Sample records for jet-cooled carbazole complexes

  1. Numerical models of jet disruption in cluster cooling flows

    NASA Technical Reports Server (NTRS)

    Loken, Chris; Burns, Jack O.; Roettiger, Kurt; Norman, Mike

    1993-01-01

    We present a coherent picture for the formation of the observed diverse radio morphological structures in dominant cluster galaxies based on the jet Mach number. Realistic, supersonic, steady-state cooling flow atmospheres are evolved numerically and then used as the ambient medium through which jets of various properties are propagated. Low Mach number jets effectively stagnate due to the ram pressure of the cooling flow atmosphere while medium Mach number jets become unstable and disrupt in the cooling flow to form amorphous structures. High Mach number jets manage to avoid disruption and are able to propagate through the cooling flow.

  2. The Stability of Radiatively Cooling Jets I. Linear Analysis

    NASA Technical Reports Server (NTRS)

    Hardee, Philip E.; Stone, James M.

    1997-01-01

    The results of a spatial stability analysis of a two-dimensional slab jet, in which optically thin radiative cooling is dynamically important, are presented. We study both magnetized and unmagnetized jets at external Mach numbers of 5 and 20. We model the cooling rate by using two different cooling curves: one appropriate to interstellar gas, and the other to photoionized gas of reduced metallicity. Thus, our results will be applicable to both protostellar (Herbig-Haro) jets and optical jets from active galactic nuclei. We present analytical solutions to the dispersion relations in useful limits and solve the dispersion relations numerically over a broad range of perturbation frequencies. We find that the growth rates and wavelengths of the unstable Kelvin-Helmholtz (K-H) modes are significantly different from the adiabatic limit, and that the form of the cooling function strongly affects the results. In particular, if the cooling curve is a steep function of temperature in the neighborhood of the equilibrium state, then the growth of K-H modes is reduced relative to the adiabatic jet. On the other hand, if the cooling curve is a shallow function of temperature, then the growth of K-H modes can be enhanced relative to the adiabatic jet by the increase in cooling relative to heating in overdense regions. Inclusion of a dynamically important magnetic field does not strongly modify the important differences between an adiabatic jet and a cooling jet, provided the jet is highly supermagnetosonic and not magnetic pressure-dominated. In the latter case, the unstable modes behave more like the transmagnetosonic magnetic pressure-dominated adiabatic limit. We also plot fluid displacement surfaces associated with the various waves in a cooling jet in order to predict the structures that might arise in the nonlinear regime. This analysis predicts that low-frequency surface waves and the lowest order body modes will be the most effective at producing observable features in

  3. Water cooled steam jet

    DOEpatents

    Wagner, Jr., Edward P.

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  4. Water cooled steam jet

    DOEpatents

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  5. Spot cooling. Part 1: Human responses to cooling with air jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melikov, A.K.; Halkjaer, L.; Arakelian, R.S.

    Eight standing male subjects and a thermal manikin were studied for thermal, physiological, and subjective responses to cooling with an air jet at room temperatures of 28 C, 33 C, and 38 C and a constant relative humidity of 50%. The subjects wore a standard uniform and performed light work. A vertical jet and a horizontal jet were employed The target area of the jet, i.e., the cross section of the jet where it first met the subject, had a diameter of 0.4 m and was located 0.5 m from the outlet. Experiments were performed at average temperatures at themore » jet target area of 20 C, 24 C, and 28 C. Each experiment lasted 190 minutes and was performed with three average velocities at the target area: 1 and 2 m/s and the preferred velocity selected by the subjects. The impact of the relative humidity of the room air, the jet`s turbulence intensity, and the use of a helmet on the physiological and subjective responses of the eight subjects was also studied The responses of the eight subjects were compared with the responses of a group of 29 subjects. The spot cooling improved the thermal conditions of the occupants. The average general thermal sensation for the eight subjects was linearly correlated to the average mean skin temperature and the average sweat rate. An average mean skin temperature of 33 C and an average sweat rate of 33 g{center_dot}h{sup {minus}1} m{sup {minus}2} were found to correspond to a neutral thermal sensation. The local thermal sensation at the neck and at the arm exposed to the cooling jet was found to be a function of the room air temperature and the local air velocity and temperature of the jet. The turbulence intensity of the cooling jet and the humidity of the room air had no impact on the subjects` physiological and subjective responses. Large individual differences were observed in the evaluation of the environment and in the air velocity preferred by the subjects.« less

  6. Reversing cooling flows with AGN jets: shock waves, rarefaction waves and trailing outflows

    NASA Astrophysics Data System (ADS)

    Guo, Fulai; Duan, Xiaodong; Yuan, Ye-Fei

    2018-01-01

    The cooling flow problem is one of the central problems in galaxy clusters, and active galactic nucleus (AGN) feedback is considered to play a key role in offsetting cooling. However, how AGN jets heat and suppress cooling flows remains highly debated. Using an idealized simulation of a cool-core cluster, we study the development of central cooling catastrophe and how a subsequent powerful AGN jet event averts cooling flows, with a focus on complex gasdynamical processes involved. We find that the jet drives a bow shock, which reverses cooling inflows and overheats inner cool-core regions. The shocked gas moves outward in a rarefaction wave, which rarefies the dense core and adiabatically transports a significant fraction of heated energy to outer regions. As the rarefaction wave propagates away, inflows resume in the cluster core, but a trailing outflow is uplifted by the AGN bubble, preventing gas accumulation and catastrophic cooling in central regions. Inflows and trailing outflows constitute meridional circulations in the cluster core. At later times, trailing outflows fall back to the cluster centre, triggering central cooling catastrophe and potentially a new generation of AGN feedback. We thus envisage a picture of cool cluster cores going through cycles of cooling-induced contraction and AGN-induced expansion. This picture naturally predicts an anti-correlation between the gas fraction (or X-ray luminosity) of cool cores and the central gas entropy, which may be tested by X-ray observations.

  7. Synthesis, structural characterization and photoluminescence properties of rhenium(I) complexes based on bipyridine derivatives with carbazole moieties.

    PubMed

    Li, Hong-Yan; Wu, Jing; Zhou, Xin-Hui; Kang, Ling-Chen; Li, Dong-Ping; Sui, Yan; Zhou, Yong-Hui; Zheng, You-Xuan; Zuo, Jing-Lin; You, Xiao-Zeng

    2009-12-21

    Three N,N-bidentate ligands, 5,5'-dibromo-2,2-bipyridine (L1) and two carbazole containing ligands of 5-bromo-5'-carbazolyl-2,2-bipyridine (L2), 5,5'-dicarbazolyl-2,2'-bipyridine (L3), and their corresponding rhenium Re(CO)3Cl(L) complexes (ReL1-ReL3) have been successfully synthesized and characterized by elemental analysis, 1H NMR and IR spectra. Their photophysical properties and thermal analysis, along with the X-ray crystal structure analysis of L3 and complexes ReL1 and ReL3 are also described. In CH2Cl2 solution at room temperature, all complexes display intense absorption bands at ca. 220-350 nm, which can be assigned to spin-allowed intraligand (pi-->pi*) transitions, and the low energy broad bands in the 360-480 nm region are attributed to the metal to ligand charge-transfer d(Re)-->pi* (diimine) (MLCT). The introduction of carbazole moieties improves the MLCT absorption and molar extinction coefficient of these complexes. Upon excitation at the peak maxima, all complexes show strong emissions around 620 nm, which are assigned to d(Re)-->pi* (diimine) MLCT phosphorescence. The photoluminescence lifetime decay of Re(I) complexes were measured and the quantum efficiencies of the rhenium(I) complexes were calculated by using air-equilibrated [Ru(bpy)3]2+ x 2 Cl- aqueous solution as standard (phi(std) = 0.028). The complexes with appended carbazole moieties exhibit enhanced luminescence performances relative to ReL1.

  8. The Stability of Radiatively Cooling Jets. 2: Nonlinear Evolution

    NASA Technical Reports Server (NTRS)

    Stone, James M.; Xu, Jianjun; Hardee, Philip

    1997-01-01

    We use two-dimensional time-dependent hydrodynamical simulations to follow the growth of the Kelvin-Helmholtz (K-H) instability in cooling jets into the nonlinear regime. We focus primarily on asymmetric modes that give rise to transverse displacements of the jet beam. A variety of Mach numbers and two different cooling curves are studied. The growth rates of waves in the linear regime measured from the numerical simulations are in excellent agreement with the predictions of the linear stability analysis presented in the first paper in this series. In the nonlinear regime, the simulations show that asymmetric modes of the K-H instability can affect the structure and evolution of cooling jets in a number of ways. We find that jets in which the growth rate of the sinusoidal surface wave has a maximum at a so-called resonant frequency can be dominated by large-amplitude sinusoidal oscillations near this frequency. Eventually, growth of this wave can disrupt the jet. On the other hand, nonlinear body waves tend to produce low-amplitude wiggles in the shape of the jet but can result in strong shocks in the jet beam. In cooling jets, these shocks can produce dense knots and filaments of cooling gas within the jet. Ripples in the surface of the jet beam caused by both surface and body waves generate oblique shock "spurs" driven into the ambient gas. Our simulations show these shock "spurs" can accelerate ambient gas at large distances from the jet beam to low velocities, which represents a new mechanism by which low-velocity bipolar outflows may be driven by high-velocity jets. Rapid entrainment and acceleration of ambient gas may also occur if the jet is disrupted. For parameters typical of protostellar jets, the frequency at which K-H growth is a maximum (or highest frequency to which the entire jet can respond dynamically) will be associated with perturbations with a period of - 200 yr. Higher frequency (shorter period) perturbations excite waves associated with body

  9. Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, S. V. J.; Hassani, V.; Bharathan, D.

    2005-12-01

    Jet impingement has been an attractive cooling option in a number of industries over the past few decades. Over the past 15 years, jet impingement has been explored as a cooling option in microelectronics. Recently, interest has been expressed by the automotive industry in exploring jet impingement for cooling power electronics components. This technical report explores, from a modeling perspective, both single-phase and boiling jet impingement cooling in power electronics, primarily from a heat transfer viewpoint. The discussion is from the viewpoint of the cooling of IGBTs (insulated-gate bipolar transistors), which are found in hybrid automobile inverters.

  10. Numerical evaluation of single central jet for turbine disk cooling

    NASA Astrophysics Data System (ADS)

    Subbaraman, M. R.; Hadid, A. H.; McConnaughey, P. K.

    The cooling arrangement of the Space Shuttle Main Engine High Pressure Oxidizer Turbopump (HPOTP) incorporates two jet rings, each of which produces 19 high-velocity coolant jets. At some operating conditions, the frequency of excitation associated with the 19 jets coincides with the natural frequency of the turbine blades, contributing to fatigue cracking of blade shanks. In this paper, an alternate turbine disk cooling arrangement, applicable to disk faces of zero hub radius, is evaluated, which consists of a single coolant jet impinging at the center of the turbine disk. Results of the CFD analysis show that replacing the jet ring with a single central coolant jet in the HPOTP leads to an acceptable thermal environment at the disk rim. Based on the predictions of flow and temperature fields for operating conditions, the single central jet cooling system was recommended for implementation into the development program of the Technology Test Bed Engine at NASA Marshall Space Flight Center.

  11. Synthesis and optical characterization of novel carbazole Schiff bases

    NASA Astrophysics Data System (ADS)

    Çiçek, Baki; Çalışır, Ümit; Tavaslı, Mustafa; Tülek, Remziye; Teke, Ali

    2018-02-01

    In this study, newly substituted carbazole derivatives of S1; (Z)-4-((9-isobutyl-9H-carbazol-3-ylimino)methyl)phenol, S2; (Z)-9-butyl- N-(2,3,4-trimethoxybenzylidine)-9H-carbazol-3-amine, S3; (Z)-4-((9-octyl-9H-carbazol-3-ylimino)methyl)benzene-1,2-diol and S4; (Z)-3-((9-octyl-9H-carbazol-3-ylimino)methyl)benzene-1,2-diol compounds are synthesized by using condensation reaction between carbazole amines and aromatic aldehydes. All synthesized carbazole Schiff bases are purified by crystallizing from chloroform. The structural and optical characterizations of synthesized compounds are investigated by FT-IR (Fourier Transform-Infrared Spectroscopy), 1H NMR (Proton Nuclear Magnetic Resonance), 13C NMR (Carbon Nuclear Magnetic Resonance), LC-MS (Liquid Chromatography-Mass Spectrometry) and temperature dependent PL (Photoluminescence) measurements. The formations of synthesized Schiff bases were confirmed by FT-IR, NMR and microanalysis. Due to stronger π-conjugation and efficient charge transfer from host material, the broad and complex bands centered at about ∼2.16 and ∼1.76 eV are observed in PL spectra for all samples. Their relative intensities depend on functional groups associated with the carbazole. These newly synthesized Schiff bases could be considered as an active emissive layer for organic light emitting diodes.

  12. Active Control of Jets in Cross-Flow for Film Cooling Applications

    NASA Technical Reports Server (NTRS)

    Nikitopoulos, Dimitris E.

    2003-01-01

    Jets in cross-flow have applications in film cooling of gas turbine vanes, blades and combustor liners. Their cooling effectiveness depends on the extent to which the cool jet-fluid adheres to the cooled component surface. Lift-off of the cooling jet flow or other mechanisms promoting mixing, cause loss of cooling effectiveness as they allow the hot "free-stream" fluid to come in contact with the component surface. The premise of this project is that cooling effectiveness can be improved by actively controlling (e.9. forcing, pulsing) the jet flow. Active control can be applied to prevent/delay lift-off and suppress mixing. Furthermore, an actively controlled film-cooling system coupled with appropriate sensory input (e.g. temperature or heat flux) can adapt to spatial and temporal variations of the hot-gas path. Thus, it is conceivable that the efficiency of film-cooling systems can be improved, resulting in coolant fluid economy. It is envisioned that Micro Electro-Mechanical Systems (MEMS) will play a role in the realization of such systems. As a first step, a feasibility study will be conducted to evaluate the concept, identify actuation and sensory elements and develop a control strategy. Part of this study will be the design of a proof-of-concept experiment and collection of necessary data.

  13. Thermal Management Using Pulsating Jet Cooling Technology

    NASA Astrophysics Data System (ADS)

    Alimohammadi, S.; Dinneen, P.; Persoons, T.; Murray, D. B.

    2014-07-01

    The existing methods of heat removal from compact electronic devises are known to be deficient as the evolving technology demands more power density and accordingly better cooling techniques. Impinging jets can be used as a satisfactory method for thermal management of electronic devices with limited space and volume. Pulsating flows can produce an additional enhancement in heat transfer rate compared to steady flows. This article is part of a comprehensive experimental and numerical study performed on pulsating jet cooling technology. The experimental approach explores heat transfer performance of a pulsating air jet impinging onto a flat surface for nozzle-to-surface distances 1 <= H/D <= 6, Reynolds numbers 1,300 <= Re <= 2,800 pulsation frequency 2Hz <= f <= 65Hz, and Strouhal number 0.0012 <= Sr = fD/Um <= 0.084. The time-resolved velocity at the nozzle exit is measured to quantify the turbulence intensity profile. The numerical methodology is firstly validated using the experimental local Nusselt number distribution for the steady jet with the same geometry and boundary conditions. For a time-averaged Reynolds number of 6,000, the heat transfer enhancement using the pulsating jet for 9Hz <= f <= 55Hz and 0.017 <= Sr <= 0.102 and 1 <= H/D <= 6 are calculated. For the same range of Sr number, the numerical and experimental methods show consistent results.

  14. Method for metabolizing carbazole in petroleum

    DOEpatents

    Kayser, Kevin J.; Kilbane, II, John J.

    2005-09-13

    A method for selective cleavage of C--N bonds genes that encode for at least one enzyme suitable for conversion of carbazole to 2-aminobiphenyl-2,3-diol are combined with a gene encoding an amidase suitable for selectively cleaving a C--N bond in 2-aminobiphenyl-2,3-diol, forming an operon that encodes for cleavage of both C--N bonds of said carbazole. The operon is inserted into a host culture which, in turn, is contacted with the carbazole, resulting in selective cleavage of both C--N bonds of the carbazole. Also disclosed is a new microorganism that expresses a carbazole degradation trait constitutively and a method for degrading carbazole employing this microorganism.

  15. Interfacial condensation induced by sub-cooled liquid jet

    NASA Astrophysics Data System (ADS)

    Rame, Enrique; Balasubramaniam, R.

    2016-11-01

    When a sub-cooled liquid jet impinges on the free surface between a liquid and its vapor, vapor will condense at a rate dependent on the sub-cooling, the jet strength and fluid properties. In 1966 and during the examination of a different type of condensation flow, Shekriladeze found an approximate result, valid at large condensation rates, that decouples the flow in the liquid phase from that of the vapor, without putting it in the context of a formal asymptotic approximation. In this talk we will develop an asymptotic approximation that contains Shekriladze's result, and extend the calculations to the case when a non-condensable gas is present in the vapor phase.

  16. Synthesis of Benzo[a]carbazoles and an Indolo[2,3-a]carbazole from 3-Aryltetramic Acids.

    PubMed

    Truax, Nathanyal J; Banales Mejia, Fernando; Kwansare, Deborah O; Lafferty, Megan M; Kean, Maeve H; Pelkey, Erin T

    2016-08-05

    A simple and flexible approach to 3-pyrrolin-2-one fused carbazoles is disclosed. The key step involves the BF3-mediated electrophilic substitution of indoles with N-alkyl-substituted 3-aryltetramic acids, which provides access to indole-substituted 3-pyrrolin-2-ones. Scholl-type oxidative cyclizations of these materials led to the formation of the corresponding 3-pyrrolin-2-one-fused benzo[a]carbazoles and indolo[2,3-a]carbazoles. This work represents the first synthesis of the benzo[a]pyrrolo[3,4-c]carbazol-3(8H)-one ring system, while the indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one ring system is found in a number of biologically active compounds including the protein kinase C (PKC) inhibitor, staurosporine.

  17. Numerical optimization of a multi-jet cooling system for the blown film extrusion

    NASA Astrophysics Data System (ADS)

    Janas, M.; Wortberg, J.

    2015-05-01

    The limiting factor for every extrusion process is the cooling. For the blown film process, this task is usually done by means of a single or dual lip air ring. Prior work has shown that two major effects are responsible for a bad heat transfer. The first one is the interaction between the jet and the ambient air. It reduces the velocity of the jet and enlarges the straight flow. The other one is the formation of a laminar boundary layer on the film surface due to the fast flowing cooling air. In this case, the boundary layer isolates the film and prevents an efficient heat transfer. To improve the heat exchange, a novel cooling approach is developed, called Multi-Jet. The new cooling system uses several slit nozzles over the whole tube formation zone for cooling the film. In contrast to a conventional system, the cooling air is guided vertically on the film surface in different heights to penetrate the boundary sublayer. Simultaneously, a housing of the tube formation zone is practically obtained to reduce the interaction with the ambient air. For the numerical optimization of the Multi-Jet system, a new procedure is developed. First, a prediction model identifies a worth considering cooling configuration. Therefore, the prediction model computes a film curve using the formulation from Zatloukal-Vlcek and the energy balance for the film temperature. Thereafter, the optimized cooling geometry is investigated in detail using a process model for the blown film extrusion that is able to compute a realistic bubble behavior depending on the cooling situation. In this paper, the Multi-Jet cooling system is numerically optimized for several different process states, like mass throughputs and blow-up ratios using one slit nozzle setting. For each process condition, the best cooling result has to be achieved. Therefore, the height of any nozzle over the tube formation zone is adjustable. The other geometrical parameters of the cooling system like the nozzle diameter or the

  18. Film cooling: case of double rows of staggered jets.

    PubMed

    Dorignac, E; Vullierme, J J; Noirault, P; Foucault, E; Bousgarbiès, J L

    2001-05-01

    An experimental investigation of film cooling of a wall in a case of double rows of staggered hot jets (65 degrees C) in an ambient air flow. The wall is heated at a temperature value between the one of the jets and the one of the main flow. Experiments have been carried out for different injection rates, the main flow velocity is maintained at 32 m/s. Association of the measures of temperature profiles by cold wire and the measures of wall temperature by infrared thermography allows us to describe the behaviour of the flows and to propose the best injection which assures a good cooling of the plate.

  19. Synthesis and Spectroscopic Properties of Carbazole-Oxadiazoles.

    PubMed

    Gündoğdu, Leyla; Şen, Nihan; Hızlıateş, Cevher Gündoğdu; Ergün, Mustafa Yavuz

    2017-11-01

    Four new carbazole-oxadiazole derivatives (3a-b, 6a-b) were prepared from the reaction of aromatic aldehydes and carbohydrazides which were synthesized from carbazole aldehydes namely 9-hexyl-9H-carbazole-3-carbaldehyde 1 and 4-(9H-carbazole-9-yl)benzaldehyde 4 and acid hydrazides. The structures of the new derivatives were confirmed by 1 H-NMR and FT-IR. The optical properties such as maximum absorption and emission wavelengths (λ; nm), molar extinction coefficients (ε; cm -1 M -1 ), Stoke's shifts (ΔλST; nm) and quantum yields (ϕF), of the carbazole-oxadiazole derivatives were declared in dichloromethane, toluene and tetrahydrofuran solutions.

  20. Properties of amylose complexes with hexadecyl amine and its hydrochloride salt prepared by steam jet cooking

    USDA-ARS?s Scientific Manuscript database

    Steam jet cooking of starch is an effective, commercially scalable method of preparing amylose for complexing with a variety of ligands. Previous work has shown that dispersions of amylose complexes prepared with fatty acids (such as palmitic) formed a variety of spherulites when cooled under diffe...

  1. Rewetting of hot vertical rod during jet impingement surface cooling

    NASA Astrophysics Data System (ADS)

    Agrawal, Chitranjan; Kumar, Ravi; Gupta, Akhilesh; Chatterjee, Barun

    2016-06-01

    A stainless steel (SS-316) vertical rod of 12 mm diameter at 800 ± 10 °C initial temperature was cooled by normal impinging round water jet. The surface rewetting phenomenon was investigated for a range of jet diameter 2.5-4.8 mm and jet Reynolds number 5000-24,000 using a straight tube type nozzle. The investigation were made from the stagnation point to maximum 40 mm downstream locations, simultaneously for both upside and downside directions. The cooling performance of the vertical rod was evaluated on the basis of rewetting parameters i.e. rewetting temperature, wetting delay, rewetting velocity and the maximum surface heat flux. Two separate Correlations have been proposed for the dimensionless rewetting velocity in terms of rewetting number and the maximum surface heat flux that predicts the experimental data within an error band of ±20 and ±15 % respectively.

  2. Investigation of Jet Impingement Cooling Using High Prandtl Number Fluids and Ammonia for Military Applications

    DTIC Science & Technology

    2004-03-01

    interesting application of liquid jets impinging over a surface is for the cooling of microelectronics. Wadsworth and Mudawar [29] performed an...and I. Mudawar , Cooling of a Multiple Electronic Module by Means of Confined Two-Dimensional Jets of Dielectric Liquid, Journal of Heat Transfer, vol

  3. Numerical analysis on cooling performance of counterflowing jet over aerodisked blunt body

    NASA Astrophysics Data System (ADS)

    Barzegar Gerdroodbary, M.

    2014-09-01

    This study investigates a combined technique of both an active flow control concept that uses counterflowing jets and an aerodisk spike as a new method to significantly modify external flowfields and heat reduction in a hypersonic flow around a nose cone. The coolant gas (Carbon Dioxide and Helium) is chosen to inject from the tip of the nose cone to cool the recirculation region. The gases are considered to be ideal, and the computational domain is axisymmetric. The analysis shows that the counterflowing jet has significant effects on the flowfield and reduces the heat load over the nose cone. The Helium jet is found to have a relatively more effective cooling performance.

  4. Spectroscopic evidence of jet-cooled p-methyl-α-methylbenzyl radical

    NASA Astrophysics Data System (ADS)

    Chae, Sang Youl; Yoon, Young Wook; Lim, Manho; Lee, Sang Kuk

    2015-08-01

    We report spectroscopic evidence of the jet-cooled p-methyl-α-methylbenzyl radical in corona discharge. The visible vibronic emission spectra were recorded from the corona discharge of three precursors, p-xylene, p-ethyltoluene, and p-isopropyltoluene seeded in a large amount of carrier gas helium using a pinhole-type glass nozzle. From the analysis of the vibronic spectra observed from each precursor and the bond dissociation energies of precursor molecules, we are able to confirm the formation of the jet-cooled p-methyl-α-methylbenzyl radical in corona discharge, and determine the energy of the D1 → D0 transition and a few vibrational mode frequencies in the D0 state.

  5. Experimental study of cooling performance of pneumatic synthetic jet with singular slot rectangular orifice

    NASA Astrophysics Data System (ADS)

    Yu, Roger Ho Zhen; Ismail, Mohd Azmi bin; Ramdan, Muhammad Iftishah; Mustaffa, Nur Musfirah binti

    2017-03-01

    Synthetic Jet generates turbulence flow in cooling the microelectronic devices. In this paper, the experiment investigation of the cooling performance of pneumatic synthetic jet with single slot rectangular orifices at low frequency motion is presented. The velocity profile at the end of the orifice was measured and used as characteristic performance of synthetic jet in the present study. Frequencies of synthetic jet and the compressed air pressure supplied to the pneumatic cylinder (1bar to 5bar) were the parameters of the flow measurement. The air velocity of the synthetic jet was measured by using anemometer air flow meter. The maximum air velocity was 0.5 m/s and it occurred at frequency motion of 8 Hz. The optimum compressed air supplied pressure of the synthetic jet study was 4 bar. The cooling performance of synthetic jet at several driven frequencies from 0 Hz to 8 Hz and heat dissipation between 2.5W and 9W were also investigate in the present study. The results showed that the Nusselt number increased and thermal resistance decreased with both frequency and Reynolds number. The lowest thermal resistance was 5.25°C/W and the highest Nusselt number was 13.39 at heat dissipation of 9W and driven frequency of 8Hz.

  6. Crystallization and preliminary X-ray diffraction analyses of the redox-controlled complex of terminal oxygenase and ferredoxin components in the Rieske nonhaem iron oxygenase carbazole 1,9a-dioxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuzawa, Jun; Aikawa, Hiroki; Umeda, Takashi

    2014-09-25

    A crystal was obtained of the complex between reduced terminal oxygenase and oxidized ferredoxin components of carbazole 1,9a-dioxygenase. The crystal belonged to space group P2{sub 1} and diffracted to 2.25 Å resolution. The initial reaction in bacterial carbazole degradation is catalyzed by carbazole 1,9a-dioxygenase, which consists of terminal oxygenase (Oxy), ferredoxin (Fd) and ferredoxin reductase components. The electron-transfer complex between reduced Oxy and oxidized Fd was crystallized at 293 K using the hanging-drop vapour-diffusion method with PEG 3350 as the precipitant under anaerobic conditions. The crystal diffracted to a maximum resolution of 2.25 Å and belonged to space group P2{submore » 1}, with unit-cell parameters a = 97.3, b = 81.6, c = 116.2 Å, α = γ = 90, β = 100.1°. The V{sub M} value is 2.85 Å{sup 3} Da{sup −1}, indicating a solvent content of 56.8%.« less

  7. CPV cells cooling system based on submerged jet impingement: CFD modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Montorfano, Davide; Gaetano, Antonio; Barbato, Maurizio C.; Ambrosetti, Gianluca; Pedretti, Andrea

    2014-09-01

    Concentrating photovoltaic (CPV) cells offer higher efficiencies with regard to the PV ones and allow to strongly reduce the overall solar cell area. However, to operate correctly and exploit their advantages, their temperature has to be kept low and as uniform as possible and the cooling circuit pressure drops need to be limited. In this work an impingement water jet cooling system specifically designed for an industrial HCPV receiver is studied. Through the literature and by means of accurate computational fluid dynamics (CFD) simulations, the nozzle to plate distance, the number of jets and the nozzle pitch, i.e. the distance between adjacent jets, were optimized. Afterwards, extensive experimental tests were performed to validate pressure drops and cooling power simulation results.

  8. Carbazole ligands as c-myc G-quadruplex binders.

    PubMed

    Głuszyńska, Agata; Juskowiak, Bernard; Kuta-Siejkowska, Martyna; Hoffmann, Marcin; Haider, Shozeb

    2018-07-15

    The interactions of c-myc G-quadruplex with three carbazole derivatives were investigated by UV-Vis spectrophotometry, fluorescence, CD spectroscopy, and molecular modeling. The results showed that a combination of carbazole scaffold functionalized with ethyl, triazole and imidazole groups resulted in stabilization of the intramolecular G-quadruplex formed by the DNA sequence derived from the NHE III 1 region of c-myc oncogene (Pu22). Binding to the G-quadruplex Pu22 resulted in the significant increase in fluorescence intensity of complexed ligands 1-3. All ligands were capable of interacting with G4 DNA with binding stoichiometry indicating that two ligand molecules bind to G-quadruplex with comparable affinity, which agrees with binding model of end-stacking on terminal G-tetrads. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Formation of Cool and Warm Jets by Magnetic Flux Emerging from the Solar Chromosphere to Transition Region

    NASA Astrophysics Data System (ADS)

    Yang, Liping; Peter, Hardi; He, Jiansen; Tu, Chuanyi; Wang, Linghua; Zhang, Lei; Yan, Limei

    2018-01-01

    In the solar atmosphere, jets are ubiquitous at various spatial-temporal scales. They are important for understanding the energy and mass transports in the solar atmosphere. According to recent observational studies, the high-speed network jets are likely to be intermittent but continual sources of mass and energy for the solar wind. Here, we conduct a 2D magnetohydrodynamics simulation to investigate the mechanism of these network jets. A combination of magnetic flux emergence and horizontal advection is used to drive the magnetic reconnection in the transition region between a strong magnetic loop and a background open flux. The simulation results show that not only a fast warm jet, much similar to the network jets, is found, but also an adjacent slow cool jet, mostly like classical spicules, is launched. Differing from the fast warm jet driven by magnetic reconnection, the slow cool jet is mainly accelerated by gradients of both thermal pressure and magnetic pressure near the outer border of the mass-concentrated region compressed by the emerging loop. These results provide a different perspective on our understanding of the formation of both the slow cool jets from the solar chromosphere and the fast warm jets from the solar transition region.

  10. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3107 Carbazole violet. (a) Identity. The color...

  11. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3107 Carbazole violet. (a) Identity. The color...

  12. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3107 Carbazole violet. (a) Identity. The color...

  13. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3107 Carbazole violet. (a) Identity. The color...

  14. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3107 Carbazole violet. (a) Identity. The color...

  15. Evaluation of cooling performance of impinging jet array over various dimpled surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Min; Kim, Kwang-Yong

    2016-04-01

    Various configurations of an impinging jet-dimple array cooling system were evaluated in terms of their heat transfer and pressure drop performances. The steady incompressible laminar flow and heat transfer in the cooling system were analyzed using three-dimensional Navier-Stokes equations. The obtained numerical results were validated by a comparison with experimental data for the local Nusselt number distribution. The area-averaged Nusselt number on the projected area and the pressure drop through the system were selected as the performance parameters. Among the four tested configurations—inline concave, staggered concave, inline convex, and staggered convex—the staggered convex impinging jet-dimple array showed the best heat transfer performance whereas the staggered-concave configuration showed the lowest pressure drop. A parametric study with two geometric variables, i.e., the height of dimple and the diameter of dimple, was also conducted for the staggered-convex impinging jet-dimple array. As a result, the best heat transfer and pressure drop performances were achieved when the ratio of the height of dimple to the diameter of jet was 0.8. And, the increase in the ratio of the diameter of dimple to the diameter of jet yielded monotonous increase in the heat transfer performance.

  16. Photophysical and electrical properties of polyphenylquinolines containing carbazole or indolo[3,2-b]carbazole fragments as new optoelectronic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svetlichnyi, V. M., E-mail: valsvet@hq.macro.ru; Aleksandrova, E. L.; Myagkova, L. A.

    2011-10-15

    Photophysical and electrical properties of new synthesized 2,6-polyphenylquinolines (PPQs) containing an oxygen or phenylamine bridging group between quinoline cycles and, as an arylene radical, alkylated derivatives of carbazole or indolo[3,2-b]carbazole are studied. It is shown that the photosensitivity for new PPQs is 10{sup 4}-10{sup 5} cm{sup 2}/J and the photogeneration quantum yield of free carriers is as high as 0.15. Photophysical parameters increase with the phenylamine bridging group in place of the oxygen one and when using indolocarbazole instead of carbazole. It is found that a film of polyphenylquinoline containing an oxygen bridging group and an alkylcarbazole fragment in themore » polymer repeat unit exhibits 'white' luminescence. Both electron and hole transport with a mobility of {approx}10{sup -6} cm{sup 2}/(V s) are detected in films of all studied polymers. The conductivity value and type can be controlled by varying the chemical structure of the (oxygen or phenylamine) bridging group between PPQ cycles and by choosing carbazole or indolo[3,2-b]carbazole derivatives as an arylene radical.« less

  17. Investigation of Impact Jets Flow in Heat Sink Device of Closed-Circuit Cooling Systems

    NASA Astrophysics Data System (ADS)

    Tokarev, D. A.; Yenivatov, V. V.; Sokolov, S. S.; Erofeev, V. L.

    2018-03-01

    The flow simulations of impact jets in the heat sink device of the closed-circuit cooling systems are presented. The analysis of the rate of fluid flow in the heat sink device with the jet supply coolant is given.

  18. Transpiration cooling in the locality of a transverse fuel jet for supersonic combustors

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton; Capriotti, Diego P.; Byington, Carl S.

    1990-01-01

    The objective of the current work was to determine the feasibility of transpiration cooling for the relief of the local heating rates in the region of a sonic, perpendicular, fuel jet of gaseous hydrogen. Experiments were conducted to determine the interaction between the cooling required and flameholding limits of a transverse jet in a high-enthalpy, Mach 3 flow in both open-jet and direct-connect test mode. Pulsed shadowgraphs were used to illustrate the flow field. Infrared thermal images indicated the surface temperatures, and the OH(-) emission of the flame was used to visualize the limits of combustion. Wall, static presures indicated the location of the combustion within the duct and were used to calculate the combustion efficiency. The results from both series of tests at facility total temperatures of 1700 K and 2000 K are presented.

  19. Characteristics of the air supply envelop of the cooled flooded air jet

    NASA Astrophysics Data System (ADS)

    Timofeevskiy, A. L.; Sulin, A. B.; Ryabova, T. N.; Neganov, D. V.

    2017-08-01

    The characteristics of a plane-parallel non-isothermal airflow (which is fed into the room in the form of a flooded jet) were investigated,. The temperature and velocity fields were measured experimentally in the cross section of the supply air flare. The results of the theoretical calculation and numerical simulation of temperature and velocity profiles were compared with experimental data in a flat cooled supply jet.

  20. Design, Fabrication, and Testing of an Auxiliary Cooling System for Jet Engines

    NASA Technical Reports Server (NTRS)

    Leamy, Kevin; Griffiths, Jim; Andersen, Paul; Joco, Fidel; Laski, Mark; Balser, Jeffrey (Technical Monitor)

    2001-01-01

    This report summarizes the technical effort of the Active Cooling for Enhanced Performance (ACEP) program sponsored by NASA. It covers the design, fabrication, and integrated systems testing of a jet engine auxiliary cooling system, or turbocooler, that significantly extends the use of conventional jet fuel as a heat sink. The turbocooler is designed to provide subcooled cooling air to the engine exhaust nozzle system or engine hot section. The turbocooler consists of three primary components: (1) a high-temperature air cycle machine driven by engine compressor discharge air, (2) a fuel/ air heat exchanger that transfers energy from the hot air to the fuel and uses a coating to mitigate fuel deposits, and (3) a high-temperature fuel injection system. The details of the turbocooler component designs and results of the integrated systems testing are documented. Industry Version-Data and information deemed subject to Limited Rights restrictions are omitted from this document.

  1. High Resolution Spectroscopy and Dynamics: from Jet Cooled Radicals to Gas-Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Sharp-Williams, E.; Roberts, M. A.; Roscioli, J. R.; Gisler, A. W.; Ziemkiewicz, M.; Nesbitt, D. J.; Dong, F.; Perkins, B. G., Jr.

    2010-06-01

    This talk will attempt to reflect recent work in our group involving two quite different but complementary applications of high resolution molecular spectroscopy for detailed study of intramolecular as well as intermolecular dynamics in small molecules. The first is based on direct infrared absorption spectroscopy in a 100 KHz slit supersonic discharge, which provides a remarkably versatile and yet highly sensitive probe for study of important chemical transients such as open shell combustion species and molecular ions under jet cooled (10-20K), sub-Doppler conditions. For this talk will focus on gas phase spectroscopic results for a series of unsaturated hydrocarbon radical species (ethynyl, vinyl, and phenyl) reputed to be critical intermediates in soot formation. Secondly, we will discuss recent applications of high resolution IR and velocity map imaging spectroscopy toward quantum state resolved collision dynamics of jet cooled molecules from gas-room temperature ionic liquid (RTIL) and gas-self assembled monolayer (SAM) interfaces. Time permitting, we will also present new results on hyperthermal scattering of jet cooled NO radical from liquid Ga, which offer a novel window into non-adiabatic energy transfer and electron-hole pair dynamics at the gas-molten metal interface.

  2. The role of planetary waves in the tropospheric jet response to stratospheric cooling

    NASA Astrophysics Data System (ADS)

    Smith, Karen L.; Scott, Richard K.

    2016-03-01

    An idealized general circulation model is used to assess the importance of planetary-scale waves in determining the position of the tropospheric jet, specifically its tendency to shift poleward as winter stratospheric cooling is increased. Full model integrations are compared against integrations in which planetary waves are truncated in the zonal direction, and only synoptic-scale waves are retained. Two series of truncated integrations are considered, using (i) a modified radiative equilibrium temperature or (ii) a nudged-bias correction technique. Both produce tropospheric climatologies that are similar to the full model when stratospheric cooling is weak. When stratospheric cooling is increased, the results indicate that the interaction between planetary- and synoptic-scale waves plays an important role in determining the structure of the tropospheric mean flow and rule out the possibility that the jet shift occurs purely as a response to changes in the planetary- or synoptic-scale wave fields alone.

  3. Collisional-radiative simulations of a supersonic and radiatively cooled aluminum plasma jet

    NASA Astrophysics Data System (ADS)

    Espinosa, G.; Gil, J. M.; Rodriguez, R.; Rubiano, J. G.; Mendoza, M. A.; Martel, P.; Minguez, E.; Suzuki-Vidal, F.; Lebedev, S. V.; Swadling, G. F.; Burdiak, G.; Pickworth, L. A.; Skidmore, J.

    2015-12-01

    A computational investigation based on collisional-radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet.

  4. The cool component and the dichotomy, lateral expansion, and axial rotation of solar X-ray jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.

    2013-06-01

    We present results from a study of 54 polar X-ray jets that were observed in coronal X-ray movies from the X-ray Telescope on Hinode and had simultaneous coverage in movies of the cooler transition region (T ∼ 10{sup 5} K) taken in the He II 304 Å band of the Atmospheric Imaging Assembly (AIA) on Solar Dynamics Observatory. These dual observations verify the standard-jet/blowout-jet dichotomy of polar X-ray jets previously found primarily from XRT movies alone. In accord with models of blowout jets and standard jets, the AIA 304 Å movies show a cool (T ∼ 10{sup 5} K) componentmore » in nearly all blowout X-ray jets and in a small minority of standard X-ray jets, obvious lateral expansion in blowout X-ray jets but none in standard X-ray jets, and obvious axial rotation in both blowout X-ray jets and standard X-ray jets. In our sample, the number of turns of axial rotation in the cool-component standard X-ray jets is typical of that in the blowout X-ray jets, suggesting that the closed bipolar magnetic field in the jet base has substantial twist not only in all blowout X-ray jets but also in many standard X-ray jets. We point out that our results for the dichotomy, lateral expansion, and axial rotation of X-ray jets add credence to published speculation that type-II spicules are miniature analogs of X-ray jets, are generated by granule-size emerging bipoles, and thereby carry enough energy to power the corona and solar wind.« less

  5. Heat transfer coefficient distribution over the inconel plate cooled from high temperature by the array of water jets

    NASA Astrophysics Data System (ADS)

    Malinowski, Z.; Telejko, T.; Cebo-Rudnicka, A.; Szajding, A.; Rywotycki, M.; Hadała, B.

    2016-09-01

    The industrial rolling mills are equipped with systems for controlled water cooling of hot steel products. A cooling rate affects the final mechanical properties of steel which are strongly dependent on microstructure evolution processes. In case of water jets cooling the heat transfer boundary condition can be defined by the heat transfer coefficient. In the present study one and three dimensional heat conduction models have been employed in the inverse solution to heat transfer coefficient. The inconel plate has been heated to about 900oC and then cooled by one, two and six water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient distributions at plate surface have been determined in time of cooling.

  6. Conformationally resolved spectroscopy of jet-cooled methacetin

    NASA Astrophysics Data System (ADS)

    Moon, Cheol Joo; Ahn, Ahreum; Min, Ahreum; Seong, Yeon Guk; Kim, Ju Hyun; Choi, Myong Yong

    2017-11-01

    The excitation spectra of jet-cooled methacetin (MA) have been measured using a combination of mass-selected resonant two-photon ionization and ultraviolet-ultraviolet hole-burning (UV-UV HB) spectroscopy in the gas phase. Four different UV-UV HB spectra originating from two conformers of MA (syn- and anti-MA) with their fundamental and hot transitions have been obtained. IR-dip spectroscopy has conclusively confirmed the coexistence of the two conformers with the aid of theoretical calculations. Vibronic band assignments in the low frequency region caused by internal methyl group rotation in the methyl-capped peptide group, which originate from the 1e rotational level, are presented.

  7. Effect of surface thickness on the wetting front velocity during jet impingement surface cooling

    NASA Astrophysics Data System (ADS)

    Agrawal, Chitranjan; Gotherwal, Deepesh; Singh, Chandradeep; Singh, Charan

    2017-02-01

    A hot stainless steel (SS-304) surface of 450 ± 10 °C initial temperature is cooled with a normally impinging round water jet. The experiments have been performed for the surface of different thickness e.g. 1, 2, 3 mm and jet Reynolds number in the range of Re = 26,500-48,000. The cooling performance of the hot test surface is evaluated on the basis of wetting front velocity. The wetting front velocity is determined for 10-40 mm downstream spatial locations away from the stagnation point. It has been observed that the wetting front velocity increase with the rise in jet flow rate, however, diminishes towards the downstream spatial location and with the rise in surface thickness. The proposed correlation for the dimensionless wetting front velocity predicts the experimental data well within the error band of ±30 %, whereas, 75 % of experimental data lies within the range of ±20 %.

  8. Photochemical Synthesis of Complex Carbazoles: Evaluation of Electronic Effects in Both UV- and Visible-Light Methods in Continuous Flow.

    PubMed

    Hernandez-Perez, Augusto C; Caron, Antoine; Collins, Shawn K

    2015-11-09

    An evaluation of both a visible-light- and UV-light-mediated synthesis of carbazoles from various triarylamines with differing electronic properties under continuous-flow conditions has been conducted. In general, triarylamines bearing electron-rich groups tend to produce higher yields than triarylamines possessing electron-withdrawing groups. The incorporation of nitrogen-based heterocycles, as well as halogen-containing arenes in carbazole skeletons, was well tolerated, and often synthetically useful complementarity was observed between the UV-light and visible-light (photoredox) methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Evaporative cooling by a pulsed jet spray of binary ethanol-water mixture

    NASA Astrophysics Data System (ADS)

    Karpov, P. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.

    2015-07-01

    We have experimentally studied the heat transfer under conditions of pulsed multinozzle jet spray impact onto a vertical surface. The working coolant fluid was aqueous ethanol solution in a range of concentrations K 1 = 0-96%. The duration of spray pulses was τ = 2, 4, and 10 ms at a repetition frequency of 10 Hz. The maximum heat transfer coefficient was achieved at an ethanol solution concentration within 50-60%. The thermal efficiency of pulsed spray cooling grows with increasing ethanol concentration and decreasing jet spray pulse duration.

  10. 75 FR 27815 - Carbazole Violet Pigment 23 From China and India; Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ...) Carbazole Violet Pigment 23 From China and India; Determinations On the basis of the record \\1\\ developed in... countervailing duty order on carbazole violet pigment 23 from India would be likely to lead to continuation or... that revocation of the antidumping duty orders on carbazole violet pigment 23 from China and India...

  11. A Computational Study for the Utilization of Jet Pulsations in Gas Turbine Film Cooling and Flow Control

    NASA Technical Reports Server (NTRS)

    Kartuzova, Olga V.

    2012-01-01

    This report is the second part of a three-part final report of research performed under an NRA cooperative Agreement contract. The first part is NASA/CR-2012-217415. The third part is NASA/CR-2012-217417. Jets have been utilized in various turbomachinery applications in order to improve gas turbines performance. Jet pulsation is a promising technique because of the reduction in the amount of air removed from compressor. In this work two areas of pulsed jets applications were computationally investigated using the commercial code Fluent (ANSYS, Inc.); the first one is film cooling of High Pressure Turbine (HPT) blades and second one is flow separation control over Low Pressure Turbine (LPT) airfoil using Vortex Generator Jets (VGJ). Using pulsed jets for film cooling purposes can help to improve the effectiveness and thus allow higher turbine inlet temperature. Effects of the film hole geometry, blowing ratio and density ratio of the jet, pulsation frequency and duty cycle of blowing on the film cooling effectiveness were investigated. As for the low-pressure turbine (LPT) stages, the boundary layer separation on the suction side of airfoils can occur due to strong adverse pressure gradients. The problem is exacerbated as airfoil loading is increased. Active flow control could provide a means for minimizing separation under conditions where it is most severe (low Reynolds number), without causing additional losses under other conditions (high Reynolds number). The effects of the jet geometry, blowing ratio, density ratio, pulsation frequency and duty cycle on the size of the separated region were examined in this work. The results from Reynolds Averaged Navier-Stokes and Large Eddy Simulation computational approaches were compared with the experimental data.

  12. A simple counter-flow cooling system for a supersonic free-jet beam source assembly

    NASA Astrophysics Data System (ADS)

    Barr, M.; Fahy, A.; Martens, J.; Dastoor, P. C.

    2016-05-01

    A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.

  13. A simple counter-flow cooling system for a supersonic free-jet beam source assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, M.; Fahy, A.; Martens, J.

    2016-05-15

    A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.

  14. Near UV bands of jet-cooled CaO

    NASA Astrophysics Data System (ADS)

    Stewart, Jacob T.; Sullivan, Michael N.; Heaven, Michael C.

    2016-04-01

    The electronic spectrum of CaO has been recorded for the 29,800-33,150 cm-1 energy range. Jet cooling was used to obtain relatively uncongested spectra. Rotationally resolved bands have been assigned to the C1Σ+-X1Σ+ and F1∏-X transitions. These data extend the range of vibronic levels characterized for the upper states. Three additional vibronic states were observed as a short progression. One of these levels, which are of 0+ symmetry, interacts strongly with the C1Σ+, v‧ = 7 level. Possible assignments for the perturbing state are considered.

  15. AGN Feedback and Cooling Flows: Problems with Simple Hydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Vernaleo, John C.; Reynolds, Christopher S.

    2006-07-01

    In recent years it has become increasingly clear that active galactic nuclei, and radio galaxies in particular, have an impact on large-scale structure and galaxy formation. In principle, radio galaxies are energetic enough to halt the cooling of the virialized intracluster medium (ICM) in the inner regions of galaxy clusters, solving the cooling flow problem and explaining the high-mass truncation of the galaxy luminosity function. We explore this process through a series of high-resolution, three-dimensional hydrodynamic simulations of jetted active galaxies that act in response to cooling-mediated accretion of an ICM atmosphere. We find that our models are incapable of producing a long-term balance of heating and cooling; catastrophic cooling can be delayed by the jet action but inevitably takes hold. At the heart of the failure of these models is the formation of a low-density channel through which the jet can freely flow, carrying its energy out of the cooling core. It is possible that this failure is due to an oversimplified treatment of the fast jet (which may underestimate the ``dentist drill'' effect). However, it seems likely that additional complexity (large-angle jet precession or ICM turbulence) or additional physics (magnetohydrodynamic effects and plasma transport processes) is required to produce a spatial distribution of jet heating that can prevent catastrophic cooling. This work also underscores the importance of including jet dynamics in any feedback model, as opposed to the isotropically inflated bubble approach taken in some previous works.

  16. Performance of the supercritical helium cooling loop for the JET divertor cryopump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obert, W.; Mayaux, C.; Barth, K.

    1996-12-31

    A supercritical helium cooling loop for the two JET divertor cryopumps has been tested, commissioned and is operational practically uninterrupted for over one year. Operation experience under a number of different boundary and transient conditions have been obtained. The flow of the supercritical helium (6 g/s, 2.7 bar) is driven by the main compressor of the JET helium refrigerator passing a heat exchanger where it is subcooled to 4.1 K before entering the two cryopumps which are an assembly of two 60 m long and 20 mm diameter corrugated stainless steel tubes. By using a dedicated cold ejector which ismore » driven by the main flow and where the expansion from 12 bar to 2.7 bar takes place increases the flow of supercritical helium up to {approximately}17 g/s. The steady state thermal load to the cooling loop of the cryopump is < 80 W but during transient conditions in particular due to nuclear heating in the active phase of JET considerably higher transient heat loads can be accepted by the loop. Details about the steady state and transient thermal conditions as well as the cooldown and warm up behavior of the loop and the interaction of the supercritical loop with the operation of other plant equipment will be discussed in the paper.« less

  17. Cool and hot emission in a recurring active region jet

    NASA Astrophysics Data System (ADS)

    Mulay, Sargam M.; Zanna, Giulio Del; Mason, Helen

    2017-09-01

    Aims: We present a thorough investigation of the cool and hot temperature components in four recurring active region jets observed on July 10, 2015 using the Atmospheric Imaging Assembly (AIA), X-ray Telescope (XRT), and Interface Region Imaging Spectrograph (IRIS) instruments. Methods: A differential emission measure (DEM) analysis was performed on areas in the jet spire and footpoint regions by combining the IRIS spectra and the AIA observations. This procedure better constrains the low temperature DEM values by adding IRIS spectral lines. Plasma parameters, such as Doppler velocities, electron densities, nonthermal velocities and a filling factor were also derived from the IRIS spectra. Results: In the DEM analysis, significant cool emission was found in the spire and the footpoint regions. The hot emission was peaked at log T [K] = 5.6-5.9 and 6.5 respectively. The DEM curves show the presence of hot plasma (T = 3 MK) in the footpoint region. We confirmed this result by estimating the Fe XVIII emission from the AIA 94 Å channel which was formed at an effective temperature of log T [K] = 6.5. The average XRT temperatures were also found to be in agreement with log T [K] = 6.5. The emission measure (EM) was found to be three orders of magnitude higher in the AIA-IRIS DEM compared with that obtained using only AIA. The O IV (1399/1401 Å) electron densities were found to be 2.0×1010 cm-3 in the spire and 7.6 × 1010 cm-3 in the footpoint. Different threads along the spire show different plane-of-sky velocities both in the lower corona and transition region. Doppler velocities of 32 km s-1 (blueshifted) and 13 km s-1 (redshifted) were obtained in the spire and footpoint, respectively from the Si IV 1402.77 Å spectral line. Nonthermal velocities of 69 and 53 km s-1 were recorded in the spire and footpoint region, respectively. We obtained a filling factor of 0.1 in the spire at log T [K] = 5. Conclusions: The recurrent jet observations confirmed the presence of

  18. Synthesis and biological activities of new furo[3,4-b]carbazoles: potential topoisomerase II inhibitors.

    PubMed

    Hajbi, Youssef; Neagoie, Cléopatra; Biannic, Bérenger; Chilloux, Aurélie; Vedrenne, Emeline; Baldeyrou, Brigitte; Bailly, Christian; Mérour, Jean-Yves; Rosca, Sorin; Routier, Sylvain; Lansiaux, Amélie

    2010-11-01

    New 1,5-dihydro-4-(substituted phenyl)-3H-furo[3,4-b]carbazol-3-ones were synthesised via a key step Diels-Alder reaction under microwave irradiation. 3-Formylindole was successfully used in a 6-step synthesis to obtain those complex heterocycles. The Diels-Alder reaction generating the carbazole ring was optimised under thermal conditions or microwave irradiation. After cleavage of functional groups, DNA binding, topoisomerase inhibition and cytotoxic properties of the new-formed furocarbazoles were investigated. These carbazoles do not present a strong interaction with the DNA, and do not modify the relaxation of the DNA in the presence of topoisomerase I or II except for one promising compound. This compound is a potent topoisomerase II inhibitor, and its cellular activity is not moderated compared to etoposide. The synthesis of these molecules allowed the generalisation of the method using indole and 5-OBn indole and several benzaldehydes. The synthesis of these molecules produced chemical structures endowed with promising cytotoxic and topoisomerase II inhibition activities. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  19. Advanced Liquid Cooling for a Traction Drive Inverter Using Jet Impingement and Microfinned Enhanced Surfaces: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waye, S. K.; Narumanchi, S.; Mihalic, M.

    2014-08-01

    Jet impingement on plain and micro-finned enhanced surfaces was compared to a traditional channel flow configuration. The jets provide localized cooling to areas heated by the insulated-gate bipolar transistor and diode devices. Enhanced microfinned surfaces increase surface area and thermal performance. Using lighter materials and designing the fluid path to manage pressure losses increases overall performance while reducing weight, volume, and cost. Powering four diodes in the center power module of the inverter and computational fluid dynamics (CFD) modeling was used to characterize the baseline as well as jet-impingement-based heat exchangers. CFD modeling showed the thermal performance improvements should holdmore » for a fully powered inverter. Increased thermal performance was observed for the jet-impingement configurations when tested at full inverter power (40 to 100 kW output power) on a dynamometer. The reliability of the jets and enhanced surfaces over time was also investigated. Experimentally, the junction-to- coolant thermal resistance was reduced by up to 12.5% for jet impingement on enhanced surfaces s compared to the baseline channel flow configuration. Base plate-to-coolant (convective) resistance was reduced by up to 37.0% for the jet-based configuration compared to the baseline, suggesting that while improvements to the cooling side reduce overall resistance, reducing the passive stack resistance may contribute to lowering overall junction-to-coolant resistance. Full inverter power testing showed reduced thermal resistance from the middle of the module baseplate to coolant of up to 16.5%. Between the improvement in thermal performance and pumping power, the coefficient of performance improved by up to 13% for the jet-based configuration.« less

  20. Calix[3]carbazole: A C3-symmetrical receptor for barium ion

    NASA Astrophysics Data System (ADS)

    Yang, Zhaozheng; Tian, Zhangmin; Yang, Peng; Deng, Tuo; Li, Gang; Zhou, Xue; Chen, Yan; Zhao, Liang; Shen, Hongyan

    2017-03-01

    The binding ability of calix[3]carbazole (1) to metal ions has been investigated. It is found that 1 could serve as a non crown ether based, C3-symmetrical receptor for Ba2 + via the marriage of cation-π and cation-dipole interactions. FID assay further illustrates that 1 could selectively interact with Ba2 + over Pd2 +. A possible binding mechanism for [1-Ba2 +] complex is proposed.

  1. Preparation, one- and two-photon properties of carbazole derivatives containing nitrogen heterocyclic ring

    NASA Astrophysics Data System (ADS)

    Zhang, Yichi; Wang, Ping; Li, Liang; Chen, Zhimin; He, Chunying; Wu, Yiqun

    Preparation of recording materials with high two-photon absorption activities is one of the important issues to superhigh- density two-photon absorption (TPA) three-dimensional (3D) optical data storage. In this paper, three new carbazole derivatives containing nitrogen heterocyclic ring with symmetric and asymmetric structures are prepared using ethylene as the π bridge between the carbazole unit and nitrogen heterocyclic ring, namely, 9-butyl-3-(2-(1,8- naphthyridin)vinyl)-carbazole (material 1), 9-butyl-3,6-bis(2-(1,8-naphthyl)vinyl)-carbazole (material 2) and 9-butyl-3,6- bis(2-(quinolin)vinyl)-carbazole (material 3). Their one photon properties including linear absorption spectra, fluorescence emission spectra, and fluorescence quantum yields are studied. The fluorescence excited by 120 fs pulse at 800 nm Ti: sapphire laser operating at 1 kHz repetition rate with different incident powers of 9-butyl-3-(2-(quinolin) vinyl)-carbazole (material 3) was investigated, and two-photon absorption cross-sections has been obtained. It is shown that material 3 containing quinoline rings as electron acceptor with symmetric structure exhibit high two-photon absorption activity. The result implies that material 3 (9-butyl-3-(2-(quinolin) vinyl)-carbazole) is a good candidate as a promising recording material for super-high-density two-photon absorption (TPA) three-dimensional (3D) optical data storage. The influence of chemical structure of the materials on the optical properties is discussed.

  2. Excitation and fluorescence spectra of pyrene cooled in a syupersonic jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borisevich, N.A.; Vodovatov, L.B.; D`yachenko, G.G.

    1995-02-01

    The excitation and fluorescence spectra of pyrene molecules cooled in a jet are obtained upon excitation into the S{sub 1}, S{sub 2}, S{sub 3}, and S{sub 4} electronic states. Based on the K. Ohno MO/8 model, a new method for calculating frequencies of the in-plane vibrations in the excited electronic states of polycyclic aromatic hydrocarbons is developed. The method is used for a comparitive analysis of the excitation and fluorescence spectra and assignment of the spectral lines. Good agreement between calculations and experimental data are found. The fluorescence spectrum recorded upon excitation into the high-lying electronic states shows a newmore » long-wavelength band that is probably related to pyrene dimers formed in a jet. 12 refs., 4 figs., 2 tabs.« less

  3. 75 FR 14468 - Carbazole Violet Pigment 23 From China and India

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ...)] Carbazole Violet Pigment 23 From China and India AGENCY: United States International Trade Commission... violet pigment 23 from India and the antidumping duty orders on carbazole violet pigment 23 from China and India. SUMMARY: The Commission hereby gives notice of the scheduling of expedited reviews pursuant...

  4. Persistence and dioxin-like toxicity of carbazole and chlorocarbazoles in soil.

    PubMed

    Mumbo, John; Henkelmann, Bernhard; Abdelaziz, Ahmed; Pfister, Gerd; Nguyen, Nghia; Schroll, Reiner; Munch, Jean Charles; Schramm, Karl-Werner

    2015-01-01

    Halogenated carbazoles have recently been detected in soil and water samples, but their environmental effects and fate are unknown. Eighty-four soil samples obtained from a site with no recorded history of pollution were used to assess the persistence and dioxin-like toxicity of carbazole and chlorocarbazoles in soil under controlled conditions for 15 months. Soil samples were divided into two temperature conditions, 15 and 20 °C, both under fluctuating soil moisture conditions comprising 19 and 44 drying-rewetting cycles, respectively. This was characterized by natural water loss by evaporation and rewetting to -15 kPa. Accelerated solvent extraction (ASE) and cleanup were performed after incubation. Identification and quantification were done using high-resolution gas chromatogram/mass spectrometer (HRGC/MS), while dioxin-like toxicity was determined by ethoxyresorufin-O-deethylase (EROD) induction in H4IIA rat hepatoma cells assay and multidimensional quantitative structure-activity relationships (mQSAR) modelling. Carbazole, 3-chlorocarbazole and 3,6-dichlorocarbazole were detected including trichlorocarbazole not previously reported in soils. Carbazole and 3-chlorocarbazole showed significant dissipation at 15 °C but not at 20 °C incubating conditions indicating that low temperature could be suitable for dissipation of carbazole and chlorocarbazoles. 3,6-Dichlorocarbazole was resistant at both conditions. Trichlorocarbazole however exhibited a tendency to increase in concentration with time. 3-Chlorocarbazole, 3,6-dibromocarbazole and selected soil extracts exhibited EROD activity. Dioxin-like toxicity did not decrease significantly with time, whereas the sum chlorocarbazole toxic equivalence concentrations (∑TEQ) did not contribute significantly to the soil assay dioxin-like toxicity equivalent concentrations (TCDD-EQ). Carbazole and chlorocarbazoles are persistent with the latter also toxic in natural conditions.

  5. Single-jet gas cooling of in-beam foils or specimens: Prediction of the convective heat-transfer coefficient

    NASA Astrophysics Data System (ADS)

    Steyn, Gideon; Vermeulen, Christiaan

    2018-05-01

    An experiment was designed to study the effect of the jet direction on convective heat-transfer coefficients in single-jet gas cooling of a small heated surface, such as typically induced by an accelerated ion beam on a thin foil or specimen. The hot spot was provided using a small electrically heated plate. Heat-transfer calculations were performed using simple empirical methods based on dimensional analysis as well as by means of an advanced computational fluid dynamics (CFD) code. The results provide an explanation for the observed turbulent cooling of a double-foil, Havar beam window with fast-flowing helium, located on a target station for radionuclide production with a 66 MeV proton beam at a cyclotron facility.

  6. Thermal performance of plate fin heat sink cooled by air slot impinging jet with different cross-sectional area

    NASA Astrophysics Data System (ADS)

    Mesalhy, O. M.; El-Sayed, Mostafa M.

    2015-06-01

    Flow and heat transfer characteristics of a plate-fin heat sink cooled by a rectangular impinging jet with different cross-sectional area were studied experimentally and numerically. The study concentrated on investigating the effect of jet width, fin numbers, and fin heights on thermal performance. Entropy generation minimization method was used to define the optimum design and operating conditions. It is found that, the jet width that minimizes entropy generation changes with heat sink height and fin numbers.

  7. Microbial Degradation of Alkyl Carbazoles in Norman Wells Crude Oil

    PubMed Central

    Fedorak, Phillip M.; Westlake, Donald W. S.

    1984-01-01

    Norman Wells crude oil was fractionated by sequential alumina and silicic acid column chromatography methods. The resulting nitrogen-rich fraction was analyzed by gas chromatography-mass spectrometry and showed 26 alkyl (C1 to C5) carbazoles to be the predominant compounds. An oil-degrading mixed bacterial culture was enriched on carbazole to enhance its ability to degrade nitrogen heterocycles. This culture was used to inoculate a series of flasks of mineral medium and Norman Wells crude oil. Residual oil was recovered from these cultures after incubation at 25°C for various times. The nitrogen-rich fraction was analyzed by capillary gas chromatography, using a nitrogen-specific detector. Most of the C1-, C2-, and C3- carbazoles and one of the C4-isomers were degraded within 8 days. No further degradation occurred when incubation was extended to 28 days. The general order of susceptibility of the isomers to biodegradation was C1 > C2 > C3 > C4. The carbazole-enriched culture was still able to degrade n-alkanes, isoprenoids, aromatic hydrocarbons, and sulfur heterocycles in the crude soil. PMID:16346524

  8. Two-colour dip spectroscopy of jet-cooled molecules

    NASA Astrophysics Data System (ADS)

    Ito, Mitsuo

    In optical-optical double resonance spectroscopy, the resonance transition from an intermediate state to a final state can be detected by a dip of the signal (fluorescence or ion) associated with the intermediate state. This method probing the signal of the intermediate state may be called `two-colour dip spectroscopy'. Various kinds of two-colour dip spectroscopy such as two-colour fluorescence/ion dip spectroscopy, two-colour ionization dip spectroscopy employing stimulated emission, population labelling spectroscopy and mass-selected ion dip spectroscopy with dissociation were briefly described, paying special attention to their characteristics in excitation, detection and application. They were extensively and successfully applied to jet-cooled large molecules and provided us with new useful information on the energy and dynamics of excited molecules.

  9. Unsteady conjugate heat transfer analysis for impinging jet cooling

    NASA Astrophysics Data System (ADS)

    Tejero, F.; Flaszyński, P.; Szwaba, R.; Telega, J.

    2016-10-01

    The paper presents the numerical investigations of the heat transfer on a flat plate cooled by a single impinging jet. The thermal conductivity of the plate was modified from a high thermal case (steel -λ= 35 W/m/K) to a low one (steel alloy Inconel -λ= 9.8 W/m/K). The numerical simulations results are compared with the experimental data from the Institute of Fluid-Flow Machinery Polish Academy of Sciences, Gdansk (Poland). The numerical simulations are carried out by means of Ansys/Fluent and k-ω SST turbulence model and the temperature evolution on the target plate is investigated by conjugated heat transfer computations.

  10. Photophysical properties and computational investigation on substituent effects on the structural and electronic properties of 3,6-di(thiophene-2-yl)-carbazole-based derivatives

    NASA Astrophysics Data System (ADS)

    Sriyab, Suwannee; Gleeson, Matthew Paul; Hannongbua, Supa; Suramitr, Songwut

    2016-12-01

    A series of 3,6-carbazole-based derivatives, 3,6-CzTh-(1), 3,6-CzTh-(2), 3,6-CzTh-(3) and 3,6-CzTh-(4), were synthesized to investigate the influence of structural distortion on intramolecular charge transfer (ICT) complexation between the conjugation components and carbazole core unit of the 3,6-carbazole-based derivatives. The 3,6-carbazole-based derivatives were synthesized and analysed using UV-Visible, photoluminescence spectroscopy and DFT calculations. The electron-donating substituents on the carbazole core unit, which was linked by formyl and acetyl at the 3,6-positions of the carbazole core so as to directly involve the electron-donating edge substituents in backbone, exhibited conjugation breaks in the middle of the carbazole core units. The break lead to a planar structure with an extraordinary ability to stabilize on the excited state resulting in a strong fluorescence quantum yield (Фfluo ≈ 0.6-0.7). The results of the Time-dependent density functional theory (TD-DFT) calculations were in agreement with the experimental results, and indicated that the low fluorescence of 3,6-CzTh-(1) and 3,6-CzTh-(2) is derived not only from intersystem crossing but also from internal conversion due to the proximity effect; this inference was also supported by the measurements of the photoluminescence spectra at low temperatures. In addition, factors leading efficiently to non-radiative processes were shown to be absent in 3,6-CzTh-(3) and 3,6-CzTh-(4). This work deepens our understanding of 3,6-di(thiophen-2-yl)-carbazole-based derivatives and provides insight into the future design of novel materials for improved fluorescence efficiencies and optoelectronic devices.

  11. Modular jet impingement assemblies with passive and active flow control for electronics cooling

    DOEpatents

    Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh

    2016-09-13

    Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.

  12. DBD Actuated Flow Control of Wall-Jet and Cross-Flow Interaction for Film Cooling Applications

    NASA Astrophysics Data System (ADS)

    Tirumala, Rakshit; Benard, Nicolas; Moreau, Eric; Fenot, Matthieu; Lalizel, Gildas; Dorignac, Eva

    2014-11-01

    In this work, we use surface DBD actuators to control the interaction between a wall jet and mainstream flow in film cooling applications. The intention of the study is to improve the contact of the jet with the wall and enhance the convective heat transfer coefficient downstream of the jet exit. A 2D wall jet (10 mm height) is injected into the mainstream flow at an angle of 30°. With an injected jet velocity (Ui) of 5 m/s, two blowing ratios M (=ρi Ui / ρ∞U∞) of 1.0 and 0.5 are studied corresponding to the mainstream flow velocity (U∞) of 5 m/s and 10 m/s respectively. Different configurations of the DBD actuator are studied, positioned both inside the jet and on the downstream side. PIV measurements are conducted to investigate the flow field of the interaction between the jet and cross flow. Streamwise velocity profiles at different downstream locations are compared to analyze the efficacy of the plasma actuator in improving the contact between the injected jet stream and the wall surface. Reynolds shear stress measurements are also conducted to study the mixing regions in the plasma-jet-mainstream flow interaction. Work was partially funded by the French government program ``Investissements d'avenir'' (LABEX INTERACTIFS, reference ANR-11-LABX-0017-01).

  13. Microbial degradation of alkyl carbazoles in Norman Wells crude oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorak, P.M.; Westlake, D.W.S.

    Norman Wells crude oil was fractionated by sequential alumina and silicic acid column chromatography methods. The resulting nitrogen-rich fraction was analyzed by gas chromatography-mass spectrometry and showed 26 alkyl (C/sub 1/ to C/sub 5/) carbazoles to be the predominant compounds. An oil-degrading mixed bacterial culture was enriched on carbazole to enhance its ability to degrade nitrogen heterocycles. This culture was used to inoculate a series of flasks of mineral medium and Norman Wells crude oil. Residual oil was recovered from these cultures after incubation at 25/sup 0/C for various times. The nitrogen-rich fraction was analyzed by capillary gas chromatography, usingmore » a nitrogen-specific detector. Most of the C/sub 1/-, C/sub 2/-, and C/sub 3/- carbazoles and one of the C/sub 4/-isomers were degraded within 8 days. No further degradation occurred when incubation was extended to 28 days. The general order of susceptibility of the isomers to biodegradation was C/sub 1/ > C/sub 2/ > C/sub 3/ > C/sub 4/. The carbazole-enriched culture was still able to degrade n-alkanes, isoprenoids, aromatic hydrocarbons, and sulfur heterocycles in the crude soil. 26 references.« less

  14. The binding modes of carbazole derivatives with telomere G-quadruplex

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-feng; Zhang, Hui-juan; Xiang, Jun-feng; Li, Qian; Yang, Qian-fan; Shang, Qian; Zhang, Yan-xia; Tang, Ya-lin

    2010-10-01

    It is reported that carbazole derivatives can stabilize G-quadruplex DNA structure formed by human telomeric sequence, and therefore, they have the potential to serve as anti-cancer agents. In this present study, in order to further explore the binding mode between carbazole derivatives and G-quadruplex formed by human telomeric sequence, two carbazole iodides (BMVEC, MVEC) molecules were synthesized and used to investigate the interaction with the human telomeric parallel and antiparallel G-quadruplex structures by NMR, CD and molecular modeling study. Interestingly, it is the pivotal the cationic charge pendant groups of pyridinium rings of carbazole that plays an essential role in the stabilizing and binding mode of the human telomeric sequences G-quadruplex structure. It was found that BMVEC with two cationic charge pendant groups of pyridinium rings of 9-ethylcarbazole cannot only stabilize parallel G-quadruple of Hum6 by groove binding and G-tetrad stacking modes and antiparallel G-quadruplex of Hum22 by groove binding, but also induce the formation of mixed G-quadruplex of Hum22. While MVEC with one cationic charge pendant groups of pyridinium ring only can bind with the parallel G-quadruplex of Hum6 by the stacking onto the G4 G-tetrad and could not interact with the G-quadruplex of Hum22.

  15. Reducing Coal Dust With Water Jets

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lewis, E. V.

    1985-01-01

    Jets also cool and clean cutting equipment. Modular pick-and-bucket miner suffers from disadvantage: Creates large quantities of potentially explosive coal dust. Dust clogs drive chain and other parts and must be removed by hand. Picks and bucket lips become overheated by friction and be resharpened or replaced frequently. Addition of oscillating and rotating water jets to pick-and-bucket machine keeps down dust, cools cutting edges, and flushes machine. Rotating jets wash dust away from drive chain. Oscillating jets cool cutting surfaces. Both types of jet wet airborne coal dust; it precipitates.

  16. 75 FR 25209 - Carbazole Violet Pigment 23 from India: Rescission of Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... from India: Rescission of Administrative Review AGENCY: Import Administration, International Trade... administrative review of the antidumping duty order on carbazole violet pigment 23 (CVP 23) from India for the...-circumstances review. See Carbazole Violet Pigment 23 from India: Initiation of Antidumping Duty Changed...

  17. Flat-plate film cooling from a double jet holes: influence of free-stream turbulence and flow acceleration

    NASA Astrophysics Data System (ADS)

    Khalatov, A. A.; Borisov, I. I.; Dashevsky, Yu. J.; Panchenko, N. A.; Kovalenko, A. S.

    2014-12-01

    Results of an experimental study of flat-plate film cooling effectiveness achieved with an inlet double jet scheme are reported. At low ( m = 0.5) and medium ( m = 1.0) blowing ratio the average film cooling effectiveness is about 20 % greater of the traditional two-row scheme of round holes data, while at higher m = 1.5 it is close to it. The free-stream turbulence (≈ 7 %) influences weekly on the average flat-plate film cooling effectiveness. The flow acceleration decreases the film cooling effectiveness down to 25 % when the pressure gradient parameter K is ranged from 0.5·10-6 to 3.5·10-6.

  18. Carbazole is a naturally occurring inhibitor of angiogenesis and inflammation isolated from antipsoriatic coal tar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack L. Arbiser; Baskaran Govindarajan; Traci E. Battle

    2006-06-15

    Coal tar is one of the oldest and an effective treatment for psoriasis. Coal tar has been directly applied to the skin, or used in combination with UV light as part of the Goeckerman treatment. The use of coal tar has caused long-term remissions in psoriasis, but has fallen out of favor because the treatment requires hospitalization and coal tar is poorly acceptable aesthetically to patients. Thus, determining the active antipsoriatic component of coal tar is of considerable therapeutic interest. We fractionated coal tar into its components, and tested them using the SVR angiogenesis inhibitor assay. Treatment of SVR endothelialmore » cells with coal tar fractions resulted in the isolation of a single fraction with antiangiogenic activity. The active antiangiogenic compound in coal tar is carbazole. In addition to antiangiogenic activity, carbazole inhibited the production of inflammatory IL-15 by human mononuclear cells. IL-15 is elevated in psoriasis and is thought to contribute to psoriatic inflammation. Carbazole treatment also reduced activity of inducible nitric oxide synthase (iNOS), which is proinflammatory and elevated in psoriasis. The effect of carbazole on upstream pathways in human psoriasis was determined, and carbazole was shown to inhibit signal transducer and activator of transcription (stat)3-mediated transcription, which has been shown to be relevant in human psoriasis. IL-15, iNOS, and stat3 activation require the activation of the small GTPase rac for optimal activity. Carbazole was found to inhibit rac activation as a mechanism for its inhibition of downstream inflammatory and angiogenic pathways. Given its antiangiogenic and anti-inflammatory activities, carbazole is likely a major component of the antipsoriatic activity of coal tar. Carbazole and derivatives may be useful in the therapy of human psoriasis.« less

  19. The Jet-Cooled High-Resolution IR Spectrum of Formic Acid Cyclic Dimer

    NASA Astrophysics Data System (ADS)

    Goubet, Manuel; Bteich, Sabath; Huet, Therese R.; Pirali, Olivier; Asselin, Pierre; Soulard, Pascale; Jabri, Atef; Roy, P.; Georges, Robert

    2017-06-01

    As the simplest carboxylic acid, formic acid (FA) is an excellent model molecule to investigate the general properties of carboxylic acids. FA is also an atmospherically and astrophysically relevant molecule. It is well known that its dimeric form is predominant in the gas phase at temperatures below 423 K. The cyclic conformation of the dimer (FACD) is an elementary system to be understood for the concerted hydrogen transfer through equivalent hydrogen bonds, an essential process within biomolecules. The IR range is a crucial spectral region, particularly the far-IR, as it gives a direct access to the intermolecular vibrational modes involved in this process. Moreover, due to its centrosymmetric conformation, the FACD exhibits no pure rotation spectrum and, due to spectral line congestion and Doppler broadening, IR bands cannot be rotationally resolved at room temperature. So far, only parts of the ν_{5}-GS band (C-O stretch) have been observed under jet-cooled conditions using laser techniques. We present here six rotationally resolved IR bands of FACD recorded under jet-cooled conditions using the Jet-AILES apparatus and the QCL spectrometer at MONARIS, including the far-IR ν_{24}-GS band (intermolecular in-plane bending). Splitting due to vibration-rotation-tunneling motions are clearly observed. A full spectral analysis is in progress starting from the GS constants obtained by Goroya et al. and with the support of electronic structure calculations. T. Miyazawa and K. S. Pitzer, J. Am. Chem. Soc. 81, 74, 1959 R. Georges, M. Freytes, D. Hurtmans, I. Kleiner, J. Vander Auwera, M. Herman, Chem. Phys. 305, 187, 2004 M. Ortlieb and M. Havenith, J. Phys. Chem. A 111, 7355, 2007; K. G. Goroya, Y. Zhu, P. Sun and C. Duan, J. Chem. Phys. 140, 164311, 2014 This work is supported by the CaPPA project (Chemical and Physical Properties of the Atmosphere) ANR-11-LABX-0005-01

  20. Transpiring Cooling of a Scram-Jet Engine Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Scotti, Stephen J.; Song, Kyo D.; Ries,Heidi

    1997-01-01

    The peak cold-wall heating rate generated in a combustion chamber of a scram-jet engine can exceed 2000 Btu/sq ft sec (approx. 2344 W/sq cm). Therefore, a very effective heat dissipation mechanism is required to sustain such a high heating load. This research focused on the transpiration cooling mechanism that appears to be a promising approach to remove a large amount of heat from the engine wall. The transpiration cooling mechanism has two aspects. First, initial computations suggest that there is a reduction, as much as 75%, in the heat flux incident on the combustion chamber wall due to the transpirant modifying the combustor boundary layer. Secondly, the heat reaching the combustor wall is removed from the structure in a very effective manner by the transpirant. It is the second of these two mechanisms that is investigated experimentally in the subject paper. A transpiration cooling experiment using a radiant heating method, that provided a heat flux as high as 200 Btu/sq ft sec ( approx. 234 W/sq cm) on the surface of a specimen, was performed. The experiment utilized an arc-lamp facility (60-kW radiant power output) to provide a uniform heat flux to a test specimen. For safety reasons, helium gas was used as the transpirant in the experiments. The specimens were 1.9-cm diameter sintered, powdered-stainless-steel tubes of various porosities and a 2.54cm square tube with perforated multi-layered walls. A 15-cm portion of each specimen was heated. The cooling effectivenes and efficiencies by transpiration for each specimen were obtained using the experimental results. During the testing, various test specimens displayed a choking phenomenon in which the transpirant flow was limited as the heat flux was increased. The paper includes a preliminary analysis of the transpiration cooling mechanism and a scaling conversion study that translates the results from helium tests into the case when a hydrogen medium is used.

  1. Identification of alkyl carbazoles and alkyl benzocarbazoles in Brazilian petroleum derivatives.

    PubMed

    Oliveira, Eniz Conceição; Vaz de Campos, Maria Cecília; Rodrigues, Maria Regina Alves; Pérez, Valéria Flores; Melecchi, Maria Inês Soares; Vale, Maria Goreti Rodrigues; Zini, Cláudia Alcaraz; Caramão, Elina Bastos

    2006-02-10

    Carbozoles are important compounds in crude oils, as they may be used as geochemical tracers, being the major type of nitrogen compounds in petroleum. At the same time, they are regarded as undesirable due to the problems they may cause in the refining process, such as catalyst poisoning, corrosion, gum or color formation in final products. As separation and identification of carbazoles are challenging goals, this work presents a chromatographic method, made of a pre-fractionation on neutral alumina followed by the separation and identification of two classes of carbazoles using FeCl(3)/Chromossorb W and gas chromatograph with mass spectrometer (GC/MS) (SIM-single ion monitoring mode) analysis. For the first time, a series of alkyl carbazoles and alkyl benzocarbazoles were identified in heavy gas oil (HGO) and atmospheric residue of distillation (ARD) obtained from Brazilian petroleum.

  2. Traction Drive Inverter Cooling with Submerged Liquid Jet Impingement on Microfinned Enhanced Surfaces (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waye, S.; Narumanchi, S.; Moreno, G.

    Jet impingement is one means to improve thermal management for power electronics in electric-drive traction vehicles. Jet impingement on microfin-enhanced surfaces further augments heat transfer and thermal performance. A channel flow heat exchanger from a commercial inverter was characterized as a baseline system for comparison with two new prototype designs using liquid jet impingement on plain and microfinned enhanced surfaces. The submerged jets can target areas with the highest heat flux to provide local cooling, such as areas under insulated-gate bipolar transistors and diode devices. Low power experiments, where four diodes were powered, dissipated 105 W of heat and weremore » used to validate computational fluid dynamics modeling of the baseline and prototype designs. Experiments and modeling used typical automotive flow rates using water-ethylene glycol as a coolant (50%-50% by volume). The computational fluid dynamics model was used to predict full inverter power heat dissipation. The channel flow and jet impingement configurations were tested at full inverter power of 40 to 100 kW (output power) on a dynamometer, translating to an approximate heat dissipation of 1 to 2 kW. With jet impingement, the cold plate material is not critical for the thermal pathway. A high-temperature plastic was used that could eventually be injection molded or formed, with the jets formed from a basic aluminum plate with orifices acting as nozzles. Long-term reliability of the jet nozzles and impingement on enhanced surfaces was examined. For jet impingement on microfinned surfaces, thermal performance increased 17%. Along with a weight reduction of approximately 3 kg, the specific power (kW/kg) increased by 36%, with an increase in power density (kW/L) of 12% compared with the baseline channel flow configuration.« less

  3. Dispersive charge transport due to strong charge dipole interactions of cyano-group in the cyano-carbazole based molecular glass

    NASA Astrophysics Data System (ADS)

    Oh, Dong Keun; Hong, Sung Mok; Lee, Cheol Eui; Kim, B.-S.; Jin, J.-I.

    2005-12-01

    Using the time of flight (ToF) method, we investigated the bipolar charge transport for two glass-forming molecules containing carbazole and cyano-carbazole moiety. The enhanced electron mobility was observed in the cyano-carbazole compound. From the numerical method based the Laplace formalism, the distribution of hole trapping energy was obtained for the carbazole compound. This result was compared with the exponential distribution extracted from dispersion parameter for the cyano-carbazole material. Considering charge-dipole interactions as a reason for the disordered trapping mechanism, we discussed dispersive charge transport induced by a strong dipolar (i.e. cyano) group by comparing the distributions of hole trapping sites for two compounds.

  4. Competitive photodissociation channels in jet-cooled HNCO: Thermochemistry and near-threshold predissociation

    NASA Astrophysics Data System (ADS)

    Zyrianov, M.; Droz-Georget, Th.; Sanov, A.; Reisler, H.

    1996-11-01

    The photoinitiated unimolecular decomposition of jet-cooled HNCO has been studied following S1(1A″)←S0(1A') excitation near the thresholds of the spin-allowed dissociation channels: (1) H(2S)+NCO(X2Π) and (2) NH(a1Δ)+CO(X1Σ+), which are separated by 4470 cm-1. Photofragment yield spectra of NCO(X2Π) and NH (a1Δ) were obtained in selected regions in the 260-220 nm photolysis range. The NCO(X2Π)yield rises abruptly at 38 380 cm-1 and the spectrum exhibits structures as narrow as 0.8 cm-1 near the threshold. The linewidths increase only slowly with photolysis energy. The jet-cooled absorption spectrum near the channel (1) threshold [D0(H+NCO)] was obtained using two-photon excitation via the S1 state, terminating in a fluorescent product. The absorption spectrum is similar to the NCO yield spectrum, and its intensity does not diminish noticeably above D0(H+NCO), indicating that dissociation near threshold is slow. The NCO product near threshold is cold, as is typical of a barrierless reaction. NH (a1Δ) products appear first at 42 840 cm-1, but their yield is initially very small, as evidenced also by the insignificant decrease in the NCO yield in the threshold region of channel (2). The NH (a1Δ) yield increases faster at higher photolysis energies and the linewidths increase as well. At the channel (2) threshold, the NH (a1Δ) product is generated only in the lowest rotational level, J=2, and rotational excitation increases with photolysis energy. We propose that in the range 260-230 nm, HNCO (S1) undergoes radiationless decay terminating in S0/T1 followed by unimolecular reaction. Decompositions via channels (1) and (2) proceed without significant exit channel barriers. At wavelengths shorter than 230 nm, the participation of an additional, direct pathway cannot be ruled out. The jet-cooled photofragment yield spectra allow the determination, with good accuracy, of thermochemical values relevant to HNCO decomposition. The following heats of formation are

  5. Novel biosensor system model based on fluorescence quenching by a fluorescent streptavidin and carbazole-labeled biotin.

    PubMed

    Zhu, Xianwei; Shinohara, Hiroaki; Miyatake, Ryuta; Hohsaka, Takahiro

    2016-10-01

    In the present study, a novel molecular biosensor system model was designed by using a couple of the fluorescent unnatural mutant streptavidin and the carbazole-labeled biotin. BODIPY-FL-aminophenylalanine (BFLAF), a fluorescent unnatural amino acid was position-specifically incorporated into Trp120 position of streptavidin by four-base codon method. On the other hand, carbazole-labeled biotin was synthesized as a quencher for the fluorescent Trp120BFLAF mutant streptavidin. The fluorescence of fluorescent Trp120BFLAF mutant streptavidin was decreased as we expected when carbazole-labeled biotin was added into the mutant streptavidin solution. Furthermore, the fluorescence decrease of Trp120BFLAF mutant streptavidin with carbazole-labeled biotin (100 nM) was recovered by the competitive addition of natural biotin. This result demonstrated that by measuring the fluorescence quenching and recovery, a couple of the fluorescent Trp120BFLAF mutant streptavidin and the carbazole-labeled biotin were successfully applicable for quantification of free biotin as a molecular biosensor system. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Experimental investigation of cross-over jets in a rib-roughened trailing-edge cooling channel

    NASA Astrophysics Data System (ADS)

    Xue, Fei

    Increasing the rotor inlet temperature can dramatically increase the efficiency and power output of the gas turbine engine. However, the melting point of turbine blade material limits the realistic upper bound of the rotor inlet temperature. As a result, the development of high temperature turbine blade material and advanced turbine blade cooling technology determines the future of turbine blade engine. Adding impingement jet holes and rib turbulators in the inner cooling channel of the gas turbine blades are two effective ways to enhance the cooling effects. The purpose of this study is to figure out the influence of different combinations of jet holes and rib turbulators on the heat transfer efficiency. A tabletop scale test model is used in the study to simulate the cooling cavity of trailing edge and its feed channel in a real gas turbine blade. The Dimensional Analysis Theory is used in the study to eliminate the influence of scaling. Two different crossover slots are tested with 5 different rib arrangements, and each of the test geometries is tested for 6 jet Reynolds numbers ranging from 10,000 to 36,000. The two different crossover slots are the crossover slots with 0 and 5 degree tilt angles. The four different rib arrangements are ribs with 0 degree, 45 degree, 90 degree and 135 degree angles of attack with respect to the flow direction. Furthermore, a smooth test section (no ribs) was also tested. The steady state liquid crystal thermography is used to quantify the heat transfer performance of the target areas. The variation of Nusselt number versus Reynolds number is plotted for each of the 10 geometries. Also, the variation of Nusselt number versus Reynolds number are compared for different rib angles of attack with the same crossover slot tilt angle, and between different crossover slots tilt angles with the same rib angle. The results show that, the area-weighted average Nusselt number increases monotonically with the Reynolds number; the target

  7. Jet-Cooled Spectroscopy on the Ailes Infrared Beamline of the Synchrotron Radiation Facility Soleil

    NASA Astrophysics Data System (ADS)

    Georges, Robert

    2015-06-01

    The Advanced Infrared Line Exploited for Spectroscopy (AILES) extracts the bright far infrared (FIR) synchrotron continuum of the third generation radiation facility SOLEIL. This beamline is equipped with a high resolution (10-3 cm-1) Bruker IFS125 Fourier transform spectrometer which can be operated in the FIR but also in the mid and near infrared by using its internal conventional sources. The jet-AILES consortium (IPR, PhLAM, MONARIS, SOLEIL) has implemented a supersonic-jet apparatus on the beamline to record absorption spectra at very low temperature (5-50 K) and in highly supersaturated gaseous conditions. Heatable slit-nozzles of various lengths and widths are used to set properly the stagnation conditions. A mechanical pumping (roots pumps) was preferred for its ability to evacuate important mass flow rates and therefore to boost the experimental sensitivity of the set-up, the counterpart being a non-negligible consumption of both carrier (argon, helium or nitrogen) and spectroscopic gases. Various molecular systems were investigated up to now using the Jet-AILES apparatus. The very low temperature achieved in the gas expansion was either used to simplify the rotation-vibration structure of monomers, such as SF6, CF4 or naphthalene, or to stabilize the formation of weakly bonded molecular complexes such as the trimer of HF or the dimer of acetic acid. The nucleation of water vapor and the nuclear spin conversion of water were also investigated under free-jet conditions in the mid infrared. High-resolution spectroscopy and analysis of the νb{2} + νb{3} combination band of SF6 in a supersonic jet expansion. V. Boudon, P. Asselin, P. Soulard, M. Goubet, T. R. Huet, R. Georges, O. Pirali, P. Roy, Mol. Phys. 111, 2154-2162 (2013) The far infrared spectrum of naphthalene characterized by high resolution synchrotron FTIR spectroscopy and anharmonic DFT calculations. O. Pirali, M. Goubet, T.R. Huet, R. Georges, P. Soulard, P. Asselin, J. Courbe, P. Roy and M

  8. Jet-cooled infrared absorption spectrum of the v4 fundamental band of HCOOH and HCOOD

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zhang, Yulan; Li, Wenguang; Duan, Chuanxi

    2017-04-01

    The jet-cooled absorption spectrum of the v4 fundamental band of normal formic acid (HCOOH) and deuterated formic acid (HCOOD) was recorded in the frequency range of 1370-1392 cm-1 with distributed-feedback quantum cascade lasers (DFB-QCLs) as the tunable infrared radiations. A segmented rapid-scan data acquisition scheme was developed for pulsed supersonic jet infrared laser absorption spectroscopy based on DFB-QCLs with a moderate vacuum pumping capacity. The unperturbed band-origin and rotational constants in the excited vibrational state were determined for both HCOOH and HCOOD. The unperturbed band-origin locates at 1379.05447(11) cm-1 for HCOOH, and 1366.48430(39) cm-1 for HCOOD, respectively.

  9. 75 FR 52930 - Carbazole Violet Pigment 23 From India: Preliminary Results of Antidumping Duty Changed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... From India: Preliminary Results of Antidumping Duty Changed-Circumstances Review AGENCY: Import... order on carbazole violet pigment 23 from India to determine whether Meghmani Pigments (Meghmani) is the... initiation of an antidumping duty changed- circumstances review. See Carbazole Violet Pigment 23 from India...

  10. Spectroscopic identification of dichlorobenzyl radicals: Jet-cooled 2,3-dichlorobenzyl radical

    NASA Astrophysics Data System (ADS)

    Chae, Sang Youl; Yoon, Young Wook; Lee, Sang Kuk

    2015-07-01

    The vibronically excited but jet-cooled 2,3-dichlorobenzyl radical was generated from the corona discharge of precursor 2,3-dichlorotoluene seeded in a large amount of carrier gas He using a pinhole-type glass nozzle. From an analysis of the visible vibronic emission spectrum observed, we obtained the electronic energy of the D1 → D0 transition and vibrational mode frequencies in the D0 state of the 2,3-dichlorobenzyl radical by comparing the observation with the results of ab initio calculations. In addition, we discussed substituent effect of Cls on electronic transition energy in terms of substituent orientation for the first time.

  11. High-resolution absorption cross section measurements of supersonic jet-cooled carbon monoxide between 92.5 and 97.4 nanometers

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Stark, G.; Esmond, J. R.; Smith, P. L.; Ito, K.; Matsui, T.

    1995-01-01

    High-resolution photoabsorption cross sections for eight CO bands, at wavelengths between 92.5 nm and 97.4 nm, have been measured in a supersonic jet-cooled source (approximately equals 20 K) at the Photon Factory synchrotron radiation facility. New integrated cross sections are reported for four bands between 92.5 nm and 94.2 nm. A low-temperature spectrum of the W(1)-X(0) band (95.6 nm), which was used to determine the absorbing CO column densities, is also presented. Additional jet-cooled cross section measurements were made on the L(0)-X(0), K(0)-X(0), and W(0)-X(0) bands (96.7-97.4 nm) which verify previously published results. A self-consistent set of band oscillator strengths is presented for the eight bands studied.

  12. High-resolution spectroscopy of jet-cooled CH5+: Progress

    NASA Astrophysics Data System (ADS)

    Savage, C.; Dong, F.; Nesbitt, D. J.

    2015-01-01

    Protonated methane (CH5+) is thought to be a highly abundant molecular ion in interstellar medium, as well as a potentially bright μwave- mm wave emitter that could serve as a tracer for methane. This paper describes progress and first successful efforts to obtain a high resolution, supersonically cooled spectrum of CH5+ in the 2900-3100 cm-1 region, formed in a slit supersonic discharge at low jet temperatures and with sub-Doppler resolution. Short term precision in frequency measurement (< 5 MHz on an hour time scale) is obtained from a thermally controlled optical transfer cavity servoloop locked onto a frequency stabilized HeNe laser. Long term precision (< 20 MHz day-to-day) due to pressure, temperature and humidity dependent index of refraction effects in the optical transfer cavity is also present and discussed.

  13. The (CH2)2O-H2O hydrogen bonded complex. Ab Initio calculations and Fourier transform infrared spectroscopy from neon matrix and a new supersonic jet experiment coupled to the infrared AILES beamline of synchrotron SOLEIL.

    PubMed

    Cirtog, M; Asselin, P; Soulard, P; Tremblay, B; Madebène, B; Alikhani, M E; Georges, R; Moudens, A; Goubet, M; Huet, T R; Pirali, O; Roy, P

    2011-03-31

    A series of hydrogen bonded complexes involving oxirane and water molecules have been studied. In this paper we report on the vibrational study of the oxirane-water complex (CH(2))(2)O-H(2)O. Neon matrix experiments and ab initio anharmonic vibrational calculations have been performed, providing a consistent set of vibrational frequencies and anharmonic coupling constants. The implementation of a new large flow supersonic jet coupled to the Bruker IFS 125 HR spectrometer at the infrared AILES beamline of the French synchrotron SOLEIL (Jet-AILES) enabled us to record first jet-cooled Fourier transform infrared spectra of oxirane-water complexes at different resolutions down to 0.2 cm(-1). Rovibrational parameters and a lower bound of the predissociation lifetime of 25 ps for the v(OH)(b) = 1 state have been derived from the rovibrational analysis of the ν(OH)(b) band contour recorded at respective rotational temperatures of 12 K (Jet-AILES) and 35 K (LADIR jet).

  14. Synthesis, spectral and third-order nonlinear optical properties of terpyridine Zn(II) complexes based on carbazole derivative with polyether group

    NASA Astrophysics Data System (ADS)

    Kong, Ming; Liu, Yanqiu; Wang, Hui; Luo, Junshan; Li, Dandan; Zhang, Shengyi; Li, Shengli; Wu, Jieying; Tian, Yupeng

    2015-01-01

    Four novel Zn(II) terpyridine complexes (ZnLCl2, ZnLBr2, ZnLI2, ZnL(SCN)2) based on carbazole derivative group were designed, synthesized and fully characterized. Their photophysical properties including absorption and one-photon excited fluorescence, two-photon absorption (TPA) and optical power limiting (OPL) were further investigated systematically and interpreted on the basis of theoretical calculations (TD-DFT). The influences of different solvents on the absorption and One-Photon Excited Fluorescence (OPEF) spectral behavior, quantum yields and the lifetime of the chromophores have been investigated in detail. The third-order nonlinear optical (NLO) properties were investigated by open/closed aperture Z-scan measurements using femtosecond pulse laser in the range from 680 to 1080 nm. These results revealed that ZnLCl2 and ZnLBr2 exhibited strong two-photon absorption and ZnLCl2 showed superior optical power limiting property.

  15. Numerical investigation on super-cooled large droplet icing of fan rotor blade in jet engine

    NASA Astrophysics Data System (ADS)

    Isobe, Keisuke; Suzuki, Masaya; Yamamoto, Makoto

    2014-10-01

    Icing (or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents. Although various anti-icing and deicing systems have been developed, such accidents still occur. Therefore, it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine. However, flight tests for ice accretion are very expensive, and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur. Therefore, it is expected that computational fluid dynamics (CFD), which can estimate ice accretion in various climate conditions, will be a useful way to predict and understand the ice accretion phenomenon. On the other hand, although the icing caused by super-cooled large droplets (SLD) is very dangerous, the numerical method has not been established yet. This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature. In the present study, we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing, and the code is applied to a fan rotor blade. The numerical results with and without the SLD icing model are compared. Through this study, the influence of the SLD icing model is numerically clarified.

  16. Synthesis of novel carbazole derived substances using some organoboron compounds by palladium catalyzed and investigation of its semiconductor device characteristics

    NASA Astrophysics Data System (ADS)

    Gorgun, Kamuran; Caglar, Yasemin

    2018-04-01

    Carbazole compounds in particular represent one of the most intensely used and studied class of semiconducting materials. In this study, considering the information given in the literature the Ullman and Suzuki-Miyaura coupling reaction were carried out using carbazole, 1,4-dibromobenzene and pyrene-1-boronic acid. The synthesized carbazole derivatives are characterized by 1H NMR and elemental analysis. The spectroscopic and thermal properties of the synthesized novel carbazole derivative 9-(4-(pyren-4-yl)phenyl)-9H-carbazole (Cz-py) were investigated. And also, the n-Si/p-Cz:py heterojunction diode was fabricated. The electrical properties of this diode were characterized by current-voltage (I-V) and capacitance-voltage (C-V) measurements.

  17. Implementation of one and three dimensional models for heat transfer coeffcient identification over the plate cooled by the circular water jets

    NASA Astrophysics Data System (ADS)

    Malinowski, Zbigniew; Cebo-Rudnicka, Agnieszka; Hadała, Beata; Szajding, Artur; Telejko, Tadeusz

    2017-10-01

    A cooling rate affects the mechanical properties of steel which strongly depend on microstructure evolution processes. The heat transfer boundary condition for the numerical simulation of steel cooling by water jets can be determined from the local one dimensional or from the three dimensional inverse solutions in space and time. In the present study the inconel plate has been heated to about 900 °C and then cooled by six circular water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient and the heat flux distributions at the plate surface have been determined in time and space. The one dimensional solutions have given a local error to the heat transfer coefficient of about 35%. The three dimensional inverse solution has allowed reducing the local error to about 20%. The uncertainty test has confirmed that a better approximation of the heat transfer coefficient distribution over the cooled surface can be obtained even for limited number of thermocouples. In such a case it was necessary to constrain the inverse solution with the interpolated temperature sensors.

  18. Formation of inclusion complexes between high amylose starch and octadecyl ferulate via steam jet cooking.

    PubMed

    Kenar, James A; Compton, David L; Little, Jeanette A; Peterson, Steve C

    2016-04-20

    Amylose-ligand inclusion complexes represent an interesting approach to deliver bioactive molecules. However, ferulic acid has been shown not to form single helical inclusion complexes with amylose from high amylose maize starch. To overcome this problem a lipophilic ferulic acid ester, octadecyl ferulate, was prepared and complexed with amylose via excess steam jet cooking. Jet-cooking octadecyl ferulate and high amylose starch gave an amylose-octadecyl ferulate inclusion complex in 51.0% isolated yield. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) confirmed that a 61 V-type inclusion complex was formed. Amylose and extraction assays showed the complex to be enriched in amylose (91.9±4.3%) and contain 70.6±5.6mgg(-1) octadecyl ferulate, although, minor hydrolysis (∼4%) of the octadecyl ferulate was observed under the excess steam jet-cooking conditions utilized. This study demonstrates that steam jet cooking is a rapid and scalable process in which to prepare amylose-octadecyl ferulate inclusion complexes. Published by Elsevier Ltd.

  19. 75 FR 62765 - Carbazole Violet Pigment 23 From India: Final Results of Antidumping Duty Changed-Circumstances...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... From India: Final Results of Antidumping Duty Changed-Circumstances Review AGENCY: Import...-in-interest to Alpanil Industries. See Carbazole Violet Pigment 23 From India: Preliminary Results of... Carbazole Violet Pigment 23 From India: Final Results of Antidumping Duty Administrative Review, 75 FR 38076...

  20. Large Eddy Simulation of a cooling impinging jet to a turbulent crossflow

    NASA Astrophysics Data System (ADS)

    Georgiou, Michail; Papalexandris, Miltiadis

    2015-11-01

    In this talk we report on Large Eddy Simulations of a cooling impinging jet to a turbulent channel flow. The impinging jet enters the turbulent stream in an oblique direction. This type of flow is relevant to the so-called ``Pressurized Thermal Shock'' phenomenon that can occur in pressurized water reactors. First we elaborate on issues related to the set-up of the simulations of the flow of interest such as, imposition of turbulent inflows, choice of subgrid-scale model and others. Also, the issue of the commutator error due to the anisotropy of the spatial cut-off filter induced by non-uniform grids is being discussed. In the second part of the talk we present results of our simulations. In particular, we focus on the high-shear and recirculation zones that are developed and on the characteristics of the temperature field. The budget for the mean kinetic energy of the resolved-scale turbulent velocity fluctuations is also discussed and analyzed. Financial support has been provided by Bel V, a subsidiary of the Federal Agency for Nuclear Control of Belgium.

  1. Thermal protection performance of opposing jet generating with solid fuel

    NASA Astrophysics Data System (ADS)

    Shen, Binxian; Liu, Weiqiang

    2018-03-01

    A light and small gas supply device, which uses fuel gas generating with solid fuel as coolant gas, is introduced for opposing jet thermal protection in hypersonic vehicles. A numerical study on heat flux reduction in hypersonic flow with opposing jet is conducted to investigate the cooling efficiency of fuel gas. Flow field and cooling efficiency at different jet temperatures, as well as the effect of fuel gas, are determined. Detailed results show that shock stand-off distance changes with an increase in jet pressure ratio and remains constant with an increase in jet temperature. Cooling efficiency weakens with an increase in jet temperature and can be strengthened by enhancing jet pressure. Lastly, a remarkable heat flux reduction is observed with fuel gas injection with respect to no fuel gas injection when jet temperature reaches 900 K, thereby proving the positive cooling efficiency of fuel gas.

  2. 75 FR 10759 - Carbazole Violet Pigment 23 from India: Initiation of Antidumping Duty Changed-Circumstances Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... dispersions in any form (e.g., pigment dispersed in oleoresins, flammable solvents, water) are not included... DEPARTMENT OF COMMERCE International Trade Administration [A-533-838] Carbazole Violet Pigment 23... changed-circumstances review of the antidumping duty order on carbazole violet pigment 23 from India with...

  3. Jet-Cooled Chlorofluorobenzyl Radicals: Spectroscopy and Mechanism

    NASA Astrophysics Data System (ADS)

    Yoon, Young; Lee, Sang

    2016-06-01

    Whereas the benzyl radical, a prototypic aromatic free radical, has been the subject of numerous spectroscopic studies, halo-substituted benzyl radicals have received less attention, due to the difficulties associated with production of radicals from precursors. In particular, chloro-substituted benzyl radicals have been much less studied because of the weak visible emission intensity and weak C-Cl bond dissociation energy. The jet-cooled chlorofluorobenzyl radicals were generated in a technique of corona excited supersonic jet expansion using a pinhole-type glass nozzle for the vibronic assignments and measurements of electronic energies of the D_1 → D_0 transition. The 2,4-,2.5-, and 2.6- chlorofluorobenzyl radicals were generated by corona discharge of corresponding precursors, chlorofluorotoluenes seeded in a large amount of helium carrier gas. The vibronic emission spectra were recorded with a long-path monochromator in the visible region. The emission spectra show the vibronic bands originating from two types of benzyl-type radicals, chlorofluorobenzyl and fluorobenzyl benzyl radicals, in which fluorobenzyl radicals were obtained by displacement of Cl by H produced by dissociation of methyl C-H bond. From the analysis of the spectra observed, we could determine the electronic energies in D_1 → D_0 transition and vibrational mode frequencies at the D_0 state of chlorofluorobenzyl radicals, which show the origin band of the electronic transition to be shifted to red region, comparing with the parental benzyl radical. From the quantitative analysis of the red-shift, it has been found that the additivity rule can be applied to dihalo-substituted benzyl radicals. In this presentation, the dissociation process of precursors in corona discharge is discussed in terms of bond dissociation energy as well as the spectroscopic analysis of the radicals. C. S. Huh, Y. W. Yoon, and S. K. Lee, J. Chem. Phys. 136, 174306 (2012). Y. W. Huh, S. Y. Chae, and S. K. Lee, Chem

  4. Filament Eruptions, Jets, and Space Weather

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Sterling, Alphonse; Robe, Nick; Falconer, David; Cirtain, Jonathan

    2013-01-01

    Previously, from chromospheric H alpha and coronal X-ray movies of the Sun's polar coronal holes, it was found that nearly all coronal jets (greater than 90%) are one or the other of two roughly equally common different kinds, different in how they erupt: standard jets and blowout jets (Yamauchi et al 2004, Apl, 605, 5ll: Moore et all 2010, Apj, 720, 757). Here, from inspection of SDO/AIA He II 304 A movies of 54 polar x-ray jets observed in Hinode/XRT movies, we report, as Moore et al (2010) anticipated, that (1) most standard x-ray jets (greater than 80%) show no ejected plasma that is cool enough (T is less than or approximately 10(exp 5K) to be seen in the He II 304 A movies; (2) nearly all blownout X-ray jets (greater than 90%) show obvious ejection of such cool plasma; (3) whereas when cool plasma is ejected in standard X-ray jets, it shows no lateral expansion, the cool plasma ejected in blowout X-ray jets shows strong lateral expansion; and (4) in many blowout X-ray jets, the cool plasma ejection displays the erupting-magnetic-rope form of clasic filament eruptions and is thereby seen to be a miniature filament eruption. The XRT movies also showed most blowout X-ray jets to be larger and brighter, and hence to apparently have more energy, than most standard X-ray jets. These observations (1) confirm the dichotomy of coronal jets, (2) agree with the Shibata model for standard jets, and (3) support the conclusion of Moore et al (2010) that in blowout jets the magnetic-arch base of the jet erupts in the manner of the much larger magnetic arcades in which the core field, the field rooted along the arcade's polarity inversion line, is sheared and twisted (sigmoid), often carries a cool-plasma filament, and erupts to blowout the arcade, producing a CME. From Hinode/SOT Ca II movies of the polar limb, Sterling et al (2010, ApJ, 714, L1) found that chromospheric Type-II spicules show a dichotomy of eruption dynamics similar to that found here for the cool

  5. Synthesis of hetero annulated isoxazolo-, pyrido- and pyrimido carbazoles: Screened for in vitro antitumor activity and structure activity relationships, a novel 2-amino-4-(3'-bromo-4'-methoxyphenyl)-8-chloro-11H-pyrimido[4,5-a]carbazole as an antitumor agent.

    PubMed

    Murali, Karunanidhi; Sparkes, Hazel A; Rajendra Prasad, Karnam Jayarampillai

    2017-03-10

    Claisen-Schmidt condensation of 2,3,4,9-tetrahydro-1H-carbazol-1-one with 3-bromo-4-methoxy benzaldehyde afforded the 2-(3'-bromo-4'-methoxybenzylidene)-2,3,4,9-tetrahydro-1H-carbazol-1-one 3. Compound 3 was allowed to react with different organic reactants, hydroxylamine hydrochloride, malononitrile and guanidine nitrate through condensation cum cycloaddition reactions to afford a series of the respective novel hetero annulated carbazoles such as isoxazolo-, pyrido- and pyrimido carbazoles. The structures of the compounds were established by FT-IR, 1 H NMR, 13 C NMR, X-ray diffraction and elemental analysis. The compounds have been screened for in vitro anti-tumor activity by MTT assay and displayed enviable selective growth inhibition on MCF-7 cell line compared to A-549 cell line. Apoptotic morphological changes in MCF-7 and A-549 cells were visualized using fluorescent microscopic technique. The preliminary structure activity relationships were also carried out. Data pointed out that among pyrimido carbazole compounds, 2-amino-4-(3'-bromo-4'-methoxyphenyl)-8-chloro-11H-pyrimido [4,5-a]carbazole could be exploited as an excellent therapeutic drug against cancer cell proliferation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Organic nanofibrils based on linear carbazole trimer for explosive sensing.

    PubMed

    Zhang, Chengyi; Che, Yanke; Yang, Xiaomei; Bunes, Benjamin R; Zang, Ling

    2010-08-14

    Organic fluorescent nanofibrils were fabricated from a linear carbazole trimer and employed for expedient detection of nitroaromatic explosives (DNT and TNT) and highly volatile nitroaliphatic explosives (nitromethane).

  7. 75 FR 26716 - Carbazole Violet Pigment 23 from India: Extension of Time Limit for Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-533-839] Carbazole Violet Pigment 23 from India: Extension of Time Limit for Final Results of Countervailing Duty Administrative Review... the preliminary results of the administrative review of the countervailing duty order on carbazole...

  8. High Temperature Ceramic Guide Vane Temperature and Pressure Distribution Calculation for Flow with Cooling Jets

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh

    2004-01-01

    A ceramic guide vane has been designed and tested for operation under high temperature. Previous efforts have suggested that some cooling flow may be required to alleviate the high temperatures observed near the trailing edge region. The present report describes briefly a three-dimensional viscous analysis carried out to calculate the temperature and pressure distribution on the blade surface and in the flow path with a jet of cooling air exiting from the suction surface near the trailing edge region. The data for analysis was obtained from Dr. Craig Robinson. The surface temperature and pressure distribution along with a flowfield distribution is shown in the results. The surface distribution is also given in a tabular form at the end of the document.

  9. The liquid nitrogen and supercritical helium cooling loop for the jet pumped divertor cryopump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obert, W.; Mayaux, C.; Perinic, G.

    1994-12-31

    A key element for the new experimental phase of the European fusion experiment JET is a new cryopump which will be installed inside the torus in order to pump the new divertor configuration. A forced flow of liquid nitrogen and supercritical helium has been chosen for the cooling of the cryoshields and cryocondensation panels for this cryopump. The reasons for this selection are to minimize the inventory of cryogens (to minimize nuclear heating) good heat transfer conditions and minimum time for transient conditions such as cool-down, regeneration and warm-up. The flow of supercritical helium will be driven by the mainmore » compressor of the refrigerator and enhanced by a dedicated cold ejector. The peak load during the plasma pulse will be absorbed by the high thermal capacity of the bulk supercritical helium inside the cryocondensation panel.« less

  10. Design and synthesis of carbazole carboxamides as promising inhibitors of Bruton’s tyrosine kinase (BTK) and Janus kinase 2 (JAK2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qingjie; Batt, Douglas G.; Lippy, Jonathan S.

    Four series of disubstituted carbazole-1-carboxamides were designed and synthesised as inhibitors of Bruton’s tyrosine kinase (BTK). 4,7- and 4,6-disubstituted carbazole-1-carboxamides were potent and selective inhibitors of BTK, while 3,7- and 3,6-disubstituted carbazole-1-carboxamides were potent and selective inhibitors of Janus kinase 2 (JAK2).

  11. SiO2 nanofluid planar jet impingement cooling on a convex heated plate

    NASA Astrophysics Data System (ADS)

    Asghari Lafmajani, Neda; Ebrahimi Bidhendi, Mahsa; Ashjaee, Mehdi

    2016-12-01

    The main objective of this paper is to investigate the heat transfer coefficient of a planar jet of SiO2 nanofluid that impinges vertically on the middle of a convex heated plate for cooling purposes. The planar jet issues from a rectangular slot nozzle. The convex aluminum plate has a thickness, width and length of 0.2, 40 and 130 mm, respectively, and is bent with a radius of 200 mm. A constant heat-flux condition is employed. 7 nm SiO2 particles are added to water to prepare the nanofluid with 0.1, 1 and 2 % (ml SiO2/ml H2O) concentrations. The tests are also performed at different Reynolds numbers from 1803 to 2782. Results indicate that adding the SiO2 nanoparticles can effectively increase both local and average heat transfer coefficients up to 39.37 and 32.78 %, respectively. These positive effects often are more pronounced with increasing Reynolds numbers. This enhancement increases with ascending the concentration of nanofluid, especially from 0.1 to 1 %.

  12. High-resolution photoabsorption spectrum of jet-cooled propyne

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.

    2014-09-21

    The absolute photoabsorption cross section of propyne was recorded between 62 000 and 88 000 cm{sup −1} by using the vacuum-ultraviolet, Fourier-transform spectrometer at the Synchrotron Soleil. This cross section spans the region including the lowest Rydberg bands and extends above the Franck-Condon envelope for ionization to the ground electronic state of the propyne cation, X{sup ~+}. Room-temperature spectra were recorded in a flowing cell at 0.9 cm{sup −1} resolution, and jet-cooled spectra were recorded at 1.8 cm{sup −1} resolution and a rotational temperature of ∼100 K. The reduced widths of the rotational band envelopes in the latter spectra reveal new structuremore » and simplify a number of assignments. Although nf Rydberg series have not been assigned previously in the photoabsorption spectrum of propyne, arguments are presented for their potential importance, and the assignment of one nf series is proposed. As expected from previous photoelectron spectra, Rydberg series are also observed above the adiabatic ionization threshold that converge to the v{sub 3}{sup +} = 1 and 2 levels of the C≡C stretching vibration.« less

  13. 77 FR 1463 - Carbazole Violet Pigment 23 From the People's Republic of China: Final Rescission of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... finished pigment in the form of presscake and dry color. Pigment dispersions in any form (e.g., pigments... DEPARTMENT OF COMMERCE International Trade Administration [A-570-892] Carbazole Violet Pigment 23... administrative review of the antidumping duty order on carbazole violet pigment 23 (CVP-23) from the People's...

  14. 76 FR 55003 - Carbazole Violet Pigment 23 From the People's Republic of China: Preliminary Intent To Rescind...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... finished pigment in the form of presscake and dry color. Pigment dispersions in any form (e.g., pigments... DEPARTMENT OF COMMERCE International Trade Administration [A-570-892] Carbazole Violet Pigment 23... antidumping duty order on carbazole violet pigment 23 (CVP 23) from the People's Republic of China (PRC). This...

  15. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  16. Comparison of central axis and jet ring coolant supply for turbine disk cooling on a SSME-HPOTP model

    NASA Technical Reports Server (NTRS)

    Kim, Y. W.; Metzger, D. E.

    1992-01-01

    The test facility, test methods and results are presented for an experimental study modeling the cooling of turbine disks in the blade attachment regions with multiple impinging jets, in a configuration simulating the disk cooling method employed on the Space Shuttle Main Engine oxygen turbopump. The study's objective was to provide a comparison of detailed local convection heat transfer rates obtained for a single center-supply of disk coolant with those obtained with the present flight configuration where disk coolant is supplied through an array of 19 jets located near the disk outer radius. Specially constructed disk models were used in a program designed to evaluate possible benefits and identify any possible detrimental effects involved in employing an alternate disk cooling scheme. The study involved the design, construction and testing of two full scale rotating model disks, one plane and smooth for baseline testing and the second contoured to the present flight configuration, together with the corresponding plane and contoured stator disks. Local heat transfer rates are determined from the color display of encapsulated liquid crystals coated on the disk in conjunction with use of a computer vision system. The test program was composed of a wide variety of disk speeds, flowrates, and geometrical configurations, including testing for the effects of disk boltheads and gas ingestion from the gas path region radially outboard of the disk-cavity.

  17. Complex astrophysical experiments relating to jets, solar loops, and water ice dusty plasma

    NASA Astrophysics Data System (ADS)

    Bellan, P. M.; Zhai, X.; Chai, K. B.; Ha, B. N.

    2015-10-01

    > Recent results of three astrophysically relevant experiments at Caltech are summarized. In the first experiment magnetohydrodynamically driven plasma jets simulate astrophysical jets that undergo a kink instability. Lateral acceleration of the kinking jet spawns a Rayleigh-Taylor instability, which in turn spawns a magnetic reconnection. Particle heating and a burst of waves are observed in association with the reconnection. The second experiment uses a slightly different setup to produce an expanding arched plasma loop which is similar to a solar corona loop. It is shown that the plasma in this loop results from jets originating from the electrodes. The possibility of a transition from slow to fast expansion as a result of the expanding loop breaking free of an externally imposed strapping magnetic field is investigated. The third and completely different experiment creates a weakly ionized plasma with liquid nitrogen cooled electrodes. Water vapour injected into this plasma forms water ice grains that in general are ellipsoidal and not spheroidal. The water ice grains can become quite long (up to several hundred microns) and self-organize so that they are evenly spaced and vertically aligned.

  18. 75 FR 13257 - Carbazole Violet Pigment 23 from India: Final Results of the Expedited Five-year (Sunset) Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ...) and finished pigment in the form of presscake and dry color. Pigment dispersions in any form (e.g... DEPARTMENT OF COMMERCE International Trade Administration [C-533-839] Carbazole Violet Pigment 23... countervailing duty (CVD) order on Carbazole Violet Pigment 23 (CVP-23) [[Page 13258

  19. Design and synthesis of novel carbazole tethered pyrrole derivatives as potent inhibitors of Mycobacterium tuberculosis.

    PubMed

    Surineni, Goverdhan; Yogeeswari, Perumal; Sriram, Dharmarajan; Kantevari, Srinivas

    2015-02-01

    A series of novel carbazole tethered pyrrole derivatives were designed by coupling core fragments of antitubercular agents, carbazole and substituted pyrrole in single molecular architecture. The synthesis of new analogues was achieved by FeCl3 mediated one pot three component condensation of 2-nitrovinylcarbazoles with aryl or alkyl amines and dimethylacetylene dicarboxylate (DMAD). All the new analogues 5a-l and 6a-l were fully characterized by their NMR and mass spectral data. Among the twenty four new compounds screened for in vitro anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv, dimethyl 1-(4-fluorophenyl)-4-(9-methyl-9H-carbazol-3-yl)-1H-pyrrole-2,3-dicarboxylate (5b) was found to be most active with MIC 3.13μg/mL and has shown low cytotoxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Vascular barrier protective effects of 3-N- or 3-O-cinnamoyl carbazole derivatives.

    PubMed

    Ku, Sae-Kwang; Lee, Jee-Hyun; O, Yuseok; Lee, Wonhwa; Song, Gyu-Yong; Bae, Jong-Sup

    2015-10-01

    In this Letter, we investigated the barrier protective effects of 3-N-(MeO)n-cinnamoyl carbazoles (BS 1; n=1, BS 2; n=2, BS 3; n=3) and 3-O-(MeO)3-cinnamoyl carbazole (BS 4) against high-mobility group box 1 (HMGB1)-mediated vascular disruptive responses in human umbilical vein endothelial cells (HUVECs) and in mice for the first time. Data showed that BS 2, BS 3, and BS 4, but not BS 1, inhibited HMGB1-mediated vascular disruptive responses and transendothelial migration of human neutrophils to HUVECs. BS 2, BS3, and BS 4 also suppressed HMGB1-induced hyperpermeability and leukocyte migration in mice. Interestingly, the barrier protective effects of BS 3 and BS 4 were better than those of BS 2. These results suggest that the number of methoxy groups substituted on the cinnamamide or cinnamate moiety of the 9H-3-carbazole derivative is an important pharmacophore for the barrier protective effects of these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Modulation of π-spacer of carbazole-carbazole based organic dyes toward high efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chitpakdee, Chirawat; Jungsuttiwong, Siriporn; Sudyoadsuk, Taweesak; Promarak, Vinich; Kungwan, Nawee; Namuangruk, Supawadee

    2017-03-01

    The effects of type and position of π-linker in carbazole-carbazole based dyes on their performance in dye-sensitized solar cells (DSSCs) were investigated by DFT and TDDFT methods. The calculated electronic energy level, electron density composition, charge injection and charge recombination properties were compared with those of the high performance CCT3A dye synthesized recently. It is found that that mixing a benzothiadizole (B) unit with two thiophene (T) units in the π-spacer can greatly shift absorption wavelength to near infrared region and enhance the light harvesting efficiency (LHE) resulting in increasing of short-circuit current density (Jsc), whereas a thienothiophene unit does not affect those properties. However, a B should be not directly connected to the anchoring group of the dye because it brings electrolyte to the TiO2 surface which may increase charge recombination rate and consequently decrease open circuit voltage (Voc). This work shows how type and position of the π-linker affect the performance of DSSCs, and how to modulate those properties. We predicted that the designed dye derived from insertion of the B unit in between the two T units would have higher performance than CCT3A dye. The insight understanding from this study is useful for further design of higher performance dyes by molecular engineering.

  2. An Intense Slit Discharge Source of Jet-Cooled Molecular Ions and Radicals (T(sub rot) less than 30 K)

    NASA Technical Reports Server (NTRS)

    Anderson, David T.; Davis, Scott; Zwier, Timothy S.; Nesbitt, David J.

    1996-01-01

    A novel pulsed, slit supersonic discharge source is described for generating intense jet-cooled densities of radicals (greater than 10(exp 12)/cu cm) and molecular ions (greater than 10(exp 10)/cu cm) under long absorption path (80 cm), supersonically cooled conditions. The design confines the discharge region upstream of the supersonic expansion orifice to achieve efficient rotational cooling down to 30 K or less. The collisionally collimated velocity distribution in the slit discharge geometry yields sub-Doppler spectral linewidths, which for open-shell radicals reveals spin-rotation splittings and broadening due to nuclear hyperfine structure. Application of the slit source for high-resolution, direct IR laser absorption spectroscopy in discharges is demonstrated on species such as OH, H3O(+) and N2H(+).

  3. DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H{alpha} macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jetsmore » that were also caught in He II 304 A snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T {approx} 10{sup 4} - 10{sup 5} K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.« less

  4. Degradation of Carbazole by Microbial Cells Immobilized in Magnetic Gellan Gum Gel Beads▿

    PubMed Central

    Wang, Xia; Gai, Zhonghui; Yu, Bo; Feng, Jinhui; Xu, Changyong; Yuan, Yong; Lin, Zhixin; Xu, Ping

    2007-01-01

    Polycyclic aromatic heterocycles, such as carbazole, are environmental contaminants suspected of posing human health risks. In this study, we investigated the degradation of carbazole by immobilized Sphingomonas sp. strain XLDN2-5 cells. Four kinds of polymers were evaluated as immobilization supports for Sphingomonas sp. strain XLDN2-5. After comparison with agar, alginate, and κ-carrageenan, gellan gum was selected as the optimal immobilization support. Furthermore, Fe3O4 nanoparticles were prepared by a coprecipitation method, and the average particle size was about 20 nm with 49.65-electromagnetic-unit (emu) g−1 saturation magnetization. When the mixture of gellan gel and the Fe3O4 nanoparticles served as an immobilization support, the magnetically immobilized cells were prepared by an ionotropic method. The biodegradation experiments were carried out by employing free cells, nonmagnetically immobilized cells, and magnetically immobilized cells in aqueous phase. The results showed that the magnetically immobilized cells presented higher carbazole biodegradation activity than nonmagnetically immobilized cells and free cells. The highest biodegradation activity was obtained when the concentration of Fe3O4 nanoparticles was 9 mg ml−1 and the saturation magnetization of magnetically immobilized cells was 11.08 emu g−1. Additionally, the recycling experiments demonstrated that the degradation activity of magnetically immobilized cells increased gradually during the eight recycles. These results support developing efficient biocatalysts using magnetically immobilized cells and provide a promising technique for improving biocatalysts used in the biodegradation of not only carbazole, but also other hazardous organic compounds. PMID:17827304

  5. Effects of Phenobarbital and Carbazole on Carcinogenesis of the Lung, Thyroid, Kidney, and Bladder of Rats Pretreated with N‐Bis(2‐hydroxypropyl)nitrosamine

    PubMed Central

    Masuda, Atsuko; Imaida, Katsumi; Ogiso, Tadashi; Ito, Nobuyuki

    1988-01-01

    Studies were made on potential modifying effects of phenobarbital (PB) and carbazole on tumor development induced by N‐bis(2‐hydroxypropyl)nitrosamine (DHPN), a wide‐spectrum carcinogen in rats. Effects on the lung, thyroid, kidney, bladder and liver were investigated. Male F344 rats were given 0.2% DHPN in their drinking water for 1 week and then 0.05% PB or 0.6% carbazole in their diet for 50 weeks. Control animals were treated with either DHPN or PB or carbazole only. Neither PB nor carbazole affected the incidence or histology of lung tumors. However, PB promoted the development of thyroid tumors and preneoplastic lesions of the liver, while carbazole promoted the induction of renal pelvic tumors. PMID:3133336

  6. Toward Cooling Uniformity: Investigation of Spiral, Sweeping Holes, and Unconventional Cooling Paradigms

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Thurman, Douglas R.; Poinsatte, Philip E.; Ameri, Ali A.; Culley, Dennis E.

    2018-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. Ways to quantify the efficacy of novel cooling holes that are asymmetric, not uniformly spaced or that show variation from hole to hole are presented. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and square holes. A patent-pending spiral hole design showed the highest potential of the nondiffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing ratios of 1.0, 1.5, 2.0, and 2.5 at a density ratio of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS. A section on ideas for future work is included that addresses issues of quantifying cooling uniformity and provides some ideas for changing the way we think about cooling such as changing the direction of cooling or coupling acoustic devices to cooling holes to regulate frequency.

  7. Exciton-Induced Degradation of Carbazole-Based Host Materials and Its Role in the Electroluminescence Spectral Changes in Phosphorescent Organic Light Emitting Devices with Electrical Aging.

    PubMed

    Yu, Hyeonghwa; Zhang, Yingjie; Cho, Yong Joo; Aziz, Hany

    2017-04-26

    We investigate the origins of the long-wavelength bands that appear in the emission spectra of carbazole-based host materials and play a role in the electroluminescence (EL) spectral changes of phosphorescent organic light emitting devices (PhOLEDs) with electrical aging. 4,4'-Bis(carbazol-9-yl)biphenyl (CBP) is used as a model carbazole host material and is studied using photoluminescence, EL, and atomic force microscopy measurements under various stress scenarios in both single and bilayer devices and in combination with various electron transport layer (ETL) materials. Results show that exciton-induced morphological aggregation of CBP is behind the appearance of those long-wavelength bands and that complexation between the aggregated CBP molecules and ETL molecules plays a role in this phenomenon. Comparisons between the effects of exciton and thermal stress suggest that exciton-induced aggregation may be limited to short-range molecular ordering or pairing (e.g., dimer or trimer species formation) versus longer-range ordering (crystallization) in the case of thermal stress. The findings provide new insights into exciton-induced degradation in wide band gap host materials and its role in limiting the stability of PhOLEDs.

  8. Oxadiazole-carbazole polymer (POC)-Ir(ppy)3 tunable emitting composites

    NASA Astrophysics Data System (ADS)

    Bruno, Annalisa; Borriello, Carmela; Di Luccio, Tiziana; Sessa, Lucia; Concilio, Simona; Haque, Saif A.; Minarini, Carla

    2017-04-01

    POC polymer is an oxadiazole-carbazole copolymer we have previously synthetized and established as light emitting material in Organic Light Emitting Devices (OLEDs), although POC quantum yield emission efficiency and color purity still need to be enhanced. On the other hand, tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) complexes, namely Ir(ppy)3 are among the brightest luminophores employed in green light emitting devices. Our aim, in this work, is to take advantage of Ir(ppy)3 bright emission by combining the Ir complex with blue emitting POC to obtain tunable light emitting composites over a wide range of the visible spectrum. Here we have investigated the optical proprieties POC based nanocomposites with different concentrations of Ir(ppy)3, ranging from 1 to 10 wt%. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to the dopants, resulting in white-emitting composites. The most intense and stable emission has been found when POC was doped with about 5 wt% concentration of Ir(ppy)3.

  9. Herbig-Haro objects as the heads of radiative jets

    NASA Technical Reports Server (NTRS)

    Blondin, John M.; Konigl, Arieh; Fryxell, Bruce A.

    1989-01-01

    The interpretation of certain HH objects as the heads of nonadiabatic supersonic jets is examined using two-dimensional numerical simulations. It is found that radiative jets develop a dense shell between the jet shock and the leading bow shock when the cooling distance behind either one of these shocks is smaller than the jet radius. It is proposed that the radiatively cooling shell may account for the variable emission pattern from objects like HH 1. Also, it is suggested that HH objects with measured space velocities that exceed the spectroscopically inferred shock velocities could correspond to heavy jets in which the bow shock is effectively adiabatic. Low-excitation objects in which these velocities are comparable may represent light jets where the jet shock is nonradiative.

  10. Waste-Heat-Driven Cooling Using Complex Compound Sorbents

    NASA Technical Reports Server (NTRS)

    Rocketfeller, Uwe; Kirol, Lance; Khalili, Kaveh

    2004-01-01

    Improved complex-compound sorption pumps are undergoing development for use as prime movers in heat-pump systems for cooling and dehumidification of habitats for humans on the Moon and for residential and commercial cooling on Earth. Among the advantages of sorption heat-pump systems are that they contain no moving parts except for check valves and they can be driven by heat from diverse sources: examples include waste heat from generation of electric power, solar heat, or heat from combustion of natural gas. The use of complex compound sorbents in cooling cycles is not new in itself: Marketing of residential refrigerators using SrCl2 was attempted in the 1920s and 30s and was abandoned because heat- and mass-transfer rates of the sorbents were too low. Addressing the issue that gave rise to the prior abandonment of complex compound sorption heat pumps, the primary accomplishment of the present development program thus far has been the characterization of many candidate sorption media, leading to large increases in achievable heat- and mass-transfer rates. In particular, two complex compounds (called "CC260-1260" and "CC260-2000") were found to be capable of functioning over the temperature range of interest for the lunar-habitat application and to offer heat- and mass-transfer rates and a temperature-lift capability adequate for that application. Regarding the temperature range: A heat pump based on either of these compounds is capable of providing a 95-K lift from a habitable temperature to a heat-rejection (radiator) temperature when driven by waste heat at an input temperature .500 K. Regarding the heat- and mass-transfer rates or, more precisely, the power densities made possible by these rates: Power densities observed in tests were 0.3 kilowatt of cooling per kilogram of sorbent and 2 kilowatts of heating per kilogram of sorbent. A prototype 1-kilowatt heat pump based on CC260-2000 has been built and demonstrated to function successfully.

  11. Computations of Complex Three-Dimensional Turbulent Free Jets

    NASA Technical Reports Server (NTRS)

    Wilson, Robert V.; Demuren, Ayodeji O.

    1997-01-01

    Three-dimensional, incompressible turbulent jets with rectangular and elliptical cross-sections are simulated with a finite-difference numerical method. The full Navier- Stokes equations are solved at low Reynolds numbers, whereas at high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate the effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporary discretization and a fourth-order compact scheme is used for spatial discretization. Although such methods are widely used in the simulation of compressible flows, the lack of an evolution equation for pressure or density presents particular difficulty in incompressible flows. The pressure-velocity coupling must be established indirectly. It is achieved, in this study, through a Poisson equation which is solved by a compact scheme of the same order of accuracy. The numerical formulation is validated and the dispersion and dissipation errors are documented by the solution of a wide range of benchmark problems. Three-dimensional computations are performed for different inlet conditions which model the naturally developing and forced jets. The experimentally observed phenomenon of axis-switching is captured in the numerical simulation, and it is confirmed through flow visualization that this is based on self-induction of the vorticity field. Statistical quantities such as mean velocity, mean pressure, two-point velocity spatial correlations and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stress equations are presented to aid in the turbulence modeling of complex jets. Simulations of circular jets are used to quantify the effect of the non-uniform curvature of the non-circular jets.

  12. The Cooling of Turbine Blades,

    DTIC Science & Technology

    1981-06-11

    aviation gas turbine engine , everyone has ceaselessly come up with ways of raising the temperature of gases in a turbine before combustion. The reason for...temperature of the blade concerned by approximately 200 degrees. Jet -type cooling. When the surface of a turbine blade is at a temperature which is...the blade and multiplying the drop in the temperature of the blade . Figure 3 is a cross-section diagram of a turbine blade cooled by the jet

  13. Preparation and properties of amylose complexes prepared from hexadecylamine and its hydrochloride salt

    USDA-ARS?s Scientific Manuscript database

    Amylose inclusion complexes were prepared from jet-cooked aqueous mixtures of high amylose corn starch and 1-hexadecylamine (HDA). Slow-cooling produced torus/disc-shaped spherulites, whereas aggregates of smaller spherulites were obtained by rapid-cooling in ice. The morphologies and 6(1)V x-ray ...

  14. The high-resolution infrared spectrum of the ν3 +ν5 combination band of jet-cooled propyne

    NASA Astrophysics Data System (ADS)

    Doney, K. D.; Zhao, D.; Bouwman, J.; Linnartz, H.

    2017-09-01

    We present the first detection of the high-resolution ro-vibrational spectrum of the ν3 +ν5 combination band of propyne around 3070 cm-1. The fully resolved spectrum is recorded for supersonically jet-cooled propyne using continuous wave cavity ring-down spectroscopy (cw-CRDS). The assignments are supported with the help of accurate ab initio vibration-rotation interaction constants (αi) and anharmonic frequencies. A detailed analysis of the rotationally cold spectrum is given.

  15. Targeting G-quadruplex DNA structures in the telomere and oncogene promoter regions by benzimidazole‒carbazole ligands.

    PubMed

    Kaulage, Mangesh H; Maji, Basudeb; Pasadi, Sanjeev; Ali, Asfa; Bhattacharya, Santanu; Muniyappa, K

    2018-03-25

    Recent studies support the idea that G-quadruplex structures in the promoter regions of oncogenes and telomere DNA can serve as potential therapeutic targets in the treatment of cancer. Accordingly, several different types of organic small molecules that stabilize G-quadruplex structures and inhibit telomerase activity have been discerned. Here, we describe the binding of benzimidazole-carbazole ligands to G-quadruplex structures formed in G-rich DNA sequences containing the promoter regions of human c-MYC, c-KIT1, c-KIT2, VEGF and BCL2 proto-oncogenes. The fluorescence spectroscopic data indicate that benzimidazole-carbazole ligands bind and stabilize the G-quadruplexes in the promoter region of oncogenes. The molecular docking studies provide insights into the mode and extent of binding of this class of ligands to the G-quadruplexes formed in oncogene promoters. The high stability of these G-quadruplex structures was validated by thermal denaturation and telomerase-catalyzed extension of the 3' end. Notably, benzimidazole-carbazole ligands suppress the expression of oncogenes in cancer cells in a dose-dependent manner. We anticipate that benzimidazole-carbazole ligands, by virtue of their ability to stabilize G-quadruplex structures in the promoter regions of oncogenes, might reduce the risk of cancer through the loss of function in the proteins encoded by these genes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Resonant two-photon ionization and laser induced fluorescence spectroscopy of jet-cooled adenine

    NASA Astrophysics Data System (ADS)

    Kim, Nam Joon; Jeong, Gawoon; Kim, Yung Sam; Sung, Jiha; Keun Kim, Seong; Park, Young Dong

    2000-12-01

    Electronic spectra of the jet-cooled DNA base adenine were obtained by the resonant two-photon ionization (R2PI) and the laser induced fluorescence (LIF) techniques. The 0-0 band to the lowest electronically excited state was found to be located at 35 503 cm-1. Well-resolved vibronic structures were observed up to 1100 cm-1 above the 0-0 level, followed by a slow rise of broad structureless absorption. The lowest electronic state was proposed to be of nπ* character, which lies ˜600 cm-1 below the onset of the ππ* state. The broad absorption was attributed to the extensive vibronic mixing between the nπ* state and the high-lying ππ* state.

  17. Jet array impingement flow distributions and heat transfer characteristics. Effects of initial crossflow and nonuniform array geometry. [gas turbine engine component cooling

    NASA Technical Reports Server (NTRS)

    Florschuetz, L. W.; Metzger, D. E.; Su, C. C.; Isoda, Y.; Tseng, H. H.

    1982-01-01

    Two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate are considered. The jet flow, after impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer surface. The configurations considered are intended to model those of interest in current and contemplated gas turbine airfoil midchord cooling applications. The effects of an initial crossflow which approaches the array through an upstream extension of the channel are considered. Flow distributions as well as heat transfer coefficients and adiabatic wall temperatures resolved to one streamwise hole spacing were measured as a function of the initial crossflow rate and temperature relative to the jet flow rate and temperature. Both Nusselt number profiles and dimensionless adiabatic wall temperature (effectiveness) profiles are presented and discussed. Special test results which show a significant reduction of jet orifice discharge coefficients owing to the effect of a confined crossflow are also presented, along with a flow distribution model which incorporates those effects. A nonuniform array flow distribution model is developed and validated.

  18. Carbazole Scaffold in Medicinal Chemistry and Natural Products: A Review from 2010-2015.

    PubMed

    Tsutsumi, Lissa S; Gündisch, Daniela; Sun, Dianqing

    2016-01-01

    9H-carbazole is an aromatic molecule that is tricyclic in nature, with two benzene rings fused onto a 5-membered pyrrole ring. Obtained from natural sources or by synthetic routes, this scaffold has gained much interest due to its wide range of biological activity upon modifications, including antibacterial, antimalarial, anticancer, and anti-Alzheimer properties. This review reports a survey of the literature on carbazole-containing molecules and their medicinal activities from 2010 through 2015. In particular, we focus on their in vitro and in vivo activities and summarize structure-activity relationships (SAR), mechanisms of action, and/or cytotoxicity/selectivity findings when available to provide future guidance for the development of clinically useful agents from this template.

  19. Isomer discrimination of PAHs formed in sooting flames by jet-cooled laser-induced fluorescence: application to the measurement of pyrene and fluoranthene

    NASA Astrophysics Data System (ADS)

    Mouton, Thomas; Mercier, Xavier; Desgroux, Pascale

    2016-05-01

    Jet-cooled laser-induced fluorescence is a spectroscopic method, specifically developed for the study of PAHs formed in flames. This technique has already been used to measure different aromatic species in sooting low-pressure methane flames such as benzene, naphthalene, and pyrene. The use of the LIF technique to excite PAHs drastically cooled down inside a supersonic jet offers the possibility to get selective and quantitative profiles of PAHs sampled from sooting flames. In this paper, we demonstrate the ability of this experimental method to separate the contribution of two mass isomers generated in sooting flames which are the pyrene and the fluoranthene. The selectivity of the method is demonstrated by studying the spectral properties of these species. The method is then applied to the measurement of both these species in two sooting flames with different equivalence ratios and stabilized at 200 torr (26.65 kPa). The sensitivity of the technique has been found to reach a few ppb in the case of fluoranthene measurements.

  20. Photochemical Synthesis of Carbazoles Using an [Fe(phen)3](NTf2)2/O2 Catalyst System: Catalysis toward Sustainability.

    PubMed

    Parisien-Collette, Shawn; Hernandez-Perez, Augusto C; Collins, Shawn K

    2016-10-07

    An increasingly sustainable photochemical synthesis of carbazoles was developed using a catalytic system of Fe(phen) 3 (NTf 2 ) 2 /O 2 under continuous flow conditions and was demonstrated on gram-scale using a numbering-up strategy. Photocyclization of triaryl and diarylamines into the corresponding carbazoles occurs in general in higher yields than with previously developed photocatalysts.

  1. Effects of crossflow in an internal-cooling channel on film cooling of a flat plate through compound-angle holes

    NASA Astrophysics Data System (ADS)

    Stratton, Zachary T.

    The film-cooling holes in turbine blades are fed from an internal cooling channel. This channel imposes a crossflow at the entrance of the holes that can significantly affect the performance of the cooling jets that emanate from those holes. In this study, CFD simulations based on steady RANS with the shear-stress transport (SST) and the realizable k-epsilon turbulence models were performed to study film cooling of a flat plate with cooling jets issuing from eight round holes with a compound angle of 45 degrees, where the coolant channel that fed the cooling jets was oriented perpendicular to the direction of the hot-gas flow. One case was also performed by using large-eddy simulation (LES) to get a sense of the unsteady nature of the flow. Operating conditions were chosen to match the laboratory conditions, which maintained a density ratio of 1.5 between the coolant and the hot gas. Parameters studied include internal crossflow direction and blowing ratios of 0.5, 1.0, and 1.5. Results obtained showed an unsteady vortex forms inside the hole, causing a side-to-side shedding of the coolant jet. Values of adiabatic effectiveness predicted by the CFD simulations were compared with experimentally measured values. Steady RANS was found to be inconsistent in its ability to predict adiabatic effectiveness with relative error ranging from 10% to over 100%. LES was able to predict adiabatic effectiveness with reasonable accuracy.

  2. The application of complex network time series analysis in turbulent heated jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charakopoulos, A. K.; Karakasidis, T. E., E-mail: thkarak@uth.gr; Liakopoulos, A.

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topologicalmore » properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.« less

  3. The application of complex network time series analysis in turbulent heated jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charakopoulos, A. K.; Karakasidis, T. E., E-mail: thkarak@uth.gr; Liakopoulos, A.

    2014-06-15

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topologicalmore » properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.« less

  4. A Complex Solar Coronal Jet with Two Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jie; Su, Jiangtao; Deng, Yuanyong

    2017-05-01

    Jets often occur repeatedly from almost the same location. In this paper, a complex solar jet was observed with two phases to the west of NOAA AR 11513 on 2012 July 2. If it had been observed at only moderate resolution, the two phases and their points of origin would have been regarded as identical. However, at high resolution we find that the two phases merge into one another and the accompanying footpoint brightenings occur at different locations. The phases originate from different magnetic patches rather than being one phase originating from the same patch. Photospheric line of sight (LOS)more » magnetograms show that the bases of the two phases lie in two different patches of magnetic flux that decrease in size during the occurrence of the two phases. Based on these observations, we suggest that the driving mechanism of the two successive phases is magnetic cancellation of two separate magnetic fragments with an opposite-polarity fragment between them.« less

  5. The High-Resolution, Jet-cooled Infrared Spectrum of Pentafluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goss, Lisa M.; Hess, Whitney R.; Blake, Thomas A.

    The jet-cooled spectrum of pentafluoroethane (C2HF5) has been recorded between 1100 and 1325 cm-1 at a resolution of 0.0022 cm-1. A rotational temperature of approximately 10 K was achieved by expanding 50 Torr of C2HF5 in 500 Torr of helium. Transitions belonging to five different fundamental vibrations have been assigned and fit to a Watson Hamiltonian: the m3 band at 1309.880494(189) cm-1, m4 at 1200.734645(67) cm-1, m5 at 1142.78147(33) cm-1, m13 at 1223.334098(115) cm-1, and m14 at 1147.394185(163) cm-1. The fit of the m4 band has an rms deviation of 0.000436 cm-1 compared to the uncertainty in the experimental linemore » position of 0.0002 cm-1. Satisfactory fits were achieved for the other four bands (m3, m5, m13, m14) at this cold temperature, with most of the centrifugal distortion constants fixed at the ground state values. Joint fits with previous work were attempted for the m4 and m13, successfully in the former case and unsuccessfully in the latter.« less

  6. Resonance Enhanced Multi-Photon Ionization and Uv-Uv Hole-Burning Spectroscopic Studies of Jet-Cooled Acetanilide Derivatives

    NASA Astrophysics Data System (ADS)

    Moon, Ceol Joo; Min, Ahreum; Ahn, Ahreum; Lee, Seung Jun; Choi, Myong Yong; Kim, Seong Keun

    2013-06-01

    Conformational investigations and photochemistry of jet-cooled methacetine (MA) and phenacetine (PA) using one color resonant two-photon ionization (REMPI), UV-UV hole-burning and IR-dip spectroscopy are presented. MA and PA are derivatives of acetanilide, substituted by methoxyl, ethoxyl group in the para position of acetanilide, respectively. Moreover, we have investigated conformational information of the acetanilide derivatives (AAP, MA and PA)-water. In this work, we will present and discuss the solvent effects of the hydroxyl group of acetanilide derivatives in the excited state.

  7. Competition between inter- and intra-molecular hydrogen bonding: An infrared spectroscopic study of jet-cooled amino-ethanol and its dimer

    NASA Astrophysics Data System (ADS)

    Asselin, Pierre; Madebène, Bruno; Soulard, Pascale; Georges, Robert; Goubet, Manuel; Huet, Thérèse R.; Pirali, Olivier; Zehnacker-Rentien, Anne

    2016-12-01

    The Fourier transform IR vibrational spectra of amino-ethanol (AE) and its dimer have been recorded at room temperature and under jet-cooled conditions over the far and mid infrared ranges (50-4000 cm-1) using the White-type cell and the supersonic jet of the Jet-AILES apparatus at the synchrotron facility SOLEIL. Assignment of the monomer experimental frequencies has been derived from anharmonic frequencies calculated at a hybrid CCSD(T)-F12/MP2 level. Various thermodynamical effects in the supersonic expansion conditions including molar dilution of AE and nature of carrier gas have been used to promote or not the formation of dimers. Four vibrational modes of the observed dimer have been unambiguously assigned using mode-specific scaling factors deduced from the ratio between experimental and computed frequencies for the monomer. The most stable g'Gg' monomer undergoes strong deformation upon dimerization, leading to a homochiral head to head dimer involving two strong hydrogen bonds.

  8. [Kelvin-Helmholtz instability in protostellar jets

    NASA Technical Reports Server (NTRS)

    Stone, James; Hardee, Philip

    1996-01-01

    NASA grant NAG 5 2866, funded by the Astrophysics Theory Program, enabled the study the Kelvin-Helmholtz instability in protostellar jets. In collaboration with co-investigator Philip Hardee, the PI derived the analytic dispersion relation for the instability in including a cooling term in the energy equation which was modeled as one of two different power laws. Numerical solutions to this dispersion relation over a wide range of perturbation frequencies, and for a variety of parameter values characterizing the jet (such as Mach number, and density ratio) were found It was found that the growth rates and wavelengths associated with unstable roots of the dispersion relation in cooling jets are significantly different than those associated with adiabatic jets, which have been studied previously. In collaboration with graduate student Jianjun Xu (funded as a research associate under this grant), hydrodynamical simulations were used to follow the growth of the instability into the nonlinear regime. It was found that asymmetric surface waves lead to large amplitude, sinusoidal distortions of the jet, and ultimately to disruption Asymmetric body waves, on the other hand, result in the formation of shocks in the jet beam in the nonlinear regime. In cooling jets, these shocks lead to the formation of dense knots and filaments of gas within the jet. For sufficiently high perturbation frequencies, however, the jet cannot respond and it remains symmetric. Applying these results to observed systems, such as the Herbig-Haro jets HH34, HH111 and HH47 which have been observed with the Hubble Space Telescope, we predicted that some of the asymmetric structures observed in these systems could be attributed to the K-H modes, but that perturbations on timescales associated with the inner disk (about 1 year) would be too rapid to cause disruption. Moreover, it was discovered that weak shock 'spurs' in the ambient gas produced by ripples in the jet surface due to nonlinear, modes of

  9. Fabrication of complex structures or assemblies by Hot Isostatic Pressure (HIP) welding

    NASA Technical Reports Server (NTRS)

    Ashurst, A. N.; Goldstein, M.; Ryan, M. J.; Lessmann, G. G.; Bryant, W. A.

    1974-01-01

    HIP welding is effective method for fabricating complex structures or assemblies such as alternator rotors, regeneratively-cooled rocket-motor thrust chambers, and jet engine turbine blades. It can be applied to fabrication of many assemblies which require that component parts be welded together along complex interfaces.

  10. Electrical memory characteristics of a nondoped pi-conjugated polymer bearing carbazole moieties.

    PubMed

    Park, Samdae; Lee, Taek Joon; Kim, Dong Min; Kim, Jin Chul; Kim, Kyungtae; Kwon, Wonsang; Ko, Yong-Gi; Choi, Heungyeal; Chang, Taihyun; Ree, Moonhor

    2010-08-19

    Poly[bis(9H-carbazole-9-ethyl)dipropargylmalonate] (PCzDPM) is a novel pi-conjugated polymer bearing carbazole moieties that has been synthesized by polymerization of bis(9H-carbazole-9-ethyl)dipropargylmalonate with the aid of molybdenum chloride solution as the catalyst. This polymer is thermally stable up to 255 degrees C under a nitrogen atmosphere and 230 degrees C in air ambient; its glass-transition temperature is 147 or 128 degrees C, depending on the polymer chain conformation (helical or planar structure). The charge-transport characteristics of PCzDPM in nanometer-scaled thin films were studied as a function of temperature and film thickness. PCzDPM films with a thickness of 15-30 nm were found to exhibit very stable dynamic random access memory (DRAM) characteristics without polarity. Furthermore, the polymer films retain DRAM characteristics up to 180 degrees C. The ON-state current is dominated by Ohmic conduction, and the OFF-state current appears to undergo a transition from Ohmic to space-charge-limited conduction with a shallow-trap distribution. The ON/OFF switching of the devices is mainly governed by filament formation. The filament formation mechanism for the switching process is supported by the metallic properties of the PCzDPM film, which result in the temperature dependence of the ON-state current. In addition, the structure of this pi-conjugated polymer was found to vary with its thermal history; this change in structure can affect filament formation in the polymer film.

  11. Bromomethylthioindole Inspired Carbazole Hybrids as Promising Class of Anti-MRSA Agents.

    PubMed

    Cheng, Chia-Yi; Chang, Chun-Ping; Lauderdale, Tsai-Ling Yang; Yu, Guann-Yi; Lee, Jinq-Chyi; Jhang, Yi-Wun; Wu, Chien-Huang; Ke, Yi-Yu; Sadani, Amit A; Yeh, Ching-Fang; Huang, I-Wen; Kuo, Yi-Ping; Tsai, De-Jiun; Yeh, Teng-Kuang; Tseng, Chen-Tso; Song, Jen-Shin; Liu, Yu-Wei; Tsou, Lun K; Shia, Kak-Shan

    2016-12-08

    Series of N -substituted carbazole analogues bearing an indole ring were synthesized as anti-methicillin-resistant Staphylococcus aureus (MRSA) agents from a molecular hybridization approach. The representative compound 19 showed an MIC = 1 μg/mL against a panel of MRSA clinical isolates as it possessed comparable in vitro activities to that of vancomycin. Moreover, compound 19 also exhibited MIC = 1 μg/mL activities against a recent identified Z172 MRSA strain (vancomycin-intermediate and daptomycin-nonsusceptible phenotype) and the vancomycin-resistant Enterococcus faecalis (VRE) strain. In a mouse model with lethal infection of MRSA (4N216), a 75% survival rate was observed after a single dose of compound 19 was intravenously administered at 20 mg/kg. In light of their equipotent activities against different MRSA isolates and VRE strain, the data underscore the importance of designed hybrid series for the development of new N -substituted carbazoles as potential anti-MRSA agents.

  12. Bromomethylthioindole Inspired Carbazole Hybrids as Promising Class of Anti-MRSA Agents

    PubMed Central

    2016-01-01

    Series of N-substituted carbazole analogues bearing an indole ring were synthesized as anti-methicillin-resistant Staphylococcus aureus (MRSA) agents from a molecular hybridization approach. The representative compound 19 showed an MIC = 1 μg/mL against a panel of MRSA clinical isolates as it possessed comparable in vitro activities to that of vancomycin. Moreover, compound 19 also exhibited MIC = 1 μg/mL activities against a recent identified Z172 MRSA strain (vancomycin-intermediate and daptomycin-nonsusceptible phenotype) and the vancomycin-resistant Enterococcus faecalis (VRE) strain. In a mouse model with lethal infection of MRSA (4N216), a 75% survival rate was observed after a single dose of compound 19 was intravenously administered at 20 mg/kg. In light of their equipotent activities against different MRSA isolates and VRE strain, the data underscore the importance of designed hybrid series for the development of new N-substituted carbazoles as potential anti-MRSA agents. PMID:27994762

  13. Rapid Confined Mixing with Transverse Jets Part 1: Single Jet

    NASA Astrophysics Data System (ADS)

    Salazar, David; Forliti, David

    2012-11-01

    Transverse jets have been studied extensively due to their relevance and efficiency in fluid mixing applications. Gas turbine burners, film cooling, and chemical reactors are some examples of rapid transverse jet mixing. Motivated by a lack of universal scaling laws for confined and unconfined transverse jets, a newly developed momentum transfer parameter was found to improve correlation of literature data. Jet column drag and entrainment arguments for momentum transfer are made to derive the parameter. A liquid-phase mixing study was conducted to investigate confined mixing for a low number of jets. Planar laser induced fluorescence was implemented to measure mixture fraction for a single confined transverse jet. Time-averaged cross-sectional images were taken with a light sheet located three diameters downstream of transverse injection. A mixture of water and sodium fluorescein was used to distinguish jet fluid from main flow fluid for the test section images. Image data suggest regimes for under- and overpenetration of jet fluid into the main flow. The scaling parameter is found to correlate optimum unmixedness for multiple diameter ratios at a parameter value of 0.75. Distribution A: Public Release, Public Affairs Clearance Number: 12655.

  14. Pd-catalyzed intramolecular oxidative C-H amination: synthesis of carbazoles.

    PubMed

    Youn, So Won; Bihn, Joon Hyung; Kim, Byung Seok

    2011-07-15

    A Pd-catalyzed oxidative C-H amination of N-Ts-2-arylanilines under ambient temperature using Oxone as an inexpensive, safe, and easy-to-handle oxidant has been developed. This process represents a green and practical method for the facile construction of carbazoles with a broad substrate scope and wide functional group tolerance. © 2011 American Chemical Society

  15. Cooling system for continuous metal casting machines

    DOEpatents

    Draper, Robert; Sumpman, Wayne C.; Baker, Robert J.; Williams, Robert S.

    1988-01-01

    A continuous metal caster cooling system is provided in which water is supplied in jets from a large number of small nozzles 19 against the inner surface of rim 13 at a temperature and with sufficient pressure that the velocity of the jets is sufficiently high that the mode of heat transfer is substantially by forced convection, the liquid being returned from the cooling chambers 30 through return pipes 25 distributed interstitially among the nozzles.

  16. Cooling system for continuous metal casting machines

    DOEpatents

    Draper, R.; Sumpman, W.C.; Baker, R.J.; Williams, R.S.

    1988-06-07

    A continuous metal caster cooling system is provided in which water is supplied in jets from a large number of small nozzles against the inner surface of rim at a temperature and with sufficient pressure that the velocity of the jets is sufficiently high that the mode of heat transfer is substantially by forced convection, the liquid being returned from the cooling chambers through return pipes distributed interstitially among the nozzles. 9 figs.

  17. Transpiration Cooling Experiment

    NASA Technical Reports Server (NTRS)

    Song, Kyo D.; Ries, Heidi R.; Scotti, Stephen J.; Choi, Sang H.

    1997-01-01

    The transpiration cooling method was considered for a scram-jet engine to accommodate thermally the situation where a very high heat flux (200 Btu/sq. ft sec) from hydrogen fuel combustion process is imposed to the engine walls. In a scram-jet engine, a small portion of hydrogen fuel passes through the porous walls of the engine combustor to cool the engine walls and at the same time the rest passes along combustion chamber walls and is preheated. Such a regenerative system promises simultaneously cooling of engine combustor and preheating the cryogenic fuel. In the experiment, an optical heating method was used to provide a heat flux of 200 Btu/sq. ft sec to the cylindrical surface of a porous stainless steel specimen which carried helium gas. The cooling efficiencies by transpiration were studied for specimens with various porosity. The experiments of various test specimens under high heat flux have revealed a phenomenon that chokes the medium flow when passing through a porous structure. This research includes the analysis of the system and a scaling conversion study that interprets the results from helium into the case when hydrogen medium is used.

  18. Computing Cooling Flows in Turbines

    NASA Technical Reports Server (NTRS)

    Gauntner, J.

    1986-01-01

    Algorithm developed for calculating both quantity of compressor bleed flow required to cool turbine and resulting decrease in efficiency due to cooling air injected into gas stream. Program intended for use with axial-flow, air-breathing, jet-propulsion engines with variety of airfoil-cooling configurations. Algorithm results compared extremely well with figures given by major engine manufacturers for given bulk-metal temperatures and cooling configurations. Program written in FORTRAN IV for batch execution.

  19. Efficient OLEDs Fabricated by Solution Process Based on Carbazole and Thienopyrrolediones Derivatives.

    PubMed

    Lozano-Hernández, Luis-Abraham; Maldonado, José-Luis; Garcias-Morales, Cesar; Espinosa Roa, Arian; Barbosa-García, Oracio; Rodríguez, Mario; Pérez-Gutiérrez, Enrique

    2018-01-30

    Four low molecular weight compounds-three of them new, two of them with carbazole (Cz) as functional group and the other two with thienopyrroledione (TPD) group-were used as emitting materials in organic light emitting diodes (OLEDs). Devices were fabricated with the configuration ITO/PEDOT:PSS/emitting material/LiF/Al. The hole injector layer (HIL) and the emitting sheet were deposited by spin coating; LiF and Al were thermally evaporated. OLEDs based on carbazole derivatives show luminances up to 4130 cd/m², large current efficiencies about 20 cd/A and, cautiously, a very impressive External Quantum Efficiency (EQE) up to 9.5%, with electroluminescence peaks located around 490 nm (greenish blue region). Whereas, devices manufactured with TPD derivatives, present luminance up to 1729 cd/m², current efficiencies about 4.5 cd/A and EQE of 1.5%. These results are very competitive regarding previous reported materials/devices.

  20. Polymers containing isolated phenylvinyl substituted carbazole rings as electroactive materials for OLEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griniene, Raimonda; Tavgeniene, Daiva, E-mail: daiva.tavgen@gmail.com; Grigalevičius, Saulius

    2016-05-18

    Polymers containing pendent 3-(2-phenylvinyl)carbazole moieties have been synthesized by the multi-step synthetic route. The polymers represent materials of high thermal stability with initial thermal degradation temperatures exceeding 370 °C. The glass transition temperatures of the amorphous materials were in the rage of 56–65 °C. The electron photoemission spectra of thin layers of the polymers showed ionization potentials of about 5.6 eV. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq 3 as the green emitter. The device containing hole-transporting layers of poly{9-[6-(3-methyloxetan-3-ylmethoxy)hexyl]-3-(2-phenylvinyl)carbazole} exhibited the best overall performance with a maximum photometricmore » efficiency of about 4.0 cd/A and maximum brightness exceeding 6430 cd/m{sup 2}.« less

  1. ON A CORONAL BLOWOUT JET: THE FIRST OBSERVATION OF A SIMULTANEOUSLY PRODUCED BUBBLE-LIKE CME AND A JET-LIKE CME IN A SOLAR EVENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Yuandeng; Liu Yu; Su Jiangtao

    2012-02-01

    The coronal blowout jet is a peculiar category among various jet phenomena, in which the sheared base arch, often carrying a small filament, experiences a miniature version of blowout eruption that produces large-scale coronal mass ejection (CME). In this paper, we report such a coronal blowout jet with high-resolution multi-wavelength and multi-angle observations taken from Solar Dynamics Observatory, Solar Terrestrial Relations Observatory, and Big Bear Solar Observatory. For the first time, we find that simultaneous bubble-like and jet-like CMEs were dynamically related to the blowout jet that showed cool and hot components next to each other. Our observational results indicatemore » that (1) the cool component resulted from the eruption of the filament contained within the jet's base arch, and it further caused the bubble-like CME; (2) the jet-like CME was associated with the hot component, which was the outward moving heated plasma generated by the reconnection of the base arch and its ambient open field lines. On the other hand, bifurcation of the jet's cool component was also observed, which resulted from the uncoupling of the erupting filament's two legs that were highly twisted at the very beginning. Based on these results, we propose a model to interpret the coronal blowout jet, in which the external reconnection not only produces the jet-like CME, but also leads to the rising of the filament. Subsequently, internal reconnection starts underneath the rising filament and thereby causes the bubble-like CME.« less

  2. How AGN Jets Heat the Intracluster Medium—Insights from Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Yang, H.-Y. Karen; Reynolds, Christopher S.

    2016-10-01

    Feedback from active galactic nuclei (AGNs) is believed to prevent catastrophic cooling in galaxy clusters. However, how the feedback energy is transformed into heat, and how the AGN jets heat the intracluster medium (ICM) isotropically, still remain elusive. In this work, we gain insights into the relative importance of different heating mechanisms using three-dimensional hydrodynamic simulations including cold gas accretion and momentum-driven jet feedback, which are the most successful models to date in terms of reproducing the properties of cool cores. We find that there is net heating within two “jet cones” (within ∼30° from the axis of jet precession) where the ICM gains entropy by shock heating and mixing with the hot thermal gas within bubbles. Outside the jet cones, the ambient gas is heated by weak shocks, but not enough to overcome radiative cooling, therefore, forming a “reduced” cooling flow. Consequently, the cluster core is in a process of “gentle circulation” over billions of years. Within the jet cones, there is significant adiabatic cooling as the gas is uplifted by buoyantly rising bubbles; outside the cones, energy is supplied by the inflow of already-heated gas from the jet cones as well as adiabatic compression as the gas moves toward the center. In other words, the fluid dynamics self-adjusts such that it compensates and transports the heat provided by the AGN, and hence no fine-tuning of the heating profile of any process is necessary. Throughout the cluster evolution, turbulent energy is only at the percent level compared to gas thermal energy, and thus turbulent heating is not the main source of heating in our simulation.

  3. Laser Induced Fluorescence Spectroscopy of Jet-Cooled CaOCa

    NASA Astrophysics Data System (ADS)

    Sullivan, Michael N.; Frohman, Daniel J.; Heaven, Michael; Fawzy, Wafaa M.

    2016-06-01

    The group IIA metals have stable hypermetallic oxides of the general form MOM. Theoretical interest in these species is associated with the multi-reference character of the ground states. It is now established that the ground states can be formally assigned to the M+O^{2-M+} configuration, which leaves two electrons in orbitals that are primarily metal-centered ns orbitals. Hence the MOM species are diradicals with very small energy spacings between the lowest energy singlet and triplet states. Previously, we have characterized the lowest energy singlet transition (1Σ^{+u← X1Σ+g}) of BeOBe. In this study we obtained the first electronic spectrum of CaOCa. Jet-cooled laser induced fluorescence spectra were recorded for multiple bands that occured within the 14,800 - 15,900 cm-1 region. Most of the bands exhibited simple P/R branch rotational line patterns that were blue-shaded. Only even rotational levels were observed, consistent with the expected X 1Σ^{+g} symmetry of the ground state (40Ca has zero nuclear spin). A progression of excited bending modes was evident in the spectrum, indicating that the transition is to an upper state that has a bent equilibrium geometry. Molecular constants were extracted from the rovibronic bands using PGOPHER. The experimental results and interpretation of the spectrum, which was guided by the predictions of electronic structure calculation, will be presented.

  4. Laser Induced Fluorescence Spectroscopy of Jet-Cooled MgOMg

    NASA Astrophysics Data System (ADS)

    Sullivan, Michael N.; Frohman, Daniel J.; Heaven, Michael; Fawzy, Wafaa M.

    2017-06-01

    The group IIA metals have stable hypermetallic oxides of the general form MOM. Theoretical interest in these species is associated with the multi-reference character of the ground states. It is now established that the ground states can be formally assigned to the M^{+O^{2-}M^{+}} configuration, which leaves two electrons in orbitals that are primarily metal-centered ns orbitals. Hence the MOM species are diradicals with very small energy spacings between the lowest energy singlet and triplet states. Previously, we have characterized the lowest energy singlet transition (^{1Σ^{+}_{u}← ^{1}Σ^{+}_{g}}) of BeOBe. Preliminary data for the first electronic transition of the isovalent species, CaOCa, was presented previously (71^{st} ISMS, talk RI10). We now report the first electronic spectrum of MgOMg. Jet-cooled laser induced fluorescence spectra were recorded for multiple bands that occurred within the 21,000 - 24,000 cm^{-1} range. Most of the bands exhibited simple P/R branch rotational line patterns that were blue-shaded. Only even rotational levels were observed, consistent with the expected X ^{1Σ^{+}_{g}} symmetry of the ground state (^{24Mg} has zero nuclear spin). Molecular constants were extracted from the rovibronic bands using PGOPHER. The experimental results and interpretation of the spectrum, which was guided by the predictions of electronic structure calculation, will be presented.

  5. A Water-Soluble Polyaniline Complex for Ink-Jet Printing of Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Gribkova, O. L.; Saf'yanova, L. V.; Tameev, A. R.; Lypenko, D. A.; Tverskoi, V. A.; Nekrasov, A. A.

    2018-03-01

    The influence of the ratio of components in polyaniline (PANI) complexes with poly(sulfonic acid) on the viscosity of their aqueous solutions and electric conductivity of layers formed thereof. The optical properties and morphology of PANI complex layers formed by ink-jet printing have been studied. The optimum ratio of components to be used in anodic buffer layers for organic solar cells is determined.

  6. Photoluminescence of epoxy resin modified by carbazole and its halogen derivative at 82 K

    NASA Astrophysics Data System (ADS)

    Mandowska, E.; Mandowski, A.; Tsvirko, M.

    2009-10-01

    The spectra and relative quantum yield of fluorescence and phosphorescence were measured for 9-(2,3-epoxypropyl)carbazole (EPK) added to epoxy resin (R) (R 5EPK - 5% weight content of the carbazole group in a polymer) and its mono and dihalogen derivative (Cl and Br). The materials under study have excellent mechanical properties. At 82 K photoluminescence (PL) spectra of these materials are composed of fluorescence (FL) and phosphorescence (PH) components while at 280 K, PH component is not observed. The vibrational frequencies of fluorescence and phosphorescence for R 5EPK were determined using Gaussian deconvolution. A decrease in the fluorescence and an increase in the phosphorescence quantum efficiency were observed after chemical bonding of heavy atoms Cl and Br.

  7. Enthalpy By Energy Balance for Aerodynamic Heating Facility at NASA Ames Research Center Arc Jet Complex

    NASA Technical Reports Server (NTRS)

    Hightower, T. Mark; MacDonald, Christine L.; Martinez, Edward R.; Balboni, John A.; Anderson, Karl F.; Arnold, Jim O. (Technical Monitor)

    2002-01-01

    The NASA Ames Research Center (ARC) Arc Jet Facilities' Aerodynamic Heating Facility (AHF) has been instrumented for the Enthalpy By Energy Balance (EB2) method. Diagnostic EB2 data is routinely taken for all AHF runs. This paper provides an overview of the EB2 method implemented in the AHF. The chief advantage of the AHF implementation over earlier versions is the non-intrusiveness of the instruments used. For example, to measure the change in cooling water temperature, thin film 1000 ohm Resistance Temperature Detectors (RTDs) are used with an Anderson Current Loop (ACL) as the signal conditioner. The ACL with 1000 ohm RTDs allows for very sensitive measurement of the increase in temperature (Delta T) of the cooling water to the arc heater, which is a critical element of the EB2 method. Cooling water flow rates are measured with non-intrusive ultrasonic flow meters.

  8. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  9. Ultrafast intramolecular charge transfer with N-(4-cyanophenyl)carbazole. Evidence for a LE precursor and dual LE + ICT fluorescence.

    PubMed

    Galievsky, Victor A; Druzhinin, Sergey I; Demeter, Attila; Mayer, Peter; Kovalenko, Sergey A; Senyushkina, Tamara A; Zachariasse, Klaas A

    2010-12-09

    The photophysics of N-(4-cyanophenyl)carbazole (NP4CN) was investigated by using absorption and fluorescence spectra, picosecond fluorescence decays, and femtosecond transient absorption. In the nonpolar n-hexane as well as in the polar solvent acetonitrile (MeCN), a locally excited (LE) state is detected, as a precursor for the intramolecular charge transfer (ICT) state. A LE → ICT reaction time τ(2) at 22 °C of 0.95 ps in ethyl cyanide (EtCN) and 0.32 ps in MeCN is determined from the decay of the LE excited state absorption (ESA) maximum around 620 nm. In the ESA spectrum of NP4CN in n-hexane at a pump-probe delay time of 100 ps, an important contribution of the LE band remains alongside the ICT band, in contrast to what is observed in EtCN and MeCN. This shows that a LE ⇄ ICT equilibrium is established in this solvent and the ICT reaction time of 0.5 ps is equal to the reciprocal of the sum of the forward and backward ICT rate constants 1/(k(a) + k(d)). In the photostationary S(0) → S(n) absorption spectrum of NP4CN in n-hexane and MeCN, an additional CT absorption band appears, absent in the sum of the spectra of its electron donor (D) and acceptor (A) subgroups carbazole and benzonitrile. This CT band is located at an energy of ∼4000 cm(-1) lower than for N-phenylcarbazole (NPC), due to the larger electron affinity of the benzonitrile moiety of NP4CN than the phenyl subunit of NPC. The fluorescence spectrum of NP4CN in n-hexane at 25 °C mainly consists of a structured LE emission, with a small ICT admixture, indicating that a LE → ICT reaction just starts to occur under these conditions. In di-n-pentyl ether (DPeE) and di-n-butyl ether (DBE), a LE emission is found upon cooling at the high-energy edge of the ICT fluorescence band, caused by the onset of dielectric solvent relaxation. This is not the case in more polar solvents, such as diethyl ether (DEE) and MeCN, in which a structureless ICT emission band fully overlaps the strongly quenched LE

  10. HOW AGN JETS HEAT THE INTRACLUSTER MEDIUM—INSIGHTS FROM HYDRODYNAMIC SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karen Yang, H.-Y.; Reynolds, Christopher S., E-mail: hsyang@astro.umd.edu

    Feedback from active galactic nuclei (AGNs) is believed to prevent catastrophic cooling in galaxy clusters. However, how the feedback energy is transformed into heat, and how the AGN jets heat the intracluster medium (ICM) isotropically, still remain elusive. In this work, we gain insights into the relative importance of different heating mechanisms using three-dimensional hydrodynamic simulations including cold gas accretion and momentum-driven jet feedback, which are the most successful models to date in terms of reproducing the properties of cool cores. We find that there is net heating within two “jet cones” (within ∼30° from the axis of jet precession)more » where the ICM gains entropy by shock heating and mixing with the hot thermal gas within bubbles. Outside the jet cones, the ambient gas is heated by weak shocks, but not enough to overcome radiative cooling, therefore, forming a “reduced” cooling flow. Consequently, the cluster core is in a process of “gentle circulation” over billions of years. Within the jet cones, there is significant adiabatic cooling as the gas is uplifted by buoyantly rising bubbles; outside the cones, energy is supplied by the inflow of already-heated gas from the jet cones as well as adiabatic compression as the gas moves toward the center. In other words, the fluid dynamics self-adjusts such that it compensates and transports the heat provided by the AGN, and hence no fine-tuning of the heating profile of any process is necessary. Throughout the cluster evolution, turbulent energy is only at the percent level compared to gas thermal energy, and thus turbulent heating is not the main source of heating in our simulation.« less

  11. Analysis of liquid-metal-jet impingement cooling in a corner region and for a row of jets

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1975-01-01

    A conformal mapping method was used to analyze liquid-metal-jet impingement heat transfer. The jet flow region and energy equation are transformed to correspond to uniform flow in a parallel plate channel with nonuniform heat addition along a portion of one wall. The exact solution for the wall-temperature distribution was obtained in the transformed channel, and the results are mapped back into the physical plane. Two geometries are analyzed. One is for a single slot jet directed either into an interior corner formed by two flat plates, or over the external sides of the corner; the flat plates are uniformly heated, and the corner can have various included angles. The heat-transfer coefficient at the stagnation point at the apex of the plates is obtained as a function of the corner angle, and temperature distributions are calculated along the heated walls. The second geometry is an infinite row of uniformly spaced parallel slot jets impinging normally against a uniformly heated plate. The heat-transfer behavior is obtained as a function of the spacing between the jets. Results are given for several jet Peclet numbers from 5 to 50.

  12. Empirical determination of low J values of 13CH4 transitions from jet cooled and 80 K cell spectra in the icosad region (7170-7367 cm-1)

    NASA Astrophysics Data System (ADS)

    Votava, O.; Mašát, M.; Pracna, P.; Mondelain, D.; Kassi, S.; Liu, A. W.; Hu, S. M.; Campargue, A.

    2014-12-01

    The absorption spectrum of 13CH4 was recorded at two low temperatures in the icosad region near 1.38 μm, using direct absorption tunable diode lasers. Spectra were obtained using a cryogenic cell cooled at liquid nitrogen temperature (80 K) and a supersonic jet providing a 32 K rotational temperature in the 7173-7367 cm-1 and 7200-7354 cm-1 spectral intervals, respectively. Two lists of 4498 and 339 lines, including absolute line intensities, were constructed from the 80 K and jet spectra, respectively. All the transitions observed in jet conditions were observed at 80 K. From the temperature variation of their line intensities, the corresponding lower state energy values were determined. The 339 derived empirical values of the J rotational quantum number are found close to integer values and are all smaller than 4, as a consequence of the efficient rotational cooling. Six R(0) transitions have been identified providing key information on the origins of the vibrational bands which contribute to the very congested and not yet assigned 13CH4 spectrum in the considered region of the icosad.

  13. Experimental Investigation of Jet Impingement Heat Transfer Using Thermochromic Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Dempsey, Brian Paul

    1997-01-01

    Jet impingement cooling of a hypersonic airfoil leading edge is experimentally investigated using thermochromic liquid crystals (TLCS) to measure surface temperature. The experiment uses computer data acquisition with digital imaging of the TLCs to determine heat transfer coefficients during a transient experiment. The data reduction relies on analysis of a coupled transient conduction - convection heat transfer problem that characterizes the experiment. The recovery temperature of the jet is accounted for by running two experiments with different heating rates, thereby generating a second equation that is used to solve for the recovery temperature. The resulting solution requires a complicated numerical iteration that is handled by a computer. Because the computational data reduction method is complex, special attention is paid to error assessment. The error analysis considers random and systematic errors generated by the instrumentation along with errors generated by the approximate nature of the numerical methods. Results of the error analysis show that the experimentally determined heat transfer coefficients are accurate to within 15%. The error analysis also shows that the recovery temperature data may be in error by more than 50%. The results show that the recovery temperature data is only reliable when the recovery temperature of the jet is greater than 5 C, i.e. the jet velocity is in excess of 100 m/s. Parameters that were investigated include nozzle width, distance from the nozzle exit to the airfoil surface, and jet velocity. Heat transfer data is presented in graphical and tabular forms. An engineering analysis of hypersonic airfoil leading edge cooling is performed using the results from these experiments. Several suggestions for the improvement of the experimental technique are discussed.

  14. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  15. Cooled railplug

    DOEpatents

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  16. Ultraviolet laser spectroscopy of jet-cooled CaNC and SrNC free radicals: Observation of bent excited electronic states

    NASA Astrophysics Data System (ADS)

    Greetham, Gregory M.; Ellis, Andrew M.

    2000-11-01

    New electronic transitions of the CaNC and SrNC free radicals have been identified in the near ultraviolet. For CaNC one new system, labeled the D˜-X˜ transition, was observed in the 31 500-33 400 cm-1 region. Two new transitions were found for SrNC, the D˜-X˜ and Ẽ-X˜ systems spanning 29 100-31 000 and 32 750-34 000 cm-1, respectively. Jet-cooled laser excitation spectra yield complex vibrational structure, much of which is attributed to excitation of the bending vibration. This has been used to infer that the molecule adopts a nonlinear equilibrium geometry in the upper electronic state in all three band systems, in contrast to the linear ground electronic state. This structural change is accounted for by the increased diffuseness of the unpaired electron in the excited states, which favors deviation from linearity. All three new excited states are assigned 2A' symmetry and correlate with 2Σ+ states in the linear molecule limit. Tentative estimates for the barriers to linearity in the D˜ 2A' states of CaNC and SrNC have been determined as ˜700 and ˜1050 cm-1, respectively.

  17. Flow control of an elongated jet in cross-flow: Film cooling effectiveness enhancement using surface dielectric barrier discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Audier, P.; Fénot, M.; Bénard, N.; Moreau, E.

    2016-02-01

    The case presented here deals with plasma flow control applied to a cross-flow configuration, more specifically to a film cooling system. The ability of a plasma dielectric barrier discharge actuator for film cooling effectiveness enhancement is investigated through an experimental set-up, including a film injection from an elongated slot into a thermally uniform cross-flow. Two-dimensional particle image velocimetry and infrared-thermography measurements are performed for three different blowing ratios of M = 0.4, 0.5, and 1. Results show that the effectiveness can be increased when the discharge is switched on, as predicted by the numerical results available in literature. Whatever the blowing ratio, the actuator induces a deflection of the jet flow towards the wall, increases its momentum, and delays its diffusion in the cross-flow.

  18. 76 FR 24855 - Carbazole Violet Pigment 23 From India: Rescission of Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... From India: Rescission of Administrative Review AGENCY: Import Administration, International Trade... administrative review of the antidumping duty order on carbazole violet pigment 23 (CVP 23) from India for the... Federal Register the antidumping duty order on CVP 23 from India. See Notice of Amended Final...

  19. Laboratory Investigation of Astrophysical Collimated Jets with Intense Lasers

    NASA Astrophysics Data System (ADS)

    Yuan, Dawei; Li, Yutong; Tao, Tao; Wei, Huigang; Zhong, Jiayong; Zhu, Baojun; Li, Yanfei; Zhao, Jiarui; Li, Fang; Han, Bo; Zhang, Zhe; Liang, Guiyun; Wang, Feilu; Hu, Guangyue; Zheng, Jian; Jiang, Shaoen; Du, Kai; Ding, Yongkun; Zhou, Shenlei; Zhu, Baoqiang; Zhu, Jianqiang; Zhao, Gang; Zhang, Jie

    2018-06-01

    One of the remarkable dynamic features of the Herbig–Haro (HH) object is its highly collimated propagation far away from the accretion disk. Different factors are proposed to give us a clearly physical explanation behind these fascinating phenomena, including magnetic field, radiation cooling, surrounding medium, and so on. Laboratory astrophysics, as a new complementary method of studying astrophysical issues, can provide an insight into these behaviors in a similar and controllable laboratory environment. Here we report the scaled laboratory experiments that a well-collimated radiative jet with high Mach number is successfully created to mimic the evolution of HH objects. According to our results, we find that the radiation cooling effect within the jet and the outer rare surrounding plasmas from the X-ray (>keV) photoionized target contribute to the jet collimation. The local nonuniform density structures along the collimated radiative jet axis are caused by the pressure competition between the inner jet and the outer plasmas. The corresponding simulations performed with radiation-hydrodynamic codes FLASH reveal how the radiative jet evolves.

  20. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinke, I.; Lehmkühler, F., E-mail: felix.lehmkuehler@desy.de; Schroer, M. A.

    2016-06-15

    In this paper we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. As a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less

  1. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources

    DOE PAGES

    Steinke, I.; Walther, M.; Lehmkühler, F.; ...

    2016-06-01

    In this study we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. Finally, as a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less

  2. Novel carbazole derivatives with quinoline ring: synthesis, electronic transition, and two-photon absorption three-dimensional optical data storage.

    PubMed

    Li, Liang; Wang, Ping; Hu, Yanlei; Lin, Geng; Wu, Yiqun; Huang, Wenhao; Zhao, Quanzhong

    2015-03-15

    We designed carbazole unit with an extended π conjugation by employing Vilsmeier formylation reaction and Knoevenagel condensation to facilitate the functional groups of quinoline from 3- or 3,6-position of carbazole. Two compounds doped with poly(methyl methacrylate) (PMMA) films were prepared. To explore the electronic transition properties of these compounds, one-photon absorption properties were experimentally measured and theoretically calculated by using the time-dependent density functional theory. We surveyed these films by using an 800 nm Ti:sapphire 120-fs laser with two-photon absorption (TPA) fluorescence emission properties and TPA coefficients to obtain the TPA cross sections. A three-dimensional optical data storage experiment was conducted by using a TPA photoreaction with an 800 nm-fs laser on the film to obtain a seven-layer optical data storage. The experiment proves that these carbazole derivatives are well suited for two-photon 3D optical storage, thus laying the foundation for the research of multilayer high-density and ultra-high-density optical information storage materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Highly efficient deep-blue organic light emitting diode with a carbazole based fluorescent emitter

    NASA Astrophysics Data System (ADS)

    Sahoo, Snehasis; Dubey, Deepak Kumar; Singh, Meenu; Joseph, Vellaichamy; Thomas, K. R. Justin; Jou, Jwo-Huei

    2018-04-01

    High efficiency deep-blue emission is essential to realize energy-saving, high-quality display and lighting applications. We demonstrate here a deep-blue organic light emitting diode using a novel carbazole based fluorescent emitter 7-[4-(diphenylamino)phenyl]-9-(2-ethylhexyl)-9H-carbazole-2-carbonitrile (JV234). The solution processed resultant device shows a maximum luminance above 1,750 cd m-2 and CIE coordinates (0.15,0.06) with a 1.3 lm W-1 power efficiency, 2.0 cd A-1 current efficiency, and 4.1% external quantum efficiency at 100 cd m-2. The resulting deep-blue emission enables a greater than 100% color saturation. The high efficiency may be attributed to the effective host-to-guest energy transfer, suitable device architecture facilitating balanced carrier injection and low doping concentration preventing efficiency roll-off caused by concentration quenching.

  4. Self-Assembly of Electron Donor-Acceptor-Based Carbazole Derivatives: Novel Fluorescent Organic Nanoprobes for Both One- and Two-Photon Cellular Imaging.

    PubMed

    Zhang, Jinfeng; Chen, Wencheng; Kalytchuk, Sergii; Li, King Fai; Chen, Rui; Adachi, Chihaya; Chen, Zhan; Rogach, Andrey L; Zhu, Guangyu; Yu, Peter K N; Zhang, Wenjun; Cheah, Kok Wai; Zhang, Xiaohong; Lee, Chun-Sing

    2016-05-11

    In this study, we report fluorescent organic nanoprobes with intense blue, green, and orange-red emissions prepared by self-assembling three carbazole derivatives into nanorods/nanoparticles. The three compounds consist of two or four electron-donating carbazole groups linked to a central dicyanobenzene electron acceptor. Steric hindrance from the carbazole groups leads to noncoplanar 3D molecular structures favorable to fluorescence in the solid state, while the donor-acceptor structures endow the molecules with good two-photon excited emission properties. The fluorescent organic nanoprobes exhibit good water dispersibility, low cytotoxicity, superior resistance against photodegradation and photobleaching. Both one- and two-photon fluorescent imaging were shown in the A549 cell line. Two-photon fluorescence imaging with the fluorescent probes was demonstrated to be more effective in visualizing and distinguishing cellular details compared to conventional one-photon fluorescence imaging.

  5. Carboxylate ligands induced structural diversity of zinc(II) coordination polymers based on 3,6-bis(imidazol-1-yl)carbazole: Syntheses, structures and photocatalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hong-Jian, E-mail: hjcheng@cslg.cn; Tang, Hui-Xiang; Shen, Ya-Li

    2015-12-15

    Solvothermal reactions of Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 3,6-bis(1-imidazolyl)carbazole (3,6-bmcz) and 1,4-benzenedicarboxylic acid (1,4-H{sub 2}bdc), p-phenylenediacetic acid (p-H{sub 2}pda), benzophenone-4,4-dicarboxylic acid (H{sub 2}bpda) afforded three coordination polymers [Zn(1,4-bdc)(3,6-bmcz)]{sub n} (1), {[Zn(p-pda)(3,6-bmcz)]·1.5H_2O}{sub n} (2) and {[Zn(bpda)(3,6-bmcz)]·0.25H_2O}{sub n} (3). Complexes 1–3 were characterized by elemental analysis, IR, powder X-ray diffraction, and single-crystal X-ray diffraction. Complex 1 shows 3D structure with 2D nets inclined polycatenation. Complexes 2 and 3 possess an extended 3D supramolecular architecture based on their respective 2D layers through hydrogen-bonding interactions and the π···π stacking interactions. The solid state luminescent and optical properties of 1–3 at ambient temperature were alsomore » investigated. A comparative study on their photocatalytic activity toward the degradation of methylene blue in polluted water was explored. - Graphical abstract: Reactions of Zn(NO{sub 3}){sub 2} and 3,6-(1-imidazolyl)carbazole with 1,4-benzenedicarboxylic acid, p-phenylenediacetic acid or benzophenone-4,4-dicarboxylic acid afforded three coordination polymers with different topologies and photocatalytic activity. - Highlights: • Reactions of 1,4-H{sub 2}bdc, p-H{sub 2}pda or H{sub 2}bpda with 3,6-bmcz and Zn(II) gave three CPs. • Complex 1 is a 3D entanglement. • Complex 2 or 3 is a 3D supramolecular structure based on different 2D layers. • Complex 2 exhibited good catalytic activity of methylene blue photodegradation.« less

  6. Exhaust turbine and jet propulsion systems

    NASA Technical Reports Server (NTRS)

    Leist, Karl; Knornschild, Eugen

    1951-01-01

    DVL experimental and analytical work on the cooling of turbine blades by using ram air as the working fluid over a sector or sectors of the turbine annulus area is summarized. The subsonic performance of ram-jet, turbo-jet, and turbine-propeller engines with both constant pressure and pulsating-flow combustion is investigated. Comparison is made with the performance of a reciprocating engine and the advantages of the gas turbine and jet-propulsion engines are analyzed. Nacelle installation methods and power-level control are discussed.

  7. Lubrication and cooling for high speed gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1985-01-01

    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.

  8. Blowout Jets: Hinode X-Ray Jets that Don't Fit the Standard Model

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-01-01

    Nearly half of all H-alpha macrospicules in polar coronal holes appear to be miniature filament eruptions. This suggests that there is a large class of X-ray jets in which the jet-base magnetic arcade undergoes a blowout eruption as in a CME, instead of remaining static as in most solar X-ray jets, the standard jets that fit the model advocated by Shibata. Along with a cartoon depicting the standard model, we present a cartoon depicting the signatures expected of blowout jets in coronal X-ray images. From Hinode/XRT movies and STEREO/EUVI snapshots in polar coronal holes, we present examples of (1) X-ray jets that fit the standard model, and (2) X-ray jets that do not fit the standard model but do have features appropriate for blowout jets. These features are (1) a flare arcade inside the jet-base arcade in addition to the small flare arcade (bright point) outside that standard jets have, (2) a filament of cool (T is approximately 80,000K) plasma that erupts from the core of the jetbase arcade, and (3) an extra jet strand that should not be made by the reconnection for standard jets but could be made by reconnection between the ambient unipolar open field and the opposite-polarity leg of the filament-carrying flux-rope core field of the erupting jet-base arcade. We therefore infer that these non-standard jets are blowout jets, jets made by miniature versions of the sheared-core-arcade eruptions that make CMEs

  9. Fluid dynamics of stellar jets in real time: Third Epoch Hubble Space Telescope images of HH 1, HH 34, AND HH 47

    DOE PAGES

    Hartigan, P.; Frank, A.; Foster, J. M.; ...

    2011-07-01

    We present new, third-epoch Hubble Space Telescope Hα and [S II] images of three Herbig-Haro (HH) jets (HH 1&2, HH 34, and HH 47) and compare the new images with those from previous epochs. The high spatial resolution, coupled with a time series whose cadence is of order both the hydrodynamic and radiative cooling timescales of the flow, allows us to follow the hydrodynamic/magnetohydrodynamic evolution of an astrophysical plasma system in which ionization and radiative cooling play significant roles. Cooling zones behind the shocks are resolved, so it is possible to identify which way material flows through a given shockmore » wave. The images show that heterogeneity is paramount in these jets, with clumps dominating the morphologies of both bow shocks and their Mach disks. This clumpiness exists on scales smaller than the jet widths and determines the behavior of many of the features in the jets. Evidence also exists for considerable shear as jets interact with their surrounding molecular clouds, and in several cases we observe shock waves as they form and fade where material emerges from the source and as it proceeds along the beam of the jet. Fine structure within two extended bow shocks may result from Mach stems that form at the intersection points of oblique shocks within these clumpy objects. Taken altogether, these observations represent the most significant foray thus far into the time domain for stellar jets, and comprise one of the richest data sets in existence for comparing the behavior of a complex astrophysical plasma flow with numerical simulations and laboratory experiments.« less

  10. Intermolecular dissociation energies of dispersively bound complexes of aromatics with noble gases and nitrogen

    NASA Astrophysics Data System (ADS)

    Knochenmuss, Richard; Sinha, Rajeev K.; Leutwyler, Samuel

    2018-04-01

    We measured accurate intermolecular dissociation energies D0 of the supersonic jet-cooled complexes of 1-naphthol (1NpOH) with the noble gases Ne, Ar, Kr, and Xe and with N2, using the stimulated-emission pumping resonant two-photon ionization method. The ground-state values D0(S0) for the 1NpOHṡS complexes with S= Ar, Kr, Xe, and N2 were bracketed to be within ±3.5%; they are 5.67 ± 0.05 kJ/mol for S = Ar, 7.34 ± 0.07 kJ/mol for S = Kr, 10.8 ± 0.28 kJ/mol for S = Xe, 6.67 ± 0.08 kJ/mol for isomer 1 of the 1NpOHṡN2 complex, and 6.62 ± 0.22 kJ/mol for the corresponding isomer 2. For S = Ne, the upper limit is D0 < 3.36 kJ/mol. The dissociation energies increase by 1%-5% upon S0 → S1 excitation of the complexes. Three dispersion-corrected density functional theory (DFT-D) methods (B97-D3, B3LYP-D3, and ωB97X-D) predict that the most stable form of these complexes involves dispersive binding to the naphthalene "face." A more weakly bound edge isomer is predicted in which the S moiety is H-bonded to the OH group of 1NpOH; however, no edge isomers were observed experimentally. The B97-D3 calculated dissociation energies D0(S0) of the face complexes with Ar, Kr, and N2 agree with the experimental values within <5%, but the D0(S0) for Xe is 12% too low. The B3LYP-D3 and ωB97X-D calculated D0(S0) values exhibit larger deviations to both larger and smaller dissociation energies. For comparison to 1-naphthol, we calculated the D0(S0) of the carbazole complexes with S = Ne, Ar, Kr, Xe, and N2 using the same DFT-D methods. The respective experimental values have been previously determined to be within <2%. Again, the B97-D3 results are in the best overall agreement with experiment.

  11. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage. [aircraft engine blade cooling

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1984-01-01

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  12. Protection of cooled blades of complex internal structure

    NASA Technical Reports Server (NTRS)

    Glamiche, P.

    1977-01-01

    The problem of general protection of cooled blades of complex internal structure was solved by a method called SF technique which makes possible the protection of both external and internal surfaces, as well as those of the orifices of cooling air, whatever their diameter. The SF method is most often applied in the case of pack process, at controlled or high activity; it can be of use on previously uncoated parts, but also on pieces already coated by a thermochemical, chemical or PVD method. The respective thickness of external and internal coatings may be precisely predetermined, no parasitic particle being liable to remain inside the parts after application of the protecting treatment. Results obtained to date by application of this method are illustrated by the presentation and examination of a various selection of advanced turbo engines.

  13. Active Region Jets II: Triggering and Evolution of Violent Jets

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Panesar, Navdeep K.; Martinez, Francisco

    2017-08-01

    We study a series of X-ray-bright, rapidly evolving active-region coronal jets outside the leading sunspot of AR 12259, using Hinode/XRT, SDO/AIA and HMI, and IRIS/SJ data. The detailed evolution of such rapidly evolving “violent” jets remained a mystery after our previous investigation of active region jets (Sterling et al. 2016, ApJ, 821, 100). The jets we investigate here erupt from three localized subregions, each containing a rapidly evolving (positive) minority-polarity magnetic-flux patch bathed in a (majority) negative-polarity magnetic-flux background. At least several of the jets begin with eruptions of what appear to be thin (thickness ˜<2‧‧) miniature-filament (minifilament) “strands” from a magnetic neutral line where magnetic flux cancelation is ongoing, consistent with the magnetic configuration presented for coronal-hole jets in Sterling et al. (2015, Nature, 523, 437). For some jets strands are difficult/ impossible to detect, perhaps due to their thinness, obscuration by surrounding bright or dark features, or the absence of erupting cool-material minifilaments in those jets. Tracing in detail the flux evolution in one of the subregions, we find bursts of strong jetting occurring only during times of strong flux cancelation. Averaged over seven jetting episodes, the cancelation rate was ~1.5×10^19 Mx/hr. An average flux of ~5×10^18 Mx canceled prior to each episode, arguably building up ~10^28—10^29 ergs of free magnetic energy per jet. From these and previous observations, we infer that flux cancelation is the fundamental process responsible for the pre-eruption buildup and triggering of at least many jets in active regions, quiet regions, and coronal holes.

  14. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  15. Cooling of Gas Turbines. 6 - Computed Temperature Distribution through Cross Section of Water-Cooled Turbine Blade

    DTIC Science & Technology

    1947-05-01

    AERONAUTICS Figure 7. - Cross section of water-cooleä turbine blade showing location and size of seven coolant...Power Plants.~ Jet and~ Turbine ($) [SECTION. Turbines (I3) [CROSS DEFERENCES. Turbine blades - Thermal measurements (95350); Turbine blades ...section of water-cooled turbine blade FORG’N. TITLE: v.. ’V, ORIGINATING AGENCY. TRANSLATION. National Advisory Committee for Aeronautics

  16. Cooling and Laser-Induced Fluorescence of Electronically-Excited He2 in a Supersonic Microcavity Plasma Jet

    NASA Astrophysics Data System (ADS)

    Su, Rui; Mironov, Andrey; Houlahan, Thomas, Jr.; Eden, J. Gary; LaboratoryOptical Physics; Engineering Team

    2016-09-01

    Laser-induced fluorescence (LIF) resulting from transitions between different electronic states of helium dimers generated within a microcavity plasma jet was studied with rotational resolution. In particular, the d3Σu+ , e3Πg and f3Σu+ states, all having electronic energies above 24 eV, are populated by a microplasma in 4 bar of helium gas and rotationally cooled through supersonic expansion. Analysis of two dimensional maps (spectrograms) of dimer emission spectra as a function of distance from the nozzle orifice indicates collisional coupling during the expansion between the lowest rotational levels of the e3Πg , f3Σu+ states and high rotational levels (around N=11) of the d3Σu+ state (all of which are in the v = 0 vibrational state). In an attempt to verify the coupling, a scanning dye laser (centered near 596 nm) pumps the b3Πg -> f3Σu+ transition of the molecule several hundred micrometers downstream of the nozzle. As a result, the emission intensities of relevant rotational lines are observed to be enhanced. This research shows the potential of utilizing microcavity plasma jets as a tool to study and manipulate the collisional dynamics of highly-excited diatomic molecules.

  17. Jet-Cooled Laser-Induced Fluorescence Spectroscopy of T-Butoxy

    NASA Astrophysics Data System (ADS)

    Reilly, Neil J.; Cheng, Lan; Stanton, John F.; Miller, Terry A.; Liu, Jinjun

    2015-06-01

    The vibrational structures of the tilde A ^2A_1 and tilde X ^2E states of t-butoxy were obtained in jet-cooled laser-induced fluorescence (LIF) and dispersed fluorescence (DF) spectroscopic measurements. The observed transitions are assigned based on vibrational frequencies calculated using Complete Active Space Self-Consistent Field (CASSCF) method and the predicted Franck-Condon factors. The spin-orbit (SO) splitting was measured to be 35(5) cm-1 for the lowest vibrational level of the ground (tilde X ^2E) state and increases with increasing vibrational quantum number of the CO stretch mode. Vibronic analysis of the DF spectra suggests that Jahn-Teller (JT)-active modes of the ground-state t-butoxy radical are similar to those of methoxy and would be the same if methyl groups were replaced by hydrogen atoms. Coupled-cluster calculations show that electron delocalization, introduced by the substitution of hydrogens with methyl groups, reduces the electronic contribution of the SO splittings by only around ten percent, and a calculation on the vibronic levels based on quasidiabatic model Hamiltonian clearly attributes the relatively small SO splitting of the tilde X ^2E state of t-butoxy mainly to stronger reduction of orbital angular momentum by the JT-active modes when compared to methoxy. The rotational and fine structure of the LIF transition to the first CO stretch overtone level of the tilde A^2A_1 state has been simulated using a spectroscopic model first proposed for methoxy, yielding an accurate determination of the rotational constants of both tilde A and tilde X states.

  18. Hydroxyalkylation with cyclic sulfates: synthesis of carbazole derived CB(2) ligands with increased polarity.

    PubMed

    Lueg, Corinna; Galla, Fabian; Frehland, Bastian; Schepmann, Dirk; Daniliuc, Constantin G; Deuther-Conrad, Winnie; Brust, Peter; Wünsch, Bernhard

    2014-01-01

    In order to increase the polarity of the potent CB2 ligand 1a, the homologous hydroxyalkyl carbazoles 2a-c were prepared and pharmacologically evaluated. An important step in the synthesis is the hydroxyalkylation of carbazole with cyclic sulfates providing the 2-hydroxyethyl and 3-hydroxypropyl derivatives 5a and 5b in a one-step reaction. The final propionamides 2a-c were prepared using the recently reported coupling reagent COMU®. The X-ray crystal structure of 2c displays an almost coplanar arrangement of the 3-phenyl-1,2,4-oxadiazole biaryl system. The increased polarity of 2a is associated with an almost 100-fold reduced CB2 affinity. The 3-hydroxypropyl derivative 2b represents the best compromise between lipophilicity and CB2 affinity (Ki  = 33 nM). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effects of Pulsing on Film Cooling of Gas Turbine Airfoils

    DTIC Science & Technology

    2005-05-09

    turbine engine . 15. NUMBER OF PAGES 70 14. SUBJECT TERMS: Turbine blade ; Film cooling ; Pulsed jet 16. PRICE CODE 17...with additional research, ultimately allowing for an increased efficiency in a gas turbine engine . 2 Keywords Turbine blade Film cooling Pulsed jet ... engine for aircraft propulsion…………………. 11 Figure 2: Thermodynamic cycle of a general turbine engine . ………………………..…… 11

  20. Ground-state IVR of jet-cooled p-alkylphenols and p-alkylanilines studied by stimulated emission ion dip and stimulated Raman-UV optical double-resonance spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebata, T.; Ito, M.

    1992-04-16

    This paper reports the intramolecular vibrational redistribution (IVR) of the jet-cooled p-alkylphenols and p-alkylanilines in S{sub 0} state by using stimulated emission ion dip and stimulated raman-UV optical double-resonance spectroscopy. The IVR rate constants of several vibrational levels localized in the benzene ring are estimated. 31 refs., 12 figs., 4 tabs.

  1. Jet-cooled laser-induced fluorescence spectroscopy of ScH: Observation of an Ω‧=2-Ω″=1 transition

    NASA Astrophysics Data System (ADS)

    Mukund, Sheo; Bhattacharyya, Soumen; Nakhate, S. G.

    2014-11-01

    New bands of scandium monohydride at origins 17,914.5 and 17,942.3 cm-1 have been observed in a jet-cooled beam with laser-induced fluorescence spectroscopy. Mass-selected resonant photoionization spectroscopy also confirmed the carrier of the band as ScH. The rotational analysis indicated that both transitions at 17,914.5 and 17,942.3 cm-1 are of Ω‧=2-Ω″=1 type with vibrational assignments (0,0) and (1,1) respectively. The assigned g3Φ2-a3Δ1 excitation is the first observed triplet-triplet transition in ScH.

  2. Flow and temperature fields following injection of a jet normal to a cross stream

    NASA Technical Reports Server (NTRS)

    Goldstein, R. J.; Ramsey, J. W.; Eriksen, V. L.

    1978-01-01

    The interaction of a jet entering into a freestream normal to the main flow direction has been studied with particular attention directed to visualization of the large-scale flow interactions and to measurement of the film-cooling performance. Large eddies are apparent downstream of the entering jet even at moderate blowing rate (defined as the ratio of the mass velocity of the jet to the mass velocity of the freestream). At higher blowing rate, there is only intermittent contact between the mass from the jet and the downstream wall. The film cooling downstream from a single normal jet yields a lower centerline effectiveness compared to an inclined jet through a greater lateral spreading. The greater spreading provides a more uniform effectiveness across the span of the downstream wall, in particular at large blowing rate.

  3. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC).

    PubMed

    Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H; Gaaz, Tayser Sumer; Al-Amiery, Ahmed A

    2017-08-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m² and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current I SC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.

  4. Lifetime Evolution of UV Jets

    NASA Technical Reports Server (NTRS)

    Corti, G.; Poletto, G.; Suess, S. T.; Moore, R.; Sterling, A.

    2006-01-01

    We report on observations acquired in May 2003 during a SOHO-Ulysses quadrature campaign. From May 25 to May 28, the SoHO LASCO Coronal Mass Ejection (CME) catalog lists a number of events which might have been observed by SOHO/UVCS, whose slit was centered along the Ulysses direction. However, because of time gaps in the observing schedule, or because of the unfavorable position of some CMEs, the most interesting events recorded by UVCS were a few short-lived ejections that represent the extension at higher altitudes of recursive EIT jets. We focus on jets occurring on May 26/27, visible also in EIT and LASCO images, which seem to propagate along the radial to Ulysses. UVCS spectra at 1.7 Rsun showed an unusually high emission in cool lines, lasting for about 10 to 25 minutes, with no evidence of hot plasma. Analysis of the cool line emission allowed us to infer the evolution of physical parameters during the jets lifetime and derive a crude estimate of the energy needed to account for their properties. We also looked for any evidence of the event in in situ data. Whether UVCS is observing jets or narrow CMEs is discussed in the contest of previous works on these classes of events and, in the last Section, we propose a scenario that accounts for our observations.

  5. Fluid flow and heat convection studies for actively cooled airframes

    NASA Technical Reports Server (NTRS)

    Mills, A. F.

    1993-01-01

    This report details progress made on the jet impingement - liquid crystal - digital imaging experiment. With the design phase complete, the experiment is currently in the construction phase. In order to reach this phase two design related issues were resolved. The first issue was to determine NASP leading edge active cooling design parameters. Meetings were arranged with personnel at SAIC International, Torrance, CA in order to obtain recent publications that characterized expected leading edge heat fluxes as well as other details of NASP operating conditions. The information in these publications was used to estimate minimum and maximum jet Reynolds numbers needed to accomplish the required leading edge cooling, and to determine the parameters of the experiment. The details of this analysis are shown in Appendix A. One of the concerns for the NASP design is that of thermal stress due to large surface temperature gradients. Using a series of circular jets to cool the leading edge will cause a non-uniform temperature distribution and potentially large thermal stresses. Therefore it was decided to explore the feasibility of using a slot jet to cool the leading edge. The literature contains many investigations into circular jet heat transfer but few investigations of slot jet heat transfer. The first experiments will be done on circular jets impinging on a fiat plate and results compared to previously published data to establish the accuracy of the method. Subsequent experiments will be slot jets impinging on full scale models of the NASP leading edge. Table 1 shows the range of parameters to be explored. Next a preliminary design of the experiment was done. Previous papers which used a similar experimental technique were studied and elements of those experiments adapted to the jet impingement study. Trade-off studies were conducted to determine which design was the least expensive, easy to construct, and easy to use. Once the final design was settled, vendors were

  6. Synthesis, Luminescent Properties of aza-Boron-Diquinomethene Difluoride Complexes and Their Application for Fluorescent Security Inks.

    PubMed

    Gu, Long; Liu, Rui; Shi, Hong; Wang, Qiang; Song, Guangliang; Zhu, Xiaolin; Yuan, Shidong; Zhu, Hongjun

    2016-03-01

    Two aza-boron-diquinomethene (aza-BODIQU) complexes bearing phenyl and carbazyl substituents were synthesized and characterized. Their photophysical properties were investigated systematically via spectroscopic and theoretical methods. Both complexes exhibit strong (1)π-π* transition absorptions (λ(abs) = 400-540 nm) and intense fluorescent emissions (λ(em) = 440-600 nm, Φ(PL) = 0.93 and 0.78) in CH2Cl2 solution and in solid state at room temperature. Compared to the complex with phenyl groups, the complex bearing carbazyl groups shows significant bathochromic shift in both absorption and emission. This could be attributed to the larger π-electron conjugation of the carbazole unit and intramolecular charge transfer feature from carbazole to aza-BODIQU component. In addition, the complexes exhibit intense photoluminescence and good stability on antacid, anti-alkali and stability in printing ink samples, which makes them potential dopants for the application of fluorescent security inks.

  7. Ferulic acid-carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents.

    PubMed

    Fang, Lei; Chen, Mohao; Liu, Zhikun; Fang, Xubin; Gou, Shaohua; Chen, Li

    2016-02-15

    In order to search for novel multifunctional anti-Alzheimer agents, a series of ferulic acid-carbazole hybrid compounds were designed and synthesized. Ellman's assay revealed that the hybrid compounds showed moderate to potent inhibitory activity against the cholinesterases. Particularly, the AChE inhibition potency of compound 5k (IC50 1.9μM) was even 5-fold higher than that of galantamine. In addition, the target compounds showed pronounced antioxidant ability and neuroprotective property, especially against the ROS-induced toxicity. Notably, the neuroprotective effect of 5k was obviously superior to that of the mixture of ferulic acid and carbazole, indicating the therapeutic effect of the hybrid compound is better than the combination administration of the corresponding mixture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Polyethers with pendent phenylvinyl substituted carbazole rings as polymers for hole transporting layers of OLEDs

    NASA Astrophysics Data System (ADS)

    Griniene, R.; Liu, L.; Tavgeniene, D.; Sipaviciute, D.; Volyniuk, D.; Grazulevicius, J. V.; Xie, Z.; Zhang, B.; Leduskrasts, K.; Grigalevicius, S.

    2016-01-01

    Polyethers containing pendent 3-(2-phenylvinyl)carbazole moieties have been synthesized by the multi-step synthetic routes. Full characterization of their structures is presented. The polymers represent materials of high thermal stability with initial thermal degradation temperatures exceeding 370 °C. The glass transition temperatures of the amorphous materials were in the range of 56-658 °C. The electron photoemission spectra of thin layers of the polymers showed ionization potentials of about 5.6 eV. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq3 as the green emitter and electron transporting layer. The device containing hole-transporting layers of poly{9-[6-(3-methyloxetan-3-ylmethoxy)hexyl]-3-(2-phenylvinyl)carbazole} exhibited the best overall performance with a maximum photometric efficiency of about 4.0 cd/A and maximum brightness exceeding 6430 cd/m2.

  9. Investigations into the low temperature behavior of jet fuels: Visualization, modeling, and viscosity studies

    NASA Astrophysics Data System (ADS)

    Atkins, Daniel L.

    Aircraft operation in arctic regions or at high altitudes exposes jet fuel to temperatures below freeze point temperature specifications. Fuel constituents may solidify and remain within tanks or block fuel system components. Military and scientific requirements have been met with costly, low freeze point specialty jet fuels. Commercial airline interest in polar routes and the use of high altitude unmanned aerial vehicles (UAVs) has spurred interest in the effects of low temperatures and low-temperature additives on jet fuel. The solidification of jet fuel due to freezing is not well understood and limited visualization of fuel freezing existed prior to the research presented in this dissertation. Consequently, computational fluid dynamics (CFD) modeling that simulates jet fuel freezing and model validation were incomplete prior to the present work. The ability to simulate jet fuel freezing is a necessary tool for fuel system designers. An additional impediment to the understanding and simulation of jet fuel freezing has been the absence of published low-temperature thermo-physical properties, including viscosity, which the present work addresses. The dissertation is subdivided into three major segments covering visualization, modeling and validation, and viscosity studies. In the first segment samples of jet fuel, JPTS, kerosene, Jet A and Jet A containing additives, were cooled below their freeze point temperatures in a rectangular, optical cell. Images and temperature data recorded during the solidification process provided information on crystal habit, crystallization behavior, and the influence of the buoyancy-driven flow on freezing. N-alkane composition of the samples was determined. The Jet A sample contained the least n-alkane mass. The cooling of JPTS resulted in the least wax formation while the cooling of kerosene yielded the greatest wax formation. The JPTS and kerosene samples exhibited similar crystallization behavior and crystal habits during

  10. Identification of crystalline structures in jet-cooled acetylene large clusters studied by two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoshiteru; Yoshiura, Ryuto; Honma, Kenji

    2017-07-01

    We investigated the crystalline structures of jet-cooled acetylene (C2H2) large clusters by laser spectroscopy and chemometrics. The CH stretching vibrations of the C2H2 large clusters were observed by infrared (IR) cavity ringdown spectroscopy. The IR spectra of C2H2 clusters were measured under the conditions of various concentrations of C2H2/He mixture gas for supersonic jets. Upon increasing the gas concentration from 1% to 10%, we observed a rapid intensity enhancement for a band in the IR spectra. The strong dependence of the intensity on the gas concentration indicates that the band was assigned to CH stretching vibrations of the large clusters. An analysis of the IR spectra by two-dimensional correlation spectroscopy revealed that the IR absorption due to the C2H2 large cluster is decomposed into two CH stretching vibrations. The vibrational frequencies of the two bands are almost equivalent to the IR absorption of the pure- and poly-crystalline orthorhombic structures in the aerosol particles. The characteristic temperature behavior of the IR spectra implies the existence of the other large cluster, which is discussed in terms of the phase transition of a bulk crystal.

  11. IR-UV spectroscopy of jet-cooled 1-indanol: Restriction of the conformational space by hydration

    NASA Astrophysics Data System (ADS)

    Bouchet, Aude; Altnöder, Jonas; Broquier, Michel; Zehnacker, Anne

    2014-11-01

    The effect of hydration on a flexible amphiphilic molecule has been studied on the example of 1-hydroxyindan (1-indanol). Studies in jet-cooled conditions by means of resonance-enhanced two-photon ionization and IR-UV double resonance experiments show that the mono-hydrate 1-indanol(H2O) is formed in a dominant isomer, as well as the di-hydrate 1-indanol(H2O)2. 1-Indanol(H2O) favors a cooperative hydrogen bond pattern with -OH⋯O(H)-H⋯π topology, while 1-indanol(H2O)2 forms a cyclic hydrogen bond network with three OH⋯O interactions. The single conformation observed for the hydrates contrasts with the bare molecule which shows two dominant conformations, with the hydroxyl in axial or in equatorial position, respectively. Hydration therefore results in a restriction of the conformational space and conformational locking.

  12. Experimental Optimisation of the Thermal Performance of Impinging Synthetic Jet Heat Sinks

    NASA Astrophysics Data System (ADS)

    Marron, Craig; Persoons, Tim

    2014-07-01

    Zero-net-mass flow synthetic jet devices offer a potential solution for energy- efficient cooling of medium power density electronic components. There remains an incomplete understanding of the interaction of these flows with extended surfaces, which prevents the wider implementation of these devices in the field. This study examines the effect of the main operating parameters on the heat transfer rate and electrical power consumption for a synthetic jet cooled heat sink. Three different heat sink geometries are tested. The results find that a modified sink with a 14 × 14 pin array with the central 6 × 6 pins removed provides superior cooling to either a fully pinned sink or flat plate. Furthermore each heat sink is found to have its own optimum jet orifice-to-sink spacing for heat transfer independent of flow conditions. The optimum heat transfer for the modified sink is H = 34 jet diameters. The effect of frequency on heat transfer is also studied. It is shown that heat transfer increases superlinearly with frequency at higher stroke lengths. The orientation of the impingement surface with respect to gravity has no effect on the heat transfer capabilities of the tested device. These tests are the starting point for further investigation into enhanced synthetic jet impingement surfaces. The equivalent axial fan cooled pinned heat sink (Malico Inc. MFP40- 18) has a thermal resistance of 1.93K/W at a fan power consumption of 0.12W. With the modified pinned heat sink, a synthetic jet at Re = 911, L0/D = 10, H/D = 30 provides a thermal resistance of 2.5K/W at the same power consumption.

  13. Military Jet Engine Acquisition: Technology Basics and Cost-Estimating Methodology

    DTIC Science & Technology

    2002-01-01

    aircraft , rather than by these forms of jet engines . Like the turbofan or turbojet , these engines have a nozzle down- stream of the low-pressure...2.5 illustrates the process of turbine blade cooling. Figure 2.6 illustrates the steady and rapid increase in RIT for turbo - jets , turbofans , and...87 B. AN OVERVIEW OF MILITARY JET ENGINE HISTORY ... 97 C. AIRCRAFT TURBINE ENGINE DEVELOPMENT ...... 121 D.

  14. 75 FR 34699 - Carbazole Violet Pigment 23 from India: Rescission of Countervailing Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... from India: Rescission of Countervailing Duty Administrative Review AGENCY: Import Administration... review of the countervailing duty order on Carbazole Violet Pigment 23(CVP-23) from India. See... Pigments requesting an administrative review of the countervailing duty order on CVP-23 from India for the...

  15. Solar Active Region Coronal Jets. II. Triggering and Evolution of Violent Jets

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Martinez, Francisco

    2017-07-01

    We study a series of X-ray-bright, rapidly evolving active region coronal jets outside the leading sunspot of AR 12259, using Hinode/X-ray telescope, Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI), and Interface Region Imaging Spectrograph (IRIS) data. The detailed evolution of such rapidly evolving “violent” jets remained a mystery after our previous investigation of active region jets. The jets we investigate here erupt from three localized subregions, each containing a rapidly evolving (positive) minority-polarity magnetic-flux patch bathed in a (majority) negative-polarity magnetic-flux background. At least several of the jets begin with eruptions of what appear to be thin (thickness ≲ 2\\prime\\prime ) miniature-filament (minifilament) “strands” from a magnetic neutral line where magnetic flux cancelation is ongoing, consistent with the magnetic configuration presented for coronal-hole jets in Sterling et al. (2016). Some jets strands are difficult/impossible to detect, perhaps due to, e.g., their thinness, obscuration by surrounding bright or dark features, or the absence of erupting cool-material minifilaments in those jets. Tracing in detail the flux evolution in one of the subregions, we find bursts of strong jetting occurring only during times of strong flux cancelation. Averaged over seven jetting episodes, the cancelation rate was ˜ 1.5× {10}19 Mx hr-1. An average flux of ˜ 5× {10}18 Mx canceled prior to each episode, arguably building up ˜1028-1029 erg of free magnetic energy per jet. From these and previous observations, we infer that flux cancelation is the fundamental process responsible for the pre-eruption build up and triggering of at least many jets in active regions, quiet regions, and coronal holes.

  16. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC)

    PubMed Central

    Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H.; Gaaz, Tayser Sumer

    2017-01-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m2 and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC. PMID:28763048

  17. Fourier transform spectroscopy of the Swan (d(sup 3)pi(sub g) - a(sup 3)pi(sub u)) system of the jet-cooled C2 molecule

    NASA Technical Reports Server (NTRS)

    Prasad, C. V. V.; Bernath, P. F.

    1994-01-01

    The Swan (d(sup 3)pi(sub g) - a(sup 3)pi(sub u)) system of the C2 molecule was produced in a jet-cooled corona excited supersonic expansion of helium using diazoacetonitrile as a percursor molecule. This spectrum was recorded using the McMath Fourier transform spectrometer of the National Solar Observatory at Kitt Peak. A total of nine bands with v prime = 0 to 3 and v prime prime = 0 to 4 in the range 16,570-22,760/cm were observed and rotationally analyzed. The C2 molecules in this source had a rotational temperature of only 90 K so that only the low-J lines were present in the spectrum. In some sense the low temperatures in the jet source simulate conditions in the interstellar medium. The Swan system of C2 was also produced in a composite wall hollow cathode made Al4C3/Cu, and the rotational structure of the 1-0, 2-1, 3-2, 0-0, and 1-1 bands were analyzed. The data obtained from both these spectra were fitted together along with some recently published line positions. The rotational constants, lambda doubling parameters and the vibrational constants were estimated from this global fit. Our work on jet-cooled C2 follows similar work on the violet and red systems of CN. A summary of this CN work is also presented. also presented.

  18. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective is to provide turbine-cooling technologies to meet Propulsion 21 goals related to engine fuel burn, emissions, safety, and reliability. Specifically, the GE Aviation (GEA) Advanced Turbine Cooling and Thermal Management program seeks to develop advanced cooling and flow distribution methods for HP turbines, while achieving a substantial reduction in total cooling flow and assuring acceptable turbine component safety and reliability. Enhanced cooling techniques, such as fluidic devices, controlled-vortex cooling, and directed impingement jets, offer the opportunity to incorporate both active and passive schemes. Coolant heat transfer enhancement also can be achieved from advanced designs that incorporate multi-disciplinary optimization of external film and internal cooling passage geometry.

  19. 50. NORTHERN VIEW OF NONEVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. NORTHERN VIEW OF NON-EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS IN CENTER, AND EVAPORATIVE WASTE WATER COOLING TOWERS ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  20. A light-up probe targeting for Bcl-2 2345 G-quadruplex DNA with carbazole TO

    NASA Astrophysics Data System (ADS)

    Gu, Yingchun; Lin, Dayong; Tang, Yalin; Fei, Xuening; Wang, Cuihong; Zhang, Baolian; Zhou, Jianguo

    2018-02-01

    As its significant role, the selective recognition of G-quadruplex with specific structures and functions is important in biological and medicinal chemistry. Carbazole derivatives have been reported as a kind of fluorescent probe with many excellent optical properties. In the present study, the fluorescence of the dye (carbazole TO) increased almost 70 fold in the presence of bcl-2 2345 G4 compared to that alone in aqueous buffer condition with almost no fluorescence and 10-30 fold than those in the presence of other DNAs. The binding study results by activity inhibition of G4/Hemin peroxidase experiment, NMR titration and molecular docking simulation showed the high affinity and selectivity to bcl-2 2345 G4 arises from its end-stacking interaction with G-quartet. It is said that a facile approach with excellent sensitive, good selectivity and quick response for bcl-2 2345 G-quadruplex was developed and may be used for antitumor recognition or antitumor agents.

  1. An Enduring Rapidly Moving Storm as a Guide to Saturn's Equatorial Jet's Complex Structure

    NASA Technical Reports Server (NTRS)

    Sanchez-Lavega, A.; Garcia-Melendo, E.; Perez-Hoyos, S.; Hueso, R.; Wong, M. H.; Simon, A.; Sanz-Requena, J. F.; Antunano, A.; Barrado-Izagirre, N.; Garate-Lopez, I.; hide

    2016-01-01

    Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional structure mixed with time variability. The equatorial region experiences strong seasonal insolation variations enhanced by ring shadowing, and three of the six known giant planetary-scale storms have developed in it. These factors make Saturn's equator a natural laboratory to test models of jets in giant planets. Here we report on a bright equatorial atmospheric feature imaged in 2015 that moved steadily at a high speed of 450/ms not measured since 1980-1981 with other equatorial clouds moving within an ample range of velocities. Radiative transfer models show that these motions occur at three altitude levels within the upper haze and clouds. We find that the peak of the jet (latitudes 10degN to 10degS) suffers intense vertical shears reaching + 2.5/ms/km, two orders of magnitude higher than meridional shears, and temporal variability above 1 bar altitude level.

  2. Magnetic Untwisting in Most Solar X-Ray Jets

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Sterling, Alphonse; Falconer, David; Robe, Dominic

    2013-01-01

    From 54 X-ray jets observed in the polar coronal holes by Hinode's X-Ray Telescope (XRT) during coverage in movies from Solar Dynamic Observatory's Atmospheric Imaging Assembly (AIA) taken in its He II 304 Å band at a cadence of 12 s, we have established a basic characteristic of solar X-ray jets: untwisting motion in the spire. In this presentation, we show the progression of few of these X-ray jets in XRT images and track their untwisting in AIA He II images. From their structure displayed in their XRT movies, 19 jets were evidently standard jets made by interchange reconnection of the magnetic-arcade base with ambient open field, 32 were evidently blowout jets made by blowout eruption of the base arcade, and 3 were of ambiguous form. As was anticipated from the >10,000 km span of the base arcade in most polar X-ray jets and from the disparity of standard jets and blowout jets in their magnetic production, few of the standard X-ray jets (3 of 19) but nearly all of the blowout X-ray jets (29 of 32) carried enough cool (T is approximately 105 K) plasma to be seen in their He II movies. In the 32 X-ray jets that showed a cool component, the He II movies show 10-100 km/s untwisting motions about the axis of the spire in all 3 standard jets and in 26 of the 29 blowout jets. Evidently, the open magnetic field in nearly all blowout X-ray jets and probably in most standard X-ray jets carries transient twist. This twist apparently relaxes by propagating out along the open field as a torsional wave. High-resolution spectrograms and Dopplergrams have shown that most Type-II spicules have torsional motions of 10-30 km/s. Our observation of similar torsional motion in X-ray jets strengthens the case for Type-II spicules being made in the same way as X-ray jets, by blowout eruption of a twisted magnetic arcade in the spicule base and/or by interchange reconnection of the twisted base arcade with the ambient open field. This work was funded by NASA's Heliophysics Division

  3. NLO properties of ester containing fluorescent carbazole based styryl dyes - Consolidated spectroscopic and DFT approach

    NASA Astrophysics Data System (ADS)

    Rajeshirke, Manali; Sekar, Nagaiyan

    2018-02-01

    The linear and nonlinear optical (NLO) properties of new fluorescent styryl dyes based on anchoring ester containing carbazole as donor appended to different acceptor groups to have a conjugated π-system with push-pull geometry are studied. The NLO properties have been determined using solvatochromic and computational methods. Three different TD-DFT functional are used namely, B3LYP, BHandHLYP, and CAM-B3LYP, with aim of elucidating better functional for NLOphores. Further, the two photon properties (σ2PA) have been described theoretically by two level model considering the dipole moment difference between the ground and the final electronic states and bypassing the intermediated resonance state. The compounds with a high charge transfer from the acceptor group to the carbazole ring have relatively high two-photon absorption cross-sections (60-317 GM). The linear polarizability (αCT), first order hyperpolarizability (β) and second order hyperpolarizability (ɣ) for 4c dye was the highest among the studied dyes which is attributed to the lesser energy gap evident by both the methods. But in contrary, the σ2PA cross-section value was low for dye 4c which is due to the presence of freely rotatable twisted phenyl ring in the conjugation path, pulling the electron density towards itself and thus lead to decrease in σ2PA cross-section. Structure-property relationship is better understood by the correlation of bond length alternation/bond order alternation (BLA/BOA) with NLO properties of dyes. Thus by simple solvatochromic method and computational method, we have screened the carbazole styryls as NLO candidates with good first order hyperpolarizability and good two photon cross-section.

  4. Phase I metabolism of the carbazole derived synthetic cannabinoids EG-018, EG-2201 and MDMB-CHMCZCA and detection in human urine samples.

    PubMed

    Mogler, Lukas; Franz, Florian; Wilde, Maurice; Huppertz, Laura M; Halter, Sebastian; Angerer, Verena; Moosmann, Bjoern; Auwärter, Volker

    2018-05-04

    Synthetic cannabinoids (SCs) are a structurally diverse class of new psychoactive substances. Most SCs used for recreational purposes are based on indole or indazole core structures. EG-018 (naphthalen-1-yl(9-pentyl-9H-carbazol-3-yl)methanone), EG-2201 ((9-(5-fluoropentyl)-9H-carbazol-3-yl)(naphthalen-1-yl)methanone) and MDMB-CHMCZCA (methyl 2-(9-(cyclohexylmethyl)-9H-carbazole-3-carboxamido)-3,3-dimethylbutanoate) are three representatives of a structural subclass of SCs, characterized by a carbazole core system. In vitro and in vivo phase I metabolism studies were conducted to identify the most suitable metabolites for the detection of these substances in urine screening. Detection and characterization of metabolites were performed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (LC-ESI-QToF-MS). Eleven in vivo metabolites were detected in urine samples positive for metabolites of EG-018 (n=8). A hydroxypentyl metabolite, most probably the 4-hydroxypentyl isomer, and an N-dealkylated metabolite mono-hydroxylated at the carbazole core system were most abundant. In vitro studies of EG-018 and EG-2201 indicated that oxidative defluorination of the 5-fluoropentyl side chain of EG-2201 as well as dealkylation led to common metabolites with EG-018. This has to be taken into account for interpretation of analytical findings. A differentiation between EG-018 and EG-2201 (n=1) uptake is possible by the detection of compound-specific in vivo phase I metabolites evaluated in this study. Out of 30 metabolites detected in urine samples of MDMB-CHMCZCA users (n=20), one metabolite mono-hydroxylated at the cyclohexyl methyl tail is considered the most suitable compound-specific consumption marker while a biotransformation product of mono-hydroxylation in combination with hydrolysis of the terminal methyl ester function provides best sensitivity

  5. Small molecular glasses based on multiposition encapsulated phenyl benzimidazole iridium(III) complexes: toward efficient solution-processable host-free electrophosphorescent diodes.

    PubMed

    Xu, Hui; Yu, Dong-Hui; Liu, Le-Le; Yan, Peng-Fei; Jia, Li-Wei; Li, Guang-Ming; Yue, Zheng-Yu

    2010-01-14

    Three electrophosphorescent small molecular Ir(3+) complexes, Ir(HexPhBI)(3) 1 (HexPhBI = 1-Hexyl-2-phenyl-1H-benzo[d]imidazole), Ir(CzPhBI)(3) 2 (CzPhBI = 9-(6-(2-phenyl-1H-benzo[d]imidazol-1-yl)hexyl)-9H-carbazole), and Ir(Cz(2)PhBI)(3) 3 (Cz(2)PhBI = 9-(6-(4-(1-(6-(9H-carbazol-9-yl)hexyl)-1H-benzo[d]imidazol-2-yl)phenoxy)hexyl)-9H-carbazole), were synthesized in which 3 was designed with the structure of multiposition encapsulation. Compared to the hexyl-substituted 1, 2 and 3 end-capped with the conjugated carbazole moieties have improved thermal stability. X-ray diffraction analysis proved the amorphous state of 2 and 3. High-photoluminescent efficiencies of 3 are achieved as 72% in solution and 61% in solid. It indicates that the peripheral carbazoles not only facilitate the separation of triplet-emission cores and reduce the intermolecular aggregation but also supply a routine for the intermolecular energy transfer. Electrochemical analysis showed the more oxidation states of 3, which might be anticipated to make it superior to 1 and 2 in hole injection and transporting. The important role of the peripheral carbazole moieties in carrier injection/transporting and the optical properties of the complexes were further investigated by Gaussian simulation. A dramatic electroluminescent (EL) performance, including external quantum efficiency of nearly 6%, low turn-on voltage of 2.5 V, and high brightness over 6000 cd m(-2), from the host-free spin-coated device of 3 was achieved. The superiority of multiencapsulation in EL was proved by comparing the EL performance of 2 and 3. By making comparison between the host-free and phosphor-doping devices, it indicated that the combined modification of the aliphatic chains and functional groups in multipositions is a feasible approach to realize the high-efficiency small molecular phosphorescent materials.

  6. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, J. R. (Inventor)

    1985-01-01

    A jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A TEMP, responsive to the heat from the coolant in the secondary flow path, automatically pumps the withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature. At this lower temperature, the TEMP/jet jump combination ceases its circulation boosting operation. The TEMP/jet pump combination is automatic, self-regulating and provides an emergency pumping system free of moving parts.

  7. Numerical Analysis of Film Cooling at High Blowing Ratio

    NASA Technical Reports Server (NTRS)

    El-Gabry, Lamyaa; Heidmann, James; Ameri, Ali

    2009-01-01

    Computational Fluid Dynamics is used in the analysis of a film cooling jet in crossflow. Predictions of film effectiveness are compared with experimental results for a circular jet at blowing ratios ranging from 0.5 to 2.0. Film effectiveness is a surface quantity which alone is insufficient in understanding the source and finding a remedy for shortcomings of the numerical model. Therefore, in addition, comparisons are made to flow field measurements of temperature along the jet centerline. These comparisons show that the CFD model is accurately predicting the extent and trajectory of the film cooling jet; however, there is a lack of agreement in the near-wall region downstream of the film hole. The effects of main stream turbulence conditions, boundary layer thickness, turbulence modeling, and numerical artificial dissipation are evaluated and found to have an insufficient impact in the wake region of separated films (i.e. cannot account for the discrepancy between measured and predicted centerline fluid temperatures). Analyses of low and moderate blowing ratio cases are carried out and results are in good agreement with data.

  8. Fabrication of poly(vinyl carbazole) waveguides by oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Ghailane, Fatima; Manivannan, Gurusamy; Knystautas, Émile J.; Lessard, Roger A.

    1995-08-01

    Polymer waveguides were fabricated by ion implantation involving poly(vinyl carbazole) films. This material was implanted by oxygen ions (O ++ ) of energies ranging from 50 to 250 keV. The ion doses varied from 1010 to 1015 ions / cm2. The conventional prism-film coupler method was used to determine the waveguiding nature of the implanted and unimplanted films. The increase of the surface refractive index in the implanted layer has been studied by measuring the effective refractive index (neff) for different optical modes. Electron spectroscopy chemical analysis measurements were also performed to assess the effect of ion implantation on the polymer matrix.

  9. Cooled High-Temperature Radial Turbine Program. Phase 2

    DTIC Science & Technology

    1992-05-01

    proposed for advanced engines with high power-to-weight and inproved SFC requirements. The addition of cooling to the blades of a metal radial turbine ...4 secl/2 ) 62.2 Blade - jet Speed Ratio 0.66 Adiabatic Efficiency (T-to-T, %) 87.0 Cooling flows for the gasifier turbine section are set at 5.7%. The...Way Cincinnati, OH 45215-6301 85 COOLED HIGH-TEMPERATURE RADIAL TURBINE PROGRAM DISTRIBUTION LIST Number Qf Copies General Electric Aircraft Engines

  10. Turbulent Jet Flames Into a Vitiated Coflow. PhD Thesis awarded Spring 2003

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Cabra, Ricardo

    2004-01-01

    Examined is the vitiated coflow flame, an experimental condition that decouples the combustion processes of flows found in practical combustors from the associated recirculating fluid mechanics. The configuration consists of a 4.57 mm diameter fuel jet into a coaxial flow of hot combustion products from a lean premixed flame. The 210 mm diameter coflow isolates the jet flame from the cool ambient, providing a hot environment similar to the operating conditions of advanced combustors; this important high temperature element is lacking in the traditional laboratory experiments of jet flames into cool (room) air. A family of flows of increasing complexity is presented: 1) nonreacting flow, 2) all hydrogen flame (fuel jet and premixed coflow), and 3) set of methane flames. This sequence of experiments provides a convenient ordering of validation data for combustion models. Laser Raman-Rayleigh-LIF diagnostics at the Turbulent Diffusion Flame laboratory of Sandia National Laboratories produced instantaneous multiscalar point measurements. These results attest to the attractive features of the vitiated coflow burner and the well-defined boundary conditions provided by the coflow. The coflow is uniform and steady, isolating the jet flame from the laboratory air for a downstream distance ranging from z/d = 50-70. The statistical results show that differential diffusion effects in this highly turbulent flow are negligible. Complementing the comprehensive set of multiscalar measurements is a parametric study of lifted methane flames that was conducted to analyze flame sensitivity to jet and coflow velocity, as well as coflow temperature. The linear relationship found between the lift-off height and the jet velocity is consistent with previous experiments. New linear sensitivities were found correlating the lift-off height to coflow velocity and temperature. A blow-off study revealed that the methane flame blows off at a common coflow temperature (1260 K), regardless of

  11. Charge transport properties of carbazole dendrimers in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mutkins, Karyn; Chen, Simon S. Y.; Aljada, Muhsen; Powell, Ben J.; Olsen, Seth; Burn, Paul L.; Meredith, Paul

    2011-10-01

    We report three generations of p-type dendrimer semiconductors comprised of spirobifluorene cores, carbazole branching units and fluorene surface groups for use in organic field-effect transistors (OFETs). The group of dendrimers are defined by their generation and noted as SBF-(Gx)2, where x is the generation. Top contact-bottom gate OFETs were fabricated by spin-coating the dendrimers onto an n-octyltrichlorosilane (OTS) passivated silicon dioxide surface. The dendrimer films were found to be amorphous. The highest mobility was measured for the first generation dendrimer (SBF-(G1)2), which had an average mobility of (6.6 +/- 0.2) × 10-5 cm2/V s and an ON/OFF ratio of 3.0 × 104. As the generation of the dendrimer was increased there was only a slight decrease in the measured mobility in spite of the significantly different molecular sizes of the dendrimers. The mobility of SBF-(G3)2, which had a hydrodynamic radius almost twice of SBF-(G1)2, still had an average mobility of (4.7 +/- 0.6) × 10-5 cm2/V s and an ON/OFF ratio of 2.7 × 103. Density functional theory calculations showed that the highest occupied molecular orbital was distributed over the core and carbazole units meaning that both intra- and intermolecular charge transfer could occur enabling the hole mobility to remain essentially constant even though the dendrimers would pack differently in the solid-state.

  12. Evaluation of water cooled supersonic temperature and pressure probes for application to 2000 F flows

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T.; Seiner, John M.

    1990-01-01

    The development of water cooled supersonic probes used to study high temperature jet plumes is addressed. These probes are: total pressure, static pressure, and total temperature. The motivation for these experiments is the determination of high temperature supersonic jet mean flow properties. A 3.54 inch exit diameter water cooled nozzle was used in the tests. It is designed for exit Mach 2 at 2000 F exit total temperature. Tests were conducted using water cooled probes capable of operating in Mach 2 flow, up to 2000 F total temperature. Of the two designs tested, an annular cooling method was chosen as superior. Data at the jet exit planes, and along the jet centerline, were obtained for total temperatures of 900 F, 1500 F, and 2000 F, for each of the probes. The data obtained from the total and static pressure probes are consistent with prior low temperature results. However, the data obtained from the total temperature probe was affected by the water coolant. The total temperature probe was tested up to 2000 F with, and without, the cooling system turned on to better understand the heat transfer process at the thermocouple bead. The rate of heat transfer across the thermocouple bead was greater when the coolant was turned on than when the coolant was turned off. This accounted for the lower temperature measurement by the cooled probe. The velocity and Mach number at the exit plane and centerline locations were determined from the Rayleigh-Pitot tube formula.

  13. Evaluation of the Passive Cooling Strategies for Pei Min Sport Complex

    NASA Astrophysics Data System (ADS)

    Yam, K. S.; Yem, W. L.; Lee, V. C. C.

    2017-07-01

    This paper presents a modelling study on the evaluation of the passive cooling strategies for Pei Min sport complex at Miri. The squash centre has experienced excessively high temperature during peak hours that results in complains from the users. We discussed several passive cooling mechanisms and proposed four strategies for the sport centre. Thermal energy simulations were performed on these strategies using OpenStudio to evaluate their impact on the hourly temperature profile within the building. It was found that the peak temperature during the noon was significantly reduced when conductive material was applied at the lower surface of the roof, and the top of the roof was coated with white paint. However, insulating the roof also leads to weaker heat dispersion from the building which lower the rate of temperature drop in the late afternoon. Partitioning the roof was found to have similar effect as insulating roof. Air infiltration is essential for promoting air movement and regulating the temperature within the building. It was found the complex already have sufficient opening for the full effect of air infiltration.

  14. Bright Fans in Mars Cryptic Region Caused by Adiabatic Cooling of CO2 Gas Jets.

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Kieffer, H. H.; Langevin, Y.; Murchie, S.; Seelos, F.; Vincendon, M.

    2007-12-01

    Over the last decade, observations of the retreat of the southern seasonal cap of Mars have revealed the presence of exotic processes within an area now informally referred to as the cryptic region. The appearance of dark spots, fans, blotches, and halos have been a "hot" topic of scientific discussion since they were first observed by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) [Malin et al., 1998]. Further observations by the Mars Odyssey (ODY) Thermal Emission Imaging System (THEMIS) showed that the dark features remained cold throughout the early-to-mid spring, suggesting that these features were either CO2 ice or were in thermal contact with CO2 ice [Kieffer et al., 2006]. In this paper, we present observations in the near-infrared at spatial resolutions that have previously been unavailable. We present further evidence that many of these features in the cryptic region are the result of cold jets, as first described by Kieffer [2000, 2007]. The adiabatic cooling of gas spewing downwind from the jets produces CO2 frost, thus forming the bright fans. The bright fans appear to be devoid of H2O ice, thus further supporting the hypothesis that they are formed from the downwind settling of CO2 frost. In some areas, the bright fans are adjacent to dark fans and appear to start from common vertices, while in other areas, bright fan-like deposits occur without the strong presence of dark fans. References: Kieffer, H.H. (2000) Annual Punctuated CO2 Slab-Ice and Jets on Mars, International Conference on Mars Polar Science and Exploration, p. 93. Kieffer, H.H. et al. (2006) Nature, 442,793-796. Kieffer, H.H. (2007) JGR, in press. Malin, M.C., M.H. Carr, G.E. Danielson, M.E. Davies, W.K. Hartmann, A.P. Ingersoll, P.B. James, H. Masursky, A.S. McEwen, L.A. Soderblom, P. Thomas, J. Veverka, M.A. Caplinger, M.A. Ravine, and T.A. Soulanille (1998) Early views of the Martian surface from the Mars orbiter camera of Mars global surveyor, Science, 279, 1681-1685.

  15. Superheated liquid carbon dioxide jets: setting up and phenomena

    NASA Astrophysics Data System (ADS)

    Engelmeier, Lena; Pollak, Stefan; Peters, Franz; Weidner, Eckhard

    2018-01-01

    We present an experimental investigation on liquid, superheated carbon dioxide jets. Our main goal is to identify the setting up requirements for generating coherent jets because these raise expectations on applications in the cleaning and cutting industry. The study leads us through a number of phenomena, which are described, categorized and explained. The experiments are based on compressed (350 MPa) and cooled carbon dioxide, which expands through a cylindrical nozzle into the atmosphere. The nozzle provokes hydraulic flip by a sharp-edge inlet leading to separation and constriction. Upstream-temperature and pressure are varied and the jet's structure and phase state are monitored by a high-speed camera. We observe coherent, liquid jets far from equilibrium, which demands the solid or gaseous state. Therefore, these jets are superheated. Carbon dioxide jets, like water jets, below certain nozzle diameters are subject to fluid dynamic instabilities resulting in breakup. Above certain diameters flashing jet breakup appears, which is associated with nucleation.

  16. An Aminopropyl Carbazole Derivative Induces Neurogenesis by Increasing Final Cell Division in Neural Stem Cells.

    PubMed

    Shin, Jae-Yeon; Kong, Sun-Young; Yoon, Hye Jin; Ann, Jihyae; Lee, Jeewoo; Kim, Hyun-Jung

    2015-07-01

    P7C3 and its derivatives, 1-(3,6-dibromo-9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol (1) and N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(3-methoxyphenyl)-4-methylbenzenesulfonamide (2), were previously reported to increase neurogenesis in rat neural stem cells (NSCs). Although P7C3 is known to increase neurogenesis by protecting newborn neurons, it is not known whether its derivatives also have protective effects to increase neurogenesis. In the current study, we examined how 1 induces neurogenesis. The treatment of 1 in NSCs increased numbers of cells in the absence of epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2), while not affecting those in the presence of growth factors. Compound 1 did not induce astrocytogenesis during NSC differentiation. 5-Bromo-2'-deoxyuridine (BrdU) pulsing experiments showed that 1 significantly enhanced BrdU-positive neurons. Taken together, our data suggest that 1 promotes neurogenesis by the induction of final cell division during NSC differentiation.

  17. Marginally fast cooling synchrotron models for prompt GRBs

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Barniol Duran, Rodolfo; Giannios, Dimitrios

    2018-05-01

    Previous studies have considered synchrotron as the emission mechanism for prompt gamma-ray bursts (GRBs). These works have shown that the electrons must cool on a time-scale comparable to the dynamic time at the source in order to satisfy spectral constraints while maintaining high radiative efficiency. We focus on conditions where synchrotron cooling is balanced by a continuous source of heating, and in which these constraints are naturally satisfied. Assuming that a majority of the electrons in the emitting region are contributing to the observed peak, we find that the energy per electron has to be E ≳ 20 GeV and that the Lorentz factor of the emitting material has to be very large 103 ≲ Γem ≲ 104, well in excess of the bulk Lorentz factor of the jet inferred from GRB afterglows. A number of independent constraints then indicate that the emitters must be moving relativistically, with Γ΄ ≈ 10, relative to the bulk frame of the jet and that the jet must be highly magnetized upstream of the emission region, σup ≳ 30. The emission radius is also strongly constrained in this model to R ≳ 1016 cm. These values are consistent with magnetic jet models where the dissipation is driven by magnetic reconnection that takes place far away from the base of the jet.

  18. Measurements in discrete hole film cooling behavior with periodic freestream unsteadiness

    NASA Astrophysics Data System (ADS)

    Fan, Danyang; Borup, Daniel D.; Elkins, Christopher J.; Eaton, John K.

    2018-03-01

    Magnetic resonance imaging (MRI) techniques were used to investigate a discrete, 30°-inclined round jet in crossflow subjected to periodic freestream unsteadiness. The freestream perturbations were generated by an oscillating airfoil upstream of the jet. The experiment operated at a Strouhal number of 0.014, channel Reynolds number of 25,000, hole Reynolds number of 2900, and jet blowing ratio of unity. 3D phase locked velocity measurements were obtained over the entire channel using magnetic resonance velocimetry (MRV). 3D time-averaged temperature measurements were acquired using magnetic resonance thermometry (MRT), along with phase-locked temperature measurements in the 2D centerplane of the channel and jet. The freestream flow just upstream of the jet was characterized by streamwise velocities ranging from 0.88 U_ {bulk} to 1.23 U_ {bulk} and wall-normal velocities from -0.11 U_ {bulk} to 0.02 U_ {bulk}. Flow inside the hole was observed to be insensitive to the freestream fluctuations, as velocities and temperatures in the hole remained largely unchanged throughout the cycle. Outside the hole, changes to the streamwise velocity produced an oscillating jet blowing ratio that led to the lengthening and shortening of the counter-rotating vortex pair (CVP) as well as a varying degree of coolant separation from the film cooled wall. During one portion of the cycle, downwashing freestream flow (i.e., flow with negative wall-normal velocities) promoted strong re-attachment and lateral spreading of the jet. Mean, spanwise-averaged film cooling effectiveness values were compared to those of an earlier experiment with a steady freestream and identical geometry, Reynolds number, and blowing ratio. Film cooling performance in the near-hole region was higher with steady freestream flow. However, at downstream locations, the downward transport of coolant by the periodic downwashing flow led to a higher mean surface effectiveness than in the steady case.

  19. Properties of extruded starch-poly(methyl acrylate) graft copolymers prepared from spherulites formed from amylose-oleic acid inclusion complexes

    USDA-ARS?s Scientific Manuscript database

    Mixtures of high amylose corn starch and oleic acid were processed by steam jet-cooking, and the dispersions were rapidly cooled to yield amylose-oleic acid inclusion complexes as sub-micron spherulites and spherulite aggregates. Dispersions of these spherulite particles were then graft polymerized ...

  20. Aminopropyl carbazole analogues as potent enhancers of neurogenesis.

    PubMed

    Yoon, Hye Jin; Kong, Sun-Young; Park, Min-Hye; Cho, Yongsung; Kim, Sung-Eun; Shin, Jae-Yeon; Jung, Sunghye; Lee, Jiyoun; Farhanullah; Kim, Hyun-Jung; Lee, Jeewoo

    2013-11-15

    Neural stem cells are multipotent and self-renewing cells that can differentiate into new neurons and hold great promise for treating various neurological disorders including multiple sclerosis, Parkinson's disease, and Alzheimer's disease. Small molecules that can trigger neurogenesis and neuroprotection are particularly useful not only because of their therapeutic implications but also because they can provide an invaluable tool to study the mechanisms of neurogenesis. In this report, we have developed and screened 25 aminopropyl carbazole derivatives that can enhance neurogenesis of cultured neural stem cells. Among these analogues, compound 9 demonstrated an excellent proneurogenic and neuroprotective activity with no apparent toxicity. We believe that compound 9 can serve as an excellent lead to develop various analogues and to study the underlying mechanisms of neurogenesis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Laser spectroscopy of jet-cooled NiF: Application of Hougen's approximate model for the low-lying electronic states

    NASA Astrophysics Data System (ADS)

    Arsenault, D. L.; Tokaryk, D. W.; Adam, A. G.; Linton, C.

    2016-06-01

    We have taken laser-induced fluorescence spectra of jet-cooled nickel monofluoride formed in a laser-ablation molecular beam source. Dispersed-fluorescence spectroscopy confirms predictions by Hougen (2011) that the parity assignments of levels in the Ω = 1 / 2 state 1570 cm-1 above the ground state should be reversed from those given in Krouti et al. (2002). The quality of the high-resolution spectra was sufficient to measure the [22.9]1.5-X1.5 band for five isotopologues of nickel and the [22.9]1.5-[0.25]0.5 band for molecules containing 58Ni and 60Ni. The spectral line positions for each isotopologue were fit to the Hamiltonian model given by Hougen, which was extended to allow for calculation of the parity-splitting parameter in the ground state.

  2. 75 FR 36630 - Carbazole Violet Pigment 23 from the People's Republic of China: Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... from the People's Republic of China: Final Results of Antidumping Duty Administrative Review AGENCY... the People's Republic of China (PRC). See Carbazole Violet Pigment 23 From the People's Republic of... (December 29, 2009) (Preliminary Results). This administrative review covers one exporter of the subject...

  3. Coupling hydrodynamics and radiation calculations for star-jet interactions in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    de la Cita, V. M.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Khangulyan, D.; Perucho, M.

    2016-06-01

    Context. Stars and their winds can contribute to the non-thermal emission in extragalactic jets. Because of the complexity of jet-star interactions, the properties of the resulting emission are closely linked to those of the emitting flows. Aims: We simulate the interaction between a stellar wind and a relativistic extragalactic jet and use the hydrodynamic results to compute the non-thermal emission under different conditions. Methods: We performed relativistic axisymmetric hydrodynamical simulations of a relativistic jet interacting with a supersonic, non-relativistic stellar wind. We computed the corresponding streamlines out of the simulation results and calculated the injection, evolution, and emission of non-thermal particles accelerated in the jet shock, focusing on electrons or e±-pairs. Several cases were explored, considering different jet-star interaction locations, magnetic fields, and observer lines of sight. The jet luminosity and star properties were fixed, but the results are easily scalable when these parameters are changed. Results: Individual jet-star interactions produce synchrotron and inverse Compton emission that peaks from X-rays to MeV energies (depending on the magnetic field), and at ~100-1000 GeV (depending on the stellar type), respectively. The radiation spectrum is hard in the scenarios explored here as a result of non-radiative cooling dominance, as low-energy electrons are efficiently advected even under relatively high magnetic fields. Interactions of jets with cold stars lead to an even harder inverse Compton spectrum because of the Klein-Nishina effect in the cross section. Doppler boosting has a strong effect on the observer luminosity. Conclusions: The emission levels for individual interactions found here are in the line of previous, more approximate, estimates, strengthening the hypothesis that collective jet-star interactions could significantly contribute at high energies under efficient particle acceleration.

  4. Flow visualization study of the effect of injection hole geometry on an inclined jet in crossflow

    NASA Technical Reports Server (NTRS)

    Simon, F. F.; Ciancone, M. L.

    1985-01-01

    A flow visualization was studied by using neutrally buoyant, helium-filled soap bubbles, to determine the effect of injection hole geometry on the trajectory of an air jet in a crossflow and to investigate the mechanisms involved in jet deflection. Experimental variables were the blowing rate, and the injection hole geometry cusp facing upstream (CUS), cusp facing downstream (CDS), round, swirl passage, and oblong. It is indicated that jet deflection is governed by both the pressure drag forces and the entrainment of free-stream fluid into the jet flow. For injection hole geometries with similar cross-sectional areas and similar mass flow rates, the jet configuration with the larger aspect ratio experienced a greater deflection. Entrainment arises from lateral shearing forces on the sides of the jet, which set up a dual vortex motion within the jet and thereby cause some of the main-stream fluid momentum to be swept into the jet flow. This additional momentum forces the jet nearer the surface. Of the jet configurations, the oblong, CDS, and CUS configutations exhibited the largest deflections. The results correlate well with film cooling effectiveness data, which suggests a need to determine the jet exit configuration of optimum aspect ratio to provide maximum film cooling effectiveness.

  5. Flow visualization study of the effect of injection hole geometry on an inclined jet in crossflow

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.; Ciancone, Michael L.

    1987-01-01

    A flow visualization was studied by using neutrally buoyant, helium-filled soap bubbles, to determine the effect of injection hole geometry on the trajectory of an air jet in a crossflow and to investigate the mechanisms involved in jet deflection. Experimental variables were the blowing rate, and the injection hole geometry cusp facing upstream (CUS), cusp facing downstream (CDS), round, swirl passage, and oblong. It is indicated that jet deflection is governed by both the pressure drag forces and the entrainment of free-stream fluid into the jet flow. For injection hole geometries with similar cross-sectional areas and similar mass flow rates, the jet configuration with the larger aspect ratio experienced a greater deflection. Entrainment arises from lateral shearing forces on the sides of the jet, which set up a dual vortex motion within the jet and thereby cause some of the main-stream fluid momentum to be swept into the jet flow. This additional momentum forces the jet nearer the surface. Of the jet configurations, the oblong, CDS, and CUS configurations exhibited the largest deflections. The results correlate well with film cooling effectiveness data, which suggests a need to determine the jet exit configuration of optimum aspect ratio to provide maximum film cooling effectiveness.

  6. Infrared imaging results of an excited planar jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrington, R.B.

    1991-12-01

    Planar jets are used for many applications including heating, cooling, and ventilation. Generally such a jet is designed to provide good mixing within an enclosure. In building applications, the jet provides both thermal comfort and adequate indoor air quality. Increased mixing rates may lead to lower short-circuiting of conditioned air, elimination of dead zones within the occupied zone, reduced energy costs, increased occupant comfort, and higher indoor air quality. This paper discusses using an infrared imaging system to show the effect of excitation of a jet on the spread angle and on the jet mixing efficiency. Infrared imaging captures amore » large number of data points in real time (over 50,000 data points per image) providing significant advantages over single-point measurements. We used a screen mesh with a time constant of approximately 0.3 seconds as a target for the infrared camera to detect temperature variations in the jet. The infrared images show increased jet spread due to excitation of the jet. Digital data reduction and analysis show change in jet isotherms and quantify the increased mixing caused by excitation. 17 refs., 20 figs.« less

  7. Dispersed-Fluorescence Spectroscopy of Jet-Cooled Calcium Ethoxide Radical (CaOC_2H_5)

    NASA Astrophysics Data System (ADS)

    Paul, Anam C.; Reza, Md Asmaul; Liu, Jinjun

    2016-06-01

    Metal-containing free radicals are important intermediates in metal-surface reactions and in the interaction between metals and organic molecules. In the present work, dispersed fluorescence (DF) spectra of the calcium ethoxide radical (CaOC_2H_5) have been obtained by pumping the {tilde A^2}{A}' ← {tilde X^2}{A}' and the {tilde B^2}{A}'' ← {tilde X^2}{A}' origin bands in its laser-induced fluorescence (LIF) spectrum. CaOC_2H_5 radicals were produced by 1064 nm laser ablation of calcium grains in the presence of ethanol under jet-cooled conditions. Dominant transitions in the vibrationally resolved DF spectra are well reproduced using Franck-Condon factors predicted by complete active space self-consistent (CASSCF) calculations. Differences in transition intensities between the {tilde A^2}{A}' → {tilde X^2}{A}' and the {tilde B^2}{A}'' → {tilde X^2}{A}' DF spectra are attributed to the pseudo-Jahn-Teller interaction between the tilde A ^2 A' and the tilde B ^2 A'' states. Collision-induced population transfer between these two excited electronic states results in additional peaks in the DF spectra.

  8. Efficient CO 2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiang; Mahurin, Shannon M.; An, Shu-Hao

    2014-05-02

    We synthesized a porous triazine and carbazole bifunctionalized task-specific polymer using a facile Friedel–Crafts reaction. We found that the resultant porous framework exhibited excellent CO 2 uptake (18.0 wt%, 273 K and 1 bar) and good adsorption selectivity for CO 2 over N 2.

  9. Numerical Study on the Sensitivity of Film Cooling CFD Results to Experimental and Numerical Uncertainties

    NASA Astrophysics Data System (ADS)

    El-Gabry, Lamyaa A.; Heidmann, James D.

    2013-06-01

    Film cooling is used in a wide range of industrial and engineering applications; one of the most important is in gas turbine cooling. The intent of film cooling is to provide a layer of cool film between the surface and the hot gas. Predicting film-cooling characteristics, particularly at high blowing ratios where the film is likely to be detached from the surface, is a challenge due to the complex three-dimensional and possibly anisotropic nature of the flow. Despite the growth of more sophisticated techniques for modeling turbulence, such as large eddy simulation (LES), the most commonly used methods in design are Reynolds-Averaged Navier Stokes (RANS) methods that employ a two-equation turbulence model for specifying the eddy viscosity. Although these models have deficiencies, they continue to be used throughout industry because they offer reasonable turnaround time as compared to LES or other methods. This paper studies in detail two cases, one of high blowing ratio (off-design condition) of 2.0 and low blowing ratio of 0.5, and compares RANS-based computational fluid dynamics (CFD) results with experimental data for flow field temperatures and centerline, lateral, and span-averaged film effectiveness for a 35-degree circular jet. The effects of mainstream turbulence conditions, boundary layer thickness, and numerical dissipation are evaluated and found to have minimal impact in the wake region of separated films (i.e., they cannot account for the discrepancy between measured and predicted CFD results in the wake region). Analyses of low blowing ratio cases are in good agreement with data; however, there are some smaller discrepancies, particularly in lateral spreading of the jet.

  10. AGN jet feedback on a moving mesh: cocoon inflation, gas flows and turbulence

    NASA Astrophysics Data System (ADS)

    Bourne, Martin A.; Sijacki, Debora

    2017-12-01

    In many observed galaxy clusters, jets launched by the accretion process on to supermassive black holes, inflate large-scale cavities filled with energetic, relativistic plasma. This process is thought to be responsible for regulating cooling losses, thus moderating the inflow of gas on to the central galaxy, quenching further star formation and maintaining the galaxy in a red and dead state. In this paper, we implement a new jet feedback scheme into the moving mesh-code AREPO, contrast different jet injection techniques and demonstrate the validity of our implementation by comparing against simple analytical models. We find that jets can significantly affect the intracluster medium (ICM), offset the overcooling through a number of heating mechanisms, as well as drive turbulence, albeit within the jet lobes only. Jet-driven turbulence is, however, a largely ineffective heating source and is unlikely to dominate the ICM heating budget even if the jet lobes efficiently fill the cooling region, as it contains at most only a few per cent of the total injected energy. We instead show that the ICM gas motions, generated by orbiting substructures, while inefficient at heating the ICM, drive large-scale turbulence and when combined with jet feedback, result in line-of-sight velocities and velocity dispersions consistent with the Hitomi observations of the Perseus cluster.

  11. Crystallization and preliminary X-ray diffraction studies of the ferredoxin reductase component in the Rieske nonhaem iron oxygenase system carbazole 1,9a-dioxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashikawa, Yuji; Uchimura, Hiromasa; Fujimoto, Zui

    2007-06-01

    The NAD(P)H:ferredoxin oxidoreductase in carbazole 1,9a-dioxygenase from Janthinobacterium sp. J3 was crystallized and diffraction data were collected to 2.60 Å resolution. Carbazole 1,9a-dioxygenase (CARDO), which consists of an oxygenase component (CARDO-O) and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), catalyzes dihydroxylation at the C1 and C9a positions of carbazole. CARDO-R was crystallized at 277 K using the hanging-drop vapour-diffusion method with the precipitant PEG 8000. Two crystal types (types I and II) were obtained. The type I crystal diffracted to a maximum resolution of 2.80 Å and belonged to space group P4{sub 2}2{sub 1}2, with unit-cell parameters amore » = b = 158.7, c = 81.4 Å. The type II crystal was obtained in drops from which type I crystals had been removed; it diffracted to 2.60 Å resolution and belonged to the same space group, with unit-cell parameters a = b = 161.8, c = 79.5 Å.« less

  12. The Triggering Mechanism of Quiet-Region Coronal Jet Eruptions: Flux Cancelation

    NASA Technical Reports Server (NTRS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2017-01-01

    Coronal jets are frequent transient features on the Sun, observed in EUV and X-ray emissions. They occur in active regions, quiet Sun and coronal holes, and appear as a bright spire with base brightenings. Recent studies show that many coronal jets are driven by the eruption of a minifilament. Here we investigate the magnetic cause of jet-driving minifilament eruptions. We study ten randomly-found on-disk quiet-region coronal jets using SDO/AIA intensity images and SDO/HMI magnetograms. For all ten events, we track the evolution of photospheric magnetic flux in the jet-base region in EUV images and find that (a) a cool (transition-region temperature) minifilament is present prior to each jet eruption; (b) the pre-eruption minifilament resides above the polarity-inversion line between majority-polarity and minority-polarity magnetic flux patches; (c) the opposite-polarity flux patches converge and cancel with each other; (d) the cancelation between the majority-polarity and minority-polarity flux patches eventually destabilizes the field holding the minifilament to erupt outwards; (e) the envelope of the erupting field barges into ambient oppositely-directed far-reaching field and undergoes external reconnection (interchange reconnection); (f) the external reconnection opens the envelope field and the minifilament field inside, allowing reconnected-heated hot material and cool minifilament material to escape along the far-reaching field, producing the jet spire. In summary, we found that each of our ten jets resulted from a minifilament eruption following flux cancelation at the magnetic neutral line under the pre-eruption minifilament. These observations show that flux cancelation is usually the trigger of quiet-region coronal jet eruptions.

  13. Numerical investigation of a heat transfer characteristics of an impingement cooling system with non-uniform temperature on a cooled surface

    NASA Astrophysics Data System (ADS)

    Marzec, K.; Kucaba-Pietal, A.

    2016-09-01

    A series of numerical analysis have been performed to investigate heat transfer characteristics of an impingement cooling array of ten jets directed to the flat surface with different heat flux qw(x). A three-dimensional finite element model was used to solve equations of heat and mass transfer. The study focused on thermal stresses reduction on a cooled surface and aims at answering the question how the Nusselt number distribution on the cooled surface is affected by various inlet flow parameters for different heat flux distributions. The setup consists of a cylindrical plenum with an inline array of ten impingement jets. Simulation has been performed using the Computational Fluid Dynamics (CFD) code Ansys CFX. The k - ω shear stress transport (SST) turbulence model is used in calculations. The numerical analysis of the different mesh density results in good convergence of the GCI index, what excluded mesh size dependency. The physical model is simplified by using the steady state analysis and the incompressible and viscous flow of the fluid.

  14. Transverse jet shear layer instabilities and their control

    NASA Astrophysics Data System (ADS)

    Karagozian, Ann

    2013-11-01

    The jet in crossflow, or transverse jet, is a canonical flowfield that has relevance to engineering systems ranging from dilution jets and film cooling for gas turbine engines to thrust vector control and fuel injection in high speed aerospace vehicles to environmental control of effluent from chimney and smokestack plumes. Over the years, our UCLA Energy and Propulsion Research Lab's studies on this flowfield have focused on the dynamics of the vorticity associated with equidensity and variable density jets in crossflow, including the stability characteristics of the jet's upstream shear layer. A range of different experimental diagnostics have been used to study the jet's upstream shear layer, whereby a transition from convectively unstable behavior at high jet-to-crossflow momentum flux ratios to absolutely unstable flow at low momentum flux and/or density ratios is identified. These differences in shear layer stability characteristics have a profound effect on how one employs external excitation to control jet penetration, spread, and mixing, depending on the flow regime and specific engineering application. These control strategies, and challenges for future research directions, will be identified in this presentation.

  15. Two competing ionization processes in electrospray mass spectrometry of indolyl benzo[b]carbazoles: formation of M⁺• versus [M + H]⁺.

    PubMed

    Zhang, Xiaoping; Jiang, Kezhi; Zou, Jingfeng; Li, Zuguang

    2015-02-15

    Ionization in electrospray ionization mass spectrometry (ESI-MS) mainly occurs as a result of acid-base reactions or coordination with metal cations. Formation of the radical cation M(+•) in the ESI process has attracted our interest to perform further investigation. A series of indolyl benzo[b]carbazoles were investigated using a quadrupole ion trap mass spectrometer equipped with an ESI source or an atmospheric pressure chemical ionization (APCI) source in the positive-ion mode. Theoretical calculations were performed using the density functional theory (DFT) method at the B3LYP/6-31G(d) level. Both the radical ion M(+•) and the protonated molecule [M + H](+) were obtained by ESI-MS analysis of indolyl benzo[b]carbazoles, while only [M + H](+) was observed in the APCI-MS analysis. The relative intensities of M(+•) and [M + H](+) were significantly affected by several ESI operating parameters and the nature of the substituents. Formation of M(+•) and [M + H](+) was rationalized as two competing ionization processes in the ESI-MS analysis of indolyl benzo[b]carbazoles. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Free stream turbulence and density ratio effects on the interaction region of a jet in a cross flow

    NASA Technical Reports Server (NTRS)

    Wark, C. E.; Foss, J. F.

    1984-01-01

    Jets of low temperature air are introduced into the aft sections of gas turbine combustors for the purpose of cooling the high temperature gases and quenching the combustion reactions. Research studies, motivated by this complex flow field, have been executed by introducing a heated jet into the cross stream of a wind tunnel. The investigation by Kamotani and Greber stands as a prime example of such investigations and it serves as the principal reference for the present study. The low disturbance level of the cross stream, in their study and in similar research investigations, is compatible with an interest in identifying the basic features of this flow field. The influence of the prototypes' strongly disturbed cross flow is not, however, made apparent in these prior investigations.

  17. 75 FR 23239 - Carbazole Violet Pigment 23 From India: Extension of Time Limit for Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... Register the preliminary results of the administrative review of the antidumping duty order on CVP 23 from... DEPARTMENT OF COMMERCE International Trade Administration [A-533-838] Carbazole Violet Pigment 23 From India: Extension of Time Limit for Final Results of Antidumping Duty Administrative Review AGENCY...

  18. 75 FR 25840 - Carbazole Violet Pigment 23 from the People's Republic of China: Extension of Time Limit for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-892] Carbazole Violet Pigment 23... Administrative Review AGENCY: Import Administration, International Trade Administration, Department of Commerce... Department) published the preliminary results of the administrative review of the antidumping duty order on...

  19. Crystal structure of 10-ethyl-7-(9-ethyl-9H-carbazol-3-yl)-10H-pheno-thia-zine-3-carbaldehyde.

    PubMed

    Mahalakshmi, Vairavan; Gouthaman, Siddan; Sugunalakshmi, Madurai; Bargavi, Srinivasan; Lakshmi, Srinivasakannan

    2017-05-01

    The title compound, C 29 H 24 N 2 OS, contains a pheno-thia-zine moiety linked to a planar carbazole unit (r.m.s. deviation = 0.029 Å) by a C-C single bond. The pheno-thia-zine moiety possesses a typical non-planar butterfly structure with a fold angle of 27.36 (9)° between the two benzene rings. The dihedral angle between the mean planes of the carbazole and pheno-thia-zine units is 27.28 (5)°. In the crystal, mol-ecules stack in pairs along the c -axis direction, linked by offset π-π inter-actions [inter-centroid distance = 3.797 (1) Å]. There are C-H⋯π inter-actions present linking these dimers to form a three-dimensional structure.

  20. The complex magnetic field topology of the cool Ap star 49 Cam

    NASA Astrophysics Data System (ADS)

    Silvester, J.; Kochukhov, O.; Rusomarov, N.; Wade, G. A.

    2017-10-01

    49 Cam is a cool magnetic chemically peculiar star that has been noted for showing strong, complex Zeeman linear polarization signatures. This paper describes magnetic and chemical surface maps obtained for 49 Cam using the Invers10 magnetic Doppler imaging code and high-resolution spectropolarimetric data in all four Stokes parameters collected with the ESPaDOnS and Narval spectropolarimeters at the Canada-France-Hawaii Telescope and Pic du Midi Observatory. The reconstructed magnetic field maps of 49 Cam show a relatively complex structure. Describing the magnetic field topology in terms of spherical harmonics, we find significant contributions of modes up to ℓ = 3, including toroidal components. Observations cannot be reproduced using a simple low-order multipolar magnetic field structure. 49 Cam exhibits a level of field complexity that has not been seen in magnetic maps of other cool Ap stars. Hence, we concluded that relatively complex magnetic fields are observed in Ap stars at both low and high effective temperatures. In addition to mapping the magnetic field, we also derive surface abundance distributions of nine chemical elements, including Ca, Sc, Ti, Cr, Fe, Ce, Pr, Nd and Eu. Comparing these abundance maps with the reconstructed magnetic field geometry, we find no clear relationship of the abundance distributions with the magnetic field for some elements. However, for other elements some distinct patterns are found. We discuss these results in the context of other recent magnetic mapping studies and theoretical predictions of radiative diffusion.

  1. Crystallization and preliminary X-ray diffraction studies of a novel ferredoxin involved in the dioxygenation of carbazole by Novosphingobium sp. KA1

    PubMed Central

    Umeda, Takashi; Katsuki, Junichi; Usami, Yusuke; Inoue, Kengo; Noguchi, Haruko; Fujimoto, Zui; Ashikawa, Yuji; Yamane, Hisakazu; Nojiri, Hideaki

    2008-01-01

    Novosphingobium sp. KA1 uses carbazole 1,9a-dioxygenase (CARDO) as the first dioxygenase in its carbazole-degradation pathway. The CARDO of KA1 contains a terminal oxygenase component and two electron-transfer components: ferredoxin and ferredoxin reductase. In contrast to the CARDO systems of other species, the ferredoxin component of KA1 is a putidaredoxin-type protein. This novel ferredoxin was crystallized at 293 K by the hanging-drop vapour-diffusion method using PEG MME 550 as the precipitant under anaerobic conditions. The crystals belong to space group C2221 and diffraction data were collected to a resolution of 1.9 Å (the diffraction limit was 1.6 Å). PMID:18607094

  2. High-efficiency emitting materials based on phenylquinoline/carbazole-based compounds for organic light emitting diode applications

    NASA Astrophysics Data System (ADS)

    Jin, Sung-Ho

    2009-08-01

    Highly efficient light-emitting materials based on phenylquinoline-carbazole derivative has been synthesized for organic-light emitting diodes (OLEDs). The materials form high quality amorphous thin films by thermal evaporation and the energy levels can be easily adjusted by the introduction of different electron donating and electron withdrawing groups on carbazoylphenylquinoline. Non-doped deep-blue OLEDs using Et-CVz-PhQ as the emitter show bright emission (CIE coordinates, x=0.156, y=0.093) with an external quantum efficiency of 2.45 %. Furthermore, the material works as an excellent host material for BCzVBi to get high-performance OLEDs with excellent deep-blue CIE coordinates (x=0.155, y=0.157), high power efficiency (5.98 lm/W), and high external quantum efficiency (5.22 %). Cyclometalated Ir(III) μ-chloride bridged dimers were synthesized by iridium trichloride hydrate with an excess of our developed deep-blue emitter, Et-CVz-PhQ. The Ir(III) complexes were prepared by the dimers with the corresponding ancillary ligands. The chloride bridged diiridium complexes can be easily converted to mononuclear Ir(III) complexes by replacing the two bridging chlorides with bidentate monoanionic ancillary ligands. Among the various types of ancillary ligands, we firstly used picolinic acid N-oxide, including picolinic acid and acetylacetone as an ancillary ligands for Ir(III) complexes. The PhOLEDs also shows reasonably high brightness and good luminance efficiency of 20,000 cd/m2 and 12 cd/A, respectively.

  3. Regeneratively cooled transition duct with transversely buffered impingement nozzles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Jay A; Lee, Ching-Pang; Crawford, Michael E

    2015-04-21

    A cooling arrangement (56) having: a duct (30) configured to receive hot gases (16) from a combustor; and a flow sleeve (50) surrounding the duct and defining a cooling plenum (52) there between, wherein the flow sleeve is configured to form impingement cooling jets (70) emanating from dimples (82) in the flow sleeve effective to predominately cool the duct in an impingement cooling zone (60), and wherein the flow sleeve defines a convection cooling zone (64) effective to cool the duct solely via a cross-flow (76), the cross-flow comprising cooling fluid (72) exhausting from the impingement cooling zone. In themore » impingement cooling zone an undimpled portion (84) of the flow sleeve tapers away from the duct as the undimpled portion nears the convection cooling zone. The flow sleeve is configured to effect a greater velocity of the cross-flow in the convection cooling zone than in the impingement cooling zone.« less

  4. A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.

    2008-01-01

    A concept for mitigating the adverse effects of jet vorticity and liftoff at high blowing ratios for turbine film cooling flows has been developed and studied at NASA Glenn Research Center. This "anti-vortex" film cooling concept proposes the addition of two branched holes from each primary hole in order to produce a vorticity counter to the detrimental kidney vortices from the main jet. These vortices typically entrain hot freestream gas and are associated with jet separation from the turbine blade surface. The anti-vortex design is unique in that it requires only easily machinable round holes, unlike shaped film cooling holes and other advanced concepts. The anti-vortex film cooling hole concept has been modeled computationally for a single row of 30deg angled holes on a flat surface using the 3D Navier-Stokes solver Glenn-HT. A modification of the anti-vortex concept whereby the branched holes exit adjacent to the main hole has been studied computationally for blowing ratios of 1.0 and 2.0 and at density ratios of 1.0 and 2.0. This modified concept was selected because it has shown the most promise in recent experimental studies. The computational results show that the modified design improves the film cooling effectiveness relative to the round hole baseline and previous anti-vortex cases, in confirmation of the experimental studies.

  5. Modeling of Fuel Film Cooling on Chamber Hot Wall

    DTIC Science & Technology

    2013-12-01

    flow at supercritical pressure. The fuel jet and the cross-flow interact. Some part of the jet is stripped off and entrained by the hot gas...modelers. The supercritical pressure makes information on equation of state and transport properties hard to come by. The large temperature range...the modeling of hydrocarbon fuel film cooling at supercritical pressures. A relevant recent simulation study by Yang and Sun [1] used a finite-rate

  6. The Outer X-ray and Radio Jets in R Aquarii

    NASA Technical Reports Server (NTRS)

    Kellogg, E.; Anderson, C.; DePasquale, J.; Korreck, K.; Nichols, J.; Sokoloski, J.; Krauss, M.; Pedelty, J.

    2007-01-01

    The symbiotic star R Aquarii has been known to emit collimated outflow in the form of jets for many years. We report on five years of observations in x-rays and radio using Chandra, VLA and XMM-Newton. We discuss the evolution of the outer thermal jets, including new observations performed in June and October 2005. We see motion of the NE x-ray jet at a projected velocity of about 600 km (sup -1). The SW x-ray jet has almost disappeared between 2000.7 and 2004.0. An XMM grating spectrum of the NE jet confirms the existence of O VII He-like lines, and offers the possibility of doing plasma density diagnostics. We comment on on the physics of cooling in the SW jet and implications for the density of the x-ray emitting gas, the heating mechanism, and mass and kinetic energy in the jets and its implications for the system as a whole. This work was supported by NASA and NSF.

  7. Feasibility Study on Cutting HTPB Propellants with Abrasive Water Jet

    NASA Astrophysics Data System (ADS)

    Jiang, Dayong; Bai, Yun

    2018-01-01

    Abrasive water jet is used to carry out the experiment research on cutting HTPB propellants with three components, which will provide technical support for the engineering treatment of waste rocket motor. Based on the reliability theory and related scientific research results, the safety and efficiency of cutting sensitive HTPB propellants by abrasive water jet were experimentally studied. The results show that the safety reliability is not less than 99.52% at 90% confidence level, so the safety is adequately ensured. The cooling and anti-friction effect of high-speed water jet is the decisive factor to suppress the detonation of HTPB propellant. Compared with pure water jet, cutting efficiency was increased by 5% - 87%. The study shows that abrasive water jets meet the practical use for cutting HTPB propellants.

  8. Studies of supersonic, radiative plasma jet interaction with gases at the Prague Asterix Laser System facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolaie, Ph.; Stenz, C.; Tikhonchuk, V.

    2008-08-15

    The interaction of laser driven jets with gas puffs at various pressures is investigated experimentally and is analyzed by means of numerical tools. In the experiment, a combination of two complementary diagnostics allowed to characterize the main structures in the interaction zone. By changing the gas composition and its density, the plasma cooling time can be controlled and one can pass from a quasiadiabatic outflow to a strongly radiation cooling jet. This tuning yields hydrodynamic structures very similar to those seen in astrophysical objects; the bow shock propagating through the gas, the shocked materials, the contact discontinuity, and the Machmore » disk. From a dimensional analysis, a scaling is made between both systems and shows the study relevance for the jet velocity, the Mach number, the jet-gas density ratio, and the dissipative processes. The use of a two-dimensional radiation hydrodynamic code, confirms the previous analysis and provides detailed structure of the interaction zone and energy repartition between jet and surrounding gases.« less

  9. MAGNETIC FLUX CANCELATION AS THE TRIGGER OF SOLAR QUIET-REGION CORONAL JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    We report observations of 10 random on-disk solar quiet-region coronal jets found in high-resolution extreme ultraviolet (EUV) images from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly and having good coverage in magnetograms from the SDO /Helioseismic and Magnetic Imager (HMI). Recent studies show that coronal jets are driven by the eruption of a small-scale filament (called a minifilament ). However, the trigger of these eruptions is still unknown. In the present study, we address the question: what leads to the jet-driving minifilament eruptions? The EUV observations show that there is a cool-transition-region-plasma minifilament present prior to each jetmore » event and the minifilament eruption drives the jet. By examining pre-jet evolutionary changes in the line of sight photospheric magnetic field, we observe that each pre-jet minifilament resides over the neutral line between majority-polarity and minority-polarity patches of magnetic flux. In each of the 10 cases, the opposite-polarity patches approach and merge with each other (flux reduction between 21% and 57%). After several hours, continuous flux cancelation at the neutral line apparently destabilizes the field holding the cool-plasma minifilament to erupt and undergo internal reconnection, and external reconnection with the surrounding coronal field. The external reconnection opens the minifilament field allowing the minifilament material to escape outward, forming part of the jet spire. Thus, we found that each of the 10 jets resulted from eruption of a minifilament following flux cancelation at the neutral line under the minifilament. These observations establish that magnetic flux cancelation is usually the trigger of quiet-region coronal jet eruptions.« less

  10. Evolution of the mean jet shape and dijet asymmetry distribution of an ensemble of holographic jets in strongly coupled plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey

    Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by theirmore » passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving “downward” into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we

  11. Evolution of the mean jet shape and dijet asymmetry distribution of an ensemble of holographic jets in strongly coupled plasma

    DOE PAGES

    Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey; ...

    2018-02-02

    Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by theirmore » passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving “downward” into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we

  12. Evolution of the mean jet shape and dijet asymmetry distribution of an ensemble of holographic jets in strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey; van der Schee, Wilke

    2018-02-01

    Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by their passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving "downward" into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we have built

  13. Flame-Sprayed Y2O3 Films with Metal-EDTA Complex Using Various Cooling Agents

    NASA Astrophysics Data System (ADS)

    Komatsu, Keiji; Toyama, Ayumu; Sekiya, Tetsuo; Shirai, Tomoyuki; Nakamura, Atsushi; Toda, Ikumi; Ohshio, Shigeo; Muramatsu, Hiroyuki; Saitoh, Hidetoshi

    2017-01-01

    In this study, yttrium oxide (Y2O3) films were synthesized from a metal-ethylenediaminetetraacetic (metal-EDTA) complex by employing a H2-O2 combustion flame. A rotation apparatus and various cooling agents (compressed air, liquid nitrogen, and atomized purified water) were used during the synthesis to control the thermal history during film deposition. An EDTA·Y·H complex was prepared and used as the staring material for the synthesis of Y2O3 films with a flame-spraying apparatus. Although thermally extreme environments were employed during the synthesis, all of the obtained Y2O3 films showed only a few cracks and minor peeling in their microstructures. For instance, the Y2O3 film synthesized using the rotation apparatus with water atomization units exhibited a porosity of 22.8%. The maximum film's temperature after deposition was 453 °C owing to the high heat of evaporation of water. Cooling effects of substrate by various cooling units for solidification was dominated to heat of vaporization, not to unit's temperatures.

  14. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  15. An Electron-positron Jet Model for the Galactic Center

    NASA Technical Reports Server (NTRS)

    Burns, M. L.

    1983-01-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transportating pairs away from the massive core. An electromagnetic cascade shower would develop first from ambient soft protons and then nonlinearly; the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  16. An electron-positron jet model for the Galactic center

    NASA Technical Reports Server (NTRS)

    Burns, M. L.

    1983-01-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transporting pairs away from the massive core. An electomagnetic cascade shower would develop first from ambient soft protons and then nonlinearly, the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  17. An electron-positron jet model for the Galactic center

    NASA Astrophysics Data System (ADS)

    Burns, M. L.

    1983-07-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transporting pairs away from the massive core. An electomagnetic cascade shower would develop first from ambient soft protons and then nonlinearly, the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  18. An electron-positron jet model for the galactic center

    NASA Astrophysics Data System (ADS)

    Burns, M. L.

    1983-03-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transportating pairs away from the massive core. An electromagnetic cascade shower would develop first from ambient soft protons and then nonlinearly; the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  19. Validation of a reduced-order jet model for subsonic and underexpanded hydrogen jets

    DOE PAGES

    Li, Xuefang; Hecht, Ethan S.; Christopher, David M.

    2016-01-01

    Much effort has been made to model hydrogen releases from leaks during potential failures of hydrogen storage systems. A reduced-order jet model can be used to quickly characterize these flows, with low computational cost. Notional nozzle models are often used to avoid modeling the complex shock structures produced by the underexpanded jets by determining an “effective” source to produce the observed downstream trends. In our work, the mean hydrogen concentration fields were measured in a series of subsonic and underexpanded jets using a planar laser Rayleigh scattering system. Furthermore, we compared the experimental data to a reduced order jet modelmore » for subsonic flows and a notional nozzle model coupled to the jet model for underexpanded jets. The values of some key model parameters were determined by comparisons with the experimental data. Finally, the coupled model was also validated against hydrogen concentrations measurements for 100 and 200 bar hydrogen jets with the predictions agreeing well with data in the literature.« less

  20. Evaluation of water cooled supersonic temperature and pressure probes for application to 1366 K flows

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas; Seiner, John M.

    1990-01-01

    Water cooled supersonic probes are developed to investigate total pressure, static pressure, and total temperature in high-temperature jet plumes and thereby determine the mean flow properties. Two probe concepts, designed for operation at up to 1366 K in a Mach 2 flow, are tested on a water cooled nozzle. The two probe designs - the unsymmetric four-tube cooling configuration and the symmetric annular cooling design - take measurements at 755, 1089, and 1366 K of the three parameters. The cooled total and static pressure readings are found to agree with previous test results with uncooled configurations. The total-temperature probe, however, is affected by the introduction of water coolant, and effect which is explained by the increased heat transfer across the thermocouple-bead surface. Further investigation of the effect of coolant on the temperature probe is proposed to mitigate the effect and calculate more accurate temperatures in jet plumes.

  1. Measurement and Empirical Correlation of Transpiration-Cooling Parameters on a 25 degree Cone in a Turbulent Boundary Layer in Both Free Flight and a Hot-Gas Jet

    NASA Technical Reports Server (NTRS)

    Walton, Thomas E., Jr.; Rashis, Bernard

    1961-01-01

    Transpiration-cooling parameters are presented for a turbulent boundary layer on a cone configuration with a total angle of 250 which was tested in both free flight and in an ethylene-heated high-temperature jet at a Mach number of 2.0. The flight-tested cone was flown to a maximum Mach number of 4.08 and the jet tests were conducted at stagnation temperatures ranging from 937 R to 1,850 R. In general, the experimental heat transfer was in good agreement with the theoretical values. Inclusion of the ratio of local stream temperature to wall temperature in the nondimensional flow rate parameter enabled good correlation of both sets of transpiration data. The measured pressure at the forward station coincided with the theoretical pressure over a sharp cone; however, the measured pressure increased with distance from the nose tip.

  2. Computation of the temperature distribution in cooled radial inflow turbine guide vanes

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Hosny, W.; Hamed, A.

    1977-01-01

    A two-dimensional finite-difference numerical technique is presented to determine the temperature distribution of an internally-cooled blade of radial turbine guide vanes. A simple convection cooling is assumed inside the guide vane. Such an arrangement results in relatively small cooling effectiveness at the leading edge and at the trailing edge. Heat transfer augmentation in these critical areas may be achieved by using impingement jets and film cooling. A computer program is written in Fortran IV for IBM 370/165 computer.

  3. Axial plasma jet characterization on a microsecond x-pinch

    NASA Astrophysics Data System (ADS)

    Jaar, G. S.; Appartaim, R. K.

    2018-06-01

    The jets produced on a microsecond x-pinch (quarter period T1/4 ˜ 1 μs, dI/dt ˜ 0.35 kA/ns) have been studied through light-field schlieren imaging and optical framing photographs across 4 different materials: Al, Ti, Mo, and W. The axial velocity of the jets was measured and exhibited no dependence on atomic number (Z) of the wire material. There may be a dependence on another factor(s), namely, the current rise rate. The average axial jet velocity across all four materials was measured to be 2.9 ± 0.5 × 106 cm/s. The average jet diameter and the average radial jet expansion rate displayed inverse relationships with Z, which may be attributed to radiative cooling and inertia. Asymmetry between the anode and cathode jet behavior was observed and is thought to be caused by electron beam activity. The mean divergence angle of the jet was found to vary with wire material and correlated inversely with the thermal conductivity of the cold wire. Optical images indicated a two-layer structure in Al jets which may be caused by standing shocks and resemble phenomena observed in astrophysical jet formation and collimation. Kinks in the jets have also been observed which may be caused by m = 1 MHD instability modes or by the interaction of the jet with the electrode plasma.

  4. On the structure and stability of magnetic tower jets

    DOE PAGES

    Huarte-Espinosa, M.; Frank, A.; Blackman, E. G.; ...

    2012-09-05

    Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales <~ 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models,more » the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Here, unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.« less

  5. Heat Transfer of Confined Impinging Air-water Mist Jet

    NASA Astrophysics Data System (ADS)

    Chang, Shyy Woei; Su, Lo May

    This paper describes the detailed heat transfer distributions of an atomized air-water mist jet impinging orthogonally onto a confined target plate with various water-to-air mass-flow ratios. A transient technique was used to measure the full field heat transfer coefficients of the impinging surface. Results showed that the high momentum mist-jet interacting with the water-film and wall-jet flows created a variety of heat transfer contours on the impinging surface. The trade-off between the competing influences of the different heat transfer mechanisms involving in an impinging mist jet made the nonlinear variation tendency of overall heat transfer against the increase of water-to-air mass-flow ratio and extended the effective cooling region. With separation distances of 10, 8, 6 and 4 jet-diameters, the spatially averaged heat transfer values on the target plate could respectively reach about 2.01, 1.83, 2.43 and 2.12 times of the equivalent air-jet values, which confirmed the applicability of impinging mist-jet for heat transfer enhancement. The optimal choices of water-to-air mass-flow ratio for the atomized mist jet required the considerations of interactive and combined effects of separation distance, air-jet Reynolds number and the water-to-air mass-flow ratio into the atomized nozzle.

  6. Radio Jets Clearing the Way Through a Galaxy: Watching Feedback in Action in the Seyfert Galaxy IC 5063

    NASA Astrophysics Data System (ADS)

    Morganti, R.; Oosterloo, T. A.; Oonk, J. B. R.; Frieswijk, W.; Tadhunter, C. N.

    2015-12-01

    High-resolution (0.5 arcsec) CO(2-1) observations performed with the Atacama Large Millimetre/submillimetre Array have been used to trace the kinematics of the molecular gas in the Seyfert 2 galaxy{IC 5063}. Although one of the most radio-loud Seyfert galaxy, IC 5063 is a relatively weak radio source (P1.4GHz=3 ×1023 W Hz-1). The data reveal that the kinematics of the gas is very complex. A fast outflow of molecular gas extends along the entire radio jet (˜ 1 kpc), with the highest outflow velocities about 0.5 kpc from the nucleus, at the location of the brighter hot-spot in the W lobe. All the observed characteristics can be described by a scenario of a radio plasma jet expanding into a clumpy medium, interacting directly with the clouds and inflating a cocoon that drives a lateral outflow into the interstellar medium. This suggests that most of the observed cold molecular outflow is due to fast cooling of the gas after the passage of a shock and that it is the end product of the cooling process.

  7. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad Separation Bolt Wedge Tests

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.

  8. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests

    NASA Technical Reports Server (NTRS)

    Goekcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles, and comparisons with the measured calibration data.

  9. Mixing augmentation of transverse hydrogen jet by injection of micro air jets in supersonic crossflow

    NASA Astrophysics Data System (ADS)

    Anazadehsayed, A.; Barzegar Gerdroodbary, M.; Amini, Y.; Moradi, R.

    2017-08-01

    In this study, the influences of the micro air jet on the mixing of the sonic transverse hydrogen through micro-jets subjected to a supersonic crossflow are investigated. A three-dimensional numerical study has been performed to reveal the affects of micro air jet on mixing of the hydrogen jet in a Mach 4.0 crossflow with a global equivalence ratio of 0.5. Parametric studies were conducted on the various air jet conditions by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Complex jet interactions were found in the downstream region with a variety of flow features depending upon the angle of micro air jet. These flow features were found to have subtle effects on the mixing of hydrogen jets. Results indicate a different flow structure as air jet is presented in the downstream of the fuel jet. According to the results, without air, mixing occurs at a low rate. When the air jet is presented in the downstream of fuel jet, significant increase (up to 300%) occurs in the mixing performance of the hydrogen jet at downstream. In multi fuel jets, the mixing performance of the fuel jet is increased more than 200% when the micro air jet is injected. Consequently, an enhanced mixing zone occurs downstream of the injection slots which leads to flame-holding.

  10. NSAID-derived γ-secretase modulation requires an acidic moiety on the carbazole scaffold.

    PubMed

    Zall, Andrea; Kieser, Daniel; Höttecke, Nicole; Naumann, Eva C; Thomaszewski, Binia; Schneider, Katrin; Steinbacher, Dirk T; Schubenel, Robert; Masur, Stefan; Baumann, Karlheinz; Schmidt, Boris

    2011-08-15

    Modulation of γ-secretase activity holds potential for the treatment of Alzheimer's disease. Most NSAID-derived γ-secretase modulators feature a carboxylic acid, which may impair blood-brain barrier permeation. The structure activity relationship of 33 carbazoles featuring diverse carboxylic acid isosteres or metabolic precursors thereof was established in a cellular amyloid secretion assay. The modulatory activity was observed for acidic moieties and metabolically labile esters only, which supports our hypothesis of an acid-lysine interaction to be relevant for this type of γ-secretase modulators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Film-Cooling Heat-Transfer Measurements Using Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.

    1997-01-01

    The following topics are discussed: (1) The Transient Liquid-Crystal Heat-Transfer Technique; (2) 2-D Film-Cooling Heat-Transfer on an AlliedSignal Vane; and (3) Effects of Tab Vortex Generators on Surface Heat Transfer. Downstream of a Jet in Crossflow.

  12. A Baroclinic Nocturnal Low-Level Jet over the Great Plains

    NASA Astrophysics Data System (ADS)

    Shapiro, A.; Gebauer, J.; Fedorovich, E.

    2016-12-01

    The nocturnal low-level jet (LLJ) is a warm-season atmospheric boundary layer phenomenon common to the Great Plains of the United States and other places worldwide. Low-level jets develop around sunset in fair weather conditions conducive to strong radiative cooling and reach peak intensity in the pre-dawn hours. Key precursors to their formation are the establishment of a strongly turbulent dry convective boundary layer during the afternoon and a rapid cessation of the turbulence during the early evening transition. The two main physical mechanisms underpinning the generation of nocturnal low-level jets over the Great Plains are associated with diurnal variations in turbulent mixing (Blackadar mechanism) and in heating/cooling of the gently sloping terrain (Holton mechanism). These two mechanisms were recently combined within a single unified theory (Shapiro et al. 2016) in which analytical solutions of the Boussinesq equations of motion and thermal energy were obtained. In the present study we apply the unified theory to the case where the free-atmosphere geostrophic wind is zero, and there is strong daytime heating of the slope. When appropriately tuned, the analytical model predicts the low elevation (jet nose within 250 m of the ground) and strong wind maximum (> 15 m/s) characteristic of the strongly baroclinic jet observed over northern Kansas on 10 June 2015 during Intensive Observing Period 7 of the Plains Elevated Convection at Night (PECAN) field experiment. Although there is generally good agreement between the tuned model and observations (including soundings and aircraft data), our main interest is in investigating the profound roles of the free-atmosphere stratification, daytime heating, and daytime/nighttime mixing on jet strength and structure.

  13. Mixed convection cooling of a cylinder using slot jet impingement at different circumferential angles

    NASA Astrophysics Data System (ADS)

    Naderipour, S.; Yousefi, T.; Ashjaee, M.; Naylor, D.

    2016-08-01

    An experimental study using Mach-Zehnder interferometer has been carried out to investigate the heat transfer from an isothermal horizontal circular cylinder, which is exposed to an air slot jet at different angles of jet impingement. A square edged nozzle is mounted parallel with the cylinder axis and jet flow impinges on the side of the cylinder at angles Θ = 0°, 30°, 60° and 90°. The Reynolds number varied from 240 to 1900 while the Grashof number and slot- to cylinder-spacing is kept constant at Gr = 22,300 and H/w = 7 respectively. The Richardson number varied from 0.006 to 0.4. The flow field is greatly influenced by the slot exit velocity and the buoyancy force due to density change. The local Nusselt number around the cylinder has been calculated using the infinite fringe interferograms at 10° intervals. Average Nusselt number shows that heat transfer is decreased when the angle of jet impingement is increased .

  14. Internal-Film Cooling of Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Sloop, J L; Kinney, George R

    1948-01-01

    Experiments were conducted with 1000-pound-thrust rocket engine to determine feasibility of cooling convergent-divergent nozzle by internal film of water introduced at nozzle entrance. Water flow of 3 percent of propellant flow reduced heat flow into nozzle to 55 percent of uncooled heat flow. Introduction of water by porous ring before nozzle resulted in more uniform coverage of nozzle than water introduced by single arrangement of 36 jets directed along nozzle wall. Water flow through porous ring of 3.5 percent of propellant flow stabilized wall temperature in convergent section but did not adequately cool throat or divergent sections.

  15. Study of the effect of collisionality and cooling on the interactions of counter-streaming plasma flows as a function of wire material

    NASA Astrophysics Data System (ADS)

    Collins, Gilbert; Valenzuela, Julio; Aybar, Nicholas; Conti, Fabio; Beg, Farhat

    2017-10-01

    We report on the effects wire material on collisionality and radiative cooling on the interactions of counter-streaming plasma jets produced by conical wire arrays on the 200 kA GenASIS driver. In these interactions, mean free path (λmfp) scales with jet velocity (vjet4),atomic mass (A2), and ionization (Z*-4), while cooling scales with atomic mass. By changing the material of the jets one can create slowly cooling, weakly collisional regimes using C, Al, or Cu, or strongly cooled, effectively collisionless plasmas using Mo or W. The former produced smooth shocks soon after the jets collide (near the peak current of 150 ns) that grew in size over time. Interactions of the latter produced multiple structures of a different shape, at a later time ( 300 ns) that dissipated rapidly compared to the lower Z materials. We will report on the scaleability of these different materials to astrophysical phenomena. This work was partially supported by the Department of Energy Grant Number DE-SC0014493.

  16. AGN self-regulation in cooling flow clusters

    NASA Astrophysics Data System (ADS)

    Cattaneo, A.; Teyssier, R.

    2007-04-01

    We use three-dimensional high-resolution adaptive-mesh-refinement simulations to investigate if mechanical feedback from active galactic nucleus jets can halt a massive cooling flow in a galaxy cluster and give rise to a self-regulated accretion cycle. We start with a 3 × 109 Msolar black hole at the centre of a spherical halo with the mass of the Virgo cluster. Initially, all the baryons are in a hot intracluster medium in hydrostatic equilibrium within the dark matter's gravitational potential. The black hole accretes the surrounding gas at the Bondi rate, and a fraction of the accretion power is returned into the intracluster medium mechanically through the production of jets. The accretion, initially slow (~2 × 10-4 Msolaryr-1), becomes catastrophic, as the gas cools and condenses in the dark matter's potential. Therefore, it cannot prevent the cooling catastrophe at the centre of the cluster. However, after this rapid phase, where the accretion rate reaches a peak of ~0.2Msolaryr-1, the cavities inflated by the jets become highly turbulent. The turbulent mixing of the shock-heated gas with the rest of the intracluster medium puts a quick end to this short-lived rapid-growth phase. After dropping by almost two orders of magnitudes, the black hole accretion rate stabilizes at ~0.006 Msolaryr-1, without significant variations for several billions of years, indicating that a self-regulated steady state has been reached. This accretion rate corresponds to a negligible increase of the black hole mass over the age of the Universe, but is sufficient to create a quasi-equilibrium state in the cluster core.

  17. Synthesis, photophysical, and electrochemical properties of wide band gap tetraphenylsilane-carbazole derivatives: Effect of the substitution position and naphthalene side chain

    NASA Astrophysics Data System (ADS)

    Ho, Kar Wei; Ariffin, A.

    2016-12-01

    Four tetraphenylsilane-carbazole derivatives with wide bandgaps (3.38-3.55 eV) were synthesized. The effects of the substitution position and of the presence of naphthalene groups on the photophysical, electrochemical and thermal properties were investigated. The derivatives exhibited maximum absorption peaks ranging from 293 to 304 nm and maximum emission peaks ranging from 347 to 386 nm. Changing the carbazole substitution position on the tetraphenylsilane did not significantly change the photophysical and electrochemical properties. However, p-substituted compounds exhibited higher glass transition temperatures than m-substituted compounds. Naphthalene groups with bulky structures had extended the conjugation lengths that red-shifted both the absorption and emission spectra. The LUMO level was decreased, which reduced the optical bandgap and triplet energy level. However, the naphthalene groups significantly improved the thermal stability by increasing the glass transition temperature of the compounds.

  18. Subnanosecond spectrofluorimetry of new indolocarbazole derivatives in solutions and protein complexes and their dipole moments

    NASA Astrophysics Data System (ADS)

    Nemkovich, N. A.; Kruchenok, Yu. V.; Sobchuk, A. N.; Detert, H.; Wrobel, N.; Chernyavskiĭ, E. A.

    2009-08-01

    The spectral and temporal characteristics of new 6,12-dimethoxyindolo[3,2- b]carbazole, 5,11-dimethyl-6,12-dimethoxyindolo[3,2- b]carbazole, and 5,11-dihexyl-6,12-di(hexyloxy)indolo[3,2- b]carbazole fluorescence probes in organic solvents and protein complexes are studied. The dipole moments of indolocarbazoles in 1,4-dioxane were measured by electrooptical absorption method. The measured dipole moments have values within the range of (3.1-3.6) × 10-30 C m in the equilibrium ground state and increase to (4.8-5.6) × 10-30 C m after excitation. The excited state lifetime of indolocarbazole derivatives increases with increasing polarity and viscosity of the environment. The binding of indolocarbazoles with trypsinogen and human serum albumin increases the fluorescence intensity, changes the intensity ratio of fluorescence bands, and increases the average excited state lifetime of indolocarbazoles. The analysis of the instantaneous fluorescence spectra and fluorescence decay parameters at different wavelengths revealed the existence of several types of probe binding sites in proteins. It is found that the fluorescence characteristics of indolocarbazole derivatives depend on the conformation rearrangements of trypsinogen due to its thermal denaturation.

  19. Neutrinos from Choked Jets Accompanied by Type-II Supernovae

    NASA Astrophysics Data System (ADS)

    He, Hao-Ning; Kusenko, Alexander; Nagataki, Shigehiro; Fan, Yi-Zhong; Wei, Da-Ming

    2018-04-01

    The origin of the IceCube neutrinos is still an open question. Upper limits from diffuse gamma-ray observations suggest that the neutrino sources are either distant or hidden from gamma-ray observations. It is possible that the neutrinos are produced in jets that are formed in core-collapsing massive stars and fail to break out, the so-called choked jets. We study neutrinos from the jets choked in the hydrogen envelopes of red supergiant stars. Fast photo-meson cooling softens the neutrino spectrum, making it hard to explain the PeV neutrinos observed by IceCube in a one-component scenario, but a two-component model can explain the spectrum. Furthermore, we predict that a newly born jet-driven type-II supernova may be observed to be associated with a neutrino burst detected by IceCube.

  20. Origin of Pre-Coronal-Jet Minifilaments: Flux Cancellation

    NASA Astrophysics Data System (ADS)

    Panesar, N. K.; Sterling, A. C.; Moore, R. L.

    2017-12-01

    We recently investigated the triggering mechanism of ten quiet-region coronal jet eruptions and found that magnetic flux cancellation at the neutral line of minifilaments is the main cause of quiet-region jet eruptions (Panesar et al 2016). However, what leads to the formation of the pre-jet minifilaments remained unknown. In the present work, we study the longer-term evolution of the magnetic field that leads to the formation of pre-jet minifilaments by using SDO/AIA intensity images and concurrent line of sight SDO/HMI magnetograms. We find that each of the ten pre-jet minifilaments formed due to progressive flux cancellation between the minority-polarity and majority-polarity flux patches (with a minority-polarity flux loss of 10% - 40% prior to minifilament birth). Apparently, the flux cancellation between the opposite polarity flux patches builds a highly-sheared field at the magnetic neutral line, and that field holds the cool transition region minifilament plasma. Even after the formation of minifilaments, the flux continues to cancel, making the minifilament body more thick and prominent. Further flux cancellation between the opposite-flux patches leads to the minifilament eruption and a resulting jet. From these observations, we infer that flux cancellation is usually the process that builds up the sheared and twisted field in pre-jet minifilaments, and that triggers it to erupt and drive a jet.

  1. Jet-cooled laser-induced fluorescence spectroscopy of cyclohexoxy: rotational and fine structure of molecules in nearly degenerate electronic States.

    PubMed

    Liu, Jinjun; Miller, Terry A

    2014-12-26

    The rotational structure of the previously observed B̃(2)A' ← X̃(2)A″ and B̃(2)A' ← Ã(2)A' laser-induced fluorescence spectra of jet-cooled cyclohexoxy radical (c-C6H11O) [ Zu, L.; Liu, J.; Tarczay, G.; Dupré, P; Miller, T. A. Jet-cooled laser spectroscopy of the cyclohexoxy radical. J. Chem. Phys. 2004 , 120 , 10579 ] has been analyzed and simulated using a spectroscopic model that includes the coupling between the nearly degenerate X̃ and à states separated by ΔE. The rotational and fine structure of these two states is reproduced by a 2-fold model using one set of molecular constants including rotational constants, spin-rotation constants (ε's), the Coriolis constant (Aζt), the quenched spin-orbit constant (aζed), and the vibronic energy separation between the two states (ΔE0). The energy level structure of both states can also be reproduced using an isolated-state asymmetric top model with rotational constants and effective spin-rotation constants (ε's) and without involving Coriolis and spin-orbit constants. However, the spin-orbit interaction introduces transitions that have no intensity using the isolated-state model but appear in the observed spectra. The line intensities are well simulated using the 2-fold model with an out-of-plane (b-) transition dipole moment for the B̃ ← X̃ transitions and in-plane (a and c) transition dipole moment for the B̃ ← à transitions, requiring the symmetry for the X̃ (Ã) state to be A″ (A'), which is consistent with a previous determination and opposite to that of isopropoxy, the smallest secondary alkoxy radical. The experimentally determined Ã-X̃ separation and the energy level ordering of these two states with different (A' and A″) symmetries are consistent with quantum chemical calculations. The 2-fold model also enables the independent determination of the two contributions to the Ã-X̃ separation: the relativistic spin-orbit interaction (magnetic effect) and the nonrelativistic

  2. A comparative study of DFT calculated and experimental UV/Visible spectra for thirty carboline and carbazole based compounds

    NASA Astrophysics Data System (ADS)

    Zara, Zeenat; Iqbal, Javed; Ayub, Khurshid; Irfan, Muhammad; Mahmood, Athar; Khera, Rasheed Ahmad; Eliasson, Bertil

    2017-12-01

    A comparative study of UV/Visible spectra of carboline and carbazole derivatives was conducted by employing the Density Functional Theory (DFT) approach. In this study, the geometries of ground and excited states, excitation energy and absorption spectra were estimated by using seven different DFT functional; CAM-B3LYP, B3LYP, MPW1PW91, PBE, B3PW91, WB97XD and HSE06 with 6-31G basis set. Moreover, five different basis sets 3-21G, 6-31G, DGDZVP, DGTZVP and SDD were also investigated with the CAM-B3LYP and WB97XD functional to take out the best combination of functional and basis set. CAM-B3LYP/6-31G and WB97XD/DGDZVP combination were found to have closest agreement with the experimental values of β-carboline derivatives and carbazole derivatives, respectively. This study provided an insight about the electronic characteristics of the selected compounds and provided an effective tool for developing and designing the better UV absorber compounds.

  3. Development of a Jet Noise Prediction Method for Installed Jet Configurations

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Thomas, Russell H.

    2003-01-01

    This paper describes development of the Jet3D noise prediction method and its application to heated jets with complex three-dimensional flow fields and installation effects. Noise predictions were made for four separate flow bypass ratio five nozzle configurations tested in the NASA Langley Jet Noise Laboratory. These configurations consist of a round core and fan nozzle with and without pylon, and an eight chevron core nozzle and round fan nozzle with and without pylon. Predicted SPL data were in good agreement with experimental noise measurements up to 121 inlet angle, beyond which Jet3D under predicted low frequency levels. This is due to inherent limitations in the formulation of Lighthill's Acoustic Analogy used in Jet3D, and will be corrected in ongoing development. Jet3D did an excellent job predicting full scale EPNL for nonchevron configurations, and captured the effect of the pylon, correctly predicting a reduction in EPNL. EPNL predictions for chevron configurations were not in good agreement with measured data, likely due to the lower mixing and longer potential cores in the CFD simulations of these cases.

  4. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage

    NASA Astrophysics Data System (ADS)

    Papell, S. S.

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  5. Stripped interstellar gas in cluster cooling flows

    NASA Technical Reports Server (NTRS)

    Soker, Noam; Bregman, Joel N.; Sarazin, Craig L.

    1991-01-01

    It is suggested that nonlinear perturbations which lead to thermal instabilities in cooling flows might start as blobs of interstellar gas which are stipped out of cluster galaxies. Assuming that most of the gas produced by stellar mass loss in cluster galaxies is stripped from the galaxies, the total rate of such stripping is roughly 100 solar masses/yr, which is similar to the rates of cooling in cluster cooling flows. It is possible that a substantial portion of the cooling gas originates as blobs of interstellar gas stripped from galaxies. The magnetic fields within and outside of the low-entropy perturbations may help to maintain their identities by suppressing both thermal conduction and Kelvin-Helmholtz instabilities. These density fluctuations may disrupt the propagation of radio jets through the intracluster gas, which may be one mechanism for producing wideangle-tail radio galaxies.

  6. Jets in Polar Coronal Holes

    NASA Astrophysics Data System (ADS)

    Scullion, E.; Popescu, M. D.; Banerjee, D.; Doyle, J. G.; Erdélyi, R.

    2009-10-01

    Here, we explore the nature of small-scale jet-like structures and their possible relation to explosive events and other known transient features, like spicules and macrospicules, using high-resolution spectroscopy obtained with the Solar and Heliospheric Observatory/Solar Ultraviolet Measurements of Emitted Radiation instrument. We present a highly resolved spectroscopic analysis and line parameter study of time-series data for jets occurring on-disk and off-limb in both a northern and a southern coronal hole. The analysis reveals many small-scale transients which rapidly propagate between the mid-transition region (N IV 765 Å line formation: 140,000 K) and the lower corona (Ne VIII 770 Å line formation: 630,000 K). In one example, a strong jet-like event is associated with a cool feature not present in the Ne VIII 770 Å line radiance or Doppler velocity maps. Another similar event is observed, but with a hot component, which could be perceived as a blinker. Our data reveal fast, repetitive plasma outflows with blueshift velocities of ≈145 km s-1 in the lower solar atmosphere. The data suggest a strong role for smaller jets (spicules), as a precursor to macrospicule formation, which may have a common origin with explosive events.

  7. Statistical Inference of a RANS closure for a Jet-in-Crossflow simulation

    NASA Astrophysics Data System (ADS)

    Heyse, Jan; Edeling, Wouter; Iaccarino, Gianluca

    2016-11-01

    The jet-in-crossflow is found in several engineering applications, such as discrete film cooling for turbine blades, where a coolant injected through hols in the blade's surface protects the component from the hot gases leaving the combustion chamber. Experimental measurements using MRI techniques have been completed for a single hole injection into a turbulent crossflow, providing full 3D averaged velocity field. For such flows of engineering interest, Reynolds-Averaged Navier-Stokes (RANS) turbulence closure models are often the only viable computational option. However, RANS models are known to provide poor predictions in the region close to the injection point. Since these models are calibrated on simple canonical flow problems, the obtained closure coefficient estimates are unlikely to extrapolate well to more complex flows. We will therefore calibrate the parameters of a RANS model using statistical inference techniques informed by the experimental jet-in-crossflow data. The obtained probabilistic parameter estimates can in turn be used to compute flow fields with quantified uncertainty. Stanford Graduate Fellowship in Science and Engineering.

  8. Nonlinear Dynamics in Viscoelastic Jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2008-11-01

    Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.

  9. Nonlinear Dynamics in Viscoelastic Jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2009-03-01

    Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.

  10. A benzindole substituted carbazole cyanine dye: a novel targeting fluorescent probe for parallel c-myc G-quadruplexes.

    PubMed

    Lin, Dayong; Fei, Xuening; Gu, Yingchun; Wang, Cuihong; Tang, Yalin; Li, Ran; Zhou, Jianguo

    2015-08-21

    Many organic ligands were synthesized to recognize G-quadruplexes. However, different kinds of G-quadruplexes (G4s) possess different structures and functions. Therefore, selective recognition of certain types of G4s is important for the study of G4s. In this paper, a novel cyanine dye, 3-(2-(4-vinylpyridine))-6-(2-((1-(4-sulfobutyl))-3,3-dimethyl-2-vinylbenz[e]indole)-9-ethyl-carbazole (9E PBIC), composed of benzindole and carbazole was designed and synthesised. The studies on UV-vis and fluorescence properties of the dye with different DNA forms showed that the dye exhibits almost no fluorescence under aqueous buffer conditions, but it increased over 100 fold in the presence of c-myc G4 and 10-30 fold in the presence of other G4s, while little in the presence of single/double-stranded DNA, indicating that it has excellent selectivity to c-myc 2345 G4. For the binding studies the dye is interacted with the c-myc 2345 G-quadruplex by using the end-stack binding model. It can be said that the dye is an excellent targeting fluorescent probe for c-myc G-quadruplexes.

  11. Large Eddy Simulation of a Film Cooling Technique with a Plenum

    NASA Astrophysics Data System (ADS)

    Dharmarathne, Suranga; Sridhar, Narendran; Araya, Guillermo; Castillo, Luciano; Parameswaran, Sivapathasund

    2012-11-01

    Factors that affect the film cooling performance have been categorized into three main groups: (i) coolant & mainstream conditions, (ii) hole geometry & configuration, and (iii) airfoil geometry Bogard et al. (2006). The present study focuses on the second group of factors, namely, the modeling of coolant hole and the plenum. It is required to simulate correct physics of the problem to achieve more realistic numerical results. In this regard, modeling of cooling jet hole and the plenum chamber is highly important Iourokina et al. (2006). Substitution of artificial boundary conditions instead of correct plenum design would yield unrealistic results Iourokina et al. (2006). This study attempts to model film cooling technique with a plenum using a Large Eddy Simulation.Incompressible coolant jet ejects to the surface of the plate at an angle of 30° where it meets compressible turbulent boundary layer which simulates the turbine inflow conditions. Dynamic multi-scale approach Araya (2011) is introduced to prescribe turbulent inflow conditions. Simulations are carried out for two different blowing ratios and film cooling effectiveness is calculated for both cases. Results obtained from LES will be compared with experimental results.

  12. Thermo Physics Facilities Branch Brochure ARC Jet Complex Fact Sheets, Hypervelocity Free-Flight Aerodynamic Facility Fact Sheets, Ames Vertical Gun Range Fact Sheets

    NASA Technical Reports Server (NTRS)

    Fretter, E. F. (Editor); Kuhns, Jay (Editor); Nuez, Jay (Editor)

    2003-01-01

    The Ames Arc Jet Complex has a rich heritage of over 40 years in Thermal Protection System (TPS) development for every NASA Space Transportation and Planetary program, including Apollo, Space Shuttle, Viking, Pioneer-Venus, Galileo, Mars Pathfinder,Stardust, NASP,X-33,X-34,SHARP-B1 and B2,X-37 and Mars Exploration Rovers. With this early TPS history came a long heritage in the development of the arc jet facilities. These are used to simulate the aerodynamic heating that occurs on the nose cap, wing leading edges and on other areas of the spacecraft requiring thermal protection. TPS samples have been run in the arc jets from a few minutes to over an hour,from one exposure to multiple exposures of the same sample, in order t o understand the TPS materials response to a hot gas flow environment (representative of real hyperthermal environments experienced in flight). The Ames Arc l e t Complex is a key enabler for customers involved in the three major areas of TPS development: selection, validation, and qualification. The arc jet data are critical for validating TPS thermal models, heat shield designs and repairs, and ultimately for flight qualification.

  13. Development of a carbazole-based fluorescence probe for G-quadruplex DNA: The importance of side-group effect on binding specificity

    NASA Astrophysics Data System (ADS)

    Wang, Ming-Qi; Ren, Gui-Ying; Zhao, Shuang; Lian, Guang-Chang; Chen, Ting-Ting; Ci, Yang; Li, Hong-Yao

    2018-06-01

    G-quadruplex DNAs are highly prevalent in the human genome and involved in many important biological processes. However, many aspects of their biological mechanism and significance still need to be elucidated. Therefore, the development of fluorescent probes for G-quadruplex detection is important for the basic research. We report here on the development of small molecular dyes designed on the basis of carbazole scaffold by introducing styrene-like substituents at its 9-position, for the purpose of G-quadruplex recognition. Results revealed that the side group on the carbazole scaffold was very important for their ability to selectively recognize G-quadruplex DNA structures. 1a with the pyridine side group displayed excellent fluorescence signal turn-on property for the specific discrimination of G-quadruplex DNAs against other nucleic acids. The characteristics of 1a were further investigated with UV-vis spectrophotometry, fluorescence, circular dichroism, FID assay and molecular docking to validate the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs.

  14. UV and VUV spectroscopy and photochemistry of small molecules in a supersonic jet

    NASA Technical Reports Server (NTRS)

    Ruehl, E.; Vaida, V.

    1990-01-01

    UV and VUV absorption and emission spectroscopy is used to probe jet cooled molecules, free radicals, and clusters in the gas phase. Due to efficient cooling inhomogeneous effects on spectral line widths are eliminated. Therefore from these spectra, both structural and dynamical information is obtained. The photoproducts of these reactions are probed by resonance enhanced multiphoton ionization.

  15. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  16. Project HyBuJET

    NASA Technical Reports Server (NTRS)

    Ramsay, Tom; Collet, Bill; Igar, Karyn; Kendall, Dewayne; Miklosovic, Dave; Reuss, Robyn; Ringer, Mark; Scheidt, Tony

    1990-01-01

    A conceptual Hypersonic Business Jet (HyBuJet) was examined. The main areas of concentration include: aerodynamics, propulsion, stability and control, mission profile, and atmospheric heating. In order to optimize for cruise conditions, a waverider configuration was chosen for the high lift drag ratio and low wave drag. The leading edge and lower surface of a waverider was mapped out from a known flow field and optimized for cruising at Mach 6 and at high altitudes. The shockwave generated by a waverider remains attached along the entire leading edge, allowing for a larger compression along the lower surface. Three turbofan ramjets were chosen as the propulsion of the aircraft due to the combination of good subsonic performance along with high speed propulsive capabilities. A combination of liquid silicon convective cooling for the leading edges with a highly radiative outer skin material was chosen to reduce the atmospheric heating to acceptable level.

  17. Hydrodynamical Simulations of the Jet in the Symbiotic Star MWC 560. 3; Application to X-ray Jets in Symbiotic Stars

    NASA Technical Reports Server (NTRS)

    Stute, Matthias; Sahai, Raghvendra

    2007-01-01

    In Papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high-density ambient medium. Since the pulsed emission of the jet creates internal shocks and since the jet velocity is very high, the jet bow shock and the internal shocks are heated to high temperatures and should therefore emit X-ray radiation. In this paper, we investigate in detail the X-ray properties of the jets in our models. We have focused our study on the total X-ray luminosity and its temporal variability, the resulting spectra, and the spatial distribution of the emission. Temperature and density maps from our hydrodynamical simulations with radiative cooling presented in the second paper are used, together with emissivities calculated with the atomic database ATOMDB. The jets in our models show extended and variable X-ray emission, which can be characterized as a sum of hot and warm components with temperatures that are consistent with observations of CH Cyg and R Aqr. The X-ray spectra of our model jets show emission-line features that correspond to observed features in the spectra of CH Cyg. The innermost parts of our pulsed jets show iron line emission in the 6.4-6.7 keV range, which may explain such emission from the central source in R Aqr. We conclude that MWC 560 should be detectable with Chandra or XMM-Newton, and such X-ray observations will prove crucial for understanding jets in symbiotic stars.

  18. 3He NMR studies on helium-pyrrole, helium-indole, and helium-carbazole systems: a new tool for following chemistry of heterocyclic compounds.

    PubMed

    Radula-Janik, Klaudia; Kupka, Teobald

    2015-02-01

    The (3)He nuclear magnetic shieldings were calculated for free helium atom and He-pyrrole, He-indole, and He-carbazole complexes. Several levels of theory, including Hartree-Fock (HF), Second-order Møller-Plesset Perturbation Theory (MP2), and Density Functional Theory (DFT) (VSXC, M062X, APFD, BHandHLYP, and mPW1PW91), combined with polarization-consistent pcS-2 and aug-pcS-2 basis sets were employed. Gauge-including atomic orbital (GIAO) calculated (3)He nuclear magnetic shieldings reproduced accurately previously reported theoretical values for helium gas. (3)He nuclear magnetic shieldings and energy changes as result of single helium atom approaching to the five-membered ring of pyrrole, indole, and carbazole were tested. It was observed that (3)He NMR parameters of single helium atom, calculated at various levels of theory (HF, MP2, and DFT) are sensitive to the presence of heteroatomic rings. The helium atom was insensitive to the studied molecules at distances above 5 Å. Our results, obtained with BHandHLYP method, predicted fairly accurately the He-pyrrole plane separation of 3.15 Å (close to 3.24 Å, calculated by MP2) and yielded a sizable (3)He NMR chemical shift (about -1.5 ppm). The changes of calculated nucleus-independent chemical shifts (NICS) with the distance above the rings showed a very similar pattern to helium-3 NMR chemical shift. The ring currents above the five-membered rings were seen by helium magnetic probe to about 5 Å above the ring planes verified by the calculated NICS index. Copyright © 2014 John Wiley & Sons, Ltd.

  19. NASA Dryden's T-38 Talon trainer jet in flight over the main base complex at Edwards Air Force Base

    NASA Image and Video Library

    2006-05-05

    NASA Dryden's T-38 Talon trainer jet in flight over the main base complex at Edwards Air Force Base. Formerly at NASA's Langley Research Center, this Northrop T-38 Talon is now used for mission support and pilot proficiency at the Dryden Flight Research Center.

  20. Observable Emission Features of Black Hole GRMHD Jets on Event Horizon Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Hung-Yi; Wu, Kinwah; Younsi, Ziri

    The general-relativistic magnetohydrodynamical (GRMHD) formulation for black hole-powered jets naturally gives rise to a stagnation surface, where inflows and outflows along magnetic field lines that thread the black hole event horizon originate. We derive a conservative formulation for the transport of energetic electrons, which are initially injected at the stagnation surface and subsequently transported along flow streamlines. With this formulation the energy spectra evolution of the electrons along the flow in the presence of radiative and adiabatic cooling is determined. For flows regulated by synchrotron radiative losses and adiabatic cooling, the effective radio emission region is found to be finite,more » and geometrically it is more extended along the jet central axis. Moreover, the emission from regions adjacent to the stagnation surface is expected to be the most luminous as this is where the freshly injected energetic electrons are concentrated. An observable stagnation surface is thus a strong prediction of the GRMHD jet model with the prescribed non-thermal electron injection. Future millimeter/submillimeter (mm/sub-mm) very-long-baseline interferometric observations of supermassive black hole candidates, such as the one at the center of M87, can verify this GRMHD jet model and its associated non-thermal electron injection mechanism.« less

  1. From simplicial Lie algebras and hypercrossed complexes to differential graded Lie algebras via 1-jets

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    2012-12-01

    Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, such that each Gn is simply connected. We use the 1-jet of the classifying space W¯ G to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The result can be seen as a geometric interpretation of Quillen's (purely algebraic) construction of the adjunction between simplicial Lie algebras and dg-Lie algebras.

  2. Numerical studies of solar chromospheric jets

    NASA Astrophysics Data System (ADS)

    Iijima, Haruhisa

    2016-03-01

    The solar chromospheric jet is one of the most characteristic structures near the solar surface. The quantitative understanding of chromospheric jets is of substantial importance for not only the partially ionized phenomena in the chromosphere but also the energy input and dissipation processes in the corona. In this dissertation, the formation and dynamics of chromospheric jets are investigated using the radiation magnetohydrodynamic simulations. We newly develop a numerical code for the radiation magnetohydrodynamic simulations of the comprehensive modeling of solar atmosphere. Because the solar chromosphere is highly nonlinear, magnetic pressure dominated, and turbulent, a robust and high-resolution numerical scheme is required. In Chapter 2, we propose a new algorithm for the simulation of magnetohydrodynamics. Through the test problems and accuracy analyses, the proposed scheme is proved to satisfy the requirements. In Chapter 3, the effect of the non-local radiation energy transport, Spitzer-type thermal conduction, latent heat of partial ionization and molecule formation, and gravity are implemented to the magnetohydrodynamic code. The numerical schemes for the radiation transport and thermal conduction is carefully chosen in a view of the efficiency and compatibility with the parallel computation. Based on the developed radiation magnetohydrodynamic code, the formation and dynamics of chromospheric jets are investigated. In Chapter 4, we investigate the dependence of chromospheric jets on the coronal temperature in the two-dimensional simulations. Various scale of chromospheric jets with the parabolic trajectory are found with the maximum height of 2-8 Mm, lifetime of 2-7 min, maximum upward velocity of 10- 50 km/s, and deceleration of 100-350 m/s2. We find that chromospheric jets are more elongated under the cool corona and shorter under the hot corona. We also find that the pressure gradient force caused by the periodic shock waves accelerates some of the

  3. Measuring Intermolecular Binding Energies by Laser Spectroscopy.

    PubMed

    Knochenmuss, Richard; Maity, Surajit; Féraud, Géraldine; Leutwyler, Samuel

    2017-02-22

    The ground-state dissociation energy, D0(S0), of isolated intermolecular complexes in the gas phase is a fundamental measure of the interaction strength between the molecules. We have developed a three-laser, triply resonant pump-dump-probe technique to measure dissociation energies of jet-cooled M•S complexes, where M is an aromatic chromophore and S is a closed-shell 'solvent' molecule. Stimulated emission pumping (SEP) via the S0→S1 electronic transition is used to precisely 'warm' the complex by populating high vibrational levels v" of the S0 state. If the deposited energy E(v") is less than D0(S0), the complex remains intact, and is then mass- and isomer-selectively detected by resonant two-photon ionization (R2PI) with a third (probe) laser. If the pumped level is above D0(S0), the hot complex dissociates and the probe signal disappears. Combining the fluorescence or SEP spectrum of the cold complex with the SEP breakoff of the hot complex brackets D0(S0). The UV chromophores 1-naphthol and carbazole were employed; these bind either dispersively via the aromatic rings, or form a hydrogen bond via the -OH or -NH group. Dissociation energies have been measured for dispersively bound complexes with noble gases (Ne, Kr, Ar, Xe), diatomics (N2, CO), alkanes (methane to n-butane), cycloalkanes (cyclopropane to cycloheptane), and unsaturated compounds (ethene, benzene). Hydrogen-bond dissociation energies have been measured for H2O, D2O, methanol, ethanol, ethers (oxirane, oxetane), NH3 and ND3.

  4. KENNEDY SPACE CENTER, FLA. -- Family members of the STS-107 astronauts and other dignitaries watch NASA T-38 jets fly over the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in a Missing Man Formation. During this dedication ceremony, the names of the STS-107 astronauts who lost their lives during the Columbia accident -- Rick Husband, Willie McCool, Laurel Clark, Michael Anderson, David Brown, Kalpana Chawla, and Ilan Ramon -- join the names of 17 other space heroes who gave their lives for the U.S. space program.

    NASA Image and Video Library

    2003-10-28

    KENNEDY SPACE CENTER, FLA. -- Family members of the STS-107 astronauts and other dignitaries watch NASA T-38 jets fly over the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in a Missing Man Formation. During this dedication ceremony, the names of the STS-107 astronauts who lost their lives during the Columbia accident -- Rick Husband, Willie McCool, Laurel Clark, Michael Anderson, David Brown, Kalpana Chawla, and Ilan Ramon -- join the names of 17 other space heroes who gave their lives for the U.S. space program.

  5. Simulations of Solar Jets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar

  6. X-ray Jets in the CH Cyg Symbiotic System

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita; Gaetz, T.; Lee, N.; Raymond, J.; Hack, W.; Carilli, C.

    2009-09-01

    Symbiotic binaries are interacting systems in which a compact stellar source accretes matter from the wind of the cool evolved companion. There are a few hundred symbiotic systems known today, but jet activity has been detected in only a few of them, including in CH Cyg. CH Cyg is a symbiotic system that has shown significant activity since the mid 1960s. Jets have been detected in optical and radio since 1984, and more recently in 2001 in X-rays using Chandra observations.In 2008 we carried out coordinated multi-wavelength observations of the CH Cyg system with Chandra, HST, and the VLA, in order to study the propagation and interaction with the circumbinary medium of the jet detected in 2001. We report here on the detection of the 2001 SE jet which has expanded in seven years from ˜350AU to ˜1400 AU. The apex of the loop delineating the region of interaction with the circumbinary matter is moving with a speed of ˜700 km/s. Assuming a linear expansion, the jet was launched during the 1999-2000 active phase. We also report on a detection of a powerful new jet in the SW direction, observed in X-ray, optical and radio wavelengths. The new jet has a multi-component structure including an inner jet and counter jet, and a SW component ending in several clumps extending up to a distance of about 750AU.

  7. 49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, WITH BLOW ENGINE HOUSE No. 3 ON RIGHT, AND FILTER CAKE HOUSE IN FOREGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  8. Ejector Noise Suppression with Auxiliary Jet Injection

    NASA Technical Reports Server (NTRS)

    Berman, Charles H.; Andersen, Otto P., Jr.

    1997-01-01

    An experimental program to reduce aircraft jet turbulence noise investigated the interaction of small auxiliary jets with a larger main jet. Significant reductions in the far field jet noise were obtained over a range of auxiliary jet pressures and flow rates when used in conjunction with an acoustically lined ejector. While the concept is similar to that of conventional ejector suppressors that use mechanical mixing devices, the present approach should improve thrust and lead to lower weight and less complex noise suppression systems since no hardware needs to be located in the main jet flow. A variety of auxiliary jet and ejector configurations and operating conditions were studied. The best conditions tested produced peak to peak noise reductions ranging from 11 to 16 dB, depending on measurement angle, for auxiliary jet mass flows that were 6.6% of the main jet flow with ejectors that were 8 times the main jet diameter in length. Much larger reductions in noise were found at the original peak frequencies of the unsuppressed jet over a range of far field measurement angles.

  9. Sonic and Supersonic Jet Plumes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Naughton, J. W.; Flethcher, D. G.; Edwards, Thomas A. (Technical Monitor)

    1994-01-01

    Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock- shear- layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.

  10. Shock Corrugation by Rayleigh-Taylor Instability in Gamma-Ray Burst Afterglow Jets

    NASA Astrophysics Data System (ADS)

    Duffell, Paul C.; MacFadyen, Andrew I.

    2014-08-01

    Afterglow jets are Rayleigh-Taylor unstable and therefore turbulent during the early part of their deceleration. There are also several processes which actively cool the jet. In this Letter, we demonstrate that if cooling significantly increases the compressibility of the flow, the turbulence collides with the forward shock, destabilizing and corrugating it. In this case, the forward shock is turbulent enough to produce the magnetic fields responsible for synchrotron emission via small-scale turbulent dynamo. We calculate light curves assuming the magnetic field is in energy equipartition with the turbulent kinetic energy and discover that dynamic magnetic fields are well approximated by a constant magnetic-to-thermal energy ratio of 1%, though there is a sizeable delay in the time of peak flux as the magnetic field turns on only after the turbulence has activated. The reverse shock is found to be significantly more magnetized than the forward shock, with a magnetic-to-thermal energy ratio of the order of 10%. This work motivates future Rayleigh-Taylor calculations using more physical cooling models.

  11. Confined Impinging Jets in Porous Media

    NASA Astrophysics Data System (ADS)

    Buonomo, B.; Cirillo, L.; Manca, O.; Mansi, N.; Nardini, S.

    2016-09-01

    Impinging jets are adopted in drying of textiles, paper, cooling of gas turbine components, freezing of tissue in cryosurgery and manufacturing, electronic cooling. In this paper an experimental investigation is carried out on impinging jets in porous media with the wall heated from below with a uniform heat flux. The fluid is air. The experimental apparatus is made up of a fun systems, a test section, a tube, to reduce the section in a circular section. The tube is long 1.0 m and diameter of 0.012 m. The test section has a diameter of 0.10 m and it has the thickness of 10, 20 and 40 mm. In the test section the lower plate is in aluminum and is heated by an electrical resistance whereas the upper plate is in Plexiglas. The experiments are carried out employing a aluminum foam 40 PPI at three thickness as the test section. Results are obtained in a Reynolds number range from 5100 to 15300 and wall heat flux range from 510 W/m2 to 1400 W/m2. Results are given in terms of wall temperature profiles, local and average Nusselt numbers, pressure drops, friction factor and Richardson number.

  12. Correction analysis for a supersonic water cooled total temperature probe tested to 1370 K

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T.; Seiner, John M.

    1991-01-01

    The authors address the thermal analysis of a water cooled supersonic total temperature probe tested in a Mach 2 flow, up to 1366 K total temperature. The goal of this experiment was the determination of high-temperature supersonic jet mean flow temperatures. An 8.99 cm exit diameter water cooled nozzle was used in the tests. It was designed for exit Mach 2 at 1366 K exit total temperature. Data along the jet centerline were obtained for total temperatures of 755 K, 1089 K, and 1366 K. The data from the total temperature probe were affected by the water coolant. The probe was tested through a range of temperatures between 755 K and 1366 K with and without the cooling system turned on. The results were used to develop a relationship between the indicated thermocouple bead temperature and the freestream total temperature. The analysis and calculated temperatures are presented.

  13. Neuroprotective Efficacy of an Aminopropyl Carbazole Derivative P7C3-A20 in Ischemic Stroke.

    PubMed

    Wang, Shu-Na; Xu, Tian-Ying; Wang, Xia; Guan, Yun-Feng; Zhang, Sai-Long; Wang, Pei; Miao, Chao-Yu

    2016-09-01

    NAMPT is a novel therapeutic target of ischemic stroke. The aim of this study was to investigate the effect of a potential NAMPT activator, P7C3-A20, an aminopropyl carbazole derivative, on ischemic stroke. In vitro study, neuron protection effect of P7C3-A20 was investigated by co-incubation with primary neurons subjected to oxygen-glucose deprivation (OGD) or oxygen-glucose deprivation/reperfusion (OGD/R) injury. In vivo experiment, P7C3-A20 was administrated in middle cerebral artery occlusion (MCAO) rats and infarct volume was examined. Lastly, the brain tissue nicotinamide adenine dinucleotide (NAD) levels were detected in P7C3-A20 treated normal or MCAO mice. Cell viability, morphology, and Tuj-1 staining confirmed the neuroprotective effect of P7C3-A20 in OGD or OGD/R model. P7C3-A20 administration significantly reduced cerebral infarction in MCAO rats. Moreover, brain NAD levels were elevated both in normal and MCAO mice after P7C3-A20 treatment. P7C3-A20 has neuroprotective effect in cerebral ischemia. The study contributes to the development of NAMPT activators against ischemic stroke and expands the horizon of the neuroprotective effect of aminopropyl carbazole chemicals. © 2016 John Wiley & Sons Ltd.

  14. Four new carbazole alkaloids from Murraya koenigii that display anti-inflammatory and anti-microbial activities.

    PubMed

    Nalli, Yedukondalu; Khajuria, Vidushi; Gupta, Shilpa; Arora, Palak; Riyaz-Ul-Hassan, Syed; Ahmed, Zabeer; Ali, Asif

    2016-03-28

    In our present study, four new, designated as murrayakonine A-D (), along with 18 known carbazole alkaloids were isolated from CHCl3 : MeOH (1 : 1) crude extracts of the stems and leaves of Murraya koenigii (Linn.) Spreng. The structures of the all isolated compounds were characterized by analysis of HR-ESI-MS and NMR (1D and 2D spectroscopy) results, and comparison of their data with the literature data. For the first time, all the isolates were evaluated for their anti-inflammatory activities, using both in vitro and in vivo experiments, against the key inflammatory mediators TNF-α and IL-6. The new compound murrayakonine A (), O-methylmurrayamine A () and mukolidine () were proven to be the most active, efficiently inhibiting TNF-α and IL-6 release in a dose-dependent manner and showing decreased LPS induced TNF-α and IL-6 production in human PBMCs. Furthermore, all the isolates were screened for their antimicrobial potential, and the compounds girinimbine () (IC50 3.4 μM) and 1-hydroxy-7-methoxy-8-(3-methylbut-2-en-1-yl)-9H-carbazole-3-carbaldehyde () (IC50 10.9 μM) displayed potent inhibitory effects against Bacillus cereus. Furthermore, compounds murrayamine J () (IC50 11.7 μM) and koenimbine () (IC50 17.0 μM) were active against Staphylococcus aureus. However, none of the compounds were found to be active against Escherichia coli or Candida albicans.

  15. Enhanced heat sink with geometry induced wall-jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Md. Mahamudul, E-mail: sohel0991@gmail.com; Tikadar, Amitav; Bari, Fazlul

    Mini-channels embedded in solid matrix have already proven to be a very efficient way of electronic cooling. Traditional mini-channel heat sinks consist of single layer of parallel channels. Although mini-channel heat sink can achieve very high heat flux, its pumping requirement for circulating liquid through the channel increase very sharply as the flow velocity increases. The pumping requirements of the heat sink can be reduced by increasing its performance. In this paper a novel approach to increase the thermal performance of the mini-channel heat sink is proposed through geometry induced wall jet which is a passive technique. Geometric irregularities alongmore » the channel length causes abrupt pressure change between the channels which causes cross flow through the interconnections thus one channel faces suction and other channel jet action. This suction and jet action disrupts boundary layer causing enhanced heat transfer performance. A CFD model has been developed using commercially available software package FLUENT to evaluate the technique. A parametric study of the velocities and the effect of the position of the wall-jets have been performed. Significant reduction in thermal resistance has been observed for wall-jets, it is also observed that this reduction in thermal resistance is dependent on the position and shape of the wall jet.« less

  16. Development of a carbazole-based fluorescence probe for G-quadruplex DNA: The importance of side-group effect on binding specificity.

    PubMed

    Wang, Ming-Qi; Ren, Gui-Ying; Zhao, Shuang; Lian, Guang-Chang; Chen, Ting-Ting; Ci, Yang; Li, Hong-Yao

    2018-06-15

    G-quadruplex DNAs are highly prevalent in the human genome and involved in many important biological processes. However, many aspects of their biological mechanism and significance still need to be elucidated. Therefore, the development of fluorescent probes for G-quadruplex detection is important for the basic research. We report here on the development of small molecular dyes designed on the basis of carbazole scaffold by introducing styrene-like substituents at its 9-position, for the purpose of G-quadruplex recognition. Results revealed that the side group on the carbazole scaffold was very important for their ability to selectively recognize G-quadruplex DNA structures. 1a with the pyridine side group displayed excellent fluorescence signal turn-on property for the specific discrimination of G-quadruplex DNAs against other nucleic acids. The characteristics of 1a were further investigated with UV-vis spectrophotometry, fluorescence, circular dichroism, FID assay and molecular docking to validate the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Numerical solution for the temperature distribution in a cooled guide vane blade of a radial gas turbine

    NASA Technical Reports Server (NTRS)

    Hosny, W. M.; Tabakoff, W.

    1977-01-01

    A two dimensional finite difference numerical technique is presented to determine the temperature distribution of an internal cooled blade of radial turbine guide vanes. A simple convection cooling is assumed inside the guide vane blade. Such cooling has relatively small cooling effectiveness at the leading edge and at the trailing edge. Heat transfer augmentation in these critical areas may be achieved by using impingement jets and film cooling. A computer program is written in FORTRAN IV for IBM 370/165 computer.

  18. Vortex Structure Effects on Impingement, Effusion, and Cross Flow Cooling of a Double Wall Configuration

    NASA Astrophysics Data System (ADS)

    Ligrani, P. M.

    2018-03-01

    A variety of different types of vortices and vortex structures have important influences on thermal protection, heat transfer augmentation, and cooling performance of impingement cooling, effusion cooling, and cross flow cooling. Of particular interest are horseshoe vortices, which form around the upstream portions of effusion coolant concentrations just after they exit individual holes, hairpin vortices, which develop nearby and adjacent to effusion coolant trajectories, and Kelvin-Helmholtz vortices which form within the shear layers that form around each impingement cooling jet. The influences of these different vortex structures are described as they affect and alter the thermal performance of effusion cooling, impingement cooling, and cross flow cooling, as applied to a double wall configuration.

  19. A Unified Theory for the Great Plains Nocturnal Low-Level Jet

    NASA Astrophysics Data System (ADS)

    Shapiro, A.; Fedorovich, E.; Rahimi, S.

    2014-12-01

    The nocturnal low-level jet (LLJ) is a warm-season atmospheric boundary layer phenomenon common to the Great Plains of the United States and other places worldwide, typically in regions east of mountain ranges. Low-level jets develop around sunset in fair weather conditions conducive to strong radiational cooling, reach peak intensity in the pre-dawn hours, and then dissipate with the onset of daytime convective mixing. In this study we consider the LLJ as a diurnal oscillation of a stably stratified atmosphere overlying a planar slope on the rotating Earth. The oscillations arise from diurnal cycles in both the heating of the slope (mechanism proposed by Holton in 1967) and the turbulent mixing (mechanism proposed by Blackadar in 1957). The governing equations are the equations of motion, incompressibility condition, and thermal energy in the Boussinesq approximation, with turbulent heat and momentum exchange parameterized through spatially constant but diurnally varying turbulent diffusion coefficients (diffusivities). Analytical solutions are obtained for diffusivities with piecewise constant waveforms (step-changes at sunrise and sunset) and slope temperatures/buoyancies with piecewise linear waveforms (saw-tooth function with minimum at sunrise and maximum before sunset). The jet characteristics are governed by eleven parameters: slope angle, Coriolis parameter, environmental buoyancy frequency, geostrophic wind strength, daytime and nighttime diffusivities, maximum (daytime) and minimum (nighttime) slope buoyancies, duration of daylight, lag time between peak slope buoyancy and sunset, and a Newtonian cooling time scale. An exploration of the parameter space yields results that are broadly consistent with findings particular to the Holton and Blackadar theories, and agree with climatological observations, for example, that stronger jets tend to occur over slopes of 0.15-0.25 degrees characteristic of the Great Plains. The solutions also yield intriguing

  20. Examination of the Mechanism of Rh2(II)-Catalyzed Carbazole Formation Using Intramolecular Competition Experiments

    PubMed Central

    Stokes, Benjamin J.; Richert, Kathleen J.; Driver, Tom G.

    2009-01-01

    The use of a rhodium(II) carboxylate catalyst enables the mild and stereoselective formation of carbazoles from biaryl azides. Intramolecular competition experiments of triaryl azides suggested the source of the selectivity. A primary intramolecular kinetic isotope effect was not observed and correlation of the product ratios with Hammett σ+-values produced a plot with two intersecting lines with opposite ρ-values. These data suggest that electronic donation by the biaryl π-system accelerates the formation of rhodium nitrenoid and that C–N bond formation occurs through a 4π-electron-5-atom electrocyclization. PMID:19663433

  1. Electrohydrodynamic (EHD) stimulation of jet breakup

    NASA Technical Reports Server (NTRS)

    Crowley, J. M.

    1982-01-01

    Electrohydrodynamic (EHD) excitation of liquid jets offers an alternative to piezoelectric excitation without the complex frequency response caused by piezoelectric and mechanical resonances. In an EHD exciter, an electrode near the nozzle applies an alternating Coulomb force to the jet surface, generating a disturbance which grows until a drop breaks off downstream. This interaction is modelled quite well by a linear, long wave model of the jet together with a cylindrical electric field. The breakup length, measured on a 33 micrometer jet, agrees quite well with that predicted by the theory, and increases with the square of the applied voltage, as expected. In addition, the frequency response is very smooth, with pronounced nulls occurring only at frequencies related to the time which the jet spends inside the exciter.

  2. Influence of elliptical structure on impinging-jet-array heat transfer performances

    NASA Astrophysics Data System (ADS)

    Arjocu, Simona C.; Liburdy, James A.

    1997-11-01

    A three-by-three square array of submerged, elliptic, impinging jets in water was used to study the heat transfer distribution in the cooling process of a constant heat flux surface. Tow jet aspect ratios were used, 2 and 3, both with the same hydraulic diameter. The array was tested at Reynolds numbers from 300 to 1500 and impinging distances of 1 to 5 hydraulic diameters. Thermochromic liquid crystals wee used to map the local heat transfer coefficient using a transient method, while the jet temperature was kept constant. The liquid crystal images were recorded through an optical fiber coupled with a CCD camera and a frame grabber and analyzed based on an RGB-temperature calibration technique. The results are reported relative to the unit cell that is used to delimitate the central jet. The heat transfer variation is shown to depend on the impingement distance and Reynolds number. The elliptic jets exhibit axis switching, jet column instability and jet swaying. All of these mechanisms affect the enhancement of the heat transfer rate and its distribution. The results are compared in terms of average and local heat transfer coefficients, for both major and minor planes for the two jet aspect ratios.

  3. On the Wing: A Business-Class Jet

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Cessna Aircraft Company was last featured in Spinoff 1991 for the Citation Jet, the industry's current best selling business jet. The newest addition to its fleet is the Citation X (ten), the largest, most complex aircraft ever produced by Cessna, which also has its basis in NASA technology. Aerodynamic design, wind tunneling testing, and airfoil performance, for example, have their foundation with NASA. The Citation X is the fastest, most efficient business jet ever built.

  4. Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives.

    PubMed

    Beaupré, Serge; Boudreault, Pierre-Luc T; Leclerc, Mario

    2010-02-23

    World energy needs grow each year. To address global warming and climate changes the search for renewable energy sources with limited greenhouse gas emissions and the development of energy-efficient lighting devices are underway. This Review reports recent progress made in the synthesis and characterization of conjugated polymers based on bridged phenylenes, namely, poly(2,7-fluorene)s, poly(2,7-carbazole)s, and poly(2,7-dibenzosilole)s, for applications in solar cells and white-light-emitting diodes. The main strategies and remaining challenges in the development of reliable and low-cost renewable sources of energy and energy-saving lighting devices are discussed.

  5. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures weremore » varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.« less

  6. Coiling, Entrainment, and Hydrodynamic Coupling of Decelerated Fluid Jets

    NASA Astrophysics Data System (ADS)

    Dombrowski, Christopher; Lewellyn, Braddon; Pesci, Adriana I.; Restrepo, Juan M.; Kessler, John O.; Goldstein, Raymond E.

    2005-10-01

    From algal suspensions to magma upwellings, one finds jets which exhibit complex symmetry-breaking instabilities as they are decelerated by their surroundings. We consider here a model system—a saline jet descending through a salinity gradient—which produces dynamics unlike those of standard momentum jets or plumes. The jet coils like a corkscrew within a conduit of viscously entrained fluid, whose upward recirculation braids the jet, and nearly confines transverse mixing to the narrow conduit. We show that the underlying jet structure and certain scaling relations follow from similarity solutions to the fluid equations and the physics of Kelvin-Helmholtz instabilities.

  7. Secondary Heating Under Quenching Cooling of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Tsukrov, S. L.; Ber, L. B.

    2017-07-01

    Variants of secondary heating of aluminum alloys are considered, i.e., under quenching of plates in a water tank or on a horizontal quenching unit with water jet cooling, under continuous quenching of strips, and under quenching of tubes in vertical furnaces. Recommendation are given for removal or substantial reduction of the intensity of secondary heating under industrial conditions.

  8. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-02-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI/t ff) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments "rain" down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI/t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI/t ff <~ 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  9. Photodissociation resonances of jet-cooled NO2 at the dissociation threshold by CW-CRDS

    NASA Astrophysics Data System (ADS)

    Dupré, Patrick

    2015-05-01

    Around 398 nm, the jet-cooled-spectrum of NO2 exhibits a well identified dissociation threshold (D0). Combining the continuous-wave absorption-based cavity ringdown spectroscopy technique and laser induced fluorescence detection, an energy range of ˜25 cm-1 is analyzed at high resolution around D0. In addition to the usual molecular transitions to long-lived energy levels, ˜115 wider resonances are observed. The position, amplitude, and width of these resonances are determined. The resonance width spreads from ˜0.006 cm-1 (i.e., ˜450 ps) to ˜0.7 cm-1 (˜4 ps) with large fluctuations. The identification of at least two ranges of resonance width versus the excess energy can be associated with the opening of the dissociation channels NO 2 → NO (X 2 Π 1 / 2 , v = 0 , J = 1 / 2) + O (3 P 2) and NO 2 → NO (X 2 Π 1 / 2 , v = 0 , J = 3 / 2) + O (3 P 2). This analysis corroborates the existence of loose transition states close to the dissociation threshold as reported previously and in agreement with the phase space theory predictions as shown by Tsuchiya's group [Miyawaki et al., J. Chem. Phys. 99, 254-264 (1993)]. The data are analyzed in the light of previously reported frequency- and time-resolved data to provide a robust determination of averaged unimolecular dissociation rate coefficients. The density of reactant levels deduced (ρreac ˜ 11 levels/cm-1) is discussed versus the density of transitions, the density of resonances, and the density of vibronic levels.

  10. A turbulent plane jet impinging nearby and far from a flat plate

    NASA Astrophysics Data System (ADS)

    Maurel, S.; Solliec, C.

    Plane air jets presenting an impact find applications in many industrial devices. They can be found in installations of heating, cooling or drying, cleaning, pulverization, or containment of polluted environments. Other applications can be found in the ventilation of buildings. The correct design of these kinds of installations requires thorough knowledge of the structure of the jet from the cinematic point of view. With this intention a test bench with variable geometry was developed. Then, using laser Doppler velocimetry (LDV) and particle image velocimetry (PIV), it is possible to analyze the development of the jet for various geometrical and cinematic configurations. It appears that the development of the jet is independent of the Reynolds number, and the velocity decrease in the developed and impinging zones can be characterized by using very simple laws. Furthermore, by PIV visualization of the impinging zone, it has been possible to highlight the causes of mass transfer through the jet.

  11. Experimental evidence of multimaterial jet formation with lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolaie, Ph.; Stenz, C.; Tikhonchuk, V.

    2010-11-15

    Laser-produced multimaterial jets have been investigated at the Prague Asterix Laser System laser [K. Jungwirth et al., Phys. Plasmas 8, 2495 (2001)]. The method of jet production is based on the laser-plasma ablation process and proved to be easy to set up and robust. The possibility of multimaterial laboratory jet production is demonstrated and complex hydrodynamic flows in the jet body are obtained. Two complementary diagnostics in the optical ray and x-ray ranges provide detailed information about jet characteristics. The latter are in agreement with estimates and two-dimensional radiation hydrodynamic simulation results. The experiment provides a proof of principle thatmore » a velocity field could be produced and controlled in the jet body. It opens a possibility of astrophysical jet structure modeling in laboratory.« less

  12. High resolution spectroscopy of jet cooled phenyl radical: The ν1 and ν2 a1 symmetry C-H stretching modes

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hsuan; Nesbitt, David J.

    2016-07-01

    A series of CH stretch modes in phenyl radical (C6H5) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (˜60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a1 symmetry, ν1 and ν2, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν1 and ν2 band origins are determined to be 3073.968 50(8) cm-1 and 3062.264 80(7) cm-1, respectively, which both agree within 5 cm-1 with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm-1 blue shift between gas phase and Ar matrix values for ν1 and ν2. This differs substantially from the much smaller red shift (Δν ≈ - 1 cm-1) reported for the ν19 mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet-cooled (Trot ≈ 11 K) conditions.

  13. Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs

    DOE PAGES

    Youchison, Dennis L.

    2015-07-30

    In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 °C inlet temperature. We investigated flowmore » perturbations caused by a 30 MW/m 2 off-normal heat flux applied over a 25 mm 2 area in addition to the nominal 5 MW/m 2 applied over a 75 mm 2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm 2 heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280 °C and a fluid/solid interface temperature of 801 °C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411 °C and a fluid/solid interface temperature of 844 °C. For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flow and thermal stresses at the armor joint.« less

  14. Film-cooling effectiveness with developing coolant flow through straight and curved tubular passages

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Wang, C. R.; Graham, R. W.

    1982-01-01

    The data were obtained with an apparatus designed to determine the influence of tubular coolant passage curvature on film-cooling performance while simulating the developing flow entrance conditions more representative of cooled turbine blade. Data comparisons were made between straight and curved single tubular passages embedded in the wall and discharging at 30 deg angle in line with the tunnel flow. The results showed an influence of curvature on film-cooling effectiveness that was inversely proportional to the blowing rate. At the lowest blowing rate of 0.18, curvature increased the effectiveness of film cooling by 35 percent; but at a blowing rate of 0.76, the improvement was only 10 percent. In addition, the increase in film-cooling area coverage ranged from 100 percent down to 25 percent over the same blowing rates. A data trend reversal at a blowing rate of 1.5 showed the straight tubular passage's film-cooling effectiveness to be 20 percent greater than that of the curved passage with about 80 percent more area coverage. An analysis of turbulence intensity detain the mixing layer in terms of the position of the mixing interface relative to the wall supported the concept that passage curvature tends to reduce the diffusion of the coolant jet into the main stream at blowing rates below about. Explanations for the film-cooling performance of both test sections were made in terms differences in turbulences structure and in secondary flow patterns within the coolant jets as influenced by flow passage geometry.

  15. Film-cooling effectiveness with developing coolant flow through straight and curved tubular passages

    NASA Astrophysics Data System (ADS)

    Papell, S. S.; Wang, C. R.; Graham, R. W.

    1982-11-01

    The data were obtained with an apparatus designed to determine the influence of tubular coolant passage curvature on film-cooling performance while simulating the developing flow entrance conditions more representative of cooled turbine blade. Data comparisons were made between straight and curved single tubular passages embedded in the wall and discharging at 30 deg angle in line with the tunnel flow. The results showed an influence of curvature on film-cooling effectiveness that was inversely proportional to the blowing rate. At the lowest blowing rate of 0.18, curvature increased the effectiveness of film cooling by 35 percent; but at a blowing rate of 0.76, the improvement was only 10 percent. In addition, the increase in film-cooling area coverage ranged from 100 percent down to 25 percent over the same blowing rates. A data trend reversal at a blowing rate of 1.5 showed the straight tubular passage's film-cooling effectiveness to be 20 percent greater than that of the curved passage with about 80 percent more area coverage. An analysis of turbulence intensity detain the mixing layer in terms of the position of the mixing interface relative to the wall supported the concept that passage curvature tends to reduce the diffusion of the coolant jet into the main stream at blowing rates below about. Explanations for the film-cooling performance of both test sections were made in terms differences in turbulences structure and in secondary flow patterns within the coolant jets as influenced by flow passage geometry.

  16. Highly efficient orange and warm white phosphorescent OLEDs based on a host material with a carbazole-fluorenyl hybrid.

    PubMed

    Du, Xiaoyang; Huang, Yun; Tao, Silu; Yang, Xiaoxia; Wu, Chuan; Wei, Huaixin; Chan, Mei-Yee; Yam, Vivian Wing-Wah; Lee, Chun-Sing

    2014-06-01

    A new carbazole-fluorenyl hybrid compound, 3,3'(2,7-di(naphthaline-2-yl)-9H-fluorene-9,9-diyl)bis(9-phenyl-9H-carbazole) (NFBC) was synthesized and characterized. The compound exhibits blue-violet emission both in solution and in film, with peaks centered at 404 and 420 nm. In addition to the application as a blue emitter, NFBC is demonstrated to be a good host for phosphorescent dopants. By doping Ir(2-phq)3 in NFBC, a highly efficient orange organic light-emitting diode (OLED) with a maximum efficiency of 32 cd A(-1) (26.5 Lm W(-1)) was obtained. Unlike most phosphorescent OLEDs, the device prepared in our study shows little efficiency roll-off at high brightness and maintains current efficiencies of 31.9 and 26.8 cd A(-1) at a luminance of 1000 and 10,000 cd m(-2), respectively. By using NFBC simultaneously as a blue fluorescence emitter and as a host for a phosphorescent dopant, a warm white OLED with a maximum efficiency of 22.9 Lm W(-1) (21.9 cd A(-1)) was also obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Characteristics of polar coronal hole jets

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, K.; Bemporad, A.; Banerjee, D.; Gupta, G. R.; Teriaca, L.

    2014-01-01

    point suggest that the sigmoid is the progenitor of the jet. Conclusions: The enhancement in the light curves of low-temperature EIS lines in the later phase of the jet lifetime and the shape of the jet's stack plots suggests that the jet material falls back, and most likely cools down. To further support this conclusion, the observed drifts were interpreted within a scenario where reconnection progressively shifts along a magnetic structure, leading to the sequential appearance of jets of about the same size and physical characteristics. On this basis, we also propose a simple qualitative model that mimics the observations. Movies 1-3 are available in electronic form at http://www.aanda.org Warning, no authors found for 2014A&A...561A..97.

  18. Jet in jet in M87

    NASA Astrophysics Data System (ADS)

    Sob'yanin, Denis Nikolaevich

    2017-11-01

    New high-resolution Very Long Baseline Interferometer observations of the prominent jet in the M87 radio galaxy show a persistent triple-ridge structure of the transverse 15-GHz profile with a previously unobserved ultra-narrow central ridge. This radio structure can reflect the intrinsic structure of the jet, so that the jet as a whole consists of two embedded coaxial jets. A relativistic magnetohydrodynamic model is considered in which an inner jet is placed inside a hollow outer jet and the electromagnetic fields, pressures and other physical quantities are found. The entire jet is connected to the central engine that plays the role of a unipolar inductor generating voltage between the jets and providing opposite electric currents, and the charge neutrality and current closure together with the electromagnetic fields between the jets can contribute to the jet stabilization. The constant voltage is responsible for the similar widening laws observed for the inner and outer jets. This jet-in-jet structure can indicate simultaneous operation of two different jet-launching mechanisms, one relating to the central supermassive black hole and the other to the surrounding accretion disc. An inferred magnetic field of 80 G at the base is sufficient to provide the observed jet luminosity.

  19. A small-scale eruption leading to a blowout macrospicule jet in an on-disk coronal hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Mitzi; Sterling, Alphonse C.; Moore, Ronald L.

    2014-03-01

    We examine the three-dimensional magnetic structure and dynamics of a solar EUV-macrospicule jet that occurred on 2011 February 27 in an on-disk coronal hole. The observations are from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) and the SDO Helioseismic and Magnetic Imager (HMI). The observations reveal that in this event, closed-field-carrying cool absorbing plasma, as in an erupting mini-filament, erupted and opened, forming a blowout jet. Contrary to some jet models, there was no substantial recently emerged, closed, bipolar-magnetic field in the base of the jet. Instead, over several hours, flux convergence and cancellation at the polarity inversionmore » line inside an evolved arcade in the base apparently destabilized the entire arcade, including its cool-plasma-carrying core field, to undergo a blowout eruption in the manner of many standard-sized, arcade-blowout eruptions that produce a flare and coronal mass ejection. Internal reconnection made bright 'flare' loops over the polarity inversion line inside the blowing-out arcade field, and external reconnection of the blowing-out arcade field with an ambient open field made longer and dimmer EUV loops on the outside of the blowing-out arcade. That the loops made by the external reconnection were much larger than the loops made by the internal reconnection makes this event a new variety of blowout jet, a variety not recognized in previous observations and models of blowout jets.« less

  20. Advanced Hybrid Cooling Loop Technology for High Performance Thermal Management

    DTIC Science & Technology

    2006-06-01

    and Chung, 2003; Estes and Mudawar , 1995]. Because of the pumping pressure and flow rate requirements, such pumped systems require large pumping and...United States, April 24-25, 2003. 8. Estes, K. and Mudawar , I., “Comparison of Two-Phase Electronic Cooling Using Free Jets and Sprays”, Journal of

  1. High resolution jet-cooled infrared absorption spectra of (HCOOH)2, (HCOOD)2, and HCOOH—HCOOD complexes in 7.2 μm region

    NASA Astrophysics Data System (ADS)

    Zhang, Yuluan; Li, Wenguang; Luo, Wei; Zhu, Yu; Duan, Chuanxi

    2017-06-01

    The rotationally resolved infrared spectra of (HCOOH)2, (HCOOD)2, and HCOOH—HCOOD complexes have been measured in 7.2 μm region by using a segmented rapid-scan distributed-feedback quantum cascade laser absorption spectrometer to probe a slit supersonic jet expansion. The observed spectra are assigned to the v21 (H—C/O—H in-plane bending) fundamental band of (HCOOH)2, the v15 (H—C/O—D in-plane bending) fundamental band of HCOOH—HCOOD, and the v20 (H—C—O in-plane bending) fundamental band of (HCOOD)2. Strong local perturbations caused by the rotation-tunneling coupling between two tunneling components are observed in (HCOOH)2. The v21 fundamental band of (HCOOH)2 and the previously measured v22 fundamental and v12 + v14 combination bands [K. G. Goroya et al., J. Chem. Phys. 140, 164311 (2014)] are analyzed together, yielding a more precise tunneling splitting in the ground state, 0.011 367(92) cm-1. The band-origin of the v21 band of (HCOOH)2 is 1371.776 74(8) cm-1, and the tunneling splitting decreases to 0.000 38(18) cm-1 upon the vibrational excitation. The vibrational energy is 1386.755 49(16) cm-1 for the v15 vibrational mode of HCOOH—HCOOD and 1391.084 39(17) cm-1 for the v20 vibrational mode of (HCOOD)2. No apparent spectral splittings are resolved for HCOOH—HCOOD and (HCOOD)2 under our experimental conditions. The tunneling splitting in the ground state of HCOOH—HCOOD is estimated to be 0.001 13 cm-1 from its average linewidth.

  2. Indolo[3,2-a]carbazoles from a deep-water sponge of the genus Asteropus.

    PubMed

    Russell, Floyd; Harmody, Dedra; McCarthy, Peter J; Pomponi, Shirley A; Wright, Amy E

    2013-10-25

    Two new indolo[3,2-a]carbazoles (1, 2) were isolated from a deep-water collection of a sponge of the genus Asteropus. The structures of 1 and 2 were determined through the analysis of spectroscopic data including mass spectrometry and 2D-NMR. Compound 1 showed minimum inhibitory concentrations of 25 μg/mL against the fungal pathogen Candida albicans and 50 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA). Compounds 1 and 2 showed no cytotoxicity against the PANC1 human pancreatic carcinoma and NCI/ADR-RES ovarian adenocarcinoma cell lines at our standard test concentration of 5 μg/mL.

  3. Indolo[3,2-a]carbazoles from a Deep-Water Sponge of the Genus Asteropus

    PubMed Central

    2013-01-01

    Two new indolo[3,2-a]carbazoles (1, 2) were isolated from a deep-water collection of a sponge of the genus Asteropus. The structures of 1 and 2 were determined through the analysis of spectroscopic data including mass spectrometry and 2D-NMR. Compound 1 showed minimum inhibitory concentrations of 25 μg/mL against the fungal pathogen Candida albicans and 50 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA). Compounds 1 and 2 showed no cytotoxicity against the PANC1 human pancreatic carcinoma and NCI/ADR-RES ovarian adenocarcinoma cell lines at our standard test concentration of 5 μg/mL. PMID:24063539

  4. Jet fuel from 18 cool-season oilseed feedstocks in a semi-arid environment

    NASA Astrophysics Data System (ADS)

    Allen, Brett; Jabro, Jay

    2017-04-01

    Renewable jet fuel feedstocks can potentially offset the demand for petroleum based transportation resources, diversify cropping systems, and provide numerous ecosystem services . However, identifying suitable feedstock supplies remains a primary constraint to adoption. A 4-yr, multi-site experiment initiated in fall 2012 investigated the yield potential of six winter- and twelve spring-types of cool-season oilseed feedstocks. Sidney, MT (250 mm annual growing season precipitation) was one of eight sites in the western USA with others in Colorado, Idaho, Iowa, Minnesota, North Dakota, Oregon, and Texas. Winter types of Camelina sativa (1), Brassica napus (4), and B. rapa (1) were planted in mid-September, while spring types of Camelina sativa (1), B. napus (4), B. rapa (1), B. juncea (2), B. carinata (2), and Sinapis alba (2) were planted in early to late April. Seeding rates varied by entry and were between 4 to 11 kg/ha. All plots were under no-till management. Plots were 3 by 9 m with each treatment (oilseed entry) replicated four times. Camelina 'Joelle' was the only fall-seeded entry that survived winters with little to no snow cover on plots and where minimum air temperature reached -32°C. Stands of 'Joelle' in the spring of all years were excellent. 'Joelle' plots were typically harvested in July, while spring types were harvested 2-6 weeks later. Severe hailstorms during the late growing seasons of 2013 and 2015 resulted in up to 95% seed loss, preventing normal seed yield harvest of spring types. The B. carinata and spring camelina were the least and most susceptible to hail damage during plant maturity, respectively. 'Joelle' winter camelina was harvested before the severe weather in both years, showing the benefit of an early maturing crop in regions prone to late season hail. Overall, camelina was the only winter type that showed potential as an oilseed feedstock due to its superior winter hardiness. For spring types, B. napus, Camelina sativa, and B

  5. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust

    NASA Astrophysics Data System (ADS)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam

    2017-11-01

    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  6. Streamwise Vorticity Generation in Laminar and Turbulent Jets

    NASA Technical Reports Server (NTRS)

    Demuren, Aodeji O.; Wilson, Robert V.

    1999-01-01

    Complex streamwise vorticity fields are observed in the evolution of non-circular jets. Generation mechanisms are investigated via Reynolds-averaged (RANS), large-eddy (LES) and direct numerical (DNS) simulations of laminar and turbulent rectangular jets. Complex vortex interactions are found in DNS of laminar jets, but axis-switching is observed only when a single instability mode is present in the incoming mixing layer. With several modes present, the structures are not coherent and no axis-switching occurs, RANS computations also produce no axis-switching. On the other hand, LES of high Reynolds number turbulent jets produce axis-switching even for cases with several instability modes in the mixing layer. Analysis of the source terms of the mean streamwise vorticity equation through post-processing of the instantaneous results shows that, complex interactions of gradients of the normal and shear Reynolds stresses are responsible for the generation of streamwise vorticity which leads to axis-switching. RANS computations confirm these results. k - epsilon turbulence model computations fail to reproduce the phenomenon, whereas algebraic Reynolds stress model (ASM) computations, in which the secondary normal and shear stresses are computed explicitly, succeeded in reproducing the phenomenon accurately.

  7. A Methoxydiphenylamine-Substituted Carbazole Twin Derivative: An Efficient Hole-Transporting Material for Perovskite Solar Cells.

    PubMed

    Gratia, Paul; Magomedov, Artiom; Malinauskas, Tadas; Daskeviciene, Maryte; Abate, Antonio; Ahmad, Shahzada; Grätzel, Michael; Getautis, Vytautas; Nazeeruddin, Mohammad Khaja

    2015-09-21

    The small-molecule-based hole-transporting material methoxydiphenylamine-substituted carbazole was synthesized and incorporated into a CH3NH3PbI3 perovskite solar cell, which displayed a power conversion efficiency of 16.91%, the second highest conversion efficiency after that of Spiro-OMeTAD. The investigated hole-transporting material was synthesized in two steps from commercially available and relatively inexpensive starting reagents. Various electro-optical measurements (UV/Vis, IV, thin-film conductivity, hole mobility, DSC, TGA, ionization potential) have been carried out to characterize the new hole-transporting material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Relativistic turbulence with strong synchrotron and synchrotron self-Compton cooling

    NASA Astrophysics Data System (ADS)

    Uzdensky, D. A.

    2018-07-01

    Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae (PWN), hot accretion flows on to black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper, we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. We find that if the system reaches a statistical equilibrium where turbulent heating is balanced by radiative cooling, the effective electron temperature tends to attain a universal value θ = kT_e/m_e c^2 ˜ 1/√{τ _T}, where τT = neσTL ≪ 1 is the system's Thomson optical depth, essentially independent of the strength of turbulent driving and hence of the magnetic field. This is because both MHD turbulent dissipation and synchrotron cooling are proportional to the magnetic energy density. We also find that synchrotron self-Compton (SSC) cooling and perhaps a few higher order IC components are automatically comparable to synchrotron in this regime. The overall broad-band radiation spectrum then consists of several distinct components (synchrotron, SSC, etc.), well separated in photon energy (by a factor ˜ τ_T^{-1}) and roughly equal in power. The number of IC peaks is checked by Klein-Nishina effects and depends logarithmically on τT and the magnetic field. We also examine the limitations due to synchrotron self-absorption, explore applications to Crab PWN and blazar jets, and discuss links to radiative magnetic reconnection.

  9. Effect of Various Parameters on Evolution of 2D Free Jets and their Associated Entrainment Rates

    NASA Astrophysics Data System (ADS)

    Amin, Mazyar; Dabiri, Dana; Navaz, Homayun

    2006-11-01

    Refrigerated vertical display cases are extensively used in supermarkets and grocery stores. Cold air is supplied vertically across the open face of the display case from the top, creating a cold air curtain acting as a barrier to separate the cold air within the case from the warm ambient air. Typically, 70-80% of the load on these vertical display cases is due to cooling of infiltrated warm ambient air. Our goal is to understand parameters affecting warm air infiltration into the case so as to minimize the cooling load. Towards this end, steady state behavior of 2D vertical air jets at Reynolds numbers 2,000 to 10,000 with low and high turbulence intensities (0% &10%) at the nozzle exit are experimentally and computationally investigated both within a quiescent ambient and next to an open cavity. Four different velocity profile shapes (top-hat, parabola, skewed parabola and linear) at the jet exit are also studied to determine profile effects on the evolution of and entrainment into the jet. Results will be presented to show the effect of these parameters on the total entrainment into the jet, as well as the variation of entrainment across the jet at different downstream locations. The results of this work can help better understand how to design air curtains as a buffer to minimize infiltration into open refrigerated vertical display cases.

  10. Microscopic Processes in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.; hide

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  11. Studies of the effects of curvature on dilution jet mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.; Srinivasan, Ram; Reynolds, Robert S.; White, Craig D.

    1992-01-01

    An analytical program was conducted using both three-dimensional numerical and empirical models to investigate the effects of transition liner curvature on the mixing of jets injected into a confined crossflow. The numerical code is of the TEACH type with hybrid numerics; it uses the power-law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. From the results of the numerical calculations, an existing empirical model for the temperature field downstream of single and multiple rows of jets injected into a straight rectangular duct was extended to model the effects of curvature. Temperature distributions, calculated with both the numerical and empirical models, are presented to show the effects of radius of curvature and inner and outer wall injection for single and opposed rows of cool dilution jets injected into a hot mainstream flow.

  12. Structural insight into the substrate- and dioxygen-binding manner in the catalytic cycle of rieske nonheme iron oxygenase system, carbazole 1,9a-dioxygenase.

    PubMed

    Ashikawa, Yuji; Fujimoto, Zui; Usami, Yusuke; Inoue, Kengo; Noguchi, Haruko; Yamane, Hisakazu; Nojiri, Hideaki

    2012-06-24

    Dihydroxylation of tandemly linked aromatic carbons in a cis-configuration, catalyzed by multicomponent oxygenase systems known as Rieske nonheme iron oxygenase systems (ROs), often constitute the initial step of aerobic degradation pathways for various aromatic compounds. Because such RO reactions inherently govern whether downstream degradation processes occur, novel oxygenation mechanisms involving oxygenase components of ROs (RO-Os) is of great interest. Despite substantial progress in structural and physicochemical analyses, no consensus exists on the chemical steps in the catalytic cycles of ROs. Thus, determining whether conformational changes at the active site of RO-O occur by substrate and/or oxygen binding is important. Carbazole 1,9a-dioxygenase (CARDO), a RO member consists of catalytic terminal oxygenase (CARDO-O), ferredoxin (CARDO-F), and ferredoxin reductase. We have succeeded in determining the crystal structures of oxidized CARDO-O, oxidized CARDO-F, and both oxidized and reduced forms of the CARDO-O: CARDO-F binary complex. In the present study, we determined the crystal structures of the reduced carbazole (CAR)-bound, dioxygen-bound, and both CAR- and dioxygen-bound CARDO-O: CARDO-F binary complex structures at 1.95, 1.85, and 2.00 Å resolution. These structures revealed the conformational changes that occur in the catalytic cycle. Structural comparison between complex structures in each step of the catalytic mechanism provides several implications, such as the order of substrate and dioxygen bindings, the iron-dioxygen species likely being Fe(III)-(hydro)peroxo, and the creation of room for dioxygen binding and the promotion of dioxygen binding in desirable fashion by preceding substrate binding. The RO catalytic mechanism is proposed as follows: When the Rieske cluster is reduced, substrate binding induces several conformational changes (e.g., movements of the nonheme iron and the ligand residue) that create room for oxygen binding

  13. A Theoretical Model of X-Ray Jets from Young Stellar Objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takasao, Shinsuke; Suzuki, Takeru K.; Shibata, Kazunari, E-mail: takasao@kwasan.kyoto-u.ac.jp

    There is a subclass of X-ray jets from young stellar objects that are heated very close to the footpoint of the jets, particularly DG Tau jets. Previous models have attributed the strong heating to shocks in the jets. However, the mechanism that localizes the heating at the footpoint remains puzzling. We presented a different model of such X-ray jets, in which the disk atmosphere is magnetically heated. Our disk corona model is based on the so-called nanoflare model for the solar corona. We show that the magnetic heating near the disks can result in the formation of a hot coronamore » with a temperature of ≳10{sup 6} K, even if the average field strength in the disk is moderately weak, ≳1 G. We determine the density and the temperature at the jet base by considering the energy balance between the heating and cooling. We derive the scaling relations of the mass-loss rate and terminal velocity of jets. Our model is applied to the DG Tau jets. The observed temperature and estimated mass-loss rate are consistent with the prediction of our model in the case of a disk magnetic field strength of ∼20 G and a heating region of <0.1 au. The derived scaling relation of the temperature of X-ray jets could be a useful tool for estimating the magnetic field strength. We also find that the jet X-ray can have a significant impact on the ionization degree near the disk surface and the dead zone size.« less

  14. Magnetic Flux Cancelation as the Trigger of Solar Coronal Jets in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2018-02-01

    We investigate in detail the magnetic cause of minifilament eruptions that drive coronal-hole jets. We study 13 random on-disk coronal-hole jet eruptions, using high-resolution X-ray images from the Hinode/X-ray telescope(XRT), EUV images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), and magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). For all 13 events, we track the evolution of the jet-base region and find that a minifilament of cool (transition-region-temperature) plasma is present prior to each jet eruption. HMI magnetograms show that the minifilaments reside along a magnetic neutral line between majority-polarity and minority-polarity magnetic flux patches. These patches converge and cancel with each other, with an average cancelation rate of ∼0.6 × 1018 Mx hr‑1 for all 13 jets. Persistent flux cancelation at the neutral line eventually destabilizes the minifilament field, which erupts outward and produces the jet spire. Thus, we find that all 13 coronal-hole-jet-driving minifilament eruptions are triggered by flux cancelation at the neutral line. These results are in agreement with our recent findings for quiet-region jets, where flux cancelation at the underlying neutral line triggers the minifilament eruption that drives each jet. Thus, from that study of quiet-Sun jets and this study of coronal-hole jets, we conclude that flux cancelation is the main candidate for triggering quiet-region and coronal-hole jets.

  15. Forward-facing cavity and opposing jet combined thermal protection system

    NASA Astrophysics Data System (ADS)

    Lu, H. B.; Liu, W. Q.

    2012-12-01

    This paper focuses on the design of a forward-facing cavity and opposing jet combined configuration for thermal protection system (TPS) of hypersonic vehicles. The cooling efficiency of the combined TPS was investigated numerically, and the numerical method was validated by the related experiment in the open literature. The flow field parameters, aerodynamic force, and surface heat flux distribution were obtained. The detailed numerical results show that this kind of combined TPS has an excellent impact on cooling the nose-tip, and it is suitable for the thermal protection of hypersonic vehicles which require long-range and time to cruise.

  16. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Technical Reports Server (NTRS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.; hide

    2016-01-01

    Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.

  17. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Technical Reports Server (NTRS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  18. A saw-tooth plasma actuator for film cooling efficiency enhancement of a shaped hole

    NASA Astrophysics Data System (ADS)

    Li, Guozhan; Yu, Jianyang; Liu, Huaping; Chen, Fu; Song, Yanping

    2017-08-01

    This paper reports the large eddy simulations of the effects of a saw-tooth plasma actuator and the laidback fan-shaped hole on the film cooling flow characteristics, and the numerical results are compared with a corresponding standard configuration (cylindrical hole without the saw-tooth plasma actuator). For this numerical research, the saw-tooth plasma actuator is installed just downstream of the cooling hole and a phenomenological plasma model is employed to provide the 3D plasma force vectors. The results show that thanks to the downward force and the momentum injection effect of the saw-tooth plasma actuator, the cold jet comes closer to the wall surface and extends further downstream. The saw-tooth plasma actuator also induces a new pair of vortex which weakens the strength of the counter-rotating vortex pair (CRVP) and entrains the coolant towards the wall, and thus the diffusion of the cold jet in the crossflow is suppressed. Furthermore, the laidback fan-shaped hole reduces the vertical jet velocity causing the disappearance of downstream spiral separation node vortices, this compensates for the deficiency of the saw-tooth plasma actuator. Both effects of the laidback fan-shaped hole and the saw-tooth plasma actuator effectively control the development of the CRVP whose size and strength are smaller than those of the anti-counter rotating vortex pair in the far field, thus the centerline and the spanwise-averaged film cooling efficiency are enhanced. The average film cooling efficiency is the biggest in the Fan-Dc = 1 case, which is 80% bigger than that in the Fan-Dc = 0 case and 288% bigger than that in the Cyl-Dc = 0 case.

  19. Thermoelectric Devices Cool, Power Electronics

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Nextreme Thermal Solutions Inc., based in Research Triangle Park, North Carolina, licensed thermoelectric technology from NASA s Jet Propulsion Laboratory. This has allowed the company to develop cutting edge, thin-film thermoelectric coolers that effective remove heat generated by increasingly powerful and tightly packed microchip components. These solid-state coolers are ideal solutions for applications like microprocessors, laser diodes, LEDs, and even potentially for cooling the human body. Nextreme s NASA technology has also enabled the invention of thermoelectric generators capable of powering technologies like medical implants and wireless sensor networks.

  20. Near-field acoustical holography of military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Wall, Alan T.; Gee, Kent L.; Neilsen, Tracianne; Krueger, David W.; Sommerfeldt, Scott D.; James, Michael M.

    2010-10-01

    Noise radiated from high-performance military jet aircraft poses a hearing-loss risk to personnel. Accurate characterization of jet noise can assist in noise prediction and noise reduction techniques. In this work, sound pressure measurements were made in the near field of an F-22 Raptor. With more than 6000 measurement points, this is the most extensive near-field measurement of a high-performance jet to date. A technique called near-field acoustical holography has been used to propagate the complex pressure from a two- dimensional plane to a three-dimensional region in the jet vicinity. Results will be shown and what they reveal about jet noise characteristics will be discussed.

  1. Gas turbine row #1 steam cooled vane

    DOEpatents

    Cunha, Frank J.

    2000-01-01

    A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

  2. Jet Flap Stator Blade Test in the High Reaction Turbine Blade Cascade Tunnel

    NASA Image and Video Library

    1970-03-21

    A researcher examines the setup of a jet flap blade in the High Reaction Turbine Blade Cascade Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers were seeking ways to increase turbine blade loading on aircraft engines in an effort to reduce the overall size and weight of engines. The ability of each blade to handle higher loads meant that fewer stages and fewer blades were required. This study analyzed the performance of a turbine blade using a jet flap and high loading. A jet of air was injected into the main stream from the pressure surface near the trailing edge. The jet formed an aerodynamic flap which deflected the flow and changed the circulation around the blade and thus increased the blade loading. The air jet also reduced boundary layer thickness. The jet-flap blade design was appealing because the cooling air may also be used for the jet. The performance was studied in a two-dimensional cascade including six blades. The researcher is checking the jet flat cascade with an exit survey probe. The probe measured the differential pressure that was proportional to the flow angle. The blades were tested over a range of velocity ratios and three jet flow conditions. Increased jet flow improved the turning and decreased both the weight flow and the blade loading. However, high blade loadings were obtained at all jet flow conditions.

  3. The jet-disk symbiosis without maximal jets: 1D hydrodynamical jets revisited

    NASA Astrophysics Data System (ADS)

    Crumley, Patrick; Ceccobello, Chiara; Connors, Riley M. T.; Cavecchi, Yuri

    2017-05-01

    In this work we discuss the recent criticism by Zdziarski (2016, A&A, 586, A18) of the maximal jet model derived in Falcke & Biermann (1995, A&A, 293, 665). We agree with Zdziarski that in general a jet's internal energy is not bounded by its rest-mass energy density. We describe the effects of the mistake on conclusions that have been made using the maximal jet model and show when a maximal jet is an appropriate assumption. The maximal jet model was used to derive a 1D hydrodynamical model of jets in agnjet, a model that does multiwavelength fitting of quiescent/hard state X-ray binaries and low-luminosity active galactic nuclei. We correct algebraic mistakes made in the derivation of the 1D Euler equation and relax the maximal jet assumption. We show that the corrections cause minor differences as long as the jet has a small opening angle and a small terminal Lorentz factor. We find that the major conclusion from the maximal jet model, the jet-disk symbiosis, can be generally applied to astrophysical jets. We also show that isothermal jets are required to match the flat radio spectra seen in low-luminosity X-ray binaries and active galactic nuclei, in agreement with other works.

  4. Prediction, Measurement, and Suppression of High Temperature Supersonic Jet Noise

    NASA Technical Reports Server (NTRS)

    Seiner, John M.; Bhat, T. R. S.; Jansen, Bernard J.

    1999-01-01

    The photograph in figure 1 displays a water cooled round convergent-divergent supersonic nozzle operating slightly overexpanded near 2460 F. The nozzle is designed to produce shock free flow near this temperature at Mach 2. The exit diameter of this nozzle is 3.5 inches. This nozzle is used in the present study to establish properties of the sound field associated with high temperature supersonic jets operating fully pressure balanced (i.e. shock free) and to evaluate capability of the compressible Rayleigh model to account for principle physical features of the observed sound emission. The experiment is conducted statically (i.e. M(sub f) = 0.) in the NASA/LaRC Jet Noise Laboratory. Both aerodynamic and acoustic measurements are obtained in this study along with numerical plume simulation and theoretical prediction of jet noise. Detailed results from this study are reported previously by Seiner, Ponton, Jansen, and Lagen.

  5. Water cooling system for an air-breathing hypersonic test vehicle

    NASA Technical Reports Server (NTRS)

    Petley, Dennis H.; Dziedzic, William M.

    1993-01-01

    This study provides concepts for hypersonic experimental scramjet test vehicles which have low cost and low risk. Cryogenic hydrogen is used as the fuel and coolant. Secondary water cooling systems were designed. Three concepts are shown: an all hydrogen cooling system, a secondary open loop water cooled system, and a secondary closed loop water cooled system. The open loop concept uses high pressure helium (15,000 psi) to drive water through the cooling system while maintaining the pressure in the water tank. The water flows through the turbine side of the turbopump to pump hydrogen fuel. The water is then allowed to vent. In the closed loop concept high pressure, room temperature, compressed liquid water is circulated. In flight water pressure is limited to 6000 psi by venting some of the water. Water is circulated through cooling channels via an ejector which uses high pressure gas to drive a water jet. The cooling systems are presented along with finite difference steady-state and transient analysis results. The results from this study indicate that water used as a secondary coolant can be designed to increase experimental test time, produce minimum venting of fluid and reduce overall development cost.

  6. A New Star-shaped Carbazole Derivative with Polyhedral Oligomeric Silsesquioxane Core: Crystal Structure and Unique Photoluminescence Property.

    PubMed

    Xu, Zixuan; Yu, Tianzhi; Zhao, Yuling; Zhang, Hui; Zhao, Guoyun; Li, Jianfeng; Chai, Lanqin

    2016-01-01

    A new inorganic–organic hybrid material based on polyhedral oligomeric silsesquioxane (POSS) capped with carbazolyl substituents, octakis[3-(carbazol-9-yl)propyldimethylsiloxy]-silsesquioxane (POSS-8Cz), was successfully synthesized and characterized. The X-ray crystal structure of POSS-8Cz were described. The photophysical properties of POSS-8Cz were investigated by using UV–vis,photoluminescence spectroscopic analysis. The hybrid material exhibits blue emission in the solution and the solid film.The morphology and thermal stablity properties were measured by X-ray diffraction (XRD) and TG-DTA analysis.

  7. Efficient needle plasma actuators for flow control and surface cooling

    NASA Astrophysics Data System (ADS)

    Zhao, Pengfei; Portugal, Sherlie; Roy, Subrata

    2015-07-01

    We introduce a milliwatt class needle actuator suitable for plasma channels, vortex generation, and surface cooling. Electrode configurations tested for a channel configuration show 1400% and 300% increase in energy conversion efficiency as compared to conventional surface and channel corona actuators, respectively, generating up to 3.4 m/s air jet across the channel outlet. The positive polarity of the needle is shown to have a beneficial effect on actuator efficiency. Needle-plate configuration is demonstrated for improving cooling of a flat surface with a 57% increase in convective heat transfer coefficient. Vortex generation by selective input signal manipulation is also demonstrated.

  8. Large Eddy Simulations and Turbulence Modeling for Film Cooling

    NASA Technical Reports Server (NTRS)

    Acharya, Sumanta

    1999-01-01

    The objective of the research is to perform Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) for film cooling process, and to evaluate and improve advanced forms of the two equation turbulence models for turbine blade surface flow analysis. The DNS/LES were used to resolve the large eddies within the flow field near the coolant jet location. The work involved code development and applications of the codes developed to the film cooling problems. Five different codes were developed and utilized to perform this research. This report presented a summary of the development of the codes and their applications to analyze the turbulence properties at locations near coolant injection holes.

  9. General Relativistic MHD Simulations of Jet Formation

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.-I.; Hardee, P.; Koide, S.; Fishman, G. J.

    2005-01-01

    We have performed 3-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of jet formation from an accretion disk with/without initial perturbation around a rotating black hole. We input a sinusoidal perturbation (m = 5 mode) in the rotation velocity of the accretion disk. The simulation results show the formation of a relativistic jet from the accretion disk. Although the initial perturbation becomes weakened by the coupling among different modes, it survives and triggers lower modes. As a result, complex non-axisymmetric density structure develops in the disk and the jet. Newtonian MHD simulations of jet formation with a non-axisymmetric mode show the growth of the m = 2 mode but GRMHD simulations cannot see the clear growth of the m = 2 mode.

  10. Research on thermal protection mechanism of forward-facing cavity and opposing jet combinatorial thermal protection system

    NASA Astrophysics Data System (ADS)

    Lu, Hai-Bo; Liu, Wei-Qiang

    2014-04-01

    Validated by the correlated experiments, a nose-tip with forward-facing cavity/opposing jet/the combinatorial configuration of forward-facing cavity and opposing jet thermal protection system (TPS) are investigated numerically. The physical mechanism of these TPS is discussed, and the cooling efficiency of them is compared. The combinatorial system is more suitable to be the TPS for the high speed vehicles which need fly under various flow conditions with long-range and long time.

  11. Time-frequency analysis of submerged synthetic jet

    NASA Astrophysics Data System (ADS)

    Kumar, Abhay; Saha, Arun K.; Panigrahi, P. K.

    2017-12-01

    The coherent structures transport the finite body of fluid mass through rolling which plays an important role in heat transfer, boundary layer control, mixing, cooling, propulsion and other engineering applications. A synthetic jet in the form of a train of vortex rings having coherent structures of different length scales is expected to be useful in these applications. The propagation and sustainability of these coherent structures (vortex rings) in downstream direction characterize the performance of synthetic jet. In the present study, the velocity signal acquired using the S-type hot-film probe along the synthetic jet centerline has been taken for the spectral analysis. One circular and three rectangular orifices of aspect ratio 1, 2 and 4 actuating at 1, 6 and 18 Hz frequency have been used for creating different synthetic jets. The laser induced fluorescence images are used to study the flow structures qualitatively and help in explaining the velocity signal for detection of coherent structures. The study depicts four regions as vortex rollup and suction region (X/D h ≤ 3), steadily translating region (X/D h ≤ 3-8), vortex breakup region (X/Dh ≤ 4-8) and dissipation of small-scale vortices (X/D h ≤ 8-15). The presence of coherent structures localized in physical and temporal domain is analyzed for the characterization of synthetic jet. Due to pulsatile nature of synthetic jet, analysis of velocity time trace or signal in time, frequency and combined time-frequency domain assist in characterizing the signatures of coherent structures. It has been observed that the maximum energy is in the first harmonic of actuation frequency, which decreases slowly in downstream direction at 6 Hz compared to 1 and 18 Hz of actuation.

  12. 3D Measurements of coupled freestream turbulence and secondary flow effects on film cooling

    NASA Astrophysics Data System (ADS)

    Ching, David S.; Xu, Haosen H. A.; Elkins, Christopher J.; Eaton, John K.

    2018-06-01

    The effect of freestream turbulence on a single round film cooling hole is examined at two turbulence levels of 5 and 8% and compared to a baseline low freestream turbulence case. The hole is inclined at 30° and has length to diameter ratio L/D=4 and unity blowing ratio. Turbulence is generated with grid upstream of the hole in the main channel. The three-dimensional, three-component mean velocity field is acquired with magnetic resonance velocimetry (MRV) and the three-dimensional temperature field is acquired with magnetic resonance thermometry (MRT). The 8% turbulence grid produces weak mean secondary flows in the mainstream (peak crossflow velocities are 7% of U_bulk) which push the jet close to the wall and significantly change the adiabatic effectiveness distribution. By contrast, the 5% grid has a simpler structure and does not produce a measurable secondary flow structure. The grid turbulence causes little change to the temperature field, indicating that the turbulence generated in the shear layers around the jet dominates the freestream turbulence. The results suggest that secondary flows induced by complex turbulence generators may have caused some of the contradictory results in previous works.

  13. Film cooling from inclined cylindrical holes using large eddy simulations

    NASA Astrophysics Data System (ADS)

    Peet, Yulia V.

    2006-12-01

    The goal of the present study is to investigate numerically the physics of the flow, which occurs during the film cooling from inclined cylindrical holes, Film cooling is a technique used in gas turbine industry to reduce heat fluxes to the turbine blade surface. Large Eddy Simulation (LES) is performed modeling a realistic film cooling configuration, which consists of a large stagnation-type reservoir, feeding an array of discrete cooling holes (film holes) flowing into a flat plate turbulent boundary layer. Special computational methodology is developed for this problem, involving coupled simulations using multiple computational codes. A fully compressible LES code is used in the area above the flat plate, while a low Mach number LES code is employed in the plenum and film holes. The motivation for using different codes comes from the essential difference in the nature of the flow in these different regions. Flowfield is analyzed inside the plenum, film hole and a crossflow region. Flow inside the plenum is stagnating, except for the region close to the exit, where it accelerates rapidly to turn into the hole. The sharp radius of turning at the trailing edge of the plenum pipe connection causes the flow to separate from the downstream wall of the film hole. After coolant injection occurs, a complex flowfield is formed consisting of coherent vortical structures responsible for bringing hot crossflow fluid in contact with the walls of either the film hole or the blade, thus reducing cooling protection. Mean velocity and turbulent statistics are compared to experimental measurements, yielding good agreement for the mean flowfield and satisfactory agreement for the turbulence quantities. LES results are used to assess the applicability of basic assumptions of conventional eddy viscosity turbulence models used with Reynolds-averaged (RANS) approach, namely the isotropy of an eddy viscosity and thermal diffusivity. It is shown here that these assumptions do not hold

  14. Jet cooled cavity ringdown spectroscopy of the A ˜ 2 E ″ ← X ˜ 2 A2 ' transition of the NO3 radical

    NASA Astrophysics Data System (ADS)

    Codd, Terrance; Chen, Ming-Wei; Roudjane, Mourad; Stanton, John F.; Miller, Terry A.

    2015-05-01

    The A ˜ 2 E ″ ← X ˜ 2 A2 ' spectrum of NO3 radical from 7550 cm-1 to 9750 cm-1 has been recorded and analyzed. Our spectrum differs from previously recorded spectra of this transition due to jet-cooling, which narrows the rotational contours and eliminates spectral interference from hot bands. Assignments of numerous vibronic features can be made based on both band contour and position including the previously unassigned 30 1 band and several associated combination bands. We have analyzed our spectrum first with an independent anharmonic oscillator model and then by a quadratic Jahn-Teller vibronic coupling model. The fit achieved with the quadratic Jahn-Teller model is excellent, but the potential energy surface obtained with the fitted parameters is in only qualitative agreement with one obtained from ab initio calculations.

  15. Experimental study of secondary flow in the presence of two jet arrays on the wall of a turbine blade

    NASA Astrophysics Data System (ADS)

    Seddini, Abdelali

    A experimental study of the interaction of the secondary turbine flow with the cooling jets injected at the base of the blades is presented. Subsonic wind tunnel tests were carried on using a gas turbine wheel. The hot wire sensor and the five orifices pressure transducer used in the tests are described. The results allow a satisfactory description of the evolution of the jets in the space between blades and give some indications of the interactions of jets with secondary flows, passing vortices and between themselves.

  16. Twin Jet

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  17. The complex of optical methods for study of gas-liquid jets

    NASA Astrophysics Data System (ADS)

    Poplavski, S. V.; Boiko, V. M.

    2017-10-01

    A set of optical methods for studying the dispersion and dynamics of liquids in high-speed gas jets was realized. Four optical methods were used: shadow imaging, PIV method, Laser Doppler Anemometer (LDA), a method for recording the dispersity of a spray by angular scattering of light. With the example of a supersonic coaxial jet with a central fluid supply, a technique is developed that makes it possible to obtain not only the sum of the data by four methods but new critical data on the structure of the two-phase flow, such as the concentration distributions of the spray.

  18. Cooling tower plume - model and experiment

    NASA Astrophysics Data System (ADS)

    Cizek, Jan; Gemperle, Jiri; Strob, Miroslav; Nozicka, Jiri

    The paper discusses the description of the simple model of the, so-called, steam plume, which in many cases forms during the operation of the evaporative cooling systems of the power plants, or large technological units. The model is based on semi-empirical equations that describe the behaviour of a mixture of two gases in case of the free jet stream. In the conclusion of the paper, a simple experiment is presented through which the results of the designed model shall be validated in the subsequent period.

  19. Inclined Jet in Crossflow Interacting with a Vortex Generator

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Rigby, D .L.; Heidmann, J. D.

    2011-01-01

    An experiment is conducted on the effectiveness of a vortex generator in preventing liftoff of a jet in crossflow, with possible relevance to film-cooling applications. The jet issues into the boundary layer at an angle of 20 degreees to the freestream. The effect of a triangular ramp-shaped vortex generator is studied while varying its geometry and location. Detailed flowfield properties are obtained for a case in which the height of the vortex generator and the diameter of the orifice are comparable with the approach boundary-layer thickness. The vortex generator produces a streamwise vortex pair with a vorticity magnitude 3 times larger (and of opposite sense) than that found in the jet in crossflow alone. Such a vortex generator appears to be most effective in keeping the jet attached to the wall. The effect of parametric variation is studied mostly from surveys 10 diameters downstream from the orifice. Results over a range of jet-to-freestream momentum flux ratio (1 < J < 11) show that the vortex generator has a significant effect even at the highest J covered in the experiment. When the vortex generator height is halved, there is a liftoff of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensity. Varying the location of the vortex generator, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the vortex generator with the increasing radius of curvature progressively diminishes its effect. However, allowing for a small radius of curvature may be quite tolerable in practice.

  20. Vapor Jet Ejector Used to Generate Free Waste Heat Driven Cooling in Military Environmental Cooling Units

    DTIC Science & Technology

    2012-07-01

    vap erant vapor is or by a J-tub essure side of using similar pressure incre ump in order o the diesel-e per heat excha recovered at to the exhaus...top of the a tering the com at exchanger. g of the conve id flow. A nit essure pulsati tor where the ed in the cool erature level. ger where wa

  1. Photographic copy of photograph, aerial view looking south at Jet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, aerial view looking south at Jet Propulsion Laboratory, Edwards Test Station complex in 1959, shortly after completion of Test Stand 'D' construction and installation of underground tunnel system. Test Stand 'D' is in the foreground, Test Stand 'A' complex in the background. Roads are as yet unpaved. (JPL negative no. 384-1917-B, 28 May 1959) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  2. Enhancement of convective heat transfer in internal flows using an electrically-induced corona jet

    NASA Astrophysics Data System (ADS)

    Baghaei Lakeh, Reza

    The enhancement of heat transfer by active and passive methods has been the subject of many academic and industrial research studies. Internal flows play a major role in many applications and different methods have been utilized to augment the heat transfer to internal flows. Secondary flows consume part of the kinetic energy of the flow and disturb the boundary layer. Inducing secondary flows is known as mechanism for heat transfer enhancement. Secondary flows may be generated by corona discharge and ion-driven flows. When a high electric potential is applied to a conductor, a high electric field will be generated. The high electric field may exceed the partial break-down of the neutral molecules of surrounding gas (air) and generate a low-temperature plasma in the vicinity of the conductor. The generated plasma acts as a source of ions that accelerate under the influence of the electric field and escape beyond the plasma region and move toward the grounded electrode. The accelerating ions collide with neutral particles of the surrounding gas and impose a dragging effect which is interpreted as a body-force to the air particles. The shape and configuration of the emitting and receiving electrodes has a significant impact on the distribution of the electric body-force and the resulting electrically-induced flow field. It turned out that the certain configurations of longitudinal electrodes may cause a jet-like secondary flow field on the cross section of the flow passage in internal flows. The impingement effect of the corona jet on the walls of the channel disturbs the boundary layer, enhances the convective heat transfer, and generates targeted cooling along the centerline of the jet. The results of the current study show that the concentric configuration of a suspended wire-electrode in a circular tube leads to a hydrostatic condition and do not develop any electrically-induced secondary flow; however, the eccentric wire-electrode configuration generates a

  3. Signatures of Relativistic Helical Motion in the Rotation Measures of Active Galactic Nucleus Jets

    NASA Astrophysics Data System (ADS)

    Broderick, Avery E.; Loeb, Abraham

    2009-10-01

    Polarization has proven to be an invaluable tool for probing magnetic fields in relativistic jets. Maps of the intrinsic polarization vectors have provided the best evidence to date for uniform, toroidally dominated magnetic fields within jets. More recently, maps of the rotation measure (RM) in jets have for the first time probed the field geometry of the cool, moderately relativistic surrounding material. In most cases, clear signatures of the toroidal magnetic field are detected, corresponding to gradients in RM profiles transverse to the jet. However, in many objects, these profiles also display marked asymmetries that are difficult to explain in simple helical jet models. Furthermore, in some cases, the RM profiles are strongly frequency and/or time dependent. Here we show that these features may be naturally accounted for by including relativistic helical motion in the jet model. In particular, we are able to reproduce bent RM profiles observed in a variety of jets, frequency-dependent RM profile morphologies, and even the time dependence of the RM profiles of knots in 3C 273. Finally, we predict that some sources may show reversals in their RM profiles at sufficiently high frequencies, depending upon the ratio of the components of jet sheath velocity transverse and parallel to the jet. Thus, multi-frequency RM maps promise a novel way in which to probe the velocity structure of relativistic outflows.

  4. Coaxial gas-liquid jet: Dispersion and dynamics

    NASA Astrophysics Data System (ADS)

    Poplavski, S. V.; Boiko, V. M.; Lotov, V. V.; Nesterov, A. Yu.

    2018-03-01

    The aim of the work was to study the pneumatic spraying of liquids in a gas jet with reference to the creation of high-flow nozzles. A complex experimental study of a coaxial jet was performed with a central supply of liquid beyond the cutoff of the confusor nozzle at subsonic and supersonic flow conditions. A set of optical methods for flows diagnostics that can function in dense gas-liquid jets provides new data on the structure of the spray: the gas velocity field without liquid, shadow visualization of the geometry and wave structure of the jet with and without fluid, the velocity profiles of the liquid phase, size distribution of the droplets. The key parameters of the liquid breakup processes for the We numbers are obtained. A dynamic approach to the determination of average droplet sizes is considered. A physical model of a coaxial gas-liquid jet with a central fluid supply is proposed.

  5. Heat transfer correlations for kerosene fuels and mixtures and physical properties for Jet A fuel

    NASA Technical Reports Server (NTRS)

    Ackerman, G. H.; Faith, L. E.

    1972-01-01

    Heat transfer correlations are reported for conventional Jet A fuel for both laminar and turbulent flow in circular tubes. Correlations were developed for cooling in turbine engines, but have broader applications in petroleum and chemical processing, and other industrial applications.

  6. An experimental and theoretical study of the A˜ 2A″Π -X˜ 2A' band system of the jet-cooled HBBr/DBBr free radical

    NASA Astrophysics Data System (ADS)

    Gharaibeh, Mohammed; Clouthier, Dennis J.; Tarroni, Riccardo

    2016-06-01

    The electronic spectra of the HBBr and DBBr free radicals have been studied in depth. These species were prepared in a pulsed electric discharge jet using a precursor mixture of BBr3 vapor and H2 or D2 in high pressure argon. Transitions to the electronic excited state of the jet-cooled radicals were probed with laser-induced fluorescence and the ground state energy levels were measured from the single vibronic level emission spectra. HBBr has an extensive band system in the red which involves a linear-bent transition between the two Renner-Teller components of what would be a 2Π state at linearity. We have used high level ab initio theory to calculate potential energy surfaces for the bent 2A' ground state and the linear A˜ 2A″Π excited state and we have determined the ro-vibronic energy levels variationally, including spin orbit effects. The correspondence between the computed and experimentally observed transition frequencies, upper state level symmetries, and H and B isotope shifts was used to make reliable assignments. We have shown that the ground state barriers to linearity, which range from 10 000 cm-1 in HBF to 2700 cm-1 in BH2, are inversely related to the energy of the first excited 2Σ (2A') electronic state. This suggests that a vibronic coupling mechanism is responsible for the nonlinear equilibrium geometries of the ground states of the HBX free radicals.

  7. Best-Ever Snapshot of a Black Hole's Jets

    NASA Image and Video Library

    2011-05-20

    NASA image release May 20, 2011 To see a really cool video related to this image go here: www.flickr.com/photos/gsfc/5740451675/in/photostream This composite of visible, microwave (orange) and X-ray (blue) data reveals the jets and radio-emitting lobes emanating from Centaurus A's central black hole. Credit: ESO/WFI (visible); MPIfR/ESO/APEX/A.Weiss et al. (microwave); NASA/CXC/CfA/R.Kraft et al. (X-ray) To read more go to: www.nasa.gov/topics/universe/features/radio-particle-jets... NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  8. Jet angularity measurements for single inclusive jet production

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Lee, Kyle; Ringer, Felix

    2018-04-01

    We study jet angularity measurements for single-inclusive jet production at the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth interpolation between different traditional jet shape observables. We establish a factorization theorem within Soft Collinear Effective Theory (SCET) where we consistently take into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For comparison, we elaborate on the differences to jet angularities measured on an exclusive jet sample. All the necessary ingredients for the resummation at next-to-leading logarithmic (NLL) accuracy are presented within the effective field theory framework. We expect semiinclusive jet angularity measurements to be feasible at the LHC and we present theoretical predictions for the relevant kinematic range. In addition, we investigate the potential impact of jet angularities for quark-gluon discrimination.

  9. Dilution jet configurations in a reverse flow combustor. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Zizelman, J.

    1985-01-01

    Results of measurements of both temperature and velocity fields within a reverse flow combustor are presented. Flow within the combustor is acted upon by perpendicularly injected cooling jets introduced at three different locations along the inner and outer walls of the combustor. Each experiment is typified by a group of parameters: density ratio, momentum ratio, spacing ratio, and confinement parameter. Measurements of both temperature and velocity are presented in terms of normalized profiles at azimuthal positions through the turn section of the combustion chamber. Jet trajectories defined by minimum temperature and maximum velocity give a qualitative indication of the location of the jet within the cross flow. Results of a model from a previous temperature study are presented in some of the plots of data from this work.

  10. Experimental studies of shock-wave/wall-jet interaction in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Rodriguez, Kathleen

    1994-01-01

    Experimental studies have been conducted to examine slot film cooling effectiveness and the interaction between the cooling film and an incident planar shock wave in turbulent hypersonic flow. The experimental studies were conducted in the 48-inch shock tunnel at Calspan at a freestream Mach number of close to 6.4 and at a Reynolds number of 35 x 10(exp 6) based on the length of the model at the injection point. The Mach 2.3 planar wall jet was generated from 40 transverse nozzles (with heights of both 0.080 inch and 0.120 inch), producing a film that extended the full width of the model. The nozzles were operated at pressures and velocities close to matching the freestream, as well as at conditions where the nozzle flows were over- and under-expanded. A two-dimensional shock generator was used to generate oblique shocks that deflected the flow through total turnings of 11, 16, and 21 degrees; the flows impinged downstream of the nozzle exits. Detailed measurements of heat transfer and pressure were made both ahead and downstream of the injection station, with the greatest concentration of measurements in the regions of shock-wave/boundary layer interaction. The major objectives of these experimental studies were to explore the effectiveness of film cooling in the presence of regions of shock-wave/boundary layer interaction and, more specifically, to determine how boundary layer separation and the large recompression heating rates were modified by film cooling. Detailed distributions of heat transfer and pressure were obtained in the incident shock/wall-jet interaction region for a series of shock strengths and impingement positions for each of the two nozzle heights. Measurements were also made to examine the effects of nozzle lip thickness on cooling effectiveness. The major conclusion from these studies was that the effect of the cooling film could be readily dispersed by relatively weak incident shocks, so the peak heating in the recompression region was not

  11. High-efficiency impurity activation by precise control of cooling rate during atmospheric pressure thermal plasma jet annealing of 4H-SiC wafer

    NASA Astrophysics Data System (ADS)

    Maruyama, Keisuke; Hanafusa, Hiroaki; Ashihara, Ryuhei; Hayashi, Shohei; Murakami, Hideki; Higashi, Seiichiro

    2015-06-01

    We have investigated high-temperature and rapid annealing of a silicon carbide (SiC) wafer by atmospheric pressure thermal plasma jet (TPJ) irradiation for impurity activation. To reduce the temperature gradient in the SiC wafer, a DC current preheating system and the lateral back-and-forth motion of the wafer were introduced. A maximum surface temperature of 1835 °C within 2.4 s without sample breakage was achieved, and aluminum (Al), phosphorus (P), and arsenic (As) activations in SiC were demonstrated. We have investigated precise control of heating rate (Rh) and cooling rate (Rc) during rapid annealing of P+-implanted 4H-SiC and its impact on impurity activation. No dependence of resistivity on Rh was observed, while increasing Rc significantly decreased resistivity. A minimum resistivity of 0.0025 Ω·cm and a maximum carrier concentration of 2.9 × 1020 cm-3 were obtained at Rc = 568 °C/s.

  12. Impingement heat transfer from turbulent air jets to flat plates: A literature survey

    NASA Technical Reports Server (NTRS)

    Livingood, J. N. B.; Hrycak, P.

    1973-01-01

    Heat transfer characteristics of single and multiple turbulent air jets impinging on flat surfaces have been studied by many investigators. Results of many of these studies are summarized. Suggested correlations for use in the design of cooled turbine blades are noted, and areas where further research would be advisable are identified.

  13. Impact of red giant/AGB winds on active galactic nucleus jet propagation

    NASA Astrophysics Data System (ADS)

    Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.

    2017-10-01

    Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to

  14. Low-energy Spectra of Gamma-Ray Bursts from Cooling Electrons

    NASA Astrophysics Data System (ADS)

    Geng, Jin-Jun; Huang, Yong-Feng; Wu, Xue-Feng; Zhang, Bing; Zong, Hong-Shi

    2018-01-01

    The low-energy spectra of gamma-ray bursts’ (GRBs) prompt emission are closely related to the energy distribution of electrons, which is further regulated by their cooling processes. We develop a numerical code to calculate the evolution of the electron distribution with given initial parameters, in which three cooling processes (i.e., adiabatic, synchrotron, and inverse Compton cooling) and the effect of a decaying magnetic field are coherently considered. A sequence of results is presented by exploring the plausible parameter space for both the fireball and the Poynting flux–dominated regime. Different cooling patterns for the electrons can be identified, and they are featured by a specific dominant cooling mechanism. Our results show that the hardening of the low-energy spectra can be attributed to the dominance of synchrotron self-Compton cooling within the internal shock model or to decaying synchrotron cooling within the Poynting flux–dominated jet scenario. These two mechanisms can be distinguished by observing the hard low-energy spectra of isolated short pulses in some GRBs. The dominance of adiabatic cooling can also lead to hard low-energy spectra when the ejecta is moving at an extreme relativistic speed. The information from the time-resolved low-energy spectra can help to probe the physical characteristics of the GRB ejecta via our numerical results.

  15. Holographic Jet Shapes and their Evolution in Strongly Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey; van der Schee, Wilke

    2017-11-01

    Recently our group analyzed how the probability distribution for the jet opening angle is modified in an ensemble of jets that has propagated through an expanding cooling droplet of plasma [K. Rajagopal, A. V. Sadofyev, W. van der Schee, Phys. Rev. Lett. 116 (2016) 211603]. Each jet in the ensemble is represented holographically by a string in the dual 4+1- dimensional gravitational theory with the distribution of initial energies and opening angles in the ensemble given by perturbative QCD. In [K. Rajagopal, A. V. Sadofyev, W. van der Schee, Phys. Rev. Lett. 116 (2016) 211603], the full string dynamics were approximated by assuming that the string moves at the speed of light. We are now able to analyze the full string dynamics for a range of possible initial conditions, giving us access to the dynamics of holographic jets just after their creation. The nullification timescale and the features of the string when it has nullified are all results of the string evolution. This emboldens us to analyze the full jet shape modification, rather than just the opening angle modification of each jet in the ensemble as in [K. Rajagopal, A. V. Sadofyev, W. van der Schee, Phys. Rev. Lett. 116 (2016) 211603]. We find the result that the jet shape scales with the opening angle at any particular energy. We construct an ensemble of dijets with energies and energy asymmetry distributions taken from events in proton-proton collisions, opening angle distribution as in [K. Rajagopal, A. V. Sadofyev, W. van der Schee, Phys. Rev. Lett. 116 (2016) 211603], and jet shape taken from proton-proton collisions and scaled according to our result. We study how these observables are modified after we send the ensemble of dijets through the strongly-coupled plasma.

  16. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Phosphor Thermometry

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness for jet engine components are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. Phosphor thermometry offers several advantages for mapping temperatures of air film cooled surfaces. While infrared thermography has been typically applied to study air film cooling effectiveness, temperature accuracy depends on knowing surface emissivity (which may change) and correcting for effects of reflected radiation. Because decay time-based full-field phosphor thermometry is relatively immune to these effects, it can be applied advantageously to temperature mapping of air film-cooled TBC-coated surfaces. In this presentation, an overview will be given of efforts at NASA Glenn Research Center to perform temperature mapping of air film-cooled TBC-coated surfaces in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and the strengths and limitations of this method for studying air film cooling effectiveness are discussed.

  17. Hydroxyl Radical Fluorescence and Quantum Yield Following Lyman-α Photoexcitation of Water Vapor in a Room Temperature Cell and Cooled in a Supersonic Expansion.

    PubMed

    Young, Justin W; Booth, Ryan S; Vogelhuber, Kristen M; Stearns, Jaime A; Annesley, Christopher J

    2018-06-28

    Photoexcitation of water by Lyman-α (121.6 nm) induces a dissociation reaction that produces OH(A 2 Σ + ) + H. Despite this reaction being part of numerous studies, a combined understanding of the product and fluorescence yields is still lacking. Here, the rotational and vibrational distributions of OH(A) are determined from dispersed fluorescence following photoexcitation of both room-temperature and jet-cooled water vapor, for the first time in the same experiment. This work compares new data of state-resolved fluorescence with literature molecular branching ratios and brings previous studies into agreement through careful consideration of OH(A) fluorescent and predissociation lifetimes and confirms a fluorescent quantum yield of 8%. Comparison of the room-temperature and jet-cooled OH(A) populations indicate the temperature of H 2 O prior to excitation has subtle effects on the OH(A) population distribution, such as altering the rotational distribution in the ν' = 0 population and affecting the population in the ν' = 1 state. These results indicate jet-cooled water vapor may have a 1% higher fluorescence quantum yield compared to room-temperature water vapor.

  18. Oscillations in solar jets observed with the SOT of Hinode: viscous effects during reconnection

    NASA Astrophysics Data System (ADS)

    Tavabi, E.; Koutchmy, S.

    2014-07-01

    Transverse oscillatory motions and recurrence behavior in the chromospheric jets observed by Hinode/SOT are studied. A comparison is considered with the behavior that was noticed in coronal X-ray jets observed by Hinode/XRT. A jet like bundle observed at the limb in Ca II H line appears to show a magnetic topology that is similar to X-ray jets (i.e., the Eiffel tower shape). The appearance of such magnetic topology is usually assumed to be caused by magnetic reconnection near a null point. Transverse motions of the jet axis are recorded but no clear evidence of twist is appearing from the highly processed movie. The aim is to investigate the dynamical behavior of an incompressible magnetic X-point occurring during the magnetic reconnection in the jet formation region. The viscous effect is specially considered in the closed line-tied magnetic X-shape nulls. We perform the MHD numerical simulation in 2-D by solving the visco-resistive MHD equations with the tracing of velocity and magnetic field. A qualitative agreement with Hinode observations is found for the oscillatory and non-oscillatory behaviors of the observed solar jets in both the chromosphere and the corona. Our results suggest that the viscous effect contributes to the excitation of the magnetic reconnection by generating oscillations that we observed at least inside this Ca II H line cool solar jet bundle.

  19. The 113 GHz ECRH system for JET

    NASA Astrophysics Data System (ADS)

    Verhoeven, A. G. A.; Bongers, W. A.; Elzendoorn, B. S. Q.; Graswinckel, M.; Hellingman, P.; Kamp, J. J.; Kooijman, W.; Kruijt, O. G.; Maagdenberg, J.; Ronden, D.; Stakenborg, J.; Sterk, A. B.; Tichler, J.; Alberti, S.; Goodman, T.; Henderson, M.; Hoekzema, J. A.; Oosterbeek, J. W.; Fernandez, A.; Likin, K.; Bruschi, A.; Cirant, S.; Novak, S.; Piosczyk, B.; Thumm, M.; Bindslev, H.; Kaye, A.; Fleming, C.; Zohm, H.

    2003-02-01

    An ECRH (Electron Cyclotron Resonance Heating) system has been designed for JET in the framework of the JET Enhanced-Performance project (JET-EP) under the European Fusion Development Agreement (EFDA). Due to financial constraints it has recently been decided not to implement this project. Nevertheless, the design work conducted from April 2000 to January 2002 shows a number of features that can be relevant in preparation of future ECRH systems, e.g., for ITER. The ECRH system was foreseen to comprise 6 gyrotrons, 1 MW each, in order to deliver 5 MW into the plasma [1]. The main aim was to enable the control of neo-classical tearing modes (NTM). The paper will concentrate on: • The power-supply and modulation system, including series IGBT switches, to enable independent control of each gyrotron and an all-solid-state body power supply to stabilise the gyrotron output power and to enable fast modulations up to 10 kHz. • A plug-in launcher, that is steerable in both toroidal and poloidal angle, and able to handle 8 separate mm-wave beams. Four steerable launching mirrors were foreseen to handle two mm-wave beams each. Water cooling of all the mirrors was a particularly ITER relevant feature.

  20. Influence of the Tibetan Plateau snow cover on East Asian winter upper-level jet streams at daily time scale

    NASA Astrophysics Data System (ADS)

    Guo, W.; Li, W.; Qiu, B.; Xue, Y.

    2017-12-01

    The Tibetan Plateau (TP) acts as an elevated cooling source in the middle troposphere at wintertime. We here present evidence that the intraseasonal variability of the TP snow cover (TPSC) controls part of the East Asian upper-level jet stream. This study found that there is significant positive lag correlation between the East Asian (EA) upper-level westerly jet and the TPSC in winter. When the TPSC increases/decreases, the EA upper-level westerly jet enhances/weakens in the following 8 days. We performed numerical experiments to prove that the lag correlation is causal relationship by using a regional climate model. Due to the high albedo of the snow cover, the increased/decreased snow cover increases/decreases the albedo and affects the surface energy balance over the TP. The energy absorbed by the surface is reduced/increased due to increased/decreased shortwave reflects to the atmosphere. There is anomalous cooling/heating effect over the TP. Such effect leads to anomalous geopotential height (GHT) field that propagates eastward with the zonal wind to the east. The anomalous GHT reaches key region of EA upper-level westerly jet at about 6 days. The adaptive modulation of GHT gradients affects wind fields (through geostrophic balance). As a result, the EA upper-level westerly jet is enhanced (weakened). Through the above process, the TPSC eventually influences the EA upper-level westerly jet. This report reveals that the intraseasonal variability of TPSC can server as an indicator of East Asia Atmospheric circulation on short-to-medium range.

  1. Deflection of jets induced by jet-cloud and jet-galaxy interactions

    NASA Astrophysics Data System (ADS)

    Mendoza, S.; Longair, M. S.

    2001-06-01

    The model first introduced by Raga & Cantó in which astrophysical jets are deflected on passing through an isothermal high-density region is generalized by taking into account gravitational effects on the motion of the jet as it crosses the high-density cloud. The problem is also generalized for relativistic jets in which gravitational effects induced by the cloud are neglected. Two further cases, classical and relativistic, are discussed for the cases in which the jet is deflected on passing through the interstellar gas of a galaxy in which a dark matter halo dominates the gravitational potential. The criteria for the stability of jets due to the formation of internal shocks are also discussed.

  2. Gamma rays from clumpy wind-jet interactions in high-mass microquasars

    NASA Astrophysics Data System (ADS)

    de la Cita, V. M.; del Palacio, S.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Romero, G. E.; Khangulyan, D.

    2017-07-01

    Context. The stellar winds of the massive stars in high-mass microquasars are thought to be inhomogeneous. The interaction of these inhomogeneities, or clumps, with the jets of these objects may be a major factor in gamma-ray production. Aims: Our goal is to characterize a typical scenario of clump-jet interaction, and calculate the contribution of these interactions to the gamma-ray emission from these systems. Methods: We use axisymmetric, relativistic hydrodynamical simulations to model the emitting flow in a typical clump-jet interaction. Using the simulation results we perform a numerical calculation of the high-energy emission from one of these interactions. The radiative calculations are performed for relativistic electrons locally accelerated at the jet shock, and the synchrotron and inverse Compton radiation spectra are computed for different stages of the shocked clump evolution. We also explore different parameter values, such as viewing angle and magnetic field strength. The results derived from one clump-jet interaction are generalized phenomenologically to multiple interactions under different wind models, estimating the clump-jet interaction rates, and the resulting luminosities in the GeV range. Results: If particles are efficiently accelerated in clump-jet interactions, the apparent gamma-ray luminosity through inverse Compton scattering with the stellar photons can be significant even for rather strong magnetic fields and thus efficient synchrotron cooling. Moreover, despite the standing nature or slow motion of the jet shocks for most of the interaction stage, Doppler boosting in the postshock flow is relevant even for mildly relativistic jets. Conclusions: For clump-to-average wind density contrasts greater than or equal to ten, clump-jet interactions could be bright enough to match the observed GeV luminosity in Cyg X-1 and Cyg X-3 when a jet is present in these sources, with required non-thermal-to-total available power fractions greater than

  3. Astrophysically relevant radiatively cooled hypersonic bow shocks in nested wire arrays

    NASA Astrophysics Data System (ADS)

    Ampleford, David

    2009-11-01

    We have performed laboratory experiments which introduce obstructions into hypersonic plasma flows to study the formation of shocks. Astrophysical observations have demonstrated many examples of equivalent radiatively cooled bow shocks, for example the head of protostellar jets or supernova remnants passing through the interstellar medium or between discrete clumps in jets. Wire array z-pinches allow us to study quasi-planar radiatively cooled flows in the laboratory. The early stage of a wire array z-pinch implosion consists of a steady flow of the wire material towards the axis. Given a high rate of radiative cooling, these flows reach high sonic- Mach numbers, typically up to 5. The 2D nature of this configuration allows the insertion of obstacles into the flow, such as a concentric ``inner'' wire array, as has previously been studied for ICF research. Here we study the application of such a nested array to laboratory astrophysics where the inner wires act as obstructions perpendicular to the flow, and induce bow shocks. By varying the wire array material (W/Al), the significance of radiative cooling on these shocks can be controlled, and is shown to change the shock opening angle. As multiple obstructions are present, the experiments show the interaction of multiple bow shocks. It is also possible to introduce a magnetic field around the static object, increasing the opening angle of the shocks. Further experiments can be designed to control the flow density, magnetic field structure and obstruction locations. In collaboration with: S.V. Lebedev, M.E. Cuneo, C.A. Jennings, S.N. Bland, J.P. Chittenden, A. Ciardi, G.N. Hall, S.C. Bott, M. Sherlock, A. Frank, E. Blackman

  4. Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See

    2009-07-01

    The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.

  5. The cooling history and the depth of detachment faulting at the Atlantis Massif oceanic core complex

    NASA Astrophysics Data System (ADS)

    Schoolmeesters, Nicole; Cheadle, Michael J.; John, Barbara E.; Reiners, Peter W.; Gee, Jeffrey; Grimes, Craig B.

    2012-10-01

    Oceanic core complexes (OCCs) are domal exposures of oceanic crust and mantle interpreted to be denuded to the seafloor by large slip oceanic detachment faults. We combine previously reported U-Pb zircon crystallization ages with (U-Th)/He zircon thermochronometry and multicomponent magnetic remanence data to determine the cooling history of the footwall to the Atlantis Massif OCC (30°N, MAR) and help establish cooling rates, as well as depths of detachment faulting and gabbro emplacement. We present nine new (U-Th)/He zircon ages for samples from IODP Hole U1309D ranging from 40 to 1415 m below seafloor. These data paired with U-Pb zircon ages and magnetic remanence data constrain cooling rates of gabbroic rocks from the upper 800 m of the central dome at Atlantis Massif as 2895 (+1276/-1162) °C Myr-1 (from ˜780°C to ˜250°C); the lower 600 m of the borehole cooled more slowly at mean rates of ˜500 (+125/-102) °C Myr-1(from ˜780°C to present-day temperatures). Rocks from the uppermost part of the hole also reveal a brief period of slow cooling at rates of ˜300°C Myr-1, possibly due to hydrothermal circulation to ˜4 km depth through the detachment fault zone. Assuming a fault slip rate of 20 mm/yr (from U-Pb zircon ages of surface samples) and a rolling hinge model for the sub-surface fault geometry, we predict that the 780°C isotherm lies at ˜7 km below the axial valley floor, likely corresponding both to the depth at which the semi-brittle detachment fault roots and the probable upper limit of significant gabbro emplacement.

  6. A Self-Contained Cold Plate Utilizing Force-fed Evaporation for Cooling of High flux Electronics

    DTIC Science & Technology

    2007-01-01

    additional improvement. The second advanced heat sink to be covered was developed and studied by Sung and Mudawar [27]. They created a hybrid jet...cooling by using manifold microchannel heat sinks.” Advanced Electronic Packaging. 2 (1997) 1837-1842. [27] Sung, M. K. & Mudawar , I

  7. COMPARISON OF BLOOD PROTEIN AND TARGET ORGAN DNA AND PROTEIN BINDING FOLLOWING TOPICAL APPLICATION OF BENZO[A]PYRENE AND 7H-DIBENZO[C,G]CARBAZOLE TO MICE

    EPA Science Inventory

    7H-Dibenzo[c,g]carbazole (DBC) induces skin and liver tumors in mice following topical application, whereas benzo[a]pyrene (BP) induces only skin tumors. DBC also binds to liver DNA to a much greater extent than does BP. The present study examined factors that might account for t...

  8. Hydrodynamic Stability Analysis of Multi-jet Effects in Swirling Jet Combustors

    NASA Astrophysics Data System (ADS)

    Emerson, Benjamin; Lieuwen, Tim

    2016-11-01

    Many practical combustion devices use multiple swirling jets to stabilize flames. However, much of the understanding of swirling jet dynamics has been generated from experimental and computational studies of single reacting, swirling jets. A smaller body of literature has begun to explore the effects of multi-jet systems and the role of jet-jet interactions on the macro-system dynamics. This work uses local temporal and spatio-temporal stability analyses to isolate the hydrodynamic interactions of multiple reacting, swirling jets, characterized by jet diameter, D, and spacing, L. The results first identify the familiar helical modes in the single jet. Comparison to the multi-jet configuration reveals these same familiar modes simultaneously oscillating in each of the jets. Jet-jet interaction is mostly limited to a spatial synchronization of each jet's oscillations at the jet spacing values analyzed here (L/D =3.5). The presence of multiple jets vs a single jet has little influence on the temporal and absolute growth rates. The biggest difference between the single and multi-jet configurations is the presence of nearly degenerate pairs of hydrodynamic modes in the multi-jet case, with one mode dominated by oscillations in the inner jet, and the other in the outer jets. The close similarity between the single and multi-jet hydrodynamics lends insight into experiments from our group.

  9. Chemical formation and spectroscopy of S2 in a free jet expansion

    NASA Astrophysics Data System (ADS)

    Heaven, M.; Miller, Terry A.; Bondybey, V. E.

    1984-01-01

    H2S seeded in a free jet expansion of Ar is photolyzed by an ArF laser. The liberated free radical fragments react to form S2 molecules, cooled rotationally by the jet to ≲20 K. A detailed rotational analysis of the laser induced fluorescence spectrum of the 2-3, B-X band of S2 reveals localized perturbations due to the B″ 3Πu state of S2. A deperturbation analysis for both 32S2 and 32S34S spectra yields, in conjunction with recent work by Patino and Barrow, values for the rotational constant, spin-orbit coupling constant, and Te for B″ 3ΠuS2.

  10. Blowout jets and impulsive eruptive flares in a bald-patch topology

    NASA Astrophysics Data System (ADS)

    Chandra, R.; Mandrini, C. H.; Schmieder, B.; Joshi, B.; Cristiani, G. D.; Cremades, H.; Pariat, E.; Nuevo, F. A.; Srivastava, A. K.; Uddin, W.

    2017-02-01

    Context. A subclass of broad extreme ultraviolet (EUV) and X-ray jets, called blowout jets, have become a topic of research since they could be the link between standard collimated jets and coronal mass ejections (CMEs). Aims: Our aim is to understand the origin of a series of broad jets, some of which are accompanied by flares and associated with narrow and jet-like CMEs. Methods: We analyze observations of a series of recurrent broad jets observed in AR 10484 on 21-24 October 2003. In particular, one of them occurred simultaneously with an M2.4 flare on 23 October at 02:41 UT (SOLA2003-10-23). Both events were observed by the ARIES Hα Solar Tower-Telescope, TRACE, SOHO, and RHESSI instruments. The flare was very impulsive and followed by a narrow CME. A local force-free model of AR 10484 is the basis to compute its topology. We find bald patches (BPs) at the flare site. This BP topology is present for at least two days before to events. Large-scale field lines, associated with the BPs, represent open loops. This is confirmed by a global potential free source surface (PFSS) model. Following the brightest leading edge of the Hα and EUV jet emission, we can temporarily associate these emissions with a narrow CME. Results: Considering their characteristics, the observed broad jets appear to be of the blowout class. As the most plausible scenario, we propose that magnetic reconnection could occur at the BP separatrices forced by the destabilization of a continuously reformed flux rope underlying them. The reconnection process could bring the cool flux-rope material into the reconnected open field lines driving the series of recurrent blowout jets and accompanying CMEs. Conclusions: Based on a model of the coronal field, we compute the AR 10484 topology at the location where flaring and blowout jets occurred from 21 to 24 October 2003. This topology can consistently explain the origin of these events. The movie associated to Fig. 1 is available at http://www.aanda.org

  11. TURBINE COOLING FLOW AND THE RESULTING DECREASE IN TURBINE EFFICIENCY

    NASA Technical Reports Server (NTRS)

    Gauntner, J. W.

    1994-01-01

    This algorithm has been developed for calculating both the quantity of compressor bleed flow required to cool a turbine and the resulting decrease in efficiency due to cooling air injected into the gas stream. Because of the trend toward higher turbine inlet temperatures, it is important to accurately predict the required cooling flow. This program is intended for use with axial flow, air-breathing jet propulsion engines with a variety of airfoil cooling configurations. The algorithm results have compared extremely well with figures given by major engine manufacturers for given bulk metal temperatures and cooling configurations. The program calculates the required cooling flow and corresponding decrease in stage efficiency for each row of airfoils throughout the turbine. These values are combined with the thermodynamic efficiency of the uncooled turbine to predict the total bleed airflow required and the altered turbine efficiency. There are ten airfoil cooling configurations and the algorithm allows a different option for each row of cooled airfoils. Materials technology is incorporated and requires the date of the first year of service for the turbine stator vane and rotor blade. The user must specify pressure, temperatures, and gas flows into the turbine. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 3080 series computer with a central memory requirement of approximately 61K of 8 bit bytes. This program was developed in 1980.

  12. A novel synthesis of octahydropyrido[3,2-c]carbazole framework of aspidospermidine alkaloids and a combined computational, FT-IR, NMR, NBO, NLO, FMO, MEP study of the cis-4a-Ethyl-1-(2hydroxyethyl)-2,3,4,4a,5,6,7,11c-octahydro-1H-pyrido[3,2-c]carbazole

    NASA Astrophysics Data System (ADS)

    Uludağ, Nesimi; Serdaroğlu, Goncagul; Yinanc, Abdullah

    2018-06-01

    In this study, we performed a novel synthesis of the octahydropyrido[3,2-c]carbazole derivative 6 from 1 in five steps with a 34% overall yield. We also developed a unique compound 2 by a cyclization reaction from the cyanoethylation of compound 1, which is an intermediate step in the synthesis of Aspidospermidine. The parent compound of Aspidospermidine alkaloids, comprise a large family of diverse structures. As a result, we obtained octahydropyrido[3,2-c]carbazole (6)and the proposed method may be applicable to other alkaloids. All quantum chemical calculations of the cis-4a-Ethyl-1-(2-hydroxyethyl)-2,3,4,4a,5,6,7,11c-octahydro-1H-pyrido[3,2-c]carbazole have been performed with the DFT/B3LYP and HF methods by using the Gaussian 09W software package. The most stable conformer obtained from the Potential Energy Surface (PES) scan analysis at the B3LYP/6-31G** level of theory in the gas phase was used as the starting structure of the title compound to further computational analysis. The Natural Bond Orbital (NBO) and NLO analyses were performed to evaluate the intra-molecular interactions contributing to the molecular stability and to predict the optical properties of the title compound, respectively. Gauge-Independent Atomic Orbital (GIAO) approach was used to determine the 1H and 1C NMR chemical shifts of the title compound by subtracting the shielding constants of TMS at both methods. The calculated vibrational frequencies of the title compound were assigned by using the VEDA program and were scaled down by using the scaling factor 0.9668 for B3LYP/6-311++G(d, p) and 0.9050 for HF/6-311++G(d, p) to improve the calculated vibrational frequencies. The FMO (frontier molecular orbital) analysis was evaluated to predict the chemical and physical properties of the title compound and the HOMO, LUMO, and MEP diagrams were visualized by GaussView 4.1 program to present the reactive site of the title compound.

  13. Biosurface engineering through ink jet printing.

    PubMed

    Khan, Mohidus Samad; Fon, Deniece; Li, Xu; Tian, Junfei; Forsythe, John; Garnier, Gil; Shen, Wei

    2010-02-01

    The feasibility of thermal ink jet printing as a robust process for biosurface engineering was demonstrated. The strategy investigated was to reconstruct a commercial printer and take advantage of its colour management interface. High printing resolution was achieved by formulating bio-inks of viscosity and surface tension similar to those of commercial inks. Protein and enzyme denaturation during thermal ink jet printing was shown to be insignificant. This is because the time spent by the biomolecules in the heating zone of the printer is negligible; in addition, the air and substrate of high heat capacity absorb any residual heat from the droplet. Gradients of trophic/tropic factors can serve as driving force for cell growth or migration for tissue regeneration. Concentration gradients of proteins were printed on scaffolds to show the capability of ink jet printing. The printed proteins did not desorb upon prolonged immersion in aqueous solutions, thus allowing printed scaffold to be used under in vitro and in vivo conditions. Our group portrait was ink jet printed with a protein on paper, illustrating that complex biopatterns can be printed on large area. Finally, patterns of enzymes were ink jet printed within the detection and reaction zones of a paper diagnostic.

  14. The contribution of sting-jet windstorms to extreme wind risk in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Hart, Neil C.; Gray, Suzanne L.; Clark, Peter A.

    2016-04-01

    Windstorms are a major winter weather risk for many countries in Europe. These storms are predominantly associated with explosively-developing extratropical cyclones that track across the region. A substantial body of literature exists on the synoptic-scale dynamics, predictability and climatology of such storms. More recently, interest in the mesoscale variability of the most damaging winds has led to a focus on the role of sting jets in enhancing windstorm severity. We present a present-era climatology of North Atlantic cyclones that had potential to produce sting jets. Considering only explosively-developing cyclones, those with sting-jet potential are more likely to have higher relative vorticity and associated low-level wind maxima. Furthermore, the strongest winds for sting-jet cyclones are more often in the cool sector, behind the cold front, when compared with other explosively-developing cyclones which commonly have strong warm-sector winds too. The tracks of sting-jet cyclones, and explosively-developing cyclones in general, show little offset from the climatological storm track. While rare over Europe, sting-jet cyclones are relatively frequent within the main storm track with up to one third of extratropical cyclones exhibiting sting-jet potential. Thus, the rarity and, until recently, lack of description of sting-jet windstorms is more due to the climatological storm track location away from highly-populated land masses, than due to an actual rarity of such storms in nature.

  15. Configurable double-sided modular jet impingement assemblies for electronics cooling

    DOEpatents

    Zhou, Feng; Dede, Ercan Mehmet

    2018-05-22

    A modular jet impingement assembly includes an inlet tube fluidly coupled to a fluid inlet, an outlet tube fluidly coupled to a fluid outlet, and a modular manifold having a first distribution recess extending into a first side of the modular manifold, a second distribution recess extending into a second side of the modular manifold, a plurality of inlet connection tubes positioned at an inlet end of the modular manifold, and a plurality of outlet connection tubes positioned at an outlet end of the modular manifold. A first manifold insert is removably positioned within the first distribution recess, a second manifold insert is removably positioned within the second distribution recess, and a first and second heat transfer plate each removably coupled to the modular manifold. The first and second heat transfer plates each comprise an impingement surface.

  16. DNS and LES/FMDF of turbulent jet ignition and combustion

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Jaberi, Farhad

    2014-11-01

    The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.

  17. The structure and dynamics of barrier jets along the southeast Alaskan coast

    NASA Astrophysics Data System (ADS)

    Olson, Joseph Benjamin

    Coastal barrier jets along the complex orography of southeastern Alaska were investigated using high resolution observations and model simulations. Barrier jet events were sampled with the Wyoming King-Air research aircraft during the Southeastern Alaskan Regional Jet (SARJET) field experiment in 2004. These observations, combined with simulations of select cases by the Penn State-NCAR Mesoscale Model (MM5), were used to better understand barrier jet structure and dynamics. A suite of idealized simulations were used to put the case studies in perspective with a larger set of atmospheric conditions, while also evaluating previous theoretical and observational results. Two SARJET case studies were investigated along the tall and steep Fairweather Mountains near Juneau, Alaska. The first case (24 September 2004) was a classical barrier jet forced primarily by onshore flow and upslope adiabatic cooling, with maximum winds >30 m s-1 at the coast between 600-800 m ASL and an offshore extent of ˜60 km. In contrast, the hybrid jet (12 October 2004) was influenced by an offshore-directed gap flow at the coast, which produced a warm anomaly over the coast associated with downslope flow and a wind maximum (˜30 m s-1) that was displaced 30-40 km offshore at 500 m ASL. A sensitivity experiment in which the coastal mountain gap was filled led to a ˜40% reduction in the jet width, and the position of the jet maximum shifted ˜40 km to the coast, but the overall jet intensity remained approximately the same. The generality of these SARJET results was tested by generating a set of three-dimensional idealized MM5 simulations by varying wind speeds, wind directions, and static stabilities for the classical jet simulations, while incrementing the magnitude of the inland cold pool (instead of static stability) for hybrid jet simulations. The broad inland terrain was shown to impact the upstream winds by rotating them cyclonically to become more terrain-parallel within 500-1000 km of

  18. Exact Solution of the Two-Dimensional Problem on an Impact Ideal-Liquid Jet

    NASA Astrophysics Data System (ADS)

    Belik, V. D.

    2018-05-01

    The two-dimensional problem on the collision of a potential ideal-liquid jet, outflowing from a reservoir through a nozzle, with an infinite plane obstacle was considered for the case where the distance between the nozzle exit section and the obstacle is finite. An exact solution of this problem has been found using methods of the complex-variable function theory. Simple analytical expressions for the complex velocity of the liquid, its flow rate, and the force of action of the jet on the obstacle have been obtained. The velocity distributions of the liquid at the nozzle exit section, in the region of spreading of the jet, and at the obstacle have been constructed for different distances between the nozzle exit section and the obstacle. Analytical expressions for the thickness of the boundary layer and the Nusselt number at the point of stagnation of the jet have been obtained. A number of distributions of the local friction coefficient and the Nusselt number of the indicated jet are presented.

  19. The Spatially Uniform Spectrum of the Fermi Bubbles: The Leptonic Active Galactic Nucleus Jet Scenario

    NASA Astrophysics Data System (ADS)

    Yang, H.-Y. K.; Ruszkowski, M.

    2017-11-01

    The Fermi bubbles are among the most important findings of the Fermi Gamma-ray Space Telescope; however, their origin is still elusive. One of the unique features of the bubbles is that their gamma-ray spectrum, including a high-energy cutoff at ˜110 GeV and the overall shape of the spectrum, is nearly spatially uniform. The high-energy spectral cutoff is suggestive of a leptonic origin due to synchrotron and inverse-Compton cooling of cosmic-ray (CR) electrons; however, even for a leptonic model, it is not obvious why the spectrum should be spatially uniform. In this work, we investigate the bubble formation in the leptonic active galactic nucleus (AGN) jet scenario using a new CRSPEC module in FLASH that allows us to track the evolution of a CR spectrum during the simulations. We show that the high-energy cutoff is caused by fast electron cooling near the Galactic center (GC) when the jets were launched. Afterwards, the dynamical timescale becomes the shortest among all relevant timescales, and therefore the spectrum is essentially advected with only mild cooling losses. This could explain why the bubble spectrum is nearly spatially uniform: the CRs from different parts of the bubbles as seen today all share the same origin near the GC at an early stage of the bubble expansion. We find that the predicted CR spatial and spectral distribution can simultaneously match the normalization, spectral shape, and high-energy cutoff of the observed gamma-ray spectrum and their spatial uniformity, suggesting that past AGN jet activity is a likely mechanism for the formation of the Fermi bubbles.

  20. Jet engine noise and infrared plume correlation field campaign

    NASA Astrophysics Data System (ADS)

    Cunio, Phillip M.; Weber, Reed A.; Knobel, Kimberly R.; Smith, Christine; Draudt, Andy

    2015-09-01

    Jet engine noise can be a health hazard and environmental pollutant, particularly affecting personnel working in close proximity to jet engines, such as airline mechanics. Mitigating noise could reduce the potential for hearing loss in runway workers; however, there exists a very complex relationship between jet engine design parameters, operating conditions, and resultant noise power levels, and understanding and characterizing this relationship is a key step in mitigating jet engine noise effects. We demonstrate initial results highlighting the utility of high-speed imaging (hypertemporal imaging) in correlating the infrared signatures of jet engines with acoustic noise. This paper builds on prior theoretical analysis of jet engine infrared signatures and their potential relationships to jet engine acoustic emissions. This previous work identified the region of the jet plume most likely to emit both in infrared and in acoustic domains, and it prompted the investigation of wave packets as a physical construct tying together acoustic and infrared energy emissions. As a means of verifying these assertions, a field campaign to collect relevant data was proposed, and data collection was carried out with a bank of infrared instruments imaging a T700 turboshaft engine undergoing routine operational testing. The detection of hypertemporal signatures in association with acoustic signatures of jet engines enables the use of a new domain in characterizing jet engine noise. This may in turn enable new methods of predicting or mitigating jet engine noise, which could lead to socioeconomic benefits for airlines and other operators of large numbers of jet engines.

  1. Fuzzy jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  2. Fuzzy jets

    DOE PAGES

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; ...

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  3. X-ray Variability In Extragalactic Jets as Seen by Chandra

    NASA Astrophysics Data System (ADS)

    Trevor, Max; Meyer, Eileen; Georganopoulos, Markos; Aubin, Sam; Hewitt, Jennifer; DeNigris, Natalie; Whitley, Kevin

    2018-01-01

    The unrivaled spatial resolution of Chandra has lead to the detection of over 100 extragalactic jetsemitting X-rays on kiloparsec scales, far from the central AGN. These jets are understood to be powerful redistributors of energy on galactic and extragalactic scales, with important effects on galaxy evolution and cluster heating. However, we lack an understanding of many important jet properties, including the particle makeup, particle acceleration characteristics, and total energy content, and even how fast the jet is at kpc scales. In the most powerful jets, a persistently open question is the nature of the emission mechanism for the Chandra-observed X-rays. While inverse Compton upscattering of CMB photons (IC/CMB) by a still-relativistic jet is widely adopted, our group has very recently ruled it out in several cases, suggesting that the X-rays from powerful sources, like the low-power jets, have a synchrotron origin, albeit one with unknown origins, requiring in-situ lepton acceleration at least up to 100 TeV. A very efficient way to extend this result to many more sources is to check for variability of the large scale jet X-ray emission, something that is definitively not expected in the case of IC/CMB due to the extremely long cooling times of the electrons responsible for the emission, but it is plausible if the X-rays are of synchrotron nature. Based on previously published observations of X-ray variability in the jets of M87 and Pictor A, as well as preliminary results suggesting variability in two more powerful jets, we have examined archival observations of over 40 jets which have been imaged twice or more with Chandra for variability, with timescales of a few to nearly 14 years. This analysis has two main goals, namely (i) to confirm a synchrotron origin for the X-rays in powerful sources, as variability is inconsistent with the competing IC/CMB model and (ii) to use the timescales and characteristics (e.g., spectral changes) of any detected X

  4. A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models

    NASA Technical Reports Server (NTRS)

    Ameri, A. A.; Rigby, D. L.

    1999-01-01

    A computational study has been performed to predict the distribution of convective heat transfer coefficient on a simulated blade tip with cooling holes. The purpose of the examination was to assess the ability of a three-dimensional Reynolds-averaged Navier-Stokes solver to predict the rate of tip heat transfer and the distribution of cooling effectiveness. To this end, the simulation of tip clearance flow with blowing of Kim and Metzger was used. The agreement of the computed effectiveness with the data was quite good. The agreement with the heat transfer coefficient was not as good but improved away from the cooling holes. Numerical flow visualization showed that the uniformity of wetting of the surface by the film cooling jet is helped by the reverse flow due to edge separation of the main flow.

  5. RECONSTRUCTING THREE-DIMENSIONAL JET GEOMETRY FROM TWO-DIMENSIONAL IMAGES

    NASA Astrophysics Data System (ADS)

    Avachat, Sayali; Perlman, Eric S.; Li, Kunyang; Kosak, Katie

    2018-01-01

    Relativistic jets in AGN are one of the most interesting and complex structures in the Universe. Some of the jets can be spread over hundreds of kilo parsecs from the central engine and display various bends, knots and hotspots. Observations of the jets can prove helpful in understanding the emission and particle acceleration processes from sub-arcsec to kilo parsec scales and the role of magnetic field in it. The M87 jet has many bright knots as well as regions of small and large bends. We attempt to model the jet geometry using the observed 2 dimensional structure. The radio and optical images of the jet show evidence of presence of helical magnetic field throughout. Using the observed structure in the sky frame, our goal is to gain an insight into the intrinsic 3 dimensional geometry in the jets frame. The structure of the bends in jet's frame may be quite different than what we see in the sky frame. The knowledge of the intrinsic structure will be helpful in understanding the appearance of the magnetic field and hence polarization morphology. To achieve this, we are using numerical methods to solve the non-linear equations based on the jet geometry. We are using the Log Likelihood method and algorithm based on Markov Chain Monte Carlo (MCMC) simulations.

  6. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    NASA Technical Reports Server (NTRS)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  7. Experimental studies of shock-wave/wall-jet interaction in hypersonic flow, part A

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Rodriguez, Kathleen

    1994-01-01

    Experimental studies have been conducted to examine slot film cooling effectiveness and the interaction between the cooling film and an incident planar shock wave in turbulent hypersonic flow. The experimental studies were conducted in the 48-inch shock tunnel at Calspan at a freestream Mach number of close to 6.4 and at a Reynolds number of 35 x 10(exp 6) based on the length of the model at the injection point. The Mach 2.3 planar wall jet was generated from 40 transverse nozzles (with heights of both 0.080 inch and 0.120 inch), producing a film that extended the full width of the model. The nozzles were operated at pressures and velocities close to matching the freestream, as well as at conditions where the nozzle flows were over- and under-expanded. A two-dimensional shock generator was used to generate oblique shocks that deflected the flow through total turnings of 11, 16, and 21 degrees; the flows impinged downstream of the nozzle exits. Detailed measurements of heat transfer and pressure were made both ahead and downstream of the injection station, with the greatest concentration of measurements in the regions of shock-wave/boundary layer interaction. The major objectives of these experimental studies were to explore the effectiveness of film cooling in the presence of regions of shock-wave/boundary layer interaction and, more specifically, to determine how boundary layer separation and the large recompression heating rates were modified by film cooling. Detailed distributions of heat transfer and pressure were obtained in the incident-shock/wall-jet interaction region for a series of shock strengths and impingement positions for each of the two nozzle heights. Measurements were also made to examine the effects of nozzle lip thickness on cooling effectiveness. The major conclusion from these studies was that the effect of the cooling film could be readily dispersed by relatively weak incident shocks, so the peak heating in the recompression region was not

  8. One- and Two-Photon Uncaging: Carbazole Fused o-Hydroxycinnamate Platform for Dual Release of Alcohols (Same or Different) with Real-Time Monitoring.

    PubMed

    Venkatesh, Yarra; Srivastava, Hemant Kumar; Bhattacharya, S; Mehra, Muneshwar; Datta, P K; Bandyopadhyay, S; Singh, N D Pradeep

    2018-04-20

    A one- and two-photon activated photoremovable protecting group (PRPG) was designed based on a carbazole fused o-hydroxycinnamate platform for the dual (same or different) release of alcohols. The mechanism for the dual release proceeds through a stepwise pathway and also monitors the first and second photorelease in real time by an increase in fluorescence intensity and color change, respectively. Further, its application in staining live neurons and ex vivo imaging with two-photon excitation is shown.

  9. KENNEDY SPACE CENTER, FLA. - NASA T-38 jets fly over the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in the Missing Man Formation. During this dedication ceremony, the names of the STS-107 astronauts who lost their lives during the Columbia accident -- Rick Husband, Willie McCool, Laurel Clark, Michael Anderson, David Brown, Kalpana Chawla, and Ilan Ramon -- join the names of 17 other space heroes who gave their lives for the U.S. space program. The "Space Mirror," 42 1/2 feet high by 50 feet wide, illuminates the names of the fallen astronauts cut through the monument's black granite surface.

    NASA Image and Video Library

    2003-10-28

    KENNEDY SPACE CENTER, FLA. - NASA T-38 jets fly over the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in the Missing Man Formation. During this dedication ceremony, the names of the STS-107 astronauts who lost their lives during the Columbia accident -- Rick Husband, Willie McCool, Laurel Clark, Michael Anderson, David Brown, Kalpana Chawla, and Ilan Ramon -- join the names of 17 other space heroes who gave their lives for the U.S. space program. The "Space Mirror," 42 1/2 feet high by 50 feet wide, illuminates the names of the fallen astronauts cut through the monument's black granite surface.

  10. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets

    NASA Astrophysics Data System (ADS)

    Castillo-Orozco, Eduardo; Davanlou, Ashkan; Choudhury, Pretam K.; Kumar, Ranganathan

    2015-11-01

    The impact of droplets on a deep pool has applications in cleaning up oil spills, spray cooling, painting, inkjet printing, and forensic analysis, relying on the changes in properties such as viscosity, interfacial tension, and density. Despite the exhaustive research on different aspects of droplet impact, it is not clear how liquid properties can affect the instabilities leading to Rayleigh jet breakup and number of daughter drops formed after its pinch-off. In this article, through systematic experiments we investigate the droplet impact phenomena by varying viscosity and surface tension of liquids as well as impact speeds. Further, using numerical simulations, we show that Rayleigh-Plateau instability is influenced by these parameters, and capillary time scale is the appropriate scale to normalize the breakup time. Based on Ohnesorge number (Oh) and impact Weber number (We), a regime map for no breakup, Rayleigh jet breakup, and crown splash is suggested. Interestingly, crown splash is observed to occur at all Ohnesorge numbers; however, at high Oh, a large portion of kinetic energy is dissipated, and thus the Rayleigh jet is suppressed regardless of high impact velocity. The normalized required time for the Rayleigh jet to reach its peak varies linearly with the critical height of the jet.

  11. Degradation of carbazole, dibenzothiophene, and dibenzofuran at low temperature by Pseudomonas sp. strain C3211.

    PubMed

    Jensen, Anne-Mette; Finster, Kai Waldemar; Karlson, Ulrich

    2003-04-01

    Pseudomonas sp. strain C3211 was isolated from a temperate climate soil contaminated with creosote. This strain was able to degrade carbazole, dibenzothiophene and dibenzofuran at 10 degrees C with acetone as a co-substrate. When dibenzothiophene was degraded by strain C3211, an orange compound, which absorbed at 472 nm, accumulated in the medium. Degradation of dibenzofuran was followed by accumulation of a yellowish compound, absorbing at 462 nm. The temperature optimum of strain C3211 for degradation of dibenzothiophene and dibenzofuran was at 20 to 21 degrees C, while the maximum temperature for degradation was at 27 degrees C. Both compounds were degraded at 4 degrees C. Degradation at 10 degrees C was faster than degradation at 25 degrees C. This indicates that strain C3211 is adapted to life at low temperatures.

  12. Spontaneous ignition in afterburner segment tests at an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM jet-A fuel

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Branstetter, J. R.

    1973-01-01

    A brief testing program was undertaken to determine if spontaneous ignition and stable combustion could be obtained in a jet engine afterburning operating with an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM Jet-A fuel. Spontaneous ignition with 100-percent combustion efficiency and stable burning was obtained using water-cooled fuel spraybars as flameholders.

  13. The Chemistry of Protostellar Jet-Disk Systems

    NASA Astrophysics Data System (ADS)

    Codella, Claudio

    2017-11-01

    The birth of a Sun-like star is a complex game played by several participants whose respective roles are not yet entirely clear. On the one hand, the star-to-be accretes matter from a collapsing envelope. The gravitational energy released in the process heats up the material surrounding the protostar, creating warm regions enriched by interstellar complex organic molecules (iCOMs, at least 6 atoms) called hot-corinos. On the other hand, the presence of angular momentum and magnetic fields leads to two consequences: (i) the formation of circumstellar disks; and (ii) substantial episodes of matter ejection, as e.g. collimated jets. Thanks to the combination of the high-sensitivities and high-angular resolu- tions provided by the advent of new telescopes such as ALMA and NOEMA, it is now possible to image in details the earliest stages of the Sun-like star formation, thus inspecting the inner ( < 50 AU from the protostar) jet. at these spatial scales a proper study of jets has to take into account also the effects connected with the accreting disk. In other words, it is time to study the protostellar jet-disk system as a whole. Several still unanswered questions can be addressed. What is the origin of the chemically enriched hot corinos: are they jet-driven shocked regions? What is the origin of the ejections: are they due to disk or stellar winds? Shocks are precious tool to attack these questions, given they enrich the gas phase with the species deposited onto the dust mantles and/or locked in the refractory dust cores. Basically, we have to deal with two kind of shocks: (i) high-velocity shocks produced by protostellar jets, and (ii) slow accretion shocks located close to the centrifugal barrier of the accretion disks. Both shocks are factories of iCOMs, which can be then efficiently used to follow both the kinematics and the chemistry of the inner protostellar systems. With this in mind, we will discuss recent results obtained in the framework of different

  14. High-resolution room temperature and jet-cooled spectroscopic investigation of 15NH3 in the ν1+ν3 band region (1.51 μm)

    NASA Astrophysics Data System (ADS)

    Földes, T.; Vanfleteren, T.; Rizopoulos, A.; Herman, M.; Vander Auwera, J.; Softley, T. P.; Di Lonardo, G.; Fusina, L.

    2016-08-01

    Spectra of 99% isotopically pure 15NH3 were recorded using cavity ring-down (CRD, 6567-6639 cm-1) and Fourier transform (FT, 6350-6985 cm-1) spectroscopy under jet cooled and room temperature conditions, respectively. Measured line positions on both data sets improve on literature values, in particular by one order of magnitude for the ν1+ν3 band. A room temperature list of line positions, with approximate line intensities, is provided, much more complete and precise than presently available. Line broadening effects in the CRD spectrum allowed lines with J‧‧‧- values between 0 and 3 to be identified. Ground state combination differences were used to refine the assignments, further assisted by intensity ratios between the two data sets. Reliable values for J, K and inversion symmetry of the ground state vibrational levels, as well as further information on a/s doublets could be obtained, updating and extending literature assignments.

  15. Water cooled static pressure probe

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  16. First observations of Gigantic Jets from Monsoon Thunderstorms over India

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Maurya, Ajeet; Chanrion, Olivier; Neubert, Torsten; Cummer, Steven; Mlynarczyk, Janusz; Bór, József; Siingh, Devendraa; Cohen, Morris; Kumar, Sushil

    2016-04-01

    Gigantic Jets are electric discharges from thunderstorm cloud tops to the bottom of the ionosphere at ~80 km altitude. After their first discovery in 2001, relatively few observations have been reported. Most of these are from satellites at large distances and a few tens from the ground at higher spatial resolution. Here we report the first Gigantic Jets observed in India from two thunderstorm systems that developed over the land surface from monsoon activity, each storm producing two Gigantic Jets. The jets were recorded by a video camera system at standard video rate (20 ms exposure) at a few hundred km distance. ELF measurements suggest that the jets are of the usual negative polarity and that they develop in less than 40 ms, which is faster than most jets reported in the past. The jets originate from the leading edge of a slowly drifting convective cloud complex close to the highest regions of the clouds and carry ~25 Coulomb of charge to the ionosphere. One jet has a markedly horizontal displacement that we suggest is caused by a combination of close-range cloud electric fields at inception, and longer-range cloud fields at larger distances during full development. The Gigantic Jets are amongst the few that have been observed over land.

  17. Apparatus for production of ultrapure amorphous metals utilizing acoustic cooling

    NASA Technical Reports Server (NTRS)

    Lee, M. C. (Inventor)

    1985-01-01

    Amorphous metals are produced by forming a molten unit of metal and deploying the unit into a bidirectional acoustical levitating field or by dropping the unit through a spheroidizing zone, a slow quenching zone, and a fast quenching zone in which the sphere is rapidly cooled by a bidirectional jet stream created in the standing acoustic wave field produced between a half cylindrical acoustic driver and a focal reflector or a curved driver and a reflector. The cooling rate can be further augmented first by a cryogenic liquid collar and secondly by a cryogenic liquid jacket surrounding a drop tower. The molten unit is quenched to an amorphous solid which can survive impact in a unit collector or is retrieved by a vacuum chuck.

  18. Numerical Simulations of a Jet-Cloud Collision and Starburst: Application to Minkowski’s Object

    NASA Astrophysics Data System (ADS)

    Fragile, P. Chris; Anninos, Peter; Croft, Steve; Lacy, Mark; Witry, Jason W. L.

    2017-12-01

    We present results of three-dimensional, multi-physics simulations of an AGN jet colliding with an intergalactic cloud. The purpose of these simulations is to assess the degree of “positive feedback,” i.e., jet-induced star formation, that results. We have specifically tailored our simulation parameters to facilitate a comparison with recent observations of Minkowski’s Object (MO), a stellar nursery located at the termination point of a radio jet coming from galaxy NGC 541. As shown in our simulations, such a collision triggers shocks, which propagate around and through the cloud. These shocks condense the gas and under the right circumstances may trigger cooling instabilities, creating runaway increases in density, to the point that individual clumps can become Jeans unstable. Our simulations provide information about the expected star formation rate, total mass converted to H I, H2, and stars, and the relative velocity of the stars and gas. Our results confirm the possibility of jet-induced star formation, and agree well with the observations of MO.

  19. Photoanode Thickness Optimization and Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells based on a Carbazole-Containing Ruthenium Dye

    NASA Astrophysics Data System (ADS)

    Choi, Jongwan; Kim, Felix Sunjoo

    2018-03-01

    We studied the influence of photoanode thickness on the photovoltaic characteristics and impedance responses of the dye-sensitized solar cells based on a ruthenium dye containing a hexyloxyl-substituted carbazole unit (Ru-HCz). As the thickness of photoanode increases from 4.2 μm to 14.8 μm, the dye-loading amount and the efficiency increase. The device with thicker photoanode shows a decrease in the efficiency due to the higher probability of recombination of electron-hole pairs before charge extraction. We also analyzed the electron-transfer and recombination characteristics as a function of photoanode thickness through detailed electrochemical impedance spectroscopy analysis.

  20. Potential applications for amylose inclusion complexes produced by steam jet cooking

    USDA-ARS?s Scientific Manuscript database

    Steam jet cooking is a commercially scalable method of thermomechanically processing starch for many applications. Previous studies at NCAUR have revealed the specific effects of heat and shear on various starch types cooked under different steam flow, pressure, and slurry flow conditions. Starch-...

  1. The design of an ECRH system for JET-EP

    NASA Astrophysics Data System (ADS)

    Verhoeven, A. G. A.; Bongers, W. A.; Elzendoorn, B. S. Q.; Graswinckel, M.; Hellingman, P.; Kooijman, W.; Kruijt, O. G.; Maagdenberg, J.; Ronden, D.; Stakenborg, J.; Sterk, A. B.; Tichler, J.; Alberti, S.; Goodman, T.; Henderson, M.; Hoekzema, J. A.; Oosterbeek, J. W.; Fernandez, A.; Likin, K.; Bruschi, A.; Cirant, S.; Novak, S.; Piosczyk, B.; Thumm, M.; Bindslev, H.; Kaye, A.; Fleming, C.; Zohm, H.

    2003-11-01

    An electron cyclotron resonance heating (ECRH) system has been designed for JET in the framework of the JET enhanced performance project (JET-EP) under the European fusion development agreement. Due to financial constraints it has been decided not to implement this project. Nevertheless, the design work conducted from April 2000 to January 2002 shows a number of features that can be relevant in preparation of future ECRH systems, e.g. for ITER. The ECRH system was foreseen to comprise six gyrotrons, 1 MW each, in order to deliver 5 MW into the plasma (Verhoeven A.G.A. et al 2001 The ECRH system for JET 26th Int. Conf. on Infrared and Millimeter Waves (Toulouse, 10 14 September 2001) p 83; Verhoeven A.G.A. et al 2003 The 113 GHz ECRH system for JET Proc. 12th Joint Workshop on ECE and ECRH (13 16 May 2002) ed G. Giruzzi (Aix-en-Provence: World Scientific) pp 511 16). The main aim was to enable the control of neo-classical tearing modes. The paper will concentrate on: the power-supply and modulation system, including series IGBT switches, to enable independent control of each gyrotron and an all-solid-state body power supply to stabilize the gyrotron output power and to enable fast modulations up to 10 kHz and a plug-in launcher that is steerable in both toroidal and poloidal angles and able to handle eight separate mm-wave beams. Four steerable launching mirrors were foreseen to handle two mm-wave beams each. Water cooling of all the mirrors was a particularly ITER-relevant feature.

  2. Shock layer vacuum UV spectroscopy in an arc-jet wind tunnel

    NASA Technical Reports Server (NTRS)

    Palumbo, G.

    1990-01-01

    An experimental program is being developed to obtain measurements of the incident surface radiation in the 1000 A to 2000 A range from the shock stagnation region of a blunt model in the Ames 20 MW Arc-Jet Wind Tunnel. The setup consists of a water-cooled blunt model, with a magnesium fluoride forward-viewing window. Radiation incident on the window is optically imaged via an evacuated system and reflective optical elements onto the entrance slit of a spectrograph. The model will be exposed to the supersonic plasma stream from the exit nozzle of the arc-jet tunnel. The resulting bow shock radiation will be measured. It is expected that this experiment will help evaluate the importance of atomic N and O lines to the radiative heating of future Aeroassist Space Transfer Vehicles (ASTVs).

  3. Preparation of Benzo[c]carbazol-6-amines via Manganese-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1H-indoles with Ketenimines and Subsequent Oxidative Cyclization.

    PubMed

    Zhou, Xiaorong; Li, Zhenmin; Zhang, Zhiyin; Lu, Ping; Wang, Yanguang

    2018-03-02

    Manganese-catalyzed C 2 -H enaminylation of 1-(pyrimidin-2-yl)-1H-indoles with ketenimines is reported. The reaction provided 2-enaminylated indole derivatives in moderate to excellent yields with a broad substrate scope. A migration of the directing group pyrimidinyl occurred during this process. The synthesized 2-enaminyl indoles could be conveniently converted into 5-aryl-7H-benzo[c]carbazol-6-amines.

  4. Magnetic Flux Cancellation as the Origin of Solar Quiet-region Pre-jet Minifilaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L., E-mail: navdeep.k.panesar@nasa.gov

    We investigate the origin of 10 solar quiet-region pre-jet minifilaments , using EUV images from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) and magnetograms from the SDO Helioseismic and Magnetic Imager (HMI). We recently found that quiet-region coronal jets are driven by minifilament eruptions, where those eruptions result from flux cancellation at the magnetic neutral line under the minifilament. Here, we study the longer-term origin of the pre-jet minifilaments themselves. We find that they result from flux cancellation between minority-polarity and majority-polarity flux patches. In each of 10 pre-jet regions, we find that opposite-polarity patches of magneticmore » flux converge and cancel, with a flux reduction of 10%–40% from before to after the minifilament appears. For our 10 events, the minifilaments exist for periods ranging from 1.5 hr to 2 days before erupting to make a jet. Apparently, the flux cancellation builds a highly sheared field that runs above and traces the neutral line, and the cool transition region plasma minifilament forms in this field and is suspended in it. We infer that the convergence of the opposite-polarity patches results in reconnection in the low corona that builds a magnetic arcade enveloping the minifilament in its core, and that the continuing flux cancellation at the neutral line finally destabilizes the minifilament field so that it erupts and drives the production of a coronal jet. Thus, our observations strongly support that quiet-region magnetic flux cancellation results in both the formation of the pre-jet minifilament and its jet-driving eruption.« less

  5. Small Molecule Reversible Inhibitors of Bruton’s Tyrosine Kinase (BTK): Structure–Activity Relationships Leading to the Identification of 7-(2-Hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9 H -carbazole-1-carboxamide (BMS-935177)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Lucca, George V.; Shi, Qing; Liu, Qingjie

    Bruton’s tyrosine kinase (BTK) belongs to the TEC family of nonreceptor tyrosine kinases and plays a critical role in multiple cell types responsible for numerous autoimmune diseases. This article will detail the structure–activity relationships (SARs) leading to a novel second generation series of potent and selective reversible carbazole inhibitors of BTK. With an excellent pharmacokinetic profile as well as demonstrated in vivo activity and an acceptable safety profile, 7-(2-hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9H-carbazole-1-carboxamide 6 (BMS-935177) was selected to advance into clinical development.

  6. Experimental and Computational Study of Sonic and Supersonic Jet Plumes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Naughton, J. W.; Fletcher, D. G.; Edwards, Thomas A. (Technical Monitor)

    1994-01-01

    Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock-shear-layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.

  7. Developing an Empirical Model for Jet-Surface Interaction Noise

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2014-01-01

    The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are fit to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.

  8. Developing an Empirical Model for Jet-Surface Interaction Noise

    NASA Technical Reports Server (NTRS)

    Brown, Clif

    2014-01-01

    The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are t to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.

  9. The association of a J-burst with a solar jet

    NASA Astrophysics Data System (ADS)

    Morosan, D. E.; Gallagher, P. T.; Fallows, R. A.; Reid, H.; Mann, G.; Bisi, M. M.; Magdalenić, J.; Rucker, H. O.; Thidé, B.; Vocks, C.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Best, P.; Blaauw, R.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Cerrigone, L.; Ciardi, B.; de Geus, E.; Duscha, S.; Eislöffel, J.; Falcke, H.; Garrett, M. A.; Grießmeier, J. M.; Gunst, A. W.; Hoeft, M.; Iacobelli, M.; Juette, E.; Kuper, G.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Schwarz, D. J.; Sluman, J.; Smirnov, O.; Steinmetz, M.; Tagger, M.; ter Veen, S.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; van Weeren, R. J.; Wucknitz, O.; Zarka, P.

    2017-10-01

    Context. The Sun is an active star that produces large-scale energetic events such as solar flares and coronal mass ejections, and numerous smaller scale events such as solar jets. These events are often associated with accelerated particles that can cause emission at radio wavelengths. The reconfiguration of the solar magnetic field in the corona is believed to be the cause of the majority of solar energetic events and accelerated particles. Aims: Here, we investigate a bright J-burst that was associated with a solar jet and the possible emission mechanism causing these two phenomena. Methods: We used data from the Solar Dynamics Observatory (SDO) to observe a solar jet and radio data from the Low Frequency Array (LOFAR) and the Nançay Radioheliograph (NRH) to observe a J-burst over a broad frequency range (33-173 MHz) on 9 July 2013 at 11:06 UT. Results: The J-burst showed fundamental and harmonic components and was associated with a solar jet observed at extreme ultraviolet wavelengths with SDO. The solar jet occurred in the northern hemisphere at a time and location coincident with the radio burst and not inside a group of complex active regions in the southern hemisphere. The jet occurred in the negative polarity region of an area of bipolar plage. Newly emerged positive flux in this region appeared to be the trigger of the jet. Conclusions: Magnetic reconnection between the overlying coronal field lines and the newly emerged positive field lines is most likely the cause of the solar jet. Radio imaging provides a clear association between the jet and the J-burst, which shows the path of the accelerated electrons. These electrons travelled from a region in the vicinity of the solar jet along closed magnetic field lines up to the top of a closed magnetic loop at a height of 360 Mm. Such small-scale complex eruptive events arising from magnetic reconnection could facilitate accelerated electrons to produce continuously the large numbers of Type III bursts

  10. Multifrequency VLA observations of PKS 0745 - 191 - The archetypal 'cooling flow' radio source?

    NASA Technical Reports Server (NTRS)

    Baum, S. A.; O'Dea, C. P.

    1991-01-01

    Ninety-, 20-, 6- and 2-cm VLA observations of the high-radio-luminosity cooling-flow radio source PKS 0745 - 191 are presented. The radio source was found to have a core with a very steep spectrum (alpha is approximately -1.5) and diffuse emission with an even steeper spectrum (alpha is approximately -1.5 to -2.3) without clear indications of the jets, hotspots, or double lobes found in the other radio sources of comparable luminosity. It is inferred that the energy to power the radio source comes from the central engine, but the source's structure may be heavily influenced by the past history of the galaxy and the inflowing intracluster medium. It is shown that, while the radio source is energetically unimportant for the cluster as a whole, it is important on the scale of the cooling flow. The mere existence of cosmic rays and magnetic fields within a substantial fraction of the volume inside the cooling radius has important consequences for cooling-flow models.

  11. Large-Eddy Simulations of Noise Generation in Supersonic Jets at Realistic Engine Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Junhui; Corrigan, Andrew; Kailasanath, K.; Taylor, Brian

    2015-11-01

    Large-eddy simulations (LES) have been carried out to investigate the noise generation in highly heated supersonic jets at temperatures similar to those observed in high-performance jet engine exhausts. It is found that the exhaust temperature of high-performance jet engines can range from 1000K at an intermediate power to above 2000K at a maximum afterburning power. In low-temperature jets, the effects of the variation of the specific heat ratio as well as the radial temperature profile near the nozzle exit are small and are ignored, but it is not clear whether those effects can be also ignored in highly heated jets. The impact of the variation of the specific heat ratio is assessed by comparing LES results using a variable specific heat ratio with those using a constant specific heat ratio. The impact on both the flow field and the noise distributions are investigated. Because the total temperature near the nozzle wall can be substantially lower than the nozzle total temperature either due to the heating loss through the nozzle wall or due to the cooling applied near the wall, this lower wall temperature may impact the temperature in the shear layer, and thus impact the noise generation. The impact of the radial temperature profile on the jet noise generation is investigated by comparing results of lower nozzle wall temperatures with those of the adiabatic wall condition.

  12. Cooling efficiency of a spot-type personalized air-conditioner

    DOE PAGES

    Zhu, Shengwei; Dalgo, Daniel; Srebric, Jelena; ...

    2017-08-01

    Here, this study defined Cooling Efficiency ( CE) of a Spot-type Personalized Air-Conditioning (SPAC) device as the ratio of the additional sensible heat removal from human body induced by SPAC and the device's cooling capacity. CE enabled the investigation of SPAC performance on the occupant's sensible heat loss (Q s) and thermal sensation by its quantitative relation with the change of PMV level ( ΔPMV). Three round nozzles with the diameter of 0.08 m, 0.105 m, and 0.128 m, respectively, discharged air jets at airflow rates from 11.8 L s –1 to 59.0 L s –1, toward the chest ofmore » a seated or standing human body with a clothing of 0.48 clo. This study developed a validated CFD model coupled with the Fanger's thermoregulation model, to calculate Q s in a room of 26 °C ventilated at a rate of 3 ACH. According to the results, Q s, CE and draft risk ( DR) at face had significant positive linear correlation with the SPAC device's supply airflow rates (R2 >0.96), and a negative linear correlation for ΔPMV. With DR = 20% at face, CE was always under 0.3, and ΔPMV was around -1.0–1.1. Interestingly, both CE and ΔPMV had the least favorable values for the air jet produced by the nozzle with the diameter of 0.105 m independent of body posture. In conclusion, although SPAC could lead to additional Q s by sending air at a higher airflow rate from a smaller nozzle, the improvement in cooling efficiency and thermal sensation had a limit due to draft risk.« less

  13. Undercover EUV Solar Jets Observed by the Interface Region Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Chen, N.-H.; Innes, D. E.

    2016-12-01

    It is well-known that extreme ultraviolet (EUV) emission emitted at the solar surface is absorbed by overlying cool plasma. Especially in active regions, dark lanes in EUV images suggest that much of the surface activity is obscured. Simultaneous observations from the Interface Region Imaging Spectrograph, consisting of UV spectra and slit-jaw images (SJI), give vital information with sub-arcsecond spatial resolution on the dynamics of jets not seen in EUV images. We studied a series of small jets from recently formed bipole pairs beside the trailing spot of active region 11991, which occurred on 2014 March 5 from 15:02:21 UT to 17:04:07 UT. Collimated outflows with bright roots were present in SJI 1400 Å (transition region) and 2796 Å (upper chromosphere) that were mostly not seen in Atmospheric Imaging Assembly (AIA) 304 Å (transition region) and AIA 171 Å (lower corona) images. The Si IV spectra show a strong blue wing enhancement, but no red wing, in the line profiles of the ejecta for all recurrent jets, indicating outward flows without twists. We see two types of Mg II line profiles produced by the jets spires: reversed and non-reversed. Mg II lines remain optically thick, but turn optically thin in the highly Doppler shifted wings. The energy flux contained in each recurrent jet is estimated using a velocity differential emission measure technique that measures the emitting power of the plasma as a function of the line-of-sight velocity. We found that all the recurrent jets release similar energy (108 erg cm-2 s-1) toward the corona and the downward component is less than 3%.

  14. Numerical investigation of mist/air impingement cooling on ribbed blade leading-edge surface.

    PubMed

    Bian, Qingfei; Wang, Jin; Chen, Yi-Tung; Wang, Qiuwang; Zeng, Min

    2017-12-01

    The working gas turbine blades are exposed to the environment of high temperature, especially in the leading-edge region. The mist/air two-phase impingement cooling has been adopted to enhance the heat transfer on blade surfaces and investigate the leading-edge cooling effectiveness. An Euler-Lagrange particle tracking method is used to simulate the two-phase impingement cooling on the blade leading-edge. The mesh dependency test has been carried out and the numerical method is validated based on the available experimental data of mist/air cooling with jet impingement on a concave surface. The cooling effectiveness on three target surfaces is investigated, including the smooth and the ribbed surface with convex/concave columnar ribs. The results show that the cooling effectiveness of the mist/air two-phase flow is better than that of the single-phase flow. When the ribbed surfaces are used, the heat transfer enhancement is significant, the surface cooling effectiveness becomes higher and the convex ribbed surface presents a better performance. With the enhancement of the surface heat transfer, the pressure drop in the impingement zone increases, but the incremental factor of the flow friction is smaller than that of the heat transfer enhancement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Experiments and modeling of dilution jet flow fields

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.

    1986-01-01

    Experimental and analytical results of the mixing of single, double, and opposed rows of jets with an isothermal or variable-temperature main stream in a straight duct are presented. This study was performed to investigate flow and geometric variations typical of the complex, three-dimensional flow field in the dilution zone of gas-turbine-engine combustion chambers. The principal results, shown experimentally and analytically, were the following: (1) variations in orifice size and spacing can have a significant effect on the temperature profiles; (2) similar distributions can be obtained, independent of orifice diameter, if momentum-flux ratio and orifice spacing are coupled; (3) a first-order approximation of the mixing of jets with a variable-temperature main stream can be obtained by superimposing the main-stream and jets-in-an-isothermal-crossflow profiles; (4) the penetration of jets issuing mixing is slower and is asymmetric with respect to the jet centerplanes, which shift laterally with increasing downstream distance; (5) double rows of jets give temperature distributions similar to those from a single row of equally spaced, equal-area circular holes; (6) for opposed rows of jets, with the orifice centerlines in line, the optimum ratio of orifice spacing to duct height is one-half the optimum value for single-side injection at the same momentum-flux ratiol and (7) for opposed rows of jets, with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is twice the optimum value for single-side injection at the same momentum-flux ratio.

  16. Jet flow issuing from an axisymmetric pipe-cavity-orifice nozzle

    NASA Astrophysics Data System (ADS)

    Broučková, Zuzana; Pušková, Pavlína; Trávníček, Zdeněk; Šafařík, Pavel

    2016-03-01

    An axisymmetric air jet flow is experimentally investigated under passive flow control. The jet issues from a pipe of the inner diameter and length of 10 mm and 150 mm which is equipped with an axisymmetric cavity at the pipe end. The cavity operates as a resonator creating self-sustained acoustic excitations of the jet flow. A mechanism of excitations is rather complex - in comparison with a common Helmholtz resonator. The experiments were performed using flow visualization, microphone measurements and time-mean velocity measurements by the Pitot probe. The power spectral density (PSD) and the sound pressure level (SPL) were evaluated from microphone measurements. The jet Reynolds number ranged Re = 1600-18 000. Distinguishable peaks in PSD indicated a function of the resonator. Because the most effective acoustic response was found at higher Re, a majority of experiments focused on higher Re regime. The results demonstrate effects of the passive control on the jet behavior. Fluid mixing and velocity decay along the axis is intensified. It causes shortening of the jet transition region. On the other hand, an inverse proportionality of the velocity decay (u ~ 1/x) in the fully developed region is not changed. The momentum and kinetic energy fluxes decrease more intensively in the controlled jets in comparison with common jets.

  17. Far Noise Field of Air Jets and Jet Engines

    NASA Technical Reports Server (NTRS)

    Callaghan, Edmund E; Coles, Willard D

    1957-01-01

    An experimental investigation was conducted to study and compare the acoustic radiation of air jets and jet engines. A number of different nozzle-exit shapes were studied with air jets to determine the effect of exit shape on noise generation. Circular, square, rectangular, and elliptical convergent nozzles and convergent-divergent and plug nozzles were investigated. The spectral distributions of the sound power for the engine and the air jet were in good agreement for the case where the engine data were not greatly affected by reflection or jet interference effects. Such power spectra for a subsonic or slightly choked engine or air jet show that the peaks of the spectra occur at a Strouhal number of 0.3.

  18. Automated Infrared Inspection Of Jet Engine Turbine Blades

    NASA Astrophysics Data System (ADS)

    Bantel, T.; Bowman, D.; Halase, J.; Kenue, S.; Krisher, R.; Sippel, T.

    1986-03-01

    The detection of blocked surface cooling holes in hollow jet engine turbine blades and vanes during either manufacture or overhaul can be crucial to the integrity and longevity of the parts when in service. A fully automated infrared inspection system is being established under a tri-service's Manufacturing Technology (ManTech) contract administered by the Air Force to inspect these surface cooling holes for blockages. The method consists of viewing the surface holes of the blade with a scanning infrared radiometer when heated air is flushed through the blade. As the airfoil heats up, the resultant infrared images are written directly into computer memory where image analysis is performed. The computer then makes a determination of whether or not the holes are open from the inner plenum to the exterior surface and ultimately makes an accept/reject decision based on previously programmed criteria. A semiautomatic version has already been implemented and is more cost effective and more reliable than the previous manual inspection methods.

  19. Determination of the Heat and Mass Transfer Efficiency at the Contact Stage of a Jet-Film Facility

    NASA Astrophysics Data System (ADS)

    Dmitrieva, O. S.; Madyshev, I. N.; Dmitriev, A. V.

    2017-05-01

    A contact jet-film facility has been developed for increasing the efficiency of operation of industrial cooling towers. The results of experimental and analytical investigation of the operation of this facility, its hydraulic resistance, and of the heat and mass transfer efficiency of its contact stage are presented.

  20. Phenol-selective mass spectrometric analysis of jet fuel.

    PubMed

    Zhu, Haoxuan; Janusson, Eric; Luo, Jingwei; Piers, James; Islam, Farhana; McGarvey, G Bryce; Oliver, Allen G; Granot, Ori; McIndoe, J Scott

    2017-08-21

    Bromobenzyl compounds react selectively with phenols via the Williamson ether synthesis. An imidazolium charge-tagged bromobenzyl compound can be used to reveal phenol impurities in jet fuel by analysis via electrospray ionization mass spectrometry. The complex matrix as revealed by Cold EI GC/MS analysis is reduced to a few simple sets of compounds in the charge-tagged ESI mass spectrum, primarily substituted phenols and thiols. Examination of jet fuels treated by different refinery methods reveals the efficacy of these approaches in removing these contaminants.

  1. Faint Object Camera observations of M87 - The jet and nucleus

    NASA Technical Reports Server (NTRS)

    Boksenberg, A.; Macchetto, F.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.; Kamperman, T. M.

    1992-01-01

    UV and optical images of the central region and jet of the nearby elliptical galaxy M87 have been obtained with about 0.1 arcsec resolution in several spectral bands with the Faint Object Camera (FOC) on the HST, including polarization images. Deconvolution enhances the contrast of the complex structure and filamentary patterns in the jet already evident in the aberrated images. Morphologically there is close similarity between the FOC images of the extended jet and the best 2-cm radio maps obtained at similar resolution, and the magnetic field vectors from the UV and radio polarimetric data also correspond well. We observe structure in the inner jet within a few tenths arcsec of the nucleus which also has been well studied at radio wavelengths. Our UV and optical photometry of regions along the jet shows little variation in spectral index from the value 1.0 between markedly different regions and no trend to a steepening spectrum with distance along the jet.

  2. Particle acceleration, magnetic field generation, and emission in relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Recent simulations show that the Weibel instability created by relativistic pair jets is responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. The Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. This instability is also responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The jitter radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  3. Zr-in-rutile resetting in aluminosilicate bearing ultra-high temperature granulites: Refining the record of cooling and hydration in the Napier Complex, Antarctica

    NASA Astrophysics Data System (ADS)

    Mitchell, Ruairidh J.; Harley, Simon L.

    2017-02-01

    The relative validity and closure temperature of the Zr-in-rutile thermometer for recording UHT metamorphism are process dependent and hotly debated. We present an integrated petrological approach to Zr-in-rutile thermometry including phase equilibrium (pseudosection) modelling in complex chemical systems with updated mineral a-X models and systematic in-situ microanalysis of rutile. This study is centred on high-pressure rutile bearing UHT granulites from Mt. Charles, Napier Complex, Antarctica. P-T phase equilibrium modelling of two garnet bearing granulites (samples 49677, 49701) constrains an overall post-peak near isobaric cooling (IBC) evolution for the Napier Complex at Mt. Charles; from 14 kbar, 1100 °C with moderate decompression to 11 kbar, 800-900 °C. Local hydration on cooling over this temperature range is recorded in a kyanite bearing granulite (sample 49688) with an inferred injection of aqueous fluid equivalent to up to 9 mol% H2O from T-MH2O modelling. Further late stage cooling to < 740 °C is recorded by voluminous retrograde mica growth and partial preservation of a ky-pl-kfs-bt-liq bearing equilibrium assemblage. Overall, Zr-in-rutile temperatures at 11 kbar (Tomkins et al., 2007) are reset to between 606 °C and 780 °C across all samples, with flat core-rim Zr concentration profiles in all rutiles. However, zircon precipitates as inclusions, needle exsolutions, or rods along rutile grain boundaries are recrystallised from rutiles in qz/fsp domains. Reintegrating the Zr-in-rutile concentration 'lost' via the recrystallisation of these zircon precipitates (e.g. Pape et al., 2016) can recover maximum concentrations of up to 2.2 wt% and thus maximum peak temperatures of 1149 °C at 11 kbar. Rutile Nb-Ta signatures and rounded rutile grains without zircon precipitates in hydrated mica domains in sample 49688 provide evidence for fluid-mediated mobility of Zr and Nb during retrograde cooling in hydrated lithologies. Aqueous fluid supplemented

  4. Stretched Inertial Jets

    NASA Astrophysics Data System (ADS)

    Ghabache, Elisabeth; Antkowiak, Arnaud; Seon, Thomas; Villermaux, Emmanuel

    2015-11-01

    Liquid jets often arise as short-lived bursting liquid flows. Cavitation or impact-driven jets, bursting champagne bubbles, shaped-charge jets, ballistospores or drop-on-demand inkjet printing are a few examples where liquid jets are suddenly released. The trademark of all these discharge jets is the property of being stretched, due to the quenching injection. the present theoretical and experimental investigation, the structure of the jet flow field will be unraveled experimentally for a few emblematic occurrences of discharge jets. Though the injection markedly depends on each flow configuration, the jet velocity field will be shown to be systematically and rapidly attracted to the universal stretching flow z/t. The emergence of this inertial attractor actually only relies on simple kinematic ingredients, and as such is fairly generic. The universality of the jet velocity structure will be discussed.

  5. Rotationally-resolved excitation spectroscopy of the alkoxy and alkylthio radicals in a supersonic jet

    NASA Technical Reports Server (NTRS)

    Misra, Prabhakar; Zhu, Xinming; Bryant, Hosie L.; Kamal, Mohammed M.

    1993-01-01

    Rotationally-resolved laser excitation spectra have been obtained for the alkoxy radicals (CH3O, C2H5O, i-C3H7O) and the alkylthio radicals (CH3S, C2H5S, i-C3H7S) in a supersonic jet expansion. Low resolution (0.2/cm) excitation spectra have helped identify several vibronic bands belonging to the A-X electronic system for these jet-cooled free radicals. High resolution (0.07/cm) laser-induced fluorescence excitation spectra have aided the unraveling of the associated rotational structure and in certain cases (CH3O and CH3S, for example) enabled explicit rotational (J,K) assignments of the transitions.

  6. In-situ fabrication of diketopyrrolopyrrole-carbazole-based conjugated polymer/TiO2 heterojunction for enhanced visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Yang, Long; Yu, Yuyan; Zhang, Jianling; Chen, Fu; Meng, Xiao; Qiu, Yong; Dan, Yi; Jiang, Long

    2018-03-01

    Aiming at developing highly efficient photocatalysts by broadening the light-harvesting region and suppressing photo-generated electron-hole recombination simultaneously, this work reports rational design and fabrication of donor-acceptor (D-A) conjugated polymer/TiO2 heterojunction catalyst with strong interfacial interactions by a facile in-situ thermal treatment. To expand the light-harvesting window, soluable conjugated copolymers with D-A architecture are prepared by Pd-mediated polycondensation of diketopyrrolopyrrole (DPP) and t-butoxycarbonyl (t-Boc) modified carbazole (Car), and used as visible-light-harvesting antenna to couple with TiO2 nanocrystals. The DPP-Car/TiO2 composites show wide range absorption in 300-1000 nm. To improve the interfacial binding at the interface, a facile in-situ thermal treatment is carried out to cleave the pendant t-Boc groups in carbazole units and liberate the polar amino groups (-NH-) which strongly bind to the surface of TiO2 through dipole-dipole interactions, forming a heterojunction interface. This in-situ thermal treatment changes the surface elemental distribution of TiO2, reinforces the interface bonding at the boundary of conjugated polymers/TiO2 and finally improves the photocatalytic efficiency of DPP-Car/TiO2 under visible-light irradiation. The interface changes are characterized and verified through Fourier-transform infrared spectroscopy (FT-IR), photo images, UV/Vis (solution state and powder diffuse reflection spectroscopy), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fluorescence, scanning electron microscopy(SEM) and transmission electron microscopy (TEM) techniques. This study provides a new strategy to avoid the low solubility of D-A conjugated polymers and construct highly-efficient conjugated polymer/TiO2 heterojunction by enforcing the interface contact and facilitating charge or energy transfer for the applications in photocatalysis.

  7. Phosphorescence white organic light-emitting diodes with single emitting layer based on isoquinolinefluorene-carbazole containing host.

    PubMed

    Koo, Ja Ryong; Lee, Seok Jae; Hyung, Gun Woo; Kim, Bo Young; Shin, Hyun Su; Lee, Kum Hee; Yoon, Seung Soo; Kim, Woo Young; Kim, Young Kwan

    2013-03-01

    We have demonstrated a stable phosphorescent white organic light-emitting diodes (WOLEDs) using an orange emitter, Bis(5-benzoyl-2-(4-fluorophenyl)pyridinato-C,N) iridium(III)acetylacetonate [(Bz4Fppy)2Ir(III)acac] doped into a newly synthesized blue host material, 2-(carbazol-9-yl)-7-(isoquinolin-1-yl)-9,9-diethylfluorene (CzFliq). When 1 wt.% (Bz4Fppy)2Ir(III)acac was doped into emitting layer, it was realized an improved EL performance and a pure white color in the OLED. The optimum WOLED showed maximum values as a luminous efficiency of 10.14 cd/A, a power efficiency of 10.24 Im/W, a peak external quantum efficiency 4.07%, and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39) at 8 V.

  8. Crystal structure of 9-butyl-6-[2-(pyridin-4-yl)ethen­yl]carbazol-3-amine

    PubMed Central

    Zhang, Ping; Bai, Xiang-Yang; Zhang, Ting

    2015-01-01

    The asymmetric unit of the title compound, C23H23N3, consists of two mol­ecules, A and B, with different conformations. In mol­ecule A, the dihedral angle between the carbazole ring system (r.m.s. deviation = 0.028 Å) and the pyridine ring is 20.28 (9)° and the N—C—C—C torsion angle of the butyl side chain is −63.4 (3)°. The equivalent data for mol­ecule B are 0.065 Å, 48.28 (11)° and 61.0 (3)°, respectively. In the crystal, the components are connected by weak N—H⋯N hydrogen bonds, generating [030] C(14) chains of alternating A and B mol­ecules. PMID:25995940

  9. Aperture effects in squid jet propulsion.

    PubMed

    Staaf, Danna J; Gilly, William F; Denny, Mark W

    2014-05-01

    Squid are the largest jet propellers in nature as adults, but as paralarvae they are some of the smallest, faced with the inherent inefficiency of jet propulsion at a low Reynolds number. In this study we describe the behavior and kinematics of locomotion in 1 mm paralarvae of Dosidicus gigas, the smallest squid yet studied. They swim with hop-and-sink behavior and can engage in fast jets by reducing the size of the mantle aperture during the contraction phase of a jetting cycle. We go on to explore the general effects of a variable mantle and funnel aperture in a theoretical model of jet propulsion scaled from the smallest (1 mm mantle length) to the largest (3 m) squid. Aperture reduction during mantle contraction increases propulsive efficiency at all squid sizes, although 1 mm squid still suffer from low efficiency (20%) because of a limited speed of contraction. Efficiency increases to a peak of 40% for 1 cm squid, then slowly declines. Squid larger than 6 cm must either reduce contraction speed or increase aperture size to maintain stress within maximal muscle tolerance. Ecological pressure to maintain maximum velocity may lead them to increase aperture size, which reduces efficiency. This effect might be ameliorated by nonaxial flow during the refill phase of the cycle. Our model's predictions highlight areas for future empirical work, and emphasize the existence of complex behavioral options for maximizing efficiency at both very small and large sizes.

  10. Factorization for jet radius logarithms in jet mass spectra at the LHC

    DOE PAGES

    Kolodrubetz, Daniel W.; Pietrulewicz, Piotr; Stewart, Iain W.; ...

    2016-12-14

    To predict the jet mass spectrum at a hadron collider it is crucial to account for the resummation of logarithms between the transverse momentum of the jet and its invariant mass m J . For small jet areas there are additional large logarithms of the jet radius R, which affect the convergence of the perturbative series. We present an analytic framework for exclusive jet production at the LHC which gives a complete description of the jet mass spectrum including realistic jet algorithms and jet vetoes. It factorizes the scales associated with m J , R, and the jet veto, enablingmore » in addition the systematic resummation of jet radius logarithms in the jet mass spectrum beyond leading logarithmic order. We discuss the factorization formulae for the peak and tail region of the jet mass spectrum and for small and large R, and the relations between the different regimes and how to combine them. Regions of experimental interest are classified which do not involve large nonglobal logarithms. We also present universal results for nonperturbative effects and discuss various jet vetoes.« less

  11. N-(2-Ethylhexyl)carbazole: A New Fluorophore Highly Suitable as a Monomolecular Liquid Scintillator.

    PubMed

    Montbarbon, Eva; Sguerra, Fabien; Bertrand, Guillaume H V; Magnier, Élodie; Coulon, Romain; Pansu, Robert B; Hamel, Matthieu

    2016-08-16

    The synthesis, photophysical properties, and applications in scintillation counting of N-(2-ethylhexyl)carbazole (EHCz) are reported. This molecule displays all of the required characteristics for an efficient liquid scintillator (emission wavelength, scintillation yield), and can be used without any extra fluorophores. Thus, its scintillation properties are discussed, as well as its fast neutron/gamma discrimination. For the latter application, the material is compared with the traditional liquid scintillator BC-501 A, and other liquid fluorescent molecules classically used as scintillation solvents, such as xylene, pseudocumene (PC), linear alkylbenzenes (LAB), diisopropylnaphthalene (DIN), 1-methylnaphthalene (1-MeNapht), and 4-isopropylbiphenyl (iPrBiph). For the first time, an excimeric form of a molecule has been advantageously used in scintillation counting. A moderate discrimination between fast neutrons and gamma rays was observed in bulk EHCz, with an apparent neutron/gamma discrimination potential half of that of BC-501 A. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Review of Two-phase Electronics Cooling for Army Vehicle Applications

    DTIC Science & Technology

    2010-09-01

    electronics occurred. Mudawar et al. (7) developed a spray cooler as part of the U.S. Department of Energy’s (DOE’s) Power Electronics and Electric...demonstrated by Mudawar (28) on the SEM-E BTPFL-C3 avionics Clamshell Module. By using direct two- phase jet-impingement and FC-72 dielectric fluid...cooling necessary for high heat flux electronic systems. One example is a study performed by Lee and Mudawar (13) with R134A and HFE1700 direct and

  13. Jet-Cooled Infrared Laser Spectroscopy in the Umbrella νb{2} Vibration Region of NH_3: Improving the Potential Energy Surface Model of the NH_3-Ar Van Der Waals Complex

    NASA Astrophysics Data System (ADS)

    Asselin, Pierre; Jabri, Atef; Potapov, Alexey; Loreau, Jérome; van der Avoird, Ad

    2017-06-01

    Taking advantage of our sensitive laser spectrometer coupled to a pulsed slit jet, we recorded near the νb{2} vibration a series of rovibrational transitions of the NH_3-Ar van der Waals (vdW) complex. These transitions involve in the ground vibrational state several internal rotor states corresponding to the ortho{NH_3} and para{NH_3} spin modifications of the complex. They are labeled by Σ_{a}(j,k), Σ_{s}(j,k), Π_{a}(j,k) and Π_{s}(j,k) where Σ(K=0) and Π(K=1) indicate the projection K of the total rotational angular momentum J on the vdW axis, the superscripts s and a designate a symmetric or antisymmetric NH_3 inversion wave function, and j, k quantum numbers indicate the correlation between the internal-rotor state of the complex and the j, k rotational state of the free NH_3 monomer. Five bands have been identified, only one of which was partly observed before. They include transitions starting from the Σ_{a}(j=0 or j=1) state without any internal angular momentum, consequently they can be assigned from the band contour of a linear-molecule-like K=0, ΔJ=1 transition. The energies and splittings of the rovibrational levels of the νb{2}=1←0 spectrum derived from the analysis of the Π_{s}, Σ_{s}(j=1)← Σ_{a}(j=0), k=0 bands and mostly of the Σ_{s}, Π_{s} and Σ_{a}(j=1)←Σ_{a}(j=1), k=1 bands bring relevant information about the νb{2} dependence of the NH_3-Ar interaction, the rovibrational dynamics of the NH_3-Ar complex and provide a sensitive test of a recently developed 4D potential energy surface that includes explicitly its dependence on the umbrella motion. P. Asselin, Y. Berger, T. R. Huet, R. Motiyenko, L. Margulès, R. J. Hendricks, M. R. Tarbutt, S. Tokunaga, B. Darquié, PCCP 19, 4576 (2017), G. T. Fraser, A.S. Pine and W. A. Kreiner, J. Chem. Phys. 94, 7061 (1991). J. Loreau, J. Liévin, Y. Scribano and A. van der Avoird, J. Chem. Phys. 141, 224303 (2014).

  14. Computer simulation of turbulent jet structure radiography

    NASA Astrophysics Data System (ADS)

    Kodimer, Kory A.; Parnell, Lynn A.; Nelson, Robert S.; Papin, Patrick J.

    1992-12-01

    Liquid metal combustion chambers are under consideration as power sources for propulsion devices used in undersea vehicles. Characteristics of the reactive jet are studied to gain information about the internal combustion phenomena, including temporal and spatial variation of the jet flame, and the effects of phase changes on both the combustion and imaging processes. A ray tracing program which employs simplified Monte Carlo methods has been developed for use as a predictive tool for radiographic imaging of closed liquid metal combustors. A complex focal spot is characterized by either a monochromatic or polychromatic emission spectrum. For the simplest case, the x-ray detection system is modeled by an integrating planar detector having 100% efficiency. Several simple geometrical shapes are used to simulate jet structures contained within the combustor, such as cylinders, paraboloids, and ellipsoids. The results of the simulation and real time radiographic images are presented and discussed.

  15. Theoretical study of the effects of refraction on the noise produced by turbulence in jets

    NASA Technical Reports Server (NTRS)

    Graham, E. W.; Graham, B. B.

    1974-01-01

    The production of noise by turbulence in jets is an extremely complex problem. One aspect of that problem, the transmission of acoustic disturbances from the interior of the jet through the mean velocity profile and into the far field is studied. The jet (two-dimensional or circular cylindrical) is assumed infinitely long with mean velocity profile independent of streamwise location. The noise generator is a sequence of transient sources drifting with the surrounding fluid and confined to a short length of the jet.

  16. Synthetic Jets in Cross-flow. Part 1; Round Jet

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Milanovic, Ivana M.

    2003-01-01

    Results of an experimental investigation on synthetic jets from round orifices with and without cross-flow are presented. Jet Reynolds number up to 46,000 with a fully turbulent approach boundary layer, and Stokes number up to 400. are covered. The threshold of stroke length for synthetic jet formation. in the absence of the cross-flow, is found to be Lo /D approximately 0.5. Above Lo /D is approximately 10, the profiles of normalized centerline mean velocity appear to become invariant. It is reasoned that the latter threshold may be related to the phenomenon of saturation of impulsively generated vortices. In the presence of the cross-flow, the penetration height of a synthetic jet is found to depend on the momentum- flux ratio . When this ratio is defined in terms of the maximum jet velocity and the cross-flow velocity. not only all data collapse but also the jet trajectory is predicted well by correlation equation available for steady jets-in-cross-flow. Distributions of mean velocity, streamwise vorticity as well as turbulence intensity for a synthetic jet in cross-flow are found to be similar to those of a steady jet-in-cross-flow. A pair of counter-rotating streamwise vortices, corresponding to the bound vortex pair of the steady case, is clearly observed. Mean velocity distribution exhibits a dome of low momentum fluid pulled up from the boundary layer, and the entire domain is characterized by high turbulence.

  17. Multiple jet study data correlations. [data correlation for jet mixing flow of air jets

    NASA Technical Reports Server (NTRS)

    Walker, R. E.; Eberhardt, R. G.

    1975-01-01

    Correlations are presented which allow determination of penetration and mixing of multiple cold air jets injected normal to a ducted subsonic heated primary air stream. Correlations were obtained over jet-to-primary stream momentum flux ratios of 6 to 60 for locations from 1 to 30 jet diameters downstream of the injection plane. The range of geometric and operating variables makes the correlations relevant to gas turbine combustors. Correlations were obtained for the mixing efficiency between jets and primary stream using an energy exchange parameter. Also jet centerplane velocity and temperature trajectories were correlated and centerplane dimensionless temperature distributions defined. An assumption of a Gaussian vertical temperature distribution at all stations is shown to result in a reasonable temperature field model. Data are presented which allow comparison of predicted and measured values over the range of conditions specified above.

  18. A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.

    2000-01-01

    We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  19. Optical and Photophysical Investigation of (2E)-1-(2,5-Dimethylfuran-3-Yl)-3-(9-Ethyl-9H-Carbazol-3-Yl)Prop-2-en-1-One (DEPO) by Spectrofluorometer in Organized Medium.

    PubMed

    Asiri, Abdullah M; Al-Dies, Al-Anood M; Khan, Salman A

    2017-07-01

    (2E)-1-(2,5-dimethylfuran-3-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one (DEPO) was prepared by the reaction of 9-ethyl-9H-carbazole-3-carbaldehyde with 1-(2,5-dimethylfuran-3-yl)ethanone under microwave irradiation. The structure of DEPO was established experimentally by EI-MS, FT-IR, 1 H and 13 C NMR spectral studies. Electronic absorption and emission spectra of DEPO were studied in different solvents on the basis of polarities, and the obtain data were used to determine the solvatochromic properties such as extinction coefficient, oscillator strength, transition dipole moment, stokes shift, fluorescence quantum yield and photochemical quantum yield. Photochemical quantum yield (Φ c ) of DEPO dye was determined in different solvent. The dye comparatively photostable in DMSO but undergoes photodecomposition in chloro methane solvents. The DEPO dye may be use as probe or quencher to determine critical micelle concentration (CMC) of cetyltri methyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS).

  20. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    NASA Astrophysics Data System (ADS)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org