compound drops. The compound drop formation is very useful for the microencapsulation technology, which find use in diverse pharmaceutical and chemical industry applications. In this paper we present a computational analysis of non-linear deformation and breakup of two fluid jets of Newtonian fluids. The analysis involves study of capillary instability driven deformation of a free jet with periodic boundary conditions. Although small amplitude deformation of two fluid jets have previously been studied, large amplitude deformation exhibiting interesting nonlinear dynamics and eventual breakup of the two fluid jets have been beyond the reach of previously used analytical and computational techniques. The computational difficulties result from the facts that (1) the inner and outer interphase can overturn during the motion and (2) pressure and normal stress are discontinuous at the inner interphase. We overcome both of these difficulties by using a new Galerkin/finite element algorithm that relies on a powerful elliptic mesh generation technique. The results to be presented includes jet deformation and breakup time as a function of inner and outer fluid phase properties. The highlight of the results will be prediction of drop size distribution which is of critical importance for microencapsulation technology.

  8. Proceedings of the Jet Noise Workshop

    NASA Technical Reports Server (NTRS)

    Huff, Dennis (Compiler)

    2001-01-01

    Jet noise has been a major problem for aircraft for nearly 50 years. There has been considerable research performed around the world aimed at identifying ways to reduce jet noise. This work was first intended for turbojet aircraft and later extended to low bypass ratio turbofans. Many of the people who performed this pioneering research have retired or are no longer active in aeroacoustics. After so many years of work in jet noise, it is a challenge to piece together the history of its development through existing publications due to the large volume of documents. It is possible to forget important developments from the past as new researchers tackle similar problems. Therefore, a jet noise workshop was organized by the AeroAcoustics Research Consortium (AARC) with the intent of reviewing research that has been done by experts throughout the world. The forum provided a unique opportunity for current researchers to hear the diverse views from world experts on issues related to jet noise modeling and interpretation of experimental data.

  9. Structure and Dynamics of Colliding Plasma Jets

    DOE PAGES

    Li, C.; Ryutov, D.; Hu, S.; ...

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generatedmore » by the well-known ∇T e ×∇n e Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number R M ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.« less

  10. On the start up of supersonic underexpanded jets

    NASA Astrophysics Data System (ADS)

    Lacerda, Nehemias Lima

    An impulsively started jet can be formed by a gas confined in a high pressure reservoir that escapes suddenly through an exit orifice, into a controlled atmosphere. Supersonic gas jets of this type are unsteady and differ from the steady jet that develops later by the presence of a bow shock, a jet head and a nonstationary Mach disk. The effects of the pressure ratio between the high pressure gas inside the reservoir and the lower pressure atmospheric gas, as well as the gas combination used, are studied experimentally. The gases used for the jet and the atmosphere were selected from helium, nitrogen and sulfur hexafluoride. The data acquisition consisted of: high resolution flash photography to obtain detail from the pictures; high-speed movie pictures to obtain the time development of selected features; and fast-response pressure transducers located at the reservoir end plate, the tank end plate and the jet exit. The initial development of the jet is highly time dependent. During this phase, the shape that the jet assumes varies with pressure ratio and with the choice of gas. In particular an extremely light gas exhausting into a heavy atmosphere, exhibits an uncommon shape. It develops as a bubble wrapped by the bow shock, that increases its volume with flow time and pressure ratio. As the pressure ratio increases, it becomes more tightly wrapped by the bow shock. At later times the jet assumes conventional linear growth. After the jet starts, a Mach disk is observed close to the jet exit which moves downstream as the exit pressure builds up. The monotonic increase in exit pressure is caused by the slow breaking of the diaphragm. The position of the Mach disk is furthest from the jet exit when the exit pressure is a maximum. After that it oscillates around the location predicted by the steady theory of Ashkenas and Sherman (1966) at a frequency close to one of the resonant frequencies of the reservoir. The features observed for the inner structure of the jet

  11. Measurement of jet quenching with semi-inclusive hadron-jet distributions in central Pb-Pb collisions at $$\\sqrt{s_{\\mathrm{NN}}}=2.76$$ TeV

    DOE PAGES

    Adam, J.

    2015-09-24

    We report the measurement of a new observable of jet quenching in central Pb-Pb collisions at √sNN = 2.76 TeV, based on the semi-inclusive rate of charged jets recoiling from a high transverse momentum (high-p T) charged hadron trigger. Jets are measured using collinear-safe jet reconstruction with infrared cutoff for jet constituents of 0.15 GeV, for jet resolution parameters R = 0.2, 0.4 and 0.5. Underlying event background is corrected at the event-ensemble level, without imposing bias on the jet population. Recoil jet spectra are reported in the range 20 < p T,jet ch < 100 GeV. Reference distributions formore » pp collisions at √s = 2.76TeV are calculated using Monte Carlo and NLO pQCD methods, which are validated by comparing with measurements in pp collisions at √s = 7TeV. The recoil jet yield in central Pb-Pb collisions is found to be suppressed relative to that in pp collisions. No significant medium-induced broadening of the intra-jet energy profile is observed within 0.5 radians relative to the recoil jet axis. The angular distribution of the recoil jet yield relative to the trigger axis is found to be similar in central Pb-Pb and pp collisions, with no significant medium-induced acoplanarity observed. Lastly, large-angle jet deflection, which may provide a direct probe of the nature of the quasi-particles in hot QCD matter, is explored.« less

  12. The Effect of Jetting Parameters on the Performance of Droplet Formation for Ink-Jet Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    Helmer, Wayne

    1998-01-01

    Heinzl et al. (1985) reports that experiments in ink-jets to produce drawings or signals occurred as early as 1930. Various companies such as IBM and Pitney-Bowes have conducted extensive studies on these devices for many years. Many such reports are available in such journals as the IBM Journal of Research and Development. While numerous articles have been published on the jetting characteristics of ink and water, the literature is rather limited on fluids such as waxes (Gao & Sonin 1994) or non-water based fluids (Passow, et al. 1993). This present study extends the knowledge base to determine the performance of molten waxes in "ink-jet" type printers for rapid prototyping. The purpose of this research was to qualitatively and quantitatively study the droplet formation of a drop-on-demand ink-jet type nozzle system for rapid prototyping.

  13. Herbig-Haro objects as the heads of radiative jets

    NASA Technical Reports Server (NTRS)

    Blondin, John M.; Konigl, Arieh; Fryxell, Bruce A.

    1989-01-01

    The interpretation of certain HH objects as the heads of nonadiabatic supersonic jets is examined using two-dimensional numerical simulations. It is found that radiative jets develop a dense shell between the jet shock and the leading bow shock when the cooling distance behind either one of these shocks is smaller than the jet radius. It is proposed that the radiatively cooling shell may account for the variable emission pattern from objects like HH 1. Also, it is suggested that HH objects with measured space velocities that exceed the spectroscopically inferred shock velocities could correspond to heavy jets in which the bow shock is effectively adiabatic. Low-excitation objects in which these velocities are comparable may represent light jets where the jet shock is nonradiative.

  14. A Precessing Jet in the CH Cyg Symbiotic System

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita; Gaetz, Terrance J.; Carilli, Christopher L.; Hack, Warren; Raymond, John C.; Lee, Nicholas P.

    2010-02-01

    Jets have been detected in only a few symbiotic binaries to date, and CH Cyg is one of them. In 2001, a non-relativistic jet was detected in CH Cyg for the first time in X-rays. We carried out coordinated Chandra, Hubble Space Telescope (HST), and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium. We detected the jet with Chandra and HST and determined that the apex has expanded to the south from ~300 AU to ~1400 AU, with the shock front propagating with velocity <100 km s-1. The shock front has significantly slowed down since 2001. Unexpectedly, we also discovered a powerful jet in the NE-SW direction, in the X-ray, optical and radio. This jet has a multi-component structure, including an inner jet and a counterjet at ~170 AU, and a SW component ending in several clumps extending out to ~750 AU. The structure of the jet and the curvature of the outer portion of the SW jet suggest an episodically powered precessing jet or a continuous precessing jet with occasional mass ejections or pulses. We carried out detailed spatial mapping of the X-ray emission and correlation with the optical and radio emission. X-ray spectra were extracted from the central source, inner NE counterjet, and the brightest clump at a distance of ~500 AU from the central source. We discuss the initial results of our analyses, including the multi-component spectral fitting of the jet components and of the central source.

  15. Jet engine noise and infrared plume correlation field campaign

    NASA Astrophysics Data System (ADS)

    Cunio, Phillip M.; Weber, Reed A.; Knobel, Kimberly R.; Smith, Christine; Draudt, Andy

    2015-09-01

    Jet engine noise can be a health hazard and environmental pollutant, particularly affecting personnel working in close proximity to jet engines, such as airline mechanics. Mitigating noise could reduce the potential for hearing loss in runway workers; however, there exists a very complex relationship between jet engine design parameters, operating conditions, and resultant noise power levels, and understanding and characterizing this relationship is a key step in mitigating jet engine noise effects. We demonstrate initial results highlighting the utility of high-speed imaging (hypertemporal imaging) in correlating the infrared signatures of jet engines with acoustic noise. This paper builds on prior theoretical analysis of jet engine infrared signatures and their potential relationships to jet engine acoustic emissions. This previous work identified the region of the jet plume most likely to emit both in infrared and in acoustic domains, and it prompted the investigation of wave packets as a physical construct tying together acoustic and infrared energy emissions. As a means of verifying these assertions, a field campaign to collect relevant data was proposed, and data collection was carried out with a bank of infrared instruments imaging a T700 turboshaft engine undergoing routine operational testing. The detection of hypertemporal signatures in association with acoustic signatures of jet engines enables the use of a new domain in characterizing jet engine noise. This may in turn enable new methods of predicting or mitigating jet engine noise, which could lead to socioeconomic benefits for airlines and other operators of large numbers of jet engines.

  16. General relativistic study of astrophysical jets with internal shocks

    NASA Astrophysics Data System (ADS)

    Vyas, Mukesh K.; Chattopadhyay, Indranil

    2017-08-01

    We explore the possibility of the formation of steady internal shocks in jets around black holes. We consider a fluid described by a relativistic equation of state, flowing about the axis of symmetry (θ = 0) in a Schwarzschild metric. We use two models for the jet geometry: (I) a conical geometry and (II) a geometry with non-conical cross-section. A jet with conical geometry has a smooth flow, while the jet with non-conical cross-section undergoes multiple sonic points and even standing shock. The jet shock becomes stronger, as the shock location is situated farther from the central black hole. Jets with very high energy and very low energy do not harbour shocks, but jets with intermediate energies do harbour shocks. One advantage of these shocks, as opposed to shocks mediated by external medium, is that these shocks have no effect on the jet terminal speed, but may act as possible sites for particle acceleration. Typically, a jet with specific energy 1.8c2 will achieve a terminal speed of v∞ = 0.813c for jet with any geometry, where, c is the speed of light in vacuum. But for a jet of non-conical cross-section for which the length scale of the inner torus of the accretion disc is 40rg, then, in addition, a steady shock will form at rsh ˜ 7.5rg and compression ratio of R ˜ 2.7. Moreover, electron-proton jet seems to harbour the strongest shock. We will discuss possible consequences of such a scenario.

  17. The Stability of Radiatively Cooling Jets. 2: Nonlinear Evolution

    NASA Technical Reports Server (NTRS)

    Stone, James M.; Xu, Jianjun; Hardee, Philip

    1997-01-01

    We use two-dimensional time-dependent hydrodynamical simulations to follow the growth of the Kelvin-Helmholtz (K-H) instability in cooling jets into the nonlinear regime. We focus primarily on asymmetric modes that give rise to transverse displacements of the jet beam. A variety of Mach numbers and two different cooling curves are studied. The growth rates of waves in the linear regime measured from the numerical simulations are in excellent agreement with the predictions of the linear stability analysis presented in the first paper in this series. In the nonlinear regime, the simulations show that asymmetric modes of the K-H instability can affect the structure and evolution of cooling jets in a number of ways. We find that jets in which the growth rate of the sinusoidal surface wave has a maximum at a so-called resonant frequency can be dominated by large-amplitude sinusoidal oscillations near this frequency. Eventually, growth of this wave can disrupt the jet. On the other hand, nonlinear body waves tend to produce low-amplitude wiggles in the shape of the jet but can result in strong shocks in the jet beam. In cooling jets, these shocks can produce dense knots and filaments of cooling gas within the jet. Ripples in the surface of the jet beam caused by both surface and body waves generate oblique shock "spurs" driven into the ambient gas. Our simulations show these shock "spurs" can accelerate ambient gas at large distances from the jet beam to low velocities, which represents a new mechanism by which low-velocity bipolar outflows may be driven by high-velocity jets. Rapid entrainment and acceleration of ambient gas may also occur if the jet is disrupted. For parameters typical of protostellar jets, the frequency at which K-H growth is a maximum (or highest frequency to which the entire jet can respond dynamically) will be associated with perturbations with a period of - 200 yr. Higher frequency (shorter period) perturbations excite waves associated with body

  18. Shape of initial portion of boundary of supersonic axisymmetric free jets at large jet pressure ratios

    NASA Technical Reports Server (NTRS)

    Love, Eugene S; Lee, Louise P

    1958-01-01

    Calculations have been made of the initial portion of the boundary of axisymmetric free jets exhausting at large pressure ratios from a conically divergent nozzle having a jet exit Mach number of 2.5 and a semidivergence angle of 15 degrees. The results of the calculations indicate the size and shape of the jet to be expected at large pressure ratios, the effects of ratio of specific heats, and the large initial inclinations of the boundary that are likely to be encountered by hypersonic vehicles at high altitude.

  19. Vessel thermal map real-time system for the JET tokamak

    NASA Astrophysics Data System (ADS)

    Alves, D.; Felton, R.; Jachmich, S.; Lomas, P.; McCullen, P.; Neto, A.; Valcárcel, D. F.; Arnoux, G.; Card, P.; Devaux, S.; Goodyear, A.; Kinna, D.; Stephen, A.; Zastrow, K.-D.

    2012-05-01

    The installation of international thermonuclear experimental reactor-relevant materials for the plasma facing components (PFCs) in the Joint European Torus (JET) is expected to have a strong impact on the operation and protection of the experiment. In particular, the use of all-beryllium tiles, which deteriorate at a substantially lower temperature than the formerly installed carbon fiber composite tiles, imposes strict thermal restrictions on the PFCs during operation. Prompt and precise responses are therefore required whenever anomalous temperatures are detected. The new vessel thermal map real-time application collects the temperature measurements provided by dedicated pyrometers and infrared cameras, groups them according to spatial location and probable offending heat source, and raises alarms that will trigger appropriate protective responses. In the context of the JET global scheme for the protection of the new wall, the system is required to run on a 10 ms cycle communicating with other systems through the real-time data network. In order to meet these requirements a commercial off-the-shelf solution has been adopted based on standard x86 multicore technology. Linux and the multithreaded application real-time executor (MARTe) software framework were respectively the operating system of choice and the real-time framework used to build the application. This paper presents an overview of the system with particular technical focus on the configuration of its real-time capability and the benefits of the modular development approach and advanced tools provided by the MARTe framework.

  20. Comparison of gaseous exhaust indices of the F109 turbofan using three different blends of petroleum-based Jet-A and camelina-based Jet-A

    NASA Astrophysics Data System (ADS)

    Kozak, Brian John

    This research project focused on the collection and comparison of gaseous exhaust emissions of the F109 turbofan engine using petroleum-based Jet-A and two different blends of camelina-based Jet-A. Simulated landing and takeoff cycles were used to collect gaseous exhaust emissions. Unburned hydrocarbon (HC), nitrogen oxide (NOx), and carbon moNOxide (CO) exhaust indices (EIm) were calculated using ICAO Annex 16 Volume II formulae. Statistical analyses were performed on the Elm data. There was no significant difference in HC EIm and CO EI m among the three fuels at takeoff thrust. There were significant differences among the fuels for NOx EIm. 50% Jet-A 50% camelina produced the highest NOx EIm, then 75% Jet-A 25% camelina and finally Jet-A. At climb thrust, both blends of camelina fuel produced higher NOx EIm but no difference in CO EIm and HC EIm as Jet-A. At approach thrust, both blends of camelina fuel produced higher NOx EIm, lower CO EIm, and no difference in HC EIm as Jet-A. At idle thrust, there was no significant difference among the fuels for NOx EIm. There were significant differences among the fuels for HC EIm. Jet-A and 50% Jet-A 50% both produced higher HC EIm as 75% Jet-A 25% camelina. There were significant differences among the fuels for CO EI m. Jet-A produced the highest CO EIm, then 75% Jet-A 25% camelina and finally 50% Jet-A 50% camelina.

  1. Coiling, Entrainment, and Hydrodynamic Coupling of Decelerated Fluid Jets

    NASA Astrophysics Data System (ADS)

    Dombrowski, Christopher; Lewellyn, Braddon; Pesci, Adriana I.; Restrepo, Juan M.; Kessler, John O.; Goldstein, Raymond E.

    2005-10-01

    From algal suspensions to magma upwellings, one finds jets which exhibit complex symmetry-breaking instabilities as they are decelerated by their surroundings. We consider here a model system—a saline jet descending through a salinity gradient—which produces dynamics unlike those of standard momentum jets or plumes. The jet coils like a corkscrew within a conduit of viscously entrained fluid, whose upward recirculation braids the jet, and nearly confines transverse mixing to the narrow conduit. We show that the underlying jet structure and certain scaling relations follow from similarity solutions to the fluid equations and the physics of Kelvin-Helmholtz instabilities.

  2. Inclusive production of small radius jets in heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong-Bo; Ringer, Felix; Vitev, Ivan

    Here, we develop a new formalism to describe the inclusive production of small radius jets in heavy-ion collisions, which is consistent with jet calculations in the simpler proton–proton system. Only at next-to-leading order (NLO) and beyond, the jet radius parameter R and the jet algorithm dependence of the jet cross section can be studied and a meaningful comparison to experimental measurements is possible. We are able to consistently achieve NLO accuracy by making use of the recently developed semi-inclusive jet functions within Soft Collinear Effective Theory (SCET). Additionally, single logarithms of the jet size parameter αmore » $$n\\atop{s}$$ln nR leading logarithmic (NLL R) accuracy in proton–proton collisions. The medium modified semi-inclusive jet functions are obtained within the framework of SCET with Glauber gluons that describe the interaction of jets with the medium. We also present numerical results for the suppression of inclusive jet cross sections in heavy ion collisions at the LHC and the formalism developed here can be extended directly to corresponding jet substructure observables.« less

  3. Inclusive production of small radius jets in heavy-ion collisions

    DOE PAGES

    Kang, Zhong-Bo; Ringer, Felix; Vitev, Ivan

    2017-03-31

    Here, we develop a new formalism to describe the inclusive production of small radius jets in heavy-ion collisions, which is consistent with jet calculations in the simpler proton–proton system. Only at next-to-leading order (NLO) and beyond, the jet radius parameter R and the jet algorithm dependence of the jet cross section can be studied and a meaningful comparison to experimental measurements is possible. We are able to consistently achieve NLO accuracy by making use of the recently developed semi-inclusive jet functions within Soft Collinear Effective Theory (SCET). Additionally, single logarithms of the jet size parameter αmore » $$n\\atop{s}$$ln nR leading logarithmic (NLL R) accuracy in proton–proton collisions. The medium modified semi-inclusive jet functions are obtained within the framework of SCET with Glauber gluons that describe the interaction of jets with the medium. We also present numerical results for the suppression of inclusive jet cross sections in heavy ion collisions at the LHC and the formalism developed here can be extended directly to corresponding jet substructure observables.« less

  4. Heat transfer characteristics within an array of impinging jets. Effects of crossflow temperature relative to jet temperature

    NASA Technical Reports Server (NTRS)

    Florschuetz, L. W.; Su, C. C.

    1985-01-01

    Spanwise average heat fluxes, resolved in the streamwise direction to one stream-wise hole spacing were measured for two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate. The jet flow, after impingement, was constrained to exit in a single direction along the channel formed by the jet orifice plate and heat transfer surface. The crossflow originated from the jets following impingement and an initial crossflow was present that approached the array through an upstream extension of the channel. The regional average heat fluxes are considered as a function of parameters associated with corresponding individual spanwise rows within the array. A linear superposition model was employed to formulate appropriate governing parameters for the individual row domain. The effects of flow history upstream of an individual row domain are also considered. The results are formulated in terms of individual spanwise row parameters. A corresponding set of streamwise resolved heat transfer characteristics formulated in terms of flow and geometric parameters characterizing the overall arrays is described.

  5. Effect of jet-mainstream velocity ratio on flow characteristics and heat transfer enhancement of jet on flat plate flow

    NASA Astrophysics Data System (ADS)

    Puzu, N.; Prasertsan, S.; Nuntadusit, C.

    2017-09-01

    The aim of this research was to study the effect of jet-mainstream velocity ratio on flow and heat transfer characteristics of jet on flat plate flow. The jet from pipe nozzle with inner diameter of D=14 mm was injected perpendicularly to mainstream on flat plate. The flat plate was blown by mainstream with uniform velocity profile at 10 m/s. The velocity ratio (jet to mainstream velociy) was varied at VR=0.25 and 3.5 by adjusting velocity of jet flow. For heat transfer measurement, a thin foil technique was used to evaluate the heat transfer coefficient by measuring temperature distributions on heat transfer surface with constant heat flux by using infrared camera. Flow characteristics were simulated by using a computational fluid dynamics (CFD) with commercial software ANSYS Fluent (Ver.15.0). The results showed that the enhancement of heat transfer along downstream direction for the case of VR=0.25 was from the effect of jet stream whereas for the case of VR=3.5 was from the effect of mainstream.

  6. Cold plasma decontamination using flexible jet arrays

    NASA Astrophysics Data System (ADS)

    Konesky, Gregory

    2010-04-01

    Arrays of atmospheric discharge cold plasma jets have been used to decontaminate surfaces of a wide range of microorganisms quickly, yet not damage that surface. Its effectiveness in decomposing simulated chemical warfare agents has also been demonstrated, and may also find use in assisting in the cleanup of radiological weapons. Large area jet arrays, with short dwell times, are necessary for practical applications. Realistic situations will also require jet arrays that are flexible to adapt to contoured or irregular surfaces. Various large area jet array prototypes, both planar and flexible, are described, as is the application to atmospheric decontamination.

  7. High-Speed Jet Noise Reduction NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Handy, J. (Technical Monitor)

    2001-01-01

    History shows that the problem of high-speed jet noise reduction is difficult to solve. the good news is that high performance military aircraft noise is dominated by a single source called 'jet noise' (commercial aircraft have several sources). The bad news is that this source has been the subject of research for the past 50 years and progress has been incremental. Major jet noise reduction has been achieved through changing the cycle of the engine to reduce the jet exit velocity. Smaller reductions have been achieved using suppression devices like mixing enhancement and acoustic liners. Significant jet noise reduction without any performance loss is probably not possible! Recent NASA Noise Reduction Research Programs include the High Speed Research Program, Advanced Subsonic Technology Noise Reduction Program, Aerospace Propulsion and Power Program - Fundamental Noise, and Quiet Aircraft Technology Program.

  8. Measurements of jet multiplicity and differential production cross sections of Z + jets events in proton-proton collisions at √s = 7 TeV

    DOE PAGES

    Khachatryan, V.

    2015-03-11

    Measurements of differential cross sections are presented for the production of a Z boson and at least one hadronic jet in proton-proton collisions at √s = 7 TeV, recorded by the CMS detector, using a data sample corresponding to an integrated luminosity of 4.9 inverse femtobarns. The jet multiplicity distribution is measured for up to six jets. The differential cross sections are measured as a function of jet transverse momentum and pseudorapidity for the four highest transverse momentum jets. The distribution of the scalar sum of jet transverse momenta is also measured as a function of the jet multiplicity. Themore » measurements are compared with theoretical predictions at leading and next-to-leading order in perturbative QCD.« less

  9. Jet-images — deep learning edition

    DOE PAGES

    de Oliveira, Luke; Kagan, Michael; Mackey, Lester; ...

    2016-07-13

    Building on the notion of a particle physics detector as a camera and the collimated streams of high energy particles, or jets, it measures as an image, we investigate the potential of machine learning techniques based on deep learning architectures to identify highly boosted W bosons. Modern deep learning algorithms trained on jet images can out-perform standard physically-motivated feature driven approaches to jet tagging. We develop techniques for visualizing how these features are learned by the network and what additional information is used to improve performance. Finally, this interplay between physically-motivated feature driven tools and supervised learning algorithms is generalmore » and can be used to significantly increase the sensitivity to discover new particles and new forces, and gain a deeper understanding of the physics within jets.« less

  10. Jet-images — deep learning edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Oliveira, Luke; Kagan, Michael; Mackey, Lester

    Building on the notion of a particle physics detector as a camera and the collimated streams of high energy particles, or jets, it measures as an image, we investigate the potential of machine learning techniques based on deep learning architectures to identify highly boosted W bosons. Modern deep learning algorithms trained on jet images can out-perform standard physically-motivated feature driven approaches to jet tagging. We develop techniques for visualizing how these features are learned by the network and what additional information is used to improve performance. Finally, this interplay between physically-motivated feature driven tools and supervised learning algorithms is generalmore » and can be used to significantly increase the sensitivity to discover new particles and new forces, and gain a deeper understanding of the physics within jets.« less

  11. Research on Plasma Synthetic Jet Actuator

    NASA Astrophysics Data System (ADS)

    Che, X. K.; Nie, W. S.; Hou, Z. Y.

    2011-09-01

    Circular dielectric barrier surface discharge (DBDs) actuator is a new concept of zero mass synthetic jet actuator. The characteristic of discharge and flow control effect of annular-circular plasma synthetic jet actuator has been studied by means of of numerical simulation and experiment. The discharge current density, electron density, electrostatic body force density and flowfield have been obtained. The results show annular-circular actuator can produce normal jet whose velocity will be greater than 2.0 m/s. The jet will excite circumfluence. In order to insure the discharge is generated in the exposed electrode annular and produce centripetal and normal electrostatic body force, the width and annular diameter of exposed electrode must be big enough, or an opposite phase drove voltage potential should be applied between the two electrodes.

  12. Screech tones from free and ducted supersonic jets

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.; Ahuja, K. K.; Jones, R. R., III

    1994-01-01

    It is well known that screech tones from supersonic jets are generated by a feedback loop. The loop consists of three main components. They are the downstream propagating instability wave, the shock cell structure in the jet plume, and the feedback acoustic waves immediately outside the jet. Evidence will be presented to show that the screech frequency is largely controlled by the characteristics of the feedback acoustic waves. The feedback loop is driven by the instability wave of the jet. Thus the tone intensity and its occurrence are dictated by the characteristics of the instability wave. In this paper the dependence of the instability wave spectrum on the azimuthal mode number (axisymmetric or helical/flapping mode, etc.), the jet-to-ambient gas temperature ratio, and the jet Mach number are studied. The results of this study provide an explanation for the observed screech tone mode switch phenomenon (changing from axisymmetric to helical mode as Mach number increases) and the often-cited experimental observation that tone intensity reduces with increase in jet temperature. For ducted supersonic jets screech tones can also be generated by feedback loops formed by the coupling of normal duct modes to instability waves of the jet. The screech frequencies are dictated by the frequencies of the duct modes. Super resonance, resonance involving very large pressure oscillations, can occur when the feedback loop is powered by the most amplified instability wave. It is proposed that the observed large amplitude pressure fluctuations and tone in the test cells of Arnold Engineering Development Center were generated by super resonance. Estimated super-resonance frequency for a Mach 1.3 axisymmetric jet tested in the facility agrees well with measurement.

  13. Multi-Wavelength Study of Jets in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Perez, Karen Isabel; Adams, Mitzi

    2018-01-01

    Jets are ejections of plasma that occur in the sun’s atmosphere, and they are small in the sun’s coronal holes. Our study focuses on jets that appear in coronal holes close to the disk center to avoid projection effects in the line-of –sight component of the magnetic field. We seek to investigate the mechanism triggering the jets, which at the time is thought to be more often flux cancellation than flux emergence. We will do this by using 94 Å, 193 Å, and 304 Å data from the Atmospheric Imaging Assembly (AIA) and magnetic field data from the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). By analyzing a total of three jets, one from 2011 closer to solar maximum and two recent jets in May 2017 approaching the solar minimum in the three different wavelengths mentioned above and their magnetograms, we are able to compare the new and old data, as well as look at the differences found between the two extremes, leading the way to answering the question of the triggering mechanism of these on-disk coronal hole jets. After examination of the three jets, we conclude that two of them are triggered by flux cancellation, whereas the other is triggered by flux emergence. We conclude that there is not a dominant triggering mechanism and that more work must be done on these jets, as well as on a larger sample of jets, in order to come to a more concrete understanding as to what the most frequent triggering mechanism is for jets in coronal holes.

  14. The Penetration Behavior of an Annular Gas-Solid Jet Impinging on a Liquid Bath: Comparison with a Conventional Circular Jet

    NASA Astrophysics Data System (ADS)

    Park, Sung Sil; Dyussekenov, Nurzhan; Sohn, H. Y.

    2010-02-01

    The top-blow injection technique of a gas-solid mixture through a circular lance is used in the Mitsubishi Continuous Smelting Process. One of the inherent problems associated with this injection is the severe erosion of the hearth refractory below the lances. A new configuration of the lance to form an annular gas-solid jet rather than a circular jet was designed in the laboratory scale. With this new configuration, solid particles leave the lance at a much lower velocity than the gas, and the penetration behavior of the jet is significantly different than with the circular lance in which the solid particles leave the lance at the same high velocity as the gas. The results of cold model tests using an air-sand jet issuing from a circular lance and an annular lance into a water bath showed that the penetration of the annular jet is much less sensitive to the variations in particle feed rate as well as gas velocity than that of the circular jet. Correlation equations for the penetration depth for both circular and annular jets show agreement among the experimentally obtained values.

  15. Jet-Surface Interaction Test: Far-Field Noise Results

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2012-01-01

    Many configurations proposed for the next generation of aircraft rely on the wing or other aircraft surfaces to shield the engine noise from the observers on the ground. However, the ability to predict the shielding effect and any new noise sources that arise from the high-speed jet flow interacting with a hard surface is currently limited. Furthermore, quality experimental data from jets with surfaces nearby suitable for developing and validating noise prediction methods are usually tied to a particular vehicle concept and, therefore, very complicated. The Jet/Surface Interaction Test was intended to supply a high quality set of data covering a wide range of surface geometries and positions and jet flows to researchers developing aircraft noise prediction tools. During phase one, the goal was to measure the noise of a jet near a simple planar surface while varying the surface length and location in order to: (1) validate noise prediction schemes when the surface is acting only as a jet noise shield and when the jet/surface interaction is creating additional noise, and (2) determine regions of interest for more detailed tests in phase two. To meet these phase one objectives, a flat plate was mounted on a two-axis traverse in two distinct configurations: (1) as a shield between the jet and the observer (microphone array) and (2) as a reflecting surface on the opposite side of the jet from the observer.

  16. RELATIVISTIC DOPPLER BEAMING AND MISALIGNMENTS IN AGN JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singal, Ashok K., E-mail: asingal@prl.res.in

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in themore » orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.« less

  17. Relativistic Doppler Beaming and Misalignments in AGN Jets

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-08-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  18. Superheated liquid carbon dioxide jets: setting up and phenomena

    NASA Astrophysics Data System (ADS)

    Engelmeier, Lena; Pollak, Stefan; Peters, Franz; Weidner, Eckhard

    2018-01-01

    We present an experimental investigation on liquid, superheated carbon dioxide jets. Our main goal is to identify the setting up requirements for generating coherent jets because these raise expectations on applications in the cleaning and cutting industry. The study leads us through a number of phenomena, which are described, categorized and explained. The experiments are based on compressed (350 MPa) and cooled carbon dioxide, which expands through a cylindrical nozzle into the atmosphere. The nozzle provokes hydraulic flip by a sharp-edge inlet leading to separation and constriction. Upstream-temperature and pressure are varied and the jet's structure and phase state are monitored by a high-speed camera. We observe coherent, liquid jets far from equilibrium, which demands the solid or gaseous state. Therefore, these jets are superheated. Carbon dioxide jets, like water jets, below certain nozzle diameters are subject to fluid dynamic instabilities resulting in breakup. Above certain diameters flashing jet breakup appears, which is associated with nucleation.

  19. Effect of Turbulence Modeling on an Excited Jet

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Hixon, Ray

    2010-01-01

    The flow dynamics in a high-speed jet are dominated by unsteady turbulent flow structures in the plume. Jet excitation seeks to control these flow structures through the natural instabilities present in the initial shear layer of the jet. Understanding and optimizing the excitation input, for jet noise reduction or plume mixing enhancement, requires many trials that may be done experimentally or computationally at a significant cost savings. Numerical simulations, which model various parts of the unsteady dynamics to reduce the computational expense of the simulation, must adequately capture the unsteady flow dynamics in the excited jet for the results are to be used. Four CFD methods are considered for use in an excited jet problem, including two turbulence models with an Unsteady Reynolds Averaged Navier-Stokes (URANS) solver, one Large Eddy Simulation (LES) solver, and one URANS/LES hybrid method. Each method is used to simulate a simplified excited jet and the results are evaluated based on the flow data, computation time, and numerical stability. The knowledge gained about the effect of turbulence modeling and CFD methods from these basic simulations will guide and assist future three-dimensional (3-D) simulations that will be used to understand and optimize a realistic excited jet for a particular application.

  20. Data Quality Assurance for Supersonic Jet Noise Measurements

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Henderson, Brenda S.; Bridges, James E.

    2010-01-01

    The noise created by a supersonic aircraft is a primary concern in the design of future high-speed planes. The jet noise reduction technologies required on these aircraft will be developed using scale-models mounted to experimental jet rigs designed to simulate the exhaust gases from a full-scale jet engine. The jet noise data collected in these experiments must accurately predict the noise levels produced by the full-scale hardware in order to be a useful development tool. A methodology has been adopted at the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory to insure the quality of the supersonic jet noise data acquired from the facility s High Flow Jet Exit Rig so that it can be used to develop future nozzle technologies that reduce supersonic jet noise. The methodology relies on mitigating extraneous noise sources, examining the impact of measurement location on the acoustic results, and investigating the facility independence of the measurements. The methodology is documented here as a basis for validating future improvements and its limitations are noted so that they do not affect the data analysis. Maintaining a high quality jet noise laboratory is an ongoing process. By carefully examining the data produced and continually following this methodology, data quality can be maintained and improved over time.

  1. Three-Dimensional Modeling of Quasi-Homologous Solar Jets

    NASA Technical Reports Server (NTRS)

    Pariat, E.; Antiochos, S. K.; DeVore, C. R.

    2010-01-01

    Recent solar observations (e.g., obtained with Hinode and STEREO) have revealed that coronal jets are a more frequent phenomenon than previously believed. This higher frequency results, in part, from the fact that jets exhibit a homologous behavior: successive jets recur at the same location with similar morphological features. We present the results of three-dimensional (31)) numerical simulations of our model for coronal jets. This study demonstrates the ability of the model to generate recurrent 3D untwisting quasi-homologous jets when a stress is constantly applied at the photospheric boundary. The homology results from the property of the 3D null-point system to relax to a state topologically similar to its initial configuration. In addition, we find two distinct regimes of reconnection in the simulations: an impulsive 3D mode involving a helical rotating current sheet that generates the jet, and a quasi-steady mode that occurs in a 2D-like current sheet located along the fan between the sheared spines. We argue that these different regimes can explain the observed link between jets and plumes.

  2. Jet activity in the symbiotic variable R Aquarii

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Hollis, J. M.; Kafatos, M.

    1986-01-01

    Low-resolution ultraviolet spectra of the R Aquarii jet have been obtained with the International Ultraviolet Explorer (IUE). The most recent IUE observations indicate the ionization state of the jet is increasing. Subarcsecond, Very Large Array observations of R Aquarii have resolved the radio-continuum structure into discrete parcels of emission that are extended and nearly collinear. R Aquarii provides evidence that indicates stellar jet activity is not unique to objects associated with high-energy emission processes alone. Rather, the nature of the aligned radio-optical features that comprise the R Aquarii jet indicate that directional mass expulsion, in the form of discrete-collimated ejecta, probably reflect a general, underlying, physical process associated with a wide variety of peculiar stellar objects. As such, the R Aquarii jet constitutes a prototype for jet activity in composite or peculiar emission stars.

  3. It Twins! Spitzer Finds Hidden Jet

    NASA Image and Video Library

    2011-04-04

    NASA Spitzer Space Telescope took this image of a baby star sprouting two identical jets green lines emanating from fuzzy star. The left jet was hidden behind a dark cloud, which Spitzer can see through.

  4. J / ψ Production and Polarization within a Jet

    DOE PAGES

    Kang, Zhong-Bo; Qiu, Jian-Wei; Ringer, Felix; ...

    2017-07-18

    We study the production and polarization of J/Ψ mesons within a jet in proton-proton collisions at the LHC. Here, we define the J/Ψ-jet fragmentation function as a ratio of differential jet cross sections with and without the reconstructed J/Ψ in the jet. We also demonstrate that this is a very useful observable to help explore the J/Ψ production mechanism, and to differentiate between different NRQCD global fits based on inclusive J/Ψ cross sections. Moreover, we propose to measure the polarization of J/Ψ mesons inside the jet, which can provide even more stringent constraints for the heavy quarkonium production mechanism.

  5. J / ψ Production and Polarization within a Jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong-Bo; Qiu, Jian-Wei; Ringer, Felix

    We study the production and polarization of J/Ψ mesons within a jet in proton-proton collisions at the LHC. Here, we define the J/Ψ-jet fragmentation function as a ratio of differential jet cross sections with and without the reconstructed J/Ψ in the jet. We also demonstrate that this is a very useful observable to help explore the J/Ψ production mechanism, and to differentiate between different NRQCD global fits based on inclusive J/Ψ cross sections. Moreover, we propose to measure the polarization of J/Ψ mesons inside the jet, which can provide even more stringent constraints for the heavy quarkonium production mechanism.

  6. MICRONUCLEUS STUDIES IN THE PERIPHERAL BLOOD AND BONE MARROW OF MICE TREATED WITH JET FUELS, JP-8 AND JET-A

    EPA Science Inventory

    The potential adverse effects of dermal and inhalation exposure of jet fuels are important for health hazard evaluation in humans. In an animal model, the genotoxic potential of jet fuels, JP-8 and Jet-A, was investigated. Mice were treated dermally with either a single or multip...

  7. Dynamic analysis of process reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadle, L.J.; Lawson, L.O.; Noel, S.D.

    1995-06-01

    The approach and methodology of conducting a dynamic analysis is presented in this poster session in order to describe how this type of analysis can be used to evaluate the operation and control of process reactors. Dynamic analysis of the PyGas{trademark} gasification process is used to illustrate the utility of this approach. PyGas{trademark} is the gasifier being developed for the Gasification Product Improvement Facility (GPIF) by Jacobs-Siffine Engineering and Riley Stoker. In the first step of the analysis, process models are used to calculate the steady-state conditions and associated sensitivities for the process. For the PyGas{trademark} gasifier, the process modelsmore » are non-linear mechanistic models of the jetting fluidized-bed pyrolyzer and the fixed-bed gasifier. These process sensitivities are key input, in the form of gain parameters or transfer functions, to the dynamic engineering models.« less

  8. Threshold and Jet Radius Joint Resummation for Single-Inclusive Jet Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaohui; Moch, Sven -Olaf; Ringer, Felix

    Here, we present the first threshold and jet radius jointly resummed cross section for single-inclusive hadronic jet production. We work at next-to-leading logarithmic accuracy and our framework allows for a systematic extension beyond the currently achieved precision. Long-standing numerical issues are overcome by performing the resummation directly in momentum space within soft collinear effective theory. We present the first numerical results for the LHC and observe an improved description of the available data. Our results are of immediate relevance for LHC precision phenomenology including the extraction of parton distribution functions and the QCD strong coupling constant.

  9. Threshold and Jet Radius Joint Resummation for Single-Inclusive Jet Production

    DOE PAGES

    Liu, Xiaohui; Moch, Sven -Olaf; Ringer, Felix

    2017-11-20

    Here, we present the first threshold and jet radius jointly resummed cross section for single-inclusive hadronic jet production. We work at next-to-leading logarithmic accuracy and our framework allows for a systematic extension beyond the currently achieved precision. Long-standing numerical issues are overcome by performing the resummation directly in momentum space within soft collinear effective theory. We present the first numerical results for the LHC and observe an improved description of the available data. Our results are of immediate relevance for LHC precision phenomenology including the extraction of parton distribution functions and the QCD strong coupling constant.

  10. CENTIMETER CONTINUUM OBSERVATIONS OF THE NORTHERN HEAD OF THE HH 80/81/80N JET: REVISING THE ACTUAL DIMENSIONS OF A PARSEC-SCALE JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masque, Josep M.; Estalella, Robert; Girart, Josep M.

    2012-10-10

    We present 6 and 20 cm Jansky Very Large Array/Very Large Array observations of the northern head of the HH 80/81/80N jet, one of the largest collimated jet systems known so far, aimed to look for knots farther than HH 80N, the northern head of the jet. Aligned with the jet and 10' northeast of HH 80N, we found a radio source not reported before, with a negative spectral index similar to that of HH 80, HH 81, and HH 80N. The fit of a precessing jet model to the knots of the HH 80/81/80N jet, including the new source,more » shows that the position of this source is close to the jet path resulting from the modeling. If the new source belongs to the HH 80/81/80N jet, its derived size and dynamical age are 18.4 pc and >9 Multiplication-Sign 10{sup 3} yr, respectively. If the jet is symmetric, its southern lobe would expand beyond the cloud edge resulting in an asymmetric appearance of the jet. Based on the updated dynamical age, we speculate on the possibility that the HH 80/81/80N jet triggered the star formation observed in a dense core found ahead of HH 80N, which shows signposts of interaction with the jet. These results indicate that parsec-scale radio jets can play a role in the stability of dense clumps and the regulation of star formation in the molecular cloud.« less

  11. Plasma confinement at JET

    NASA Astrophysics Data System (ADS)

    Nunes, I.; JET Contributors

    2016-01-01

    Operation with a Be/W wall at JET (JET-ILW) has an impact on scenario development and energy confinement with respect to the carbon wall (JET-C). The main differences observed were (1) strong accumulation of W in the plasma core and (2) the need to mitigate the divertor target temperature to avoid W sputtering by Be and other low Z impurities and (3) a decrease of plasma energy confinement. A major difference is observed on the pedestal pressure, namely a reduction of the pedestal temperature which, due to profile stiffness the plasma core temperature is also reduced leading to a degradation of the global confinement. This effect is more pronounced in low β N scenarios. At high β N, the impact of the wall on the plasma energy confinement is mitigated by the weaker plasma energy degradation with power relative to the IPB98(y, 2) scaling calculated empirically for a CFC first wall. The smaller tolerable impurity concentration for tungsten (<10-5) compared to that of carbon requires the use of electron heating methods to prevent W accumulation in the plasma core region as well as gas puffing to avoid W entering the plasma core by ELM flushing and reduction of the W source by decreasing the target temperature. W source and the target temperature can also be controlled by impurity seeding. Nitrogen and Neon have been used and with both gases the reduction of the W source and the target temperature is observed. Whilst more experiments with Neon are necessary to assess its impact on energy confinement, a partial increase of plasma energy confinement is observed with Nitrogen, through the increase of edge temperature. The challenge for scenario development at JET is to extend the pulse length curtailed by its transient behavior (W accumulation or MHD), but more importantly by the divertor target temperature limits. Re-optimisation of the scenarios to mitigate the effect of the change of wall materials maintaining high global energy confinement similar to JET-C is

  12. Fluidized-bed reactor modeling for production of silicon by silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Dudukovic, M. P.; Ramachandran, P. A.; Lai, S.

    1986-01-01

    An ideal backmixed reactor model (CSTR) and a fluidized bed bubbling reactor model (FBBR) were developed for silane pyrolysis. Silane decomposition is assumed to occur via two pathways: homogeneous decomposition and heterogeneous chemical vapor deposition (CVD). Both models account for homogeneous and heterogeneous silane decomposition, homogeneous nucleation, coagulation and growth by diffusion of fines, scavenging of fines by large particles, elutriation of fines and CVD growth of large seed particles. At present the models do not account for attrition. The preliminary comparison of the model predictions with experimental results shows reasonable agreement. The CSTR model with no adjustable parameter yields a lower bound on fines formed and upper estimate on production rates. The FBBR model overpredicts the formation of fines but could be matched to experimental data by adjusting the unkown jet emulsion exchange efficients. The models clearly indicate that in order to suppress the formation of fines (smoke) good gas-solid contacting in the grid region must be achieved and the formation of the bubbles suppressed.

  13. Exhaust turbine and jet propulsion systems

    NASA Technical Reports Server (NTRS)

    Leist, Karl; Knornschild, Eugen

    1951-01-01

    DVL experimental and analytical work on the cooling of turbine blades by using ram air as the working fluid over a sector or sectors of the turbine annulus area is summarized. The subsonic performance of ram-jet, turbo-jet, and turbine-propeller engines with both constant pressure and pulsating-flow combustion is investigated. Comparison is made with the performance of a reciprocating engine and the advantages of the gas turbine and jet-propulsion engines are analyzed. Nacelle installation methods and power-level control are discussed.

  14. Evolution of the mean jet shape and dijet asymmetry distribution of an ensemble of holographic jets in strongly coupled plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey

    Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by theirmore » passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving “downward” into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we

  15. Evolution of the mean jet shape and dijet asymmetry distribution of an ensemble of holographic jets in strongly coupled plasma

    DOE PAGES

    Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey; ...

    2018-02-02

    Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by theirmore » passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving “downward” into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we

  16. Evolution of the mean jet shape and dijet asymmetry distribution of an ensemble of holographic jets in strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey; van der Schee, Wilke

    2018-02-01

    Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by their passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving "downward" into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we have built

  17. Study of jet shapes in inclusive jet production in pp collisions at √s=7 TeV using the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-03-08

    Jet shapes have been measured in inclusive jet production in proton-proton collisions at s√=7  TeV using 3  pb⁻¹ of data recorded by the ATLAS experiment at the LHC. Jets are reconstructed using the anti-k t algorithm with transverse momentum 30  GeVT<600  GeV and rapidity in the region |y|<2.8. The data are corrected for detector effects and compared to several leading-order QCD matrix elements plus parton shower Monte Carlo predictions, including different sets of parameters tuned to model fragmentation processes and underlying event contributions in the final state. The measured jets become narrower with increasing jet transverse momentum and the jet shapes present a moderatemore » jet rapidity dependence. Within QCD, the data test a variety of perturbative and nonperturbative effects. In particular, the data show sensitivity to the details of the parton shower, fragmentation, and underlying event models in the Monte Carlo generators. For an appropriate choice of the parameters used in these models, the data are well described.« less

  18. Establishing Consensus Turbulence Statistics for Hot Subsonic Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James; Werner, Mark P.

    2010-01-01

    Many tasks in fluids engineering require knowledge of the turbulence in jets. There is a strong, although fragmented, literature base for low order statistics, such as jet spread and other meanvelocity field characteristics. Some sources, particularly for low speed cold jets, also provide turbulence intensities that are required for validating Reynolds-averaged Navier-Stokes (RANS) Computational Fluid Dynamics (CFD) codes. There are far fewer sources for jet spectra and for space-time correlations of turbulent velocity required for aeroacoustics applications, although there have been many singular publications with various unique statistics, such as Proper Orthogonal Decomposition, designed to uncover an underlying low-order dynamical description of turbulent jet flow. As the complexity of the statistic increases, the number of flows for which the data has been categorized and assembled decreases, making it difficult to systematically validate prediction codes that require high-level statistics over a broad range of jet flow conditions. For several years, researchers at NASA have worked on developing and validating jet noise prediction codes. One such class of codes, loosely called CFD-based or statistical methods, uses RANS CFD to predict jet mean and turbulent intensities in velocity and temperature. These flow quantities serve as the input to the acoustic source models and flow-sound interaction calculations that yield predictions of far-field jet noise. To develop this capability, a catalog of turbulent jet flows has been created with statistics ranging from mean velocity to space-time correlations of Reynolds stresses. The present document aims to document this catalog and to assess the accuracies of the data, e.g. establish uncertainties for the data. This paper covers the following five tasks: Document acquisition and processing procedures used to create the particle image velocimetry (PIV) datasets. Compare PIV data with hotwire and laser Doppler

  19. On Three-dimensional Structures in Relativistic Hydrodynamic Jets

    NASA Astrophysics Data System (ADS)

    Hardee, Philip E.

    2000-04-01

    The appearance of wavelike helical structures on steady relativistic jets is studied using a normal mode analysis of the linearized fluid equations. Helical structures produced by the normal modes scale relative to the resonant (most unstable) wavelength and not with the absolute wavelength. The resonant wavelength of the normal modes can be less than the jet radius even on highly relativistic jets. High-pressure regions helically twisted around the jet beam may be confined close to the jet surface, penetrate deeply into the jet interior, or be confined to the jet interior. The high-pressure regions range from thin and ribbon-like to thick and tubelike depending on the mode and wavelength. The wave speeds can be significantly different at different wavelengths but are less than the flow speed. The highest wave speed for the jets studied has a Lorentz factor somewhat more than half that of the underlying flow speed. A maximum pressure fluctuation criterion found through comparison between theory and a set of relativistic axisymmetric jet simulations is applied to estimate the maximum amplitudes of the helical, elliptical, and triangular normal modes. Transverse velocity fluctuations for these asymmetric modes are up to twice the amplitude of those associated with the axisymmetric pinch mode. The maximum amplitude of jet distortions and the accompanying velocity fluctuations at, for example, the resonant wavelength decreases as the Lorentz factor increases. Long-wavelength helical surface mode and shorter wavelength helical first body mode generated structures should be the most significant. Emission from high-pressure regions as they twist around the jet beam can vary significantly as a result of angular variation in the flow direction associated with normal mode structures if they are viewed at about the beaming angle θ=1/γ. Variation in the Doppler boost factor can lead to brightness asymmetries by factors up to 6 as long-wavelength helical structure produced by

  20. Control of Asymmetric Jet

    DTIC Science & Technology

    1992-06-30

    with 5hciir Irycr frequencies arnd miodfy th-e preferied mode. Perforte~d steel plateCs "-leed with tempcratuze-resistatr: mnsulativ- mineral wool reduce...Insulation of the Jet facility was initially ... ovid. d 6y ibuiglass, then mineral wool and at the present there is none for health concerns. The...imerior of the jet’s anechoic chamber was also insulated with mineral wool to foitify acoustic damping, however this too has been removed due to portions

  1. Jet Mixing and Emission Characteristics of Transverse Jets in Annular and Cylindrical Confined Crossflow

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Holdeman, J. D.

    1995-01-01

    Three dimensional turbulent reacting CFD analyses were performed on transverse jets injected into annular and cylindrical (can) confined crossflows. The goal was to identify and assess mixing differences between annular and can geometries. The approach taken was to optimize both annular and can configurations by systematically varying orifice spacing until lowest emissions were achieved, and then compare the results. Numerical test conditions consisted of a jet-to-mainstream mass-flow ratio of 3.2 and a jet-to-mainstream momentum-flux ratio (J) of 30. The computational results showed that the optimized geometries had similar emission levels at the exit of the mixing section although the annular configuration did mix-out faster. For lowest emissions, the density correlation parameter (C = (S/H) square root of J) was 2.35 for the annular geometry and 3.5 for the can geometry. For the annular geometry, the constant was about twice the value seen for jet mixing at low mass-flow ratios (i.e., MR less than 0.5). For the can geometry, the constant was about 1 1/2 times the value seen for low mass-flow ratios.

  2. Subsonic Jet Noise from Non-Axisymmetric and Tabbed Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Tam, Christopher K. W.

    1999-01-01

    Subsonic jet noise from non-axisymmetric and tabbed nozzles are investigated experimentally and theoretically. It is shown that the noise spectra of these jets are in good agreement with the similarity spectra found empirically earlier by Tam, Golebiowski and Seiner through a detailed analysis of supersonic jet noise data. Further, the radiated noise fields of the jets under study, including elliptic and large aspect ratio rectangular jets, are found to be quite axisymmetric and are practically the same as that of a circular jet with the same exit area. These experimental results strongly suggest that nozzle geometry modification into elliptic or rectangular shapes is not an effective method for jet noise suppression. A lobed nozzle, on the other hand, is found to significantly impact the noise field. Noise from large scale turbulent structures, radiating principally in the downstream direction, is effectively suppressed. Tabs also impact the noise field, primarily by shifting the spectral peak to a higher frequency. A jetlets model is developed to provide a basic understanding of the noise from tabbed jets. The model predicts that the noise spectrum from a jet with N tabs (N > 2) can be obtained from that of the original jet (no tab) by a simple frequency shift. The shifted frequency is obtained by multiplying the original frequency by N(sup 1/2). This result is in fairly good agreement with experimental data.

  3. Spray formation processes of impinging jet injectors

    NASA Technical Reports Server (NTRS)

    Anderson, W. E.; Ryan, H. M.; Pal, S.; Santoro, R. J.

    1993-01-01

    A study examining impinging liquid jets has been underway to determine physical mechanisms responsible for combustion instabilities in liquid bi-propellant rocket engines. Primary atomization has been identified as an important process. Measurements of atomization length, wave structure, and drop size and velocity distribution were made under various ambient conditions. Test parameters included geometric effects and flow effects. It was observed that pre-impingement jet conditions, specifically whether they were laminar or turbulent, had the major effect on primary atomization. Comparison of the measurements with results from a two dimensional linear aerodynamic stability model of a thinning, viscous sheet were made. Measured turbulent impinging jet characteristics were contrary to model predictions; the structure of waves generated near the point of jet impingement were dependent primarily on jet diameter and independent of jet velocity. It has been postulated that these impact waves are related to pressure and momentum fluctuations near the impingement region and control the eventual disintegration of the liquid sheet into ligaments. Examination of the temporal characteristics of primary atomization (ligament shedding frequency) strongly suggests that the periodic nature of primary atomization is a key process in combustion instability.

  4. The jet-ISM interactions in IC 5063

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Wagner, Alexander Y.; Bicknell, Geoffrey V.; Morganti, Raffaella; Oosterloo, Tom; Nesvadba, Nicole; Sutherland, Ralph S.

    2018-05-01

    The interstellar medium of the radio galaxy IC 5063 is highly perturbed by an AGN jet expanding in the gaseous disc of the galaxy. We model this interaction with relativistic hydrodynamic simulations and multiphase initial conditions for the interstellar medium and compare the results with recent observations. As the jets flood through the intercloud channels of the disc, they ablate, accelerate, and disperse clouds to velocities exceeding 400 km s-1. Clouds are also destroyed or displaced in bulk from the central regions of the galaxy. Our models with jet powers of 1044 and 1045 erg s-1 are capable of reproducing many of the observed features in the position velocity diagram of IC 5063, and confirm the notion that the jet is responsible for the strongly perturbed gas dynamics seen in the ionized, neutral, and molecular gas phases. In our simulations, we also see strong venting of the jet plasma perpendicular to the disc, which entrains clumps and diffuse filaments into the halo of the galaxy. Our simulations are the first 3D hydrodynamic simulations of the jet and interstellar matter of IC 5063.

  5. Active Chevrons for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Depuru-Mohan, N. K.; Doty, M. J.

    2017-01-01

    Jet noise is often a dominant component of aircraft noise, particularly at takeoff. To meet the stringent noise regulations, the aircraft industry is in a pressing need of advanced noise reduction concepts. In the present study, the potential of piezoelectrically-activated chevrons for jet noise reduction was experimentally investigated. The perturbations near the nozzle exit caused by piezoelectrically-activated chevrons could be used to modify the growth rate of the mixing layer and thereby potentially reduce jet noise. These perturbations are believed to increase the production of small-scale disturbances at the expense of large-scale turbulent structures. These large-scale turbulent structures are responsible for the dominant portion of the jet mixing noise, particularly low-frequency noise. Therefore, by exciting the static chevron geometry through piezoelectric actuators, an additional acoustic benefit could possibly be achieved. To aid in the initial implementation of this concept, several flat-faced faceted nozzles (four, six, and eight facets) were investigated. Among the faceted nozzles, it was found that the eight-faceted nozzle behaves very similarly to the round nozzle. Furthermore, among the faceted nozzles with static chevrons, the four-faceted nozzle with static chevrons was found to be most effective in terms of jet noise reduction. The piezoelectrically-activated chevrons reduced jet noise up to 2 dB compared to the same nozzle geometry without excitation. This benefit was observed over a wide range of excitation frequencies by applying very low voltages to the piezoelectric actuators.

  6. Examining the Properties of Jets in Coronal Holes

    NASA Technical Reports Server (NTRS)

    Gaulle, Owen; Adams, Mitzi L.; Tennant, A. F.

    2012-01-01

    We examined both X-ray and Magnetic field data in order to determine if there is a correlation between emerging magnetic flux and the production of Coronal jets. It was proposed that emerging flux can be a trigger to a coronal jet. The jet is thought to be caused when local bipoles reconnect or when a region of magnetic polarity emerges through a uniform field. In total we studied 15 different jets that occurred over a two day period starting 2011-02-27 00:00:00 UTC and ending 2011-02-28 23:59:55 UTC. All of the jets were contained within a coronal hole that was centered on the disk. Of the 15 that we studied 6 were shown to have an increase of magnetic flux within one hour prior to the creation of the jet and 10 were within 3 hours before the event.

  7. Jet Velocity Profile Effects on Spray Characteristics of Impinging Jets at High Reynolds and Weber Numbers

    NASA Astrophysics Data System (ADS)

    Rodrigues, Neil S.; Kulkarni, Varun; Sojka, Paul E.

    2014-11-01

    While like-on-like doublet impinging jet atomization has been extensively studied in the literature, there is poor agreement between experimentally observed spray characteristics and theoretical predictions (Ryan et al. 1995, Anderson et al. 2006). Recent works (Bremond and Villermaux 2006, Choo and Kang 2007) have introduced a non-uniform jet velocity profile, which lead to a deviation from the standard assumptions for the sheet velocity and the sheet thickness parameter. These works have assumed a parabolic profile to serve as another limit to the traditional uniform jet velocity profile assumption. Incorporating a non-uniform jet velocity profile results in the sheet velocity and the sheet thickness parameter depending on the sheet azimuthal angle. In this work, the 1/7th power-law turbulent velocity profile is assumed to provide a closer match to the flow behavior of jets at high Reynolds and Weber numbers, which correspond to the impact wave regime. Predictions for the maximum wavelength, sheet breakup length, ligament diameter, and drop diameter are compared with experimental observations. The results demonstrate better agreement between experimentally measured values and predictions, compared to previous models. U.S. Army Research Office under the Multi-University Research Initiative Grant Number W911NF-08-1-0171.

  8. Solar-thermal jet pumping for irrigation

    NASA Astrophysics Data System (ADS)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  9. Kelvin-Helmholtz instability of stratified jets.

    NASA Astrophysics Data System (ADS)

    Hanasz, M.; Sol, H.

    1996-11-01

    We investigate the Kelvin-Helmholtz instability of stratified jets. The internal component (core) is made of a relativistic gas moving with a relativistic bulk speed. The second component (sheath or envelope) flows between the core and external gas with a nonrelativistic speed. Such a two-component jet describes a variety of possible astrophysical jet configurations like e.g. (1) a relativistic electron-positron beam penetrating a classical electron-proton disc wind or (2) a beam-cocoon structure. We perform a linear stability analysis of such a configuration in the hydrodynamic, plane-parallel, vortex-sheet approximation. The obtained solutions of the dispersion relation show very apparent differences with respect to the single-jet solutions. Due to the reflection of sound waves at the boundary between sheet and external gas, the growth rate as a function of wavenumber presents a specific oscillation pattern. Overdense sheets can slow down the growth rate and contribute to stabilize the configuration. Moreover, we obtain the result that even for relatively small sheet widths the properties of sheet start to dominate the jet dynamics. Such effects could have important astrophysical implications, for instance on the origin of the dichotomy between radio-loud and radio-quiet objects.

  10. Trends of jet fuel demand and properties

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1984-01-01

    Petroleum industry forecasts predict an increasing demand for jet fuels, a decrease in the gasoline-to-distillate (heavier fuel) demand ratio, and a greater influx of poorer quality petroleum in the next two to three decades. These projections are important for refinery product analyses. The forecasts have not been accurate, however, in predicting the recent, short term fluctuations in jet fuel and competing product demand. Changes in petroleum quality can be assessed, in part, by a review of jet fuel property inspections. Surveys covering the last 10 years show that average jet fuel freezing points, aromatic contents, and smoke points have trends toward their specification limits.

  11. THE INTERNAL STRUCTURE OF OVERPRESSURED, MAGNETIZED, RELATIVISTIC JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martí, J. M.; Perucho, M.; Gómez, J. L.

    This work presents the first characterization of the internal structure of overpressured, steady superfast-magnetosonic relativistic jets in connection with their dominant type of energy. To this aim, relativistic magnetohydrodynamic simulations of different jet models threaded by a helical magnetic field have been analyzed covering a wide region in the magnetosonic Mach number–specific internal energy plane. The merit of this plane is that models dominated by different types of energy (internal energy: hot jets; rest-mass energy: kinetically dominated jets; magnetic energy: Poynting-flux-dominated jets) occupy well-separated regions. The analyzed models also cover a wide range of magnetizations. Models dominated by the internalmore » energy (i.e., hot models, or Poynting-flux-dominated jets with magnetizations larger than but close to one) have a rich internal structure characterized by a series of recollimation shocks and present the largest variations in the flow Lorentz factor (and internal energy density). Conversely, in kinetically dominated models, there is not much internal or magnetic energy to be converted into kinetic, and the jets are featureless with small variations in the flow Lorentz factor. The presence of a significant toroidal magnetic field threading the jet produces large gradients in the transversal profile of the internal energy density. Poynting-flux-dominated models with high magnetization (≈10 or larger) are prone to be unstable against magnetic pinch modes, which sets limits on the expected magnetization in parsec-scale active galactic nucleus jets or constrains their magnetic field configuration.« less

  12. Jet-driven and jet-less fireballs from compact binary mergers

    NASA Astrophysics Data System (ADS)

    Salafia, O. S.; Ghisellini, G.; Ghirlanda, G.

    2018-02-01

    During a compact binary merger involving at least one neutron star (NS), a small fraction of the gravitational energy could be liberated in such a way to accelerate a small fraction (˜10-6) of the NS mass in an isotropic or quasi-isotropic way. In presence of certain conditions, a pair-loaded fireball can form, which undergoes accelerated expansion reaching relativistic velocities. As in the standard fireball scenario, internal energy is partly transformed into kinetic energy. At the photospheric radius, the internal radiation can escape, giving rise to a pulse that lasts for a time equal to the delay time since the merger. The subsequent interaction with the interstellar medium can then convert part of the remaining kinetic energy back into radiation in a weak isotropic afterglow at all wavelengths. This scenario does not require the presence of a jet: the associated isotropic prompt and afterglow emission should be visible for all NS-NS and BH-NS mergers within 90 Mpc, independent of their inclination. The prompt emission is similar to that expected from an off-axis jet, either structured or much slower than usually assumed (Γ ˜ 10), or from the jet cocoon. The predicted afterglow emission properties can discriminate among these scenarios.

  13. Simple Scaling of Mulit-Stream Jet Plumes for Aeroacoustic Modeling

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2016-01-01

    When creating simplified, semi-empirical models for the noise of simple single-stream jets near surfaces it has proven useful to be able to generalize the geometry of the jet plume. Having a model that collapses the mean and turbulent velocity fields for a range of flows allows the problem to become one of relating the normalized jet field and the surface. However, most jet flows of practical interest involve jets of two or more coannular flows for which standard models for the plume geometry do not exist. The present paper describes one attempt to relate the mean and turbulent velocity fields of multi-stream jets to that of an equivalent single-stream jet. The normalization of single-stream jets is briefly reviewed, from the functional form of the flow model to the results of the modeling. Next, PIV data from a number of multi-stream jets is analyzed in a similar fashion. The results of several single-stream approximations of the multi-stream jet plume are demonstrated, with a best approximation determined and the shortcomings of the model highlighted.

  14. Experimental Study of Impinging Jets Flow-Fields

    DTIC Science & Technology

    2016-07-27

    1 Grant # N000141410830 Experimental Study of Impinging Jet Flow-Fields Final Report for Period: Jun 15, 2014 – Jun 14, 2016 PI: Dennis K...impinging jet model in the absence of any jet heating. The results of the computations had been compared with the experimental data produced in the...of the validity of the computations, and also of the experimental approach. Figure 12a. Initial single

  15. Advanced high performance vertical hybrid synthetic jet actuator

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2011-01-01

    The present invention comprises a high performance, vertical, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a vertical piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The jet velocity and mass flow rate for the present invention will be several times higher than conventional piezoelectric synthetic jet actuators.

  16. Dilution jet mixing program, phase 3

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Coleman, E.; Myers, G.; White, C.

    1985-01-01

    The main objectives for the NASA Jet Mixing Phase 3 program were: extension of the data base on the mixing of single sided rows of jets in a confined cross flow to discrete slots, including streamlined, bluff, and angled injections; quantification of the effects of geometrical and flow parameters on penetration and mixing of multiple rows of jets into a confined flow; investigation of in-line, staggered, and dissimilar hole configurations; and development of empirical correlations for predicting temperature distributions for discrete slots and multiple rows of dilution holes.

  17. Comparison of jet Mach number decay data with a correlation and jet spreading contours for a large variety of nozzles

    NASA Technical Reports Server (NTRS)

    Groesbeck, D. E.; Huff, R. G.; Vonglahn, U. H.

    1977-01-01

    Small-scale circular, noncircular, single- and multi-element nozzles with flow areas as large as 122 sq cm were tested with cold airflow at exit Mach numbers from 0.28 to 1.15. The effects of multi-element nozzle shape and element spacing on jet Mach number decay were studied in an effort to reduce the noise caused by jet impingement on externally blown flap (EBF) STOL aircraft. The jet Mach number decay data are well represented by empirical relations. Jet spreading and Mach number decay contours are presented for all configurations tested.

  18. Investigation at Mach Numbers 2.98 and 2.18 of Axially Symmetric Free-jet Diffusion with a Ram-jet Engine

    NASA Technical Reports Server (NTRS)

    Hunczak, Henry R

    1952-01-01

    An investigation was conducted to determine the effectiveness of a free-jet diffuser in reducing the over-all pressure ratios required to operate a free jet with a large air-breathing engine as a test vehicle. Efficient operation of the free jet was determined with and without the considerations required for producing suitable engine-inlet flow conditions. A minimum operating pressure ration of 5.5 was attained with a ratio of nozzle-exit to engine-inlet area of 1.85. Operation of the free jet with unstable engine-inlet flow (buzz) is also included.

  19. Fluid Dynamics of a High Aspect-Ratio Jet

    NASA Technical Reports Server (NTRS)

    Munro, Scott E.; Ahuja, K. K.

    2003-01-01

    Circulation control wings are a type of pneumatic high-lift device that have been extensively researched as to their aerodynamic benefits. However, there has been little research into the possible airframe noise reduction benefits of a circulation control wing. The key element of noise is the jet noise associated with the jet sheet emitted from the blowing slot. High aspect-ratio jet acoustic results (aspect-ratios from 100 to 3,000) from a related study showed that the jet noise of this type of jet was proportional to the slot height to the 3/2 power and slot width to the 1/2 power. Fluid dynamic experiments were performed in the present study on the high aspect-ratio nozzle to gain understanding of the flow characteristics in an effort to relate the acoustic results to flow parameters. Single hot-wire experiments indicated that the jet exhaust from the high aspect-ratio nozzle was similar to a 2-d turbulent jet. Two-wire space-correlation measurements were performed to attempt to find a relationship between the slot height of the jet and the length-scale of the flow noise generating turbulence structure. The turbulent eddy convection velocity was also calculated, and was found to vary with the local centerline velocity, and also as a function of the frequency of the eddy.

  20. Origin of Pre-Coronal-Jet Minifilaments: Flux Cancellation

    NASA Astrophysics Data System (ADS)

    Panesar, N. K.; Sterling, A. C.; Moore, R. L.

    2017-12-01

    We recently investigated the triggering mechanism of ten quiet-region coronal jet eruptions and found that magnetic flux cancellation at the neutral line of minifilaments is the main cause of quiet-region jet eruptions (Panesar et al 2016). However, what leads to the formation of the pre-jet minifilaments remained unknown. In the present work, we study the longer-term evolution of the magnetic field that leads to the formation of pre-jet minifilaments by using SDO/AIA intensity images and concurrent line of sight SDO/HMI magnetograms. We find that each of the ten pre-jet minifilaments formed due to progressive flux cancellation between the minority-polarity and majority-polarity flux patches (with a minority-polarity flux loss of 10% - 40% prior to minifilament birth). Apparently, the flux cancellation between the opposite polarity flux patches builds a highly-sheared field at the magnetic neutral line, and that field holds the cool transition region minifilament plasma. Even after the formation of minifilaments, the flux continues to cancel, making the minifilament body more thick and prominent. Further flux cancellation between the opposite-flux patches leads to the minifilament eruption and a resulting jet. From these observations, we infer that flux cancellation is usually the process that builds up the sheared and twisted field in pre-jet minifilaments, and that triggers it to erupt and drive a jet.

  1. The imprints of the last jets in core collapse supernovae

    NASA Astrophysics Data System (ADS)

    Bear, Ealeal; Grichener, Aldana; Soker, Noam

    2017-12-01

    We analyse the morphologies of three core collapse supernova remnants (CCSNRs) and the energy of jets in other CCSNRs and in Super Luminous Supernovae (SLSNe) of type Ib/Ic/IIb, and conclude that these properties are well explained by the last jets' episode as expected in the jet feedback explosion mechanism of core collapse supernovae (CCSNe). The presence of two opposite protrusions, termed ears, and our comparison of the CCSNR morphologies with morphologies of planetary nebulae strengthen the claim that jets play a major role in the explosion mechanism of CCSNe. We crudely estimate the energy that was required to inflate the ears in two CCSNRs and assume that the ears were inflated by jets. We find that the energies of the jets which inflated ears in 11 CCSNRs span a range that is similar to that of jets in some energetic CCSNe (SLSNe) and that this energy, only of the last jets' episode, is much less than the explosion energy. This finding is compatible with the jet feedback explosion mechanism of CCSNe, where only the last jets, which carry a small fraction of the total energy carried by earlier jets, are expected to influence the outer parts of the ejecta. We reiterate our call for a paradigm shift from neutrino-driven to jet-driven explosion models of CCSNe.

  2. Battery-Powered RF Pre-Ionization System for the Caltech Magnetohydrodynamically-Driven Jet Experiment: RF Discharge Properties and MHD-Driven Jet Dynamics

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.

    This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel

  3. Influence of gas flow and applied voltage on interaction of jets in a cross-field helium plasma jet array

    NASA Astrophysics Data System (ADS)

    Wan, Meng; Liu, Feng; Fang, Zhi; Zhang, Bo; Wan, Hui

    2017-09-01

    Atmospheric Pressure Plasma Jet arrays can greatly enhance the treatment area to fulfill the need for large-scale surface processing, while the spatial uniformity of the plasma jet array is closely related to the interactions of the adjacent jets. In this paper, a three-tube one-dimensional (1D) He plasma jet array with a cross-field needle-ring electrode structure is used to investigate the influences of the gas flow rate and applied voltage on the interactions of the adjacent jets through electrical, optical, and fluid measurements. The repulsion of the adjacent plume channels is observed using an intensified charge-coupled device (ICCD) and the influence of the gas flow rate and applied voltage on the electrostatic repulsion force, Coulomb force, is discussed. It is found that electrical coupling, mainly electrostatic repulsion force, exists among the jets in the array, which causes both the divergence of the lateral plumes and the nonlinear changes of the discharge power and the transport charge. The deflection angle of the lateral plumes with respect to the central plume in the optical images increases with the increase of applied voltage and decreases with the increase of gas flow rate. The deflection angle of the lateral plumes in the optical images is obviously larger than that of the lateral gas streams in the Schlieren images under the same experimental conditions, and the unconformity of the deflection angles is mainly attributed to the electrostatic repulsion force in adjacent plasma plume channels. The experimental results can help understand the interaction mechanisms of jets in the array and design controllable and scalable plasma jet arrays.

  4. SparkJet Efficiency

    NASA Technical Reports Server (NTRS)

    Golbabaei-Asl, Mona; Knight, Doyle; Anderson, Kellie; Wilkinson, Stephen

    2013-01-01

    A novel method for determining the thermal efficiency of the SparkJet is proposed. A SparkJet is attached to the end of a pendulum. The motion of the pendulum subsequent to a single spark discharge is measured using a laser displacement sensor. The measured displacement vs time is compared with the predictions of a theoretical perfect gas model to estimate the fraction of the spark discharge energy which results in heating the gas (i.e., increasing the translational-rotational temperature). The results from multiple runs for different capacitances of c = 3, 5, 10, 20, and 40 micro-F show that the thermal efficiency decreases with higher capacitive discharges.

  5. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE PAGES

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; ...

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: n e ≈ n i ~ 10¹⁶ cm⁻³, T e ≈ T i ≈ 1.4 eV, V jet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number M s ≡ V jet/C s > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  6. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: n e ≈ n i ~ 10¹⁶ cm⁻³, T e ≈ T i ≈ 1.4 eV, V jet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number M s ≡ V jet/C s > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  7. Diagnostics of an AC driven atmospheric pressure non-thermal plasma jet and its use for radially directed jet array

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Wang, R.

    2017-08-01

    An alternating current atmospheric pressure plasma jet is generated with noble gas or noble gas/oxygen admixture as working gas. A "core plasma filament" is observed at the center of the dielectric tube and extends to the plasma jet at higher peak-to-peak voltages. This type of plasma jet is believed to be of the same nature with the reported plasma bullet driven by pulsed DC power sources. Double current probes are used to assess the speed of the plasma bullet and show that the speed is around 104-105 m/s. The time dependence of the downstream bullet speed is attributed to the gas heating and in turn the increase of the reduced electric field E/N. Optical emission spectra show the dependence of helium and oxygen emission intensities on the concentration of oxygen additive in the carrier gas, with peak values found at 0.5% O2. Multiple radial jets are realized on dielectric tubes of different sizes. As a case study, one of these multi-jet devices is used to treat B. aureus on the inner surface of a plastic beaker and is shown to be more effective than a single jet.

  8. Examining the Properties of Jets in Coronal Holes

    NASA Technical Reports Server (NTRS)

    Gaulle, Owen; Adams, Mitzi L.; Tennant, A. F.

    2012-01-01

    Data from the Solar Dynamics Observatory (SDO) were used to look for triggers of jets in a coronal hole. It has been proposed that bright points affiliated with the jets are caused by either random collisions between magnetic elements or by magnetic flux emerging from the photosphere; either of which can give rise to magnetic reconnection. Images from the 193AA filter of the Atmospheric Imaging Assembly (AIA) were searched to identify and locate jets. Changes in the line-of-sight magnetic field prior to the time of the jet were sought in data from the Helioseismic Magnetic Imager (HMI). In total we studied 15 different jets that occurred over a two day period starting 2011-02-27 00:00:00 UTC and ending 2011-02-28 23:59:55 UTC. All of the jets were contained within a coronal hole that was close to disk center. Of the 15 that we studied 6 were shown to have an increase of the parameter B2 (where B is the line-of-sight component of the magnetic field), within one hour prior to the creation of the jet and 10 were within 3 hours before the event.

  9. An experimental study of tone excited heated jets

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Salikuddin, M.

    1984-01-01

    The objective of this investigation was to obtain detailed experimental data on the effects of upstream acoustic excitation on the mixing of heated jets with the surrounding air. Based on the information gathered in the literature survey, a technical approach was developed to carry out a systematic set of mean flowfield measurements for a broad range of jet operating and acoustic excitation conditions. Most of the results were obtained at Mach numbers of 0.3 and 0.8 and total temperatures of up to 800 K. Some measurements were made also for the fully expanded supersonic jet of Mj = 1.15. The maximum level of excitation was Le equal to or less than 150 dB and a range of excitation frequencies up to fe = 4 kHz was used. The important results derived from this study can be summarized as follows: (1) the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions, (2) the threshold excitation level increases with increasing jet temperature, and (3) the preferred Strouhal number does not change significantly with a change of the jet operating conditions.

  10. Parsec-scale jets and tori in seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Wrobel, J. M.; Wilson, A. S.; Ulvestad, J. S.; Norris, R. P.; Mundell, C. G.; Krichbaum, T. P.; Falcke, H.; Colbert, E. J. M.

    2001-01-01

    H. Falcke, T.P. Krichbaum, C.G. Mundell, J.S. Ulvestad, A.S. Wilson, J.M. Wrobel Active galaxies tend to be powerful or weak radio sources, and we still do not understand the underlying cause. Perhaps the engine is the same in both systems and the jet gets disrupted by dense interstellar medium in radio-quiet objects, or else the difference is intrinsic with jet power scaling with black hole spin. To distinguish, one can look for signs of interaction between the jet and the narrow-line region, and to measure the jet speed close to the jet base, before environmental effects become important. We find one-sided parsec-scale jet structures in Mrk 348, Mrk 231, NGC 4151, and NGC 5506 using VLBI, and we measure low jet speeds (typically <= 0.25 c). The one-sidedness probably is not due to Doppler boosting, but rather is probably free-free absorption. Plasma conditions required to produce the absorption are Ne >= 2 × 105 cm-3 assuming a path length of 0.1 pc, typical of that expected at the inner edge of the obscuring torus.

  11. More Insight of Piezoelectric-based Synthetic Jet Actuators

    NASA Astrophysics Data System (ADS)

    Housley, Kevin; Amitay, Michael

    2016-11-01

    Increased understanding of the internal flow of piezoelectric-based synthetic jet actuators is needed for the development of specialized actuator cavity geometries to increase jet momentum coefficients and tailor acoustic resonant frequencies. Synthetic jet actuators can benefit from tuning of the structural resonant frequency of the piezoelectric diaphragm(s) and the acoustic resonant frequency of the actuator cavity such that they experience constructive coupling. The resulting coupled behavior produces increased jet velocities. The ability to design synthetic jet actuators to operate with this behavior at select driving frequencies allows for them to be better used in flow control applications, which sometimes require specific jet frequencies in order to utilize the natural instabilities of a given flow field. A parametric study of varying actuator diameters was conducted to this end. Phase-locked data were collected on the jet velocity, the cavity pressure at various locations, and the three-dimensional deformation of the surface of the diaphragm. These results were compared to previous analytical work on the interaction between the structural resonance of the diaphragm and the acoustic resonance of the cavity. Funded by the Boeing Company.

  12. Characteristics Of Turbulent Nonpremixed Jet-Flames And Jet-Flames In Crossflow In Normal- And Low-Gravity

    NASA Technical Reports Server (NTRS)

    Clemens, N. T.; Boxx, I. G.; Idicheria, C. A.

    2003-01-01

    It is well known that buoyancy has a major influence on the flow structure of turbulent nonpremixed jet flames. For example, previous studies have shown that transitional and turbulent jet flames exhibit flame lengths that are as much as a factor of two longer in microgravity than in normal gravity. The objective of this study is to extend these previous studies by investigating both mean and fluctuating characteristics of turbulent nonpremixed jet flames under three different gravity levels (1 g, 20 mg and 100 micrograms). This work is described in more detail elsewhere. In addition, we have recently initiated a new study into the effects of buoyancy on turbulent nonpremixed jet flames in cross-flow (JFICF). Buoyancy has been observed to play a key role in determining the centerline trajectories of such flames.6 The objective of this study is to use the low gravity environment to study the effects of buoyancy on the turbulent characteristics of JFICF.

  13. Z boson production in association with heavy quark jets at D0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph Anthony Zennamo, III

    2013-10-28

    The dominant background in searches for a Higgs boson decaying into b-quarks at the Tevatron is production of a Z boson in association with either b- or c-quark initiated jets (b or c jets). This thesis describes the first measurements of the ratio of differential cross sections σ (Z + b jet)/ σ(Z + jet), and the first measurements of the ratio of cross sections σ (Z + c jet)/ σ(Z + jet) and σ (Z + c jet)/ σ(Z + b jet). These measurements are performed using the full D0 Run II data set corresponding to an integrated luminositymore » of 9.7 fb -1. The ratio of differential cross sections σ(Z + b jet)/σ (Z + jet) have been measured as a function of jet and Z boson p T , jet η , and Δφ(Z, jet). The Z+c jet ratios of differential cross sections are measured as a function of jet and Z boson p T .« less

  14. Luminosity function and jet structure of Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    Pescalli, A.; Ghirlanda, G.; Salafia, O. S.; Ghisellini, G.; Nappo, F.; Salvaterra, R.

    2015-02-01

    The structure of gamma-ray burst (GRB) jets impacts on their prompt and afterglow emission properties. The jet of GRBs could be uniform, with constant energy per unit solid angle within the jet aperture, or it could be structured, namely with energy and velocity that depend on the angular distance from the axis of the jet. We try to get some insight about the still unknown structure of GRBs by studying their luminosity function. We show that low (1046-48 erg s-1) and high (i.e. with L ≥ 1050 erg s-1) luminosity GRBs can be described by a unique luminosity function, which is also consistent with current lower limits in the intermediate luminosity range (1048-50 erg s-1). We derive analytical expressions for the luminosity function of GRBs in uniform and structured jet models and compare them with the data. Uniform jets can reproduce the entire luminosity function with reasonable values of the free parameters. A structured jet can also fit adequately the current data, provided that the energy within the jet is relatively strongly structured, i.e. E ∝ θ-k with k ≥ 4. The classical E ∝ θ-2 structured jet model is excluded by the current data.

  15. Strong-coupling jet energy loss from AdS/CFT

    NASA Astrophysics Data System (ADS)

    Morad, R.; Horowitz, W. A.

    2014-11-01

    We propose a novel definition of a holographic light hadron jet and consider the phenomenological consequences, including the very first fully self-consistent, completely strong-coupling calculation of the jet nuclear modification factor R AA, which we find compares surprisingly well with recent preliminary data from LHC. We show that the thermalization distance for light parton jets is an extremely sensitive function of the a priori unspecified string initial conditions and that worldsheets corresponding to non-asymptotic energy jets are not well approximated by a collection of null geodesics. Our new string jet prescription, which is defined by a separation of scales from plasma to jet, leads to the re-emergence of the late-time Bragg peak in the instantaneous jet energy loss rate; unlike heavy quarks, the energy loss rate is unusually sensitive to the very definition of the string theory object itself. A straightforward application of the new jet definition leads to significant jet quenching, even in the absence of plasma. By renormalizing the in-medium suppression by that in the vacuum we find qualitative agreement with preliminary CMS RAAjet >( p T) data in our simple plasma brick model. We close with comments on our results and an outlook on future work.

  16. Heat Transfer of Confined Impinging Air-water Mist Jet

    NASA Astrophysics Data System (ADS)

    Chang, Shyy Woei; Su, Lo May

    This paper describes the detailed heat transfer distributions of an atomized air-water mist jet impinging orthogonally onto a confined target plate with various water-to-air mass-flow ratios. A transient technique was used to measure the full field heat transfer coefficients of the impinging surface. Results showed that the high momentum mist-jet interacting with the water-film and wall-jet flows created a variety of heat transfer contours on the impinging surface. The trade-off between the competing influences of the different heat transfer mechanisms involving in an impinging mist jet made the nonlinear variation tendency of overall heat transfer against the increase of water-to-air mass-flow ratio and extended the effective cooling region. With separation distances of 10, 8, 6 and 4 jet-diameters, the spatially averaged heat transfer values on the target plate could respectively reach about 2.01, 1.83, 2.43 and 2.12 times of the equivalent air-jet values, which confirmed the applicability of impinging mist-jet for heat transfer enhancement. The optimal choices of water-to-air mass-flow ratio for the atomized mist jet required the considerations of interactive and combined effects of separation distance, air-jet Reynolds number and the water-to-air mass-flow ratio into the atomized nozzle.

  17. Linearized unsteady jet analysis

    NASA Technical Reports Server (NTRS)

    Viets, H.; Piatt, M.

    1979-01-01

    The introduction of a time dependency into a jet flow to change the rate at which it mixes with a coflowing stream or ambient condition is investigated. The advantages and disadvantages of the unsteady flow are discussed in terms of steady state mass and momentum transfer. A linear system which is not limited by frequency constraints and evolves through a simplification of the equations of motion is presented for the analysis of the unsteady flow field generated by the time dependent jet.

  18. Effects of the Kelvin-Helmholtz surface instability on supersonic jets

    NASA Technical Reports Server (NTRS)

    Hardee, P. E.

    1982-01-01

    An exact numerical calculation is provided for of linear growth and phase velocity of Kelvin-Helmholtz unstable wave modes on a supersonic jet of cylindrical cross section. An expression for the maximally unstable wavenumber of each wave mode is found. Provided a sharp velocity discontinuity exists all wave modes are unstable. A combination of rapid jet expansion and velocity shear across a jet can effectively stabilize all wave modes. The more likely case of slow jet expansion and of velocity shear at the jet surface allows wave modes with maximally unstable wavelength longer than or on the order of the jet radius to grow. The relative energy in different wave modes and effect on the jet is investigated. Energy input into a jet resulting from surface instability is discussed.

  19. Bayesian analysis of X-ray jet features of the high redshift quasar jets observed with Chandra

    NASA Astrophysics Data System (ADS)

    McKeough, Kathryn; Siemiginowska, Aneta; Kashyap, Vinay; Stein, Nathan; Cheung, Chi C.

    2015-01-01

    X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet's relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. Results from Chandra X-ray and multi-frequency VLA imaging observations of a sample of 11 high- redshift (z > 2) quasars with kilo-parsec scale radio jets are reported. The sample consists of a set of four z ≥ 3.6 flat-spectrum radio quasars, and seven intermediate redshift (z = 2.1 - 2.9) quasars comprised of four sources with integrated steep radio spectra and three with flat radio spectra.We implement a Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) , to analyze jet features in the X-ray images of the high redshift quasars. Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. Significant detections are based on the upper bound p-value test based on LIRA simulations. The X-ray and radio properties of this sample combined are examined and compared to lower-redshift samples.This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. Work is also supported by the Chandra grant GO4-15099X.

  20. Numerical simulations of a transverse indirect circulation and low-level jet in the exit region of an upper-level jet

    NASA Technical Reports Server (NTRS)

    Brill, K. F.; Uccellini, L. W.; Burkhart, R. P.; Warner, T. T.; Anthes, R. A.

    1985-01-01

    A numerical study was performed of a severe weather event (tornado) which occurred on May 10, 1973 in the Ohio region. The situation was modeled with a primitive equation mesoscale dynamic formulation. Account was taken of precipitation, the planetary boundary layer parameters as bulk quantities, the vertical pressure gradient, and lateral boundary conditions based on radiosonde data. Two 12-hr simulations, adiabatic and nondivergent, respectively, were analyzed for relationships between upper and lower level jets. In the adiabatic formulation, a transverse circulation with a low level jet formed at the exit region of the upper level jet. The nondivergent situation led to similar, but weaker, phenomena. Both forms suggest that indirect circulation in the exit zone of an upper level jet is strongly influenced by the initial structure of the jet.

  1. Size limits the formation of liquid jets during bubble bursting

    PubMed Central

    Lee, Ji San; Weon, Byung Mook; Park, Su Ji; Je, Jung Ho; Fezzaa, Kamel; Lee, Wah-Keat

    2011-01-01

    A bubble reaching an air–liquid interface usually bursts and forms a liquid jet. Jetting is relevant to climate and health as it is a source of aerosol droplets from breaking waves. Jetting has been observed for large bubbles with radii of R≫100 μm. However, few studies have been devoted to small bubbles (R<100 μm) despite the entrainment of a large number of such bubbles in sea water. Here we show that jet formation is inhibited by bubble size; a jet is not formed during bursting for bubbles smaller than a critical size. Using ultrafast X-ray and optical imaging methods, we build a phase diagram for jetting and the absence of jetting. Our results demonstrate that jetting in bubble bursting is analogous to pinching-off in liquid coalescence. The coalescence mechanism for bubble bursting may be useful in preventing jet formation in industry and improving climate models concerning aerosol production. PMID:21694715

  2. Jet Propulsion with Special Reference to Thrust Augmenters

    NASA Technical Reports Server (NTRS)

    Schubauer, G B

    1933-01-01

    An investigation of the possibility of using thrust augmented jets as prime movers was carried out. The augmentation was to be effected by allowing the jet to mix with the surrounding air in the presence of bodies which deflect the air set in motion by the jet.

  3. The transverse momentum distribution of hadrons within jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong -Bo; Liu, Xiaohui; Ringer, Felix

    We study the transverse momentum distribution of hadrons within jets, where the transverse momentum is defined with respect to the standard jet axis. We consider the case where the jet substructure measurement is performed for an inclusive jet sample pp → jet + X. We demonstrate that this observable provides new opportunities to study transverse momentum dependent fragmentation functions (TMDFFs) which are currently poorly constrained from data, especially for gluons. The factorization of the cross section is obtained within Soft Collinear Effective Theory (SCET), and we show that the relevant TMDFFs are the same as for the more traditional processesmore » semi-inclusive deep inelastic scattering (SIDIS) and electron-positron annihilation. Different than in SIDIS, the observable for the in-jet fragmentation does not depend on TMD parton distribution functions which allows for a cleaner and more direct probe of TMDFFs. We present numerical results and compare to available data from the LHC.« less

  4. Two opposed lateral jets injected into swirling crossflow

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.; Mcmurry, C. B.; Ong, L. H.

    1987-01-01

    Experiments have been conducted to obtain the time-mean and turbulent quantities of opposed lateral jets in a low speed, nonreacting flowfield. A jet-to-crossflow velocity ratio of R = 4 was used throughout the experiments, with swirl vane angles of 0 (swirler removed), 45 and 70 degrees used with the crossflow. Flow visualization techniques used were neutrally-buoyant helium-filled soap bubbles and multispark photography in order to obtain the gross flowfield characteristics. Measurements of time-mean and turbulent quantities were obtained utilizing a six-orientation single hot-wire technique. For the nonswirling case, the jets were found not to penetrate past the test-section centerline, in contrast to the single lateral jet with the same jet-to-crossflow velocity ratio. In the swirling cases, the crossflow remains in a narrow region near the wall of the test section. The opposed jets are swept from their vertical courses into spiral trajectories close to the confining walls. Extensive results are presented in r-x plane plots.

  5. Buoyancy Effects in Turbulent Jet Flames in Crossflow

    NASA Astrophysics Data System (ADS)

    Boxx, Isaac; Idicheria, Cherian; Clemens, Noel

    2003-11-01

    The aim of this study is to investigate the effects of buoyancy on the structure of turbulent, non-premixed hydrocarbon jet-flames in crossflow (JFICF). This was accomplished using a small jet-in-crossflow facility which can be oriented at a variety of angles with respect to the gravity vector. This facility enables us to alter the relative influence of buoyancy on the JFICF without altering the jet-exit Reynolds number, momentum flux ratio or the geometry of the system. Results are compared to similar, but non-buoyant, JFICF studied in microgravity. Departures of jet-centerline trajectory from the well-known power-law scaling of turbulent JFICF were used to explore the transition from a buoyancy-influenced regime to a momentum dominated one. The primary diagnostic was CCD imaging of soot-luminosity. We present results on ethylene jet flames with jet-exit Reynolds numbers of 1770 to 8000 and momentum flux ratios of 5 to 13.

  6. The transverse momentum distribution of hadrons within jets

    DOE PAGES

    Kang, Zhong -Bo; Liu, Xiaohui; Ringer, Felix; ...

    2017-11-13

    We study the transverse momentum distribution of hadrons within jets, where the transverse momentum is defined with respect to the standard jet axis. We consider the case where the jet substructure measurement is performed for an inclusive jet sample pp → jet + X. We demonstrate that this observable provides new opportunities to study transverse momentum dependent fragmentation functions (TMDFFs) which are currently poorly constrained from data, especially for gluons. The factorization of the cross section is obtained within Soft Collinear Effective Theory (SCET), and we show that the relevant TMDFFs are the same as for the more traditional processesmore » semi-inclusive deep inelastic scattering (SIDIS) and electron-positron annihilation. Different than in SIDIS, the observable for the in-jet fragmentation does not depend on TMD parton distribution functions which allows for a cleaner and more direct probe of TMDFFs. We present numerical results and compare to available data from the LHC.« less

  7. Subsonic Jet Noise from Non-Axisymmetric and Tabbed Nozzles

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Zaman, K. B. M. Q.

    1999-01-01

    Subsonic jet noise from non-axisymmetric and tabbed nozzles are investigated experimentally and theoretically. It is shown that the noise spectra of these jets are in good agreement with the similarity spectra found empirically earlier by Tam, Golebiowski and Seiner through a detailed analysis of supersonic jet noise data. Further, the radiated noise fields of the jets under study, including elliptic and large aspect ratio rectangular jets, are found to be quite axisymmetric and are practically the same as that of a circular jet with the same exit area. These experimental results strongly suggest that nozzle geometry modification into elliptic or rectangular shapes is not an effective method for jet noise suppression. A lobed nozzle, on the other hand, is found to significantly impact the noise field. Noise from large scale turbulent structures, radiating principally in the downstream direction, is effectively suppressed. Tabs also impact the noise field, primarily by shifting the spectral peak to a higher frequency. A jetlets model is developed to provide a basic understanding of the noise from tabbed jets. The model predicts that the noise spectrum from a jet with N tabs (N greater than or equal to 2) can be obtained from that of the original jet (no tab) by a simple frequency shift. The shifted frequency is obtained by multiplying the original frequency by N(exp 1/2). This result is in fairly good agreement with experimental data.

  8. On the Two Components of Turbulent Mixing Noise from Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Golebiowski, Michel; Seiner, J. M.

    1996-01-01

    It is argued that because of the lack of intrinsic length and time scales in the core part of the jet flow, the radiated noise spectrum of a high-speed jet should exhibit similarity. A careful analysis of all the axisymmetric supersonic jet noise spectra in the data-bank of the Jet Noise Laboratory of the NASA Langley Research Center has been carried out. Two similarity spectra, one for the noise from the large turbulence structures/instability waves of the jet flow, the other for the noise from the fine-scale turbulence, are identified. The two similarity spectra appear to be universal spectra for axisymmetric jets. They fit all the measured data including those from subsonic jets. Experimental evidence are presented showing that regardless of whether a jet is supersonic or subsonic the noise characteristics and generation mechanisms are the same. There is large turbulence structures/instability waves noise from subsonic jets. This noise component can be seen prominently inside the cone of silence of the fine-scale turbulence noise near the jet axis. For imperfectly expanded supersonic jets, a shock cell structure is formed inside the jet plume. Measured spectra are provided to demonstrate that the presence of a shock cell structure has little effect on the radiated turbulent mixing noise. The shape of the noise spectrum as well as the noise intensity remain practically the same as those of a fully expanded jet. However, for jets undergoing strong screeching, there is broadband noise amplification for both turbulent mixing noise components. It is discovered through a pilot study of the noise spectrum of rectangular and elliptic supersonic jets that the turbulent mixing noise of these jets is also made up of the same two noise components found in axisymmetric jets. The spectrum of each individual noise component also fits the corresponding similarity spectrum of axisymmetric jets.

  9. Lateral jet injection into typical combustor flowfields

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.

    1986-01-01

    The experimental problem of lateral jet injection into typical flow fields in the absence of combustion was studied. All flow fields being investigated have no expansion of the crossflow (the test section to swirler diameter ratio D/d = 1), after its passage through an optional swirler (with swirl vane angle phi = 0 (swirler removed), 45, and 70 degree). The lateral jet(s) is(are) located one test-section diameter downstream of the test-section inlet (x/D = 1). The lateral jets have round-sectioned nozzles, each of which has an area of 1/100th of the cross sectional area of the crossflow (A sub j/A sub c = 1/100). Jet-to-crossflow velocity ratios of R = v sub j/u sub o = 2, 4, and 6 were investigated. Helium-bubble low visualization, five-hole pitot probe time-mean velocity measurements, and single-wire time-mean velocity and normal and shear stress turbulence data were obtained in the research program.

  10. Unsteady jet flow computation towards noise prediction

    NASA Technical Reports Server (NTRS)

    Soh, Woo-Yung

    1994-01-01

    An attempt has been made to combine a wave solution method and an unsteady flow computation to produce an integrated aeroacoustic code to predict far-field jet noise. An axisymmetric subsonic jet is considered for this purpose. A fourth order space accurate Pade compact scheme is used for the unsteady Navier-Stokes solution. A Kirchhoff surface integral for the wave equation is employed through the use of an imaginary surface which is a circular cylinder enclosing the jet at a distance. Information such as pressure and its time and normal derivatives is provided on the surface. The sound prediction is performed side by side with the jet flow computation. Retarded time is also taken into consideration since the cylinder body is not acoustically compact. The far-field sound pressure has the directivity and spectra show that low frequency peaks shift toward higher frequency region as the observation angle increases from the jet flow axis.

  11. Coaxial gas-liquid jet: Dispersion and dynamics

    NASA Astrophysics Data System (ADS)

    Poplavski, S. V.; Boiko, V. M.; Lotov, V. V.; Nesterov, A. Yu.

    2018-03-01

    The aim of the work was to study the pneumatic spraying of liquids in a gas jet with reference to the creation of high-flow nozzles. A complex experimental study of a coaxial jet was performed with a central supply of liquid beyond the cutoff of the confusor nozzle at subsonic and supersonic flow conditions. A set of optical methods for flows diagnostics that can function in dense gas-liquid jets provides new data on the structure of the spray: the gas velocity field without liquid, shadow visualization of the geometry and wave structure of the jet with and without fluid, the velocity profiles of the liquid phase, size distribution of the droplets. The key parameters of the liquid breakup processes for the We numbers are obtained. A dynamic approach to the determination of average droplet sizes is considered. A physical model of a coaxial gas-liquid jet with a central fluid supply is proposed.

  12. Jet Surface Interaction Scrubbing Noise from High Aspect-Ratio Rectangular Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bozak, Richard F.

    2015-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity of the airframe. Distributed propulsion system with exhaust configurations that resemble a high aspect ratio rectangular jet are among geometries of interest. Nearby solid surfaces could provide noise shielding for the purpose of reduced community noise. Interaction of high-speed jet exhaust with structure could also generate new sources of sound as a result of flow scrubbing past the structure, and or scattered noise from sharp edges. The present study provides a theoretical framework to predict the scrubbing noise component from a high aspect ratio rectangular exhaust in proximity of a solid surface. The analysis uses the Greens function (GF) to the variable density Pridmore-Brown equation in a transversely sheared mean flow. Sources of sound are defined as the auto-covariance function of second-rank velocity fluctuations in the jet plume, and are modeled using a RANS-based acoustic analogy approach. Acoustic predictions are presented in an 8:1 aspect ratio rectangular exhaust at three subsonic Mach numbers. The effect of nearby surface on the scrubbing noise component is shown on both reflected and shielded sides of the plate.

  13. AT THE SOURCE OF AN EXTRAGALACTIC JET

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Artist's concept of the formation region of M87's jet. An accretion disk (red-yellow) surrounds the black hole, and its magnetic field lines twist tightly to channel the outpouring subatomic particles into a narrow jet. The jet opens widely near the black hole, then is shaped into a narrower beam within a light-year of the black hole. Credit: NASA and Ann Feild (Space Telescope Science Institute)

  14. Electroweak Boson Production in Association with Jets

    NASA Astrophysics Data System (ADS)

    Focke, Christfried Hermann

    The high energies involved in modern collider experiments lead to hadronic final states that are often boosted inside collimated jets and surrounded by soft radiation. Together with tracking and energy information from leptons and photons, these jets contain essential information about a collision event. A good theoretical understanding is vital for measurements within the Standard Model (SM) as well as for background modeling required for new physics searches. Often one is interested in hadronic final states with cuts on jets in order to reduce backgrounds. For example, by imposing a central jet veto pcut in H → WW → lnulnu one can greatly reduce contamination from tt¯ → WW bb¯. Imposing such a jet veto comes at the cost of introducing potentially large logarithms L = ln pcut/Q into the cross section (Q is the hard scale), since the cuts restrict the cancellation of soft and collinear divergences between real and virtual diagrams. There are at most two powers of L for each power of the strong coupling constant alphas and this can spoil the convergence of the perturbative series when alpha sL2 ˜ 1 . We resume these logarithmically enhanced terms to all orders within the framework of Soft-Collinear Effective Theory (SCET) in order to recover the convergence and obtain reliable predictions for several processes. Another focus of this dissertation is the application of SCET in fixed order predictions of electroweak boson production in association with an exclusive number of final state jets. We employ the N-jettiness event-shape TN to resolve the infrared singularity structure of QCD in the presence of N signal jets. This allows us to obtain the first complete next-to-next-to leading order predictions for W, Z and Higgs boson production in association with one jet.

  15. Drying hardwoods with impinging jets.

    Treesearch

    Howard N. Rosen

    1980-01-01

    Silver maple, yellow poplar, and black walnut lumber was dried in a prototype jet dryer over a range of temperatures from 120 degrees to 400 degrees Fahrenheit and air velocities from 1,000 to 9,000 fpm. Different drying schedules were developed for each type of wood. The quality of the jet-dried lumber was good and compared favorably with kiln-dried lumber.

  16. Jet measurements in heavy ion physics

    NASA Astrophysics Data System (ADS)

    Connors, Megan; Nattrass, Christine; Reed, Rosi; Salur, Sevil

    2018-04-01

    A hot, dense medium called a quark gluon plasma (QGP) is created in ultrarelativistic heavy ion collisions. Early in the collision, hard parton scatterings generate high momentum partons that traverse the medium, which then fragment into sprays of particles called jets. Understanding how these partons interact with the QGP and fragment into final state particles provides critical insight into quantum chromodynamics. Experimental measurements from high momentum hadrons, two particle correlations, and full jet reconstruction at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) continue to improve our understanding of energy loss in the QGP. Run 2 at the LHC recently began and there is a jet detector at RHIC under development. Now is the perfect time to reflect on what the experimental measurements have taught us so far, the limitations of the techniques used for studying jets, how the techniques can be improved, and how to move forward with the wealth of experimental data such that a complete description of energy loss in the QGP can be achieved. Measurements of jets to date clearly indicate that hard partons lose energy. Detailed comparisons of the nuclear modification factor between data and model calculations led to quantitative constraints on the opacity of the medium to hard probes. However, while there is substantial evidence for softening and broadening jets through medium interactions, the difficulties comparing measurements to theoretical calculations limit further quantitative constraints on energy loss mechanisms. Since jets are algorithmic descriptions of the initial parton, the same jet definitions must be used, including the treatment of the underlying heavy ion background, when making data and theory comparisons. An agreement is called for between theorists and experimentalists on the appropriate treatment of the background, Monte Carlo generators that enable experimental algorithms to be applied to theoretical calculations

  17. Core shifts, magnetic fields and magnetization of extragalactic jets

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej A.; Sikora, Marek; Pjanka, Patryk; Tchekhovskoy, Alexander

    2015-07-01

    We study the effect of radio-jet core shift, which is a dependence of the position of the jet radio core on the observational frequency. We derive a new method of measuring the jet magnetic field based on both the value of the shift and the observed radio flux, which complements the standard method that assumes equipartition. Using both methods, we re-analyse the blazar sample of Zamaninasab et al. We find that equipartition is satisfied only if the jet opening angle in the radio core region is close to the values found observationally, ≃0.1-0.2 divided by the bulk Lorentz factor, Γj. Larger values, e.g. 1/Γj, would imply magnetic fields much above equipartition. A small jet opening angle implies in turn the magnetization parameter of ≪1. We determine the jet magnetic flux taking into account this effect. We find that the transverse-averaged jet magnetic flux is fully compatible with the model of jet formation due to black hole (BH) spin-energy extraction and the accretion being a magnetically arrested disc (MAD). We calculate the jet average mass-flow rate corresponding to this model and find it consists of a substantial fraction of the mass accretion rate. This suggests the jet composition with a large fraction of baryons. We also calculate the average jet power, and find it moderately exceeds the accretion power, dot{M} c^2, reflecting BH spin energy extraction. We find our results for radio galaxies at low Eddington ratios are compatible with MADs but require a low radiative efficiency, as predicted by standard accretion models.

  18. Solar Jets as Sources of Outflows, Heating and Waves

    NASA Astrophysics Data System (ADS)

    Nishizuka, N.

    2013-05-01

    Recent space solar observations of the Sun, such as Hinode and SDO, have revealed that magnetic reconnection is ubiquitous in the solar atmosphere, ranging from small scale reconnection (observed as nanoflares) to large scale one (observed as long duration flares or giant arcades). Especially recent Hinode observations has found various types of tiny chromospheric jets, such as chromospheric anemone jets, penumbral microjets and light bridge jets from sunspot umbra. It was also found that the corona is full of tiny X-ray jets. Often they are seen as helical spinning jets with Alfvenic waves in the corona. Sometimes they are seen as chromospheric jets with slow-mode magnetoacoustic waves and sometimes as unresolved jet-like events at the footpoint of recurrent outflows and waves at the edge of the active region. There is increasing evidence of magnetic reconnection in these tiny jets and its association with waves. The origin of outflows and waves is one of the issues concerning coronal heating and solar wind acceleration. To answer this question, we had a challenge to reproduce solar jets with laboratory plasma experiment and directly measured outflows and waves. As a result, we could find a propagating wave excited by magnetic reconnection, whose energy flux is 10% of the released magnetic energy. That is enough for solar wind acceleration and locally enough for coronal heating, consistent with numerical MHD simulations of solar jets. Here we would discuss recent observations with Hinode, theories and experimental results related to jets and waves by magnetic reconnection, and discuss possible implication to reconnection physics, coronal heating and solar wind acceleration.

  19. Sub- and supercritical jet disintegration

    NASA Astrophysics Data System (ADS)

    DeSouza, Shaun; Segal, Corin

    2017-04-01

    Shadowgraph visualization and Planar Laser Induced Fluorescence (PLIF) are applied to single orifice injection in the same facility and same fluid conditions to analyze sub- to supercritical jet disintegration and mixing. The comparison includes jet disintegration and lateral spreading angle. The results indicate that the shadowgraph data are in agreement with previous visualization studies but differ from the PLIF results that provided quantitative measurement of central jet plane density and density gradients. The study further evaluated the effect of thermodynamic conditions on droplet production and quantified droplet size and distribution. The results indicate an increase in the normalized drop diameter and a decrease in the droplet population with increasing chamber temperatures. Droplet size and distribution were found to be independent of chamber pressure.

  20. Improved Phased Array Imaging of a Model Jet

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Podboy, Gary G.

    2010-01-01

    An advanced phased array system, OptiNav Array 48, and a new deconvolution algorithm, TIDY, have been used to make octave band images of supersonic and subsonic jet noise produced by the NASA Glenn Small Hot Jet Acoustic Rig (SHJAR). The results are much more detailed than previous jet noise images. Shock cell structures and the production of screech in an underexpanded supersonic jet are observed directly. Some trends are similar to observations using spherical and elliptic mirrors that partially informed the two-source model of jet noise, but the radial distribution of high frequency noise near the nozzle appears to differ from expectations of this model. The beamforming approach has been validated by agreement between the integrated image results and the conventional microphone data.