Sample records for jet wind tunnel

  1. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet with Shock Interactions

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Denison, Marie; Sozer, Emre; Moini-Yekta, Shayan

    2016-01-01

    NASA and Industry are performing vehicle studies of configurations with low sonic boom pressure signatures. The computational analyses of modern configuration designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty in the aft signatures with often greater boundary layer effects and nozzle jet pressures. Wind tunnel testing at significantly lower Reynolds numbers than in flight and without inlet and nozzle jet pressures make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel from Mach 1.6 to 2.0 will be used to assess the effects of shocks from components passing through nozzle jet plumes on the sonic boom pressure signature and provide datasets for comparison with CFD codes. A large number of high-fidelity numerical simulations of wind tunnel test models with a variety of shock generators that simulate horizontal tails and aft decks have been studied to provide suitable models for sonic boom pressure measurements using a minimally intrusive pressure rail in the wind tunnel. The computational results are presented and the evolution of candidate wind tunnel models is summarized and discussed in this paper.

  2. Study of open jet wind tunnel cones

    NASA Technical Reports Server (NTRS)

    Weick, Fred E

    1927-01-01

    Tests have been made by the National Advisory Committee for Aeronautics on the air flow in an open jet wind tunnel with various sizes, shapes, and spacings of cones, and the flow studied by means of velocity and direction surveys in conjunction with flow pictures. It was found that for all combinations of cones tested the flow is essentially the same, consisting of an inner core of decreasing diameter having uniform velocity and direction, and a boundary layer of more or less turbulent air increasing in thickness with length of jet. The energy ratio of the tunnel was obtained for the different combinations of cones, and the spilling around the exit cone causing undesirable air currents in the experiment chamber was noted. An empirical formula is given for the design of cones having no appreciable spilling.

  3. A Hydrogen Peroxide Hot-Jet Simulator for Wind-Tunnel Tests of Turbojet-Exit Models

    NASA Technical Reports Server (NTRS)

    Runckel, Jack F.; Swihart, John M.

    1959-01-01

    A turbojet-engine-exhaust simulator which utilizes a hydrogen peroxide gas generator has been developed for powered-model testing in wind tunnels with air exchange. Catalytic decomposition of concentrated hydrogen peroxide provides a convenient and easily controlled method of providing a hot jet with characteristics that correspond closely to the jet of a gas turbine engine. The problems associated with simulation of jet exhausts in a transonic wind tunnel which led to the selection of a liquid monopropellant are discussed. The operation of the jet simulator consisting of a thrust balance, gas generator, exit nozzle, and auxiliary control system is described. Static-test data obtained with convergent nozzles are presented and shown to be in good agreement with ideal calculated values.

  4. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet Flows with Shock Interactions

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Denison, Marie; Moini-Yekta, Shayan; Morr, Donald E.; Durston, Donald A.

    2016-01-01

    NASA and the U.S. aerospace industry are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The computational analyses of modern aircraft designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty remains in the aft signatures due to boundary layer and nozzle exhaust jet effects. Wind tunnel testing without inlet and nozzle exhaust jet effects at lower Reynolds numbers than in-flight make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel is planned for February 2016 to address the nozzle jet effects on sonic boom. The experiment will provide pressure signatures of test articles that replicate waveforms from aircraft wings, tails, and aft fuselage (deck) components after passing through cold nozzle jet plumes. The data will provide a variety of nozzle plume and shock interactions for comparison with computational results. A large number of high-fidelity numerical simulations of a variety of shock generators were evaluated to define a reduced collection of suitable test models. The computational results of the candidate wind tunnel test models as they evolved are summarized, and pre-test computations of the final designs are provided.

  5. Background noise measurements from jet exit vanes designed to reduced flow pulsations in an open-jet wind tunnel

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.; Martin, R. M.

    1985-01-01

    Many open jet wind tunnels experience pulsations of the flow which are typically characterized by periodic low frequency velocity and pressure variations. One method of reducing these fluctuations is to install vanes around the perimeter of the jet exit to protrude into the flow. Although these vanes were shown to be effective in reducing the fluctuation content, they can also increase the test section background noise level. The results of an experimental acoustic program in the Langley 4- by 7-Meter Tunnel is presented which evaluates the effect on tunnel background noise of such modifications to the jet exit nozzle. Noise levels for the baseline tunnel configuration are compared with those for three jet exit nozzle modifications, including an enhanced noise reduction configuration that minimizes the effect of the vanes on the background noise. Although the noise levels for this modified vane configuration were comparable to baseline tunnel background noise levels in this facility, installation of these modified vanes in an acoustic tunnel may be of concern because the noise levels for the vanes could be well above background noise levels in a quiet facility.

  6. Shock layer vacuum UV spectroscopy in an arc-jet wind tunnel

    NASA Technical Reports Server (NTRS)

    Palumbo, G.

    1990-01-01

    An experimental program is being developed to obtain measurements of the incident surface radiation in the 1000 A to 2000 A range from the shock stagnation region of a blunt model in the Ames 20 MW Arc-Jet Wind Tunnel. The setup consists of a water-cooled blunt model, with a magnesium fluoride forward-viewing window. Radiation incident on the window is optically imaged via an evacuated system and reflective optical elements onto the entrance slit of a spectrograph. The model will be exposed to the supersonic plasma stream from the exit nozzle of the arc-jet tunnel. The resulting bow shock radiation will be measured. It is expected that this experiment will help evaluate the importance of atomic N and O lines to the radiative heating of future Aeroassist Space Transfer Vehicles (ASTVs).

  7. Aeroacoustic research in wind tunnels: A status report

    NASA Technical Reports Server (NTRS)

    Bender, J.; Arndt, R. E. A.

    1973-01-01

    The increasing attention given to aerodynamically generated noise brings into focus the need for quality experimental research in this area. To meet this need several specialized anechoic wind tunnels have been constructed. In many cases, however, budgetary constraints and the like make it desirable to use conventional wind tunnels for this work. Three basic problems are inherent in conventional facilities: (1) high background noise, (2) strong frequency dependent reverberation effects, and (3) unique instrumentation problems. The known acoustic characteristics of several conventional wind tunnels are evaluated and data obtained in a smaller 4- x 5-foot wind tunnel which is convertible from a closed jet to an open jet mode are presented. The data from these tunnels serve as a guideline for proposed modifications to a 7- x 10-foot wind tunnel. Consideration is given to acoustic treatment in several different portions of the wind tunnel.

  8. Linear theory of boundary effects in open wind tunnels with finite jet lengths

    NASA Technical Reports Server (NTRS)

    Katzoff, S; Gardner, Clifford S; Diesendruck, Leo; Eisenstadt, Bertram J

    1950-01-01

    In the first part, the boundary conditions for an open wind tunnel (incompressible flow) are examined with special reference to the effects of the closed entrance and exit sections. Basic conditions are that the velocity must be continuous at the entrance lip and that the velocities in the upstream and downstream closed portions must be equal. In the second part, solutions are derived for four types of two-dimensional open tunnels, including one in which the pressures on the two free surfaces are not equal. Numerical results are given for every case. In general, if the lifting element is more than half the tunnel height from the inlet, the boundary effect at the lifting element is the same as for an infinitely long open tunnel. In the third part, a general method is given for calculating the boundary effect in an open circular wind tunnel of finite jet length. Numerical results are given for a lifting element concentrate at a point on the axis.

  9. Aerodynamic characterization of the jet of an arc wind tunnel

    NASA Astrophysics Data System (ADS)

    Zuppardi, Gennaro; Esposito, Antonio

    2016-11-01

    It is well known that, due to a very aggressive environment and to a rather high rarefaction level of the arc wind tunnel jet, the measurement of fluid-dynamic parameters is difficult. For this reason, the aerodynamic characterization of the jet relies also on computer codes, simulating the operation of the tunnel. The present authors already used successfully such a kind of computing procedure for the tests in the arc wind tunnel (SPES) in Naples (Italy). In the present work an improved procedure is proposed. Like the former procedure also the present procedure relies on two codes working in tandem: 1) one-dimensional code simulating the inviscid and thermally not-conducting flow field in the torch, in the mix-chamber and in the nozzle up to the position, along the nozzle axis, of the continuum breakdown, 2) Direct Simulation Monte Carlo (DSMC) code simulating the flow field in the remaining part of the nozzle. In the present procedure, the DSMC simulation includes the simulation both in the nozzle and in the test chamber. An interesting problem, considered in this paper by means of the present procedure, has been the simulation of the flow field around a Pitot tube and of the related measurement of the stagnation pressure. The measured stagnation pressure, under rarefied conditions, may be even four times the theoretical value. Therefore a substantial correction has to be applied to the measured pressure. In the present paper a correction factor for the stagnation pressure measured in SPES is proposed. The analysis relies on twelve tests made in SPES.

  10. An experimental study of several wind tunnel wall configurations using two V/STOL model configurations. [low speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Binion, T. W., Jr.

    1975-01-01

    Experiments were conducted in the low speed wind tunnel using two V/STOL models, a jet-flap and a jet-in-fuselage configuration, to search for a wind tunnel wall configuration to minimize wall interference on V/STOL models. Data were also obtained on the jet-flap model with a uniform slotted wall configuration to provide comparisons between theoretical and experimental wall interference. A test section configuration was found which provided some data in reasonable agreement with interference-free results over a wide range of momentum coefficients.

  11. Investigation of the General Electric I-40 Jet-Propulsion Engine in the Cleveland Altitude Wind Tunnel. 2 - Analysis of Compressor Performance Characteristics

    DTIC Science & Technology

    1946-11-18

    INVESTIGATION OF THE GENERAL ELECTRIC 1-40 JET -PROPULSION ENGINE IN THE CLEVELAND ALTITUDE WIND TUNNEL .; II - ANALYSIS OF COMPRESSOR PERFORMANCE...CHARACTERISTICS By Robert 0. Dietz, Jr. and Robert M. Gelsenheyner Aircraft Engine Research Laboratory 1 Cleveland, Ohio !f -NOT FM ED", P 0 W DESTROY...Command, Army Air Forces INVESTIGATION OF THE GENERAL ELECTRIC 1-40 JET -PROPULSION ENGINE IN THE CLEVELAND ALTITUDE WIND TUNNEL II - ANALYSIS OF

  12. Reduction of background noise induced by wind tunnel jet exit vanes

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Brooks, T. F.; Hoad, D. R.

    1985-01-01

    The NASA-Langley 4 x 7 m wind tunnel develops low frequency flow pulsations at certain velocity ranges during open throat mode operation, affecting the aerodynamics of the flow and degrading the resulting model test data. Triangular vanes attached to the trailing edge of flat steel rails, mounted 10 cm from the inside of the jet exit walls, have been used to reduce this effect; attention is presently given to methods used to reduce the inherent noise generation of the vanes while retaining their pulsation reduction features.

  13. A Wind Tunnel Study of Icing Effects on a Business Jet Airfoil

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Broeren, Andy P.; Zoeckler, Joesph G.; Lee, Sam

    2003-01-01

    Aerodynamic wind tunnel tests were conducted to study the effects of various ice accretions on the aerodynamic performance of a 36-inch chord, two-dimensional business jet airfoil. Eight different ice shape configurations were tested. Four were castings made from molds of ice shapes accreted in an icing wind tunnel. Two were made using computationally smoothed tracings of two of the ice shapes accreted in the icing tunnel. These smoothed profiles were then extended in the spanwise direction to form a two-dimensional ice shape. The final two configurations were formed by applying grit to the smoothed ice shapes. The ice shapes resulted in as much as 48% reduction in maximum lift coefficient from that of the clean airfoil. Large increases in drag and changes in pitching moment were also observed. The castings and their corresponding smoothed counterparts yielded similar results. Little change in performance was observed with the addition of grit to the smoothed ice shapes. Changes in the Reynolds number (from 3 x 10(exp 6) to 10.5 x 10(exp 6) and Mach number (from 0.12 to 0.28) did not significantly affect the iced-airfoil performance coefficients.

  14. Experimental Determination of Jet Boundary Corrections for Airfoil Tests in Four Open Wind Tunnel Jets of Different Shapes

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Harris, Thomas A

    1931-01-01

    This experimental investigation was conducted primarily for the purpose of obtaining a method of correcting to free air conditions the results of airfoil force tests in four open wind tunnel jets of different shapes. Tests were also made to determine whether the jet boundaries had any appreciable effect on the pitching moments of a complete airplane model. Satisfactory corrections for the effect of the boundaries of the various jets were obtained for all the airfoils tested, the span of the largest being 0.75 of the jet width. The corrections for angle of attack were, in general, larger than those for drag. The boundaries had no appreciable effect on the pitching moments of either the airfoils or the complete airplane model. Increasing turbulence appeared to increase the minimum drag and maximum lift and to decrease the pitching moment.

  15. Static and wind tunnel near-field/far field jet noise measurements from model scale single-flow baseline and suppressor nozzles. Volume 2: Forward speed effects

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1976-01-01

    A model scale flight effects test was conducted in the 40 by 80 foot wind tunnel to investigate the effect of aircraft forward speed on single flow jet noise characteristics. The models tested included a 15.24 cm baseline round convergent nozzle, a 20-lobe and annular nozzle with and without lined ejector shroud, and a 57-tube nozzle with a lined ejector shroud. Nozzle operating conditions covered jet velocities from 412 to 640 m/s at a total temperature of 844 K. Wind tunnel speeds were varied from near zero to 91.5 m/s. Measurements were analyzed to (1) determine apparent jet noise source location including effects of ambient velocity; (2) verify a technique for extrapolating near field jet noise measurements into the far field; (3) determine flight effects in the near and far field for baseline and suppressor nozzles; and (4) establish the wind tunnel as a means of accurately defining flight effects for model nozzles and full scale engines.

  16. Rocket Plume Scaling for Orion Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.; Greathouse, James S.; White, Molly E.

    2011-01-01

    A wind tunnel test program was undertaken to assess the jet interaction effects caused by the various solid rocket motors used on the Orion Launch Abort Vehicle (LAV). These interactions of the external flowfield and the various rocket plumes can cause localized aerodynamic disturbances yielding significant and highly non-linear control amplifications and attenuations. This paper discusses the scaling methodologies used to model the flight plumes in the wind tunnel using cold air as the simulant gas. Comparisons of predicted flight, predicted wind tunnel, and measured wind tunnel forces-and-moments and plume flowfields are made to assess the effectiveness of the selected scaling methodologies.

  17. Mass spectrometric gas composition measurements associated with jet interaction tests in a high-enthalpy wind tunnel

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.; Brown, K. G.; Wood, G. M., Jr.; Puster, R. L.; Paulin, P. A.; Fishel, C. E.; Ellerbe, D. A.

    1986-01-01

    Knowledge of test gas composition is important in wind-tunnel experiments measuring aerothermodynamic interactions. This paper describes measurements made by sampling the top of the test section during runs of the Langley 7-Inch High-Temperature Tunnel. The tests were conducted to determine the mixing of gas injected from a flat-plate model into a combustion-heated hypervelocity test stream and to monitor the CO2 produced in the combustion. The Mass Spectrometric (MS) measurements yield the mole fraction of N2 or He and CO2 reaching the sample inlets. The data obtained for several tunnel run conditions are related to the pressures measured in the tunnel test section and at the MS ionizer inlet. The apparent distributions of injected gas species and tunnel gas (CO2) are discussed relative to the sampling techniques. The measurements provided significant real-time data for the distribution of injected gases in the test section. The jet N2 diffused readily from the test stream, but the jet He was mostly entrained. The amounts of CO2 and Ar diffusing upward in the test section for several run conditions indicated the variability of the combustion-gas test-stream composition.

  18. The simulation of a propulsive jet and force measurement using a magnetically suspended wind tunnel model

    NASA Technical Reports Server (NTRS)

    Garbutt, K. S.; Goodyer, M. J.

    1994-01-01

    Models featuring the simulation of exhaust jets were developed for magnetic levitation in a wind tunnel. The exhaust gas was stored internally producing a discharge of sufficient duration to allow nominal steady state to be reached. The gas was stored in the form of compressed gas or a solid rocket propellant. Testing was performed with the levitated models although deficiencies prevented the detection of jet-induced aerodynamic effects. Difficulties with data reduction led to the development of a new force calibration technique, used in conjunction with an exhaust simulator and also in separate high incidence aerodynamic tests.

  19. Experimental Investigation of Wind-Tunnel Interference on the Downwash Behind an Airfoil

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Katzoff, S

    1937-01-01

    The interference of the wind-tunnel boundaries on the downwash behind an airfoil has been experimentally investigated and the results have been compared with the available theoretical results for open-throat wind tunnels. As in previous studies, the simplified theoretical treatment that assumes the test section to be an infinite free jet has been shown to be satisfactory at the lifting line. The experimental results, however, show that this assumption may lead to erroneous conclusions regarding the corrections to be applied to the downwash in the region behind the airfoil where the tail surfaces are normally located. The results of a theory based on the more accurate concept of the open-jet wind tunnel as a finite length of free jet provided with a closed exit passage are in good qualitative agreement with the experimental results.

  20. Drag Corrections in High-Speed Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Ludwieg, H.

    1947-01-01

    In the vicinity of a body in a wind tunnel the displacement effect of the wake, due to the finite dimensions of the stream, produces a pressure gradient which evokes a change of drag. In incompressible flow this change of drag is so small, in general, that one does not have to take it into account in wind-tunnel measurements; however, in compressible flow it beoomes considerably larger, so that a correction factor is necessary for measured values. Correction factors for a closed tunnel and an open jet with circular cross sections are calculated and compared with the drag - corrections already bown for high-speed tunnnels.

  1. Low-speed wind tunnel investigation of a semispan STOL jet transport wing body with an upper surface blown jet flap

    NASA Technical Reports Server (NTRS)

    Phelps, A. E., III; Letko, W.; Henderson, R. L.

    1973-01-01

    An investigation of the static longitudinal aerodynamic characteristics of a semispan STOL jet transport wing-body with an upper-surface blown jet flap for lift augmentation was conducted in a low-speed wind tunnel having a 12-ft octagonal test section. The semispan swept wing had an aspect ratio of 3.92 (7.84 for the full span) and had two simulated turbofan engines mounted ahead of and above the wing in a siamese pod equipped with an exhaust deflector. The purpose of the deflector was to spread the engine exhaust into a jet sheet attached to the upper surface of the wing so that it would turn downward over the flap and provide lift augmentation. The wing also had optional boundary-layer control provided by air blowing through a thin slot over a full-span plain trailing-edge flap.

  2. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow base line and suppressor nozzles. Summary report. [conducted in the Boeing large anechoic test chamber and the NASA-Ames 40by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1977-01-01

    A test program was conducted in the Boeing large anechoic test chamber and the NASA-Ames 40- by 80-foot wind tunnel to study the near- and far-field jet noise characteristics of six baseline and suppressor nozzles. Static and wind-on noise source locations were determined. A technique for extrapolating near field jet noise measurements into the far field was established. It was determined if flight effects measured in the near field are the same as those in the far field. The flight effects on the jet noise levels of the baseline and suppressor nozzles were determined. Test models included a 15.24-cm round convergent nozzle, an annular nozzle with and without ejector, a 20-lobe nozzle with and without ejector, and a 57-tube nozzle with lined ejector. The static free-field test in the anechoic chamber covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K. The wind tunnel flight effects test repeated these nozzle test conditions with ambient velocities of 0 to 92 m/s.

  3. Results of test MA22 in the NASA/LaRC 31-inch CFHT on an 0.010-scale model (32-0) of the space shuttle configuration 3 to determine RCS jet flow field interaction, volume 1. [wind tunnel tests for interactions of aerodynamic heating on jet flow

    NASA Technical Reports Server (NTRS)

    Kanipe, D. B.

    1976-01-01

    A wind tunnel test was conducted in the Langley Research Center 31-inch Continuous Flow Hypersonic Wind Tunnel from May 6, 1975 through June 3, 1975. The primary objectives of this test were the following: (1) to study the ability of the wind tunnel to repeat, on a run-to-run basis, data taken for identical configurations to determine if errors in repeatability could have a significant effect on jet interaction data, (2) to determine the effect of aerodynamic heating of the scale model on jet interaction, (3) to investigate the effects of elevon and body flap deflections on jet interaction, (4) to determine if the effects from jets fired separately along different axes can be added to equal the effects of the jets fired simultaneously (super position effects), (5) to study multiple jet effects, and (6) to investigate area ratio effects, i.e., the effect on jet interaction measurements of using wind tunnel nozzles with different area ratios in the same location. The model used in the test was a .010-scale model of the Space Shuttle Orbiter Configuration 3. The test was conducted at Mach 10.3 and a dynamic pressure of 150 psf. RCS chamber pressure was varied to simulate free flight dynamic pressures of 5, 7.5, 10, and 20 psf.

  4. A directional microphone array for acoustic studies of wind tunnel models

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.; Noble, S. C.

    1974-01-01

    An end-fire microphone array that utilizes a digital time delay system has been designed and evaluated for measuring noise in wind tunnels. The directional response of both a four- and eight-element linear array of microphones has enabled substantial rejection of background noise and reverberations in the NASA Ames 40- by 80-foot wind tunnel. In addition, it is estimated that four- and eight-element arrays reject 6 and 9 dB, respectively, of microphone wind noise, as compared with a conventional omnidirectional microphone with nose cone. Array response to two types of jet engine models in the wind tunnel is presented. Comparisons of array response to loudspeakers in the wind tunnel and in free field are made.

  5. Comparison of aerodynamic coefficients obtained from theoretical calculations wind tunnel tests and flight tests data reduction for the alpha jet aircraft

    NASA Technical Reports Server (NTRS)

    Guiot, R.; Wunnenberg, H.

    1980-01-01

    The methods by which aerodynamic coefficients are determined and discussed. These include: calculations, wind tunnel experiments and experiments in flight for various prototypes of the Alpha Jet. A comparison of obtained results shows good correlation between expectations and in-flight test results.

  6. Propulsion simulation for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Beerman, Henry P.; Chen, James; Krech, Robert H.; Lintz, Andrew L.; Rosen, David I.

    1990-01-01

    The feasibility of simulating propulsion-induced aerodynamic effects on scaled aircraft models in wind tunnels employing Magnetic Suspension and Balance Systems. The investigation concerned itself with techniques of generating exhaust jets of appropriate characteristics. The objectives were to: (1) define thrust and mass flow requirements of jets; (2) evaluate techniques for generating propulsive gas within volume limitations imposed by magnetically-suspended models; (3) conduct simple diagnostic experiments for techniques involving new concepts; and (4) recommend experiments for demonstration of propulsion simulation techniques. Various techniques of generating exhaust jets of appropriate characteristics were evaluated on scaled aircraft models in wind tunnels with MSBS. Four concepts of remotely-operated propulsion simulators were examined. Three conceptual designs involving innovative adaptation of convenient technologies (compressed gas cylinders, liquid, and solid propellants) were developed. The fourth innovative concept, namely, the laser-assisted thruster, which can potentially simulate both inlet and exhaust flows, was found to require very high power levels for small thrust levels.

  7. Determination of wind tunnel constraint effects by a unified pressure signature method. Part 2: Application to jet-in-crossflow

    NASA Technical Reports Server (NTRS)

    Hackett, J. E.; Sampath, S.; Phillips, C. G.

    1981-01-01

    The development of an improved jet-in-crossflow model for estimating wind tunnel blockage and angle-of-attack interference is described. Experiments showed that the simpler existing models fall seriously short of representing far-field flows properly. A new, vortex-source-doublet (VSD) model was therefore developed which employs curved trajectories and experimentally-based singularity strengths. The new model is consistent with existing and new experimental data and it predicts tunnel wall (i.e. far-field) pressures properly. It is implemented as a preprocessor to the wall-pressure-signature-based tunnel interference predictor. The supporting experiments and theoretical studies revealed some new results. Comparative flow field measurements with 1-inch "free-air" and 3-inch impinging jets showed that vortex penetration into the flow, in diameters, was almost unaltered until 'hard' impingement occurred. In modeling impinging cases, a 'plume redirection' term was introduced which is apparently absent in previous models. The effects of this term were found to be very significant.

  8. J-85 jet engine noise measured in the ONERA S1 wind tunnel and extrapolated to far field

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Julienne, Alain; Atencio, Adolph, Jr.

    1991-01-01

    Noise from a J-85 turbojet with a conical, convergent nozzle was measured in simulated flight in the ONERA S1 Wind Tunnel. Data are presented for several flight speeds up to 130 m/sec and for radiation angles of 40 to 160 degrees relative to the upstream direction. The jet was operated with subsonic and sonic exhaust speeds. A moving microphone on a 2 m sideline was used to survey the radiated sound field in the acoustically treated, closed test section. The data were extrapolated to a 122 m sideline by means of a multiple-sideline source-location method, which was used to identify the acoustic source regions, directivity patterns, and near field effects. The source-location method is described along with its advantages and disadvantages. Results indicate that the effects of simulated flight on J-85 noise are significant. At the maximum forward speed of 130 m/sec, the peak overall sound levels in the aft quadrant were attentuated approximately 10 dB relative to sound levels of the engine operated statically. As expected, the simulated flight and static data tended to merge in the forward quadrant as the radiation angle approached 40 degrees. There is evidence that internal engine or shock noise was important in the forward quadrant. The data are compared with published predictions for flight effects on pure jet noise and internal engine noise. A new empirical prediction is presented that relates the variation of internally generated engine noise or broadband shock noise to forward speed. Measured near field noise extrapolated to far field agrees reasonably well with data from similar engines tested statically outdoors, in flyover, in a wind tunnel, and on the Bertin Aerotrain. Anomalies in the results for the forward quadrant and for angles above 140 degrees are discussed. The multiple-sideline method proved to be cumbersome in this application, and it did not resolve all of the uncertainties associated with measurements of jet noise close to the jet. The

  9. Dynamic Wind-Tunnel Testing of a Sub-Scale Iced Business Jet

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Barnhart, Billy P.; Ratvasky, Thomas P.; Dickes, Edward; Thacker, Michael

    2006-01-01

    The effect of ice accretion on a 1/12-scale complete aircraft model of a business jet was studied in a rotary-balance wind tunnel. Three types of ice accretions were considered: ice protection system failure shape, pre-activation roughness, and runback shapes that form downstream of the thermal ice protection system. The results were compared with those from a 1/12-scale semi-span wing of the same aircraft at similar Reynolds number. The data showed that the full aircraft and the semi-span wing models showed similar characteristics, especially post stall behavior under iced configuration. However, there were also some discrepancies, such as the magnitude in the reductions in the maximum lift coefficient. Most of the ice-induced effects were limited to longitudinal forces. Rotational and forced oscillation studies showed that the effects of ice on lateral forces were relatively minor.

  10. Wind tunnel test of the 0.019 (2A configuration) jet plume space shuttle integrated vehicle in the ARC 9- by 7-foot unitary wind tunnel (IA12B)

    NASA Technical Reports Server (NTRS)

    Hardin, R. B.; Burrows, R. R.

    1974-01-01

    The wind tunnel test of the 0.019 jet plume space shuttle integrated vehicle in the Ames 9 ft by 7 ft unitary wind tunnel was conducted at Mach numbers of 1.55 and 2.0 over a Reynolds number range from 3.5 million to 4.1 million/ft. Data were obtained at angles of attack from minus 8 deg to plus 8 deg at 0 deg sideslip and at angles of sideslip from minus 9 deg to plus 8 deg at 0 deg angle of attack. The basic configuration tested was the 2A vehicle with the orbiter at 0 deg angle of incidence with respect to the external tank. The other deviations to the 2A configuration were the solid rocket motor shrouds, which were designed to vehicle '3' lines, and the tank nose, which consisted of the retro-package being removed and replaced by a 16.5 inch full scale radius nose.

  11. The Design of Wind Tunnels and Wind Tunnel Propellers

    NASA Technical Reports Server (NTRS)

    Warner, Edward P; Norton, F H; Hebbert, C M

    1919-01-01

    Report discusses the theory of energy losses in wind tunnels, the application of the Drzewiecki theory of propeller design to wind tunnel propellers, and the efficiency and steadiness of flow in model tunnels of various types.

  12. Altitude Wind Tunnel at NASA Glenn Research Center: An Interactive History

    NASA Technical Reports Server (NTRS)

    2008-01-01

    When constructed in the Early 1940s, the Altitude Wind Tunnel (AWT) at NASA Glenn Research Center was the nation's only wind tunnel capable of studying full scale engines under realistic flight conditions. It played a significant role in the development of the first U.S. jet engines as well as technologies such as the afterburner and variable-area nozzle. In the late 1950s, the tunnels interior components were removed so that hardware for Project Mercury could be tested in altitude conditions. In 1961, a portion of the tunnel was converted into one of the country's first large vacuum tanks and renamed the Space Power Chamber (SPC). SPC was used extensively throughout the 1960s for the Centaur rocket program. This multimedia piece allows one to interactively learn about the Altitude Wind Tunnel facility. and the research performed there. The piece contains: (1) A chronological history of the AWT from its construction during World War II and the testing of early jet engines, through the Mercury and Centaur programs of the 1960s and up to the final use of the building for the Microwave Systems laboratory. (2) Photographic surveys of the facility in it wind tunnel, vacuum tank and final configurations. (3) Browsable gallery of over 200 captioned photographs and video clips.(4) A nine minute documentary of the AWT produced by NASA in 1961 (5) Links to over 70 reports and publications related to AWT research and the history of the NACA.

  13. A procedure for predicting internal and external noise fields of blowdown wind tunnels

    NASA Technical Reports Server (NTRS)

    Hosier, R. N.; Mayes, W. H.

    1972-01-01

    The noise generated during the operation of large blowdown wind tunnels is considered. Noise calculation procedures are given to predict the test-section overall and spectrum level noise caused by both the tunnel burner and turbulent boundary layer. External tunnel noise levels due to the tunnel burner and circular jet exhaust flow are also calculated along with their respective cut-off frequency and spectrum peaks. The predicted values are compared with measured data, and the ability of the prediction procedure to estimate blowdown-wind-tunnel noise levels is shown.

  14. Low Speed Wind Tunnel Tests on a One-Seventh Scale Model of the H.126 Jet Flap Aircraft

    NASA Technical Reports Server (NTRS)

    Laub, G. H.

    1975-01-01

    Low speed wind tunnel tests were performed on a one-seventh scale model of the British H.126 jet flap research aircraft over a range of jet momentum coefficients. The primary objective was to compare model aerodynamic characteristics with those of the aircraft, with the intent to provide preliminary data needed towards establishing small-to-full scale correlating techniques on jet flap V/STOL aircraft configurations. Lift and drag coefficients from the model and aircraft tests were found to be in reasonable agreement. The pitching moment coefficient and trim condition correlation was poor. A secondary objective was to evaluate a modified thrust nozzle having thrust reversal capability. The results showed there was a considerable loss of lift in the reverse thrust operational mode because of increased nozzle-wing flow interference. A comparison between the model simulated H.126 wing jet efflux and the model uniform pressure distribution wing jet efflux indicated no more than 5% loss in weight flow rate.

  15. The aeolian wind tunnel

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.

    1991-01-01

    The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.

  16. Design and Characterization of the UTIAS Anechoic Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Chow, Derrick H. F.

    The anechoic open-jet wind tunnel facility at the University of Toronto Institute for Aerospace Studies was updated and characterized to meet the needs of current and future aeroacoustic experiments. The wind tunnel inlet was resurfaced and flow-conditioning screens were redesigned to improve the freestream turbulence intensity to below 0.4% in the test section. The circular nozzle was replaced with a square secondary contraction that increased the maximum test section velocity to 75 m/s and improved flow uniformity to over 99% across a usable cross-sectional area of 500 mm x 500 mm. Acoustic baffles were installed in front of the wind tunnel inlet and foam wedges were installed in the anechoic chamber. The overall background sound pressure levels in the chamber were improved by 8-18 db over the range of operational freestream velocities. The anechoic chamber cut-off frequency is 170 Hz and the reverberation time for a 60 dB sound power decay is 0.032 s.

  17. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  18. Wind tunnel

    NASA Technical Reports Server (NTRS)

    Wilson, E. M. (Inventor)

    1969-01-01

    A supersonic wind wind tunnel is described for testing several air foils mounted in a row. A test section of a wind tunnel contains means for mounting air foil sections in a row, means for rotating each section about an axis so that the angle of attack of each section changes with the other sections, and means for rotating the row with respect to the air stream so that the row forms an oblique angle with the air stream.

  19. Comparison of acoustic data from a 102 mm conic nozzle as measured in the RAE 24-foot wind tunnel and the NASA Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Mckie, J.

    1982-01-01

    A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.

  20. Comparison of wind tunnel and flight test afterbody and nozzle pressures for a twin-jet fighter aircraft at transonic speeds

    NASA Technical Reports Server (NTRS)

    Nugent, Jack; Pendergraft, Odis C., Jr.

    1987-01-01

    Afterbody and nozzle pressures measured on a 1/12-scale model and in flight on a twin-jet fighter aircraft were compared as Mach number varied from 0.6 to 1.2, Reynolds number from 17.5 million to 302.5 million, and angle of attack from 1 to 7 deg. At Mach 0.6 and 0.8, nozzle pressure coefficient distributions and nozzle axial force coefficients agreed and showed good recompression. At Mach 0.9 and 1.2, flow complexity caused a loss in recompression for both flight and wind tunnel nozzle data. The flight data exhibited less negative values of pressure coefficient and lower axial force coefficients than did the wind tunnel data. Reynolds number effects were noted only at these Mach numbers. Jet temperature and mass flux ratio did not affect the comparisons of nozzle axial flow coefficient. At subsonic speeds, the levels of pressure coefficient distributions on the upper fuselage and lower nacelle surfaces for flight were less negative than those for the model. The model boundary layer thickness at the aft rake station exceeded that for the forward rake station and increased with increasing angle of attack. The flight boundary layer thickness at the aft rake station was less than that for the forward rake station and decreased with increasing angle of attack.

  1. Jet-boundary and Plan-form Corrections for Partial-Span Models with Reflection-Plane, End-Plate, or No End-Plate in a Closed Circular Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Sivells, James C; Deters, Owen J

    1946-01-01

    A method is presented for determining the jet-boundary and plan-form corrections necessary for application to test data for a partial-span model with a reflection plane, an end plate, or no end plate in a closed circular wind tunnel. Examples are worked out for a partial-span model with each of the three end conditions in the Langley 19-foot pressure tunnel and the corrections are applied to measured values of lift, drag, pitching-moment, rolling-moment, and yawing-moment coefficients.

  2. The self streamlining wind tunnel. [wind tunnel walls

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1975-01-01

    A two dimensional test section in a low speed wind tunnel capable of producing flow conditions free from wall interference is presented. Flexible top and bottom walls, and rigid sidewalls from which models were mounted spanning the tunnel are shown. All walls were unperforated, and the flexible walls were positioned by screw jacks. To eliminate wall interference, the wind tunnel itself supplied the information required in the streamlining process, when run with the model present. Measurements taken at the flexible walls were used by the tunnels computer check wall contours. Suitable adjustments based on streamlining criteria were then suggested by the computer. The streamlining criterion adopted when generating infinite flowfield conditions was a matching of static pressures in the test section at a wall with pressures computed for an imaginary inviscid flowfield passing over the outside of the same wall. Aerodynamic data taken on a cylindrical model operating under high blockage conditions are presented to illustrate the operation of the tunnel in its various modes.

  3. Wind tunnel tests of a free yawing downwind wind turbine

    NASA Astrophysics Data System (ADS)

    Verelst, D. R. S.; Larsen, T. J.; van Wingerden, J. W.

    2014-12-01

    This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible blades are mounted. The tower support structure has free yawing capabilities provided at the base. A short overview on the technical details of the experiment is given as well as a brief summary of the design process. The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2.

  4. Reduction of Background Noise in the NASA Ames 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Jaeger, Stephen M.; Allen, Christopher S.; Soderman, Paul T.; Olson, Larry E. (Technical Monitor)

    1995-01-01

    Background noise in both open-jet and closed wind tunnels adversely affects the signal-to-noise ratio of acoustic measurements. To measure the noise of increasingly quieter aircraft models, the background noise will have to be reduced by physical means or through signal processing. In a closed wind tunnel, such as the NASA Ames 40- by 80- Foot Wind Tunnel, the principle background noise sources can be classified as: (1) fan drive noise; (2) microphone self-noise; (3) aerodynamically induced noise from test-dependent hardware such as model struts and junctions; and (4) noise from the test section walls and vane set. This paper describes the steps taken to minimize the influence of each of these background noise sources in the 40 x 80.

  5. Large-scale wind-tunnel investigation of the noise characteristics of a semispan wing equipped with an externally blown jet flap

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.

    1972-01-01

    A wind tunnel investigation was made of the noise characteristics of a 4.42 m(14.5 foot) semispan, externally-blown jet flap model. The model was equipped with a single 76.2 cm(30 inch) diameter, ducted fan with a 1.03 pressure ratio. The effects of flap size, fan vertical location, and forward speed on the noise characteristics were studied. The data from the investigation is presented in the form of tabulated one-third octave band frequency spectrums and perceived noise levels for each test condition.

  6. Application of Wind Tunnel Free-Flight Technique for Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Jordan, Frank L., Jr.; Stuever, Robert A.; Buttrill, Catherine W.

    1997-01-01

    A wind tunnel investigation was conducted in the Langley 30- by 60-Foot Tunnel to assess the free-flight test technique as a tool in research on wake vortex encounters. A typical 17.5-percent scale business-class jet airplane model was flown behind a stationary wing mounted in the forward portion of the wind tunnel test section. The span ratio (model span-generating wingspan) was 0.75. The wing angle of attack could be adjusted to produce a vortex of desired strength. The test airplane model was successfully flown in the vortex and through the vortex for a range of vortex strengths. Data obtained included the model airplane body axis accelerations, angular rates, attitudes, and control positions as a function of vortex strength and relative position. Pilot comments and video records were also recorded during the vortex encounters.

  7. Two-dimensional wind tunnel

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Information on the Japanese National Aerospace Laboratory two dimensional transonic wind tunnel, completed at the end of 1979 is presented. Its construction is discussed in detail, and the wind tunnel structure, operation, test results, and future plans are presented.

  8. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test Primary Partical Mean Size a (µm) Full Wind Tunnel Test 2 km/hr 24 km/hr Inlet...

  9. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test Primary Partical Mean Size a (µm) Full Wind Tunnel Test 2 km/hr 24 km/hr Inlet...

  10. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test Primary Partical Mean Size a (µm) Full Wind Tunnel Test 2 km/hr 24 km/hr Inlet...

  11. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test...

  12. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test...

  13. Rolls Royce Avon RA-14 Engine in the Altitude Wind Tunnel

    NASA Image and Video Library

    1956-03-21

    A Rolls Royce Avon RA-14 engine was tested in the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics’ (NACA) Lewis Flight Propulsion Laboratory. The Avon RA-14 engine was a 16-stage axial-flow compressor turbojet capable of producing 9,500 pounds of thrust. The Avon replaced Rolls Royce’s successful Nene engine in 1950 and remained in service until 1974. It was one of several British engines studied in the tunnel during the 1950s. The Altitude Wind Tunnel went through a series of modifications in 1951 to increase its capabilities. An annex was attached to the Exhauster Building to house three new Ingersoll-Rand compressors. The wooden blades on the tunnel’s 31-foot diameter fan were replaced, a pump house and exhaust cooler were constructed underneath the tunnel, and two new cells were added to the cooling tower. The modified wind tunnel continued to analyze jet engines in the 1950s, although the engines, like the RA-14 seen here, were much more powerful than those studied several years before. Lewis researchers studied the RA-14 turbojet engine in the Altitude Wind Tunnel for 11 months in 1956. The engine was mounted on a stand capable of gauging engine thrust, and the tunnel’s air was ducted to the engine through a venturi and bellmouth inlet, seen in this photograph. The initial studies established the engine’s performance characteristics with a fixed-area nozzle and its acceleration characteristics. The researchers also used the tunnel to investigate windmilling of the compressor blades, restarting at high altitudes, and the engine’s performance limits at altitude.

  14. Effect of Free Jet on Refraction and Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Georgiadis, Nicholas J.; Bridges, James E.; Dippold, Vance F., III

    2005-01-01

    This article investigates the role of a free jet on the sound radiated from a jet. In particular, the role of an infinite wind tunnel, which simulates the forward flight condition, is compared to that of a finite wind tunnel. The second configuration is usually used in experiments, where the microphones are located in a static ambient medium far outside the free jet. To study the effect of the free jet on noise, both propagation and source strength need to be addressed. In this work, the exact Green's function in a locally parallel flow is derived for a simulated flight case. Numerical examples are presented that show a reduction in the magnitude of the Green's function in the aft arc and an increase in the forward arc for the simulated flight condition. The effect of finite wind tunnel on refraction is sensitive to the source location and is most pronounced in the aft arc. A Reynolds-averaged Navier-Stokes solution (RANS) yields the required mean flow and turbulence scales that are used in the jet mixing noise spectrum calculations. In addition to the sound/flow interaction, the separate effect of source strength and elongation of the noise-generating region of the jet in a forward flight is studied. Comparisons are made with experiments for the static and finite tunnel cases. Finally, the standard free-jet shear corrections that convert the finite wind tunnel measurements to an ideal wind tunnel arrangement are evaluated.

  15. V/STOL wind-tunnel testing

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.

    1984-01-01

    Factors influencing effective program planning for V/STOL wind-tunnel testing are discussed. The planning sequence itself, which includes a short checklist of considerations that could enhance the value of the tests, is also described. Each of the considerations, choice of wind tunnel, type of model installation, model development and test operations, is discussed, and examples of appropriate past and current V/STOL test programs are provided. A short survey of the moderate to large subsonic wind tunnels is followed by a review of several model installations, from two-dimensional to large-scale models of complete aircraft configurations. Model sizing, power simulation, and planning are treated, including three areas is test operations: data-acquisition systems, acoustic measurements in wind tunnels, and flow surveying.

  16. Effect of Collector Configuration on Test Section Turbulence Levels in an Open-Jet Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Manuel, G. S.; Molloy, John K.; Barna, P. Stephen

    1992-01-01

    Flow quality studies in the Langley 14- by 22-Foot Subsonic Tunnel indicated periodic flow pulsation at discrete frequencies in the test section when the tunnel operated in an open-jet configuration. To alleviate this problem, experiments were conducted in a 1/24-scale model of the full-scale tunnel to evaluate the turbulence reduction potential of six collector configurations. As a result of these studies, the original bell-mouth collector of the 14- by 22-Foot Subsonic Tunnel was replaced by a collector with straight walls, and a slot was incorporated between the trailing edge of the collector and the entrance of the diffuser.

  17. Jet-Boundary Corrections for Reflection-Plane Models in Rectangular Wind Tunnels

    DTIC Science & Technology

    1943-01-01

    clock- wiso) located at a distance d above the tunnel center line and at distances equal to VIand —vI from the reflection wall. Tho single trailing vortex...neglected. The angle-.xkmnge is usually small, les than %O. M & fw-refleciicur plane models in 7-by 10-foof cIosedrectangular wind fu-meIs 04

  18. Dry wind tunnel system

    NASA Technical Reports Server (NTRS)

    Chen, Ping-Chih (Inventor)

    2013-01-01

    This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.

  19. Rudolf Hermann, wind tunnels and aerodynamics

    NASA Astrophysics Data System (ADS)

    Lundquist, Charles A.; Coleman, Anne M.

    2008-04-01

    Rudolf Hermann was born on December 15, 1904 in Leipzig, Germany. He studied at the University of Leipzig and at the Aachen Institute of Technology. His involvement with wind tunnels began in 1934 when Professor Carl Wieselsberger engaged him to work at Aachen on the development of a supersonic wind tunnel. On January 6, 1936, Dr. Wernher von Braun visited Dr. Hermann to arrange for use of the Aachen supersonic wind tunnel for Army problems. On April 1, 1937, Dr. Hermann became Director of the Supersonic Wind Tunnel at the Army installation at Peenemunde. Results from the Aachen and Peenemunde wind tunnels were crucial in achieving aerodynamic stability for the A-4 rocket, later designated as the V-2. Plans to build a Mach 10 'hypersonic' wind tunnel facility at Kochel were accelerated after the Allied air raid on Peenemunde on August 17, 1943. Dr. Hermann was director of the new facility. Ignoring destruction orders from Hitler as WWII approached an end in Europe, Dr. Hermann and his associates hid documents and preserved wind tunnel components that were acquired by the advancing American forces. Dr. Hermann became a consultant to the Air Force at its Wright Field in November 1945. In 1951, he was named professor of Aeronautical Engineering at the University of Minnesota. In 1962, Dr. Hermann became the first Director of the Research Institute at the University of Alabama in Huntsville (UAH), a position he held until he retired in 1970.

  20. Comparison of Drop and Wind-Tunnel Experiments on Bomb Drag at High Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Gothert, B.

    1948-01-01

    The drag coefficients of bombs at high velocities velocity of fall was 97 percent of the speed of sound) (the highest are determined by drop tests and compared with measurements taken in the DVL high-speed closed wind tunnel and the open jet at AVA - Gottingen.

  1. Prediction of internal and external noise fields for blowdown wind tunnels.

    NASA Technical Reports Server (NTRS)

    Hosier, R. N.; Mayes, W. H.

    1972-01-01

    Empirical methods have been developed to estimate the test section noise levels and the outside noise radiation patterns of blowdown wind tunnels. Included are considerations of noise generation by control valves, burners, turbulent boundary layers, and exhaust jets as appropriate. Sample test section and radiation field noise estimates are presented. The external estimates are noted to be in good agreement with the limited amount of available measurements.

  2. Automated Boundary Conditions for Wind Tunnel Simulations

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee

    2018-01-01

    Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.

  3. NASA Langley Low Speed Aeroacoustic Wind Tunnel: Background Noise and Flow Survey Results Prior to FY05 Construction of Facilities Modifications

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Henderson, Brenda S.

    2005-01-01

    The NASA Langley Research Center Low Speed Aeroacoustic Wind Tunnel is a premier facility for model-scale testing of jet noise reduction concepts at realistic flow conditions. However, flow inside the open jet test section is less than optimum. A Construction of Facilities project, scheduled for FY 05, will replace the flow collector with a new design intended to reduce recirculation in the open jet test section. The reduction of recirculation will reduce background noise levels measured by a microphone array impinged by the recirculation flow and will improve flow characteristics in the open jet tunnel flow. In order to assess the degree to which this modification is successful, background noise levels and tunnel flow are documented, in order to establish a baseline, in this report.

  4. Large-Scale Wind-Tunnel Tests of Exhaust Ingestion Due to Thrust Reversal on a Four-Engine Jet Transport during Ground Roll

    NASA Technical Reports Server (NTRS)

    Tolhurst, William H., Jr.; Hickey, David H.; Aoyagi, Kiyoshi

    1961-01-01

    Wind-tunnel tests have been conducted on a large-scale model of a swept-wing jet transport type airplane to study the factors affecting exhaust gas ingestion into the engine inlets when thrust reversal is used during ground roll. The model was equipped with four small jet engines mounted in nacelles beneath the wing. The tests included studies of both cascade and target type reversers. The data obtained included the free-stream velocity at the occurrence of exhaust gas ingestion in the outboard engine and the increment of drag due to thrust reversal for various modifications of thrust reverser configuration. Motion picture films of smoke flow studies were also obtained to supplement the data. The results show that the free-stream velocity at which ingestion occurred in the outboard engines could be reduced considerably, by simple modifications to the reversers, without reducing the effective drag due to reversed thrust.

  5. The Langley Wind Tunnel Enterprise

    NASA Technical Reports Server (NTRS)

    Paulson, John W., Jr.; Kumar, Ajay; Kegelman, Jerome T.

    1998-01-01

    After 4 years of existence, the Langley WTE is alive and growing. Significant improvements in the operation of wind tunnels have been demonstrated and substantial further improvements are expected when we are able to truly address and integrate all the processes affecting the wind tunnel testing cycle.

  6. Effectiveness of a Wedge Probe to Measure Sonic Boom Signatures in a Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Elmiligui, Alaa A.

    2013-01-01

    A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel (UPWT) to determine the effectiveness of a wedge probe to measure sonic boom pressure signatures compared to a slender conical probe. A generic business jet model at a constant angle of attack and at a single model to probe separation distance was used to generate a sonic boom signature. Pressure signature data were acquired with both the wedge probe and a slender conical probe for comparison. The test was conducted at a Mach number of 2.0 and a free-stream unit Reynolds number of 2 million per foot. The results showed that the wedge probe was not effective in measuring the sonic boom pressure signature of the aircraft model in the supersonic wind tunnel. Data plots and a discussion of the results are presented. No tabulated data or flow visualization photographs are included.

  7. Overview of the 1989 Wind Tunnel Calibration Workshop

    NASA Technical Reports Server (NTRS)

    Henderson, Arthur, Jr.; Mckinney, L. Wayne

    1993-01-01

    An overview of the 1989 Wind Tunnel Calibration Workshop held at NASA LaRC in Hampton, VA on 19-20 Apr. 1989 is presented. The purpose of the Workshop was to explore wind tunnel calibration requirements as they relate to test quality and data accuracy, with the ultimate goal of developing wind tunnel calibration requirements for the major NASA wind tunnels at ARC, LaRC, and LeRC. The two sessions addressed the following topics: (1) what constitutes a properly calibrated wind tunnel; and (2) the status of calibration of NASA's major wind tunnels. The most significant contributions to the stated goals are highlighted, and the consensus of the Workshop's conclusions and recommendations regarding formulation and implementation of that goal are presented.

  8. General Dynamics YF-16 Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1974-01-21

    A model of the General Dynamics YF-16 Fighting Falcon in the test section of the 8- by 6-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The YF-16 was General Dynamics response to the military’s 1972 request for proposals to design a new 20,000-pound fighter jet with exceptional acceleration, turn rate, and range. The aircraft included innovative design elements to help pilots survive turns up to 9Gs, a new frameless bubble canopy, and a Pratt and Whitney 24,000-pound thrust F-100 engine. The YF-16 made its initial flight in February 1974, just six weeks before this photograph, at Edwards Air Force Base. Less than a year later, the Air Force ordered 650 of the aircraft, designated as F-16 Fighting Falcons. The March and April 1974 tests in the 8- by 6-foot tunnel analyzed the aircraft’s fixed-shroud ejector nozzle. The fixed-nozzle area limited drag, but also limited the nozzle’s internal performance. NASA researchers identified and assessed aerodynamic and aerodynamic-propulsion interaction uncertainties associated the prototype concept. YF-16 models were also tested extensively in the 11- by 11-Foot Transonic Wind Tunnel and 9- by 7-Foot Supersonic Wind Tunnel at Ames Research Center and the 12-Foot Pressure Wind Tunnel at Langley Research Center.

  9. Introduction to cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    The background to the evolution of the cryogenic wind tunnel is outlined, with particular reference to the late 60's/early 70's when efforts were begun to re-equip with larger wind tunnels. The problems of providing full scale Reynolds numbers in transonic testing were proving particularly intractible, when the notion of satisfying the needs with the cryogenic tunnel was proposed, and then adopted. The principles and advantages of the cryogenic tunnel are outlined, along with guidance on the coolant needs when this is liquid nitrogen, and with a note on energy recovery. Operational features of the tunnels are introduced with reference to a small low speed tunnel. Finally the outstanding contributions are highlighted of the 0.3-Meter Transonic Cryogenic Tunnel (TCT) at NASA Langley Research Center, and its personnel, to the furtherance of knowledge and confidence in the concept.

  10. Wind Tunnel Modeling Of Wind Flow Over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Banks, D.; Cochran, B.

    2010-12-01

    This presentation will describe the finding of an atmospheric boundary layer (ABL) wind tunnel study conducted as part of the Bolund Experiment. This experiment was sponsored by Risø DTU (National Laboratory for Sustainable Energy, Technical University of Denmark) during the fall of 2009 to enable a blind comparison of various air flow models in an attempt to validate their performance in predicting airflow over complex terrain. Bohlund hill sits 12 m above the water level at the end of a narrow isthmus. The island features a steep escarpment on one side, over which the airflow can be expected to separate. The island was equipped with several anemometer towers, and the approach flow over the water was well characterized. This study was one of only two only physical model studies included in the blind model comparison, the other being a water plume study. The remainder were computational fluid dynamics (CFD) simulations, including both RANS and LES. Physical modeling of air flow over topographical features has been used since the middle of the 20th century, and the methods required are well understood and well documented. Several books have been written describing how to properly perform ABL wind tunnel studies, including ASCE manual of engineering practice 67. Boundary layer wind tunnel tests are the only modelling method deemed acceptable in ASCE 7-10, the most recent edition of the American Society of Civil Engineers standard that provides wind loads for buildings and other structures for buildings codes across the US. Since the 1970’s, most tall structures undergo testing in a boundary layer wind tunnel to accurately determine the wind induced loading. When compared to CFD, the US EPA considers a properly executed wind tunnel study to be equivalent to a CFD model with infinitesimal grid resolution and near infinite memory. One key reason for this widespread acceptance is that properly executed ABL wind tunnel studies will accurately simulate flow separation

  11. Wind tunnel model and method

    NASA Technical Reports Server (NTRS)

    Jackson, C. M., Jr.; Summerfield, D. G. (Inventor)

    1974-01-01

    The design and development of a wind tunnel model equipped with pressure measuring devices are discussed. The pressure measuring orifices are integrally constructed in the wind tunnel model and do not contribute to distortions of the aerodynamic surface. The construction of a typical model is described and a drawing of the device is included.

  12. Propulsion simulator for magnetically-suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, P. B.; Malonson, M. R.; Sacco, G. P.; Goldey, C. L.; Garbutt, Keith; Goodyer, M.

    1992-01-01

    In order to demonstrate the measurement of aerodynamic forces/moments, including the effects of exhaust jets in Magnetic Suspension and Balance System (MSBS) wind tunnels, two propulsion simulator models were developed at Physical Sciences Inc. (PSI). Both the small-scale model (1 in. diameter X 8 in. long) and the large-scale model (2.5 in. diameter X 15 in. long) employed compressed, liquefied carbon dioxide as a propellant. The small-scale simulator, made from a highly magnetizable iron alloy, was demonstrated in the 7 in. MSBS wind tunnel at the University of Southampton. It developed a maximum thrust of approximate 1.3 lbf with a 0.098 in. diameter nozzle and 0.7 lbf with a 0.295 in. diameter nozzle. The Southampton MSBS was able to control the simulator at angles-of attack up to 20 deg. The large-scale simulator was demonstrated to operate in both a steady-state and a pulse mode via a miniaturized solinoid valve. It developed a stable and repeatable thrust of 2.75 lbf over a period of 4s and a nozzle pressure ratio (NPR) of 5.

  13. Advancing Test Capabilities at NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James

    2015-01-01

    NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant

  14. A new low-turbulence wind tunnel for animal and small vehicle flight experiments

    NASA Astrophysics Data System (ADS)

    Quinn, Daniel B.; Watts, Anthony; Nagle, Tony; Lentink, David

    2017-03-01

    Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s-1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s-1. To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow.

  15. A tilting wind tunnel for fire behavior studies

    Treesearch

    David R. Weise

    1994-01-01

    The combined effects of wind velocity and slope on wildland fire behavior can be studied in the laboratory using a tilting wind tunnel. The tilting wind tunnel requires a commercially available fan to induce wind and can be positioned to simulate heading and backing fires spreading up and down slope. The tunnel is portable and can be disassembled for transport using a...

  16. Aerodynamic control of NASP-type vehicles through Vortex manipulation. Volume 2: Static wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Kramer, Brian R.; Smith, Brooke C.; Malcolm, Gerald N.

    1993-01-01

    Forebody Vortex Control (FVC) was explored in this research program for potential application to a NASP-type configuration. Wind tunnel tests were conducted to evaluate a number of jet blowing schemes. The configuration tested has a slender forebody and a 78 deg swept delta wing. Blowing jets were implemented on the leeward side of the forebody with small circular tubes tangential to the surface that could be directed aft, forward, or at angles in between. The effects of blowing are observed primarily in the yawing and rolling moments and are highly dependent on the jet configuration and the angle of attack. Results show that the baseline flow field, without blowing activated, is quite sensitive to the geometry differences of the various protruding jets, as well as being sensitive to the blowing, particularly in the angle of attack range where the forebody vortices are naturally asymmetric. The time lag of the flow field response to the initiation of blowing was also measured. The time response was very short, on the order of the time required for the flow disturbance to travel the distance from the nozzle to the specific airframe location of interest at the free stream velocity. Overall, results indicate that sizable yawing and rolling moments can be induced with modest blowing levels. However, direct application of this technique on a very slender forebody would require thorough wind tunnel testing to optimize the jet location and configuration.

  17. An experimental investigation of three dimensional low speed minimum interference wind tunnel for high lift wings

    NASA Technical Reports Server (NTRS)

    Shindo, S.; Joppa, R. G.

    1980-01-01

    As a means to achieve a minimum interference correction wind tunnel, a partially actively controlled test section was experimentally examined. A jet flapped wing with 0.91 m (36 in) span and R = 4.05 was used as a model to create moderately high lift coefficients. The partially controlled test section was simulated using an insert, a rectangular box 0.96 x 1.44 m (3.14 x 4.71 ft) open on both ends in the direction of the tunnel air flow, placed in the University of Washington Aeronautical Laboratories (UWAL) 2.44 x 3.66 m (8 x 12 ft) wind tunnel. A tail located three chords behind the wing was used to measure the downwash at the tail region. The experimental data indicates that, within the range of momentum coefficient examined, it appears to be unnecessary to actively control all four sides of the test section walls in order to achieve the near interference free flow field environment in a small wind tunnel. The remaining wall interference can be satisfactorily corrected by the vortex lattice method.

  18. Measured and calculated spectral radiation from a blunt body shock layer in an arc-jet wind tunnel

    NASA Technical Reports Server (NTRS)

    Babikian, Dikran S.; Palumbo, Giuseppe; Craig, Roger A.; Park, Chul; Palmer, Grant; Sharma, Surendra P.

    1994-01-01

    Spectra of the shock layer radiation incident on the stagnation point of a blunt body placed in an arc-jet wind tunnel were measured over the wavelength range from 600 nm to 880 nm. The test gas was a mixture of 80 percent air and 20 percent argon by mass, and the run was made in a highly nonequilibrium environment. The observed spectra contained contributions from atomic lines of nitrogen, oxygen, and argon, of bound-free and free-free continua, and band systems of N2 and N2(+). The measured spectra were compared with the synthetic spectra, which were obtained through four steps: the calculation of the arc-heater characteristics, of the nozzle flow, of the blunt-body flow, and the nonequilibrium radiation processes. The results show that the atomic lines are predicted approximately correctly, but all other sources are underpredicted by orders of magnitude. A possible explanation for the discrepancy is presented.

  19. Review of Aeronautical Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The nation's aeronautical wind tunnel facilities constitute a valuable technological resource and make a significant contribution to the global supremacy of U.S. aircraft, both civil and military. At the request of NASA, the National Research Council's Aeronautics and Space Engineering Board organized a commitee to review the state of repair, adequacy, and future needs of major aeronautical wind tunnel facilities in meeting national goals. The comittee identified three main areas where actions are needed to sustain the capability of NASA's aeronautical wind tunnel facilities to support the national aeronautical research and development activities: tunnel maintenance and upgrading, productivity enhancement, and accommodation of new requirements (particularly in hypersonics). Each of these areas are addressed and the committee recommendations for appropriate actions presented.

  20. Videometric Applications in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Radeztsky, R. H.; Liu, Tian-Shu

    1997-01-01

    Videometric measurements in wind tunnels can be very challenging due to the limited optical access, model dynamics, optical path variability during testing, large range of temperature and pressure, hostile environment, and the requirements for high productivity and large amounts of data on a daily basis. Other complications for wind tunnel testing include the model support mechanism and stringent surface finish requirements for the models in order to maintain aerodynamic fidelity. For these reasons nontraditional photogrammetric techniques and procedures sometimes must be employed. In this paper several such applications are discussed for wind tunnels which include test conditions with Mach number from low speed to hypersonic, pressures from less than an atmosphere to nearly seven atmospheres, and temperatures from cryogenic to above room temperature. Several of the wind tunnel facilities are continuous flow while one is a short duration blowdown facility. Videometric techniques and calibration procedures developed to measure angle of attack, the change in wing twist and bending induced by aerodynamic load, and the effects of varying model injection rates are described. Some advantages and disadvantages of these techniques are given and comparisons are made with non-optical and more traditional video photogrammetric techniques.

  1. Aeronautical Wind Tunnels, Europe and Asia

    DTIC Science & Technology

    2006-02-01

    User Fees Contact Information Dr. Surjatin Wiriadidjaja, UPT-LAGG, BPP Teknologi, Puspiptek, Serpong, Tangerang 15310, Indonesia. Tel: (62) 21 756...of the tunnel, FFA T1500 Transonic Wind Tunnel Circuit (Sweden) manufactured by The Swedish Defense Research Agency (FOI). 2.4 m Transonic Wind

  2. A wind tunnel investigation of the effects of micro-vortex generators and Gurney flaps on the high-lift characteristics of a business jet wing. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Martuccio, Michelle Therese

    1994-01-01

    A study of a full-scale, semi-span business jet wing has been conducted to investigate the potential of two types of high-lift devices for improving aircraft high-lift performance. The research effort involved low-speed wind-tunnel tests of micro-vortex generators and Gurney flaps applied to the flap system of the business jet wing and included force and moment measurements, surface pressure surveys and flow visualization on the wing and flap. Results showed that the micro-vortex generators tested had no beneficial effects on the longitudinal force characteristics in this particular application, while the Gurney flaps were an effective means of increasing lift. However, the Gurney flaps also caused an increase in drag in most circumstances.

  3. Wind tunnel pressurization and recovery system

    NASA Technical Reports Server (NTRS)

    Pejack, Edwin R.; Meick, Joseph; Ahmad, Adnan; Lateh, Nordin; Sadeq, Omar

    1988-01-01

    The high density, low toxicity characteristics of refrigerant-12 (dichlorofluoromethane) make it an ideal gas for wind tunnel testing. Present limitations on R-12 emissions, set to slow the rate of ozone deterioration, pose a difficult problem in recovery and handling of large quantities of R-12. This preliminary design is a possible solution to the problem of R-12 handling in wind tunnel testing. The design incorporates cold temperature condensation with secondary purification of the R-12/air mixture by adsorption. Also discussed is the use of Freon-22 as a suitable refrigerant for the 12 foot wind tunnel.

  4. Wind tunnel wall interference

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Mineck, Raymond E.; Barnwell, Richard W.; Kemp, William B., Jr.

    1986-01-01

    About a decade ago, interest in alleviating wind tunnel wall interference was renewed by advances in computational aerodynamics, concepts of adaptive test section walls, and plans for high Reynolds number transonic test facilities. Selection of NASA Langley cryogenic concept for the National Transonic Facility (NTF) tended to focus the renewed wall interference efforts. A brief overview and current status of some Langley sponsored transonic wind tunnel wall interference research are presented. Included are continuing efforts in basic wall flow studies, wall interference assessment/correction procedures, and adaptive wall technology.

  5. A century of wind tunnels since Eiffel

    NASA Astrophysics Data System (ADS)

    Chanetz, Bruno

    2017-08-01

    Fly higher, faster, preserve the life of test pilots and passengers, many challenges faced by man since the dawn of the twentieth century, with aviation pioneers. Contemporary of the first aerial exploits, wind tunnels, artificially recreating conditions encountered during the flight, have powerfully contributed to the progress of aeronautics. But the use of wind tunnels is not limited to aviation. The research for better performance, coupled with concern for energy saving, encourages manufacturers of ground vehicles to perform aerodynamic tests. Buildings and bridge structures are also concerned. This article deals principally with the wind tunnels built at ONERA during the last century. Somme wind tunnels outside ONERA, even outside France, are also evocated when their characteristics do not exist at ONERA.

  6. The Design of Low-Turbulence Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Dryden, Hugh L; Abbott, Ira H

    1949-01-01

    Within the past 10 years there have been placed in operation in the United States four low-turbulence wind tunnels of moderate cross-sectional area and speed, one at the National Bureau of Standards, two at the NACA Langley Laboratory, and one at the NACA Ames Laboratory. This paper reviews briefly the state of knowledge and those features which make possible the attainment of low turbulence in wind tunnels. Specific applications to two wind tunnels are described.

  7. Computational Support of 9x7 Wind Tunnel Test of Sonic Boom Models with Plumes

    NASA Technical Reports Server (NTRS)

    Jensen, James C.; Denison, Marie; Durston, Don; Cliff, Susan E.

    2017-01-01

    NASA and its industry partners are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The interaction of the nozzle jet flow with the aircrafts' aft components is typically where the greatest uncertainly in the pressure signature is observed with high-fidelity numerical simulations. An extensive wind tunnel test was conducted in February 2016 in the NASA Ames 9- by 7- Foot Supersonic Wind Tunnel to help address the nozzle jet effects on sonic boom. Five test models with a variety of shock generators of differing waveforms and strengths were tested with a convergent-divergent nozzle for a wide range of nozzle pressure ratios. The LAVA unstructured flow solver was used to generate first CFD comparisons with the new experimental database using best practice meshing and analysis techniques for sonic boom vehicle design for all five different configurations. LAVA was also used to redesign the internal flow path of the nozzle and to better understand the flow field in the test section, both of which significantly improved the quality of the test data.

  8. A new low-turbulence wind tunnel for animal and small vehicle flight experiments

    PubMed Central

    Watts, Anthony; Nagle, Tony; Lentink, David

    2017-01-01

    Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s−1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s−1. To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow. PMID:28405384

  9. The Denis-gruson Six-component Wind-tunnel Balance

    NASA Technical Reports Server (NTRS)

    1935-01-01

    The 6.C.1 balance is the first fully automatic balance assuring a continuous and simultaneous record of the aerodynamic characteristics of an airfoil in a wind tunnel. Because of the rapidity of the measurements a complete polar (six components) requires only about three minutes of wind, that is to say, of motive power, which is of interest for wind tunnels with high efficiency factors and may lead to the economical design of large size wind tunnels.

  10. National Wind Tunnel Complex (NWTC)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Wind Tunnel Complex (NWTC) Final Report summarizes the work carried out by a unique Government/Industry partnership during the period of June 1994 through May 1996. The objective of this partnership was to plan, design, build and activate 'world class' wind tunnel facilities for the development of future-generation commercial and military aircraft. The basis of this effort was a set of performance goals defined by the National Facilities Study (NFS) Task Group on Aeronautical Research and Development Facilities which established two critical measures of improved wind tunnel performance; namely, higher Reynolds number capability and greater productivity. Initial activities focused upon two high-performance tunnels (low-speed and transonic). This effort was later descoped to a single multipurpose tunnel. Beginning in June 1994, the NWTC Project Office defined specific performance requirements, planned site evaluation activities, performed a series of technical/cost trade studies, and completed preliminary engineering to support a proposed conceptual design. Due to budget uncertainties within the Federal government, the NWTC project office was directed to conduct an orderly closure following the Systems Design Review in March 1996. This report provides a top-level status of the project at that time. Additional details of all work performed have been archived and are available for future reference.

  11. Acoustical modeling study of the open test section of the NASA Langley V/STOL wind tunnel

    NASA Technical Reports Server (NTRS)

    Ver, I. L.; Andersen, D. W.; Bliss, D. B.

    1975-01-01

    An acoustic model study was carried out to identify effective sound absorbing treatment of strategically located surfaces in an open wind tunnel test section. Also an aerodynamic study done concurrently, sought to find measures to control low frequency jet pulsations which occur when the tunnel is operated in its open test section configuration. The acoustical modeling study indicated that lining of the raised ceiling and the test section floor immediately below it, results in a substantial improvement. The aerodynamic model study indicated that: (1) the low frequency jet pulsations are most likely caused or maintained by coupling of aerodynamic and aeroacoustic phenomena in the closed tunnel circuit, (2) replacing the hard collector cowl with a geometrically identical but porous fiber metal surface of 100 mks rayls flow resistance does not result in any noticable reduction of the test section noise caused by the impingement of the turbulent flow on the cowl.

  12. Wind Tunnel to Atmospheric Mapping for Static Aeroelastic Scaling

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Spain, Charles V.; Rivera, J. A.

    2004-01-01

    Wind tunnel to Atmospheric Mapping (WAM) is a methodology for scaling and testing a static aeroelastic wind tunnel model. The WAM procedure employs scaling laws to define a wind tunnel model and wind tunnel test points such that the static aeroelastic flight test data and wind tunnel data will be correlated throughout the test envelopes. This methodology extends the notion that a single test condition - combination of Mach number and dynamic pressure - can be matched by wind tunnel data. The primary requirements for affecting this extension are matching flight Mach numbers, maintaining a constant dynamic pressure scale factor and setting the dynamic pressure scale factor in accordance with the stiffness scale factor. The scaling is enabled by capabilities of the NASA Langley Transonic Dynamics Tunnel (TDT) and by relaxation of scaling requirements present in the dynamic problem that are not critical to the static aeroelastic problem. The methodology is exercised in two example scaling problems: an arbitrarily scaled wing and a practical application to the scaling of the Active Aeroelastic Wing flight vehicle for testing in the TDT.

  13. Fast Laser Holographic Interferometry For Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Lee, George

    1989-01-01

    Proposed system makes holographic interferograms quickly in wind tunnels. Holograms reveal two-dimensional flows around airfoils and provide information on distributions of pressure, structures of wake and boundary layers, and density contours of flow fields. Holograms form quickly in thermoplastic plates in wind tunnel. Plates rigid and left in place so neither vibrations nor photgraphic-development process degrades accuracy of holograms. System processes and analyzes images quickly. Semiautomatic micro-computer-based desktop image-processing unit now undergoing development moves easily to wind tunnel, and its speed and memory adequate for flows about airfoils.

  14. Wind tunnel interference factors for high-lift wings in closed wind tunnels. Ph.D. Thesis - Princeton Univ.

    NASA Technical Reports Server (NTRS)

    Joppa, R. G.

    1973-01-01

    A problem associated with the wind tunnel testing of very slow flying aircraft is the correction of observed pitching moments to free air conditions. The most significant effects of such corrections are to be found at moderate downwash angles typical of the landing approach. The wind tunnel walls induce interference velocities at the tail different from those induced at the wing, and these induced velocities also alter the trajectory of the trailing vortex system. The relocated vortex system induces different velocities at the tail from those experienced in free air. The effect of the relocated vortex and the walls is to cause important changes in the measured pitching moments in the wind tunnel.

  15. The Dornier Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Schlichting, H

    1938-01-01

    After completion of the required calibrations, the Dornier open-throat tunnel is now in operation. With an elliptic test section of 3 by 4 m (9.84 by 3.12 ft.), its length is 7 m (22.97 ft.), its maximum horsepower 800, and its maximum air speed 60 m/s (134.2 mph). As to local uniformity of velocity, static pressure as well as jet direction, and turbulence factor, this tunnel is on par with those of the good German and foreign research labs.

  16. Survey Of Wind Tunnels At Langley Research Center

    NASA Technical Reports Server (NTRS)

    Bower, Robert E.

    1989-01-01

    Report presented at AIAA 14th Aerodynamic Testing Conference on current capabilities and planned improvements at NASA Langley Research Center's major wind tunnels. Focuses on 14 major tunnels, 8 unique in world, 3 unique in country. Covers Langley Spin Tunnel. Includes new National Transonic Facility (NTF). Also surveys Langley Unitary Plan Wind Tunnel (UPWT). Addresses resurgence of inexpensive simple-to-operate research tunnels. Predicts no shortage of tools for aerospace researcher and engineer in next decade or two.

  17. Cryogenic wind tunnels: Unique capabilities for the aerodynamicist

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1976-01-01

    The cryogenic wind-tunnel concept as a practical means for improving ground simulation of transonic flight conditions. The Langley 1/3-meter transonic cryogenic tunnel is operational, and the design of a cryogenic National Transonic Facility is undertaken. A review of some of the unique capabilities of cryogenic wind tunnels is presented. In particular, the advantages of having independent control of tunnel Mach number, total pressure, and total temperature are highlighted. This separate control over the three tunnel parameters will open new frontiers in Mach number, Reynolds number, aeroelastic, and model-tunnel interaction studies.

  18. Reliability of numerical wind tunnels for VAWT simulation

    NASA Astrophysics Data System (ADS)

    Raciti Castelli, M.; Masi, M.; Battisti, L.; Benini, E.; Brighenti, A.; Dossena, V.; Persico, G.

    2016-09-01

    Computational Fluid Dynamics (CFD) based on the Unsteady Reynolds Averaged Navier Stokes (URANS) equations have long been widely used to study vertical axis wind turbines (VAWTs). Following a comprehensive experimental survey on the wakes downwind of a troposkien-shaped rotor, a campaign of bi-dimensional simulations is presented here, with the aim of assessing its reliability in reproducing the main features of the flow, also identifying areas needing additional research. Starting from both a well consolidated turbulence model (k-ω SST) and an unstructured grid typology, the main simulation settings are here manipulated in a convenient form to tackle rotating grids reproducing a VAWT operating in an open jet wind tunnel. The dependence of the numerical predictions from the selected grid spacing is investigated, thus establishing the less refined grid size that is still capable of capturing some relevant flow features such as integral quantities (rotor torque) and local ones (wake velocities).

  19. Parametric Study of Synthetic-Jet-Based Flow Control on a Vertical Tail Model

    NASA Astrophysics Data System (ADS)

    Monastero, Marianne; Lindstrom, Annika; Beyar, Michael; Amitay, Michael

    2015-11-01

    Separation control over the rudder of the vertical tail of a commercial airplane using synthetic-jet-based flow control can lead to a reduction in tail size, with an associated decrease in drag and increase in fuel savings. A parametric, experimental study was undertaken using an array of finite span synthetic jets to investigate the sensitivity of the enhanced vertical tail side force to jet parameters, such as jet spanwise spacing and jet momentum coefficient. A generic wind tunnel model was designed and fabricated to fundamentally study the effects of the jet parameters at varying rudder deflection and model sideslip angles. Wind tunnel results obtained from pressure measurements and tuft flow visualization in the Rensselaer Polytechnic Subsonic Wind Tunnel show a decrease in separation severity and increase in model performance in comparison to the baseline, non-actuated case. The sensitivity to various parameters will be presented.

  20. Measurement of Vibrations from the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1950-07-21

    Reverend Henry Birkenhauer and E.F. Carome measure ground vibrations on West 220th Street caused by the operation of the 8- by 6-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The 8- by 6 was the laboratory’s first large supersonic wind tunnel. It was also the NACA’s most powerful supersonic tunnel, and the NACA’s first facility capable of running an engine at supersonic speeds. The 8- by 6 was originally an open-throat and non-return tunnel. This meant that the supersonic air flow was blown through the test section and out the other end into the atmosphere. Complaints from the local community led to the installation of a muffler at the tunnel exit and the eventual addition of a return leg. Reverend Brikenhauer, a seismologist, and Carome, an electrical technician were brought in from John Carroll University to take vibration measurements during the 8- by 6 tunnel’s first run with a supersonic engine. They found that the majority of the vibrations came from the air and not the ground. The tunnel’s original muffler offered some relief during the facility checkout runs, but it proved inadequate during the operation of an engine in the test section. Tunnel operation was suspended until a new muffler was designed and installed. The NACA researchers, however, were pleased with the tunnel’s operation. They claimed it was the first time a jet engine was operated in an airflow faster than Mach 2.

  1. SMART Rotor Development and Wind-Tunnel Test

    NASA Technical Reports Server (NTRS)

    Lau, Benton H.; Straub, Friedrich; Anand, V. R.; Birchette, Terry

    2009-01-01

    Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper.

  2. Videogrammetric Model Deformation Measurement Technique for Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.

    2006-01-01

    Videogrammetric measurement technique developments at NASA Langley were driven largely by the need to quantify model deformation at the National Transonic Facility (NTF). This paper summarizes recent wind tunnel applications and issues at the NTF and other NASA Langley facilities including the Transonic Dynamics Tunnel, 31-Inch Mach 10 Tunnel, 8-Ft high Temperature Tunnel, and the 20-Ft Vertical Spin Tunnel. In addition, several adaptations of wind tunnel techniques to non-wind tunnel applications are summarized. These applications include wing deformation measurements on vehicles in flight, determining aerodynamic loads based on optical elastic deformation measurements, measurements on ultra-lightweight and inflatable space structures, and the use of an object-to-image plane scaling technique to support NASA s Space Exploration program.

  3. Wind Tunnel Complex at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-09-21

    This aerial photograph shows the entire original wind tunnel complex at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The large Altitude Wind Tunnel (AWT) at the center of the photograph dominates the area. The Icing Research Tunnel to the right was incorporated into the lab’s design to take advantage of the AWT’s powerful infrastructure. The laboratory’s first supersonic wind tunnel was added to this complex just prior to this September 1945 photograph. The AWT was the nation’s only wind tunnel capable of studying full-scale engines in simulated flight conditions. The AWT’s test section and control room were within the two-story building near the top of the photograph. The exhauster equipment used to thin the airflow and the drive motor for the fan were in the building to the right of the tunnel. The unique refrigeration equipment was housed in the structure to the left of the tunnel. The Icing Research Tunnel was an atmospheric tunnel that used the AWT’s refrigeration equipment to simulate freezing rain inside its test section. A spray bar system inside the tunnel was originally used to create the droplets. The 18- by 18-inch supersonic wind tunnel was built in the summer of 1945 to take advantage of the AWT’s powerful exhaust system. It was the lab’s first supersonic tunnel and could reach Mach 1.91. Eventually the building would house three small supersonic tunnels, referred to as the “stack tunnels” because of the vertical alignment. The two other tunnels were added to this structure in 1949 and 1951.

  4. NACA Engineer Examines Wind Tunnel Compressor Blades

    NASA Image and Video Library

    1955-09-21

    An engineer examines the main compressor for the 10- by 10-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The engineers were preparing the new wind tunnel for its initial runs in early 1956. The 10- by 10 was the most powerful propulsion wind tunnel in the nation. The facility was part of Congress’ Unitary Plan Act which coordinated wind tunnel construction at the NACA, Air Force, industry, and universities. The 10- by 10 was the largest of the three NACA tunnels built under the act. The 20-foot diameter eight-stage axial flow compressor, seen in this photograph, could generate air flows up to Mach 2.5 through the test section. The stainless steel compressor had 584 blades ranging from 1.8 to 3.25 feet in length. This main compressor was complemented by a secondary axial flow compressor. Working in tandem the two could generate wind streams up to Mach 3.5. The Cleveland Chamber of Commerce presented NACA Lewis photographer Bill Bowles with a second place award for this photograph in their Business and Professional category. The photograph was published in October 1955 edition of its periodical, The Clevelander, which highlighted local professional photographers. Fellow Lewis photographer Gene Giczy won second place in another category for a photograph of Cleveland Municipal Airport.

  5. Aeroservoelastic Wind-Tunnel Test of the SUGAR Truss Braced Wing Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Allen, Timothy J.; Funk, Christie J.; Castelluccio, Mark A.; Sexton, Bradley W.; Claggett, Scott; Dykman, John; Coulson, David A.; Bartels, Robert E.

    2015-01-01

    The Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) aeroservoelastic (ASE) wind-tunnel test was conducted in the NASA Langley Transonic Dynamics Tunnel (TDT) and was completed in April, 2014. The primary goals of the test were to identify the open-loop flutter boundary and then demonstrate flutter suppression. A secondary goal was to demonstrate gust load alleviation (GLA). Open-loop flutter and limit cycle oscillation onset boundaries were identified for a range of Mach numbers and various angles of attack. Two sets of control laws were designed for the model and both sets of control laws were successful in suppressing flutter. Control laws optimized for GLA were not designed; however, the flutter suppression control laws were assessed using the TDT Airstream Oscillation System. This paper describes the experimental apparatus, procedures, and results of the TBW wind-tunnel test. Acquired system ID data used to generate ASE models is also discussed.2 study.

  6. Mach 4 free-jet tunnel starting experiments for a hypersonic research engine model causing high blockage

    NASA Technical Reports Server (NTRS)

    Carson, G. T., Jr.; Midden, R. E.

    1976-01-01

    Tests of a full scale hypersonic research engine (HRE) were conducted in the hypersonic tunnel facility at Mach numbers of 5, 6, and 7. Since the HRE would cause a rather high blockage (48.83 percent of the nozzle area), subscale tests were conducted in various available small wind tunnels prior to the full scale tests to study the effects of model blockage on tunnel starting. The results of the Mach 4 subscale tests which utilized a model system at 0.0952 scale which simulated the HRE in the test section of the tunnel are presented. A satisfactory tunnel starting could not be achieved by varying the free jet length or diffuser size nor by inserting the model into the test stream after tunnel starting. However, the installation of a shroud around the HRE model allowed the tunnel to start with the model preset in the tunnel at a tunnel stagnation pressure to atmospheric exit pressure ratio of 13.4. The simulation of the discharge of instrumentation cooling water and the addition of test hardware at the aft end of the HRE model did not have a significant effect on the tunnel starting.

  7. Shelf Circulation Induced by an Orographic Wind Jet

    NASA Astrophysics Data System (ADS)

    Ràfols, Laura; Grifoll, Manel; Jordà, Gabriel; Espino, Manuel; Sairouní, Abdel; Bravo, Manel

    2017-10-01

    The dynamical response to cross-shelf wind-jet episodes is investigated. The study area is located at the northern margin of the Ebro Shelf, in the Northwestern (NW) Mediterranean Sea, where episodes of strong northwesterly wind occur. In this case, the wind is channeled through the Ebro Valley and intensifies upon reaching the sea, resulting in a wind jet. The wind-jet response in terms of water circulation and vertical density structure is investigated using a numerical model. The numerical outputs agree with water current observations from a high-frequency radar. Additionally, temperature, sea level, and wind measurements are also used for the skill assessment of the model. For the wind-jet episodes, the numerical results show a well-defined two-layer circulation in the cross-shelf direction, with the surface currents in the direction of the wind. This pattern is consistent with sea level set-down due to the wind effect. The comparison of the vertical structure response for different episodes revealed that the increase of stratification leads to an onshore displacement of the transition from inner shelf to mid-shelf. In general, the cross-shelf momentum balance during a wind-jet episode exhibits a balance between the frictional terms and the pressure gradient in shallow waters, shifting to a balance between the Coriolis force and the wind stress terms in deeper waters.

  8. Screens Would Protect Wind-Tunnel Fan Blades

    NASA Technical Reports Server (NTRS)

    Farmer, Moses G.

    1992-01-01

    Butterfly screen installed in wind tunnel between test section and fan blades to prevent debris from reaching fan blades if model structure fails. Protective screens deployed manually or automatically. Concept beneficial anywhere wind tunnels employed. Also useful in areas outside of aerospace industry, such as in airflow design of automobiles and other vehicles.

  9. An Experimental Study of Synthetic Jets from Rectangular Orifices

    NASA Technical Reports Server (NTRS)

    Milanovic, Ivana M.

    2003-01-01

    During the past two summers Professor Milanovic conducted Wind tunnel experiments on steady jets-in-cross-flow and synthetic jets. In her anticipated visit during the upcoming summer, she will continue and complete the research on synthetic jets involving 2-dimensional orifices of different aspect ratio as well as inclined slots. In addition, experiments will be conducted on pulsatile jets-in-cross-flow. The pulsation will be provided via an oscillating valve at controllable frequencies. The experiment will involve mainly hot-wire anemometer measurements in the low-speed wind tunnel. Overall goal will be to obtain database and investigate flow control strategies. The research will be of fundamental nature.

  10. Real-time simulator for helicopter rotor wind-tunnel operations

    NASA Technical Reports Server (NTRS)

    Talbot, P. D.; Peterson, R. L.; Graham, D. R.

    1986-01-01

    This paper describes the elements and operation of a simulator that is being used to train operators of the Rotor Test Apparatus (RTA) in the large-scale 40- by 80-Foot Wind Tunnel at Ames Research Center. The simulator, named TUTOR (for Tunnel Utilization Trainer with Operating Rotor) duplicates the controls of the rotor and its dynamic behavior, as well as the wind-tunnel controls. The simulation software uses a preexisting blade-element model of a four-bladed rotor with flapping and lead-lag degrees of freedom. Equations were developed for all hardware and controls of the RTA and of the wind tunnel that are normally required to perform a wind-tunnel test of a helicopter rotor. The simulator hardware consists of consoles designed to have the same appearance and functions as those in the control room of the 40- by 80-Foot Wind Tunnel, allowing input from three operators who normally establish the required operating conditions during a test run. Normal operating procedures can be practiced, as well as simulated emergencies such as rotor power failure.

  11. Within-Tunnel Variations in Pressure Data for Three Transonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2014-01-01

    This paper compares the results of pressure measurements made on the same test article with the same test matrix in three transonic wind tunnels. A comparison is presented of the unexplained variance associated with polar replicates acquired in each tunnel. The impact of a significance component of systematic (not random) unexplained variance is reviewed, and the results of analyses of variance are presented to assess the degree of significant systematic error in these representative wind tunnel tests. Total uncertainty estimates are reported for 140 samples of pressure data, quantifying the effects of within-polar random errors and between-polar systematic bias errors.

  12. Aerodynamic performance of a low-speed wind tunnel.

    PubMed

    Frechen, F-B; Frey, M; Wett, M; Löser, C

    2004-01-01

    The determination of the odour mass flow emitted from a source is a very important step and forms the basis for all subsequent considerations and calculations. Wastewater treatment plants, as well as waste treatment facilities, consist of different kinds of odour sources. Unfortunately, most of the sources are passive sources, where no outward air flow-rate can be measured, but where odorants are obviously emitted. Thus, a type of sampling is required that allows to measure the emitted odour flow-rate (OFR). To achieve this, different methods are in use worldwide. Besides indirect methods, such as micrometeorological atmospheric dispersion models, which have not been used in Germany (in other countries due to different problems, direct methods are also used). Direct measurements include hood methods, commonly divided into static flux chambers, dynamic flux chambers and wind tunnels. The wind tunnel that we have been operating in principle since 1983 is different from all subsequent presented wind tunnels, in that we operate it at a considerably lower wind speed than the others. To describe the behaviour of this wind tunnel, measurement of the flow pattern in this low-speed tunnel are under way, and some initial results are presented here.

  13. General Electric TG-100A Turboprop in the Altitude Wind Tunnel

    NASA Image and Video Library

    1946-12-21

    A General Electric TG-100A seen from the rear in the test section of the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland, Ohio. The Altitude Wind Tunnel was used to study almost every model of US turbojet that emerged in the 1940s, as well as some ramjets and turboprops. In the early 1940s the military was interested in an engine that would use less fuel than the early jets but would keep up with them performance-wise. Turboprops seemed like a plausible solution. They could move a large volume of air and thus required less engine speed and less fuel. Researchers at General Electric’s plant in Schenectady, New York worked on the turboprop for several years in the 1930s. They received an army contract in 1941 to design a turboprop engine using an axial-flow compressor. The result was the 14-stage TG-100, the nation's first turboprop aircraft engine. Development of the engine was slow, however, and the military asked NACA Lewis to analyze the engine’s performance. The TG-100A was tested in the Altitude Wind Tunnel and it was determined that the compressors, combustion chamber, and turbine were impervious to changes in altitude. The researchers also established the optimal engine speed and propeller angle at simulated altitudes up to 35,000 feet. Despite these findings, development of the TG-100 was cancelled in May 1947. Twenty-eight of the engines were produced, but they were never incorporated into production aircraft.

  14. A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming

    2018-03-01

    This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.

  15. Correction of downwash in wind tunnels of circular and elliptic sections

    NASA Technical Reports Server (NTRS)

    Lotz, Irmgard

    1936-01-01

    The downwash velocity distribution behind the wing was determined for the free jet and for the closed tunnel of both circular and elliptic cross sections. The wing was placed at the center of the tunnel. The theory makes it possible to determine the downwash at any point in the jet. The computations were performed for points in the plane determined by the jet axis and the center-of-pressure line of the wing. The downwash proved to be proportional to the wing lift and inversely proportional to the cross-sectional area of the tunnel.

  16. Ultra-High Bypass Ratio Jet Noise

    NASA Technical Reports Server (NTRS)

    Low, John K. C.

    1994-01-01

    The jet noise from a 1/15 scale model of a Pratt and Whitney Advanced Ducted Propulsor (ADP) was measured in the United Technology Research Center anechoic research tunnel (ART) under a range of operating conditions. Conditions were chosen to match engine operating conditions. Data were obtained at static conditions and at wind tunnel Mach numbers of 0.2, 0.27, and 0.35 to simulate inflight effects on jet noise. Due to a temperature dependence of the secondary nozzle area, the model nozzle secondary to primary area ratio varied from 7.12 at 100 percent thrust to 7.39 at 30 percent thrust. The bypass ratio varied from 10.2 to 11.8 respectively. Comparison of the data with predictions using the current Society of Automotive Engineers (SAE) Jet Noise Prediction Method showed that the current prediction method overpredicted the ADP jet noise by 6 decibels. The data suggest that a simple method of subtracting 6 decibels from the SAE Coaxial Jet Noise Prediction for the merged and secondary flow source components would result in good agreement between predicted and measured levels. The simulated jet noise flight effects with wind tunnel Mach numbers up to 0.35 produced jet noise inflight noise reductions up to 12 decibels. The reductions in jet noise levels were across the entire jet noise spectra, suggesting that the inflight effects affected all source noise components.

  17. 40 CFR 53.63 - Test procedure: Wind tunnel inlet aspiration test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test procedure: Wind tunnel inlet... extracts an ambient aerosol at elevated wind speeds. This wind tunnel test uses a single-sized, liquid... this subpart (under the heading of “wind tunnel inlet aspiration test”). The candidate sampler must...

  18. 40 CFR 53.63 - Test procedure: Wind tunnel inlet aspiration test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test procedure: Wind tunnel inlet... extracts an ambient aerosol at elevated wind speeds. This wind tunnel test uses a single-sized, liquid... this subpart (under the heading of “wind tunnel inlet aspiration test”). The candidate sampler must...

  19. 40 CFR 53.63 - Test procedure: Wind tunnel inlet aspiration test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test procedure: Wind tunnel inlet... extracts an ambient aerosol at elevated wind speeds. This wind tunnel test uses a single-sized, liquid... this subpart (under the heading of “wind tunnel inlet aspiration test”). The candidate sampler must...

  20. 8. VIEW SOUTHWEST, INTERIOR VIEW, WIND TUNNEL 139 Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW SOUTHWEST, INTERIOR VIEW, WIND TUNNEL 139 - Naval Surface Warfare Center, Subsonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  1. Wind tunnel technology for the development of future commercial aircraft

    NASA Technical Reports Server (NTRS)

    Szodruch, J.

    1986-01-01

    Requirements for new technologies in the area of civil aircraft design are mainly related to the high cost involved in the purchase of modern, fuel saving aircraft. A second important factor is the long term rise in the price of fuel. The demonstration of the benefits of new technologies, as far as these are related to aerodynamics, will,for the foreseeable future, still be based on wind tunnel measurements. Theoretical computation methods are very successfully used in design work, wing optimization, and an estimation of the Reynolds number effect. However, wind tunnel tests are still needed to verify the feasibility of the considered concepts. Along with other costs, the cost for the wind tunnel tests needed for the development of an aircraft is steadily increasing. The present investigation is concerned with the effect of numerical aerodynamics and civil aircraft technology on the development of wind tunnels. Attention is given to the requirements for the wind tunnel, investigative methods, measurement technology, models, and the relation between wind tunnel experiments and theoretical methods.

  2. Wall Interference in Two-Dimensional Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Kemp, William B., Jr.

    1986-01-01

    Viscosity and tunnel-wall constraints introduced via boundary conditions. TWINTN4 computer program developed to implement method of posttest assessment of wall interference in two-dimensional wind tunnels. Offers two methods for combining sidewall boundary-layer effects with upper and lower wall interference. In sequential procedure, Sewall method used to define flow free of sidewall effects, then assessed for upper and lower wall effects. In unified procedure, wind-tunnel flow equations altered to incorporate effects from all four walls at once. Program written in FORTRAN IV for batch execution.

  3. 12. VIEW EAST, BUILDING 12 INTERIOR, WIND TUNNEL 157 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW EAST, BUILDING 12 INTERIOR, WIND TUNNEL 157 - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  4. 2. VIEW SOUTH OF WIND TUNNEL 157, NORTH ELEVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH OF WIND TUNNEL 157, NORTH ELEVATION - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  5. Smart wing wind tunnel test results

    NASA Astrophysics Data System (ADS)

    Scherer, Lewis B.; Martin, Christopher A.; Appa, Kari; Kudva, Jayanth N.; West, Mark N.

    1997-05-01

    The use of smart materials technologies can provide unique capabilities in improving aircraft aerodynamic performance. Northrop Grumman built and tested a 16% scale semi-span wind tunnel model of the F/A-18 E/F for the on-going DARPA/WL Smart Materials and Structures-Smart Wing Program. Aerodynamic performance gains to be validated included increase in the lift to drag ratio, increased pitching moment (Cm), increased rolling moment (Cl) and improved pressure distribution. These performance gains were obtained using hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist via a SMA torque tube and are compared to a conventional wind tunnel model with hinged control surfaces. This paper presents an overview of the results from the first wind tunnel test performed at the NASA Langley's 16 ft Transonic Dynamic Tunnel. Among the benefits demonstrated are 8 - 12% increase in rolling moment due to wing twist, a 10 - 15% increase in rolling moment due to contoured aileron, and approximately 8% increase in lift due to contoured flap, and improved pressure distribution due to trailing edge control surface contouring.

  6. Plasma Wind Tunnel Testing of Electron Transpiration Cooling Concept

    DTIC Science & Technology

    2017-02-28

    AFRL-AFOSR-UK-TR-2017-0012 Plasma Wind Tunnel Testing of Electron Transpiration Cooling Concept Olivier Chazot INSTITUT VON KARMAN DE DYNAMIQUE DES...28-02-2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) 01 Dec 2015 to 30 Nov 2016 4. TITLE AND SUBTITLE Plasma Wind Tunnel Testing of Electron ...Aeronautics and Aerospace Department B-1640 Rhode Saint Genèse Belgium Internal Ref: ARR 1605 February 2017 Plasma Wind Tunnel Testing of Electron

  7. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    NASA Technical Reports Server (NTRS)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the

  8. Space Shuttle wind tunnel testing program

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Hillje, E. R.

    1984-01-01

    A major phase of the Space Shuttle Vehicle (SSV) Development Program was the acquisition of data through the space shuttle wind tunnel testing program. It became obvious that the large number of configuration/environment combinations would necessitate an extremely large wind tunnel testing program. To make the most efficient use of available test facilities and to assist the prime contractor for orbiter design and space shuttle vehicle integration, a unique management plan was devised for the design and development phase. The space shuttle program is reviewed together with the evolutional development of the shuttle configuration. The wind tunnel testing rationale and the associated test program management plan and its overall results is reviewed. Information is given for the various facilities and models used within this program. A unique posttest documentation procedure and a summary of the types of test per disciplines, per facility, and per model are presented with detailed listing of the posttest documentation.

  9. Turning Vanes inside the Altitude Wind Tunnel

    NASA Image and Video Library

    1944-02-21

    Men stand in front of turning vanes inside the Altitude Wind Tunnel (AWT) at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The AWT was the only wind tunnel capable of testing full-size aircraft engines in simulated altitude conditions. A large wooden drive fan, located on the other side of these vanes, created wind speeds up to 500 miles per hour. The drive shaft connected the fan to the induction motor located in an adjacent building. Turning vanes were located in each corner of the rectangular tunnel to straighten the airflow and direct it around the corners. This set of vanes was located in the 31-foot-diameter southeast corner of the tunnel. These elliptical panels consisted of 36 to 42 vertical vanes that were supported by three horizontal supports. The individual vanes were 2.5 feet long and half-moon shaped. The panel of vanes was affixed to the curved corner rings of the tunnel. Each set of turning vanes had a moveable vane in the middle of the lower level for personnel access. Each set of vanes took weeks to assemble before they were installed during the summer of 1943. This publicity photograph was taken just weeks after the tunnel became operational in February 1944.

  10. Wind tunnel test of musi VI bridge

    NASA Astrophysics Data System (ADS)

    Permata, Robby; Andika, Matza Gusto; Syariefatunnisa, Risdhiawan, Eri; Hermawan, Budi; Noordiana, Indra

    2017-11-01

    Musi VI Bridge is planned to cross the Musi River in Palembang City, South Sumatera Province, Indonesia. The main span is a steel arch type with 200 m length and side span length is 75 m. Finite element analysis results showed that the bridge has frequency ratio for torsional and heaving mode (torsional frequency/heaving frequency)=1.14. This close to unity value rises concern about aerodynamic behaviour and stability of the bridge deck under wind loading. Sectional static and free vibration wind tunnel test were performed to clarify this phenomena in B2TA3 facility in Serpong, Indonesia. The test followed the draft of Guide of Wind Tunnel Test for Bridges developed by Indonesian Ministry of Public Works. Results from wind tunnel testing show that the bridge is safe from flutter instability and no coupled motion vibration observed. Therefore, low value of frequency ratio has no effect to aerodynamic behaviour of the bridge deck. Vortex-induced vibration in heaving mode occurred in relatively low wind velocity with permissible maximum amplitude value.

  11. Construction of the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1948-06-21

    The 8- by 6-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory was the nation’s largest supersonic facility when it began operation in April 1949. The emergence of new propulsion technologies such as turbojets, ramjets, and rockets during World War II forced the NACA and the aircraft industry to develop new research tools. In late 1945 the NACA began design work for new large supersonic wind tunnels at its three laboratories. The result was the 4- by 4-Foot Supersonic Wind Tunnel at Langley Memorial Aeronautical Laboratory, 6- by 6-foot supersonic wind tunnel at Ames Aeronautical Laboratory, and the largest facility, the 8- by 6-Foot Supersonic Wind Tunnel in Cleveland. The two former tunnels were to study aerodynamics, while the 8- by 6 facility was designed for supersonic propulsion. The 8- by 6-Foot Supersonic Wind Tunnel was used to study propulsion systems, including inlets and exit nozzles, combustion fuel injectors, flame holders, exit nozzles, and controls on ramjet and turbojet engines. Flexible sidewalls alter the tunnel’s nozzle shape to vary the Mach number during operation. A seven-stage axial compressor, driven by three electric motors that yield a total of 87,000 horsepower, generates air speeds from Mach 0.36 to 2.0. A section of the tunnel is seen being erected in this photograph.

  12. Optical Flow for Flight and Wind Tunnel Background Oriented Schlieren Imaging

    NASA Technical Reports Server (NTRS)

    Smith, Nathanial T.; Heineck, James T.; Schairer, Edward T.

    2017-01-01

    Background oriented Schlieren images have historically been generated by calculating the observed pixel displacement between a wind-on and wind-o image pair using normalized cross-correlation. This work uses optical flow to solve the displacement fields which generate the Schlieren images. A well established method used in the computer vision community, optical flow is the apparent motion in an image sequence due to brightness changes. The regularization method of Horn and Schunck is used to create Schlieren images using two data sets: a supersonic jet plume shock interaction from the NASA Ames Unitary Plan Wind Tunnel, and a transonic flight test of a T-38 aircraft using a naturally occurring background, performed in conjunction with NASA Ames and Armstrong Research Centers. Results are presented and contrasted with those using normalized cross-correlation. The optical flow Schlieren images are found to provided significantly more detail. We apply the method to historical data sets to demonstrate the broad applicability and limitations of the technique.

  13. Determination of wind tunnel constraint effects by a unified pressure signature method. Part 1: Applications to winged configurations

    NASA Technical Reports Server (NTRS)

    Hackett, J. E.; Sampath, S.; Phillips, C. G.

    1981-01-01

    A new, fast, non-iterative version of the "Wall Pressure Signature Method" is described and used to determine blockage and angle-of-attack wind tunnel corrections for highly-powered jet-flap models. The correction method is complemented by the application of tangential blowing at the tunnel floor to suppress flow breakdown there, using feedback from measured floor pressures. This tangential blowing technique was substantiated by subsequent flow investigations using an LV. The basic tests on an unswept, knee-blown, jet flapped wing were supplemented to include the effects of slat-removal, sweep and the addition of unflapped tips. C sub mu values were varied from 0 to 10 free-air C sub l's in excess of 18 were measured in some cases. Application of the new methods yielded corrected data which agreed with corresponding large tunnel "free air" resuls to within the limits of experimental accuracy in almost all cases. A program listing is provided, with sample cases.

  14. Optimized aerodynamic design process for subsonic transport wing fitted with winglets. [wind tunnel model

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1979-01-01

    The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.

  15. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 1: Wind tunnel test pressure data report

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.; Devereaux, P. A.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 1 of 2: Wind Tunnel Test Pressure Data Report.

  16. Pressure distribution on a vectored-thrust V/STOL fighter in the transition-speed range. [wind tunnel tests to measure pressure distribution on body and wing

    NASA Technical Reports Server (NTRS)

    Mineck, R. E.; Margason, R. J.

    1974-01-01

    A wind-tunnel investigation has been conducted in the Langley V/STOL tunnel with a vectored-thrust V/STOL fighter configuration to obtain detailed pressure measurements on the body and on the wing in the transition-speed range. The vectored-thrust jet exhaust induced a region of negative pressure coefficients on the lower surface of the wing and on the bottom of the fuselage. The location of the jet exhaust relative to the wing was a major factor in determining the extent of the region of negative pressure coefficients.

  17. Study of optical techniques for the Ames unitary wind tunnel, part 7

    NASA Technical Reports Server (NTRS)

    Lee, George

    1993-01-01

    A summary of optical techniques for the Ames Unitary Plan wind tunnels are discussed. Six optical techniques were studied: Schlieren, light sheet and laser vapor screen, angle of attack, model deformation, infrared imagery, and digital image processing. The study includes surveys and reviews of wind tunnel optical techniques, some conceptual designs, and recommendations for use of optical methods in the Ames Unitary Plan wind tunnels. Particular emphasis was placed on searching for systems developed for wind tunnel use and on commercial systems which could be readily adapted for wind tunnels. This final report is to summarize the major results and recommendations.

  18. NACA Transonic Wind-tunnel Test Sections

    NASA Technical Reports Server (NTRS)

    Wright, Ray H; Ward, Vernon G

    1955-01-01

    Report presents an approximate subsonic theory for the solid-blockage interference in circular wind tunnels with walls slotted in the direction of flow. This theory indicated the possibility of obtaining zero blockage interference. Tests in a circular slotted tunnel based on the theory confirmed the theoretical predictions.

  19. Flight effects on noise generated by the JT8D-17 engine in a quiet nacelle and a conventional nacelle as measured in the NASA-Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Strout, F. G.

    1976-01-01

    A JT8D-17 turbofan engine was tested in the NASA-Ames 40- by 80-foot wind tunnel to determine flight effects on jet and fan noise. Baseline, quiet nacelle with 20-lobe ejector/suppressor, and internal mixer configurations were tested over a range of engine power settings and tunnel velocities. Flight effects derived from the 40- by 80-foot wind tunnel test are compared with 727/JT8D flight test data and with model data obtained in a smaller wind tunnel. Procedures are defined for measuring noise data in a wind tunnel relatively near the sources and analyzing the results to obtain far-field flight effects. Wind tunnel and 727 flight test noise results compare favorably for both the baseline and quiet nacelle configurations. Two reports are provided, including a comprehensive version with extensive test results and analysis and the subject summary version that emphasizes data analysis and program finding.

  20. Measurement Techniques for Flow Diagnostic in ITAM Impulse Wind Tunnels

    DTIC Science & Technology

    2010-04-01

    time of wind - tunnel operation, so that oscillations caused by initial shock loads could decay and a comparatively long time period with constant flow...Flow Diagnostic in ITAM Impulse Wind Tunnels 7 - 4 RTO-EN-AVT-186 A strain-gauge pressure probe is an elastic element (membrane) in a sealed...Diagnostic in ITAM Impulse Wind Tunnels RTO-EN-AVT-186 7 - 5 probes are individually calibrated. Piezoelectric pressure gauges are based

  1. Investigations of the 0.020-scale 88-OTS Integrated Space Shuttle Vehicle Jet-Plume Model in the NASA/Ames Research Center 11 by11-Foot Unitary Plan Wind Tunnel (IA80). Volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    The results are documented of jet plume effects wind tunnel test of the 0.020-scale 88-OTS launch configuration space shuttle vehicle model in the 11 x 11 foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold gas main propulsion system (MPS) and solid rocket motor (SRB) plume simulations at Mach numbers from 0.6 to 1.4. Integrated vehicle surface pressure distributions, elevon and rudder hinge moments, and wing and vertical tail root bending and torsional moments due to MPS and SRB plume interactions were determined. Nozzle power conditions were controlled per pretest nozzle calibrations. Model angle of attack was varied from -4 deg to +4 deg; model angle of sideslip was varied from -4 deg to +4 deg. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia. Plotted force and pressure data are presented.

  2. Gottingen Wind Tunnel for Testing Aircraft Models

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1920-01-01

    Given here is a brief description of the Gottingen Wind Tunnel for the testing of aircraft models, preceded by a history of its development. Included are a number of diagrams illustrating, among other things, a sectional elevation of the wind tunnel, the pressure regulator, the entrance cone and method of supporting a model for simple drag tests, a three-component balance, and a propeller testing device, all of which are discussed in the text.

  3. An inventory of aeronautical ground research facilities. Volume 1: Wind tunnels

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    A survey of wind tunnel research facilities in the United States is presented. The inventory includes all subsonic, transonic, and hypersonic wind tunnels operated by governmental and private organizations. Each wind tunnel is described with respect to size, mechanical operation, construction, testing capabilities, and operating costs. Facility performance data are presented in charts and tables.

  4. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less

  5. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    DOE PAGES

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; ...

    2015-03-06

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less

  6. Impact of red giant/AGB winds on active galactic nucleus jet propagation

    NASA Astrophysics Data System (ADS)

    Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.

    2017-10-01

    Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to

  7. 14. EXTERIOR VIEW OF OLD TENFOOT WIND TUNNEL (1991). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. EXTERIOR VIEW OF OLD TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  8. 13. EXTERIOR VIEW OF OLD TENFOOT WIND TUNNEL (1991). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. EXTERIOR VIEW OF OLD TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  9. 7. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  10. 2. VIEW SOUTH OF TRANSONIC WIND TUNNEL BUILDING AND SUPERSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH OF TRANSONIC WIND TUNNEL BUILDING AND SUPERSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  11. 5. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  12. 1. VIEW SOUTHWEST OF SUBSONIC WIND TUNNEL BUILDING AND TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW SOUTHWEST OF SUBSONIC WIND TUNNEL BUILDING AND TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  13. 3. VIEW SOUTHEAST OF TRANSONIC WIND TUNNEL BUILDING TO SUBSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW SOUTHEAST OF TRANSONIC WIND TUNNEL BUILDING TO SUBSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  14. 4. VIEW NORTHWEST OF SUPERSONIC WIND TUNNEL BUILDING TO TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW NORTHWEST OF SUPERSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  15. 13. VIEW NORTHEAST, BUILDING 12 INTERIOR, WIND TUNNEL FAN ASSEMBLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW NORTHEAST, BUILDING 12 INTERIOR, WIND TUNNEL FAN ASSEMBLY - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  16. Results of a jet plume effects test on Rockwell International integrated space shuttle vehicle using a vehicle 5 configuration 0.02-scale model (88-OTS) in the 11 by 11 foot leg of the NASA/Ames Research Center unitary plan wind tunnel (IA19), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1975-01-01

    Results are presented of jet plume effects test IA19 using a vehicle 5 configuration integrated space shuttle vehicle 0.02-scale model in the NASA/Ames Research Center 11 x 11-foot leg of the unitary plan wind tunnel. The jet plume power effects on the integrated vehicle static pressure distribution were determined along with elevon, main propulsion system nozzle, and solid rocket booster nozzle effectiveness and elevon hinge moments.

  17. Effects of reaction control system jet simulation on the stability and control characteristics of a 0.015 scale space shuttle orbiter model tested in the Langley Research Center unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.; Marroquin, J.

    1974-01-01

    An experimental investigation was performed in the Langley Research Center Unitary Plan Wind Tunnel (Test 0A70) to obtain the detailed effects that RCS jet flow interactions with local orbiter flow field have on supersonic stability and control characteristics of the space shuttle orbiter. Six-component force data were obtained through an angle-of-attack range from 15 to 35 degrees at angles of sideslip of 0, +5, and -5 degrees. The test was conducted with yaw jet simulation at free-stream Mach numbers of 2.5 and 4.6, simulating SSV re-entry flight conditions at these Mach numbers. In addition to the basic force measurements, fuselage base pressures and pressures on the non-metric RCS pods were obtained.

  18. Experimental verification of Theodorsen's theoretical jet-boundary correction factors

    NASA Technical Reports Server (NTRS)

    Schliestett, George Van

    1934-01-01

    Prandtl's suggested use of a doubly infinite arrangement of airfoil images in the theoretical determination of wind-tunnel jet-boundary corrections was first adapted by Glauert to the case of closed rectangular jets. More recently, Theodorsen, using the same image arrangement but a different analytical treatment, has extended this work to include not only closed but also partly closed and open tunnels. This report presents the results of wind-tunnel tests conducted at the Georgia School of Technology for the purpose of verifying the five cases analyzed by Theodorsen. The tests were conducted in a square tunnel and the results constitute a satisfactory verification of his general method of analysis. During the preparation of the data two minor errors were discovered in the theory and these have been rectified.

  19. Detailed Uncertainty Analysis for Ares I Ascent Aerodynamics Wind Tunnel Database

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.; Hanke, Jeremy L.; Walker, Eric L.; Houlden, Heather P.

    2008-01-01

    A detailed uncertainty analysis for the Ares I ascent aero 6-DOF wind tunnel database is described. While the database itself is determined using only the test results for the latest configuration, the data used for the uncertainty analysis comes from four tests on two different configurations at the Boeing Polysonic Wind Tunnel in St. Louis and the Unitary Plan Wind Tunnel at NASA Langley Research Center. Four major error sources are considered: (1) systematic errors from the balance calibration curve fits and model + balance installation, (2) run-to-run repeatability, (3) boundary-layer transition fixing, and (4) tunnel-to-tunnel reproducibility.

  20. Evaluation of the in-flight noise signature of a 32-chute suppressor nozzle: Acoustic data report. [outdoor static and 40 x 80 ft. wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Moore, M. T.; Doyle, V. L.

    1977-01-01

    Outdoor static and 40 x 80 FT wind tunnel tests of the J79-15 engine/nacelle system with the conic nozzle and 32-chute exhaust suppressor were conducted to acquire the data necessary to evaluate the simulated in-flight signature of an engine-size 32-chute exhaust nozzle suppressor using the 40 x 80 ft wind tunnel and to study possible engine core noise contamination of the jet signature. The tests are described and and a sampling of the data acquired is presented. Included are aero performance summaries, as-measured and composite 1/3 OBSPL spectra for the 70 ft sideline high and low mics from the outdoor static tests, sideline traverse spectra and internal noise measurements from both the outdoor static and the 40 x 80 ft wind tunnel tests.

  1. General Electric TG-180 Turbojet in the Altitude Wind Tunnel

    NASA Image and Video Library

    1947-09-21

    A General Electric TG-180 turbojet installed in the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. In 1943 the military asked General Electric to develop an axial-flow jet engine which became the TG-180. The military understood that the TG-180 would not be ready during World War II but recognized the axial-flow compressor’s long-term potential. Although the engine was bench tested in April 1944, it was not flight tested until February 1946. The TG-180 was brought to the Altitude Wind Tunnel in 1945 for a series of investigations. The studies, which continued intermittently into 1948, analyzed an array of performance issues. NACA modifications steadily improved the TG-180’s performance, including the first successful use of an afterburner. The Lewis researchers studied a 29-inch diameter afterburner over a range of altitude conditions using several different types of flameholders and fuel systems. Lewis researchers concluded that a three-stage flameholder with its largest stage upstream was the best burner configuration. Although the TG-180 (also known as the J35) was not the breakthrough engine that the military had hoped for, it did power the Douglas D-558-I Skystreak to a world speed record on August 20, 1947. The engines were also used on the Republic F-84 Thunderjet and the Northrup F-89 Scorpion.

  2. A New Method of Testing in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Margoulis, W

    1921-01-01

    Now, in existing wind tunnels, using a horsepower of 100 to 300, the models are generally made to a 1/10 scale and the speed is appreciably lower than the speeds currently attained by airplanes. The Reynolds number realized is thus 15 to 25 times smaller than that reached by airplanes in free flight, while the ratio of speed to the velocity of sound is between a third and three quarters of the true ratio. The necessary increases in either the diameter of the wind tunnel or the velocity of the airstream are too costly. However, the author shows that it is possible to have wind tunnels in which the Reynolds number will be greater than that now obtained by airplanes, and in which the ratio of the velocity to the velocity of sound will also be greater than that realized in practice, by employing a gas other than air, at a pressure and temperature different from those of the surrounding atmosphere. The gas is carbonic acid, a gas having a low coefficient of viscosity, high density, and a low ratio of specific heat. The positive results of using carbonic acid in wind tunnel tests are given.

  3. The Variable Density Wind Tunnel of the National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    Munk, Max M; Miller, Elton W

    1926-01-01

    This report contains an exact description of the new wind tunnel of the National Advisory Committee for Aeronautics. This is the first american type wind tunnel. It differs from ordinary wind tunnels by its being surrounded by a strong steel shell, 35 feet long and 15 feet in diameter. A compressor system is provided to fill this shell - and hence the entire wind tunnel - with air compressed to a density up to 25 times the ordinary atmospheric density. It is demonstrated in the report that the increase of the air density makes up for a corresponding decrease in the scale of the model. Hence such american type wind tunnel is free from scale effect. The report is illustrated by many drawings and photographs. All construction details are described, and many dimensions given. The method of conducting tests is also described and some preliminary results given in the report. So far, the tests have confirmed the chief feature of this wind tunnel - absence of scale effect.

  4. 6. VIEW OF FIVEFOOT WIND TUNNEL WITH AIR STRAIGHTENER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF FIVE-FOOT WIND TUNNEL WITH AIR STRAIGHTENER AND OPERATOR STATION IN FOREGROUND (1991). - Wright-Patterson Air Force Base, Area B, Building No. 19, Five-Foot Wind Tunnel, Dayton, Montgomery County, OH

  5. 2. VIEW SOUTH OF WIND TUNNEL 138 AND COOLING SYSTEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH OF WIND TUNNEL 138 AND COOLING SYSTEM 140, NORTH ELEVATION - Naval Surface Warfare Center, Subsonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  6. Cryogenic wind tunnels for high Reynolds number testing

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Kilgore, R. A.; Mcguire, P. D.

    1986-01-01

    A compilation of lectures presented at various Universities over a span of several years is discussed. A central theme of these lectures has been to present the research facility in terms of the service it provides to, and its potential effect on, the entire community, rather than just the research community. This theme is preserved in this paper which deals with the cryogenic transonic wind tunnels at Langley Research Center. Transonic aerodynamics is a focus both because of its crucial role in determining the success of aeronautical systems and because cryogenic wind tunnels are especially applicable to the transonics problem. The paper also provides historical perspective and technical background for cryogenic tunnels, culminating in a brief review of cryogenic wind tunnel projects around the world. An appendix is included to provide up to date information on testing techniques that have been developed for the cryogenic tunnels at Langley Research Center. In order to be as inclusive and as current as possible, the appendix is less formal than the main body of the paper. It is anticipated that this paper will be of particular value to the technical layman who is inquisitive as to the value of, and need for, cryogneic tunnels.

  7. Space shuttle orbiter rear mounted reaction control system jet interaction study. [hypersonic wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.

    1977-01-01

    The effect of interaction between the reaction control system (RCS) jets and the flow over the space shuttle orbiter in the atmosphere was investigated in the NASA Langley 31-inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 and in the AEDC continuous flow hypersonic tunnel B at a nominal Mach number of 6, using 0.01 and .0125 scale force models with aft RCS nozzles mounted both on the model and on the sting of the force model balance. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter when the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms.

  8. Aeroelastic characteristics of a rapid prototype multi-material wind tunnel model of a mechanically deployable aerodynamic decelerator

    NASA Astrophysics Data System (ADS)

    Raskin, Boris

    Scaled wind tunnel models are necessary for the development of aircraft and spacecraft to simulate aerodynamic behavior. This allows for testing multiple iterations of a design before more expensive full-scale aircraft and spacecraft are built. However, the cost of building wind tunnel models can still be high because they normally require costly subtractive manufacturing processes, such as machining, which can be time consuming and laborious due to the complex surfaces of aerodynamic models. Rapid prototyping, commonly known as 3D printing, can be utilized to save on wind tunnel model manufacturing costs. A rapid prototype multi-material wind tunnel model was manufactured for this thesis to investigate the possibility of using PolyJet 3D printing to create a model that exhibits aeroelastic behavior. The model is of NASA's Adaptable Deployable entry and Placement (ADEPT) aerodynamic decelerator, used to decelerate a spacecraft during reentry into a planet's atmosphere. It is a 60° cone with a spherically blunted nose that consists of a 12 flexible panels supported by a rigid structure of nose, ribs, and rim. The novel rapid prototype multi-material model was instrumented and tested in two flow conditions. Quantitative comparisons were made of the average forces and dynamic forces on the model, demonstrating that the model matched expected behavior for average drag, but not Strouhal number, indicating that there was no aeroelastic behavior in this particular case. It was also noted that the dynamic properties (e.g., resonant frequency) associated with the mounting scheme are very important and may dominate the measured dynamic response.

  9. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 2: Wind tunnel test force and moment data report

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.

  10. 0.4 Percent Scale Space Launch System Wind Tunnel Test

    NASA Image and Video Library

    2011-11-15

    0.4 Percent Scale Space Launch System Wind Tunnel Test 0.4 Percent Scale SLS model installed in the NASA Langley Research Center Unitary Plan Wind Tunnel Test Section 1 for aerodynamic force and movement testing.

  11. Aeroelastic instability stoppers for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Ricketts, R. H. (Inventor)

    1981-01-01

    A mechanism for diverting the flow in a wind tunnel from the wing of a tested model is described. The wing is mounted on the wall of a tunnel. A diverter plate is pivotally mounted on the tunnel wall ahead of the model. An actuator fixed to the tunnel is pivotably connected to the diverter plate, by plunger. When the model is about to become unstable during the test the actuator moves the diverter plate from the tunnel wall to divert maintaining stable model conditions. The diverter plate is then retracted to enable normal flow.

  12. Performance Comparison of Sweeping/Steady Jet Actuators

    NASA Astrophysics Data System (ADS)

    Hirsch, Damian; Mercier, Justin; Noca, Flavio; Gharib, Morteza

    2015-11-01

    Flow control through the use of steady jet actuators has been used on various aircraft models since the late 1950's. However, the focus of recent studies has shifted towards the use of sweeping jets (fluidic oscillators) rather than steady jet actuators. In this work, experiments using various jet actuator designs were conducted at GALCIT's Lucas Wind Tunnel on a NACA 0012 vertical tail model similar to that of the Boeing 767 vertical stabilizer at Reynolds numbers ranging from 0.5 to 1.2 million. The rudder angle was fixed at 20 degrees. A total of 32 jet actuators were installed along the wingspan perpendicular to the trailing edge and the rudder shoulder of the vertical stabilizer. It is known that these types of flow control prevent separation. However, the goal of this work is to compare different jet designs and evaluate their performance. Parameters such as the number of actuators, their volumetric flow, and the wind tunnel speed were varied. The lift generation capabilities of steady and sweeping jet actuators were then compared. Another set of experiments was conducted to compare a new sweeping jet actuator design with one of the standard versions. Supported by Boeing.

  13. Structural integrity of wind tunnel wooden fan blades

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Wingate, Robert T.; Rooker, James R.; Mort, Kenneth W.; Zager, Harold E.

    1991-01-01

    Information is presented which was compiled by the NASA Inter-Center Committee on Structural Integrity of Wooden Fan Blades and is intended for use as a guide in design, fabrication, evaluation, and assurance of fan systems using wooden blades. A risk assessment approach for existing NASA wind tunnels with wooden fan blades is provided. Also, state of the art information is provided for wooden fan blade design, drive system considerations, inspection and monitoring methods, and fan blade repair. Proposed research and development activities are discussed, and recommendations are provided which are aimed at future wooden fan blade design activities and safely maintaining existing NASA wind tunnel fan blades. Information is presented that will be of value to wooden fan blade designers, fabricators, inspectors, and wind tunnel operations personnel.

  14. 7. VIEW WEST OF SCALE ROOM IN FULLSCALE WIND TUNNEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW WEST OF SCALE ROOM IN FULL-SCALE WIND TUNNEL; SCALES ARE USED TO MEASURE FORCES ACTING ON MODEL AIRCRAFT SUSPENDED ABOVE. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  15. Modeling cumulus clouds in a two-phase wind tunnel

    NASA Astrophysics Data System (ADS)

    Bordás, R.; Thévenin, D.

    2009-04-01

    Experiments in wind-tunnels concerning meteorological flows are not very frequent in the literature. However, they are indispensable for a well-controlled and accurate investigation of turbulence-droplet interactions at the micro-scale. Of course it is impossible to reproduce perfectly the turbulent properties of clouds in a comparatively small wind-tunnel. The enormous length scales that are predominant in nature (integral length scale of typically 100 meters) lead to very high Reynolds numbers, roughly 107 calculated with the cloud dimensions or 104 as Taylor Reynolds number Reλ. Nevertheless, it is not necessary to reproduce exactly the whole turbulence spectrum to investigate the issue of rain formation in cumulus clouds. Only those scales and turbulence properties should be reproduced in the wind tunnel, which are physically important for the droplet population. In this work the key properties of cumulus clouds will be identified and implemented in a two-phase wind tunnel, allowing reproducible and accurate measurements. These properties are in particular the droplet number density, the turbulent kinetic energy and its dissipation rate. It is demonstrated by means of non-intrusive optical measurement techniques that the flow velocity, droplet number density, and key turbulence properties have been matched and are in the right order of magnitude. In this manner wind-tunnel investigations become possible and deliver realistic information concerning the interaction between droplets and turbulence in cumulus clouds.

  16. 40 CFR 53.63 - Test procedure: Wind tunnel inlet aspiration test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test procedure: Wind tunnel inlet... Testing Performance Characteristics of Class II Equivalent Methods for PM2.5 § 53.63 Test procedure: Wind... extracts an ambient aerosol at elevated wind speeds. This wind tunnel test uses a single-sized, liquid...

  17. Calibration of a Direct Detection Doppler Wind Lidar System using a Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Rees, David

    2012-07-01

    As a critical stage of a Project to develop an airborne Direct-Detection Doppler Wind Lidar System, it was possible to exploit a Wind Tunnel of the VZLU, Prague, Czech Republic for a comprehensive series of tests against calibrated Air Speed generated by the Wind Tunnel. The initial results from these test sequences will be presented. The rms wind speed errors were of order 0.25 m/sec - very satisfactory for this class of Doppler Wind Lidar measurements. The next stage of this Project will exploit a more highly-developed laser and detection system for measurements of wind shear, wake vortex and other potentially hazardous meteorological phenomena at Airports. Following the end of this Project, key parts of the instrumentation will be used for routine ground-based Doppler Wind Lidar measurements of the troposphere and stratosphere.

  18. A Vision in Aeronautics: The K-12 Wind Tunnel Project

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A Vision in Aeronautics, a project within the NASA Lewis Research Center's Information Infrastructure Technologies and Applications (IITA) K-12 Program, employs small-scale, subsonic wind tunnels to inspire students to explore the world of aeronautics and computers. Recently, two educational K-12 wind tunnels were built in the Cleveland area. During the 1995-1996 school year, preliminary testing occurred in both tunnels.

  19. Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Jones, Greg; Lin, John C.

    2011-01-01

    Numerical simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted at the NASA Langley Basic Aerodynamics Research Tunnel (BART). The RANS simulations are compared to a low blowing case with a jet momentum coefficient, C(sub u), of 0:047 and a higher blowing case of 0.115. Three dimensional simulations of the model and tunnel walls show wall effects on the lift and airfoil surface pressures. These wall effects include a 4% decrease of the midspan sectional lift for the C(sub u) 0.115 blowing condition. Simulations comparing the performance of the Spalart Allmaras (SA) and Shear Stress Transport (SST) turbulence models are also made, showing the SST model compares best to the experimental data. A Rotational/Curvature Correction (RCC) to the turbulence model is also evaluated demonstrating an improvement in the CFD predictions.

  20. Sound propagation from a simple source in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III

    1975-01-01

    The nature of the acoustic field of a simple source in a wind tunnel under flow conditions was examined theoretically and experimentally. The motivation of the study was to establish aspects of the theoretical framework for interpreting acoustic data taken (in wind) tunnels using in wind microphones. Three distinct investigations were performed and are described in detail.

  1. 5. VIEW NORTH OF TEST SECTION IN FULLSCALE WIND TUNNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW NORTH OF TEST SECTION IN FULL-SCALE WIND TUNNEL WITH FREE-FLIGHT MODEL OF A BOEING 737 SUSPENDED FROM A SAFETY CABLE. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  2. Pioneering Russian wind tunnels and first experimental investigations, 1871-1915

    NASA Astrophysics Data System (ADS)

    Gorbushin, A. R.

    2017-11-01

    A review of foreign and Russian sources is given mentioning the pioneering wind tunnels built in Russia at the turn of 19th and 20th centuries. The first wind tunnel in Russia was constructed by V.A. Pashkevich at the Mikhailovsky Artillery Academy in St. Petersburg in 1871. In total from 1871 through 1915, 18 wind tunnels were constructed in Russia: 11 in Moscow, 5 in St. Petersburg and 2 in Kaluga. An overview of the pioneering Russian wind tunnels built by V.A. Pashkevich, K.E. Tsiolkovsky, prof. N.E. Zhukovsky, D.P. Ryabushinsky and prof. K.P. Boklevsky is given. Schemes, photographs, formulas, description of the research and test results taken from the original papers published by the wind tunnel designers are given. Photographs from the N.E. Zhukovsky Scientific and Memorial Museum and the Archive of the Russian Academy of Sciences are used in the article. Methods of flow visualization and results of their application are presented. The Russian scientists and researchers' contribution to the development of techniques and methods of aerodynamic experiment is shown, including one of the most important aspects - the wall interference problem.

  3. Hot-bench simulation of the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey S.; Houck, Jacob A.

    1990-01-01

    Two simulations, one batch and one real-time, of an aeroelastically-scaled wind-tunnel model were developed. The wind-tunnel model was a full-span, free-to-roll model of an advanced fighter concept. The batch simulation was used to generate and verify the real-time simulation and to test candidate control laws prior to implementation. The real-time simulation supported hot-bench testing of a digital controller, which was developed to actively control the elastic deformation of the wind-tunnel model. Time scaling was required for hot-bench testing. The wind-tunnel model, the mathematical models for the simulations, the techniques employed to reduce the hot-bench time-scale factors, and the verification procedures are described.

  4. Wind tunnel test of Teledyne Geotech model 1564B cup anemometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, M.J.; Addis, R.P.

    1991-04-04

    The Department of Energy (DOE) Environment, Safety and Health Compliance Assessment (Tiger Team) of the Savannah River Site (SRS) questioned the method by which wind speed sensors (cup anemometers) are calibrated by the Environmental Technology Section (ETS). The Tiger Team member was concerned that calibration data was generated by running the wind tunnel to only 26 miles per hour (mph) when speeds exceeding 50 mph are readily obtainable. A wind tunnel experiment was conducted and confirmed the validity of the practice. Wind speeds common to SRS (6 mph) were predicted more accurately by 0--25 mph regression equations than 0--50 mphmore » regression equations. Higher wind speeds were slightly overpredicted by the 0--25 mph regression equations when compared to 0--50 mph regression equations. However, the greater benefit of more accurate lower wind speed predictions accuracy outweight the benefit of slightly better high (extreme) wind speed predictions. Therefore, it is concluded that 0--25 mph regression equations should continue to be utilized by ETS at SRS. During the Department of Energy Tiger Team audit, concerns were raised about the calibration of SRS cup anemometers. Wind speed is measured by ETS with Teledyne Geotech model 1564B cup anemometers, which are calibrated in the ETS wind tunnel. Linear regression lines are fitted to data points of tunnel speed versus anemometer output voltages up to 25 mph. The regression coefficients are then implemented into the data acquisition computer software when an instrument is installed in the field. The concern raised was that since the wind tunnel at SRS is able to generate a maximum wind speed higher than 25 mph, errors may be introduced in not using the full range of the wind tunnel.« less

  5. Wind tunnel test of Teledyne Geotech model 1564B cup anemometer

    NASA Astrophysics Data System (ADS)

    Parker, M. J.; Addis, R. P.

    1991-04-01

    The Department of Energy (DOE) Environment, Safety, and Health Compliance Assessment (Tiger Team) of the Savannah River Site (SRS) questioned the method by which wind speed sensors (cup anemometers) are calibrated by the Environmental Technology Section (ETS). The Tiger Team member was concerned that calibration data was generated by running the wind tunnel to only 26 miles per hour (mph) when speeds exceeding 50 mph are readily obtainable. A wind tunnel experiment was conducted and confirmed the validity of the practice. Wind speeds common to SRS (6 mph) were predicted more accurately by 0-25 mph regression equations than 0-50 mph regression equations. Higher wind speeds were slightly overpredicted by the 0-25 mph regression equations when compared to 0-50 mph regression equations. However, the greater benefit of more accurate lower wind speed predictions accuracy outweigh the benefit of slightly better high (extreme) wind speed predictions. Therefore, it is concluded that 0-25 mph regression equations should continue to be utilized by ETS at SRS. During the Department of Energy Tiger Team audit, concerns were raised about the calibration of SRS cup anemometers. Wind speed is measured by ETS with Teledyne Geotech model 1564B cup anemometers, which are calibrated in the ETS wind tunnel. Linear regression lines are fitted to data points of tunnel speed versus anemometer output voltages up to 25 mph. The regression coefficients are then implemented into the data acquisition computer software when an instrument is installed in the field. The concern raised was that since the wind tunnel at SRS is able to generate a maximum wind speed higher than 25 mph, errors may be introduced in not using the full range of the wind tunnel.

  6. Wind Tunnel Measured Effects on a Twin-Engine Short-Haul Transport Caused by Simulated Ice Accretions

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Potapczuk, Mark; Ratvasky, Thomas; Laflin, Brenda Gile

    1996-01-01

    A series of wind tunnel tests were conducted to assess the effects of leading edge ice contamination upon the performance of a short-haul transport. The wind tunnel test was conducted in the NASA Langley 14 by 22 foot facility. The test article was a 1/8 scale twin-engine short-haul jet transport model. Two separate leading edge ice contamination configurations were tested in addition to the uncontaminated baseline configuration. Several aircraft configurations were examined including various flap and slat deflections, with and without landing gear. Data gathered included force measurements via an internal six-component force balance, pressure measurements through 700 electronically scanned wing pressure ports, and wing surface flow visualization measurements. The artificial ice contamination caused significant performance degradation and caused visible changes demonstrated by the flow visualization. The data presented here is just a portion of the data gathered. A more complete data report is planned for publication as a NASA Technical Memorandum and data supplement.

  7. Hardening Doppler Global Velocimetry Systems for Large Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Lee, Joseph W.; Fletcher, Mark T.; South, Bruce W.

    2004-01-01

    The development of Doppler Global Velocimetry from a laboratory curiosity to a wind tunnel instrumentation system is discussed. This development includes system advancements from a single velocity component to simultaneous three components, and from a steady state to instantaneous measurement. Improvements to system control and stability are discussed along with solutions to real world problems encountered in the wind tunnel. This on-going development program follows the cyclic evolution of understanding the physics of the technology, development of solutions, laboratory and wind tunnel testing, and reevaluation of the physics based on the test results.

  8. 10. INTERIOR VIEW OF WIND TUNNEL (1991). WrightPatterson Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. INTERIOR VIEW OF WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  9. 9. INTERIOR VIEW OF WIND TUNNEL (1991). WrightPatterson Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTERIOR VIEW OF WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  10. 11. INTERIOR VIEW OF WIND TUNNEL (1991). WrightPatterson Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  11. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  12. 3. VIEW OF WIND TUNNEL, LOOKING NORTHWEST (1991). WrightPatterson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF WIND TUNNEL, LOOKING NORTHWEST (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  13. SOFIA 2 model telescope wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Keas, Paul

    1995-01-01

    This document outlines the tests performed to make aerodynamic force and torque measurements on the SOFIA wind tunnel model telescope. These tests were performed during the SOFIA 2 wind tunnel test in the 14 ft wind tunnel during the months of June through August 1994. The test was designed to measure the dynamic cross elevation moment acting on the SOFIA model telescope due to aerodynamic loading. The measurements were taken with the telescope mounted in an open cavity in the tail section of the SOFIA model 747. The purpose of the test was to obtain an estimate of the full scale aerodynamic disturbance spectrum, by scaling up the wind tunnel results (taking into account differences in sail area, air density, cavity dimension, etc.). An estimate of the full scale cross elevation moment spectrum was needed to help determine the impact this disturbance would have on the telescope positioning system requirements. A model of the telescope structure, made of a light weight composite material, was mounted in the open cavity of the SOFIA wind tunnel model. This model was mounted via a force balance to the cavity bulkhead. Despite efforts to use a 'stiff' balance, and a lightweight model, the balance/telescope system had a very low resonant frequency (37 Hz) compared to the desired measurement bandwidth (1000 Hz). Due to this mechanical resonance of the balance/telescope system, the balance alone could not provide an accurate measure of applied aerodynamic force at the high frequencies desired. A method of measurement was developed that incorporated accelerometers in addition to the balance signal, to calculate the aerodynamic force.

  14. Velocity Measurement Systems for a Low-speed Wind Tunnel

    DTIC Science & Technology

    2015-04-29

    Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 wind tunnel PIV hot wire particle image velocimetry REPORT DOCUMENTATION PAGE 11. SPONSOR...Velocity Measurement Systems for a Low-speed Wind Tunnel Report Title Funds were provided by the ARO for the purchase of TSI hot- wire anemometer equipment...implemented. In the summer of 2011, the focus of the summer camp was on wind turbines , and for the last two summers, the STEM outreach camp has studied

  15. Convair XF-102 Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1953-08-21

    A .10-scale model of Convair’s XF-102 in the 8- by 6-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory for jet exit studies. The XF-102 was a prototype of the F-102 Delta Dagger. The F-102 served as an interceptor against long range bombers from the Soviet Union. The aircraft was powered by a Pratt and Whitney J57 turbojet. The first prototype crashed two weeks after is first flight on October 24, 1953, just months after this photograph. Engineers then incorporated the fixed-wing design to reduce drag at supersonic speeds. The production model F-102 became the first delta-wing supersonic aircraft in operation. The 8- by 6-Foot Supersonic Wind Tunnel is used to study propulsion systems, including inlets and exit nozzles, combustion fuel injectors, flame holders, exit nozzles, and controls on ramjet and turbojet engines. Flexible sidewalls alter the tunnel’s nozzle shape to vary the Mach number during operation. A seven-stage axial compressor, driven by three electric motors that yield a total of 87,000 horsepower, generates air speeds from Mach 0.36 to 2.0.

  16. Noise measurements from an ejector suppressor nozzle in the NASA Lewis 9- by 15-foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Krejsa, Eugene A.; Cooper, Beth A.; Hall, David G.; Khavaran, Abbas

    1990-01-01

    Acoustic results are presented of a cooperative nozzle test program between NASA and Pratt and Whitney, conducted in the NASA-Lewis 9 x 15 ft Anechoic Wind Tunnel. The nozzle tested was the P and W Hypermix Nozzle concept, a 2-D lobed mixer nozzle followed by a short ejector section made to promote rapid mixing of the induced ejector nozzle flow. Acoustic and aerodynamic measurements were made to determine the amount of ejector pumping, degree of mixing, and noise reduction achieved. A series of tests were run to verify the acoustic quality of this tunnel. The results indicated that the tunnel test section is reasonably anechoic but that background noise can limit the amount of suppression observed from suppressor nozzles. Also, a possible internal noise was observed in the air supply system. The P and W ejector suppressor nozzle demonstrated the potential of this concept to significantly reduce jet noise. Significant reduction in low frequency noise was achieved by increasing the peak jet noise frequency. This was accomplished by breaking the jet into segments with smaller dimensions than those of the baseline nozzle. Variations in ejector parameters had little effect on the noise for the geometries and the range of temperatures and pressure ratios tested.

  17. Accessing Wind Tunnels From NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Becker, Jeff; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The NASA Ames wind tunnel customers are one of the first users of the Information Power Grid (IPG) storage system at the NASA Advanced Supercomputing Division. We wanted to be able to store their data on the IPG so that it could be accessed remotely in a secure but timely fashion. In addition, incorporation into the IPG allows future use of grid computational resources, e.g., for post-processing of data, or to do side-by-side CFD validation. In this paper, we describe the integration of grid data access mechanisms with the existing DARWIN web-based system that is used to access wind tunnel test data. We also show that the combined system has reasonable performance: wind tunnel data may be retrieved at 50Mbits/s over a 100 base T network connected to the IPG storage server.

  18. GRC-11-02-17-WindTunnel-9x15-001

    NASA Image and Video Library

    2017-11-02

    The Aerosciences Evaluation and Test Capabilities (AETC) Portfolio implemented the Capability Challenge to “Reduce Background Noise Levels for Engine Efficiency Measurements at the NASA Glenn 9x15 Low Speed Wind Tunnel”. The 9x15 Low Speed Wind Tunnel Acoustic Improvements animation documents the acoustic modifications being made to the 9x15 leg of the wind tunnel to reduce background noise levels. A brief history of the 9x15, research testing performed in the wind tunnel, the need to reduce background noise, and the five state of the art acoustic design modifications are documented in the animation. The expected noise reduction is presented audibly and the resulting benefit to NASA is also defined.

  19. A survey of the three-dimensional high Reynolds number transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Takashima, K.; Sawada, H.; Aoki, T.

    1982-01-01

    The facilities for aerodynamic testing of airplane models at transonic speeds and high Reynolds numbers are surveyed. The need for high Reynolds number testing is reviewed, using some experimental results. Some approaches to high Reynolds number testing such as the cryogenic wind tunnel, the induction driven wind tunnel, the Ludwieg tube, the Evans clean tunnel and the hydraulic driven wind tunnel are described. The level of development of high Reynolds number testing facilities in Japan is discussed.

  20. Investigation on wind turbine wakes: wind tunnel tests and field experiments with LIDARs

    NASA Astrophysics Data System (ADS)

    Iungo, Giacomo; Wu, Ting; Cöeffé, Juliette; Porté-Agel, Fernando; WIRE Team

    2011-11-01

    An investigation on the interaction between atmospheric boundary layer flow and wind turbines is carried out with wind tunnel and LIDAR measurements. The former were carried out using hot-wire anemometry and multi-hole pressure probes in the wake of a three-bladed miniature wind turbine. The wind turbine wake is characterized by a strong velocity defect in the proximity of the rotor, and its recovery is found to depend on the characteristics of the incoming atmospheric boundary layer (mean velocity and turbulence intensity profiles). Field experiments were performed using three wind LIDARs. Bi-dimensional scans are performed in order to analyse the wake wind field with different atmospheric boundary layer conditions. Furthermore, simultaneous measurements with two or three LIDARs allow the reconstruction of multi-component velocity fields. Both LIDAR and wind tunnel measurements highlight an increased turbulence level at the wake boundary for heights comparable to the top-tip of the blades; this flow feature can produce dangerous fatigue loads on following wind turbines.

  1. 6. CLOSEUP VIEW OF TENFOOT WIND TUNNEL (1991). WrightPatterson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. CLOSE-UP VIEW OF TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  2. Design and calibration of the carousel wind tunnel

    NASA Technical Reports Server (NTRS)

    Leach, R. N.; Greeley, R.; Iversen, J.; White, B.; Marshall, J. R.

    1986-01-01

    In the study of planetary aeolian processes the effect of gravity is not readily modeled. Gravity appears in the equations of particle motion along with interparticle forces but the two terms are not separable. A wind tunnel that would permit variable gravity would allow separation of the forces and aid greatly in understanding planetary aeolian processes. The design Carousel Wind Tunnel (CWT) allows for a long flow distance in a small sized tunnel since the test section is a continuo us circuit and allows for a variable pseudo gravity. A prototype design was built and calibrated to gain some understanding of the characteristics of the design and the results presented.

  3. Design and calibration of the carousel wind tunnel

    NASA Technical Reports Server (NTRS)

    Leach, R. N.; Greeley, Ronald; Iversen, James D.; White, Bruce R.; Marshall, John R.

    1987-01-01

    In the study of planetary aeolian processes the effect of gravity is not readily modeled. Gravity appears in the equations of particle motion along with interparticle forces but the two terms are not separable. A wind tunnel that would permit variable gravity would allow separation of the forces and aid greatly in understanding planetary aeolian processes. The design of the Carousel Wind Tunnel (CWT) allows for a long flow distance in a small sized tunnel since the test section is a continuous circuit and allows for a variable pseudo-gravity. A prototype design was built and calibrated to gain some understanding of the characteristics of the design and the results presented.

  4. Altitude Wind Tunnel Drive Fan being Assembled

    NASA Image and Video Library

    1943-07-21

    National Advisory Committee for Aeronautics (NACA) engineers assembled the Altitude Wind Tunnel’s (AWT) large wooden drive fan inside the hangar at the Aircraft Engine Research Laboratory. When it was built at the in the early 1940s the AWT was among the most complex test facilities ever designed. It was the first wind tunnel capable of operating full-scale engines under realistic flight conditions. This simulation included the reduction of air temperature, a decrease in air pressure, and the creation of an airstream velocity of up to 500 miles per hour. The AWT was constructed in 1942 and 1943. This photograph shows NACA engineers Lou Hermann and Jack Aust assembling the tunnel’s drive fan inside the hangar. The 12-bladed, 31-foot-diameter spruce wood fan would soon be installed inside the wind tunnel to create the high-speed airflow. This massive propeller was designed and constructed by the engine lab's design team at Langley Field. John Breisch, a Langley technician with several years of wind tunnel installation experience, arrived in Cleveland at the time of this photograph to supervise the fan assembly inside the hangar. He would return several weeks later to oversee the actual installation in the tunnel. The fan was driven at 410 revolutions per minute by an 18,000-horsepower General Electric induction motor that was located in the rear corner of the Exhauster Building. An extension shaft connected the motor to the fan. A bronze screen protected the fan against damage from failed engine parts sailing through the tunnel. Despite this screen the blades did become worn or cracked over time and had to be replaced. An entire new fan was installed in 1951.

  5. Investigation of air flow in open-throat wind tunnels

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N

    1930-01-01

    Tests were conducted on the 6-inch wind tunnel of the National Advisory Committee for Aeronautics to form a part of a research on open-throat wind tunnels. The primary object of this part of the research was to study a type of air pulsation which has been encountered in open-throat tunnels, and to find the most satisfactory means of eliminating such pulsations. In order to do this it was necessary to study the effects of different variable on all of the important characteristics of the tunnel. This paper gives not only the results of the study of air pulsations and methods of eliminating them, but also the effects of changing the exit-cone diameter and flare and the effects of air leakage from the return passage. It was found that the air pulsations in the 6-inch wind tunnel could be practically eliminated by using a moderately large flare on the exit cone in conjunction with leakage introduced by cutting holes in the exit cone somewhat aft of its minimum diameter.

  6. Near real time wind energy forecasting incorporating wind tunnel modeling

    NASA Astrophysics Data System (ADS)

    Lubitz, William David

    A series of experiments and investigations were carried out to inform the development of a day-ahead wind power forecasting system. An experimental near-real time wind power forecasting system was designed and constructed that operates on a desktop PC and forecasts 12--48 hours in advance. The system uses model output of the Eta regional scale forecast (RSF) to forecast the power production of a wind farm in the Altamont Pass, California, USA from 12 to 48 hours in advance. It is of modular construction and designed to also allow diagnostic forecasting using archived RSF data, thereby allowing different methods of completing each forecasting step to be tested and compared using the same input data. Wind-tunnel investigations of the effect of wind direction and hill geometry on wind speed-up above a hill were conducted. Field data from an Altamont Pass, California site was used to evaluate several speed-up prediction algorithms, both with and without wind direction adjustment. These algorithms were found to be of limited usefulness for the complex terrain case evaluated. Wind-tunnel and numerical simulation-based methods were developed for determining a wind farm power curve (the relation between meteorological conditions at a point in the wind farm and the power production of the wind farm). Both methods, as well as two methods based on fits to historical data, ultimately showed similar levels of accuracy: mean absolute errors predicting power production of 5 to 7 percent of the wind farm power capacity. The downscaling of RSF forecast data to the wind farm was found to be complicated by the presence of complex terrain. Poor results using the geostrophic drag law and regression methods motivated the development of a database search method that is capable of forecasting not only wind speeds but also power production with accuracy better than persistence.

  7. A simplified method for calculating temperature time histories in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Stallings, R. L., Jr.; Lamb, M.

    1976-01-01

    Average temperature time history calculations of the test media and tunnel walls for cryogenic wind tunnels have been developed. Results are in general agreement with limited preliminary experimental measurements obtained in a 13.5-inch pilot cryogenic wind tunnel.

  8. A method for data base management and analysis for wind tunnel data

    NASA Technical Reports Server (NTRS)

    Biser, Aileen O.

    1987-01-01

    To respond to the need for improved data base management and analysis capabilities for wind-tunnel data at the Langley 16-Foot Transonic Tunnel, research was conducted into current methods of managing wind-tunnel data and a method was developed as a solution to this need. This paper describes the development of the data base management and analysis method for wind-tunnel data. The design and implementation of the software system are discussed and examples of its use are shown.

  9. Wind-tunnel investigation of a large-scale VTOL aircraft model with wing root and wing thrust augmentors. [Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Aoyagi, K.; Aiken, T. N.

    1979-01-01

    Tests were conducted in the Ames 40 by 80 foot wind tunnel to determine the aerodynamic characteristics of a large-scale V/STOL aircraft model with thrust augmentors. The model had a double-delta wing of aspect ratio 1.65 with augmentors located in the wing root and the wing trailing edge. The supply air for the augmentor primary nozzles was provided by the YJ-97 turbojet engine. The airflow was apportioned approximately 74 percent to the wing root augmentor and 24 percent to wing augmentor. Results were obtained at several trailing-edge flap deflections with the nozzle jet-momentum coefficients ranging from 0 to 7.9. Three-component longitudinal data are presented with the agumentor operating with and without the horizontal tail. A limited amount of six component data are also presented.

  10. Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.

    PubMed

    de Lucas, Manuela; Ferrer, Miguel; Janss, Guyonne F E

    2012-01-01

    Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.

  11. Portable Test And Monitoring System For Wind-Tunnel Models

    NASA Technical Reports Server (NTRS)

    Poupard, Charles A.

    1987-01-01

    Portable system developed to test and monitor instrumentation used in wind-tunnel models. Self-contained and moves easily to model, either before or after model installed in wind tunnel. System is 44 1/2 in. high, 22 in. wide, and 17 in. deep and weighs 100 lb. Primary benefits realized with portable test and monitoring system associated with saving of time.

  12. 9x15 Low Speed Wind Tunnel Improvements Update

    NASA Technical Reports Server (NTRS)

    Stephens, David

    2017-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 9x15 LSWT was designed for performance testing of VSTOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2018.

  13. Wind Tunnel Studies in Aerodynamic Phenomena at High Speed

    NASA Technical Reports Server (NTRS)

    Caldwell, F W; Fales, E N

    1921-01-01

    A great amount of research and experimental work has been done and fair success obtained in an effort to place airplane and propeller design upon an empirical basis. However, one can not fail to be impressed by the apparent lack of data available toward establishing flow phenomena upon a rational basis, such that they may be interpreted in terms of the laws of physics. With this end in view it was the object of the authors to design a wind tunnel differing from the usual type especially in regard to large power and speed of flow. This report describes the wind tunnel at Mccook Field and gives the results of experiments conducted in testing the efficiency of the wind tunnel.

  14. SUBSONIC WIND TUNNEL PERFORMANCE ANALYSIS SOFTWARE

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.

    1994-01-01

    This program was developed as an aid in the design and analysis of subsonic wind tunnels. It brings together and refines previously scattered and over-simplified techniques used for the design and loss prediction of the components of subsonic wind tunnels. It implements a system of equations for determining the total pressure losses and provides general guidelines for the design of diffusers, contractions, corners and the inlets and exits of non-return tunnels. The algorithms used in the program are applicable to compressible flow through most closed- or open-throated, single-, double- or non-return wind tunnels or ducts. A comparison between calculated performance and that actually achieved by several existing facilities produced generally good agreement. Any system through which air is flowing which involves turns, fans, contractions etc. (e.g., an HVAC system) may benefit from analysis using this software. This program is an update of ARC-11138 which includes PC compatibility and an improved user interface. The method of loss analysis used by the program is a synthesis of theoretical and empirical techniques. Generally, the algorithms used are those which have been substantiated by experimental test. The basic flow-state parameters used by the program are determined from input information about the reference control section and the test section. These parameters were derived from standard relationships for compressible flow. The local flow conditions, including Mach number, Reynolds number and friction coefficient are determined for each end of each component or section. The loss in total pressure caused by each section is calculated in a form non-dimensionalized by local dynamic pressure. The individual losses are based on the nature of the section, local flow conditions and input geometry and parameter information. The loss forms for typical wind tunnel sections considered by the program include: constant area ducts, open throat ducts, contractions, constant

  15. Testing a Parachute for Mars in World's Largest Wind Tunnel

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The team developing the landing system for NASA's Mars Science Laboratory tested the deployment of an early parachute design in mid-October 2007 inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, California.

    In this image, two engineers are dwarfed by the parachute, which holds more air than a 280-square-meter (3,000-square-foot) house and is designed to survive loads in excess of 36,000 kilograms (80,000 pounds).

    The parachute, built by Pioneer Aerospace, South Windsor, Connecticut, has 80 suspension lines, measures more than 50 meters (165 feet) in length, and opens to a diameter of nearly 17 meters (55 feet). It is the largest disk-gap-band parachute ever built and is shown here inflated in the test section with only about 3.8 meters (12.5 feet) of clearance to both the floor and ceiling.

    The wind tunnel, which is 24 meters (80 feet) tall and 37 meters (120 feet) wide and big enough to house a Boeing 737, is part of the National Full-Scale Aerodynamics Complex, operated by the U.S. Air Force, Arnold Engineering Development Center.

    NASA's Jet Propulsion Laboratory, Pasadena, California, is building and testing the Mars Science Laboratory spacecraft for launch in 2009. The mission will land a roving analytical laboratory on the surface of Mars in 2010. JPL is a division of the California Institute of Technology.

  16. Wind Tunnel Investigation of Ground Wind Loads for Ares Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Keller, Donald F.; Ivanco, Thomas G.

    2010-01-01

    A three year program was conducted at the NASA Langley Research Center (LaRC) Aeroelasticity Branch (AB) and Transonic Dynamics Tunnel (TDT) with the primary objective to acquire scaled steady and dynamic ground-wind loads (GWL) wind-tunnel data for rollout, on-pad stay, and on-pad launch configurations for the Ares I-X Flight Test Vehicle (FTV). The experimental effort was conducted to obtain an understanding of the coupling of aerodynamic and structural characteristics that can result in large sustained wind-induced oscillations (WIO) on such a tall and slender launch vehicle and to generate a unique database for development and evaluation of analytical methods for predicting steady and dynamic GWL, especially those caused by vortex shedding, and resulting in significant WIO. This paper summarizes the wind-tunnel test program that employed two dynamically-aeroelastically scaled GWL models based on the Ares I-X Flight Test Vehicle. The first model tested, the GWL Checkout Model (CM), was a relatively simple model with a secondary objective of restoration and development of processes and methods for design, fabrication, testing, and data analysis of a representative ground wind loads model. In addition, parametric variations in surface roughness, Reynolds number, and protuberances (on/off) were investigated to determine effects on GWL characteristics. The second windtunnel model, the Ares I-X GWL Model, was significantly more complex and representative of the Ares I-X FTV and included the addition of simplified rigid geometrically-scaled models of the Kennedy Space Center (KSC) Mobile Launch Platform (MLP) and Launch Complex 39B primary structures. Steady and dynamic base bending moment as well as model response and steady and unsteady pressure data was acquired during the testing of both models. During wind-tunnel testing of each model, flow conditions (speed and azimuth) where significant WIO occurred, were identified and thoroughly investigated. Scaled data from

  17. Quantification of wind flow in the European Mars Simulation Wind Tunnel Facility

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Merrison, J. P.; Iversen, J. J.; Nornberg, P.

    2012-04-01

    We present the European Mars Simulation Wind Tunnel facility, a unique prototype facility capable of simulating a wide range of environmental conditions, such as those which can be found at the surface of Earth or Mars. The chamber complements several other large-scale simulation facilities at Aarhus University, Denmark. The facility consists of a 50 m3 environmental chamber capable of operating at low pressure (0.02 - 1000 mbar) and cryogenic temperatures (-130 °C up to +60 °C). This chamber houses a re-circulating wind tunnel capable of generating wind speeds up to 25 m/s and has a dust injection system that can produce suspended particulates (aerosols). It employs a unique LED based optical illumination system (solar simulator) and an advanced network based control system. Laser based optoelectronic instrumentation is used to quantify and monitor wind flow, dust suspension and deposition. This involves a commercial Laser Doppler Anemometer (LDA) and a Particle Dynamics Analysis receiver (PDA), which are small laser based instruments specifically designed for measuring wind speed and sizes of particles situated in a wind flow. Wind flow calibrations will be performed with the LDA system and presented. Pressure and temperature calibrations will follow in order to enable the facility to be used for the testing, development, calibration and comparison of e.g. meteorological sensors under a wide range of environmental conditions as well as multi-disciplinary scientific studies. The wind tunnel is accessible to international collaborators and space agencies for instrument testing, calibration and qualification. It has been financed by the European Space Agency (ESA) as well as the Aarhus University Science Faculty and the Villum Kann Rasmussen Foundation.

  18. Effects of reaction control system jet simulation on the stability and control characteristics of a 0.015-scale space shuttle orbiter model in the Ames Research Center 3.5-foot hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Dziubala, T. J.; Marroquin, J.; Cleary, J. W.; Mellenthin, J. A.

    1973-01-01

    An experimental investigation was performed in the Ames Research Center 3.5-Foot Hypersonic Wind Tunnel to obtain detailed effects which interactions between the RCS jet flow field and the local orbiter flow field have on orbiter hypersonic stability and control characteristics. Six-component force data were obtained through an angle-of-attack range of 15 to 35 deg with 0 deg angle of sideslip. The test was conducted with yaw, pitch and roll jet simulation at a free-stream Mach number of 10.3. These data simulate two SSV reentry flight conditions at Mach numbers of 28.3 and 10.3. Fuselage base pressures and pressures on the nonmetric RCS pods were obtained in addition to the basic force measurements. Model 42-0 was used for these tests.

  19. Pratt and Whitney J57 with a Greatex Nozzle in the Altitude Wind Tunnel

    NASA Image and Video Library

    1957-02-21

    A Pratt and Whitney J57 engine is tested with a Greatex No.1 nozzle in the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. At the time the aircraft industry was preparing to introduce jet airliners to the nation’s airways. The noise produced by the large jet engines, however, posed a considerable problem for communities near airports. The NACA had formed a Special Subcommittee on Aircraft Noise to coordinate research on the issue. Preliminary tests showed that the source of the loudest noise was not the engine itself, but the mixing of the engine’s exhaust with the surrounding air in the atmosphere. The pressures resulting from this turbulence produced sound waves. Lewis researchers undertook a variety of noise-reduction studies involving engine design, throttling procedures, and noise suppressors. One of their first efforts focused on new types of nozzles to mix the exhaust with the surrounding air. The nozzles had a variety of shapes designed to slow down exhaust velocity before it combined with the air and thus decrease the noise. From January to May 1957 a Pratt and Whitney J57 engine was equipped with various shaped nozzles, as seen in this photograph, and run in simulated flight conditions in the Altitude Wind Tunnel. A number of nozzle configurations, including several multi-exit “organ pipe” designs, were created. It was found that the various nozzle types did reduce the noise levels, but they also reduced the aircraft’s thrust.

  20. Study of the integration of wind tunnel and computational methods for aerodynamic configurations

    NASA Technical Reports Server (NTRS)

    Browne, Lindsey E.; Ashby, Dale L.

    1989-01-01

    A study was conducted to determine the effectiveness of using a low-order panel code to estimate wind tunnel wall corrections. The corrections were found by two computations. The first computation included the test model and the surrounding wind tunnel walls, while in the second computation the wind tunnel walls were removed. The difference between the force and moment coefficients obtained by comparing these two cases allowed the determination of the wall corrections. The technique was verified by matching the test-section, wall-pressure signature from a wind tunnel test with the signature predicted by the panel code. To prove the viability of the technique, two cases were considered. The first was a two-dimensional high-lift wing with a flap that was tested in the 7- by 10-foot wind tunnel at NASA Ames Research Center. The second was a 1/32-scale model of the F/A-18 aircraft which was tested in the low-speed wind tunnel at San Diego State University. The panel code used was PMARC (Panel Method Ames Research Center). Results of this study indicate that the proposed wind tunnel wall correction method is comparable to other methods and that it also inherently includes the corrections due to model blockage and wing lift.

  1. A numerical study of the controlled flow tunnel for a high lift model

    NASA Technical Reports Server (NTRS)

    Parikh, P. C.

    1984-01-01

    A controlled flow tunnel employs active control of flow through the walls of the wind tunnel so that the model is in approximately free air conditions during the test. This improves the wind tunnel test environment, enhancing the validity of the experimentally obtained test data. This concept is applied to a three dimensional jet flapped wing with full span jet flap. It is shown that a special treatment is required for the high energy wake associated with this and other V/STOL models. An iterative numerical scheme is developed to describe the working of an actual controlled flow tunnel and comparisons are shown with other available results. It is shown that control need be exerted over only part of the tunnel walls to closely approximate free air flow conditions. It is concluded that such a tunnel is able to produce a nearly interference free test environment even with a high lift model in the tunnel.

  2. Scaling between Wind Tunnels-Results Accuracy in Two-Dimensional Testing

    NASA Astrophysics Data System (ADS)

    Rasuo, Bosko

    The establishment of exact two-dimensional flow conditions in wind tunnels is a very difficult problem. This has been evident for wind tunnels of all types and scales. In this paper, the principal factors that influence the accuracy of two-dimensional wind tunnel test results are analyzed. The influences of the Reynolds number, Mach number and wall interference with reference to solid and flow blockage (blockage of wake) as well as the influence of side-wall boundary layer control are analyzed. Interesting results are brought to light regarding the Reynolds number effects of the test model versus the Reynolds number effects of the facility in subsonic and transonic flow.

  3. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  4. Implementation of a Particle Image Velocimetry System for Wind Tunnel Flowfield Measurements

    DTIC Science & Technology

    2014-12-01

    Instrumentation Wind tunnel speed was measured by two pitot probes mounted on opposite tunnel walls upstream of the model and above the ground...board. The pitot probes were connected differentially to Scanivalve 1-psi transducers. A secondary measurement of wind tunnel speed was made with the...Manf. Model Range 1 Tunnel Vel (south pitot ) Transducer Scanivalve CR24D 1 psi 2 Tunnel Vel (north pitot ) Transducer Scanivalve CR24D 1 psi 3

  5. Digital control of wind tunnel magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Goodyer, Michael J.; Eskins, Jonathan; Parker, David; Halford, Robert J.

    1987-01-01

    Digital controllers are being developed for wind tunnel magnetic suspension and balance systems, which in turn permit wind tunnel testing of aircraft models free from support interference. Hardware and software features of two existing digital control systems are reviewed. Some aspects of model position sensing and system calibration are also discussed.

  6. Improvement of a wind-tunnel sampling system for odour and VOCs.

    PubMed

    Wang, X; Jiang, J; Kaye, R

    2001-01-01

    Wind-tunnel systems are widely used for collecting odour emission samples from surface area sources. Consequently, a portable wind-tunnel system was developed at the University of New South Wales that was easy to handle and suitable for sampling from liquid surfaces. Development work was undertaken to ensure even air-flows above the emitting surface and to optimise air velocities to simulate real situations. However, recovery efficiencies for emissions have not previously been studied for wind-tunnel systems. A series of experiments was carried out for determining and improving the recovery rate of the wind-tunnel sampling system by using carbon monoxide as a tracer gas. It was observed by mass balance that carbon monoxide recovery rates were initially only 37% to 48% from a simulated surface area emission source. It was therefore apparent that further development work was required to improve recovery efficiencies. By analysing the aerodynamic character of air movement and CO transportation inside the wind-tunnel, it was determined that the apparent poor recoveries resulted from uneven mixing at the sample collection point. A number of modifications were made for the mixing chamber of the wind-tunnel system. A special sampling chamber extension and a sampling manifold with optimally distributed sampling orifices were developed for the wind-tunnel sampling system. The simulation experiments were repeated with the new sampling system. Over a series of experiments, the recovery efficiency of sampling was improved to 83-100% with an average of 90%, where the CO tracer gas was introduced at a single point and 92-102% with an average of 97%, where the CO tracer gas was introduced along a line transverse to the sweep air. The stability and accuracy of the new system were determined statistically and are reported.

  7. Using Wind Tunnels to Predict Bird Mortality in Wind Farms: The Case of Griffon Vultures

    PubMed Central

    de Lucas, Manuela; Ferrer, Miguel; Janss, Guyonne F. E.

    2012-01-01

    Background Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. Methodology/Principal Findings As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. Conclusions Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality. PMID:23152764

  8. 11. INTERIOR VIEW OF 8FOOT HIGH SPEED WIND TUNNEL. SAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL. SAME CAMERA POSITION AS VA-118-B-10 LOOKING IN THE OPPOSITE DIRECTION. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  9. 40 CFR 53.42 - Generation of test atmospheres for wind tunnel tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tunnel tests. 53.42 Section 53.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... particle delivery system shall consist of a blower system and a wind tunnel having a test section of... particles delivered to the test section of the wind tunnel shall be established using the operating...

  10. 40 CFR 53.42 - Generation of test atmospheres for wind tunnel tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tunnel tests. 53.42 Section 53.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... particle delivery system shall consist of a blower system and a wind tunnel having a test section of... particles delivered to the test section of the wind tunnel shall be established using the operating...

  11. 40 CFR 53.42 - Generation of test atmospheres for wind tunnel tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tunnel tests. 53.42 Section 53.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... particle delivery system shall consist of a blower system and a wind tunnel having a test section of... particles delivered to the test section of the wind tunnel shall be established using the operating...

  12. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1993-01-01

    The main objective of this work is to develop an interim Quiet (low-disturbance) supersonic wind tunnel for the NASA-Ames Fluid Mechanics Laboratory (FML). The main emphasis is to bring on-line a full-scale Mach 1.6 tunnel as rapidly as possible to impact the NASA High Speed Research Program (HSRP). The development of a cryogenic adaptive nozzle and other sophisticated features of the tunnel will now happen later, after the full scale wind tunnel is in operation. The work under this contract for the period of this report can be summarized as follows: provide aerodynamic design requirements for the NASA-Ames Fluid Mechanics Laboratory (FML) Laminar Flow Supersonic Wind Tunnel (LFSWT); research design parameters for a unique Mach 1.6 drive system for the LFSWT using an 1/8th-scale Proof-of-Concept (PoC) supersonic wind tunnel; carry out boundary layer transition studies in PoC to aid the design of critical components of the LFSWT; appraise the State of the Art in quiet supersonic wind tunnel design; and help develop a supersonic research capability within the FML particularly in the areas of high speed transition measurements and schlieren techniques. The body of this annual report summarizes the work of the Principal Investigator.

  13. Jet Exit Rig Six Component Force Balance

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Wolter, John; Woike, Mark; Booth, Dennis

    2012-01-01

    A new six axis air balance was delivered to the NASA Glenn Research Center. This air balance has an axial force capability of 800 pounds, primary airflow of 10 pounds per second, and a secondary airflow of 3 pounds per second. Its primary use was for the NASA Glenn Jet Exit Rig, a wind tunnel model used to test both low-speed, and high-speed nozzle concepts in a wind tunnel. This report outlines the installation of the balance in the Jet Exit Rig, and the results from an ASME calibration nozzle with an exit area of 8 square-inches. The results demonstrated the stability of the force balance for axial measurements and the repeatability of measurements better than 0.20 percent.

  14. Residual interference and wind tunnel wall adaption

    NASA Technical Reports Server (NTRS)

    Mokry, Miroslav

    1989-01-01

    Measured flow variables near the test section boundaries, used to guide adjustments of the walls in adaptive wind tunnels, can also be used to quantify the residual interference. Because of a finite number of wall control devices (jacks, plenum compartments), the finite test section length, and the approximation character of adaptation algorithms, the unconfined flow conditions are not expected to be precisely attained even in the fully adapted stage. The procedures for the evaluation of residual wall interference are essentially the same as those used for assessing the correction in conventional, non-adaptive wind tunnels. Depending upon the number of flow variables utilized, one can speak of one- or two-variable methods; in two dimensions also of Schwarz- or Cauchy-type methods. The one-variable methods use the measured static pressure and normal velocity at the test section boundary, but do not require any model representation. This is clearly of an advantage for adaptive wall test section, which are often relatively small with respect to the test model, and for the variety of complex flows commonly encountered in wind tunnel testing. For test sections with flexible walls the normal component of velocity is given by the shape of the wall, adjusted for the displacement effect of its boundary layer. For ventilated test section walls it has to be measured by the Calspan pipes, laser Doppler velocimetry, or other appropriate techniques. The interface discontinuity method, also described, is a genuine residual interference assessment technique. It is specific to adaptive wall wind tunnels, where the computation results for the fictitious flow in the exterior of the test section are provided.

  15. Altitude Wind Tunnel Drive Motor Installation

    NASA Image and Video Library

    1943-07-21

    Construction workers install the drive motor for the Altitude Wind Tunnel (AWT) in the Exhauster Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The AWT was capable of operating full-scale engines in air density, speed, and temperature similar to that found at high altitudes. The tunnel could produce wind speeds up to 500 miles per hour through a 20-foot-diameter test section at the standard operating altitude of 30,000 feet. The airflow was created by a large wooden fan near the tunnel’s southeast corner. This photograph shows the installation of the 18,000-horsepower drive motor inside the adjoining Exhauster Building in July 1943. The General Electric motor, whose support frame is seen in this photograph, connected to a drive shaft that extended from the building, through the tunnel shell, and into a 12-bladed, 31-foot-diameter spruce wood fan. Flexible couplings on the shaft allowed for the movement of the shell. The corner of the Exhauster Building was built around the motor after its installation. The General Electric induction motor could produce 10 to 410 revolutions per minute and create wind speeds up to 500 miles per hour, or Mach 0.63, at 30,000 feet. The AWT became operational in January 1944 and tested piston, turbojet and ramjet engines for nearly 20 years.

  16. Low-cost wind tunnel for aerosol inhalation studies.

    PubMed

    Chung, I P; Dunn-Rankin, D; Phalen, R F; Oldham, M J

    1992-04-01

    A low-cost wind tunnel for aerosol studies has been designed, constructed, and evaluated for aerosol uniformity with 2- and 0.46-micron particles. A commercial nebulizer was used to produce the suspended test particles, and a custom-made, four-hole injector was used to introduce the aerosol into the wind tunnel. A commercially available optical particle counter measured the particle concentration. Performance tests of the velocity profile and particle concentration distribution at two flow rates showed that the system performs well for small particles.

  17. Wind-tunnel interference with particular reference to off-center positions of the wing and to the downwash at the tail

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; White, James A

    1937-01-01

    The theory of wind tunnel boundary influence on the downwash from a wing has been extended to provide more complete corrections for application to airplane test data. The first section of the report gives the corrections of the lifting line for wing positions above or below the tunnel center line; the second section shows the manner in which the induced boundary influence changes with distance aft of the lifting line. Values of the boundary corrections are given for off-center positions of the wing in circular, square, 2:1 rectangular, and 2:1 elliptical tunnels. Aft of the wing the corrections are presented for only the square and the 2:1 rectangular tunnels, but it is believed that these may be applied to jets of circular and 2:1 elliptical cross sections. In all cases results are included for both open and closed tunnels.

  18. Wind tunnel study of helical and straight-bladed vertical-axis wind turbine wakes

    NASA Astrophysics Data System (ADS)

    Bagheri, Maryam; Araya, Daniel

    2017-11-01

    It is hypothesized that blade curvature can serve as a passive means to control fluid entrainment and wake recovery in vertical-axis wind turbine (VAWT) arrays. We test this experimentally in a wind tunnel using two different VAWT configurations, one with straight blades and another with helical blades, keeping all other experimental parameters fixed. A small-scale, commercially available VAWT (15W max power) is used as the baseline wind tunnel model in each case. The commercial VAWT blades are replaced with either straight or helical blades that are 3D-printed extrusions of the same airfoil cross-section. Results from smoke flow visualization, three-component wake velocity measurements, and turbine power data are presented. These results give insight into the potential use of VAWTs with curved blades in utility-scale wind farms.

  19. Air Flow Modeling in the Wind Tunnel of the FHWA Aerodynamics Laboratory at Turner-Fairbank Highway Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitek, M. A.; Lottes, S. A.; Bojanowski, C.

    Computational fluid dynamics (CFD) modeling is widely used in industry for design and in the research community to support, compliment, and extend the scope of experimental studies. Analysis of transportation infrastructure using high performance cluster computing with CFD and structural mechanics software is done at the Transportation Research and Analysis Computing Center (TRACC) at Argonne National Laboratory. These resources, available at TRACC, were used to perform advanced three-dimensional computational simulations of the wind tunnel laboratory at the Turner-Fairbank Highway Research Center (TFHRC). The goals were to verify the CFD model of the laboratory wind tunnel and then to use versionsmore » of the model to provide the capability to (1) perform larger parametric series of tests than can be easily done in the laboratory with available budget and time, (2) to extend testing to wind speeds that cannot be achieved in the laboratory, and (3) to run types of tests that are very difficult or impossible to run in the laboratory. Modern CFD software has many physics models and domain meshing options. Models, including the choice of turbulence and other physics models and settings, the computational mesh, and the solver settings, need to be validated against measurements to verify that the results are sufficiently accurate for use in engineering applications. The wind tunnel model was built and tested, by comparing to experimental measurements, to provide a valuable tool to perform these types of studies in the future as a complement and extension to TFHRC’s experimental capabilities. Wind tunnel testing at TFHRC is conducted in a subsonic open-jet wind tunnel with a 1.83 m (6 foot) by 1.83 m (6 foot) cross section. A three component dual force-balance system is used to measure forces acting on tested models, and a three degree of freedom suspension system is used for dynamic response tests. Pictures of the room are shown in Figure 1-1 to Figure 1-4. A

  20. Experimental Results from the Active Aeroelastic Wing Wind Tunnel Test Program

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Spain, Charles V.; Florance, James R.; Wieseman, Carol D.; Ivanco, Thomas G.; DeMoss, Joshua; Silva, Walter A.; Panetta, Andrew; Lively, Peter; Tumwa, Vic

    2005-01-01

    The Active Aeroelastic Wing (AAW) program is a cooperative effort among NASA, the Air Force Research Laboratory and the Boeing Company, encompassing flight testing, wind tunnel testing and analyses. The objective of the AAW program is to investigate the improvements that can be realized by exploiting aeroelastic characteristics, rather than viewing them as a detriment to vehicle performance and stability. To meet this objective, a wind tunnel model was crafted to duplicate the static aeroelastic behavior of the AAW flight vehicle. The model was tested in the NASA Langley Transonic Dynamics Tunnel in July and August 2004. The wind tunnel investigation served the program goal in three ways. First, the wind tunnel provided a benchmark for comparison with the flight vehicle and various levels of theoretical analyses. Second, it provided detailed insight highlighting the effects of individual parameters upon the aeroelastic response of the AAW vehicle. This parameter identification can then be used for future aeroelastic vehicle design guidance. Third, it provided data to validate scaling laws and their applicability with respect to statically scaled aeroelastic models.

  1. Use of 3D Printing for Custom Wind Tunnel Fabrication

    NASA Astrophysics Data System (ADS)

    Gagorik, Paul; Bates, Zachary; Issakhanian, Emin

    2016-11-01

    Small-scale wind tunnels for the most part are fairly simple to produce with standard building equipment. However, the intricate bell housing and inlet shape of an Eiffel type wind tunnel, as well as the transition from diffuser to fan in a rectangular tunnel can present design and construction obstacles. With the help of 3D printing, these shapes can be custom designed in CAD models and printed in the lab at very low cost. The undergraduate team at Loyola Marymount University has built a custom benchtop tunnel for gas turbine film cooling experiments. 3D printing is combined with conventional construction methods to build the tunnel. 3D printing is also used to build the custom tunnel floor and interchangeable experimental pieces for various experimental shapes. This simple and low-cost tunnel is a custom solution for specific engineering experiments for gas turbine technology research.

  2. Ski jumping takeoff in a wind tunnel with skis.

    PubMed

    Virmavirta, Mikko; Kivekäs, Juha; Komi, Paavo

    2011-11-01

    The effect of skis on the force-time characteristics of the simulated ski jumping takeoff was examined in a wind tunnel. Takeoff forces were recorded with a force plate installed under the tunnel floor. Signals from the front and rear parts of the force plate were collected separately to examine the anteroposterior balance of the jumpers during the takeoff. Two ski jumpers performed simulated takeoffs, first without skis in nonwind conditions and in various wind conditions. Thereafter, the same experiments were repeated with skis. The jumpers were able to perform very natural takeoff actions (similar to the actual takeoff) with skis in wind tunnel. According to the subjective feeling of the jumpers, the simulated ski jumping takeoff with skis was even easier to perform than the earlier trials without skis. Skis did not much influence the force levels produced during the takeoff but they still changed the force distribution under the feet. Contribution of the forces produced under the rear part of the feet was emphasized probably because the strong dorsiflexion is needed for lifting the skis to the proper flight position. The results presented in this experiment emphasize that research on ski jumping takeoff can be advanced by using wind tunnels.

  3. Development of an Intelligent Videogrammetric Wind Tunnel Measurement System

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.; Burner, Alpheus W.

    2004-01-01

    A videogrammetric technique developed at NASA Langley Research Center has been used at five NASA facilities at the Langley and Ames Research Centers for deformation measurements on a number of sting mounted and semispan models. These include high-speed research and transport models tested over a wide range of aerodynamic conditions including subsonic, transonic, and supersonic regimes. The technique, based on digital photogrammetry, has been used to measure model attitude, deformation, and sting bending. In addition, the technique has been used to study model injection rate effects and to calibrate and validate methods for predicting static aeroelastic deformations of wind tunnel models. An effort is currently underway to develop an intelligent videogrammetric measurement system that will be both useful and usable in large production wind tunnels while providing accurate data in a robust and timely manner. Designed to encode a higher degree of knowledge through computer vision, the system features advanced pattern recognition techniques to improve automated location and identification of targets placed on the wind tunnel model to be used for aerodynamic measurements such as attitude and deformation. This paper will describe the development and strategy of the new intelligent system that was used in a recent test at a large transonic wind tunnel.

  4. Materials and construction techniques for cryogenic wind tunnel facilities for instruction/research use

    NASA Technical Reports Server (NTRS)

    Morse, S. F.; Roper, A. T.

    1975-01-01

    The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.

  5. WIND TUNNEL INVESTIGATION OF THE RESPONSE OF A SONIC ANEMOMETER

    EPA Science Inventory

    An Applied Technology Inc. (ATI) sonic of the type used by J. C. Kaimal at the Boulder Tower was tested in the large wind tunnel at the U.S. EPA Fluid Modeling Facility. The wind tunnel is approximately 6 ft high, 10 ft wide with a test section bed 60 ft long. The air speed in th...

  6. Build an Inexpensive Wind Tunnel to Test CO2 Cars

    ERIC Educational Resources Information Center

    McCormick, Kevin

    2012-01-01

    As part of the technology education curriculum, the author's eighth-grade students design, build, test, and race CO2 vehicles. To help them in refining their designs, they use a wind tunnel to test for aerodynamic drag. In this article, the author describes how to build a wind tunnel using inexpensive, readily available materials. (Contains 1…

  7. The Brothers Were Wright - An Abridged History of Wind Tunnel Testing at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Buchholz, Steve

    2017-01-01

    The Wright Brothers used wind tunnel data to refine their design for the first successful airplane back in 1903. Today, wind tunnels are still in use all over the world gathering data to improve the design of cars, trucks, airplanes, missiles and spacecraft. Ames Research Center is home to many wind tunnels, including the Unitary Plan Wind Tunnel complex. Built in the early 1950s, it is one of the premiere transonic and supersonic testing facilities in the country. Every manned spacecraft has been tested in the wind tunnels at Ames. This is a testing history from past to present.

  8. Wind Tunnel Wall Interference Assessment and Correction, 1983

    NASA Technical Reports Server (NTRS)

    Newman, P. A. (Editor); Barnwell, R. W. (Editor)

    1984-01-01

    Technical information focused upon emerging wall interference assessment/correction (WIAC) techniques applicable to transonic wind tunnels with conventional and passively or partially adapted walls is given. The possibility of improving the assessment and correction of data taken in conventional transonic wind tunnels by utilizing simultaneously obtained flow field data (generally taken near the walls) appears to offer a larger, nearer-term payoff than the fully adaptive wall concept. Development of WIAC procedures continues, and aspects related to validating the concept need to be addressed. Thus, the scope of wall interference topics discussed was somewhat limited.

  9. The effects of the stellar wind and orbital motion on the jets of high-mass microquasars

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.; Barkov, M. V.

    2016-05-01

    Context. High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales. Aims: This is an analytical study, performed to characterise the effects of the stellar wind and the orbital motion on the jet properties. Methods: Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterise the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind's presence. Large-scale evolution of the jet is sketched, accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. Results: If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (I) a strong recollimation shock; (II) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (III) non-ballistic helical propagation further away. Even if disrupted, the jet can re-accelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. Conclusions: The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among other observational diagnostics, such as radiation variability at any band, the radio morphology on milliarcsecond scales can be informative on the wind-jet interaction.

  10. Automatic control of cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.

    1989-01-01

    Inadequate Reynolds number similarity in testing of scaled models affects the quality of aerodynamic data from wind tunnels. This is due to scale effects of boundary-layer shock wave interaction which is likely to be severe at transonic speeds. The idea of operation of wind tunnels using test gas cooled to cryogenic temperatures has yielded a quantrum jump in the ability to realize full scale Reynolds number flow similarity in small transonic tunnels. In such tunnels, the basic flow control problem consists of obtaining and maintaining the desired test section flow parameters. Mach number, Reynolds number, and dynamic pressure are the three flow parameters that are usually required to be kept constant during the period of model aerodynamic data acquisition. The series of activity involved in modeling, control law development, mechanization of the control laws on a microcomputer, and the performance of a globally stable automatic control system for the 0.3-m Transonic Cryogenic Tunnel (TCT) are discussed. A lumped multi-variable nonlinear dynamic model of the cryogenic tunnel, generation of a set of linear control laws for small perturbation, and nonlinear control strategy for large set point changes including tunnel trajectory control are described. The details of mechanization of the control laws on a 16 bit microcomputer system, the software features, operator interface, the display and safety are discussed. The controller is shown to provide globally stable and reliable temperature control to + or - 0.2 K, pressure to + or - 0.07 psi and Mach number to + or - 0.002 of the set point value. This performance is obtained both during large set point commands as for a tunnel cooldown, and during aerodynamic data acquisition with intrusive activity like geometrical changes in the test section such as angle of attack changes, drag rake movements, wall adaptation and sidewall boundary-layer removal. Feasibility of the use of an automatic Reynolds number control mode with

  11. Advances in Projection Moire Interferometry Development for Large Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Soto, Hector L.; South, Bruce W.; Bartram, Scott M.

    1999-01-01

    An instrument development program aimed at using Projection Moire Interferometry (PMI) for acquiring model deformation measurements in large wind tunnels was begun at NASA Langley Research Center in 1996. Various improvements to the initial prototype PMI systems have been made throughout this development effort. This paper documents several of the most significant improvements to the optical hardware and image processing software, and addresses system implementation issues for large wind tunnel applications. The improvements have increased both measurement accuracy and instrument efficiency, promoting the routine use of PMI for model deformation measurements in production wind tunnel tests.

  12. A76-0634. 1/50 Scale Model Of The 80X120 Foot Wind Tunnel Model (Nfac) In The Test Section Of The 40X80 Foot Wind Tunnel.

    NASA Image and Video Library

    1996-06-27

    (03/12/1976) 1/50 scale model of the 80x120 foot wind tunnel model (NFAC) in the test section of the 40x80 foot wind tunnel. Model mounted on a rotating ground board designed for this test, viewed from the west, oriented for North wind.

  13. Some anomalies between wind tunnel and flight transition results

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Bobbitt, P. J.

    1981-01-01

    A review of environmental disturbance influence and boundary layer transition measurements on a large collection of reference sharp cone tests in wind tunnels and of recent transonic-supersonic cone flight results have previously demonstrated the dominance of free-stream disturbance level on the transition process from the beginning to end. Variation of the ratio of transition Reynolds number at onset-to-end with Mach number has been shown to be consistently different between flight and wind tunnels. Previous correlations of the end of transition with disturbance level give good results for flight and large number of tunnels, however, anomalies occur for similar correlation based on transition onset. Present cone results with a tunnel sonic throat reduced the disturbance level by an order of magnitude with transition values comparable to flight.

  14. Procedures and requirements for testing in the Langley Research Center unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Wassum, Donald L.; Hyman, Curtis E., Jr.

    1988-01-01

    Information is presented to assist those interested in conducting wind-tunnel testing within the Langley Unitary Plan Wind Tunnel. Procedures, requirements, forms and examples necessary for tunnel entry are included.

  15. Dataset from chemical gas sensor array in turbulent wind tunnel.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Huerta, Ramón

    2015-06-01

    The dataset includes the acquired time series of a chemical detection platform exposed to different gas conditions in a turbulent wind tunnel. The chemo-sensory elements were sampling directly the environment. In contrast to traditional approaches that include measurement chambers, open sampling systems are sensitive to dispersion mechanisms of gaseous chemical analytes, namely diffusion, turbulence, and advection, making the identification and monitoring of chemical substances more challenging. The sensing platform included 72 metal-oxide gas sensors that were positioned at 6 different locations of the wind tunnel. At each location, 10 distinct chemical gases were released in the wind tunnel, the sensors were evaluated at 5 different operating temperatures, and 3 different wind speeds were generated in the wind tunnel to induce different levels of turbulence. Moreover, each configuration was repeated 20 times, yielding a dataset of 18,000 measurements. The dataset was collected over a period of 16 months. The data is related to "On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines", by Vergara et al.[1]. The dataset can be accessed publicly at the UCI repository upon citation of [1]: http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings.

  16. Validation of a Compact Isokinetic Total Water Content Probe for Wind Tunnel Characterization at NASA Glenn Icing Research Tunnel and at NRC Ice Crystal Tunnel

    NASA Technical Reports Server (NTRS)

    Davison, Craig R.; Landreville, Charles; Ratvasky, Thomas P.

    2017-01-01

    A new compact isokinetic probe to measure total water content in a wind tunnel environment has been developed. The probe has been previously tested under altitude conditions. This paper presents a comprehensive validation of the probe under a range of liquid water conditions at sea level in the NASA Glenn Icing Research Tunnel and with ice crystals at sea level at the NRC wind tunnel. The compact isokinetic probe is compared to tunnel calibrations and other probes.

  17. Magnetically driven jets and winds

    NASA Technical Reports Server (NTRS)

    Lovelace, R. V. E.; Berk, H. L.; Contopoulos, J.

    1991-01-01

    Four equations for the origin and propagation of nonrelativistic jets and winds are derived from the basic conservation laws of ideal MHD. The axial current density is negative in the vicinity of the axis and positive at larger radii; there is no net current because this is energetically favored. The magnetic field is essential for the jet solutions in that the zz-component of the magnetic stress acts, in opposition to gravity, to drive matter through the slow magnetosonic critical point. For a representative self-consistent disk/jet solution relevant to a protostellar system, the reaction of the accreted mass expelled in the jets is 0.1, the ratio of the power carried by the jets to the disk luminosity is 0.66, and the ratio of the boundary layer to disk luminosities is less than about 0.13. The star's rotation rate decreases with time even for rotation rates much less than the breakup rate.

  18. Assessment of Scaled Rotors for Wind Tunnel Experiments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maniaci, David Charles; Kelley, Christopher Lee; Chiu, Phillip

    2015-07-01

    Rotor design and analysis work has been performed to support the conceptualization of a wind tunnel test focused on studying wake dynamics. This wind tunnel test would serve as part of a larger model validation campaign that is part of the Department of Energy Wind and Water Power Program’s Atmosphere to electrons (A2e) initiative. The first phase of this effort was directed towards designing a functionally scaled rotor based on the same design process and target full-scale turbine used for new rotors for the DOE/SNL SWiFT site. The second phase focused on assessing the capabilities of an already available rotor,more » the G1, designed and built by researchers at the Technical University of München.« less

  19. Numerical simulation of flows around deformed aircraft model in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Lysenkov, A. V.; Bosnyakov, S. M.; Glazkov, S. A.; Gorbushin, A. R.; Kuzmina, S. I.; Kursakov, I. A.; Matyash, S. V.; Ishmuratov, F. Z.

    2016-10-01

    To obtain accurate data of calculation method error requires detailed simulation of the experiment in wind tunnel with keeping all features of the model, installation and gas flow. Two examples of such detailed data comparison are described in this paper. The experimental characteristics of NASA CRM model obtained in the ETW wind tunnel (Cologne, Germany), and CFD characteristics of this model obtained with the use of EWT-TsAGI application package are compared. Following comparison is carried out for an airplane model in the T-128 wind tunnel (TsAGI, Russia). It is seen that deformation influence on integral characteristics grows with increasing Re number and, accordingly, the dynamic pressure. CFD methods application for problems of experimental research in the wind tunnel allows to separate viscosity and elasticity effects.

  20. A numerical study of the effects of wind tunnel wall proximity on an airfoil model

    NASA Technical Reports Server (NTRS)

    Potsdam, Mark; Roberts, Leonard

    1990-01-01

    A procedure was developed for modeling wind tunnel flows using computational fluid dynamics. Using this method, a numerical study was undertaken to explore the effects of solid wind tunnel wall proximity and Reynolds number on a two-dimensional airfoil model at low speed. Wind tunnel walls are located at varying wind tunnel height to airfoil chord ratios and the results are compared with freestream flow in the absence of wind tunnel walls. Discrepancies between the constrained and unconstrained flows can be attributed to the presence of the walls. Results are for a Mach Number of 0.25 at angles of attack through stall. A typical wind tunnel Reynolds number of 1,200,000 and full-scale flight Reynolds number of 6,000,000 were investigated. At this low Mach number, wind tunnel wall corrections to Mach number and angle of attack are supported. Reynolds number effects are seen to be a consideration in wind tunnel testing and wall interference correction methods. An unstructured grid Navier-Stokes code is used with a Baldwin-Lomax turbulence model. The numerical method is described since unstructured flow solvers present several difficulties and fundamental differences from structured grid codes, especially in the area of turbulence modeling and grid generation.

  1. The role of wind-tunnel studies in integrative research on migration biology.

    PubMed

    Engel, Sophia; Bowlin, Melissa S; Hedenström, Anders

    2010-09-01

    Wind tunnels allow researchers to investigate animals' flight under controlled conditions, and provide easy access to the animals during flight. These increasingly popular devices can benefit integrative migration biology by allowing us to explore the links between aerodynamic theory and migration as well as the links between flight behavior and physiology. Currently, wind tunnels are being used to investigate many different migratory phenomena, including the relationship between metabolic power and flight speed and carry-over effects between different seasons. Although biotelemetry is also becoming increasingly common, it is unlikely that it will be able to completely supplant wind tunnels because of the difficulty of measuring or varying parameters such as flight speed or temperature in the wild. Wind tunnels and swim tunnels will therefore continue to be important tools we can use for studying integrative migration biology. © The Author 2010. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

  2. The steady-state flow quality in a model of a non-return wind tunnel

    NASA Technical Reports Server (NTRS)

    Mort, K. W.; Eckert, W. T.; Kelly, M. W.

    1972-01-01

    The structural cost of non-return wind tunnels is significantly less than that of the more conventional closed-circuit wind tunnels. However, because of the effects of external winds, the flow quality of non-return wind tunnels is an area of concern at the low test speeds required for V/STOL testing. The flow quality required at these low speeds is discussed and alternatives to the traditional manner of specifying the flow quality requirements in terms of dynamic pressure and angularity are suggested. The development of a non-return wind tunnel configuration which has good flow quality at low as well as at high test speeds is described.

  3. EVIDENCE FOR SIMULTANEOUS JETS AND DISK WINDS IN LUMINOUS LOW-MASS X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homan, Jeroen; Neilsen, Joseph; Allen, Jessamyn L.

    Recent work on jets and disk winds in low-mass X-ray binaries (LMXBs) suggests that they are to a large extent mutually exclusive, with jets observed in spectrally hard states and disk winds observed in spectrally soft states. In this paper we use existing literature on jets and disk winds in the luminous neutron star (NS) LMXB GX 13+1, in combination with archival Rossi X-ray Timing Explorer data, to show that this source is likely able to produce jets and disk winds simultaneously. We find that jets and disk winds occur in the same location on the source’s track in itsmore » X-ray color–color diagram. A further study of literature on other luminous LMXBs reveals that this behavior is more common, with indications for simultaneous jets and disk winds in the black hole LMXBs V404 Cyg and GRS 1915+105 and the NS LMXBs Sco X-1 and Cir X-1. For the three sources for which we have the necessary spectral information, we find that simultaneous jets/winds all occur in their spectrally hardest states. Our findings indicate that in LMXBs with luminosities above a few tens of percent of the Eddington luminosity, jets and disk winds are not mutually exclusive, and the presence of disk winds does not necessarily result in jet suppression.« less

  4. Spectral measurements of shock layer radiation in an arc-jet wind tunnel

    NASA Technical Reports Server (NTRS)

    Palumbo, Giuseppe; Craig, Roger; Carrasco, Armando

    1993-01-01

    Measurements were made of the radiating gas cap of a blunt body in an NASA Ames 20 MW arcjet wind tunnel. The test gas was air. Spectra of the flux incident on a small aperture centered at the stagnation region were obtained. A helium-cooled MgF window transmitted flux into an evacuated collimating system that focused the aperture onto the entrance slit of a spectrometer. Data were obtained with films and by photomultipliers. The range covered was 120 nm to 1000 nm and the resolution was 0.05 nm to 0.5 nm. This paper presents preliminary results from the experiment. Representative spectral records from 200 nm to 1000 nm are shown. The spectra show the atomic lines from oxygen and nitrogen in the IR, as well as the molecular systems of NO, N2, N2(+), and CN. Copper, as a contaminant, and carbon are tentatively identified.

  5. Wind Tunnel Corrections for High Angle of Attack Models,

    DTIC Science & Technology

    1981-02-01

    MAQUETTES EN SOUFFLERIE par X.Vaucheret GERMA * J ACTIVITIES ON WIND TUNNEL CORRECTIONS byH.HoIst A REVIEW OF RESEARCH AT NLR ON WIND TUNNEL...1-10 Ro - ,2.13M106 M - 0.230 ° BALANCE — corrected -T unoorreoted •r r^a—Q * o n ...8217 n * t ?’ A *i o o 1 1 -0.70 -0.65 -0.60 -0.S5 -0.50 -0.45 -0.40 Fig.l 1 Corrected

  6. Comparison of model and flight test data for an augmented jet flap STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Cook, W. L.; Whittley, D. C.

    1975-01-01

    Aerodynamic design data for the Augmented Jet Flap STOL Research Aircraft or commonly known as the Augmentor-Wing Jet-STOL Research Aircraft was based on results of tests carried out on a large scale research model in the NASA Ames 40- by 80-Foot Wind Tunnel. Since the model differs in some respects from the aircraft, precise correlation between tunnel and flight test is not expected, however the major areas of confidence derived from the wind tunnel tests are delineated, and for the most part, tunnel results compare favorably with flight experience. In some areas the model tests were known to be nonrepresentative so that a degree of uncertainty remained: these areas of greater uncertainty are identified, and discussed in the light of subsequent flight tests.

  7. Photogrammetry Applied to Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Cattafesta, L. N., III; Radeztsky, R. H.; Burner, A. W.

    2000-01-01

    In image-based measurements, quantitative image data must be mapped to three-dimensional object space. Analytical photogrammetric methods, which may be used to accomplish this task, are discussed from the viewpoint of experimental fluid dynamicists. The Direct Linear Transformation (DLT) for camera calibration, used in pressure sensitive paint, is summarized. An optimization method for camera calibration is developed that can be used to determine the camera calibration parameters, including those describing lens distortion, from a single image. Combined with the DLT method, this method allows a rapid and comprehensive in-situ camera calibration and therefore is particularly useful for quantitative flow visualization and other measurements such as model attitude and deformation in production wind tunnels. The paper also includes a brief description of typical photogrammetric applications to temperature- and pressure-sensitive paint measurements and model deformation measurements in wind tunnels.

  8. Performance characteristics of a wedge nozzle installed on an F-18 propulsion wind tunnel model

    NASA Technical Reports Server (NTRS)

    Petit, J. E.; Capone, F. J.

    1979-01-01

    The results of two-dimensional wedge non-axisymmetric nozzle (2D-AIN) tests to determine its performance relative to the baseline axisymmetric nozzle using an F-18 jet effects wind tunnel model are presented. Configurations and test conditions simulated forward thrust-minus drag, thrust vectoring/induced lift, and thrust reversing flight conditions from Mach .6 to 1.20 and attack angles up to 10 degrees. Results of the model test program indicate that non-axisymmetric nozzles can be installed on a twin engine fighter aircraft model with equivalent thrust minus drag performance as the baseline axisymmetric nozzles. Thrust vectoring capability of the non-axisymmetric nozzles provided significant jet-induced lift on the nozzle/aftbody and horizontal tail surfaces. Thrust reversing panels deployed from the 2D-AIN centerbody wedge were very effective for static and inflight operation

  9. 1/50 Scale Model Of The 80x120 Foot Wind Tunnel Model (NFAC) In The Test Section Of The 40x80 Wind Tunnel.

    NASA Image and Video Library

    1996-06-27

    (03/12/1976) 1/50 scale model of the 80x120 foot wind tunnel model (NFAC) in the test section of the 40x80 wind tunnel. Model viewed from the west, mounted on a rotating ground board designed for this test. Ramp leading to ground board includes a generic building placed in front of the 80x120 inlet.

  10. Comparison of PLIF and CFD Results for the Orion CEV RCS Jets

    NASA Technical Reports Server (NTRS)

    Ivey, Christopher B.; Danehy, Paul M.; Bathel, Brett F.; Dyakonov, Artem A.; Inman, Jennifer A.; Jones, Stephen B.

    2011-01-01

    Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to visualize and measure centerline streamwise velocity of the Orion Crew Exploration Vehicle (CEV) Reaction Control System (RCS) Jets at NASA Langley Research Center's 31-Inch Mach 10 Air wind tunnel. Fluorescence flow visualizations of pitch, roll, and yaw RCS jets were obtained using different plenum pressures and wind tunnel operating stagnation pressures. For two yaw RCS jet test cases, the PLIF visualizations were compared to computational flow imaging (CFI) images based on Langley Aerothermal Upwind Relaxation Algorithm (LAURA) computational fluid dynamics (CFD) simulations of the flowfield. For the same test cases, the streamwise velocity measurements were compared to CFD. The CFD solution, while showing some unphysical artifacts, generally agree with the experimental measurements.

  11. Detection of boundary-layer transitions in wind tunnels

    NASA Technical Reports Server (NTRS)

    Wood, W. R.; Somers, D. M.

    1978-01-01

    Accelerometer replaces stethoscope in technique for detection of laminar-to-turbulent boundary-layer transitions on wind-tunnel models. Technique allows measurements above or below atmospheric pressure because human operator is not required within tunnel. Data may be taken from accelerometer, and pressure transducer simultaneously, and delivered to systems for analysis.

  12. Smart wing wind tunnel model design

    NASA Astrophysics Data System (ADS)

    Martin, Christopher A.; Jasmin, Larry; Flanagan, John S.; Appa, Kari; Kudva, Jayanth N.

    1997-05-01

    To verify the predicted benefits of the smart wing concept, two 16% scale wind tunnel models, one conventional and the other incorporating smart wing design features, were designed, fabricated and tested. Meticulous design of the two models was essential to: (1) ensure the required factor of safety of four for operation in the NASA Langley TDT wind tunnel, (2) efficiently integrate the smart actuation systems, (3) quantify the performance improvements, and (4) facilitate eventual scale-up to operational aircraft. Significant challenges were encountered in designing the attachment of the shape memory alloy control surfaces to the wing box, integration of the SMA torque tube in the wing structure, and development of control mechanisms to protect the model and the tunnel in the event of failure of the smart systems. In this paper, detailed design of the two models are presented. First, dynamic scaling of the models based on the geometry and structural details of the full- scale aircraft is presented. Next, results of the stress, divergence and flutter analyses are summarized. Finally some of the challenges of integrating the smart actuators with the model are highlighted.

  13. On-road and wind-tunnel measurement of motorcycle helmet noise.

    PubMed

    Kennedy, J; Carley, M; Walker, I; Holt, N

    2013-09-01

    The noise source mechanisms involved in motorcycling include various aerodynamic sources and engine noise. The problem of noise source identification requires extensive data acquisition of a type and level that have not previously been applied. Data acquisition on track and on road are problematic due to rider safety constraints and the portability of appropriate instrumentation. One way to address this problem is the use of data from wind tunnel tests. The validity of these measurements for noise source identification must first be demonstrated. In order to achieve this extensive wind tunnel tests have been conducted and compared with the results from on-track measurements. Sound pressure levels as a function of speed were compared between on track and wind tunnel tests and were found to be comparable. Spectral conditioning techniques were applied to separate engine and wind tunnel noise from aerodynamic noise and showed that the aerodynamic components were equivalent in both cases. The spectral conditioning of on-track data showed that the contribution of engine noise to the overall noise is a function of speed and is more significant than had previously been thought. These procedures form a basis for accurate experimental measurements of motorcycle noise.

  14. Ares I Aerodynamic Testing at the Boeing Polysonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.; Niskey, Charles J.; Hanke, Jeremy L.; Tomek, William G.

    2011-01-01

    Throughout three full design analysis cycles, the Ares I project within the Constellation program has consistently relied on the Boeing Polysonic Wind Tunnel (PSWT) for aerodynamic testing of the subsonic, transonic and supersonic portions of the atmospheric flight envelope (Mach=0.5 to 4.5). Each design cycle required the development of aerodynamic databases for the 6 degree-of-freedom (DOF) forces and moments, as well as distributed line-loads databases covering the full range of Mach number, total angle-of-attack, and aerodynamic roll angle. The high fidelity data collected in this facility has been consistent with the data collected in NASA Langley s Unitary Plan Wind Tunnel (UPWT) at the overlapping condition ofMach=1.6. Much insight into the aerodynamic behavior of the launch vehicle during all phases of flight was gained through wind tunnel testing. Important knowledge pertaining to slender launch vehicle aerodynamics in particular was accumulated. In conducting these wind tunnel tests and developing experimental aerodynamic databases, some challenges were encountered and are reported as lessons learned in this paper for the benefit of future crew launch vehicle aerodynamic developments.

  15. Application of fuzzy logic to the control of wind tunnel settling chamber temperature

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Humphreys, Gregory L.

    1994-01-01

    The application of Fuzzy Logic Controllers (FLC's) to the control of nonlinear processes, typically controlled by a human operator, is a topic of much study. Recent application of a microprocessor-based FLC to the control of temperature processes in several wind tunnels has proven to be very successful. The control of temperature processes in the wind tunnels requires the ability to monitor temperature feedback from several points and to accommodate varying operating conditions in the wind tunnels. The FLC has an intuitive and easily configurable structure which incorporates the flexibility required to have such an ability. The design and implementation of the FLC is presented along with process data from the wind tunnels under automatic control.

  16. Experimental parametric studies of transonic T-tail flutter. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Sandford, M. C.

    1975-01-01

    Wind-tunnel tests of the T-tail of a wide-body jet airplane were made at Mach numbers up to 1.02. The model consisted of a 1/13-size scaled version of the T-tail, fuselage, and inboard wing of the airplane. Two interchangeable T-tails were tested, one with design stiffness for flutter-clearance studies and one with reduced stiffness for flutter-trend studies. Transonic antisymmetric-flutter boundaries were determined for the models with variations in: (1) fin-spar stiffness, (2) stabilizer dihedral angle (-5 deg and 0 deg), (3) wing and forward-fuselage shape, and (4) nose shape of the fin-stabilizer juncture. A transonic symmetric-flutter boundary and flutter trends were established for variations in stabilizer pitch stiffness. Photographs of the test configurations are shown.

  17. A method for predicting the noise levels of coannular jets with inverted velocity profiles

    NASA Technical Reports Server (NTRS)

    Russell, J. W.

    1979-01-01

    A coannular jet was equated with a single stream equivalent jet with the same mass flow, energy, and thrust. The acoustic characteristics of the coannular jet were then related to the acoustic characteristics of the single jet. Forward flight effects were included by incorporating a forward exponent, a Doppler amplification factor, and a Strouhal frequency shift. Model test data, including 48 static cases and 22 wind tunnel cases, were used to evaluate the prediction method. For the static cases and the low forward velocity wind tunnel cases, the spectral mean square pressure correlation coefficients were generally greater than 90 percent, and the spectral sound pressure level standard deviation were generally less than 3 decibels. The correlation coefficient and the standard deviation were not affected by changes in equivalent jet velocity. Limitations of the prediction method are also presented.

  18. Design, construction and commissioning of the Braunschweig Icing Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Bansmer, Stephan E.; Baumert, Arne; Sattler, Stephan; Knop, Inken; Leroy, Delphine; Schwarzenboeck, Alfons; Jurkat-Witschas, Tina; Voigt, Christiane; Pervier, Hugo; Esposito, Biagio

    2018-06-01

    Beyond its physical importance in both fundamental and climate research, atmospheric icing is considered as a severe operational condition in many engineering applications like aviation, electrical power transmission and wind-energy production. To reproduce such icing conditions in a laboratory environment, icing wind tunnels are frequently used. In this paper, a comprehensive overview on the design, construction and commissioning of the Braunschweig Icing Wind Tunnel is given. The tunnel features a test section of 0.5 m × 0.5 m with peak velocities of up to 40 m s-1. The static air temperature ranges from -25 to +30 °C. Supercooled droplet icing with liquid water contents up to 3 g m-3 can be reproduced. The unique aspect of this facility is the combination of an icing tunnel with a cloud chamber system for making ice particles. These ice particles are more realistic in shape and density than those usually used for mixed phase and ice crystal icing experiments. Ice water contents up to 20 g m-3 can be generated. We further show how current state-of-the-art measurement techniques for particle sizing are performed on ice particles. The data are compared to those of in-flight measurements in mesoscale convective cloud systems in tropical regions. Finally, some applications of the icing wind tunnel are presented.

  19. Design and optimization of resistance wire electric heater for hypersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Rehman, Khurram; Malik, Afzaal M.; Khan, I. J.; Hassan, Jehangir

    2012-06-01

    The range of flow velocities of high speed wind tunnels varies from Mach 1.0 to hypersonic order. In order to achieve such high speed flows, a high expansion nozzle is employed in the converging-diverging section of wind tunnel nozzle. The air for flow is compressed and stored in pressure vessels at temperatures close to ambient conditions. The stored air is dried and has minimum amount of moisture level. However, when this air is expanded rapidly, its temperature drops significantly and liquefaction conditions can be encountered. Air at near room temperature will liquefy due to expansion cooling at a flow velocity of more than Mach 4.0 in a wind tunnel test section. Such liquefaction may not only be hazardous to the model under test and wind tunnel structure; it may also affect the test results. In order to avoid liquefaction of air, a pre-heater is employed in between the pressure vessel and the converging-diverging section of a wind tunnel. A number of techniques are being used for heating the flow in high speed wind tunnels. Some of these include the electric arc heating, pebble bed electric heating, pebble bed natural gas fired heater, hydrogen burner heater, and the laser heater mechanisms. The most common are the pebble bed storage type heaters, which are inefficient, contaminating and time consuming. A well designed electrically heating system can be efficient, clean and simple in operation, for accelerating the wind tunnel flow up to Mach 10. This paper presents CFD analysis of electric preheater for different configurations to optimize its design. This analysis has been done using ANSYS 12.1 FLUENT package while geometry and meshing was done in GAMBIT.

  20. Experimental parametric study of jet vortex generators for flow separation control

    NASA Technical Reports Server (NTRS)

    Selby, Gregory

    1991-01-01

    A parametric wind-tunnel study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulence flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed). Dye flow visualization tests in a water tunnel indicated that the most effective jet vortex generator configurations produced streamwise co-rotating vortices.

  1. Water tunnel flow visualization and wind tunnel data analysis of the F/A-18. [leading edge extension vortex effects

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.

    1982-01-01

    Six degree of freedom studies were utilized to extract a band of yawing and rolling moment coefficients from the F/A-18 aircraft flight records. These were compared with 0.06 scale model data obtained in a 16T wind tunnel facility. The results, indicate the flight test yawing moment data exhibit an improvement over the wind tunnel data to near neutral stability and a significant reduction in lateral stability (again to anear neutral level). These data are consistent with the flight test results since the motion was characterized by a relatively slo departure. Flight tests repeated the slow yaw departure at M 0.3. Only 0.16 scale model wind tunnel data showed levels of lateral stability similar to the flight test results. Accordingly, geometric modifications were investigated on the 0.16 scale model in the 30x60 foot wind tunnel to improve high angle of attack lateral stability.

  2. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1995-01-01

    Low-disturbance or 'quiet' wind tunnels are now considered an essential part of meaningful boundary layer transition research. Advances in Supersonic Laminar Flow Control (SLFC) technology for swept wings depends on a better understanding of the receptivity of the transition phenomena to attachment-line contamination and cross-flows. This need has provided the impetus for building the Laminar Flow Supersonic Wind Tunnel (LFSWT) at NASA-Ames, as part of the NASA High Speed Research Program (HSRP). The LFSWT was designed to provide NASA with an unequaled capability for transition research at low supersonic Mach numbers (<2.5). The following are the objectives in support of the new Fluid Mechanic Laboratory (FML) quiet supersonic wind tunnel: (I) Develop a unique injector drive system using the existing FML indraft compressor; (2) Develop an FML instrumentation capability for quiet supersonic wind tunnel evaluation and transition studies at NASA-Ames; (3) Determine the State of the Art in quiet supersonic wind tunnel design; (4) Build and commission the LFSWT; (5) Make detailed flow quality measurements in the LFSWT; (6) Perform tests of swept wing models in the LFSWT in support of the NASA HSR program; and (7) Provide documentation of research progress.

  3. Numerical investigation of air flow in a supersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Drozdov, S. M.; Rtishcheva, A. S.

    2017-11-01

    In the framework of TsAGI’s supersonic wind tunnel modernization program aimed at improving flow quality and extending the range of test regimes it was required to design and numerically validate a new test section and a set of shaped nozzles: two flat nozzles with flow Mach number at nozzle exit M=4 and M=5 and two axisymmetric nozzles with M=5 and M=6. Geometric configuration of the nozzles, the test section (an Eiffel chamber) and the diffuser was chosen according to the results of preliminary calculations of two-dimensional air flow in the wind tunnel circuit. The most important part of the work are three-dimensional flow simulation results obtained using ANSYS Fluent software. The following flow properties were investigated: Mach number, total and static pressure, total and static temperature and turbulent viscosity ratio distribution, heat flux density at wind tunnel walls (for high-temperature flow regimes). It is demonstrated that flow perturbations emerging from the junction of the nozzle with the test section and spreading down the test section behind the boundaries of characteristic rhomb’s reverse wedge are nearly impossible to eliminate. Therefore, in order to perform tests under most uniform flow conditions, the model’s center of rotation and optical window axis should be placed as close to the center of the characteristic rhomb as possible. The obtained results became part of scientific and technical basis of supersonic wind tunnel design process and were applied to a generalized class of similar wind tunnels.

  4. Comparison of propeller cruise noise data taken in the NASA Lewis 8- by 6-foot wind tunnel with other tunnel and flight data

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    1989-01-01

    The noise of advanced high speed propeller models measured in the NASA 8- by 6-foot wind tunnel has been compared with model propeller noise measured in another tunnel and with full-scale propeller noise measured in flight. Good agreement was obtained for the noise of a model counterrotation propeller tested in the 8- by 6-foot wind tunnel and in the acoustically treated test section of the Boeing Transonic Wind Tunnel. This good agreement indicates the relative validity of taking cruise noise data on a plate in the 8- by 6-foot wind tunnel compared with the free-field method in the Boeing tunnel. Good agreement was also obtained for both single rotation and counter-rotation model noise comparisons with full-scale propeller noise in flight. The good scale model to full-scale comparisons indicate both the validity of the 8- by 6-foot wind tunnel data and the ability to scale to full size. Boundary layer refraction on the plate provides a limitation to the measurement of forward arc noise in the 8- by 6-foot wind tunnel at the higher harmonics of the blade passing tone. The use of a validated boundary layer refraction model to adjust the data could remove this limitation.

  5. Comparison of propeller cruise noise data taken in the NASA Lewis 8- by 6-foot wind tunnel with other tunnel and flight data

    NASA Technical Reports Server (NTRS)

    Dittmar, James

    1989-01-01

    The noise of advanced high speed propeller models measured in the NASA 8- by 6-foot wind tunnel has been compared with model propeller noise measured in another tunnel and with full-scale propeller noise measured in flight. Good agreement was obtained for the noise of a model counterrotation propeller tested in the 8- by 6-foot wind tunnel and in the acoustically treated test section of the Boeing Transonic Wind Tunnel. This good agreement indicates the relative validity of taking cruise noise data on a plate in the 8- by 6-foot wind tunnel compared with the free-field method in the Boeing tunnel. Good agreement was also obtained for both single rotation and counter-rotation model noise comparisons with full-scale propeller noise in flight. The good scale model to full-scale comparisons indicate both the validity of the 8- by 6-foot wind tunnel data and the ability to scale to full size. Boundary layer refraction on the plate provides a limitation to the measurement of forward arc noise in the 8- by 6-foot wind tunnel at the higher harmonics of the blade passing tone. The sue of a validated boundary layer refraction model to adjust the data could remove this limitation.

  6. Design and calibration of the mixing layer and wind tunnel

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1989-01-01

    A detailed account of the design, assembly and calibration of a wind tunnel specifically designed for free-shear layer research is contained. The construction of this new facility was motivated by a strong interest in the study of plane mixing layers with varying initial and operating conditions. The Mixing Layer Wind tunnel is located in the Fluid Mechanics Laboratory at NASA Ames Research Center. The tunnel consists of two separate legs which are driven independently by centrifugal blowers connected to variable speed motors. The blower/motor combinations are sized such that one is smaller than the other, giving maximum flow speeds of about 20 and 40 m/s, respectively. The blower speeds can either be set manually or via the Microvax II computer. The two streams are allowed to merge in the test section at the sharp trailing edge of a slowly tapering splitter plate. The test section is 36 cm in the cross-stream direction, 91 cm in the spanwise direction and 366 cm in length. One test section side-wall is slotted for probe access and adjustable so that the streamwise pressure gradient may be controlled. The wind tunnel is also equipped with a computer controlled, three-dimensional traversing system which is used to investigate the flow fields with pressure and hot-wire instrumentation. The wind tunnel calibration results show that the mean flow in the test section is uniform to within plus or minus 0.25 pct and the flow angularity is less than 0.25 deg. The total streamwise free-stream turbulence intensity level is approximately 0.15 pct. Currently the wind tunnel is being used in experiments designed to study the three-dimensional structure of plane mixing layers and wakes.

  7. HIMAT Inlet Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1979-02-21

    A Highly Maneuverable Aircraft Technology (HiMAT) inlet model installed in the test section of the 8- by 6-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Engineers at the Ames Research Center, Dryden Flight Research Center, and Rockwell International designed two pilotless subscale HiMAT vehicles in the mid-1970s to study new design concepts for fighter aircraft in the transonic realm without risking the lives of test pilots. The aircraft used sophisticated technologies such as advanced aerodynamics, composite materials, digital integrated propulsion control, and digital fly-by-wire control systems. In late 1977 NASA Lewis studied the HiMAT’s General Electric J85-21 jet engine in the Propulsion Systems Laboratory. The researchers charted the inlet quality with various combinations anti-distortion screens. HiMAT employed a relatively short and curved inlet compared to actual fighter jets. In the spring of 1979, Larry Smith led an in-depth analysis of the HiMAT inlet in the 8- by 6 tunnel. The researchers installed vortex generators to battle flow separation in the diffuser. The two HiMAT aircraft performed 11 hours of flying over the course of 26 missions from mid-1979 to January 1983 at Dryden and Ames. Although the HiMAT vehicles were considered to be overly complex and expensive, the program yielded a wealth of data that would validate computer-based design tools.

  8. THE CONTRIBUTION OF CORONAL JETS TO THE SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lionello, R.; Török, T.; Titov, V. S.

    Transient collimated plasma eruptions in the solar corona, commonly known as coronal (or X-ray) jets, are among the most interesting manifestations of solar activity. It has been suggested that these events contribute to the mass and energy content of the corona and solar wind, but the extent of these contributions remains uncertain. We have recently modeled the formation and evolution of coronal jets using a three-dimensional (3D) magnetohydrodynamic (MHD) code with thermodynamics in a large spherical domain that includes the solar wind. Our model is coupled to 3D MHD flux-emergence simulations, i.e., we use boundary conditions provided by such simulationsmore » to drive a time-dependent coronal evolution. The model includes parametric coronal heating, radiative losses, and thermal conduction, which enables us to simulate the dynamics and plasma properties of coronal jets in a more realistic manner than done so far. Here, we employ these simulations to calculate the amount of mass and energy transported by coronal jets into the outer corona and inner heliosphere. Based on observed jet-occurrence rates, we then estimate the total contribution of coronal jets to the mass and energy content of the solar wind to (0.4–3.0)% and (0.3–1.0)%, respectively. Our results are largely consistent with the few previous rough estimates obtained from observations, supporting the conjecture that coronal jets provide only a small amount of mass and energy to the solar wind. We emphasize, however, that more advanced observations and simulations (including parametric studies) are needed to substantiate this conjecture.« less

  9. Avrocar Test in Ames 40x80 Foot Wind Tunnel.

    NASA Image and Video Library

    1961-04-03

    Rear view of the Avrocar with tail, mounted on variable height struts. Overhead doors of the wind tunnel test section open. The first Avrocar, S/N 58-7055 (marked AV-7055), after tethered testing, became the "wind tunnel" test model at NASA Ames, where it remained in storage from 1961 until 1966, when it was donated to the National Air and Space Museum, in Suitland, Maryland.

  10. Comparison of options for reduction of noise in the test section of the NASA Langley 4x7m wind tunnel, including reduction of nozzle area

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.

    1984-01-01

    The acoustically significant features of the NASA 4X7m wind tunnel and the Dutch-German DNW low speed tunnel are compared to illustrate the reasons for large differences in background noise in the open jet test sections of the two tunnels. Also introduced is the concept of reducing test section noise levels through fan and turning vane source reductions which can be brought about by reducing the nozzle cross sectional area, and thus the circuit mass flow for a particular exit velocity. The costs and benefits of treating sources, paths, and changing nozzle geometry are reviewed.

  11. On the Wing: A Business-Class Jet

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Cessna Aircraft Company was last featured in Spinoff 1991 for the Citation Jet, the industry's current best selling business jet. The newest addition to its fleet is the Citation X (ten), the largest, most complex aircraft ever produced by Cessna, which also has its basis in NASA technology. Aerodynamic design, wind tunneling testing, and airfoil performance, for example, have their foundation with NASA. The Citation X is the fastest, most efficient business jet ever built.

  12. Wind tunnel productivity status and improvement activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Putnam, Lawrence E.

    1996-01-01

    Over the last three years, a major effort has been underway to re-engineering the way wind tunnel testing is accomplished at the NASA Langley Research Center. This effort began with the reorganization of the LaRC and the consolidation of the management of the wind tunnels in the Aerodynamics Division under one operations branch. This paper provides an overview of the re-engineering activities and gives the status of the improvements in the wind tunnel productivity and customer satisfaction that have resulted from the new ways of working.

  13. Numerical Simulation of Selecting Model Scale of Cable in Wind Tunnel Test

    NASA Astrophysics Data System (ADS)

    Huang, Yifeng; Yang, Jixin

    The numerical simulation method based on computational Fluid Dynamics (CFD) provides a possible alternative means of physical wind tunnel test. Firstly, the correctness of the numerical simulation method is validated by one certain example. In order to select the minimum length of the cable as to a certain diameter in the numerical wind tunnel tests, the numerical wind tunnel tests based on CFD are carried out on the cables with several different length-diameter ratios (L/D). The results show that, when the L/D reaches to 18, the drag coefficient is stable essentially.

  14. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1992-01-01

    Aspects of the design and construction of the Laminar Flow Supersonic Wind Tunnel at the NASA-Ames Fluid Mechanics Laboratory are discussed. The wind tunnel is to be used as part of the NASA High Speed Research Program (HSRP).

  15. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 1: Background and description

    NASA Technical Reports Server (NTRS)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the space shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of space shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the space shuttle wind tunnel program. The two-volume set covers evolution of space shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  16. 1/50 Scale Model Of The 80X120 Foot Wind Tunnel Model (NFAC) In The Test Section Of The 40X80 Wind Tunnel At Nasa Ames.

    NASA Image and Video Library

    1976-03-12

    (03/12/1976) Overhead view of 1/50 scale model of the 80x120 foot wind tunnel model (NFAC) in the test section of the 40x80 wind tunnel at NASA Ames. Model mounted on a rotating ground board designed for this test.

  17. Wind-Tunnel Modeling of Flow Diffusion over an Urban Complex.

    DTIC Science & Technology

    URBAN AREAS, *ATMOSPHERIC MOTION, *AIR POLLUTION, ATMOSPHERIC MOTION, WIND TUNNEL MODELS, HEAT, DIFFUSION , TURBULENT BOUNDARY LAYER, WIND, SKIN FRICTION, MATHEMATICAL MODELS, URBAN PLANNING, INDIANA.

  18. Jet spoiler arrangement for wind turbine

    DOEpatents

    Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

    1983-09-15

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  19. Jet spoiler arrangement for wind turbine

    DOEpatents

    Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  20. Jet spoiler arrangement for wind turbine

    NASA Astrophysics Data System (ADS)

    Cyrus, J. D.; Kablec, E. G.; Klimas, P. C.

    1983-09-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stal conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  1. Planning Image-Based Measurements in Wind Tunnels by Virtual Imaging

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Schairer, Edward T.

    2011-01-01

    Virtual imaging is routinely used at NASA Ames Research Center to plan the placement of cameras and light sources for image-based measurements in production wind tunnel tests. Virtual imaging allows users to quickly and comprehensively model a given test situation, well before the test occurs, in order to verify that all optical testing requirements will be met. It allows optimization of the placement of cameras and light sources and leads to faster set-up times, thereby decreasing tunnel occupancy costs. This paper describes how virtual imaging was used to plan optical measurements for three tests in production wind tunnels at NASA Ames.

  2. Cryogenic Wind Tunnel Models. Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Young, C. P., Jr. (Compiler); Gloss, B. B. (Compiler)

    1983-01-01

    The principal motivating factor was the National Transonic Facility (NTF). Since the NTF can achieve significantly higher Reynolds numbers at transonic speeds than other wind tunnels in the world, and will therefore occupy a unique position among ground test facilities, every effort is being made to ensure that model design and fabrication technology exists to allow researchers to take advantage of this high Reynolds number capability. Since a great deal of experience in designing and fabricating cryogenic wind tunnel models does not exist, and since the experience that does exist is scattered over a number of organizations, there is a need to bring existing experience in these areas together and share it among all interested parties. Representatives from government, the airframe industry, and universities are included.

  3. Wind-jet interaction in high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej

    2016-07-01

    Jets in high-mass X-ray binaries can strongly interact with the stellar wind from the donor. The interaction leads, in particular, to formation of recollimation shocks. The shocks can then accelerate electrons in the jet and lead to enhanced emission, observable in the radio and gamma-ray bands. DooSoo, Zdziarski & Heinz (2016) have formulated a condition on the maximum jet power (as a function of the jet velocity and wind rate and velocity) at which such shocks form. This criterion can explain the large difference in the radio and gamma-ray loudness between Cyg X-1 and Cyg X-3. The orbital modulation of radio emission observed in Cyg X-1 and Cyg X-3 allows a measurement of the location of the height along the jet where the bulk of emission at a given frequency occurs. Strong absorption of X-rays in the wind of Cyg X-3 is required to account for properties of the correlation of the radio emission with soft and hard X-rays. That absorption can also account for the unusual spectral and timing X-ray properties of this source.

  4. Wind tunnel testing of low-drag airfoils

    NASA Technical Reports Server (NTRS)

    Harvey, W. Donald; Mcghee, R. J.; Harris, C. D.

    1986-01-01

    Results are presented for the measured performance recently obtained on several airfoil concepts designed to achieve low drag by maintaining extensive regions of laminar flow without compromising high-lift performance. The wind tunnel results extend from subsonic to transonic speeds and include boundary-layer control through shaping and suction. The research was conducted in the NASA Langley 8-Ft Transonic Pressure Tunnel (TPT) and Low Turbulence Pressure Tunnel (LTPT) which have been developed for testing such low-drag airfoils. Emphasis is placed on identifying some of the major factors influencing the anticipated performance of low-drag airfoils.

  5. Acoustic Survey of a 3/8-Scale Automotive Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Romberg, Gary; Hansen, Larry; Lutz, Ron

    1996-01-01

    An acoustic survey that consists of insertion loss and flow noise measurements was conducted at key locations around the circuit of a 3/8-scale automotive acoustic wind tunnel. Descriptions of the test, the instrumentation, and the wind tunnel facility are included in the current report, along with data obtained in the test in the form of 1/3-octave-band insertion loss and narrowband flow noise spectral data.

  6. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  7. Ceramic and coating applications in the hostile environment of a high temperature hypersonic wind tunnel. [Langley 8-foot high temperature structures tunnel

    NASA Technical Reports Server (NTRS)

    Puster, R. L.; Karns, J. R.; Vasquez, P.; Kelliher, W. C.

    1981-01-01

    A Mach 7, blowdown wind tunnel was used to investigate aerothermal structural phenomena on large to full scale high speed vehicle components. The high energy test medium, which provided a true temperature simulation of hypersonic flow at 24 to 40 km altitude, was generated by the combustion of methane with air at high pressures. Since the wind tunnel, as well as the models, must be protected from thermally induced damage, ceramics and coatings were used extensively. Coatings were used both to protect various wind tunnel components and to improve the quality of the test stream. Planned modifications for the wind tunnel included more extensive use of ceramics in order to minimize the number of active cooling systems and thus minimize the inherent operational unreliability and cost that accompanies such systems. Use of nonintrusive data acquisition techniques, such as infrared radiometry, allowed more widespread use of ceramics for models to be tested in high energy wind tunnels.

  8. Evaluation of a micro-scale wind model's performance over realistic building clusters using wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Du, Yunsong; Miao, Shiguang; Fang, Xiaoyi

    2016-08-01

    The simulation performance over complex building clusters of a wind simulation model (Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system (Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL (Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data (Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier-Stokes equations, and can produce very high-resolution (1-5 m) wind fields of a complex neighborhood scale urban building canopy (~ 1 km ×1 km) in less than 3 min when run on a personal computer.

  9. Altitude Wind Tunnel Operating at Night

    NASA Image and Video Library

    1945-04-21

    The Altitude Wind Tunnel (AWT) during one of its overnight runs at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory in Cleveland, Ohio. The AWT was run during night hours so that its massive power loads were handled when regional electric demands were lowest. At the time the AWT was among the most complex wind tunnels ever designed. In order to simulate conditions at high altitudes, NACA engineers designed innovative new systems that required tremendous amounts of electricity. The NACA had an agreement with the local electric company that it would run its larger facilities overnight when local demand was at its lowest. In return the utility discounted its rates for the NACA during those hours. The AWT could produce wind speeds up to 500 miles per hour through its 20-foot-diameter test section at the standard operating altitude of 30,000 feet. The airflow was created by a large fan that was driven by an 18,000-horsepower General Electric induction motor. The altitude simulation was accomplished by large exhauster and refrigeration systems. The cold temperatures were created by 14 Carrier compressors and the thin atmosphere by four 1750-horsepower exhausters. The first and second shifts usually set up and broke down the test articles, while the third shift ran the actual tests. Engineers would often have to work all day, then operate the tunnel overnight, and analyze the data the next day. The night crew usually briefed the dayshift on the tests during morning staff meetings.

  10. Design, construction and calibration of a portable boundary layer wind tunnel for field use

    USDA-ARS?s Scientific Manuscript database

    Wind tunnels have been used for several decades to study wind erosion processes. Portable wind tunnels offer the advantage of testing natural surfaces in the field, but they must be carefully designed to insure that a logarithmic boundary layer is formed and that wind erosion processes may develop ...

  11. Producing Turbulent Wind Tunnel Inflows Relevant to Wind Turbines using an Active Grid

    NASA Astrophysics Data System (ADS)

    Rumple, Christopher; Welch, Matthew; Naughton, Jonathan

    2017-11-01

    The rise of industries like wind energy have provided motivation for generating realistic turbulent inflows in wind tunnels. Facilities with the ability to produce such inflows can study the interaction between the inflow turbulence and the flow of interest such as a wind turbine wake. An active grid - a system of actively driven elements - has gained increasing acceptance in turbulence research over the last 20 years. The ability to tailor the inflow turbulence quantities (e.g. turbulence intensities, integral length scale, and turbulence spectrum) is a driving reason for the growing use of active grids. An active grid with 40 independent axes located within the forward contraction of a low speed wind tunnel is used to explore the range of turbulent inflows possible using hot-wire anemometry to characterize the turbulence. Motor control algorithms (i.e. user waveform inputs) used to produce various turbulent inflows will be presented. Wind data available from meteorological towers are used to develop relevant inflows for wind turbines to demonstrate the usefulness of the active grid. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.

  12. Performance of the high speed anechoic wind tunnel at Lyon University

    NASA Technical Reports Server (NTRS)

    Sunyach, M.; Brunel, B.; Comte-Bellot, G.

    1986-01-01

    The characteristics of the feed duct, the wind tunnel, and the experiments run in the convergent-divergent anechoic wind tunnel at Lyon University are described. The wind tunnel was designed to eliminate noise from the entrance of air or from flow interactions with the tunnel walls so that noise caused by the flow-test structure interactions can be studied. The channel contains 1 x 1 x 0.2 m glass and metal foil baffles spaced 0.2 m apart. The flow is forced by a 350 kW fan in the primary circuit, and a 110 kW blower in the secondary circuit. The primary circuit features a factor of four throat reductions, followed by a 1.6 reduction before the test section. Upstream and downstream sensors permit monitoring of the anechoic effectiveness of the channel. Other sensors allow modeling of the flow structures in the tunnel. The tunnel was used to examine turbulent boundary layers in flows up to 140 m/sec, tubulence-excited vibrations in walls, and the effects of laminar and turbulent flows on the appearance and locations of noise sources.

  13. Analysis and design of quiet hypersonic wind tunnels

    NASA Astrophysics Data System (ADS)

    Naiman, Hadassah

    The purpose of the present work is to integrate CFD into the design of quiet hypersonic wind tunnels and the analysis of their performance. Two specific problems are considered. The first problem is the automated design of the supersonic portion of a quiet hypersonic wind tunnel. Modern optimization software is combined with full Navier-Stokes simulations and PSE stability analysis to design a Mach 6 nozzle with maximum quiet test length. A response surface is constructed from a user-specified set of contour shapes and a genetic algorithm is used to find the "optimal contour", which is defined as the shortest nozzle with the maximum quiet test length. This is achieved by delaying transition along the nozzle wall. It is found that transition is triggered by Goertler waves, which can be suppressed by including a section of convex curvature along the contour. The optimal design has an unconventional shape described as compound curvature, which makes the contour appear slightly wavy. The second problem is the evaluation of a proposed modification of the test section in the Boeing/AFOSR Mach 6 Quiet Tunnel. The new design incorporates a section of increased diameter with the intention of enabling the tunnel to start in the presence of larger blunt models. Cone models with fixed base diameter (and hence fixed blockage ratio) are selected for this study. Cone half-angles from 15° to 75° are examined to ascertain the effect of ii the strength of the test model shock wave on the tunnel startup. The unsteady, laminar, compressible Navier-Stokes equations are solved. The resulting flowfields are analyzed to see what affect the shocks and shear layers have on the quiet test section flow. This study indicates that cone angles ≤20° allow the tunnel to start. Keywords. automated optimization, response surface, parabolized stability equations, compound curvature, laminar, wind tunnel, unstart, test section.

  14. Contraction design for small low-speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1988-01-01

    An iterative design procedure was developed for two- or three-dimensional contractions installed on small, low-speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a three-dimensional numerical panel method. The pressure or velocity distributions are then fed into two-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low-speed contractions it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs if justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a fifth-order polynomial was selected for installation on a newly designed mixing layer wind tunnel.

  15. Contraction design for small low-speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1988-01-01

    An iterative design procedure was developed for 2- or 3-dimensional contractions installed on small, low speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a 3-dimensional numerical panel method. The pressure or velocity distributions are then fed into 2-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low speed contractions, it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs is justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a 5th order polynomial was selected for newly designed mixing wind tunnel installation.

  16. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, John; Saunders, John

    2014-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  17. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, J. W.; Saunders, J. D.

    2015-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  18. Quiet Supersonic Wind Tunnel Development

    NASA Technical Reports Server (NTRS)

    King, Lyndell S.; Kutler, Paul (Technical Monitor)

    1994-01-01

    The ability to control the extent of laminar flow on swept wings at supersonic speeds may be a critical element in developing the enabling technology for a High Speed Civil Transport (HSCT). Laminar boundary layers are less resistive to forward flight than their turbulent counterparts, thus the farther downstream that transition from laminar to turbulent flow in the wing boundary layer is extended can be of significant economic impact. Due to the complex processes involved experimental studies of boundary layer stability and transition are needed, and these are performed in "quiet" wind tunnels capable of simulating the low-disturbance environment of free flight. At Ames, a wind tunnel has been built to operate at flow conditions which match those of the HSCT laminar flow flight demonstration 'aircraft, the F-16XL, i.e. at a Mach number of 1.6 and a Reynolds number range of 1 to 3 million per foot. This will allow detailed studies of the attachment line and crossflow on the leading edge area of the highly swept wing. Also, use of suction as a means of control of transition due to crossflow and attachment line instabilities can be studied. Topics covered include: test operating conditions required; design requirements to efficiently make use of the existing infrastructure; development of an injector drive system using a small pilot facility; plenum chamber design; use of computational tools for tunnel and model design; and early operational results.

  19. Preliminary Tests in the NACA Free-Spinning Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zimmerman, C H

    1937-01-01

    Typical models and the testing technique used in the NACA free-spinning wind tunnel are described in detail. The results of tests on two models afford a comparison between the spinning characteristics of scale models in the tunnel and of the airplanes that they represent.

  20. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Chang, Chau-Lyan; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    Classic tonal screech noise created by under-expanded supersonic jets; Long Penetration Mode (LPM) supersonic phenomenon -Under-expanded counter-flowing jet in supersonic free stream -Demonstrated in several wind tunnel tests -Modeled in several computational fluid dynamics (CFD) simulations; Discussion of LPM acoustics feedback and fluid interactions -Analogous to the aero-acoustics interactions seen in screech jets; Lessons Learned: Applying certain methodologies to LPM -Developed and successfully demonstrated in the study of screech jets -Discussion of mechanically induced excitation in fluid oscillators in general; Conclusions -Large body of work done on jet screech, other aero-acoustic phenomenacan have direct application to the study and applications of LPM cold flow jets

  1. Interaction between a pulsating jet and a surrounding disk wind. A hydrodynamical perspective

    NASA Astrophysics Data System (ADS)

    Tabone, B.; Raga, A.; Cabrit, S.; Pineau des Forêts, G.

    2018-06-01

    Context. The molecular richness of fast protostellar jets within 20-100 au of their source, despite strong ultraviolet irradiation, remains a challenge for the models investigated so far. Aim.We aim to investigate the effect of interaction between a time-variable jet and a surrounding steady disk wind, to assess the possibility of jet chemical enrichement by the wind, and the characteristic signatures of such a configuration. Methods: We have constructed an analytic model of a jet bow shock driven into a surrounding slower disk wind in the thin shell approximation. The refilling of the post bow shock cavity from below by the disk wind is also studied. An extension of the model to the case of two or more successive internal working surfaces (IWS) is made. We then compared this analytic model with numerical simulations with and without a surrounding disk wind. Results: We find that at early times (of order the variability period), jet bow shocks travel in refilled pristine disk wind material, before interacting with the cocoon of older bow shocks. This opens the possibility of bow shock chemical enrichment (if the disk wind is molecular and dusty) and of probing the unperturbed disk wind structure near the jet base. Several distinctive signatures of the presence of a surrounding disk wind are identified, in the bow shock morphology and kinematics. Numerical simulations validate our analytical approach and further show that at large scale, the passage of many jet IWS inside a disk wind produces a stationary V-shaped cavity, closing down onto the axis at a finite distance from the source.

  2. A surface flow visualisation technique for use in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Kell, D. M.

    1978-01-01

    A method of surface flow visualization for use in cryogenic wind tunnels is described which requires injection of a cryogenic liquid onto the model while the tunnel is running. This necessitates the use of a substance that remains liquid over a large range of cryogenic wind tunnel operating temperatures. It is found that propane (C3H8) is a suitable substance. Experiments are conducted in a subsonic cryogenic wind tunnel to assess the practical application of liquid propane flow visualization. The propane is stored in a chamber cooled by liquid nitrogen and when required is pumped through pipes to a gallery inside the model and then out onto the surface through small holes. To color the liquid a suspension of pigment particles is used. Propane is supplied to the cooled chamber in gaseous form from a standard liquefied gas cylinder. The sequence of events is illustrated on a propane temperature-entropy diagram. The use of liquefied propane for flow visualization in a cryogenic tunnel operating at pressures up to 40 atm appears to be feasible. Illustrative examples are provided.

  3. Role of Computational Fluid Dynamics and Wind Tunnels in Aeronautics R and D

    NASA Technical Reports Server (NTRS)

    Malik, Murjeeb R.; Bushnell, Dennis M.

    2012-01-01

    The purpose of this report is to investigate the status and future projections for the question of supplantation of wind tunnels by computation in design and to intuit the potential impact of computation approaches on wind-tunnel utilization all with an eye toward reducing the infrastructure cost at aeronautics R&D centers. Wind tunnels have been closing for myriad reasons, and such closings have reduced infrastructure costs. Further cost reductions are desired, and the work herein attempts to project which wind-tunnel capabilities can be replaced in the future and, if possible, the timing of such. If the possibility exists to project when a facility could be closed, then maintenance and other associated costs could be rescheduled accordingly (i.e., before the fact) to obtain an even greater infrastructure cost reduction.

  4. High-speed aerodynamic design of space vehicle and required hypersonic wind tunnel facilities

    NASA Astrophysics Data System (ADS)

    Sakakibara, Seizou; Hozumi, Kouichi; Soga, Kunio; Nomura, Shigeaki

    Problems associated with the aerodynamic design of space vehicles with emphasis of the role of hypersonic wind tunnel facilities in the development of the vehicle are considered. At first, to identify wind tunnel and computational fluid dynamics (CFD) requirements, operational environments are postulated for hypervelocity vehicles. Typical flight corridors are shown with the associated flow density: real gas effects, low density flow, and non-equilibrium flow. Based on an evaluation of these flight regimes and consideration of the operational requirements, the wind tunnel testing requirements for the aerodynamic design are examined. Then, the aerodynamic design logic and optimization techniques to develop and refine the configurations in a traditional phased approach based on the programmatic design of space vehicle are considered. Current design methodology for the determination of aerodynamic characteristics for designing the space vehicle, i.e., (1) ground test data, (2) numerical flow field solutions and (3) flight test data, are also discussed. Based on these considerations and by identifying capabilities and limits of experimental and computational methods, the role of a large conventional hypersonic wind tunnel and the high enthalpy tunnel and the interrelationship of the wind tunnels and CFD methods in actual aerodynamic design and analysis are discussed.

  5. Drift studies--comparison of field and wind tunnel experiments.

    PubMed

    Stadler, R; Regenauer, W

    2005-01-01

    Drift at pesticide application leads to a pollution of non-target crops, non-target species and surface water. Spray drift is influenced by many factors like environmental conditions, vegetation, technical conditions, and physical properties of the tank mixes and influenced by Chemicals. Field experiments to characterise spray drift effects with the risk of permanent changing weather conditions can be supported by wind tunnel experiments. Wind tunnel experiments do not lead to the same soil deposition curves like field experiments, but the ratio of drift reduction potential is comparable.

  6. Ramjet Testing in the NACA's Altitude Wind Tunnel

    NASA Image and Video Library

    1946-02-21

    A 20-inch diameter ramjet installed in the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Altitude Wind Tunnel was used in the 1940s to study early ramjet configurations. Ramjets provide a very simple source of propulsion. They are basically a tube which takes in high-velocity air, ignites it, and then expels the expanded airflow at a significantly higher velocity for thrust. Ramjets are extremely efficient and powerful but can only operate at high speeds. Therefore a turbojet or rocket was needed to launch the vehicle. This NACA-designed 20-inch diameter ramjet was installed in the Altitude Wind Tunnel in May 1945. The ramjet was mounted under a section of wing in the 20-foot diameter test section with conditioned airflow ducted directly to the engine. The mechanic in this photograph was installing instrumentation devices that led to the control room. NACA researchers investigated the ramjet’s overall performance at simulated altitudes up to 47,000 feet. Thrust measurements from these runs were studied in conjunction with drag data obtained during small-scale studies in the laboratory’s small supersonic tunnels. An afterburner was attached to the ramjet during the portions of the test program. The researchers found that an increase in altitude caused a reduction in the engine’s horsepower. They also determined the optimal configurations for the flameholders, which provided the engine’s ignition source.

  7. Exploratory Wind-Tunnel Investigation to Determine the Lift Effects of Blowing over Flaps from Nacelles Mounted Above the Wing

    NASA Technical Reports Server (NTRS)

    Riebe, John M; Davenport, Edwin E

    1958-01-01

    An exploratory wind-tunnel investigation has been made to determine the lift effects of blowing from nacelles over the upper surface of flaps on a model having a delta wing of aspect ratio 3. Several flap conditions were examined. High-pressure air was blown from an external-pipe arrangement supported above the wing to simulate jet-engine exhaust. The jet momentum- coefficient range was from 0 to 3.0 and the model angle of attack was 0 deg. The results of this limited investigation show that values of jet circulation lift coefficient larger than the Jet reaction were produced with blowing over flaps from nacelles mounted above the wing. 'I!heuse of double slotted flaps with the gap unsealed between the flaps and wing had a large detrimental effect on the lift capabilities. With these gaps sealed, larger lift coefficients were obtained when fantails were added to the nacelles. The longitudinal trim problems created by large diving moments were similar to those encountered with other jet-augmented-flap systems

  8. Application of Neural Networks to Wind tunnel Data Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Zhao, J. L.; DeLoach, Richard

    2000-01-01

    The integration of nonlinear neural network methods with conventional linear regression techniques is demonstrated for representative wind tunnel force balance data modeling. This work was motivated by a desire to formulate precision intervals for response surfaces produced by neural networks. Applications are demonstrated for representative wind tunnel data acquired at NASA Langley Research Center and the Arnold Engineering Development Center in Tullahoma, TN.

  9. 9-Ft By 7-Ft Supersonic Wind Tunnel Nozzle Improvement Study

    NASA Technical Reports Server (NTRS)

    Paciano, Eric N.

    2014-01-01

    Engineers at the Unitary Plan Wind Tunnel at NASA Ames Research Center have recently embarked on a project focused on improving flow quality and tunnel capabilities in the 9-ft by 7-ft supersonic wind tunnel. Collaborating with Jacobs Tech Group, the project has explored potential improvements to the nozzle design using computational fluid dynamics. Preliminary predictions suggest changes to the nozzle design could significantly improve flow quality at the lower operating range (M1.5-1.8), however potential improvements in the upper operating range have yet to be realized.

  10. Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1996-01-01

    A computational algorithm has been developed which can be employed to determine the flow properties of an arbitrary real (virial) gas in a wind tunnel. A multiple-coefficient virial gas equation of state and the assumption of isentropic flow are used to model the gas and to compute flow properties throughout the wind tunnel. This algorithm has been used to calculate flow properties for the wind tunnels of the Aerothermodynamics Facilities Complex at the NASA Langley Research Center, in which air, CF4. He, and N2 are employed as test gases. The algorithm is detailed in this paper and sample results are presented for each of the Aerothermodynamic Facilities Complex wind tunnels.

  11. Effects of vibration on inertial wind-tunnel model attitude measurement devices

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Buehrle, Ralph D.; Balakrishna, S.; Kilgore, W. Allen

    1994-01-01

    Results of an experimental study of a wind tunnel model inertial angle-of-attack sensor response to a simulated dynamic environment are presented. The inertial device cannot distinguish between the gravity vector and the centrifugal accelerations associated with wind tunnel model vibration, this situation results in a model attitude measurement bias error. Significant bias error in model attitude measurement was found for the model system tested. The model attitude bias error was found to be vibration mode and amplitude dependent. A first order correction model was developed and used for estimating attitude measurement bias error due to dynamic motion. A method for correcting the output of the model attitude inertial sensor in the presence of model dynamics during on-line wind tunnel operation is proposed.

  12. Altitude Wind Tunnel Control Room

    NASA Image and Video Library

    1945-05-21

    Researchers at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory monitor a ramjet's performance in the Altitude Wind Tunnel from the control room. The soundproof control room was just a few feet from the tunnel’s 20-foot-diameter test section. In the control room, the operators could control all aspects of the tunnel’s operation, including the air density, temperature, and speed. They also operated the engine or test article in the test section by controlling the angle-of-attack, speed, power, and other parameters. The men in this photograph are monitoring the engine’s thrust and lift. A NACA-designed 20-inch-diameter ramjet was installed in the tunnel in May 1945. Thrust figures from these runs were compared with drag data from tests of scale models in small supersonic tunnels to verify the ramjet’s feasibility. The tunnel was used to analyze the ramjet’s overall performance up to altitudes of 47,000 feet and speeds to Mach 1.84. The researchers found that an increase in altitude caused a reduction in the engine’s horsepower and identified optimal flameholder configurations.

  13. A lumped parameter mathematical model for simulation of subsonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Krosel, S. M.; Cole, G. L.; Bruton, W. M.; Szuch, J. R.

    1986-01-01

    Equations for a lumped parameter mathematical model of a subsonic wind tunnel circuit are presented. The equation state variables are internal energy, density, and mass flow rate. The circuit model is structured to allow for integration and analysis of tunnel subsystem models which provide functions such as control of altitude pressure and temperature. Thus the model provides a useful tool for investigating the transient behavior of the tunnel and control requirements. The model was applied to the proposed NASA Lewis Altitude Wind Tunnel (AWT) circuit and included transfer function representations of the tunnel supply/exhaust air and refrigeration subsystems. Both steady state and frequency response data are presented for the circuit model indicating the type of results and accuracy that can be expected from the model. Transient data for closed loop control of the tunnel and its subsystems are also presented, demonstrating the model's use as a control analysis tool.

  14. Design of experiments enhanced statistical process control for wind tunnel check standard testing

    NASA Astrophysics Data System (ADS)

    Phillips, Ben D.

    The current wind tunnel check standard testing program at NASA Langley Research Center is focused on increasing data quality, uncertainty quantification and overall control and improvement of wind tunnel measurement processes. The statistical process control (SPC) methodology employed in the check standard testing program allows for the tracking of variations in measurements over time as well as an overall assessment of facility health. While the SPC approach can and does provide researchers with valuable information, it has certain limitations in the areas of process improvement and uncertainty quantification. It is thought by utilizing design of experiments methodology in conjunction with the current SPC practices that one can efficiently and more robustly characterize uncertainties and develop enhanced process improvement procedures. In this research, methodologies were developed to generate regression models for wind tunnel calibration coefficients, balance force coefficients and wind tunnel flow angularities. The coefficients of these regression models were then tracked in statistical process control charts, giving a higher level of understanding of the processes. The methodology outlined is sufficiently generic such that this research can be applicable to any wind tunnel check standard testing program.

  15. A Wind-Tunnel Investigation of Tilt-Rotor Gust Alleviation Systems

    NASA Technical Reports Server (NTRS)

    Ham, N. D.; Whitaker, H. P.

    1978-01-01

    The alleviation of the effects of gusts on tilt rotor aircraft by means of active control systems was investigated. The gust generator, the derivation of the equations of motion of the rotor wing combination, the correlation of these equations with the results of wind tunnel model tests, the use of the equations to design various gust alleviating active control systems, and the testing and evaluation of these control systems by means of wind tunnel model tests were developed.

  16. 8- by 6-Foot Supersonic Wind Tunnel's Original Design

    NASA Image and Video Library

    1949-07-21

    Aerial view of the 8- by 6-Foot Supersonic Wind Tunnel in its original configuration at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The 8- by 6 was the laboratory’s first large supersonic wind tunnel. It was also the NACA’s most powerful supersonic tunnel, and its first facility capable of running an engine at supersonic speeds. The 8- by 6-foot tunnel has been used to study inlets and exit nozzles, fuel injectors, flameholders, exit nozzles, and controls on ramjet and turbojet propulsion systems. The 8- by 6 was originally an open-throat and non-return tunnel. This meant that the supersonic air flow was blown through the test section and out the other end into the atmosphere. In this photograph, the three drive motors in the structure at the left supplied power to the seven-stage axial-flow compressor in the light-colored structure. The air flow passed through flexible walls which were bent to create the desired speed. The test article was located in the 8- by 6-foot stainless steel test section located inside the steel pressure chamber at the center of this photograph. The tunnel dimensions were then gradually increased to slow the air flow before it exited into the atmosphere. The large two-story building in front of the tunnel was used as office space for the researchers.

  17. 9x15 Low Speed Wind Tunnel Acoustic Improvements

    NASA Technical Reports Server (NTRS)

    Stark, David; Stephens, David

    2016-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of VSTOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel has been used principally for acoustic and performance testing of aircraft propulsions systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.

  18. Nano-ADEPT Aeroloads Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Smith, Brandon; Yount, Bryan; Kruger, Carl; Brivkalns, Chad; Makino, Alberto; Cassell, Alan; Zarchi, Kerry; McDaniel, Ryan; Ross, James; Wercinski, Paul; hide

    2016-01-01

    A wind tunnel test of the Adaptable Deployable Entry and Placement Technology (ADEPT) was conducted in April 2015 at the US Army's 7 by10 Foot Wind Tunnel located at NASA Ames Research Center. Key geometric features of the fabric test article were a 0.7 meter deployed base diameter, a 70 degree half-angle forebody cone angle, eight ribs, and a nose-to-base radius ratio of 0.7. The primary objective of this wind tunnel test was to obtain static deflected shape and pressure distributions while varying pretension at dynamic pressures and angles of attack relevant to entry conditions at Earth, Mars, and Venus. Other objectives included obtaining aerodynamic force and moment data and determining the presence and magnitude of any dynamic aeroelastic behavior (buzz/flutter) in the fabric trailing edge. All instrumentation systems worked as planned and a rich data set was obtained. This paper describes the test articles, instrumentation systems, data products, and test results. Four notable conclusions are drawn. First, test data support adopting a pre-tension lower bound of 10 foot pounds per inch for Nano-ADEPT mission applications in order to minimize the impact of static deflection. Second, test results indicate that the fabric conditioning process needs to be reevaluated. Third, no flutter/buzz of the fabric was observed for any test condition and should also not occur at hypersonic speeds. Fourth, translating one of the gores caused ADEPT to generate lift without the need for a center of gravity offset. At hypersonic speeds, the lift generated by actuating ADEPT gores could be used for vehicle control.

  19. Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.

    2015-01-01

    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.

  20. A transonic wind tunnel wall interference prediction code

    NASA Technical Reports Server (NTRS)

    Phillips, Pamela S.; Waggoner, Edgar G.

    1988-01-01

    A small disturbance transonic wall interference prediction code has been developed that is capable of modeling solid, open, perforated, and slotted walls as well as slotted and solid walls with viscous effects. This code was developed by modifying the outer boundary conditions of an existing aerodynamic wing-body-pod-pylon-winglet analysis code. The boundary conditions are presented in the form of equations which simulate the flow at the wall, as well as finite difference approximations to the equations. Comparisons are presented at transonic flow conditions between computational results and experimental data for a wing alone in a solid wall wind tunnel and wing-body configurations in both slotted and solid wind tunnels.

  1. Wind Tunnel Measured Effects on a Twin-Engine Short-Haul Transport Caused by Simulated Ice Accretions: Data Report

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Potapczuk, Mark; Ratvasky, Thomas; Laflin, Brenda Gile

    1997-01-01

    The purpose of this report is to release the data from the NASA Langley/Lewis 14 by 22 foot wind tunnel test that examined icing effects on a 1/8 scale twin-engine short-haul jet transport model. Presented in this document are summary data from the major configurations tested. The entire test database in addition to ice shape and model measurements is available as a data supplement in CD-ROM form. Data measured and presented are: wing pressure distributions, model force and moment, and wing surface flow visualization.

  2. Immersion and contact freezing experiments in the Mainz wind tunnel laboratory

    NASA Astrophysics Data System (ADS)

    Eppers, Oliver; Mayer, Amelie; Diehl, Karoline; Mitra, Subir; Borrmann, Stephan; Szakáll, Miklós

    2016-04-01

    Immersion and contact freezing are of outmost important ice nucleation processes in mixed phase clouds. Experimental studies are carried out in the Mainz vertical wind tunnel laboratory in order to characterize these nucleation processes for different ice nucleating particles (INP), such as for mineral dust or biological particles. Immersion freezing is investigated in our laboratory with two different experimental techniques, both attaining contact-free levitation of liquid droplets and cooling of the surrounding air down to about -25 °C. In an acoustic levitator placed in the cold room of our laboratory, drops with diameters of 2 mm are investigated. In the vertical air stream of the wind tunnel droplets with diameter of 700 micron are freely floated at their terminal velocities, simulating the flow conditions of the free atmosphere. Furthermore, the wind tunnel offers a unique platform for contact freezing experiments. Supercooled water droplets are floated in the vertical air stream at their terminal velocities and INP are injected into the tunnel air stream upstream of them. As soon as INP collides with the supercooled droplet the contact freezing is initiated. The first results of immersion and contact freezing experiments with cellulose particles both in the acoustic levitator and in the wind tunnel will be presented. Cellulose is considered as typical INP of biological origin and a macrotracer for plant debris. Nucleating properties of cellulose will be provided, mainly focusing on the temperature, INP concentration, and specific surface area dependences of the freezing processes. Direct comparison between the different experimental techniques (acoustic levitator and wind tunnel), as well as between nucleation modes (immersion and contact freezing) will be presented. The work is carried out within the framework of the German research unit INUIT.

  3. Refrigeration Compressors for the Altitude Wind Tunnel

    NASA Image and Video Library

    1944-09-21

    These compressors inside the Refrigeration Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory were used to generate cold temperatures in the Altitude Wind Tunnel (AWT) and Icing Research Tunnel. The AWT was a large facility that simulated actual flight conditions at high altitudes. The two primary aspects of altitude simulation are the reduction of the air pressure and the decrease of temperature. The Icing Research Tunnel was a smaller facility in which water droplets were added to the refrigerated air stream to simulate weather conditions that produced ice buildup on aircraft. The military pressured the NACA to complete the tunnels quickly so they could be of use during World War II. The NACA engineers struggled with the design of this refrigeration system, so Willis Carrier, whose Carrier Corporation had pioneered modern refrigeration, took on the project. The Carrier engineers devised the largest cooling system of its kind in the world. The system could lower the tunnels’ air temperature to –47⁰ F. The cooling system was powered by 14 Carrier and York compressors, seen in this photograph, which were housed in the Refrigeration Building between the two wind tunnels. The compressors converted the Freon 12 refrigerant into a liquid. The refrigerant was then pumped into zig-zag banks of cooling coils inside the tunnels’ return leg. The Freon absorbed heat from the airflow as it passed through the coils. The heat was transferred to the cooling water and sent to the cooling tower where it was dissipated into the atmosphere.

  4. Calculations of air cooler for new subsonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Rtishcheva, A. S.

    2017-10-01

    As part of the component development of TsAGI’s new subsonic wind tunnel where the air flow velocity in the closed test section is up to 160 m/sec hydraulic and thermal characteristics of air cooler are calculated. The air cooler is one of the most important components due to its highest hydraulic resistance in the whole wind tunnel design. It is important to minimize its hydraulic resistance to ensure the energy efficiency of wind tunnel fans and the cost-cutting of tests. On the other hand the air cooler is to assure the efficient cooling of air flow in such a manner as to maintain the temperature below 40 °C for seamless operation of measuring equipment. Therefore the relevance of this project is driven by the need to develop the air cooler that would demonstrate low hydraulic resistance of air and high thermal effectiveness of heat exchanging surfaces; insofar as the cooling section must be given up per unit time with the amount of heat Q=30 MW according to preliminary evaluations. On basis of calculation research some variants of air cooler designs are proposed including elliptical tubes, round tubes, and lateral plate-like fins. These designs differ by the number of tubes and plates, geometrical characteristics and the material of finned surfaces (aluminium or cooper). Due to the choice of component configurations a high thermal effectiveness is achieved for finned surfaces. The obtained results form the basis of R&D support in designing the new subsonic wind tunnel.

  5. Reconnection-Driven Coronal-Hole Jets with Gravity and Solar Wind

    NASA Technical Reports Server (NTRS)

    Karpen, J. T.; Devore, C. R.; Antiochos, S. K.; Pariat, E.

    2017-01-01

    Coronal-hole jets occur ubiquitously in the Sun's coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection between the stressed closed field of the embedded bipole and the open field of the surrounding coronal hole. Previous numerical studies in Cartesian geometry, assuming uniform ambient magnetic field and plasma while neglecting gravity and solar wind, demonstrated that the model is robust and can produce jet-like events in simple configurations. We have extended these investigations by including spherical geometry,gravity, and solar wind in a nonuniform, coronal hole-like ambient atmosphere. Our simulations confirm that the jet is initiated by the onset of a kink-like instability of the internal closed field, which induces a burst of reconnection between the closed and external open field, launching a helical jet. Our new results demonstrate that the jet propagation is sustained through the outer corona, in the form of a traveling nonlinear Alfven wave front trailed by slower-moving plasma density enhancements that are compressed and accelerated by the wave. This finding agrees well with observations of white-light coronal-hole jets, and can explain microstreams and torsional Alfven waves detected in situ in the solar wind. We also use our numerical results to deduce scaling relationships between properties of the coronal source region and the characteristics of the resulting jet, which can be tested against observations.

  6. Laminar Flow Supersonic Wind Tunnel primary air injector

    NASA Technical Reports Server (NTRS)

    Smith, Brooke Edward

    1993-01-01

    This paper describes the requirements, design, and prototype testing of the flex-section and hinge seals for the Laminar Flow Supersonic Wind Tunnel Primary Injector. The supersonic atmospheric primary injector operates between Mach 1.8 and Mach 2.2 with mass-flow rates of 62 to 128 lbm/s providing the necessary pressure reduction to operate the tunnel in the desired Reynolds number (Re) range.

  7. IRBM in Unitary Plan Wind Tunnel

    NASA Image and Video Library

    1957-09-07

    L57-700 In the reentry flight path of this nose cone model of a Jupiter Intermediate range ballistic missile (IRBM) was tested in the Unitary Plan Wind Tunnel. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 475.

  8. Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.; Jung, Jaewoo; Willink, Gina; Glasner, Brett

    2016-01-01

    There is currently a lack of published data for the performance of multicopter unmanned aircraft system (UAS) vehicles, such as quadcopters and octocopters, often referred to collectively as drones. With the rapidly increasing popularity of multicopter UAS, there is interest in better characterizing the performance of this type of aircraft. By studying the performance of currently available vehicles, it will be possible to develop models for vehicles at this scale that can accurately predict performance and model trajectories. This paper describes a wind tunnel test that was recently performed in the U.S. Army's 7- by 10-ft Wind Tunnel at NASA Ames Research Center. During this wind tunnel entry, five multicopter UAS vehicles were tested to determine forces and moments as well as electrical power as a function of wind speed, rotor speed, and vehicle attitude. The test is described here in detail, and a selection of the key results from the test is presented.

  9. Semi-span wind tunnel testing without conventional peniche

    NASA Astrophysics Data System (ADS)

    Skinner, S. N.; Zare-Behtash, H.

    2017-12-01

    Low-speed wind tunnel tests of a flexible wing semi-span model have been implemented in the 9× 7 ft de Havilland wind tunnel at the University of Glasgow. The main objective of this investigation is to quantify the effect of removing the traditional peniche boundary layer spacer utilised in this type of testing. Removal of the peniche results in a stand-off gap between the wind tunnel wall and the model's symmetry plane. This offers the advantage of preventing the development of a horseshoe vortex in front of the model, at the peniche/wall juncture. The formation of the horseshoe vortex is known to influence the flow structures around the entire model and thus alters the model's aerodynamic behaviours. To determine the influence of the stand-off gap, several gap heights have been tested for a range of angles of attack at Re=1.5× 10^6, based on the wing mean aerodynamic chord (MAC). Force platform data have been used to evaluate aerodynamic coefficients, and how they vary with stand-off heights. Stereoscopic Particle Imaging Velocimetry (sPIV) was used to examine the interaction between the tunnel boundary layer and model's respective stand-off gap. In addition, clay and tuft surface visualisation enhanced the understanding of how local flow structures over the length of the fuselage vary with stand-off height and angle of attack. The presented results show that a stand-off gap of four-to-five times the displacement thickness of the tunnel wall boundary layer is capable of achieving a flow field around the model fuselage that is representative of what would be expected for an equivalent full-span model in free-air—this cannot be achieved with the application of a peniche.

  10. TWINTAN: A program for transonic wall interference assessment in two-dimensional wind tunnels

    NASA Technical Reports Server (NTRS)

    Kemp, W. B., Jr.

    1980-01-01

    A method for assessing the wall interference in transonic two dimensional wind tunnel test was developed and implemented in a computer program. The method involves three successive solutions of the transonic small disturbance potential equation to define the wind tunnel flow, the perturbation attriburable to the model, and the equivalent free air flow around the model. Input includes pressure distributions on the model and along the top and bottom tunnel walls which are used as boundary conditions for the wind tunnel flow. The wall induced perturbation fields is determined as the difference between the perturbation in the tunnel flow solution and the perturbation attributable to the model. The methodology used in the program is described and detailed descriptions of the computer program input and output are presented. Input and output for a sample case are given.

  11. Aeroelastic instability stoppers for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Ricketts, R. H. (Inventor)

    1981-01-01

    A mechanism for constraining models or sections thereof, was wind tunnel tested, deployed at the onset of aeroelastic instability, to forestall destructive vibrations in the model is described. The mechanism includes a pair of arms pivoted to the tunnel wall and straddling the model. Rollers on the ends of the arms contact the model, and are pulled together against the model by a spring stretched between the arms. An actuator mechanism swings the arms into place and back as desired.

  12. Visual display and alarm system for wind tunnel static and dynamic loads

    NASA Technical Reports Server (NTRS)

    Hanly, Richard D.; Fogarty, James T.

    1987-01-01

    A wind tunnel balance monitor and alarm system developed at NASA Ames Research Center will produce several beneficial results. The costs of wind tunnel delays because of inadvertent balance damage and the costs of balance repair or replacement can be greatly reduced or eliminated with better real-time information on the balance static and dynamic loading. The wind tunnel itself will have enhanced utility with the elimination of overly cautious limits on test conditions. The microprocessor-based system features automatic scaling and 16 multicolored LED bargraphs to indicate both static and dynamic components of the signals from eight individual channels. Five individually programmable alarm levels are available with relay closures for internal or external visual and audible warning devices and other functions such as automatic activation of external recording devices, model positioning mechanisms, or tunnel shutdown.

  13. Visual display and alarm system for wind tunnel static and dynamic loads

    NASA Technical Reports Server (NTRS)

    Hanly, Richard D.; Fogarty, James T.

    1987-01-01

    A wind tunnel balance monitor and alarm system developed at NASA Ames Research Center will produce several beneficial results. The costs of wind tunnel delays because of inadvertent balance damage and the costs of balance repair or replacement can be greatly reduced or eliminated with better real-time information on the balance static and dynamic loading. The wind tunnel itself will have enhanced utility with the elimination of overly cautious limits on test conditions. The microprocessor-based system features automatic scaling and 16 multicolored LED bargraphs to indicate both static and dynamic components of the signals from eight individual channels. Five individually programmable alarm levels are available with relay closures for internal or external visual and audible warning devices and other functions such as automatic activation of external recording devices, model positioning mechanism, or tunnel shutdown.

  14. Phosphor thermography technique in hypersonic wind tunnel - Feasibility study

    NASA Astrophysics Data System (ADS)

    Edy, J. L.; Bouvier, F.; Baumann, P.; Le Sant, Y.

    Probative research has been undertaken at ONERA on a new technique of thermography in hypersonic wind tunnels. This method is based on the heat sensitivity of a luminescent coating applied to the model. The luminescent compound, excited by UV light, emits visible light, the properties of which depend on the phosphor temperature, among other factors. Preliminary blowdown wind tunnel tests have been performed, firstly for spot measurements and then for cartographic measurements using a 3-CCD video camera, a BETACAM video recorder and a digital image processing system. The results provide a good indication of the method feasibility.

  15. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Application to Flutter Suppression

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1996-01-01

    This paper describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind-tunnel model for application to design and analysis of flutter suppression controllers. The model is formed by combining the equations of motion for the BACT wind-tunnel model with actuator models and a model of wind-tunnel turbulence. The primary focus of this paper is the development of the equations of motion from first principles using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated using values for parameters obtained from both experiment and analysis. A unique aspect of the BACT wind-tunnel model is that it has upper- and lower-surface spoilers for active control. Comparisons with experimental frequency responses and other data show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind-tunnel model. The equations of motion developed herein have been used to assist the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  16. Wind tunnel simulation of Martian sand storms

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1980-01-01

    The physics and geological relationships of particles driven by the wind under near Martian conditions were examined in the Martian Surface Wind Tunnel. Emphasis was placed on aeolian activity as a planetary process. Threshold speeds, rates of erosion, trajectories of windblown particles, and flow fields over various landforms were among the factors considered. Results of experiments on particles thresholds, rates of erosion, and the effects of electrostatics on particles in the aeolian environment are presented.

  17. Self streamlining wind tunnel: Low speed testing and transonic test section design

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.; Goodyer, M. J.

    1977-01-01

    Comprehensive aerodynamic data on an airfoil section were obtained through a wide range of angles of attack, both stalled and unstalled. Data were gathered using a self streamlining wind tunnel and were compared to results obtained on the same section in a conventional wind tunnel. The reduction of wall interference through streamline was demonstrated.

  18. Research at NASA's NFAC wind tunnels

    NASA Technical Reports Server (NTRS)

    Edenborough, H. Kipling

    1990-01-01

    The National Full-Scale Aerodynamics Complex (NFAC) is a unique combination of wind tunnels that allow the testing of aerodynamic and dynamic models at full or large scale. It can even accommodate actual aircraft with their engines running. Maintaining full-scale Reynolds numbers and testing with surface irregularities, protuberances, and control surface gaps that either closely match the full-scale or indeed are those of the full-scale aircraft help produce test data that accurately predict what can be expected from future flight investigations. This complex has grown from the venerable 40- by 80-ft wind tunnel that has served for over 40 years helping researchers obtain data to better understand the aerodynamics of a wide range of aircraft from helicopters to the space shuttle. A recent modification to the tunnel expanded its maximum speed capabilities, added a new 80- by 120-ft test section and provided extensive acoustic treatment. The modification is certain to make the NFAC an even more useful facility for NASA's ongoing research activities. A brief background is presented on the original facility and the kind of testing that has been accomplished using it through the years. A summary of the modification project and the measured capabilities of the two test sections is followed by a review of recent testing activities and of research projected for the future.

  19. Fan array wind tunnel: a multifunctional, complex environmental flow manipulator

    NASA Astrophysics Data System (ADS)

    Dougherty, Christopher; Veismann, Marcel; Gharib, Morteza

    2017-11-01

    The recent emergence of small unmanned aerial vehicles (UAVs) has reshaped the aerospace testing environment. Traditional closed-loop wind tunnels are not particularly suited nor easily retrofit to take advantage of these coordinated, controls-based rotorcraft. As such, a highly configurable, novel wind tunnel aimed at addressing the unmet technical challenges associated with single or formation flight performance of autonomous drone systems is presented. The open-loop fan array wind tunnel features 1296 individually controllable DC fans arranged in a 2.88m x 2.88m array. The fan array can operate with and without a tunnel enclosure and is able to rotate between horizontal and vertical testing configurations. In addition to standard variable speed uniform flow, the fan array can generate both unsteady and shear flows. Through the aid of smaller side fan array units, vortex flows are also possible. Conceptual design, fabrication, and validation of the tunnel performance will be presented, including theoretical and computational predictions of flow speed and turbulence intensity. Validation of these parameters is accomplished through standard pitot-static and hot-wire techniques. Particle image velocimetry (PIV) of various complex flows will also be shown. This material is based upon work supported by the Center for Autonomous Systems and Technologies (CAST) at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT).

  20. Flight effects on the aerodynamic and acoustic characteristics of inverted profile coannular nozzles, volume 1. [supersonic cruise aircraft research wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    Jet noise spectra obtained at static conditions from an acoustic wind tunnel and an outdoor facility are compared. Data curves are presented for (1) the effect of relative velocity on OASPL directivity (all configurations); (2) the effect of relative velocity on noise spectra (all configurations); (3) the effect of velocity on PNL directivity (coannular nozzle configurations); (4) nozzle exhaust plume velocity profiles; and (5) the effect of relative velocity on aerodynamic performance.

  1. Cryogenic wind tunnel technology. A way to measurement at higher Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Beck, J. W.

    1984-01-01

    The goals, design, problems, and value of cryogenic transonic wind tunnels being developed in Europe are discussed. The disadvantages inherent in low-Reynolds-number (Re) wind tunnel simulations of aircraft flight at high Re are reviewed, and the cryogenic tunnel is shown to be the most practical method to achieve high Re. The design proposed for the European Transonic Wind tunnel (ETW) is presented: parameters include cross section. DISPLAY 83A46484/2 = 4 sq m, operating pressure = 5 bar, temperature = 110-120 K, maximum Re = 40 x 10 to the 6th, liquid N2 consumption = 40,000 metric tons/year, and power = 39,5 MW. The smaller Cologne subsonic tunnel being adapted to cryogenic use for preliminary studies is described. Problems of configuration, materials, and liquid N2 evaporation and handling and the research underway to solve them are outlined. The benefits to be gained by the construction of these costly installations are seen more in applied aerodynamics than in basic research in fluid physics. The need for parallel development of both high Re tunnels and computers capable of performing high-Re numerical analysis is stressed.

  2. Aeronautical Facilities Catalogue. Volume 1: Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler); Freda, M. S. (Compiler)

    1985-01-01

    Domestic and foreign wind tunnel facilities are enumerated and their technical parameters are described. Data pertinent to managers and engineers are presented. Facilities judged comparable in testing capability are noted and grouped together. Several comprehensive cross-indexes and charts are included.

  3. NEW VERSATILE AEROSOL GENERATION SYSTEM DEVELOPED FOR USE IN A LARGE WIND TUNNEL

    EPA Science Inventory

    A new aerosol generation system was developed to accommodate a variety of research activities performed within a large wind tunnel. Because many of the velocity measurements are taken in the wind tunnel with a laser Doppler anemometer (LDA), it is necessary to maintain an aero...

  4. Real jet effects on dual jets in a crossflow

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.

    1984-01-01

    A 6-ft by 6-ft wind tunnel section was modification to accommodate the 7-ft wide NASA dual-jet flate model in an effort to determine the effects of nonuniform and/or noncircular jet exhaust profiles on the pressure field induced on a nearby surface. Tests completed yield surface pressure measurements for a 90 deg circular injector producing exit profiles representative of turbofan nozzles (such as the TF-34 nozzle). The measurements were obtained for both tandem and side-by-side jet configurations, jet spacing of S/D =2, and velocity ratios of R=2.2 and 4.0. Control tests at the same mass flow rate but with uniform exit velocity profiles were also conducted, for comparison purposes. Plots for 90 deg injection and R=2.2 show that the effects of exit velocity profile nonuniformity are quite significant.

  5. Subsonic Wind Tunnel Tests of the FBTV Configuration in Proximity of the B-52

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priebe, R.W.

    1966-12-01

    Wind tunnel tests were conducted on a .075 scale Sandia FBTV store model in an 8-foot transonic wind tunnel during December `66. These tests were performed to obtain longitudinal and lateral stability characteristics.

  6. Wind tunnel data of the analysis of heat pipe and wind catcher technology for the built environment

    PubMed Central

    Calautit, John Kaiser; Chaudhry, Hassam Nasarullah; Hughes, Ben Richard

    2015-01-01

    The data presented in this article were the basis for the study reported in the research articles entitled ‘Climate responsive behaviour heat pipe technology for enhanced passive airside cooling’ by Chaudhry and Hughes [10] which presents the passive airside cooling capability of heat pipes in response to gradually varying external temperatures and related to the research article “CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices” by Calautit and Hughes [1] which compares the ventilation performance of a standard roof mounted wind catcher and wind catcher incorporating the heat pipe technology. Here, we detail the wind tunnel test set-up and inflow conditions and the methodologies for the transient heat pipe experiment and analysis of the integration of heat pipes within the control domain of a wind catcher design. PMID:26958604

  7. Wind tunnel data of the analysis of heat pipe and wind catcher technology for the built environment.

    PubMed

    Calautit, John Kaiser; Chaudhry, Hassam Nasarullah; Hughes, Ben Richard

    2015-12-01

    The data presented in this article were the basis for the study reported in the research articles entitled 'Climate responsive behaviour heat pipe technology for enhanced passive airside cooling' by Chaudhry and Hughes [10] which presents the passive airside cooling capability of heat pipes in response to gradually varying external temperatures and related to the research article "CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices" by Calautit and Hughes [1] which compares the ventilation performance of a standard roof mounted wind catcher and wind catcher incorporating the heat pipe technology. Here, we detail the wind tunnel test set-up and inflow conditions and the methodologies for the transient heat pipe experiment and analysis of the integration of heat pipes within the control domain of a wind catcher design.

  8. HFSB-seeding for large-scale tomographic PIV in wind tunnels

    NASA Astrophysics Data System (ADS)

    Caridi, Giuseppe Carlo Alp; Ragni, Daniele; Sciacchitano, Andrea; Scarano, Fulvio

    2016-12-01

    A new system for large-scale tomographic particle image velocimetry in low-speed wind tunnels is presented. The system relies upon the use of sub-millimetre helium-filled soap bubbles as flow tracers, which scatter light with intensity several orders of magnitude higher than micron-sized droplets. With respect to a single bubble generator, the system increases the rate of bubbles emission by means of transient accumulation and rapid release. The governing parameters of the system are identified and discussed, namely the bubbles production rate, the accumulation and release times, the size of the bubble injector and its location with respect to the wind tunnel contraction. The relations between the above parameters, the resulting spatial concentration of tracers and measurement of dynamic spatial range are obtained and discussed. Large-scale experiments are carried out in a large low-speed wind tunnel with 2.85 × 2.85 m2 test section, where a vertical axis wind turbine of 1 m diameter is operated. Time-resolved tomographic PIV measurements are taken over a measurement volume of 40 × 20 × 15 cm3, allowing the quantitative analysis of the tip-vortex structure and dynamical evolution.

  9. A low-density boundary-layer wind tunnel facility

    NASA Technical Reports Server (NTRS)

    White, B. R.

    1987-01-01

    This abstract describes a low-density wind-tunnel facility that was established at NASA Ames in order to aid interpretation and understanding of data received from the Mariner and Viking spacecraft through earth-based simulation. The wind tunnel is a boundary-layer type which is capable of operating over a range of air densities ranging from 0.01 to 1.24 kg/cu m, with the lower values being equivalent to the near-surface density of the planet Mars. Although the facility was developed for space and extraterrestrial simulation, it also can serve as a relatively large-scale, low-density aerodynamic test facility. A description of this unique test facility and some Pitot-tube and hot-wire anemometry data acquired in the facility are presented.

  10. ARES I Aerodynamic Testing at the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Wilcox, Floyd J.

    2011-01-01

    Small-scale force and moment and pressure models based on the outer mold lines of the Ares I design analysis cycle crew launch vehicle were tested in the NASA Langley Research Center Unitary Plan Wind Tunnel from May 2006 to September 2009. The test objectives were to establish supersonic ascent aerodynamic databases and to obtain force and moment, surface pressure, and longitudinal line-load distributions for comparison to computational predictions. Test data were obtained at low through high supersonic Mach numbers for ranges of the Reynolds number, angle of attack, and roll angle. This paper focuses on (1) the sensitivity of the supersonic aerodynamic characteristics to selected protuberances, outer mold line changes, and wind tunnel boundary layer transition techniques, (2) comparisons of experimental data to computational predictions, and (3) data reproducibility. The experimental data obtained in the Unitary Plan Wind Tunnel captured the effects of evolutionary changes to the Ares I crew launch vehicle, exhibited good agreement with predictions, and displayed satisfactory within-test and tunnel-to-tunnel data reproducibility.

  11. Wind Tunnel Interference on Wings, Bodies and Airscrews

    DTIC Science & Technology

    1933-09-13

    jet usually issues from a eliminated by designing tie wiand tunnel with a slight expanson closed cylindrical mouth immediately in front of the model...pressilre at the boundary. This type of constraiA 16 \\1 h 3/. would occur under the ideal conditions of a perfect fluid, and it is I Eperimental confirmation

  12. Turboprop Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1976-08-21

    National Aeronautics and Space Administration (NASA) engineer Robert Jeracki prepares a Hamilton Standard SR-1 turboprop model in the test section of the 8- by 6-Foot Supersonic Wind Tunnel at the Lewis Research Center. Lewis researchers were analyzing a series of eight-bladed propellers in their wind tunnels to determine their operating characteristics at speeds up to Mach 0.8. The program, which became the Advanced Turboprop, was part of a NASA-wide Aircraft Energy Efficiency Program which was designed to reduce aircraft fuel costs by 50 percent. The ATP concept was different from the turboprops in use in the 1950s. The modern versions had at least eight blades and were swept back for better performance. After Lewis researchers developed the advanced turboprop theory and established its potential performance capabilities, they commenced an almost decade-long partnership with Hamilton Standard to develop, verify, and improve the concept. A series of 24-inch scale models of the SR-1 with different blade shapes and angles were tested in Lewis’ wind tunnels. A formal program was established in 1978 to examine associated noise levels, aerodynamics, and the drive system. The testing of the large-scale propfan was done on test rigs, in large wind tunnels, and, eventually, on aircraft.

  13. The free jet as a simulator of forward velocity effects on jet noise

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Tester, B. J.; Tanna, H. K.

    1978-01-01

    A thorough theoretical and experimental study of the effects of the free-jet shear layer on the transmission of sound from a model jet placed within the free jet to the far-field receiver located outside the free-jet flow was conducted. The validity and accuracy of the free-jet flight simulation technique for forward velocity effects on jet noise was evaluated. Transformation charts and a systematic computational procedure for converting measurements from a free-jet simulation to the corresponding results from a wind-tunnel simulation, and, finally, to the flight case were provided. The effects of simulated forward flight on jet mixing noise, internal noise and shock-associated noise from model-scale unheated and heated jets were established experimentally in a free-jet facility. It was illustrated that the existing anomalies between full-scale flight data and model-scale flight simulation data projected to the flight case, could well be due to the contamination of flight data by engine internal noise.

  14. Pulse-burst PIV in a high-speed wind tunnel

    NASA Astrophysics Data System (ADS)

    Beresh, Steven; Kearney, Sean; Wagner, Justin; Guildenbecher, Daniel; Henfling, John; Spillers, Russell; Pruett, Brian; Jiang, Naibo; Slipchenko, Mikhail; Mance, Jason; Roy, Sukesh

    2015-09-01

    Time-resolved particle image velocimetry (TR-PIV) has been achieved in a high-speed wind tunnel, providing velocity field movies of compressible turbulence events. The requirements of high-speed flows demand greater energy at faster pulse rates than possible with the TR-PIV systems developed for low-speed flows. This has been realized using a pulse-burst laser to obtain movies at up to 50 kHz, with higher speeds possible at the cost of spatial resolution. The constraints imposed by use of a pulse-burst laser are limited burst duration of 10.2 ms and a low duty cycle for data acquisition. Pulse-burst PIV has been demonstrated in a supersonic jet exhausting into a transonic crossflow and in transonic flow over a rectangular cavity. The velocity field sequences reveal the passage of turbulent structures and can be used to find velocity power spectra at every point in the field, providing spatial distributions of acoustic modes. The present work represents the first use of TR-PIV in a high-speed ground-test facility.

  15. An Overview of the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model Program

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Perry, Boyd, III; Florance, James R.; Sanetrik, Mark D.; Wieseman, Carol D.; Stevens, William L.; Funk, Christie J.; Christhilf, David M.; Coulson, David A.

    2012-01-01

    A summary of computational and experimental aeroelastic (AE) and aeroservoelastic (ASE) results for the Semi-Span Super-Sonic Transport (S4T) wind-tunnel model is presented. A broad range of analyses and multiple AE and ASE wind-tunnel tests of the S4T wind-tunnel model have been performed in support of the ASE element in the Supersonics Program, part of the NASA Fundamental Aeronautics Program. This paper is intended to be an overview of multiple papers that comprise a special S4T technical session. Along those lines, a brief description of the design and hardware of the S4T wind-tunnel model will be presented. Computational results presented include linear and nonlinear aeroelastic analyses, and rapid aeroelastic analyses using CFD-based reduced-order models (ROMs). A brief survey of some of the experimental results from two open-loop and two closed-loop wind-tunnel tests performed at the NASA Langley Transonic Dynamics Tunnel (TDT) will be presented as well.

  16. Shuttle orbiter boundary layer transition at flight and wind tunnel conditions

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Derry, S. M.; Bertin, J. J.

    1983-01-01

    Hypersonic boundary layer transition data obtained on the windward centerline of the Shuttle orbiter during entry for the first five flights are presented and analyzed. Because the orbiter surface is composed of a large number of thermal protection tiles, the transition data include the effects of distributed roughness arising from tile misalignment and gaps. These data are used as a benchmark for assessing and improving the accuracy of boundary layer transition predictions based on correlations of wind tunnel data taken on both aerodynamically rough and smooth orbiter surfaces. By comparing these two data bases, the relative importance of tunnel free stream noise and surface roughness on orbiter boundary layer transition correlation parameters can be assessed. This assessment indicates that accurate predications of transition times can be made for the orbiter at hypersonic flight conditions by using roughness dominated wind tunnel data. Specifically, times of transition onset and completion is accurately predicted using a correlation based on critical and effective values of a roughness Reynolds number previously derived from wind tunnel data.

  17. The 13-inch magnetic suspension and balance system wind tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, William G., Jr.; Dress, David A.

    1989-01-01

    NASA Langley has a small, subsonic wind tunnel in use with the 13-inch Magnetic Suspension and Balance System (MSBS). The tunnel is capable of speeds up to Mach 0.5. This report presents tunnel design and construction details. It includes flow uniformity, angularity, and velocity fluctuation data. It also compares experimental Mach number distribution data with computed results for the General Electric Streamtube Curvature Program.

  18. Increased wind risk from sting-jet windstorms with climate change

    NASA Astrophysics Data System (ADS)

    Martínez-Alvarado, Oscar; Gray, Suzanne L.; Hart, Neil C. G.; Clark, Peter A.; Hodges, Kevin; Roberts, Malcolm J.

    2018-04-01

    Extra-tropical cyclones dominate autumn and winter weather over western Europe. The strongest cyclones, often termed windstorms, have a large socio-economic impact on landfall due to strong surface winds and coastal storm surges. Climate model integrations have predicted a future increase in the frequency of, and potential damage from, European windstorms and yet these integrations cannot properly represent localised jets, such as sting jets, that may significantly enhance damage. Here we present the first prediction of how the climatology of sting-jet-containing cyclones will change in a future warmer climate, considering the North Atlantic and Europe. A proven sting-jet precursor diagnostic is applied to 13 year present-day and future (~2100) climate integrations from the Met Office Unified Model in its Global Atmosphere 3.0 configuration. The present-day climate results are consistent with previously-published results from a reanalysis dataset (with around 32% of cyclones exhibiting the sing-jet precursor), lending credibility to the analysis of the future-climate integration. The proportion of cyclones exhibiting the sting-jet precursor in the future-climate integration increases to 45%. Furthermore, while the proportion of explosively-deepening storms increases only slightly in the future climate, the proportion of those storms with the sting-jet precursor increases by 60%. The European resolved-wind risk associated with explosively-deepening storms containing a sting-jet precursor increases substantially in the future climate; in reality this wind risk is likely to be further enhanced by the release of localised moist instability, unresolved by typical climate models.

  19. RECONNECTION-DRIVEN CORONAL-HOLE JETS WITH GRAVITY AND SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpen, J. T.; DeVore, C. R.; Antiochos, S. K.

    Coronal-hole jets occur ubiquitously in the Sun's coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection between the stressed closed field of the embedded bipole and the open field of the surrounding coronal hole. Previous numerical studies in Cartesian geometry, assuming uniform ambient magnetic field and plasma while neglecting gravity and solar wind, demonstrated that the model is robust and can produce jet-like events in simple configurations. We have extended these investigations by including spherical geometry, gravity, and solarmore » wind in a nonuniform, coronal hole-like ambient atmosphere. Our simulations confirm that the jet is initiated by the onset of a kink-like instability of the internal closed field, which induces a burst of reconnection between the closed and external open field, launching a helical jet. Our new results demonstrate that the jet propagation is sustained through the outer corona, in the form of a traveling nonlinear Alfvén wave front trailed by slower-moving plasma density enhancements that are compressed and accelerated by the wave. This finding agrees well with observations of white-light coronal-hole jets, and can explain microstreams and torsional Alfvén waves detected in situ in the solar wind. We also use our numerical results to deduce scaling relationships between properties of the coronal source region and the characteristics of the resulting jet, which can be tested against observations.« less

  20. Scale Model of Agena/Mariner-C in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1964-02-21

    Researcher Bobby Sanders examines a 0.10-scale model of the Mariner-C shroud and Agena rocket in the 8- by 6-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Mariner-C and Mariner-D were identical spacecraft designed by the Jet Propulsion Laboratory to flyby Mars and photograph the Martian surface. The two Mariner spacecraft were launched by Atlas-Agena-D rockets. Lewis had taken over management of the Agena Program in October 1962. Lewis researchers investigated two different types of shrouds for the Mariner missions—an over-the-nose design and a backup pyrotechnic design. The new shroud was wider in diameter than the Agena rocket, so there was concern that this disparity might create air flow instability that could damage the shroud or destroy the vehicle. The tests in the 8- by 6 tunnel simulated launch speeds from Mach 0.56 to 1.96. Afterwards the Agena-Mariner-C model was studied in the 10- by 10-Foot Supersonic Wind Tunnel at speeds of Mach 2.0 to 3.5. Mariner-C was launched on November 4, 1964, but the payload shroud did not jettison properly and the spacecraft’s battery power did not function. The mission ended unsuccessfully two days later. Mariner-D was launched on November 28, 1964 and became the first successful mission to Mars. It was the first time a planet was photographed from space. Mariner-D’s 21 photographs revealed an inhospitable and barren landscape.

  1. WIND TUNNEL SIMULATIONS OF POLLUTION FROM ROADWAYS

    EPA Science Inventory

    A wind tunnel study has been conducted to examine the influence of roadway configurations and nearby structures on the flow and dispersion of traffic related pollutant concentrations within a few hundred meters of the roadway. The study focused four selected configurations (all w...

  2. Models of Lift and Drag Coefficients of Stalled and Unstalled Airfoils in Wind Turbines and Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    2008-01-01

    Equations are developed with which to calculate lift and drag coefficients along the spans of torsionally-stiff rotating airfoils of the type used in wind turbine rotors and wind tunnel fans, at angles of attack in both the unstalled and stalled aerodynamic regimes. Explicit adjustments are made for the effects of aspect ratio (length to chord width) and airfoil thickness ratio. Calculated lift and drag parameters are compared to measured parameters for 55 airfoil data sets including 585 test points. Mean deviation was found to be -0.4 percent and standard deviation was 4.8 percent. When the proposed equations were applied to the calculation of power from a stall-controlled wind turbine tested in a NASA wind tunnel, mean deviation from 54 data points was -1.3 percent and standard deviation was 4.0 percent. Pressure-rise calculations for a large wind tunnel fan deviated by 2.7 percent (mean) and 4.4 percent (standard). The assumption that a single set of lift and drag coefficient equations can represent the stalled aerodynamic behavior of a wide variety of airfoils was found to be satisfactory.

  3. Tactical Defenses Against Systematic Variation in Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2002-01-01

    This paper examines the role of unexplained systematic variation on the reproducibility of wind tunnel test results. Sample means and variances estimated in the presence of systematic variations are shown to be susceptible to bias errors that are generally non-reproducible functions of those variations. Unless certain precautions are taken to defend against the effects of systematic variation, it is shown that experimental results can be difficult to duplicate and of dubious value for predicting system response with the highest precision or accuracy that could otherwise be achieved. Results are reported from an experiment designed to estimate how frequently systematic variations are in play in a representative wind tunnel experiment. These results suggest that significant systematic variation occurs frequently enough to cast doubts on the common assumption that sample observations can be reliably assumed to be independent. The consequences of ignoring correlation among observations induced by systematic variation are considered in some detail. Experimental tactics are described that defend against systematic variation. The effectiveness of these tactics is illustrated through computational experiments and real wind tunnel experimental results. Some tutorial information describes how to analyze experimental results that have been obtained using such quality assurance tactics.

  4. An Automatic Speed Control for Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1928-01-01

    Described here is an automatic control that has been used in several forms in wind tunnels at the Washington Navy Yard. The form now in use with the 8-foot tunnel at the Navy Yard is considered here. Details of the design and operation of the automatic control system are given. Leads from a Pitot tube are joined to an inverted cup manometer located above a rheostat. When the sliding weight of this instrument is set to a given notch, say for 40 m.p.h, the beam tip vibrates between two electric contacts that feed the little motor. Thus, when the wind is too strong or too weak, the motor automatically throws the rheostat slide forward and backward. If it failed to function well, the operator would notice the effect on his meniscus, and would operate the hand control by merely pressing the switch.

  5. Turbine endwall two-cylinder program. [wind tunnel and water tunnel investigation of three dimensional separation of fluid flow

    NASA Technical Reports Server (NTRS)

    Langston, L. S.

    1980-01-01

    Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.

  6. Evaluation of an I-box wind tunnel model for assessment of behavioral responses of blow flies.

    PubMed

    Moophayak, Kittikhun; Sukontason, Kabkaew L; Kurahashi, Hiromu; Vogtsberger, Roy C; Sukontason, Kom

    2013-11-01

    The behavioral response of flies to olfactory cues remains the focus of many investigations, and wind tunnels have sometimes been employed for assessment of this variable in the laboratory. In this study, our aim was to design, construct, and operate a new model of I-box wind tunnel with improved efficacy, highlighting the use of a new wind tunnel model to investigate the behavioral response of the medically important blow fly, Chrysomya megacephala (Fabricius). The I-box dual-choice wind tunnel designed for this study consists of seven conjoined compartments that resulted in a linear apparatus with clear glass tunnel of 30 × 30 × 190 cm ended both sides with wooden "fan compartments" which are equipped with adjustable fans as wind source. The clear glass tunnel consisted of two "stimulus compartments" with either presence or absence (control) of bait; two "trap compartments" where flies were attracted and allowed to reside; and one central "release compartment" where flies were introduced. Wind tunnel experiments were carried out in a temperature-controlled room, with a room light as a light source and a room-ventilated fan as odor-remover from tunnel out. Evaluation of testing parameters revealed that the highest attractive index was achieved with the use of 300 g of 1-day tainted pork scrap (pork meat mixed with offal) as bait in wind tunnel settings wind speed of 0.58 m/s, during 1.00-5.00 PM with light intensity of 341.33 lux from vertical light and 135.93 lux from horizontal light for testing a group of 60 flies. In addition, no significant response of well-fed and 24 h staved flies to this bait under these conditions was found. Results of this study supported this new wind tunnel model as a suitable apparatus for investigation of behavioral response of blow flies to bait chemical cues in the laboratory.

  7. Measurement of deformations of models in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Charpin, F.; Armand, C.; Selvaggini, R.

    Techniques used at the ONERA Modane Center to monitor geometric variations in scale-models in wind tunnel trials are described. The methods include: photography of reflections from mirrors embedded in the model surface; laser-based torsiometry with polarized mirrors embedded in the model surface; predictions of the deformations using numerical codes for the model surface mechanical characteristics and the measured surface stresses; and, use of an optical detector to monitor the position of luminous fiber optic sources emitting from the model surfaces. The data enhance the confidence that the wind tunnel aerodynamic data will correspond with the in-flight performance of full scale flight surfaces.

  8. Force Tests of the Boeing XB-47 Full-Scale Empennage in the Ames 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Hunton, Lynn W.

    1947-01-01

    A wind-tunnel investigation of the Boeing XB-47 full-scale empennage was conducted to provide, prior to flight tests, data required on the effectiveness of the elevator and rudder. The XB-47 airplane is a jet-propelled medium bomber having wing and tail surfaces swept back 35 degrees. The investigation included tests of the effectiveness of the elevator with normal straight sides, with a buldged trailing edge, and with a modified hinge-line gap and tests of the effectiveness of the rudder with a normal straight-sided tab and with a bulged tab.

  9. NASA Lewis 8- by 6-foot supersonic wind tunnel user manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1993-01-01

    The 8- by 6-Foot Supersonic Wind Tunnel (SWT) at Lewis Research Center is available for use by qualified researchers. This manual contains tunnel performance maps which show the range of total temperature, total pressure, static pressure, dynamic pressure, altitude, Reynolds number, and mass flow as a function of test section Mach number. These maps are applicable for both the aerodynamic and propulsion cycle. The 8- by 6-Foot Supersonic Wind Tunnel is an atmospheric facility with a test section Mach number range from 0.36 to 2.0. General support systems (air systems, hydraulic system, hydrogen system, infrared system, laser system, laser sheet system, and schlieren system are also described as are instrumentation and data processing and acquisition systems. Pretest meeting formats are outlined. Tunnel user responsibility and personal safety requirements are also stated.

  10. The application of cryogenics to high Reynolds number testing in wind tunnels. I - Evolution, theory, and advantages

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Dress, D. A.

    1984-01-01

    During the time which has passed since the construction of the first wind tunnel in 1870, wind tunnels have been developed to a high degree of sophistication. However, their development has consistently failed to keep pace with the demands placed on them. One of the more serious problems to be found with existing transonic wind tunnels is their inability to test subscale aircraft models at Reynolds numbers sufficiently near full-scale values to ensure the validity of using the wind tunnel data to predict flight characteristics. The Reynolds number capability of a wind tunnel may be increased by a number of different approaches. However, the best solution in terms of model, balance, and model support loads, as well as in terms of capital and operating cost appears to be related to the reduction of the temperature of the test gas to cryogenic temperatures. The present paper has the objective to review the evolution of the cryogenic wind tunnel concept and to describe its more important advantages.

  11. The future of wind tunnel technology in Germany

    NASA Technical Reports Server (NTRS)

    Ewald, B.

    1978-01-01

    The practical value of a wind tunnel which is not dependent solely on size or achievable Reynolds number was examined. Measurement, interpretative and evaluative procedures developed in small facilities were also studied.

  12. Space capsule mounted in the Full Scale Wind Tunnel

    NASA Image and Video Library

    1959-01-22

    The Mercury space capsule undergoing tests in Full Scale Wind Tunnel, January 1959. Photograph published in Winds of Change, 75th Anniversary NASA publication, page 75, by James Schultz. Also Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958, page 389, by James R. Hansen.

  13. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen D.

    1991-01-01

    The main objectives of this work is to demonstrate the potential of a cryogenic adaptive nozzle to generate quiet (low disturbance) supersonic flow. A drive system was researched for the Fluid Mechanics Laboratory (FML) Laminar Flow Supersonic Wind Tunnel (LFSWT) using a pilot tunnel. A supportive effort for ongoing Proof of Concept (PoC) research leading to the design of critical components of the LFSWT was maintained. The state-of-the-art in quiet supersonic wind tunnel design was investigated. A supersonic research capability was developed within the FML.

  14. Large scale wind tunnel investigation of a folding tilt rotor

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A twenty-five foot diameter folding tilt rotor was tested in a large scale wind tunnel to determine its aerodynamic characteristics in unfolded, partially folded, and fully folded configurations. During the tests, the rotor completed over forty start/stop sequences. After completing the sequences in a stepwise manner, smooth start/stop transitions were made in approximately two seconds. Wind tunnel speeds up through seventy-five knots were used, at which point the rotor mast angle was increased to four degrees, corresponding to a maneuver condition of one and one-half g.

  15. Flow Visualization of Density in a Cryogenic Wind Tunnel Using Planar Rayleigh and Raman Scattering

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.; Shirinzadeh, Behrooz

    2002-01-01

    Using a pulsed Nd:YAG laser (532 nm) and a gated, intensified charge-coupled device, planar Rayleigh and Raman scattering techniques have been used to visualize the unseeded Mach 0.2 flow density in a 0.3-meter transonic cryogenic wind tunnel. Detection limits are determined for density measurements by using both unseeded Rayleigh and Raman (N2 vibrational) methods. Seeding with CO2 improved the Rayleigh flow visualization at temperatures below 150 K. The seeded Rayleigh version was used to demonstrate the observation of transient flow features in a separated boundary layer region, which was excited with an oscillatory jet. Finally, a significant degradation of the laser light sheet, in this cryogenic facility, is discussed.

  16. McDonnell Model XV-1 Convertiplane in the Ames 40x80 Foot Wind Tunnel.

    NASA Image and Video Library

    1954-05-17

    Foreword, front view of McDonnell Model XV-1 Convertiplane in the Ames 40x80 Foot Wind Tunnel. The McDonnell XV-1 was an experimental compound gyroplane developed for a joint research program between the United States Air Force and the United States Army to explore technologies to develop an aircraft that could take off and land like a helicopter but fly at faster airspeeds, similar to a conventional airplane. The XV-1 would reach a speed of 200 mph (322 km/h), faster than any previous rotorcraft, but the program was terminated due to the tip-jet noise and complexity of the technology which gave only a modest gain in performance.

  17. Data Fusion in Wind Tunnel Testing; Combined Pressure Paint and Model Deformation Measurements (Invited)

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Burner, Alpheus W.

    2004-01-01

    As the benefit-to-cost ratio of advanced optical techniques for wind tunnel measurements such as Video Model Deformation (VMD), Pressure-Sensitive Paint (PSP), and others increases, these techniques are being used more and more often in large-scale production type facilities. Further benefits might be achieved if multiple optical techniques could be deployed in a wind tunnel test simultaneously. The present study discusses the problems and benefits of combining VMD and PSP systems. The desirable attributes of useful optical techniques for wind tunnels, including the ability to accommodate the myriad optical techniques available today, are discussed. The VMD and PSP techniques are briefly reviewed. Commonalties and differences between the two techniques are discussed. Recent wind tunnel experiences and problems when combining PSP and VMD are presented, as are suggestions for future developments in combined PSP and deformation measurements.

  18. Large Swing Valve in the 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1956-05-21

    A 24-foot diameter swing valve is seen in an open position inside the new 10- by 10-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The 10- by 10 was the most powerful propulsion wind tunnel in the nation. After over three years of construction the tunnel was ready to conduct its first tests in early 1956. The 10- by 10-foot tunnel was part of Congress’ Unitary Plan Act which coordinated wind tunnel construction at the NACA, Air Force, industry, and universities. The 10- by 10 was the largest of the three NACA tunnels built under the act. This large swinging valve is critical to the operation of the facility. In one position the valve seals off the tunnel exhaust, making the tunnel a closed circuit, which is used for aerodynamic testing of models. In its other position, the valve acts as a seal across the tunnel and leaves the tunnel exhaust open. This arrangement is used when engines are fired. The air going through the tunnel is taken from the atmosphere and returned to the atmosphere after one pass through the tunnel. Engines up to five feet in diameter can be tested in the 10- by 10-foot test section. Air flows up to Mach 3.5 can be fed through the test section by a 250,000-horsepower axial-flow compressor fan. The incoming air must be dehumidified and cooled so that the proper conditions are present for the test. A large air dryer with 1,890 tons of activated alumina soaks up 1.5 tons of water per minute from the air flow. A cooling apparatus equivalent to 250,000 household air conditioners is used to cool the air.

  19. Analysis of wind-tunnel stability and control tests in terms of flying qualities of full-scale airplanes

    NASA Technical Reports Server (NTRS)

    Kayten, Gerald G

    1945-01-01

    The analysis of results of wind-tunnel stability and control tests of powered airplane models in terms of the flying qualities of full-scale airplanes is advocated. In order to indicated the topics upon which comments are considered desirable in the report of a wind-tunnel stability and control investigation and to demonstrate the nature of the suggested analysis, the present NACA flying-qualities requirements are discussed in relation to wind-tunnel tests. General procedures for the estimation of flying qualities from wind-tunnel tests are outlined.

  20. Neural network feedforward control of a closed-circuit wind tunnel

    NASA Astrophysics Data System (ADS)

    Sutcliffe, Peter

    Accurate control of wind-tunnel test conditions can be dramatically enhanced using feedforward control architectures which allow operating conditions to be maintained at a desired setpoint through the use of mathematical models as the primary source of prediction. However, as the desired accuracy of the feedforward prediction increases, the model complexity also increases, so that an ever increasing computational load is incurred. This drawback can be avoided by employing a neural network that is trained offline using the output of a high fidelity wind-tunnel mathematical model, so that the neural network can rapidly reproduce the predictions of the model with a greatly reduced computational overhead. A novel neural network database generation method, developed through the use of fractional factorial arrays, was employed such that a neural network can accurately predict wind-tunnel parameters across a wide range of operating conditions whilst trained upon a highly efficient database. The subsequent network was incorporated into a Neural Network Model Predictive Control (NNMPC) framework to allow an optimised output schedule capable of providing accurate control of the wind-tunnel operating parameters. Facilitation of an optimised path through the solution space is achieved through the use of a chaos optimisation algorithm such that a more globally optimum solution is likely to be found with less computational expense than the gradient descent method. The parameters associated with the NNMPC such as the control horizon are determined through the use of a Taguchi methodology enabling the minimum number of experiments to be carried out to determine the optimal combination. The resultant NNMPC scheme was employed upon the Hessert Low Speed Wind Tunnel at the University of Notre Dame to control the test-section temperature such that it follows a pre-determined reference trajectory during changes in the test-section velocity. Experimental testing revealed that the

  1. Calibration of transonic and supersonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Pope, T. C.; Cooksey, J. M.

    1977-01-01

    State-of-the art instrumentation and procedures for calibrating transonic (0.6 less than M less than 1.4) and supersonic (M less than or equal to 3.5) wind tunnels were reviewed and evaluated. Major emphasis was given to transonic tunnels. Continuous, blowdown and intermittent tunnels were considered. The required measurements of pressure, temperature, flow angularity, noise and humidity were discussed, and the effects of measurement uncertainties were summarized. A comprehensive review of instrumentation currently used to calibrate empty tunnel flow conditions was included. The recent results of relevant research are noted and recommendations for achieving improved data accuracy are made where appropriate. It is concluded, for general testing purposes, that satisfactory calibration measurements can be achieved in both transonic and supersonic tunnels. The goal of calibrating transonic tunnels to within 0.001 in centerline Mach number appears to be feasible with existing instrumentation, provided correct calibration procedures are carefully followed. A comparable accuracy can be achieved off-centerline with carefully designed, conventional probes, except near Mach 1. In the range 0.95 less than M less than 1.05, the laser Doppler velocimeter appears to offer the most promise for improved calibration accuracy off-centerline.

  2. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    PubMed Central

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  3. Wind tunnel tests for wind pressure distribution on gable roof buildings.

    PubMed

    Jing, Xiao-kun; Li, Yuan-qi

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path.

  4. Plans and Status of Wind-Tunnel Testing Employing an Aeroservoelastic Semispan Model

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Silva, Walter A.; Florance, James R.; Wieseman, Carol D.; Pototzky, Anthony S.; Sanetrik, Mark D.; Scott, Robert C.; Keller, Donald F.; Cole, Stanley R.; Coulson, David A.

    2007-01-01

    This paper presents the research objectives, summarizes the pre-wind-tunnel-test experimental results to date, summarizes the analytical predictions to date, and outlines the wind-tunnel-test plans for an aeroservoelastic semispan wind-tunnel model. The model is referred to as the Supersonic Semispan Transport (S4T) Active Controls Testbed (ACT) and is based on a supersonic cruise configuration. The model has three hydraulically-actuated surfaces (all-movable horizontal tail, all-movable ride control vane, and aileron) for active controls. The model is instrumented with accelerometers, unsteady pressure transducers, and strain gages and will be mounted on a 5-component sidewall balance. The model will be tested twice in the Langley Transonic Dynamics Tunnel (TDT). The first entry will be an "open-loop" model-characterization test; the second entry will be a "closed-loop" test during which active flutter suppression, gust load alleviation and ride quality control experiments will be conducted.

  5. Wind-tunnel investigation of the thrust augmentor performance of a large-scale swept wing model. [in the Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.; Falarski, M. D.

    1979-01-01

    Tests were made in the Ames 40- by 80-foot wind tunnel to determine the forward speed effects on wing-mounted thrust augmentors. The large-scale model was powered by the compressor output of J-85 driven viper compressors. The flap settings used were 15 deg and 30 deg with 0 deg, 15 deg, and 30 deg aileron settings. The maximum duct pressure, and wind tunnel dynamic pressure were 66 cmHg (26 in Hg) and 1190 N/sq m (25 lb/sq ft), respectively. All tests were made at zero sideslip. Test results are presented without analysis.

  6. NACA Technician Cleans a Ramjet in 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1950-04-21

    A technician at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory cleans the pitot tube on a 16-inch diameter ramjet in the 8- by 6-Foot Supersonic Wind Tunnel. Pitot tubes are a measurement device used to determine the flow velocity at a specific location in the air stream, not the average velocity of the entire wind stream. NACA Lewis was in the midst of a multi-year program to determine the feasibility of ramjets and design improvements that could be employed for all models. The advantage of the ramjet was its ability to process large volumes of combustion air, resulting in the burning of fuel at the optimal stoichiometric temperatures. This was not possible with turbojets. The higher the Mach number, the more efficient the ramjet operated. The 8- by 6 Supersonic Wind Tunnel had been in operation for just over one year when this photograph was taken. The facility was the NACA’s largest supersonic tunnel and the only facility capable of running an engine at supersonic speeds. The 8- by 6 tunnel was also equipped with a Schlieren camera system that captured the air flow gradient as it passes over the test setup. The ramjet tests in the 8- by 6 tunnel complemented the NACA Lewis investigations using aircraft, the Altitude Wind Tunnel and smaller supersonic tunnels. Researchers studied the ramjet’s performance at different speeds and varying angles -of -attack.

  7. Computation of wind tunnel wall effects for complex models using a low-order panel method

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.; Harris, Scott H.

    1994-01-01

    A technique for determining wind tunnel wall effects for complex models using the low-order, three dimensional panel method PMARC (Panel Method Ames Research Center) has been developed. Initial validation of the technique was performed using lift-coefficient data in the linear lift range from tests of a large-scale STOVL fighter model in the National Full-Scale Aerodynamics Complex (NFAC) facility. The data from these tests served as an ideal database for validating the technique because the same model was tested in two wind tunnel test sections with widely different dimensions. The lift-coefficient data obtained for the same model configuration in the two test sections were different, indicating a significant influence of the presence of the tunnel walls and mounting hardware on the lift coefficient in at least one of the two test sections. The wind tunnel wall effects were computed using PMARC and then subtracted from the measured data to yield corrected lift-coefficient versus angle-of-attack curves. The corrected lift-coefficient curves from the two wind tunnel test sections matched very well. Detailed pressure distributions computed by PMARC on the wing lower surface helped identify the source of large strut interference effects in one of the wind tunnel test sections. Extension of the technique to analysis of wind tunnel wall effects on the lift coefficient in the nonlinear lift range and on drag coefficient will require the addition of boundary-layer and separated-flow models to PMARC.

  8. Wind Tunnel Database Development using Modern Experiment Design and Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; DeLoach, Richard

    2003-01-01

    A wind tunnel experiment for characterizing the aerodynamic and propulsion forces and moments acting on a research model airplane is described. The model airplane called the Free-flying Airplane for Sub-scale Experimental Research (FASER), is a modified off-the-shelf radio-controlled model airplane, with 7 ft wingspan, a tractor propeller driven by an electric motor, and aerobatic capability. FASER was tested in the NASA Langley 12-foot Low-Speed Wind Tunnel, using a combination of traditional sweeps and modern experiment design. Power level was included as an independent variable in the wind tunnel test, to allow characterization of power effects on aerodynamic forces and moments. A modeling technique that employs multivariate orthogonal functions was used to develop accurate analytic models for the aerodynamic and propulsion force and moment coefficient dependencies from the wind tunnel data. Efficient methods for generating orthogonal modeling functions, expanding the orthogonal modeling functions in terms of ordinary polynomial functions, and analytical orthogonal blocking were developed and discussed. The resulting models comprise a set of smooth, differentiable functions for the non-dimensional aerodynamic force and moment coefficients in terms of ordinary polynomials in the independent variables, suitable for nonlinear aircraft simulation.

  9. Mercury Capsule Retrorocket Test in the Altitude Wind Tunnel

    NASA Image and Video Library

    1960-09-21

    A mechanic at the National Aeronautics and Space Administration (NASA) Lewis Research Center prepares the inverted base of a Mercury capsule for a test of its posigrade retrorockets inside the Altitude Wind Tunnel. In October 1959 NASA’s Space Task Group allocated several Project Mercury assignments to Lewis. The Altitude Wind Tunnel was modified to test the Atlas separation system, study the escape tower rocket plume, train astronauts to bring a spinning capsule under control, and calibrate the capsule’s retrorockets. The turning vanes, makeup air pipes, and cooling coils were removed from the wide western end of the tunnel to create a 51-foot diameter test chamber. The Mercury capsule had a six-rocket retro-package affixed to the bottom of the capsule. Three of these were posigrade rockets used to separate the capsule from the booster and three were retrograde rockets used to slow the capsule for reentry into the earth’s atmosphere. Performance of the retrorockets was vital since there was no backup system. Qualification tests of the retrorockets began in April 1960 on a retrograde thrust stand inside the southwest corner of the Altitude Wind Tunnel. These studies showed that a previous issue concerning the delayed ignition of the propellant had been resolved. Follow-up test runs verified reliability of the igniter’s attachment to the propellant. In addition, the capsule’s retrorockets were calibrated so they would not alter the capsule’s attitude when fired.

  10. Passive Turbulence Generating Grid Arrangements in a Turbine Cascade Wind Tunnel

    DTIC Science & Technology

    2014-04-02

    root mean square of free stream velocity flow viscosity Turbine Cascade Wind Tunnels ( CWT ) are similar to conventional wind tunnels except the test...section o f interest is in a corner. Figure I shows the United States Air Force Academy (USAF A) closed-loop CWT . Turbine cascade facilities are used...evaluating only the middle third span of the blade, the ceiling and floor effects in the tunne l can be mitigated. A CWT test section inlet must have

  11. Design and validation of a wind tunnel system for odour sampling on liquid area sources.

    PubMed

    Capelli, L; Sironi, S; Del Rosso, R; Céntola, P

    2009-01-01

    The aim of this study is to describe the methods adopted for the design and the experimental validation of a wind tunnel, a sampling system suitable for the collection of gaseous samples on passive area sources, which allows to simulate wind action on the surface to be monitored. The first step of the work was the study of the air velocity profiles. The second step of the work consisted in the validation of the sampling system. For this purpose, the odour concentration of some air samples collected by means of the wind tunnel was measured by dynamic olfactometry. The results of the air velocity measurements show that the wind tunnel design features enabled the achievement of a uniform and homogeneous air flow through the hood. Moreover, the laboratory tests showed a very good correspondence between the odour concentration values measured at the wind tunnel outlet and the odour concentration values predicted by the application of a specific volatilization model, based on the Prandtl boundary layer theory. The agreement between experimental and theoretical trends demonstrate that the studied wind tunnel represents a suitable sampling system for the simulation of specific odour emission rates from liquid area sources without outward flow.

  12. Wind tunnel experiments: influence of erosion and deposition on wind-packing of new snow

    NASA Astrophysics Data System (ADS)

    Sommer, Christian G.; Lehning, Michael; Fierz, Charles

    2018-01-01

    Wind sometimes creates a hard, wind-packed layer at the surface of a snowpack. The formation of such wind crusts was observed during wind tunnel experiments with combined SnowMicroPen and Microsoft Kinect sensors. The former provides the hardness of new and wind-packed snow and the latter spatial snow depth data in the test section. Previous experiments showed that saltation is necessary but not sufficient for wind-packing. The combination of hardness and snow depth data now allows to study the case with saltation in more detail. The Kinect data requires complex processing but with the appropriate corrections, snow depth changes can be measured with an accuracy of about 1 mm. The Kinect is therefore well suited to quantify erosion and deposition. We found that no hardening occurred during erosion and that a wind crust may or may not form when snow is deposited. Deposition is more efficient at hardening snow in wind-exposed than in wind-sheltered areas. The snow hardness increased more on the windward side of artificial obstacles placed in the wind tunnel. Similarly, the snow was harder in positions with a low Sx parameter. Sx describes how wind-sheltered (high Sx) or wind-exposed (low Sx) a position is and was calculated based on the Kinect data. The correlation between Sx and snow hardness was -0.63. We also found a negative correlation of -0.4 between the snow hardness and the deposition rate. Slowly deposited snow is harder than a rapidly growing accumulation. Sx and the deposition rate together explain about half of the observed variability of snow hardness.

  13. Fluctuating disturbances in a Mach 5 wind tunnel

    NASA Technical Reports Server (NTRS)

    Anders, J. B.; Stainback, P. C.; Beckwith, I. E.; Keefe, L. R.

    1976-01-01

    An experimental investigation has been conducted to determine the source and nature of disturbances in the settling chamber and test section of a Mach 5 wind tunnel. Various changes in the air supply piping to the wind tunnel are shown to influence the disturbance levels in the settling chamber. These levels were reduced by the use of an acoustic muffler section in the settling chamber. Three nozzles were tested with the same settling chamber and hot-wire measurements indicated that the test section disturbances were entirely acoustic. Significant reductions in the test section noise levels were obtained with an electroplated nozzle utilizing boundary-layer removal upstream of the throat. The source of test section noise is shown to be different for laminar and turbulent nozzle-wall boundary layers.

  14. Validation of the Lockheed Martin Morphing Concept with Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.; Scott, Robert C.; Love, Michael H.; Zink Scott; Weisshaar, Terrence A.

    2007-01-01

    The Morphing Aircraft Structures (MAS) program is a Defense Advanced Research Projects Agency (DARPA) led effort to develop morphing flight vehicles capable of radical shape change in flight. Two performance parameters of interest are loiter time and dash speed as these define the persistence and responsiveness of an aircraft. The geometrical characteristics that optimize loiter time and dash speed require different geometrical planforms. Therefore, radical shape change, usually involving wing area and sweep, allows vehicle optimization across many flight regimes. The second phase of the MAS program consisted of wind tunnel tests conducted at the NASA Langley Transonic Dynamics Tunnel to demonstrate two morphing concepts and their enabling technologies with large-scale semi-span models. This paper will focus upon one of those wind tunnel tests that utilized a model developed by Lockheed Martin Aeronautics Company (LM). Wind tunnel success criteria were developed by NASA to support the DARPA program objectives. The primary focus of this paper will be the demonstration of the DARPA objectives by systematic evaluation of the wind tunnel model performance relative to the defined success criteria. This paper will also provide a description of the LM model and instrumentation, and document pertinent lessons learned. Finally, as part of the success criteria, aeroelastic characteristics of the LM derived MAS vehicle are also addressed. Evaluation of aeroelastic characteristics is the most detailed criterion investigated in this paper. While no aeroelastic instabilities were encountered as a direct result of the morphing design or components, several interesting and unexpected aeroelastic phenomenon arose during testing.

  15. An efficient supersonic wind tunnel drive system for Mach 2.5 flows

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.

    1991-01-01

    A novel efficient drive system has been developed which provides for the continuous operation of a pitot Mach 2.5 wind tunnel at compression ratios down to 0.625:1. The drive system does not require an overpressure to start, and no hysteresis has been observed. The general design of the proof-of-concept wind tunnel using the new drive system and its modifications are described.

  16. The George C. Marshall Space Flight Center's 14 X 14-Inch Trisonic Wind Tunnel: A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Springer, A.

    1994-01-01

    A history of the National Aeronautics and Space Administration (NASA) George C. Marshall Space Flight Center's (MSFC) 14 x 14-Inch Trisonic Wind Tunnel is presented. Its early and continuing role in the United States space program is shown through highlights of the tunnel's history and the major programs tested in the tunnel over the past 40 years. The 14-Inch Tunnel has its beginning with the Army in the late 1950's under the Army Ballistic Missile Agency (ABMA). Such programs as the Redstone, Jupiter, Pershing, and early Saturn were tested in the 14-Inch Tunnel in the late 1950's. America's first launch vehicle, the Jupiter C, was designed and developed using the 14-Inch Wind Tunnel. Under NASA, the 14-Inch Wind Tunnel has made large contributions to the Saturn, Space Transportation System, and future launch vehicle programs such as Shuttle-C and the National Launch System. A technical description of the tunnel is presented for background information on the type and capabilities of the 14-Inch Wind Tunnel. The report concludes in stating: the 14-Inch Wind Tunnel as in speed of sound; transonic, at or near the speed of sound the past, will continue to play a large but unseen role in he development of America's space program.

  17. Compiling the space shuttle wind tunnel data base: An exercise in technical and managerial innovators

    NASA Technical Reports Server (NTRS)

    Kemp, N. D.

    1983-01-01

    Engineers evaluating Space Shuttle flight data and performance results are using a massive data base of wind tunnel test data. A wind tunnel test data base of the magnitude attained is a major accomplishment. The Apollo program spawned an automated wind tunnel data analysis system called SADSAC developed by the Chrysler Space Division. An improved version of this system renamed DATAMAN was used by Chrysler to document analyzed wind tunnel data and data bank the test data in standardized formats. These analysis documents, associated computer graphics and standard formatted data were disseminated nationwide to the Shuttle technical community. These outputs became the basis for substantiating and certifying the flight worthiness of the Space Shuttle and for improving future designs. As an aid to future programs this paper documents the lessons learned in compiling the massive wind tunnel test data base for developing the Space Shuttle. In particular, innovative managerial and technical concepts evolved in the course of conceiving and developing this successful DATAMAN system and the methods and organization for applying the system are presented.

  18. An experimental study of the structure and acoustic field of a jet in a cross stream. [Ames 7-ft by 10-ft wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Camelier, I.; Karamcheti, K.

    1976-01-01

    The plane of symmetry of a high speed circular jet was surveyed to measure the mean and turbulent velocity fields by using constant temperature hot wire anemometry. The intensity of the noise radiated from the jet was determined in the tunnel test section by utilizing the cross-correlation at a particular time delay between the signals of two microphones suitably located along a given direction. Experimental results indicate that the turbulent intensity inside the crossflow jet increases by a factor of (1 + 1/2) as compared to the turbulent intensity of the same jet under free conditions, with r indicating the ratio of the jet velocity by the cross stream velocity. The peak observed in the turbulence spectra obtained inside the potential core of the jet has a frequency that increases by the same factor with respect to the corresponding frequency measured in the case of the free jet. The noise radiated by the jet becomes more intense as the crossflow velocity increases. The measured acoustic intensity of the crossflow jet is higher than the value which would be expected from the increase of the turbulent intensity only.

  19. Measurement of Model Noise in a Hard-Wall Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    2006-01-01

    Identification, analysis, and control of fluid-mechanically-generated sound from models of aircraft and automobiles in special low-noise, semi-anechoic wind tunnels are an important research endeavor. Such studies can also be done in aerodynamic wind tunnels that have hard walls if phased microphone arrays are used to focus on the noise-source regions and reject unwanted reflections or background noise. Although it may be difficult to simulate the total flyover or drive-by noise in a closed wind tunnel, individual noise sources can be isolated and analyzed. An acoustic and aerodynamic study was made of a 7-percent-scale aircraft model in a NASA Ames 7-by-10-ft (about 2-by-3-m) wind tunnel for the purpose of identifying and attenuating airframe noise sources. Simulated landing, takeoff, and approach configurations were evaluated at Mach 0.26. Using a phased microphone array mounted in the ceiling over the inverted model, various noise sources in the high-lift system, landing gear, fins, and miscellaneous other components were located and compared for sound level and frequency at one flyover location. Numerous noise-alleviation devices and modifications of the model were evaluated. Simultaneously with acoustic measurements, aerodynamic forces were recorded to document aircraft conditions and any performance changes caused by geometric modifications. Most modern microphone-array systems function in the frequency domain in the sense that spectra of the microphone outputs are computed, then operations are performed on the matrices of microphone-signal cross-spectra. The entire acoustic field at one station in such a system is acquired quickly and interrogated during postprocessing. Beam-forming algorithms are employed to scan a plane near the model surface and locate noise sources while rejecting most background noise and spurious reflections. In the case of the system used in this study, previous studies in the wind tunnel have identified noise sources up to 19 d

  20. Flow Physics of Synthetic Jet Interactions on a Sweptback Model with a Control Surface

    NASA Astrophysics Data System (ADS)

    Monastero, Marianne; Amitay, Michael

    2016-11-01

    Active flow control using synthetic jets can be used on aerodynamic surfaces to improve performance and increase fuel efficiency. The flowfield resulting from the interaction of the jets with a separated crossflow with a spanwise component must be understood to determine actuator spacing for aircraft integration. The current and previous work showed adjacent synthetic jets located upstream of a control surface hingeline on a sweptback model interact with each other under certain conditions. Whether these interactions are constructive or destructive is dependent on the spanwise spacing of the jets, the severity of separation over the control surface, and the magnitude of the spanwise flow. Measuring and understanding the detailed flow physics of the flow structures emanating from the synthetic jet orifices and their interactions with adjacent jets of varying spacings is the focus of this work. Wind tunnel experiments were conducted at the Rensselaer Polytechnic Institute Subsonic Wind Tunnel using stereo particle image velocimetry (SPIV) and pressure measurements to study the effect that varying the spanwise spacing has on the overall performance. Initial SPIV data gave insight into defining and understanding the mechanisms behind the beneficial or detrimental jets interactions.

  1. Entrainment of Air into Vertical Jets in a Crosswind

    NASA Astrophysics Data System (ADS)

    Roberts, K. K.; Solovitz, S.; Freedland, G.; Camp, E.; Cal, R. B.; Mastin, L. G.

    2015-12-01

    During volcanic eruptions, ash concentration must be determined for aviation safety, but the limiting threshold is difficult to distinguish visually. Computational models are typically used to predict ash concentrations, using inputs such as plume height, eruptive duration, and wind speeds. The models also depend on empirical parameters, such as the entrainment of atmospheric air as a ratio of the air inflow speed and the jet speed. Entrainment of atmospheric air plays a critical role in the behavior of volcanic plumes in the atmosphere, impacting the mass flow rate, buoyancy, and particle concentration of the plume. This process is more complex in a crosswind, leading to greater uncertainty in the model results. To address these issues, a laboratory-scale study has been conducted to improve the entrainment models. Observations of a vertical, unconfined jet are performed using Particle Image Velocimetry, while varying jet density using different compressed gases and Reynolds number. To test the effects of a crosswind on plume entrainment rates, these are then compared with similar jet experiments in a wind tunnel. A series of jet geometries, jet speeds and tunnel speeds are considered. The measured velocities are used to determine the entrainment response, which can be used to determine ash concentration over time as atmospheric air is entrained into the plume. We also quantify the mean and the fluctuations in flow velocity.

  2. Review of Potential Wind Tunnel Balance Technologies

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Williams, Quincy L.; Phillips, Ben D.; Commo, Sean A.; Ponder, Jonathon D.

    2016-01-01

    This manuscript reviews design, manufacture, materials, sensors, and data acquisition technologies that may benefit wind tunnel balances for the aerospace research community. Current state-of-the-art practices are used as the benchmark to consider advancements driven by researcher and facility needs. Additive manufacturing is highlighted as a promising alternative technology to conventional fabrication and has the potential to reduce both the cost and time required to manufacture force balances. Material alternatives to maraging steels are reviewed. Sensor technologies including piezoresistive, piezoelectric, surface acoustic wave, and fiber optic are compared to traditional foil based gages to highlight unique opportunities and shared challenges for implementation in wind tunnel environments. Finally, data acquisition systems that could be integrated into force balances are highlighted as a way to simplify the user experience and improve data quality. In summary, a rank ordering is provided to support strategic investment in exploring the technologies reviewed in this manuscript.

  3. Wind Tunnel Seeding Systems for Laser Velocimeters

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr. (Compiler); Nichols, C. E., Jr. (Compiler)

    1985-01-01

    The principal motivating factor for convening the Workshop on the Development and Application of Wind Tunnel Seeding Systems for Laser Velocimeters is the necessity to achieve efficient operation and, most importantly, to insure accurate measurements with velocimeter techniques. The ultimate accuracy of particle scattering based laser velocimeter measurements of wind tunnel flow fields depends on the ability of the scattering particle to faithfully track the local flow field in which it is embedded. A complex relationship exists between the particle motion and the local flow field. This relationship is dependent on particle size, size distribution, shape, and density. To quantify the accuracy of the velocimeter measurements of the flow field, the researcher has to know the scattering particle characteristics. In order to obtain optimum velocimeter measurements, the researcher is striving to achieve control of the particle characteristics and to verify those characteristics at the measurement point. Additionally, the researcher is attempting to achieve maximum measurement efficiency through control of particle concentration and location in the flow field.

  4. Flow Visualization and Laser Velocimetry for Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr. (Editor); Foughner, J. T., Jr. (Editor)

    1982-01-01

    The need for flow visualization and laser velocimetry were discussed. The purpose was threefold: (1) provide a state-of-the-art overview; (2) provide a forum for industry, universities, and government agencies to address problems in developing useful and productive flow visualization and laser velocimetry measurement techniques; and (3) provide discussion of recent developments and applications of flow visualization and laser velocimetry measurement techniques and instrumentation systems for wind tunnels including the 0.3-Meter Transonic Cryogenic Tunnel.

  5. Simulation of air-droplet mixed phase flow in icing wind-tunnel

    NASA Astrophysics Data System (ADS)

    Mengyao, Leng; Shinan, Chang; Menglong, Wu; Yunhang, Li

    2013-07-01

    Icing wind-tunnel is the main ground facility for the research of aircraft icing, which is different from normal wind-tunnel for its refrigeration system and spraying system. In stable section of icing wind-tunnel, the original parameters of droplets and air are different, for example, to keep the nozzles from freezing, the droplets are heated while the temperature of air is low. It means that complex mass and heat transfer as well as dynamic interactive force would happen between droplets and air, and the parameters of droplet will acutely change along the passageway. Therefore, the prediction of droplet-air mixed phase flow is necessary in the evaluation of icing researching wind-tunnel. In this paper, a simplified droplet-air mixed phase flow model based on Lagrangian method was built. The variation of temperature, diameter and velocity of droplet, as well as the air flow field, during the flow process were obtained under different condition. With calculating three-dimensional air flow field by FLUENT, the droplet could be traced and the droplet distribution could also be achieved. Furthermore, the patterns about how initial parameters affect the parameters in test section were achieved. The numerical simulation solving the flow and heat and mass transfer characteristics in the mixing process is valuable for the optimization of experimental parameters design and equipment adjustment.

  6. Unsteady two dimensional airloads acting on oscillating thin airfoils in subsonic ventilated wind tunnels

    NASA Technical Reports Server (NTRS)

    Fromme, J.; Golberg, M.

    1978-01-01

    The numerical calculation of unsteady two dimensional airloads which act upon thin airfoils in subsonic ventilated wind tunnels was studied. Neglecting certain quadrature errors, Bland's collocation method is rigorously proved to converge to the mathematically exact solution of Bland's integral equation, and a three way equivalence was established between collocation, Galerkin's method and least squares whenever the collocation points are chosen to be the nodes of the quadrature rule used for Galerkin's method. A computer program displayed convergence with respect to the number of pressure basis functions employed, and agreement with known special cases was demonstrated. Results are obtained for the combined effects of wind tunnel wall ventilation and wind tunnel depth to airfoil chord ratio, and for acoustic resonance between the airfoil and wind tunnel walls. A boundary condition is proposed for permeable walls through which mass flow rate is proportional to pressure jump.

  7. Analysis of Wind Tunnel Polar Replicates Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Deloach, Richard; Micol, John R.

    2010-01-01

    The role of variance in a Modern Design of Experiments analysis of wind tunnel data is reviewed, with distinctions made between explained and unexplained variance. The partitioning of unexplained variance into systematic and random components is illustrated, with examples of the elusive systematic component provided for various types of real-world tests. The importance of detecting and defending against systematic unexplained variance in wind tunnel testing is discussed, and the random and systematic components of unexplained variance are examined for a representative wind tunnel data set acquired in a test in which a missile is used as a test article. The adverse impact of correlated (non-independent) experimental errors is described, and recommendations are offered for replication strategies that facilitate the quantification of random and systematic unexplained variance.

  8. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    NASA Technical Reports Server (NTRS)

    Simon-Miller, A. A.; Rogers, John H.; Gierasch, Peter J.; Choi, David; Allison, Michael; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    We have conducted a detailed study of the cloud features in the strong southern equatorial wind jet near 7.5 S planetographic latitude. To understand the apparent variations in average zonal wind jet velocity at this latitude [e.g.. 1,2,3], we have searched for variations iIi both feature latitude and velocity with longitude and time. In particular, we focused on the repetitive chevron-shaped dark spots visible on most dates and the more transient large anticyclonic system known as the South Equatorial Disturbance (SED). These small dark spots are interpreted as cloud holes, and are often used as material tracers of the wind field.

  9. Prediction of flyover jet noise spectra from static tests

    NASA Technical Reports Server (NTRS)

    Michel, U.; Michalke, A.

    1981-01-01

    A scaling law is derived for predicting the flyover noise spectra of a single-stream shock-free circular jet from static experiments. The theory is based on the Lighthill approach to jet noise. Density terms are retained to include the effects of jet heating. The influence of flight on the turbulent flow field is considered by an experimentally supported similarity assumption. The resulting scaling laws for the difference between one-third-octave spectra and the overall sound pressure level compare very well with flyover experiments with a jet engine and with wind tunnel experiments with a heated model jet.

  10. Conceptual design for an electron-beam heated hypersonic wind tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinski, R.J.; Kensek, R.P.

    1997-07-01

    There is a need for hypersonic wind-tunnel testing at about mach 10 and above using natural air and simulating temperatures and pressures which are prototypic of flight at 50 km altitude or below. With traditional wind-tunnel techniques, gas cooling during expansion results in exit temperatures which are too low. Miles, et al., have proposed overcoming this difficulty by heating the air with a laser beam as it expands in the wind-tunnel nozzle. This report discusses an alternative option of using a high-power electron beam to heat the air as it expands. In the e-beam heating concept, the electron beam ismore » injected into the wind-tunnel nozzle near the exit and then is guided upstream toward the nozzle throat by a strong axial magnetic field. The beam deposits most of its power in the dense air near the throat where the expansion rate is greatest. A conceptual design is presented for a large-scale system which achieves Mach 14 for 0.1 seconds with an exit diameter of 2.8 meters. It requires 450 MW of electron beam power (5 MeV at 90 A). The guiding field is 500 G for most of the transport length and increases to 100 kG near the throat to converge the beam to a 1.0-cm diameter. The beam generator is a DC accelerator using a Marx bank (of capacitors) and a diode stack with a hot cathode. 14 refs. 38 figs., 9 tabs.« less

  11. Smart-actuated continuous moldline technology (CMT) mini wind tunnel test

    NASA Astrophysics Data System (ADS)

    Pitt, Dale M.; Dunne, James P.; Kilian, Kevin J.

    1999-07-01

    The Smart Aircraft and Marine Propulsion System Demonstration (SAMPSON) Program will culminate in two separate demonstrations of the application of Smart Materials and Structures technology. One demonstration will be for an aircraft application and the other for marine vehicles. The aircraft portion of the program will examine the application of smart materials to aircraft engine inlets which will deform the inlet in-flight in order to regulate the airflow rate into the engine. Continuous Moldline Technology (CMT), a load-bearing reinforced elastomer, will enable the use of smart materials in this application. The capabilities of CMT to withstand high-pressure subsonic and supersonic flows were tested in a sub-scale mini wind- tunnel. The fixture, used as the wind-tunnel test section, was designed to withstand pressure up to 100 psi. The top and bottom walls were 1-inch thick aluminum and the side walls were 1-inch thick LEXAN. High-pressure flow was introduced from the Boeing St. Louis poly-sonic wind tunnel supply line. CMT walls, mounted conformal to the upper and lower surfaces, were deflected inward to obtain a converging-diverging nozzle. The CMT walls were instrumented for vibration and deflection response. Schlieren photography was used to establish shock wave motion. Static pressure taps, embedded within one of the LEXAN walls, monitored pressure variation in the mini-wind tunnel. High mass flow in the exit region. This test documented the response of CMT technology in the presence of high subsonic flow and provided data to be used in the design of the SAMPSON Smart Inlet.

  12. Supersonic wind tunnel nozzles: A selected, annotated bibliography to aid in the development of quiet wind tunnel technology

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1990-01-01

    This bibliography, with abstracts, consists of 298 citations arranged in chronological order. The citations were selected to be helpful to persons engaged in the design and development of quiet (low disturbance) nozzles for modern supersonic wind tunnels. Author, subject, and corporate source indexes are included to assist with the location of specific information.

  13. Preheater in the 10-by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1958-04-21

    The 10- by 10-Foot Supersonic Wind Tunnel at the NACA Lewis Flight Propulsion Laboratory was built under the Congressional Unitary Plan Act which coordinated wind tunnel construction at the NACA, Air Force, industry, and universities. The 10- by 10, which began operation in 1956, was the largest of the three NACA tunnels built under the act. Researchers could test engines up to five feet in diameter in the 10- by 10-foot test section. A 250,000-horsepower axial-flow compressor fan can generate airflows up to Mach 3.5 through the test section. The incoming air must be dehumidified and cooled so that the proper conditions are present for the test. A large air dryer with 1,890 tons of activated alumina soaks up 1.5 tons of water per minute from the airflow. A cooling apparatus equivalent to 250,000 household air conditioners is used to cool the air. The air heater is located just upstream from the test section. Natural gas is combusted in the tunnel to increase the air temperature. The system could only be employed when the tunnel was run in its closed-circuit propulsion mode.

  14. A three degree of freedom manipulator used for store separation wind tunnel test

    NASA Astrophysics Data System (ADS)

    Wei, R.; Che, B.-H.; Sun, C.-B.; Zhang, J.; Lu, Y.-Q.

    2018-06-01

    A three degree of freedom manipulator is presented, which is used for store separation wind tunnel test. It is a kind of mechatronics product, have small volume and large moment of torque. The paper researched the design principle of wind tunnel test equipment, also introduced the transmission principle design, physical design, control system design, drive element selection calculation and verification, dynamics computation and static structural computation of the manipulator. To satisfy the design principle of wind tunnel test equipment, some optimization design are made include optimizes the structure of drive element and cable, fairing configuration, overall dimension so that to make the device more suitable for the wind tunnel test. Some tests are made to verify the parameters of the manipulator. The results show that the device improves the load from 100 Nm to 250 Nm, control accuracy from 0.1°to 0.05°in pitch and yaw, also improves load from 10 Nm to 20 Nm, control accuracy from 0.1°to 0.05°in roll.

  15. Transonic Flutter Suppression Control Law Design, Analysis and Wind-Tunnel Results

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1999-01-01

    The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using classical, and minimax techniques are described. A unified general formulation and solution for the minimax approach, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf. The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.

  16. The NASA Langley 16-Foot Transonic Tunnel: Historical Overview, Facility Description, Calibration, Flow Characteristics, and Test Capabilities

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Bangert, Linda S.; Asbury, Scott C.; Mills, Charles T. L.; Bare, E. Ann

    1995-01-01

    The Langley 16-Foot Transonic Tunnel is a closed-circuit single-return atmospheric wind tunnel that has a slotted octagonal test section with continuous air exchange. The wind tunnel speed can be varied continuously over a Mach number range from 0.1 to 1.3. Test-section plenum suction is used for speeds above a Mach number of 1.05. Over a period of some 40 years, the wind tunnel has undergone many modifications. During the modifications completed in 1990, a new model support system that increased blockage, new fan blades, a catcher screen for the first set of turning vanes, and process controllers for tunnel speed, model attitude, and jet flow for powered models were installed. This report presents a complete description of the Langley 16-Foot Transonic Tunnel and auxiliary equipment, the calibration procedures, and the results of the 1977 and the 1990 wind tunnel calibration with test section air removal. Comparisons with previous calibrations showed that the modifications made to the wind tunnel had little or no effect on the aerodynamic characteristics of the tunnel. Information required for planning experimental investigations and the use of test hardware and model support systems is also provided.

  17. Analysis of subsonic wind tunnel with variation shape rectangular and octagonal on test section

    NASA Astrophysics Data System (ADS)

    Rhakasywi, D.; Ismail; Suwandi, A.; Fadhli, A.

    2018-02-01

    The need for good design in the aerodynamics field required a wind tunnel design. The wind tunnel design required in this case is capable of generating laminar flow. In this research searched for wind tunnel models with rectangular and octagonal variations with objectives to generate laminar flow in the test section. The research method used numerical approach of CFD (Computational Fluid Dynamics) and manual analysis to analyze internal flow in test section. By CFD simulation results and manual analysis to generate laminar flow in the test section is a design that has an octagonal shape without filled for optimal design.

  18. Production of oscillatory flow in wind tunnels

    NASA Astrophysics Data System (ADS)

    Al-Asmi, K.; Castro, I. P.

    1993-06-01

    A method for producing oscillatory flow in open-circuit wind tunnels driven by centrifugal fans is described. Performance characteristics of a new device installed on two such tunnels of greatly differing size are presented. It is shown that sinusoidal variations of the working section flow, having peak-to-peak amplitudes up to at least 30 percent of the mean flow speed and frequencies up to, typically, that corresponding to the acoustic quarter-wave-length frequency determined by the tunnel size, can be obtained with negligible harmonic distortion or acoustic noise difficulties. A brief review of the various methods that have been used previously is included, and the advantages and disadvantages of these different techniques are highlighted. The present technique seems to represent a significant improvement over many of them.

  19. Global Climatology of the Coastal Low-Level Wind Jets using different Reanalysis

    NASA Astrophysics Data System (ADS)

    Lima, Daniela C. A.; Soares, Pedro M. M.; Semedo, Alvaro; Cardoso, Rita M.

    2016-04-01

    Coastal Low-Level Jets (henceforth referred to as "coastal jets" or simply as CLLJ) are low-tropospheric mesoscale wind features, with wind speed maxima confined to the marine atmospheric boundary layer (MABL), typically bellow 1km. Coastal jets occur in the eastern flank of the semi-permanent subtropical mid-latitude high pressure systems, along equatorward eastern boundary currents, due to a large-scale synoptic forcing. The large-scale synoptic forcing behind CLLJ occurrences is a high pressure system over the ocean and a thermal low inland. This results in coastal parallel winds that are the consequence of the geostrophic adjustment. CLLJ are found along the California (California-Oregon) and the Canary (Iberia and Northeastern Africa) currents in the Northern Hemisphere, and along the Peru-Humboldt (Peru-Chile), Benguela (Namibia) and Western Australia (West Australia) currents in the Southern Hemisphere. In the Arabian Sea (Oman CLLJ), the interaction between the high pressure over the Indian Ocean in summer (Summer Indian Monsoon) and the Somali (also known as Findlater) Jet forces a coastal jet wind feature off the southeast coast of Oman. Coastal jets play an important role in the regional climates of the mid-latitude western continental regions. The decrease of the sea surface temperatures (SST) along the coast due to upwelling lowers the evaporation over the ocean and the coast parallel winds prevents the advection of marine air inshore. The feedback processes between the CLLJ and upwelling play a crucial role in the regional climate, namely, promoting aridity since the parallel flow prevents the intrusion of moisture inland, and increasing fish stocks through the transport of rich nutrient cold water from the bottom. In this study, the global coastal low-level wind jets are identified and characterized using an ensemble of three reanalysis, the ECMWF Interim Reanalysis (ERA-Interim), the Japanese 55-year Reanalysis (JRA-55) and the NCEP Climate Forecast

  20. 10' x 10' Supersonic Wind Tunnel Flexwall

    NASA Image and Video Library

    2015-08-10

    The flexwall section of NASA Glenn’s 10x10 supersonic wind tunnel is made up of two movable flexible steel sidewalls. These powerful hydraulic jacks move the walls in and out to control supersonic air speeds in the test section between Mach 2.0 and 3.5.

  1. Wall-interference corrections for parachutes in a closed wind tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macha, J.M.; Buffington, R.J.

    1989-01-01

    An extensive test program was conducted to gather information on wall-interference effects for parachutes in closed wind tunnels. Drag area and base pressure measurements were made for a set of ribbon parachutes of 7%, 15% and 30% geometric porosity in six different wind tunnels, covering a range of geometric blockages from two to thirty-five percent. The resulting data have been used to formulate and validate approximate blockage correction equations based on the theory of Maskell. The corrections are applicable to single parachutes and clusters of two and three parachutes. 8 refs., 7 figs., 1 tab.

  2. Magnetic Leviation System Design and Implementation for Wind Tunnel Application

    NASA Technical Reports Server (NTRS)

    Lin, Chin E.; Sheu, Yih-Ran; Jou, Hui-Long

    1996-01-01

    This paper presents recent work in magnetic suspension wind tunnel development in National Cheng Kung University. In this phase of research, a control-based study is emphasized to implement a robust control system into the experimental system under study. A ten-coil 10 cm x 10 cm magnetic suspension wind tunnel is built using a set of quadrant detectors for six degree of freedom control. To achieve the attitude control of suspended model with different attitudes, a spacial electromagnetic field simulation using OPERA 3D is studied. A successful test for six degree of freedom control is demonstrated in this paper.

  3. Abe Silverstein 10- by 10-Foot Supersonic Wind Tunnel Validated for Low-Speed (Subsonic) Operation

    NASA Technical Reports Server (NTRS)

    Hoffman, Thomas R.

    2001-01-01

    The NASA Glenn Research Center and Lockheed Martin Corporation tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Objectives of the test were to determine and document the similarities and uniqueness of the tunnels and to validate that Glenn's 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility. Results from two of Glenn's wind tunnels compare very favorably and show that the 10x10 SWT is a viable low-speed wind tunnel. The Subsonic Comparison Test was a joint effort by NASA and Lockheed Martin using the Lockheed Martin's Joint Strike Fighter Concept Demonstration Aircraft model. Although Glenn's 10310 and 836 SWT's have many similarities, they also have unique characteristics. Therefore, test data were collected for multiple model configurations at various vertical locations in the test section, starting at the test section centerline and extending into the ceiling and floor boundary layers.

  4. Mercury Capsule Model in the 1- by 1-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1959-10-21

    National Aeronautics and Space Administration (NASA) researchers install a small-scale model of the capsule for Project Mercury in the 1- by 1-Foot Supersonic Wind Tunnel at the Lewis Research Center. NASA Lewis conducted a variety of tests for Project Mercury, including retrorocket calibration, escape tower engine performance, and separation of the capsule from simulated Atlas and Redstone boosters. The test of this capsule and escape tower model in the 1- by 1-foot tunnel were run in January and February 1960. The 1-by 1-Foot Supersonic Wind Tunnel had a 15-inch long test section, seen here, that was one foot wide and one foot high. The sides were made of glass to allow cameras to capture the supersonic air flow over the models. The tunnel could generate air flows from Mach 1.3 to 3.0. At the time, it was one of nine small supersonic wind tunnels at Lewis. These tunnels used the exhauster and compressor equipment of the larger facilities. The 1- by 1 tunnel, which began operating in the early 1950s, was built inside a test cell in the expansive Engine Research Building. During the 1950s the 1- by 1 was used to study a variety of inlets, nozzles, and cones for missiles and scramjets. The Mercury capsule tests were among the last at the facility for many years. The tunnel was mothballed in 1960. The 1- by 1 was briefly restored in 1972, then brought back online for good in 1979. The facility has maintained a brisk operating schedule ever since.

  5. Noise Suppression Addition to the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1950-08-21

    The 8- by 6-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory was the largest supersonic wind tunnel in the nation at the time and the only one able to test full-scale engines at supersonic speeds. The 8- by 6 was designed as a non-return and open-throat tunnel. A large compressor created the air flow at one end of the tunnel, squeezed the flow to increase its velocity just before the test section, then reduced the velocity, and expelled it into the atmosphere at the other end of the tunnel. This design worked well for initial aerodynamic testing, but the local community was literally rattled by the noise and vibrations when researchers began running engines in the test section in January 1950. The NACA’s most modern wind tunnel was referred to as “an 87,000-horsepower bugle aimed at the heart of Cleveland.” NACA Lewis responded to the complaints by adding an acoustic housing at the end of the tunnel to dampen the noise. The structure included resonator chambers and a reinforced concrete muffler structure. Modifications continued over the years. A return leg was added, and a second test section, 9 -by 15-foot, was incorporated in the return leg in the 1960s. Since its initial operation in 1948, the 8- by 6-foot tunnel has been aggressively used to support the nation's aeronautics and space programs for the military, industry, and academia.

  6. Large-Scale Wind-Tunnel Tests and Evaluation of the Low-Speed Performance of a 35 deg Sweptback Wing Jet Transport Model Equipped with a Blowing Boundary-Layer-Control Flap and Leading-Edge Slat

    NASA Technical Reports Server (NTRS)

    Hickey, David H.; Aoyagi, Kiyoshi

    1960-01-01

    A wind-tunnel investigation was conducted to determine the effect of trailing-edge flaps with blowing-type boundary-layer control and leading-edge slats on the low-speed performance of a large-scale jet transport model with four engines and a 35 deg. sweptback wing of aspect ratio 7. Two spanwise extents and several deflections of the trailing-edge flap were tested. Results were obtained with a normal leading-edge and with full-span leading-edge slats. Three-component longitudinal force and moment data and boundary-layer-control flow requirements are presented. The test results are analyzed in terms of possible improvements in low-speed performance. The effect on performance of the source of boundary-layer-control air flow is considered in the analysis.

  7. Wind tunnel and analytical investigation of over-the-wing propulsion/air frame interferences for a short-haul aircraft at Mach numbers from 0.6 to 0.78. [conducted in the Lewis 8 by 6 foot tunnel

    NASA Technical Reports Server (NTRS)

    Wells, O. D.; Lopez, M. L.; Welge, H. R.; Henne, P. A.; Sewell, A. E.

    1977-01-01

    Results of analytical calculations and wind tunnel tests at cruise speeds of a representative four engine short haul aircraft employing upper surface blowing (USB) with a supercritical wing are discussed. Wind tunnel tests covered a range of Mach number M from 0.6 to 0.78. Tests explored the use of three USB nozzle configurations. Results are shown for the isolated wing body and for each of the three nozzle types installed. Experimental results indicate that a low angle nacelle and streamline contoured nacelle yielded the same interference drag at the design Mach number. A high angle powered lift nacelle had higher interference drag primarily because of nacelle boattail low pressures and flow separation. Results of varying the spacing between the nacelles and the use of trailing edge flap deflections, wing upper surface contouring, and a convergent-divergent nozzle to reduce potential adverse jet effects were also discussed. Analytical comparisons with experimental data, made for selected cases, indicate favorable agreement.

  8. Evaluation of flow quality in two large NASA wind tunnels at transonic speeds

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Stainback, P. C.; Owen, F. K.

    1980-01-01

    Wind tunnel testing of low drag airfoils and basic transition studies at transonic speeds are designed to provide high quality aerodynamic data at high Reynolds numbers. This requires that the flow quality in facilities used for such research be excellent. To obtain a better understanding of the characteristics of facility disturbances and identification of their sources for possible facility modification, detailed flow quality measurements were made in two prospective NASA wind tunnels. Experimental results are presented of an extensive and systematic flow quality study of the settling chamber, test section, and diffuser in the Langley 8 foot transonic pressure tunnel and the Ames 12 foot pressure wind tunnel. Results indicate that the free stream velocity and pressure fluctuation levels in both facilities are low at subsonic speeds and are so high as to make it difficult to conduct meaningful boundary layer control and transition studies at transonic speeds.

  9. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Active Control Design Applications

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1998-01-01

    This report describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind tunnel model for active control design and analysis applications. The model is formed by combining the equations of motion for the BACT wind tunnel model with actuator models and a model of wind tunnel turbulence. The primary focus of this report is the development of the equations of motion from first principles by using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated by making use of parameters obtained from both experiment and analysis. Comparisons between experimental and analytical data obtained from the numerical model show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind tunnel model. The equations of motion developed herein have been used to aid in the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  10. Space shuttle phase B wind tunnel model and test information. Volume 2: Orbiter configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a data base and are available for applying to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Data Base is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retro-glide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configuration types include booster and orbiter components in various stacked and tandem combinations.

  11. TWINTN4: A program for transonic four-wall interference assessment in two-dimensional wind tunnels

    NASA Technical Reports Server (NTRS)

    Kemp, W. B., Jr.

    1984-01-01

    A method for assessing the wall interference in transonic two-dimensional wind tunnel tests including the effects of the tunnel sidewall boundary layer was developed and implemented in a computer program named TWINTN4. The method involves three successive solutions of the transonic small disturbance potential equation to define the wind tunnel flow, the equivalent free air flow around the model, and the perturbation attributable to the model. Required input includes pressure distributions on the model and along the top and bottom tunnel walls which are used as boundary conditions for the wind tunnel flow. The wall-induced perturbation field is determined as the difference between the perturbation in the tunnel flow solution and the perturbation attributable to the model. The methodology used in the program is described and detailed descriptions of the computer program input and output are presented. Input and output for a sample case are given.

  12. Design integration and noise studies for jet STOL aircraft. Volume 1: Program summary

    NASA Technical Reports Server (NTRS)

    Okeefe, V. O.; Kelley, G. S.

    1972-01-01

    This program was undertaken to develop, through analysis, design, experimental static testing, wind tunnel testing, and design integration studies, an augmentor wing jet flap configuration for a jet STOL transport aircraft having maximum propulsion and aerodynamic performance with minimum noise generation. The program had three basic elements: (1) static testing of a scale wing section to demonstrate augmentor performance and noise characteristics; (2) two-dimensional wind tunnel testing to determine flight speed effects on performance; and (3) system design and evaluation which integrated the augmentor information obtained into a complete system and ensured that the design was compatible with the requirements for a large STOL transport having a 500-ft sideline noise of 95 PNdB or less. This objective has been achieved.

  13. Dedicated vertical wind tunnel for the study of sedimentation of non-spherical particles.

    PubMed

    Bagheri, G H; Bonadonna, C; Manzella, I; Pontelandolfo, P; Haas, P

    2013-05-01

    A dedicated 4-m-high vertical wind tunnel has been designed and constructed at the University of Geneva in collaboration with the Groupe de compétence en mécanique des fluides et procédés énergétiques. With its diverging test section, the tunnel is designed to study the aero-dynamical behavior of non-spherical particles with terminal velocities between 5 and 27 ms(-1). A particle tracking velocimetry (PTV) code is developed to calculate drag coefficient of particles in standard conditions based on the real projected area of the particles. Results of our wind tunnel and PTV code are validated by comparing drag coefficient of smooth spherical particles and cylindrical particles to existing literature. Experiments are repeatable with average relative standard deviation of 1.7%. Our preliminary experiments on the effect of particle to fluid density ratio on drag coefficient of cylindrical particles show that the drag coefficient of freely suspended particles in air is lower than those measured in water or in horizontal wind tunnels. It is found that increasing aspect ratio of cylindrical particles reduces their secondary motions and they tend to be suspended with their maximum area normal to the airflow. The use of the vertical wind tunnel in combination with the PTV code provides a reliable and precise instrument for measuring drag coefficient of freely moving particles of various shapes. Our ultimate goal is the study of sedimentation and aggregation of volcanic particles (density between 500 and 2700 kgm(-3)) but the wind tunnel can be used in a wide range of applications.

  14. A wind tunnel study on the effects of complex topography on wind turbine performance

    NASA Astrophysics Data System (ADS)

    Howard, Kevin; Hu, Stephen; Chamorro, Leonardo; Guala, Michele

    2012-11-01

    A set of wind tunnel experiments were conducted to study the response of a wind turbine under flow conditions typically observed at the wind farm scale, in complex terrain. A scale model wind turbine was placed in a fully developed turbulent boundary layer flow obtained in the SAFL Wind Tunnel. Experiments focused on the performance of a turbine model, under the effects induced by a second upwind turbine or a by three-dimensional, sinusoidal hill, peaking at the turbine hub height. High frequency measurements of fluctuating streamwise and wall normal velocities were obtained with a X-wire anemometer simultaneously with the rotor angular velocity and the turbine(s) voltage output. Velocity measurements in the wake of the first turbine and of the hill were used to determine the inflow conditions for the downwind test turbine. Turbine performance was inferred by the mean and fluctuating voltage statistics. Specific experiments were devoted to relate the mean voltage to the mean hub velocity, and the fluctuating voltage to the unsteadiness in the rotor kinematics induced by the perturbed (hill or turbine) or unperturbed (boundary layer) large scales of the incoming turbulent flow. Results show that the voltage signal can be used to assess turbine performance in complex flows.

  15. A wind-tunnel investigation of wind-turbine wakes in different yawed and loading conditions

    NASA Astrophysics Data System (ADS)

    Bastankhah, Majid; Porté-Agel, Fernando

    2015-04-01

    Wind-turbine wakes have negative effects on wind-farm performance. They are associated with: (a) the velocity deficit, which reduces the generated power of downwind turbines; and (b) the turbulence level, which increases the fatigue loads on downwind turbines. Controlling the yaw angle of turbines can potentially improve the performance of wind farms by deflecting the wake away from downwind turbines. However, except for few studies, wakes of yawed turbines still suffer from the lack of systematic research. To fill this research gap, we performed wind-tunnel experiments in the recirculating boundary-layer wind tunnel at the WIRE Laboratory of EPFL to better understand the wakes of yawed turbines. High-resolution stereoscopic particle image-velocimetry (S-PIV) was used to measure three velocity components in a horizontal plane located downwind of a horizontal-axis, three-blade model turbine. A servo-controller was connected to the DC generator of the turbine, which allowed us to apply different loadings. The power and thrust coefficients of the turbine were also measured for each case. These power and thrust measurements together with the highly-resolved flow measurements enabled us to study different wake characteristics such as the energy entrainment from the outer flow into the wake, the wake deflection and the helicoidal tip vortices for yawed turbines.

  16. Sting Dynamics of Wind Tunnel Models

    DTIC Science & Technology

    1976-05-01

    Patterson AFB, AFFDL, Ohio, October 1964. 17. Brunk, James E. "Users Manual: Extended Capability Magnus Rotor and Ballistic Body 6-DOF Trajectory...measure "second-order" aerodynamic effects resulting, for example, from Reynolds number in- fluence. Consequently, all wind tunnel data systems are...sting-model interference effects , sting configurations normally consist of one or more linearly tapered sections combined with one or more untapered

  17. Optimization of transonic wind tunnel data acquisition and control systems for providing continuous mode tests

    NASA Astrophysics Data System (ADS)

    Petronevich, V. V.

    2016-10-01

    The paper observes the issues related to the increase of efficiency and information content of experimental research in transonic wind tunnels (WT). In particular, questions of optimizing the WT Data Acquisition and Control Systems (DACS) to provide the continuous mode test method are discussed. The problem of Mach number (M number) stabilization in the test section of the large transonic compressor-type wind tunnels at subsonic flow conditions with continuous change of the aircraft model angle of attack is observed on the example of T-128 wind tunnel. To minimize the signals distortion in T-128 DACS measurement channels the optimal MGCplus filter settings of the data acquisition system used in T-128 wind tunnel to measure loads were experimentally determined. As a result of the tests performed a good agreement of the results of balance measurements for pitch/pause and continuous test modes was obtained. Carrying out balance tests for pitch/pause and continuous test methods was provided by the regular data acquisition and control system of T-128 wind tunnel with unified software package POTOK. The architecture and functional abilities of POTOK software package are observed.

  18. Flowfield measurements in the NASA Lewis Research Center 9- by 15-foot low-speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    1989-01-01

    An experimental investigation was conducted in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel to determine the flow characteristics in the test section during wind tunnel operation. In the investigation, a 20-probe horizontally-mounted Pitot-static flow survey rake was used to obtain cross-sectional total and static pressure surveys at four axial locations in the test section. At each axial location, the cross-sectional flowfield surveys were made by repositioning the Pitot-static flow survey rake vertically. In addition, a calibration of the new wind tunnel rake instrumentation, used to determine the wind tunnel operating conditions, was performed. Boundary laser surveys were made at three axial locations in the test section. The investigation was conducted at tunnel Mach numbers 0.20, 0.15, 0.10, and 0.05. The test section profile results from the investigation indicate that fairly uniform total pressure profiles (outside the test section boundary layer) and fairly uniform static pressure and Mach number profiles (away from the test section walls and downstream of the test section entrance) exist throughout in the wind tunnel test section.

  19. Force instrumentation for cryogenic wind tunnels using one-piece strain-gage balances

    NASA Technical Reports Server (NTRS)

    Ferris, A. T.

    1980-01-01

    The use of cryogenic temperatures in wind tunnels to achieve high Reynolds numbers has imposed a harsh operating environment on the force balance. Laboratory tests were conducted to study the effect cryogenic temperatures have on balance materials, gages, wiring, solder, adhesives, and moisture proofing. Wind tunnel tests were conducted using a one piece three component balance to verify laboratory results. These initial studies indicate that satisfactory force data can be obtained under steady state conditions.

  20. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 2: User's Guide to the Archived Data Base

    NASA Technical Reports Server (NTRS)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the Space Shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of Space Shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the Space Shuttle wind tunnel program. The two-volume set covers the evolution of Space Shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  1. Measurement of attachment-line location in a wind-tunnel and in supersonic flight

    NASA Technical Reports Server (NTRS)

    Agarwal, Naval K.; Miley, Stan J.; Fisher, Michael C.; Anderson, Bianca T.; Geenen, Robert J.

    1992-01-01

    For the supersonic laminar flow control research program, tests are being conducted to measure the attachment-line flow characteristics and its location on a highly swept aircraft wing. Subsonic wind tunnel experiments were conducted on 2D models to develop sensors and techniques for the flight application. Representative attachment-line data are discussed and results from the wind tunnel investigation are presented.

  2. Model-Scale Aerodynamic Performance Testing of Proposed Modifications to the NASA Langley Low Speed Aeroacoustic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Coston, Calvin W., Jr.

    2005-01-01

    Tests were performed on a 1/20th-scale model of the Low Speed Aeroacoustic Wind Tunnel to determine the performance effects of insertion of acoustic baffles in the tunnel inlet, replacement of the existing collector with a new collector design in the open jet test section, and addition of flow splitters to the acoustic baffle section downstream of the test section. As expected, the inlet baffles caused a reduction in facility performance. About half of the performance loss was recovered by addition the flow splitters to the downstream baffles. All collectors tested reduced facility performance. However, test chamber recirculation flow was reduced by the new collector designs and shielding of some of the microphones was reduced owing to the smaller size of the new collector. Overall performance loss in the facility is expected to be a 5 percent top flow speed reduction, but the facility will meet OSHA limits for external noise levels and recirculation in the test section will be reduced.

  3. Probabilistic Design of a Wind Tunnel Model to Match the Response of a Full-Scale Aircraft

    NASA Technical Reports Server (NTRS)

    Mason, Brian H.; Stroud, W. Jefferson; Krishnamurthy, T.; Spain, Charles V.; Naser, Ahmad S.

    2005-01-01

    approach is presented for carrying out the reliability-based design of a plate-like wing that is part of a wind tunnel model. The goal is to design the wind tunnel model to match the stiffness characteristics of the wing box of a flight vehicle while satisfying strength-based risk/reliability requirements that prevents damage to the wind tunnel model and fixtures. The flight vehicle is a modified F/A-18 aircraft. The design problem is solved using reliability-based optimization techniques. The objective function to be minimized is the difference between the displacements of the wind tunnel model and the corresponding displacements of the flight vehicle. The design variables control the thickness distribution of the wind tunnel model. Displacements of the wind tunnel model change with the thickness distribution, while displacements of the flight vehicle are a set of fixed data. The only constraint imposed is that the probability of failure is less than a specified value. Failure is assumed to occur if the stress caused by aerodynamic pressure loading is greater than the specified strength allowable. Two uncertain quantities are considered: the allowable stress and the thickness distribution of the wind tunnel model. Reliability is calculated using Monte Carlo simulation with response surfaces that provide approximate values of stresses. The response surface equations are, in turn, computed from finite element analyses of the wind tunnel model at specified design points. Because the response surface approximations were fit over a small region centered about the current design, the response surfaces were refit periodically as the design variables changed. Coarse-grained parallelism was used to simultaneously perform multiple finite element analyses. Studies carried out in this paper demonstrate that this scheme of using moving response surfaces and coarse-grained computational parallelism reduce the execution time of the Monte Carlo simulation enough to make the

  4. Check-Standard Testing Across Multiple Transonic Wind Tunnels with the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Deloach, Richard

    2012-01-01

    This paper reports the result of an analysis of wind tunnel data acquired in support of the Facility Analysis Verification & Operational Reliability (FAVOR) project. The analysis uses methods referred to collectively at Langley Research Center as the Modern Design of Experiments (MDOE). These methods quantify the total variance in a sample of wind tunnel data and partition it into explained and unexplained components. The unexplained component is further partitioned in random and systematic components. This analysis was performed on data acquired in similar wind tunnel tests executed in four different U.S. transonic facilities. The measurement environment of each facility was quantified and compared.

  5. Experimental Measurement of RCS Jet Interaction Effects on a Capsule Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.; Watkins, A. Neal; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Dyakonov, Artem A.

    2008-01-01

    An investigation was made in NASA Langley Research Center s 31-Inch Mach 10 Tunnel to determine the effects of reaction-control system (RCS) jet interactions on the aft-body of a capsule entry vehicle. The test focused on demonstrating and improving advanced measurement techniques that would aid in the rapid measurement and visualization of jet interaction effects for the Orion Crew Exploration Vehicle while providing data useful for developing engineering models or validation of computational tools used to assess actual flight environments. Measurements included global surface imaging with pressure and temperature sensitive paints and three-dimensional flow visualization with a scanning planar laser induced fluorescence technique. The wind tunnel model was fabricated with interchangeable parts for two different aft-body configurations. The first, an Apollo-like configuration, was used to focus primarily on the forward facing roll and yaw jet interactions which are known to have significant aft-body heating augmentation. The second, an early Orion Crew Module configuration (4-cluster jets), was tested blowing only out of the most windward yaw jet, which was expected to have the maximum heating augmentation for that configuration. Jet chamber pressures and tunnel flow conditions were chosen to approximate early Apollo wind tunnel test conditions. Maximum heating augmentation values measured for the Apollo-like configuration (>10 for forward facing roll jet and 4 for yaw jet) using temperature sensitive paint were shown to be similar to earlier experimental results (Jones and Hunt, 1965) using a phase change paint technique, but were acquired with much higher surface resolution. Heating results for the windward yaw jet on the Orion configuration had similar augmentation levels, but affected much less surface area. Numerical modeling for the Apollo-like yaw jet configuration with laminar flow and uniform jet outflow conditions showed similar heating patterns

  6. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1978-01-01

    Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.

  7. Wind Tunnel Interference Effects on Tilt Rotor Testing Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Koning, Witold J. F.

    2016-01-01

    Experimental techniques to measure rotorcraft aerodynamic performance are widely used. However, most of them are either unable to capture interference effects from bodies, or require an extremely large computational budget. The objective of the present research is to develop an XV-15 Tiltrotor Research Aircraft rotor model for investigation of wind tunnel wall interference using a novel Computational Fluid Dynamics (CFD) solver for rotorcraft, RotCFD. In RotCFD, a mid-fidelity Unsteady Reynolds Averaged Navier-Stokes (URANS) solver is used with an incompressible flow model and a realizable k-e turbulence model. The rotor is, however, not modeled using a computationally expensive, unsteady viscous body-fitted grid, but is instead modeled using a blade-element model (BEM) with a momentum source approach. Various flight modes of the XV-15 isolated rotor, including hover, tilt, and airplane mode, have been simulated and correlated to existing experimental and theoretical data. The rotor model is subsequently used for wind tunnel wall interference simulations in the National Full-Scale Aerodynamics Complex (NFAC) at Ames Research Center in California. The results from the validation of the isolated rotor performance showed good correlation with experimental and theoretical data. The results were on par with known theoretical analyses. In RotCFD the setup, grid generation, and running of cases is faster than many CFD codes, which makes it a useful engineering tool. Performance predictions need not be as accurate as high-fidelity CFD codes, as long as wall effects can be properly simulated. For both test sections of the NFAC wall, interference was examined by simulating the XV-15 rotor in the test section of the wind tunnel and with an identical grid but extended boundaries in free field. Both cases were also examined with an isolated rotor or with the rotor mounted on the modeled geometry of the Tiltrotor Test Rig (TTR). A "quasi linear trim" was used to trim the thrust

  8. Wind Tunnel Interference Effects on Tilt Rotor Testing Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Koning, Witold J. F.

    2015-01-01

    Experimental techniques to measure rotorcraft aerodynamic performance are widely used. However, most of them are either unable to capture interference effects from bodies, or require an extremely large computational budget. The objective of the present research is to develop an XV-15 Tilt Rotor Research Aircraft rotor model for investigation of wind tunnel wall interference using a novel Computational Fluid Dynamics (CFD) solver for rotorcraft, RotCFD. In RotCFD, a mid-fidelity URANS solver is used with an incompressible flow model and a realizable k-e turbulence model. The rotor is, however, not modeled using a computationally expensive, unsteady viscous body-fitted grid, but is instead modeled using a blade element model with a momentum source approach. Various flight modes of the XV-15 isolated rotor, including hover, tilt and airplane mode, have been simulated and correlated to existing experimental and theoretical data. The rotor model is subsequently used for wind tunnel wall interference simulations in the National Full-Scale Aerodynamics Complex (NFAC) at NASA Ames Research Center in California. The results from the validation of the isolated rotor performance showed good correlation with experimental and theoretical data. The results were on par with known theoretical analyses. In RotCFD the setup, grid generation and running of cases is faster than many CFD codes, which makes it a useful engineering tool. Performance predictions need not be as accurate as high-fidelity CFD codes, as long as wall effects can be properly simulated. For both test sections of the NFAC wall interference was examined by simulating the XV-15 rotor in the test section of the wind tunnel and with an identical grid but extended boundaries in free field. Both cases were also examined with an isolated rotor or with the rotor mounted on the modeled geometry of the Tiltrotor Test Rig (TTR). A 'quasi linear trim' was used to trim the thrust for the rotor to compare the power as a unique

  9. Airloads Correlation of the UH-60A Rotor Inside the 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Chang, I-Chung; Norman, Thomas R.; Romander, Ethan A.

    2013-01-01

    The presented research validates the capability of a loosely-coupled computational fluid dynamics (CFD) and comprehensive rotorcraft analysis (CRA) code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the full-scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The studied conditions include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed up to and including stall. For the speed sweep, wind tunnel modeling becomes important at advance ratios greater than 0.37 and test stand modeling becomes increasingly important as the advance ratio increases. For the thrust sweep, both the wind tunnel and test stand modeling become important as the rotor approaches stall. Despite the beneficial effects of modeling the wind tunnel and test stand, the new models do not completely resolve the current airload discrepancies between prediction and experiment.

  10. Development of an intelligent hypertext system for wind tunnel testing

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Shi, George Z.; Steinle, Frank W.; Wu, Y. C. L. Susan; Hoyt, W. Andes

    1991-01-01

    This paper summarizes the results of a system utilizing artificial intelligence technology to improve the productivity of project engineers who conduct wind tunnel tests. The objective was to create an intelligent hypertext system which integrates a hypertext manual and expert system that stores experts' knowledge and experience. The preliminary (Phase I) effort implemented a prototype IHS module encompassing a portion of the manuals and knowledge used for wind tunnel testing. The effort successfully demonstrated the feasibility of the intelligent hypertext system concept. A module for the internal strain gage balance, implemented on both IBM-PC and Macintosh computers, is presented. A description of the Phase II effort is included.

  11. Preparation of polystyrene microspheres for laser velocimetry in wind tunnels

    NASA Technical Reports Server (NTRS)

    Nichols, Cecil E., Jr.

    1987-01-01

    Laser Velocimetry (L/V) had made great strides in replacing intrusive devices for wind tunnel flow measurements. The weakness of the L/V has not been the L/V itself, but proper size seeding particles having known drag characteristics. For many Langley Wind Tunnel applications commercial polystyrene latex microspheres suspended in ethanol, injected through a fluid nozzle provides excellent seeding but was not used due to the high cost. This paper provides the instructions, procedures, and formulations for producing polystyrene latex monodisperse microspheres of 0.6, 1.0, 1.7, 2.0, and 2.7 micron diameters. These are presently being used at Langley Research Center as L/V seeding particles.

  12. Verification and Calibration of a Reduced Order Wind Farm Model by Wind Tunnel Experiments

    NASA Astrophysics Data System (ADS)

    Schreiber, J.; Nanos, E. M.; Campagnolo, F.; Bottasso, C. L.

    2017-05-01

    In this paper an adaptation of the FLORIS approach is considered that models the wind flow and power production within a wind farm. In preparation to the use of this model for wind farm control, this paper considers the problem of its calibration and validation with the use of experimental observations. The model parameters are first identified based on measurements performed on an isolated scaled wind turbine operated in a boundary layer wind tunnel in various wind-misalignment conditions. Next, the wind farm model is verified with results of experimental tests conducted on three interacting scaled wind turbines. Although some differences in the estimated absolute power are observed, the model appears to be capable of identifying with good accuracy the wind turbine misalignment angles that, by deflecting the wake, lead to maximum power for the investigated layouts.

  13. The 6-foot-4-inch Wind Tunnel at the Washington Navy Yard

    NASA Technical Reports Server (NTRS)

    Desmond, G L; Mccrary, J A

    1935-01-01

    The 6-foot-4-inch wind tunnel and its auxiliary equipment has proven itself capable of continuous and reliable output of data. The real value of the tunnel will increase as experience is gained in checking the observed tunnel performance against full-scale performance. Such has been the case of the 8- by 8-foot tunnel, and for that reason the comparison in the calibration tests have been presented.

  14. High velocity wind tunnels : their application to ballistics, aerodynamics, and aeronautics

    NASA Technical Reports Server (NTRS)

    Huguenard, E

    1925-01-01

    The object of this article is to set forth the particular properties of swiftly-moving air, how these affect the installation of a wind tunnel, the experimental results already obtained, the possible applications of such a tunnel, and what can be easily accomplished at the present time.

  15. An Integrated Approach to Winds, Jets, and State Transitions

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph

    2017-09-01

    We propose a large multiwavelength campaign (120 ks Chandra HETGS, NuSTAR, INTEGRAL, JVLA/ATCA, Swift, XMM, Gemini) on a black hole transient to study the influence of ionized winds on relativistic jets and state transitions. With a reimagined observing strategy based on new results on integrated RMS variability and a decade of radio/X-ray monitoring, we will search for winds during and after the state transition to test their influence on and track their coevolution with the disk and the jet over the next 2-3 months. Our spectral and timing constraints will provide precise probes of the accretion geometry and accretion/ejection physics.

  16. Transonic Flutter Suppression Control Law Design, Analysis and Wind Tunnel Results

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1999-01-01

    The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using (1) classical, (2) linear quadratic Gaussian (LQG), and (3) minimax techniques are described. A unified general formulation and solution for the LQG and minimax approaches, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.

  17. Transonic Flutter Suppression Control Law Design, Analysis and Wind-Tunnel Results

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1999-01-01

    The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using (1) classical, (2) linear quadratic Gaussian (LQG), and (3) minimax techniques are described. A unified general formulation and solution for the LQG and minimax approaches, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf. The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.

  18. Aeroservoelastic Testing of a Sidewall Mounted Free Flying Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer

    2008-01-01

    A team comprised of the Air Force Research Laboratory (AFRL), Northrop Grumman, Lockheed Martin, and the NASA Langley Research Center conducted three j wind-tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, exible vehicles. In the rst of these three tests, a semispan, aeroelastically scaled, wind-tunnel model of a ying wing SensorCraft vehi- cle was mounted to a force balance to demonstrate gust load alleviation. In the second and third tests, the same wing was mated to a new, multi-degree-of-freedom, sidewall mount. This mount allowed the half-span model to translate vertically and pitch at the wing root, allowing better simulation of the full span vehicle's rigid-body modes. Gust Load Alleviation (GLA) and Body Freedom Flutter (BFF) suppression were successfully demonstrated. The rigid body degrees-of-freedom required that the model be own in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort.

  19. Exterior of Flexible Wall at the 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1955-03-21

    A mechanic checks the tubing on one of the many jacks which control the nozzle section of the 10- by 10-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The 10- by 10-foot tunnel, which had its official opening in May 1956, was built under the Congressional Unitary Plan Act which coordinated wind tunnel construction at the NACA, Air Force, industry, and universities. The 10- by 10 was the largest of the three NACA tunnels built under the act. The 10- by 10 wind tunnel can be operated as a closed circuit for aerodynamic tests or as an open circuit for propulsion investigations. The 10-foot tall and 76-foot long stainless steel nozzle section just upstream from the test section can be adjusted to change the speed and composition of the air flow. Hydraulic jacks, seen in this photograph, flex the 1.37-inch thick walls of the tunnel nozzle. The size of the nozzle’s opening controls the velocity of the air through the test section. Seven General Electric motors capable of generating 25,000 horsepower produce the Mach 2.5 and 2.5 airflows. The facility was mostly operated at night due to its large power load requirements.

  20. New investigation of short wings with lateral jets

    NASA Technical Reports Server (NTRS)

    Carafoli, E.; Camarasescu, N.

    1983-01-01

    The lift of short wings by means of lateral fluid jets fired in the plane of the wing in the direction of the span is described. After some theoretical considerations, the experimental results obtained in a wind tunnel on a series of wings of various lengths are presented.

  1. Dynamic response tests of inertial and optical wind-tunnel model attitude measurement devices

    NASA Technical Reports Server (NTRS)

    Buehrle, R. D.; Young, C. P., Jr.; Burner, A. W.; Tripp, J. S.; Tcheng, P.; Finley, T. D.; Popernack, T. G., Jr.

    1995-01-01

    Results are presented for an experimental study of the response of inertial and optical wind-tunnel model attitude measurement systems in a wind-off simulated dynamic environment. This study is part of an ongoing activity at the NASA Langley Research Center to develop high accuracy, advanced model attitude measurement systems that can be used in a dynamic wind-tunnel environment. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration which results in a model attitude measurement bias error. Significant bias errors in model attitude measurement were found for the measurement using the inertial device during wind-off dynamic testing of a model system. The amount of bias present during wind-tunnel tests will depend on the amplitudes of the model dynamic response and the modal characteristics of the model system. Correction models are presented that predict the vibration-induced bias errors to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment. The optical system results were uncorrupted by model vibration in the laboratory setup.

  2. Investigations and Experiments in the Guidonia Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ferri, Antonio

    1939-01-01

    This paper is a presentation of the experiments and equipment used in investigations at the Guidonia wind tunnel. The equipment consisted of: a number of subsonic and supersonic cones, an aerodynamic balance, and optical instruments operating on the Schlieren and interferometer principle.

  3. Enabling Advanced Wind-Tunnel Research Methods Using the NASA Langley 12-Foot Low Speed Tunnel

    NASA Technical Reports Server (NTRS)

    Busan, Ronald C.; Rothhaar, Paul M.; Croom, Mark A.; Murphy, Patrick C.; Grafton, Sue B.; O-Neal, Anthony W.

    2014-01-01

    Design of Experiment (DOE) testing methods were used to gather wind tunnel data characterizing the aerodynamic and propulsion forces and moments acting on a complex vehicle configuration with 10 motor-driven propellers, 9 control surfaces, a tilt wing, and a tilt tail. This paper describes the potential benefits and practical implications of using DOE methods for wind tunnel testing - with an emphasis on describing how it can affect model hardware, facility hardware, and software for control and data acquisition. With up to 23 independent variables (19 model and 2 tunnel) for some vehicle configurations, this recent test also provides an excellent example of using DOE methods to assess critical coupling effects in a reasonable timeframe for complex vehicle configurations. Results for an exploratory test using conventional angle of attack sweeps to assess aerodynamic hysteresis is summarized, and DOE results are presented for an exploratory test used to set the data sampling time for the overall test. DOE results are also shown for one production test characterizing normal force in the Cruise mode for the vehicle.

  4. A rotating bluff-body disc for reduced variability in wind tunnel aerosol studies.

    PubMed

    Koehler, Kirsten A; Anthony, T Renee; van Dyke, Michael; Volckens, John

    2011-01-01

    A rotating bluff-body disc (RBD) was developed to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. The RBD is designed to rotate eight personal aerosol samplers around a circular path in a forward-facing plane aligned with the wind tunnel cross section. Rotation of the RBD allows each sampler to traverse an identical path about the wind tunnel cross section, which reduces the effects of spatial heterogeneity associated with dispersing supermicron aerosol in low-velocity wind tunnels. Samplers are positioned on the face of the RBD via sampling ports, which connect to an air manifold on the back of the disc. Flow through each sampler was controlled with a critical orifice or needle valve, allowing air to be drawn through the manifold with a single pump. A metal tube, attached to this manifold, serves as both the axis of rotation and the flow conduction path (between the samplers and the vacuum source). Validation of the RBD was performed with isokinetic samplers and 37-mm cassettes. For facing-the-wind tests, the rotation of the RBD significantly decreased intra-sampler variability when challenged with particle diameters from 1 to 100 μm. The RBD was then employed to determine the aspiration efficiency of Institute of Occupational Medicine (IOM) personal samplers under a facing-the-wind condition. Operation of IOM samplers on the RBD reduced the between-sampler variability for all particle sizes tested.

  5. Data correlation and analysis of arc tunnel and wind tunnel tests of RSI joints and gaps. Volume 2: Data base

    NASA Technical Reports Server (NTRS)

    Christensen, H. E.; Kipp, H. W.

    1974-01-01

    Wind tunnel tests were conducted to determine the aerodynamic heating created by gaps in the reusable surface insulation (RSI) thermal protection system (TPS) for the space shuttle. The effects of various parameters of the RSI on convective heating characteristics are described. The wind tunnel tests provided a data base for accurate assessment of gap heating. Analysis and correlation of the data provide methods for predicting heating in the RSI gaps on the space shuttle.

  6. Modernization and Activation of the NASA Ames 11- by 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Kmak, Frank J.

    2000-01-01

    The Unitary Plan Wind Tunnel (UPWT) was modernized to improve performance, capability, productivity, and reliability. Automation systems were installed in all three UPWT tunnel legs and the Auxiliaries facility. Major improvements were made to the four control rooms, model support systems, main drive motors, and main drive speed control. Pressure vessel repairs and refurbishment to the electrical distribution system were also completed. Significant changes were made to improve test section flow quality in the 11-by 11-Foot Transonic leg. After the completion of the construction phase of the project, acceptance and checkout testing was performed to demonstrate the capabilities of the modernized facility. A pneumatic test of the tunnel circuit was performed to verify the structural integrity of the pressure vessel before wind-on operations. Test section turbulence, flow angularity, and acoustic parameters were measured throughout the tunnel envelope to determine the effects of the tunnel flow quality improvements. The new control system processes were thoroughly checked during wind-off and wind-on operations. Manual subsystem modes and automated supervisory modes of tunnel operation were validated. The aerodynamic and structural performance of both the new composite compressor rotor blades and the old aluminum rotor blades was measured. The entire subsonic and supersonic envelope of the 11-by 11-Foot Transonic leg was defined up to the maximum total pressure.

  7. Comparison of Ares I-X Wind-Tunnel Derived Buffet Environment with Flight Data

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2011-01-01

    The Ares I-X Flight Test Vehicle (FTV), launched in October 2009, carried with it over 243 buffet verification pressure sensors and was one of the most heavily instrumented launch vehicle flight tests. This flight test represented a unique opportunity for NASA and its partners to compare the wind-tunnel derived buffet environment with that measured during the flight of Ares I-X. It is necessary to define the launch vehicle buffet loads to ensure that structural components and vehicle subsystems possess adequate strength, stress, and fatigue margins when the vehicle structural dynamic response to buffet forcing functions are considered. Ares I-X buffet forcing functions were obtained via wind-tunnel testing of a rigid buffet model (RBM) instrumented with hundreds of unsteady pressure transducers designed to measure the buffet environment across the desired frequency range. This paper discusses the comparison of RBM and FTV buffet environments, including fluctuating pressure coefficient and normalized sectional buffet forcing function root-mean-square magnitudes, frequency content of power-spectral density functions, and force magnitudes of an alternating flow phenomena. Comparison of wind-tunnel model and flight test vehicle buffet environments show very good agreement with root-mean-square magnitudes of buffet forcing functions at the majority of vehicle stations. Spectra proved a challenge to compare because of different wind-tunnel and flight test conditions and data acquisition rates. However, meaningful and promising comparisons of buffet spectra are presented. Lastly, the buffet loads resulting from the transition of subsonic separated flow to supersonic attached flow were significantly over-predicted by wind-tunnel results.

  8. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  9. Application Of Artificial Intelligence To Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Steinle, Frank W., Jr.

    1989-01-01

    Report discusses potential use of artificial-intelligence systems to manage wind-tunnel test facilities at Ames Research Center. One of goals of program to obtain experimental data of better quality and otherwise generally increase productivity of facilities. Another goal to increase efficiency and expertise of current personnel and to retain expertise of former personnel. Third goal to increase effectiveness of management through more efficient use of accumulated data. System used to improve schedules of operation and maintenance of tunnels and other equipment, assignment of personnel, distribution of electrical power, and analysis of costs and productivity. Several commercial artificial-intelligence computer programs discussed as possible candidates for use.

  10. Effect of Turbulence in Wind-Tunnel Measurements

    NASA Technical Reports Server (NTRS)

    Dryden, H L; Kuethe, A M

    1931-01-01

    This paper gives some quantitative measurements of wind tunnel turbulence and its effect on the air resistance of spheres and airship models, measurements made possible by the hot wire anemometer and associated apparatus in its original form was described in Technical Report no. 320 and some modifications are presented in an appendix to the present paper. One important result of the investigation is a curve by means of which measurements of the air resistance of spheres can be interpreted to give the turbulence quantitatively. Another is the definite proof that the discrepancies in the results on the N. P. L. Standard airship models are due mainly to differences in the turbulences of the wind tunnels in which the tests were made. An attempt is made to interpret the observed results in terms of the boundary layer theory and for this purpose a brief account is given of the physical bases of this theory and of conceptions that have been obtained by analogy with the laws of flow in pipes.

  11. Wind tunnel studies of Martian aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Iversen, J. D.; Pollack, J. B.; Udovich, N.; White, B.

    1973-01-01

    Preliminary results are reported of an investigation which involves wind tunnel simulations, geologic field studies, theoretical model studies, and analyses of Mariner 9 imagery. Threshold speed experiments were conducted for particles ranging in specific gravity from 1.3 to 11.35 and diameter from 10.2 micron to 1290 micron to verify and better define Bagnold's (1941) expressions for grain movement, particularly for low particle Reynolds numbers and to study the effects of aerodynamic lift and surface roughness. Wind tunnel simulations were conducted to determine the flow field over raised rim craters and associated zones of deposition and erosion. A horseshoe vortex forms around the crater, resulting in two axial velocity maxima in the lee of the crater which cause a zone of preferential erosion in the wake of the crater. Reverse flow direction occurs on the floor of the crater. The result is a distinct pattern of erosion and deposition which is similar to some martian craters and which indicates that some dark zones around Martian craters are erosional and some light zones are depositional.

  12. An experimental study of an adaptive-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Celik, Zeki; Roberts, Leonard

    1988-01-01

    A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.

  13. Correlations of Platooning Track Test and Wind Tunnel Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, Michael P.; Kelly, Kenneth J.; Yanowitz, Janet

    In this report, the National Renewable Energy Laboratory analyzed results from multiple, independent truck platooning projects to compare and contrast track test results with wind tunnel test results conducted by Lawrence Livermore National Laboratory (LLNL). Some highlights from the report include compiled data, and results from four independent SAE J1321 full-size track test campaigns that were compared to LLNL wind tunnel testing results. All platooning scenarios tested demonstrated significant fuel savings with good correlation relative to following distances, but there are still unanswered questions and clear opportunities for system optimization. NOx emissions showed improvements from NREL tests in 2014 tomore » Auburn tests in 2015 with respect to J1321 platooning track testing of Peloton system. NREL evaluated data from Volpe's Naturalistic Study of Truck Following Behavior, which showed minimal impact of naturalistic background platooning. We found significant correlation between multiple track studies, wind tunnel tests, and computational fluid dynamics, but also showed that there is more to learn regarding close formation and longer-distance effects. We also identified potential areas for further research and development, including development of advanced aerodynamic designs optimized for platooning, measurement of platoon system performance in traffic conditions, impact of vehicle lateral offsets on platooning performance, and characterization of the national potential for platooning based on fleet operational characteristics.« less

  14. An Assessment of Ares I-X Aeroacoustic Measurements with Comparisons to Pre-Flight Wind Tunnel Test Results

    NASA Technical Reports Server (NTRS)

    Nance, Donald K.; Reed, Darren K.

    2011-01-01

    During the recent successful launch of the Ares I-X Flight Test Vehicle, aeroacoustic data was gathered at fifty-seven locations along the vehicle as part of the Developmental Flight Instrumentation. Several of the Ares I-X aeroacoustic measurements were placed to duplicate measurement locations prescribed in pre-flight, sub-scale wind tunnel tests. For these duplicated measurement locations, comparisons have been made between aeroacoustic data gathered during the ascent phase of the Ares I-X flight test and wind tunnel test data. These comparisons have been made at closely matching flight conditions (Mach number and vehicle attitude) in order to preserve a one-to-one relationship between the flight and wind tunnel data. These comparisons and the current wind tunnel to flight scaling methodology are presented and discussed. The implications of using wind tunnel test data scaled under the current methodology to predict conceptual launch vehicle aeroacoustic environments are also discussed.

  15. Aeolian snow transport from wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Paterna, E.; Crivelli, P.; Lehning, M.

    2016-12-01

    Aeolian snow transport has a significant impact on snow redistribution in mountains, prairies as well as on glaciers, ice shelves, and sea ice. In all these environments, the local mass balance is highly influenced by Aeolian snow transport. The dynamics of snow saltation has a high impact on the land surface processes shaping these regions. More specifically, the observed high intermittency of saltation fluxes poses a problem for saltation models and needs to be better understood. We therefore aimed at unveiling the mechanisms underlying snow saltation at different saltation strengths and its coupling with the turbulent fluctuations of the wind. We conducted wind tunnel measurements of the momentum and mass-fluxes during snow saltation. For the mass-flux measurements we employed a shadowgraphy system which acquires images of the snow particle's shadows at high spatial and temporal resolution. The size and displacement of the particles are then determined by means of image analysis and Particle Tracking Velocimetry (PTV), allowing to estimate both snow mass-flux and flow velocity. Our controlled wind tunnel experiments revealed the existence of two regimes of saltation. In a turbulence-dependent regime occurring during weak saltation activity, we observed a strong coupling between snow transport and turbulent flow. Conversely during stronger saltation activity a turbulence-independent regime emerges, where the saltation develops its own length scale and it efficiently decouples from the wind fluctuations. We argue that different entrainment mechanisms could explain the existence of the two different saltation regimes as well as the observed high level of mass-flux intermittency.

  16. Development of a process control computer device for the adaptation of flexible wind tunnel walls

    NASA Technical Reports Server (NTRS)

    Barg, J.

    1982-01-01

    In wind tunnel tests, the problems arise of determining the wall pressure distribution, calculating the wall contour, and controlling adjustment of the walls. This report shows how these problems have been solved for the high speed wind tunnel of the Technical University of Berlin.

  17. Persistence Characteristics of Wind-Tunnel Pressure Signatures From Two Similar Models

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2004-01-01

    Pressure signatures generated by two sonic-boom wind-tunnel models and measured at Mach 2 are presented, analyzed, and discussed. The two wind-tunnel models differed in length and span by a factor of fourteen, but were similar in wing-body planform shape. The geometry of the larger model had been low-boom tailored to generate a flat top ground pressure signature, and the nacelles-off pressure signatures from this model became more flattop in shape as the model-probe separation distances increased from 0.94 to 4.4 span lengths. The geometry of the smaller model had not been low-boom tailored, yet its measured pressure signatures had non-N-wave shapes that persisted as model-probe separation distances increased from 26.0 to 104.2 span lengths. Since the overall planforms of the two wind-tunnel models were so similar, it was concluded that the shape-persistence trends in the pressure signatures of the smaller, non-low-boom tailored model would also be present at very large distances in the pressure signatures of the larger, low-boom-tailored model.

  18. Standardization Tests of NACA No. 1 Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Reid, Elliott G

    1925-01-01

    The tests described in this report were made in the 5-foot atmospheric wind tunnel of the National Advisory Committee for Aeronautics, at Langley Field. The primary objective of collecting data on the characteristics of this tunnel for comparison with those of others throughout the world, in order that, in the future, the results of tests made in all the principle laboratories may be interpreted, compared, and coordinated on a basis of scientifically established relationships, a process hitherto impossible due to the lack of comparable data. The work includes tests of a disk, spheres, cylinders, and airfoils, explorations of the test section for static pressure and velocity distribution, and determination of the variations of air flow direction throughout the operating range of the tunnel. (author)

  19. Space shuttle phase B wind tunnel model and test information. Volume 1: Booster configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. This is Volume 1 (Part 2) of the report -- Booster Configuration.

  20. Space shuttle phase B wind tunnel model and test information. Volume 1: Booster configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. This is Volume 1 (Part 1) of the report -- Booster Configuration.