United States Department of Defense Research in Robotic Unmanned Systems for Combat Casualty Care
2010-01-01
Focused Ultrasound ( HIFU ). TATRC has also sponsored research in robotic implementation of Raman and Laser Induced Spectrometry (LIBS) to detect and...assisting in the application of HIFU (High Intensity Focused Ultrasound ) for treating hemorrhage. The addition of bioinformatics, wireless data...Sanghvi NT, Dines KA, Wheeler J. Remotely operated robotic High Intensity Focused Ultrasound ( HIFU ) manipulator system for Critical Systems for Trauma and
Ka Band Objects: Observation and Monitoring (KaBOOM)
NASA Astrophysics Data System (ADS)
Geldzahler, B.
2012-09-01
NASA has embarked on a path that will enable the implementation of a high power, high resolution X/Ka band radar system using widely spaced 12m antennas to better track and characterize near Earth objects and orbital debris. This radar system also has applications for cost effective space situational awareness. We shall demonstrate Ka band coherent uplink arraying with real-time atmospheric compensation using three 12m antennas at the Kennedy Space Center (KSC). Our proposed radar system can complement and supplement the activities of the Space Fence. The proposed radar array has the advantages of filling the gap between dusk and dawn and offers the possibility of high range resolution (4 cm) and high spatial resolution (?10 cm at GEO) when used in a VLBI mode. KSC was chosen because [a] of reduced implementation costs, [b] there is a lot of water vapor in the air (not Ka band friendly), and [c] the test satellites have a low elevation adding more attenuation and turbulence to the demonstration. If Ka band coherent uplink arraying can be made to work at KSC, it will work anywhere. We expect to rebaseline X-band in 2013, and demonstrate Ka band uplink arraying in 2014.
The Mars Global Surveyor Ka-Band Link Experiment (MGS/KaBLE-II)
NASA Astrophysics Data System (ADS)
Morabito, D.; Butman, S.; Shambayati, S.
1999-01-01
The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4-GHz) downlink. The signals are simultaneously transmitted from a 1.5-m-diameter parabolic antenna on MGS and received by a beam-waveguide (BWG) research and development (R&D) 34-meter a ntenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. This Ka-band link experiment (KaBLE-II) allows the performances of the Ka-band and X-band signals to be compared under nearly identical conditions. The two signals have been regularly tracked during the past 2 years. This article presents carrier-signal-level data (P_c/N_o) for both X-band and Ka-band acquired over a wide range of station elevation angles, weather conditions, and solar elongation angles. The cruise phase of the mission covered the period from launch (November 7, 1996) to Mars orbit capture (September 12, 1997). Since September 12, 1997, MGS has been in orbit around Mars. The measurements confirm that Ka-band could increase data capacity by at least a factor of three (5 dB) as compared with X-band. During May 1998, the solar corona experiment, in which the effects of solar plasma on the X-band and Ka-band links were studied, was conducted. In addition, frequency and difference frequency (f_x - f_(Ka)/3.8), ranging, and telemetry data results are presented. MGS/KaBLE-II measured signal strengths (for 54 percent of the experiments conducted) that were in reasonable agreement with predicted values based on preflight knowledge, and frequency residuals that agreed between bands and whose statistics were consistent with expected noise sources. For passes in which measured signal strengths disagreed with predicted values, the problems were traced to known deficiencies, for example, equipment operating under certain conditions, such as a cold Ka-band solid-state power amplifier (SSPA
SLAE–CPS: Smart Lean Automation Engine Enabled by Cyber-Physical Systems Technologies
Ma, Jing; Wang, Qiang; Zhao, Zhibiao
2017-01-01
In the context of Industry 4.0, the demand for the mass production of highly customized products will lead to complex products and an increasing demand for production system flexibility. Simply implementing lean production-based human-centered production or high automation to improve system flexibility is insufficient. Currently, lean automation (Jidoka) that utilizes cyber-physical systems (CPS) is considered a cost-efficient and effective approach for improving system flexibility under shrinking global economic conditions. Therefore, a smart lean automation engine enabled by CPS technologies (SLAE–CPS), which is based on an analysis of Jidoka functions and the smart capacity of CPS technologies, is proposed in this study to provide an integrated and standardized approach to design and implement a CPS-based smart Jidoka system. A set of comprehensive architecture and standardized key technologies should be presented to achieve the above-mentioned goal. Therefore, a distributed architecture that joins service-oriented architecture, agent, function block (FB), cloud, and Internet of things is proposed to support the flexible configuration, deployment, and performance of SLAE–CPS. Then, several standardized key techniques are proposed under this architecture. The first one is for converting heterogeneous physical data into uniform services for subsequent abnormality analysis and detection. The second one is a set of Jidoka scene rules, which is abstracted based on the analysis of the operator, machine, material, quality, and other factors in different time dimensions. These Jidoka rules can support executive FBs in performing different Jidoka functions. Finally, supported by the integrated and standardized approach of our proposed engine, a case study is conducted to verify the current research results. The proposed SLAE–CPS can serve as an important reference value for combining the benefits of innovative technology and proper methodology. PMID:28657577
SLAE-CPS: Smart Lean Automation Engine Enabled by Cyber-Physical Systems Technologies.
Ma, Jing; Wang, Qiang; Zhao, Zhibiao
2017-06-28
In the context of Industry 4.0, the demand for the mass production of highly customized products will lead to complex products and an increasing demand for production system flexibility. Simply implementing lean production-based human-centered production or high automation to improve system flexibility is insufficient. Currently, lean automation (Jidoka) that utilizes cyber-physical systems (CPS) is considered a cost-efficient and effective approach for improving system flexibility under shrinking global economic conditions. Therefore, a smart lean automation engine enabled by CPS technologies (SLAE-CPS), which is based on an analysis of Jidoka functions and the smart capacity of CPS technologies, is proposed in this study to provide an integrated and standardized approach to design and implement a CPS-based smart Jidoka system. A set of comprehensive architecture and standardized key technologies should be presented to achieve the above-mentioned goal. Therefore, a distributed architecture that joins service-oriented architecture, agent, function block (FB), cloud, and Internet of things is proposed to support the flexible configuration, deployment, and performance of SLAE-CPS. Then, several standardized key techniques are proposed under this architecture. The first one is for converting heterogeneous physical data into uniform services for subsequent abnormality analysis and detection. The second one is a set of Jidoka scene rules, which is abstracted based on the analysis of the operator, machine, material, quality, and other factors in different time dimensions. These Jidoka rules can support executive FBs in performing different Jidoka functions. Finally, supported by the integrated and standardized approach of our proposed engine, a case study is conducted to verify the current research results. The proposed SLAE-CPS can serve as an important reference value for combining the benefits of innovative technology and proper methodology.
On the Performance of Adaptive Data Rate over Deep Space Ka-Bank Link: Case Study Using Kepler Data
NASA Technical Reports Server (NTRS)
Gao, Jay L.
2016-01-01
Future missions envisioned for both human and robotic exploration demand increasing communication capacity through the use of Ka-band communications. The Ka-band channel, being more sensitive to weather impairments, presents a unique trade-offs between data storage, latency, data volume and reliability. While there are many possible techniques for optimizing Ka-band operations such as adaptive modulation and coding and site-diversity, this study focus exclusively on the use of adaptive data rate (ADR) to achieve significant improvement in the data volume-availability tradeoff over a wide range of link distances for near Earth and Mars exploration. Four years of Kepler Ka-band downlink symbol signal-to-noise (SNR) data reported by the Deep Space Network were utilized to characterize the Ka-band channel statistics at each site and conduct various what-if performance analysis for different link distances. We model a notional closed-loop adaptive data rate system in which an algorithm predicts the channel condition two-way light time (TWLT) into the future using symbol SNR reported in near-real time by the ground receiver and determines the best data rate to use. Fixed and adaptive margins were used to mitigate errors in channel prediction. The performance of this closed-loop adaptive data rate approach is quantified in terms of data volume and availability and compared to the actual mission configuration and a hypothetical, optimized single rate configuration assuming full a priori channel knowledge.
NASA Technical Reports Server (NTRS)
Layland, J. W.; Horttor, R. L.; Clauss, R. C.; Wilcher, J. H.; Wallace, R. J.; Mudgway, D. J.
1989-01-01
The Ka-band study team was chartered in late 1987 to bring together all the planning elements for establishing 32 GHz (Ka-band) as the primary downlink frequency for deep-space operation, and to provide a stable baseline from which to pursue that development. This article summarizes the results of that study at its conclusion in mid-1988, and corresponds to material presented to NASA's Office of Space Operations on July 14, 1988. For a variety of reasons, Ka-band is the right next major step in deep-space communications. It offers improved radio metric accuracy through reduced plasma sensitivity and increased bandwidth. Because of these improvements, it offers the opportunity to reduce costs in the flight radio system or in the DSN by allocating part of the overall benefits of Ka-band to this cost reduction. A mission scenario is being planned that can drive at least two and possibly all three of the DSN subnets to provide a Ka-band downlink capability by the turn of the century. The implementation scenario devised by the study team is believed to be feasible within reasonable resource expectations, and capable of providing the needed upgrade as a natural follow-on to the technology development which is already underway.
ERIC Educational Resources Information Center
Social Education, 1978
1978-01-01
Describes the major Moslem edifice (the Ka'bah) in the holy city of Mecca and explains the importance of the Ka'bah in Muslim religious belief. Cultural and religious practices related to the Ka'bah are described. (Author/DB)
Deep-Space Ka-Band Flight Experience
NASA Astrophysics Data System (ADS)
Morabito, D. D.
2017-11-01
Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.
Fade Mitigation Techniques at Ka-Band
NASA Technical Reports Server (NTRS)
Dissanayake, Asoka (Editor)
1996-01-01
Rain fading is the dominant propagation impairment affecting Ka-band satellite links and rain fade mitigation is a key element in the design of Ka-band satellite networks. Some of the common fade mitigation techniques include: power control, diversity, adaptive coding, and resource sharing. The Advanced Communications Technology Satellite (ACTS) provides an excellent opportunity to develop and test Ka-band rain impairment amelioration techniques. Up-link power control and diversity are discussed in this paper.
pKa predictions for proteins, RNAs, and DNAs with the Gaussian dielectric function using DelPhi pKa.
Wang, Lin; Li, Lin; Alexov, Emil
2015-12-01
We developed a Poisson-Boltzmann based approach to calculate the pKa values of protein ionizable residues (Glu, Asp, His, Lys and Arg), nucleotides of RNA and single stranded DNA. Two novel features were utilized: the dielectric properties of the macromolecules and water phase were modeled via the smooth Gaussian-based dielectric function in DelPhi and the corresponding electrostatic energies were calculated without defining the molecular surface. We tested the algorithm by calculating pKa values for more than 300 residues from 32 proteins from the PPD dataset and achieved an overall RMSD of 0.77. Particularly, the RMSD of 0.55 was achieved for surface residues, while the RMSD of 1.1 for buried residues. The approach was also found capable of capturing the large pKa shifts of various single point mutations in staphylococcal nuclease (SNase) from pKa-cooperative dataset, resulting in an overall RMSD of 1.6 for this set of pKa's. Investigations showed that predictions for most of buried mutant residues of SNase could be improved by using higher dielectric constant values. Furthermore, an option to generate different hydrogen positions also improves pKa predictions for buried carboxyl residues. Finally, the pKa calculations on two RNAs demonstrated the capability of this approach for other types of biomolecules. © 2015 Wiley Periodicals, Inc.
The Mars Observer Ka-band link experiment
NASA Technical Reports Server (NTRS)
Rebold, T. A.; Kwok, A.; Wood, G. E.; Butman, S.
1994-01-01
The Ka-Band Link Experiment was the first demonstration of a deep-space communications link in the 32- to 35-GHz band (Ka-band). It was carried out using the Mars Observer spacecraft while the spacecraft was in the cruise phase of its mission and using a 34-meter beam-waveguide research and development antenna at the Goldstone complex of the DSN. The DSN has been investigating the performance benefits of a shift from X-band (8.4 GHz) to Ka-band (32 GHz) for deep-space communications. The fourfold increase in frequency is expected to offer a factor of 3 to 10 improvement (5 to 10 dB) in signal strength for a given spacecraft transmitter power and antenna size. Until recently, the expected benefits were based on performance studies, with an eye to implementing such a link, but theory was transformed to reality when a 33.7-GHz Ka-band signal was received from the spacecraft by DSS 13. This article describes the design and implementation of the Ka-Band Link Experiment from the spacecraft to the DSS-13 system, as well as results from the Ka-band telemetry demonstration, ranging demonstration, and long-term tracking experiment. Finally, a preliminary analysis of comparative X- and Ka-band tracking results is included. These results show a 4- to 7-dB advantage for Ka-band using the system at DSS 13, assuming such obstacles as antenna pointing loss and power conversion loss are overcome.
Palaeoenvironmental Transitions Between 22 ka and 8 ka in Monsoonally Influenced Namibia
NASA Astrophysics Data System (ADS)
Eitel, Bernhard; Blümel, Wolf Dieter; Hüser, Klaus
The paper presents a preliminary reconstruction of the development of different palaeoenvironments between the Last Glacial Maximum (LGM; c. 22 - 18 ka) and the Holocene Altithermal (HA; c. 8 ka - 4 ka) in Namibia. The synopsis is based on 36 optical datations of dune sands and fine-grained, silty deposits (OSL and TL). Most of the data were published by different research groups during the last decade. The synoptic view of all available optical age determinations is necessary because palaeoclimatic interpretations for southwestern Africa are not possible using results based only on local studies and on partly unreliable datations (e. g. 14C ages of calcretes). The compilation of all available datations and a synoptical interpretation such as the one presented here, show that gradual transitions and not abrupt changes from arid to more humid conditions occurred. These transitions did not affect all regions of Namibia at the same time and intensity. Differentiations in time and space are necessary for arriving a consistent model of the palaeoenvironmental transitions between LGM and HA.
NASA Astrophysics Data System (ADS)
Tian, Fang; Cao, Xianyong; Dallmeyer, Anne; Zhao, Yan; Ni, Jian; Herzschuh, Ulrike
2017-01-01
Temporal and spatial stability of the vegetation-climate relationship is a basic ecological assumption for pollen-based quantitative inferences of past climate change and for predicting future vegetation. We explore this assumption for the Holocene in eastern continental Asia (China, Mongolia). Boosted regression trees (BRT) between fossil pollen taxa percentages (Abies, Artemisia, Betula, Chenopodiaceae, Cyperaceae, Ephedra, Picea, Pinus, Poaceae and Quercus) and climate model outputs of mean annual precipitation (Pann) and mean temperature of the warmest month (Mtwa) for 9 and 6 ka (ka = thousand years before present) were set up and results compared to those obtained from relating modern pollen to modern climate. Overall, our results reveal only slight temporal differences in the pollen-climate relationships. Our analyses suggest that the importance of Pann compared with Mtwa for taxa distribution is higher today than it was at 6 ka and 9 ka. In particular, the relevance of Pann for Picea and Pinus increases and has become the main determinant. This change in the climate-tree pollen relationship parallels a widespread tree pollen decrease in north-central China and the eastern Tibetan Plateau. We assume that this is at least partly related to vegetation-climate disequilibrium originating from human impact. Increased atmospheric CO2 concentration may have permitted the expansion of moisture-loving herb taxa (Cyperaceae and Poaceae) during the late Holocene into arid/semi-arid areas. We furthermore find that the pollen-climate relationship between north-central China and the eastern Tibetan Plateau is generally similar, but that regional differences are larger than temporal differences. In summary, vegetation-climate relationships in China are generally stable in space and time, and pollen-based climate reconstructions can be applied to the Holocene. Regional differences imply the calibration-set should be restricted spatially.
NASA Astrophysics Data System (ADS)
Forman, S. L.; Wright, D.
2015-12-01
Relict beaches adjacent to Lake Turkana provide a record of water level variability for the Late Quaternary. This study focused on deciphering the geomorphology, sedimentology, stratigraphy and 14C chronology of strand plain sequences in the Kalokol and Lothagam areas. Nine >30 m oscillations in water level were documented between ca. 15 and 4 ka. The earliest oscillation between ca. 14.5 and 13 ka is not well constrained with water level to at least 70 m above the present surface and subsequently fell to at least 50 m. Lake level increased to ~ 90 m between ca. 11.2 and 10.4 ka, post Younger Dryas cooling. Water level fell by >30 m by 10.2 ka, with another potential rise at ca. 8.5 ka to >70 m above current level. Lake level regressed by > 40 m at 8.2 ka coincident with cooling in the equatorial Eastern Atlantic Ocean. Two major >70 m lake level oscillations centered at 6.6 and 5.2 ka may reflect enhanced convection with warmer sea surface temperatures in the Western Indian Ocean. The end of the African Humid Period occurred from ca. 8.0 to 4.5 ka and was characterized by variable lake level (± > 40 m), rather than one monotonic fall in water level. This lake level variability reflects a complex response to variations in the extent and intensity of the East and West African Monsoons near geographic and topographic limits within the catchment of Lake Turkana. Also, for this closed lake basin excess and deficits in water input are amplified with a cascading lake effect in the East Rift Valley and through the Chew Bahir Basin. The final regression from a high stand of > 90 m began at. 5.2 ka and water level was below 20 m by 4.5 ka; and for the remainder of the Holocene. This sustained low stand is associated with weakening of the West African Monsoon, a shift of the mean position of Congo Air Boundary west of the Lake Turkana catchment and with meter-scale variability in lake level linked to Walker circulation across the Indian Ocean. A surprising observation is
Arginine: Its pKa value revisited
Fitch, Carolyn A; Platzer, Gerald; Okon, Mark; Garcia-Moreno E, Bertrand; McIntosh, Lawrence P
2015-01-01
Using complementary approaches of potentiometry and NMR spectroscopy, we have determined that the equilibrium acid dissociation constant (pKa value) of the arginine guanidinium group is 13.8 ± 0.1. This is substantially higher than that of ∼12 often used in structure-based electrostatics calculations and cited in biochemistry textbooks. The revised intrinsic pKa value helps explains why arginine side chains in proteins are always predominantly charged, even at pH values as great as 10. The high pKa value also reinforces the observation that arginine side chains are invariably protonated under physiological conditions of near neutral pH. This occurs even when the guanidinium moiety is buried in a hydrophobic micro-environment, such as that inside a protein or a lipid membrane, thought to be incompatible with the presence of a charged group. PMID:25808204
Concentrating Solar Power Projects - KaXu Solar One | Concentrating Solar
Power | NREL KaXu Solar One This page provides information on KaXu Solar One, a concentrating . Status Date: April 14, 2015 Project Overview Project Name: KaXu Solar One Country: South Africa Location
NASA Astrophysics Data System (ADS)
Popov, E. P.; Iurevich, E. I.
The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.
NASA SCaN Overview and Ka-Band Actvities
NASA Technical Reports Server (NTRS)
Stegeman, James D.; Midon, Marco Mario; Davarian, Faramaz; Geldzahler, Barry
2014-01-01
The Ka- and Broadband Communications Conference is an international forum attended by worldwide experts in the area of Ka-Band Propagation and satellite communications. Since its inception, NASA has taken the initiative of organizing and leading technical sections on RF Propagation and satellite communications, solidifying its worldwide leadership in the aforementioned areas. Consequently, participation in this conference through the contributions described below will maintain NASA leadership in Ka- and above RF Propagation as it relates to enhancing current and future satellite communication systems supporting space exploration.
Multi-Step Ka/Ka Dichroic Plate with Rounded Corners for NASA's 34m Beam Waveguide Antenna
NASA Technical Reports Server (NTRS)
Veruttipong, Watt; Khayatian, Behrouz; Hoppe, Daniel; Long, Ezra
2013-01-01
A multi-step Ka/Ka dichroic plate Frequency Selective Surface (FSS structure) is designed, manufactured and tested for use in NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antennas. The proposed design allows ease of manufacturing and ability to handle the increased transmit power (reflected off the FSS) of the DSN BWG antennas from 20kW to 100 kW. The dichroic is designed using HFSS and results agree well with measured data considering the manufacturing tolerances that could be achieved on the dichroic.
NASA Technical Reports Server (NTRS)
Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)
2011-01-01
A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.
Mars Global Surveyor Ka-Band Frequency Data Analysis
NASA Astrophysics Data System (ADS)
Morabito, D.; Butman, S.; Shambayati, S.
2000-01-01
The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4 GHz) downlink. The signals are simultaneously transmitted from a 1.5-in diameter parabolic high gain antenna (HGA) on MGS and received by a beam-waveguide (BWG) R&D 34-meter antenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. The projected 5-dB link advantage of Ka-band relative to X-band was confirmed in previous reports using measurements of MGS signal strength data acquired during the first two years of the link experiment from December 1996 to December 1998. Analysis of X-band and Ka-band frequency data and difference frequency (fx-fka)/3.8 data will be presented here. On board the spacecraft, a low-power sample of the X-band downlink from the transponder is upconverted to 32 GHz, the Ka-band frequency, amplified to I-W using a Solid State Power Amplifier, and radiated from the dual X/Ka HGA. The X-band signal is amplified by one of two 25 W TWTAs. An upconverter first downconverts the 8.42 GHz X-band signal to 8 GHz and then multiplies using a X4 multiplier producing the 32 GHz Ka-band frequency. The frequency source selection is performed by an RF switch which can be commanded to select a VCO (Voltage Controlled Oscillator) or USO (Ultra-Stable Oscillator) reference. The Ka-band frequency can be either coherent with the X-band downlink reference or a hybrid combination of the USO and VCO derived frequencies. The data in this study were chosen such that the Ka-band signal is purely coherent with the X-band signal, that is the downconverter is driven by the same frequency source as the X-band downlink). The ground station used to acquire the data is DSS-13, a 34-meter BWG antenna which incorporates a series of mirrors inside beam waveguide tubes which guide the energy to a subterranean pedestal room, providing a stable environment
Ku/Ka band observations over polar ice sheets
NASA Astrophysics Data System (ADS)
Thibaut, Pierre; Lasne, Yannick; Guillot, Amandine; Picot, Nicolas; Rémy, Frédérique
2015-04-01
For the first time, comparisons between Ku and Ka altimeter measurements are possible thanks to the new AltiKa instrument embarked onboard the Saral mission launched on February 25, 2013. This comparison is of particular interest when dealing with ice sheet observations because both frequencies have different penetration characteristics. We propose in this paper to revisit the estimation of the ice sheet topography (and other related parameters) with altimeter systems and to present illustrations of the differences observed in Ku and Ka bands using AltiKa, Envisat/RA-2 but also Cryosat-2 measurements. Working on AltiKa waveforms in the frame of the PEACHI project has allowed us to better understand the impact of the penetration depth on the echo shape, to improve the estimation algorithm and to compare its output with historical results obtained on Envisat and ERS missions. In particular, analyses at cross-overs of the Cryosat-2 and Saral data will be presented. Sentinel-3 mission should be launch during 2015. Operating in Ku band and in delay/doppler mode, it will be crucial to account for penetration effects in order to accurately derive the ice sheet heights and trends. The results of the work presented here, will benefit to the Sentinel-3 mission.
Progress in the prediction of pKa values in proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexov, Emil; Mehler, Ernest L.; Baker, Nathan A.
2011-12-15
The pKa-cooperative aims to provide a forum for experimental and theoretical researchers interested in protein pKa values and protein electrostatics in general. The first round of the pKa -cooperative, which challenged computational labs to carry out blind predictions against pKas experimentally determined in the laboratory of Bertrand Garcia-Moreno, was completed and results discussed at the Telluride meeting (July 6-10, 2009). This paper serves as an introduction to the reports submitted by the blind prediction participants that will be published in a special issue of PROTEINS: Structure, Function and Bioinformatics. Here we briefly outline existing approaches for pKa calculations, emphasizing methodsmore » that were used by the participants in calculating the blind pKa values in the first round of the cooperative. We then point out some of the difficulties encountered by the participating groups in making their blind predictions, and finally try to provide some insights for future developments aimed at improving the accuracy of pKa calculations.« less
The Potential for a Ka-band (32 GHz) Worldwide VLBI Network
NASA Astrophysics Data System (ADS)
Jacobs, C. S.; Bach, U.; Colomer, F.; Garcá-Miró, C.; Gómez-González, J.; Gulyaev, S.; Horiuchi, S.; Ichikawa, R.; Kraus, A.; Kronschnabl, G.; López-Fernández, J. A.; Lovell, J.; Majid, W.; T; Natusch; Neidhardt, A.; Phillips, C.; Porcas, R.; Romero-Wolf, A.; Saldana, L.; Schreiber, U.; Sotuela, I.; Takeuchi, H.; Trinh, J.; Tzioumis, A.; de Vincente, P.; Zharov, V.
2012-12-01
Ka-band (32 GHz, 9 mm) Very Long Baseline Interferometric (VLBI) networking has now begun and has tremendous potential for expansion over the next few years. Ka-band VLBI astrometry from NASA's Deep Space Network has already developed a catalog of 470 observable sources with highly accurate positions. Now, several antennas worldwide are planning or are considering adding Ka-band VLBI capability. Thus, there is now an opportunity to create a worldwide Ka-band network with potential for high resolution imaging and astrometry. With baselines approaching a Giga-lambda, a Ka-band network would be able to probe source structure at the nano-radian (200 as) level (100X better than Hubble) and thus gain insight into the astrophysics of the most compact regions of emission in active galactic nuclei. We discuss the advantages of Ka-band, show the known sources and candidates, simulate projected baseline (uv) coverage, and discuss potential radio frequency feeds. The combination of these elements demonstrates the feasibility of a worldwide Ka network within the next few years.
The Potential for a Ka-band (32 GHz) Worldwide VLBI Network
NASA Technical Reports Server (NTRS)
Jacobs, C. S.; Bach, U.; Colomer, F.; Garcia-Miro, C.; Gomez-Gonzalez, J.; Gulyaev, S.; Horiuchi, S.; Ichikawa, R.; Kraus, A.; Kronschnabl, G.;
2012-01-01
Ka-band (32 GHz, 9mm) Very Long Baseline Interferometric (VLBI) networking has now begun and has tremendous potential for expansion over the next few years. Ka-band VLBI astrometry from NASA's Deep Space Network has already developed a catalog of 470 observable sources with highly accurate positions. Now, several antennas worldwide are planning or are considering adding Ka-band VLBI capability. Thus, there is now an opportunity to create a worldwide Ka-band network with potential for high resolution imaging and astrometry. With baselines approaching a Giga-lambda, a Ka-band network would be able to probe source structure at the nano-radian (200 as) level ( 100X better than Hubble) and thus gain insight into the astrophysics of the most compact regions of emission in active galactic nuclei. We discuss the advantages of Ka-band, show the known sources and candidates, simulate projected baseline (uv) coverage, and discuss potential radio frequency feeds. The combination of these elements demonstrates the feasibility of a worldwide Ka network within the next few years!
ERIC Educational Resources Information Center
Brand, Judith, Ed.
2002-01-01
This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…
Nielsen, Jens E.; Gunner, M. R.; Bertrand García-Moreno, E.
2012-01-01
The pKa Cooperative http://www.pkacoop.org was organized to advance development of accurate and useful computational methods for structure-based calculation of pKa values and electrostatic energy in proteins. The Cooperative brings together laboratories with expertise and interest in theoretical, computational and experimental studies of protein electrostatics. To improve structure-based energy calculations it is necessary to better understand the physical character and molecular determinants of electrostatic effects. The Cooperative thus intends to foment experimental research into fundamental aspects of proteins that depend on electrostatic interactions. It will maintain a depository for experimental data useful for critical assessment of methods for structure-based electrostatics calculations. To help guide the development of computational methods the Cooperative will organize blind prediction exercises. As a first step, computational laboratories were invited to reproduce an unpublished set of experimental pKa values of acidic and basic residues introduced in the interior of staphylococcal nuclease by site-directed mutagenesis. The pKa values of these groups are unique and challenging to simulate owing to the large magnitude of their shifts relative to normal pKa values in water. Many computational methods were tested in this 1st Blind Prediction Challenge and critical assessment exercise. A workshop was organized in the Telluride Science Research Center to assess objectively the performance of many computational methods tested on this one extensive dataset. This volume of PROTEINS: Structure, Function, and Bioinformatics introduces the pKa Cooperative, presents reports submitted by participants in the blind prediction challenge, and highlights some of the problems in structure-based calculations identified during this exercise. PMID:22002877
NASA Astrophysics Data System (ADS)
Channell, J. E. T.; Hodell, D. A.
2017-12-01
Relative paleointensity (RPI) proxies have been used to improve the resolution of Quaternary stratigraphies, and have been matched to oxygen isotope stratigraphies over the last 2 Myrs. The archeomagnetic archive has been important for the Holocene RPI record, and the older Quaternary record has come largely from ODP/IODP and MD (Marion Dufresne - Calypso) marine cores. Beyond the range of archeomagnetic data, published RPI stacks have poor consistency in the 10-30 ka (latest Pleistocene) interval, possibly due to poor quality of ODP/IODP and MD cores in the upper few meters of the sedimentary sections. We report RPI data from a suite of conventional piston cores and Kasten cores from the SW Iberian margin collected during cruise JC089 of the RSS James Cook in August 2013. The age models were acquired by correlation of Ca/Ti XRF core-scanning data to L* reflectance from the Cariaco Basin that is tied to the Greenland ice-core chronology. Mean sedimentation rates are in the 10-20 cm/kyr range. The Holocene RPI record from these marine cores can be broadly correlated to the archeomagnetic RPI compilations. The preceding RPI data are characterized by a short-lived minimum at 13-15 ka, a high in RPI at 17-20 ka, preceded by a discontinuous RPI decrease to 40 ka at the time of the well-documented Laschamp geomagnetic excursion. A stack of 12 RPI records from the SW Iberian margin for the 0-45 ka interval are compared with 11 records from elsewhere, including marine and lake records from the Pacific and South Atlantic realms, chosen on the basis of mean sedimentation rates (>20 cm/kyr) and superior age models. The resulting stacks are very different to previously published RPI stacks, particularly for the 10-30 ka interval, and imply a global (dipole-field) high at 17-20 ka that has implications for the 190 ‰ drop in atmospheric 14C during the so-called "mystery interval" (17.5-14.5 ka).
Ka-band monopulse antenna-pointing systems analysis and simulation
NASA Technical Reports Server (NTRS)
Lo, V. Y.
1996-01-01
NASA 's Deep Space Network (DSN) has been using both 70-m and 34-m reflector antennas to communicate with spacecraft at S-band (2.3 GHz) and X-band (8.45 GHz). To improve the quality of telecommunication and to meet future mission requirements, JPL has been developing 34-m Ka-band (32-GHz) beam waveguide antennas. Presently, antenna pointing operates in either the open-loop mode with blind pointing using navigation predicts or the closed-loop mode with conical scan (conscan). Pointing accuracy under normal conscan operating conditions is in the neighborhood of 5 mdeg. This is acceptable at S- and X-bands, but not enough at Ka-band. Due to the narrow beamwidth at Ka-band, it is important to improve pointing accuracy significantly (approximately 2 mdeg). Monopulse antenna tracking is one scheme being developed to meet the stringent pointing-accuracy requirement at Ka-band. Other advantages of monopulse tracking include low sensitivity to signal amplitude fluctuations as well as single-pulse processing for acquisition and tracking. This article presents system modeling, signal processing, simulation, and implementation of Ka-band monopulse tracking feed for antennas in NASA/DSN ground stations.
History of Larix decidua Mill. (European larch) since 130 ka
NASA Astrophysics Data System (ADS)
Wagner, Stefanie; Litt, Thomas; Sánchez-Goñi, Maria-Fernanda; Petit, Rémy J.
2015-09-01
Retrospective studies focussing on forest dynamics using fossil and genetic data can provide important keys to prepare forests for the future. In this study we analyse the impact of past climate and anthropogenic changes on Larix decidua Mill. (European larch) populations based on a new range-wide fossil compilation encompassing the last 130 ka and on recently produced genetic data (nuclear, mitochondrial). Results demonstrate that during the last 130 ka L. decidua persisted close to its current distribution range and colonized vast areas outside this range during the first two early Weichselian interstadials (c. 87-109 ka and c. 83-78 ka), reaching a distributional maxima in the north-central European lowlands. Some fossil sites point to notably rapid responses to some abrupt climate events (Dansgaard-Oeschger cycles and Heinrich Events). Combined fossil and genetic data identify at least six MIS 2 refuges and postglacial recolonization pathways. The establishment of extant L. decidua forests dates back to the first two millennia of the Holocene (c. 11.5-9.5 ka) and the onset of anthropogenic impact was inferred since the late Neolithic (c. 6 ka), with major changes occurring since the Bronze Age (c. 4 ka). During the last 300 years human-induced translocations resulted in recent admixture of populations originating from separate refuges. Altogether, the results of this study provide valuable clues for developing sustainable conservation and management strategies targeting ancient genetic lineages and for studying evolutionary issues.
A 62 ka record from the WAIS Divide ice core with annual resolution to 30 ka (so far)
NASA Astrophysics Data System (ADS)
Fudge, T. J.; Taylor, K.; McGwire, K.; Brook, E.; Sowers, T.; Steig, E.; White, J.; Vaughn, B.; Bay, R.; McConnell, J.; Waddington, E.; Conway, H.; Clow, G.; Cuffey, K.; Cole-Dai, J.; Ferris, D.; Severinghaus, J.
2012-04-01
Drilling of the West Antarctic Ice Sheet (WAIS) Divide ice core has been completed to a depth of 3400 m, about 60 meters above the bed. We present an annually resolved time scale for the most recent 30ka (to 2800 m) based on electrical conductivity measurements, called "timescale WDC06A-5". Below 2800 m the ice is dated by matching isotopes, methane, and/or dust records to other ice cores. Optical borehole logging provides stratigraphic ties to other cores for the bottom-most 75 m that was drilled in December 2011, and indicates the bottom-most ice has an age of 62 ka. The relatively young ice at depth is likely the result of basal melting. The inferred annual layer thickness of the deep ice is >1 cm, suggesting that annual layer counting throughout the entire core may be possible with continuous flow analysis of the ice core chemistry; however, the annual signal in the electrical measurements fades at about 30 ka. We compare the WDC06A-5 timescale through the glacial-interglacial transition with the Greenland GICC05 and GISP2 timescales via rapid variations in methane. We calculate a preliminary delta-age with: 1) accumulation rate inferred from the annual layer thicknesses and thinning functions computed with a 1-D ice flow model, and 2) surface temperature inferred from the low resolution d18O record and a preliminary borehole temperature profile. The WDC06A-5 timescale agrees with the GICC05 and GISP2 timescales to within decades at the 8.2k event and the ACR termination (Younger Dryas/Preboreal transition, 11.7 ka). This is within the delta-age and correlation uncertainties. At the rapid methane drop at ~12.8 ka, the WDC06A-5 timescale is ~150 years older than GICC05 and ~90 older than GISP2; while at ~14.8 ka, the timescales once again agree within the delta-age and correlation uncertainties. The cause of the age discrepancy at 12.8 ka is unclear. We also compare the WDC06A-5 timescale at Dansgaard-Oeschger events 3 and 4 (~27.5 and 29 ka) to the
Mars Reconnaissance Orbiter Ka-band (32 GHz) Demonstration: Cruise Phase Operations
NASA Technical Reports Server (NTRS)
Shambayati, Shervin; Morabito, David; Border, James S.; Davarian, Faramaz; Lee, Dennis; Mendoza, Ricardo; Britcliffe, Michael; Weinreb, Sander
2006-01-01
The X-band (8.41 GHz) frequency currently used for deep space telecommunications is too narrow (50 MHz) to support future high rate missions. Because of this NASA has decided to transition to Ka-band (32 GHz) frequencies. As weather effects cause much larger fluctuations on Ka-band than on X-band, the traditional method of using a few dBs of margin to cover these fluctuations is wasteful of power for Ka-band; therefore, a different operations concept is needed for Ka-band links. As part of the development of the operations concept for Ka-band, NASA has implemented a fully functioning Ka-band communications suite on its Mars Reconnaissance Orbiter (MRO). This suite will be used during the primary science phase to develop and refine the Ka-band operations concept for deep space missions. In order to test the functional readiness of the spacecraft and the Deep Space Network's (DSN) readiness to support the demonstration activities a series of passes over DSN 34-m Beam Waveguide (BWG) antennas were scheduled during the cruise phase of the mission. MRO was launched on August 12, 2005 from Kennedy Space Center, Cape Canaveral, Florida, USA and went into Mars Orbit on March 10, 2006. A total of ten telemetry demonstration and one high gain antenna (HGA) calibration passes were allocated to the Ka-band demonstration. Furthermore, a number of "shadow" passes were also scheduled where, during a regular MRO track over a Ka-band capable antenna, Ka-band was identically configured as the X-band and tracked by the station. In addition, nine Ka-band delta differential one way ranging ((delta)DOR) passes were scheduled. During these passes, the spacecraft and the ground system were put through their respective paces. Among the highlights of these was setting a single day record for data return from a deep space spacecraft (133 Gbits) achieved during one 10-hour pass; achieving the highest data rate ever from a planetary mission (6 Mbps) and successfully demonstrating Ka-band DDOR
Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... computer station and directs the movements of a robot. Small surgical tools are attached to the robot's ...
Socially intelligent robots: dimensions of human-robot interaction.
Dautenhahn, Kerstin
2007-04-29
Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.
Global calibration/validation of 2 years of SARAL/AltiKa data
NASA Astrophysics Data System (ADS)
Scharroo, Remko; Lillibridge, John; Leuliette, Eric; Bonekamp, Hans
2015-04-01
The AltiKa altimeter flying onboard the French/Indian SARAL satellite provides the first opportunity to examine Ka-band measurements of sea surface height, significant wave height and ocean surface wind speed. In this presentation we provide the results from our global calibration/validation analysis of the AltiKa measurements, with an emphasis on near real-time applications of interest to both EUMETSAT and NOAA. Traditional along-track SSHA, and single as well as dual-satellite crossover assessments of the AltiKa performance are be provided. Unique aspects of the AltiKa mission such as improved along-track resolution, reduced ionospheric path delay corrections, mission-specific wind speed and sea state bias corrections, and sensitivity to liquid moisture and rain are also explored. In February 2014, a major update to the ground processing was introduced. "Patch-2" improved the way wind speed was derived from altimeter backscatter, as suggested by Lillibridge et al. (1). The backscatter attenuation is now derived from the radiometer measurements via neural network algorithms, which also determine the wet tropospheric correction. We emphasize these improvements in our analysis. After 2 years in flight, SARAL/AltiKa is already providing a significant contribution to the constellation of operational radar altimetry missions, demonstrating the large benefits of high-rate Ka-band altimetry. (1) Lillibridge, John, Remko Scharroo, Saleh Abdalla, Doug Vandemark, 2014: One- and Two-Dimensional Wind Speed Models for Ka-Band Altimetry. J. Atmos. Oceanic Technol., 31, 630-638. doi: http://dx.doi.org/10.1175/JTECH-D-13-00167.1
Robotic Lobectomy Utilizing the Robotic Stapler.
Pearlstein, Daryl Phillip
2016-12-01
A drawback of robotic lobectomy is the inability of the operating surgeon to perform stapler division of the pulmonary vessels and bronchi. With the advent of the robotic stapler, the surgeon is able to control this instrument from the console. The robotic stapler presents certain challenges. This article outlines techniques to use the robotic stapler for the safe and predictable performance of lobectomies. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Computing pKa Values in Different Solvents by Electrostatic Transformation.
Rossini, Emanuele; Netz, Roland R; Knapp, Ernst-Walter
2016-07-12
We introduce a method that requires only moderate computational effort to compute pKa values of small molecules in different solvents with an average accuracy of better than 0.7 pH units. With a known pKa value in one solvent, the electrostatic transform method computes the pKa value in any other solvent if the proton solvation energy is known in both considered solvents. To apply the electrostatic transform method to a molecule, the electrostatic solvation energies of the protonated and deprotonated molecular species are computed in the two considered solvents using a dielectric continuum to describe the solvent. This is demonstrated for 30 molecules belonging to 10 different molecular families by considering 77 measured pKa values in 4 different solvents: water, acetonitrile, dimethyl sulfoxide, and methanol. The electrostatic transform method can be applied to any other solvent if the proton solvation energy is known. It is exclusively based on physicochemical principles, not using any empirical fetch factors or explicit solvent molecules, to obtain agreement with measured pKa values and is therefore ready to be generalized to other solute molecules and solvents. From the computed pKa values, we obtained relative proton solvation energies, which agree very well with the proton solvation energies computed recently by ab initio methods, and used these energies in the present study.
Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID
2010-09-21
The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.
Molecular Robots Obeying Asimov's Three Laws of Robotics.
Kaminka, Gal A; Spokoini-Stern, Rachel; Amir, Yaniv; Agmon, Noa; Bachelet, Ido
2017-01-01
Asimov's three laws of robotics, which were shaped in the literary work of Isaac Asimov (1920-1992) and others, define a crucial code of behavior that fictional autonomous robots must obey as a condition for their integration into human society. While, general implementation of these laws in robots is widely considered impractical, limited-scope versions have been demonstrated and have proven useful in spurring scientific debate on aspects of safety and autonomy in robots and intelligent systems. In this work, we use Asimov's laws to examine these notions in molecular robots fabricated from DNA origami. We successfully programmed these robots to obey, by means of interactions between individual robots in a large population, an appropriately scoped variant of Asimov's laws, and even emulate the key scenario from Asimov's story "Runaround," in which a fictional robot gets into trouble despite adhering to the laws. Our findings show that abstract, complex notions can be encoded and implemented at the molecular scale, when we understand robots on this scale on the basis of their interactions.
Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn)
NASA Technical Reports Server (NTRS)
Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing
2011-01-01
An interferometric synthetic aperture radar (SAR) onboard processor concept and algorithm has been developed for the Ka-band radar interferometer (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the radar data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the radar s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.
Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit
NASA Technical Reports Server (NTRS)
Chelmins, David; Reinhart, Richard; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Mike
2014-01-01
As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASAs Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.
Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit
NASA Technical Reports Server (NTRS)
Chelmins, David T.; Reinhart, Richard C.; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Michael
2014-01-01
As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASA's Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.
ERIC Educational Resources Information Center
Waddell, Steve; Doty, Keith L.
1999-01-01
"Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)
Robotics: An Introduction to Today’s Robot and Future Trends.
1983-07-01
trial applications." What qualities define a machine as a robot? The Robot Institute of Amer- ica defines a robot as follows: "A robot is a reprogrammable ...manufactures a robot with a spin- ning wrist. Second, and this is the key feature, robots are reprogrammable and hence versatile. An automatic lathe is not...robot spot-welds an automobile frame. In Figure 8, a single robot transferring a transmission case is shown, but a total of eight robots are
Modelling of industrial robot in LabView Robotics
NASA Astrophysics Data System (ADS)
Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.
2017-08-01
Currently can find many models of industrial systems including robots. These models differ from each other not only by the accuracy representation parameters, but the representation range. For example, CAD models describe the geometry of the robot and some even designate a mass parameters as mass, center of gravity, moment of inertia, etc. These models are used in the design of robotic lines and sockets. Also systems for off-line programming use these models and many of them can be exported to CAD. It is important to note that models for off-line programming describe not only the geometry but contain the information necessary to create a program for the robot. Exports from CAD to off-line programming system requires additional information. These models are used for static determination of reachability points, and testing collision. It’s enough to generate a program for the robot, and even check the interaction of elements of the production line, or robotic cell. Mathematical models allow robots to study the properties of kinematic and dynamic of robot movement. In these models the geometry is not so important, so are used only selected parameters such as the length of the robot arm, the center of gravity, moment of inertia. These parameters are introduced into the equations of motion of the robot and motion parameters are determined.
LPJ-GUESS Simulated North America Vegetation for 21-0 ka Using the TraCE-21ka Climate Simulation
NASA Astrophysics Data System (ADS)
Shafer, S. L.; Bartlein, P. J.
2016-12-01
Transient climate simulations that span multiple millennia (e.g., TraCE-21ka) have become more common as computing power has increased, allowing climate models to complete long simulations in relatively short periods of time (i.e., months). These climate simulations provide information on the potential rate, variability, and spatial expression of past climate changes. They also can be used as input data for other environmental models to simulate transient changes for different components of paleoenvironmental systems, such as vegetation. Long, transient paleovegetation simulations can provide information on a range of ecological processes, describe the spatial and temporal patterns of changes in species distributions, and identify the potential locations of past species refugia. Paleovegetation simulations also can be used to fill in spatial and temporal gaps in observed paleovegetation data (e.g., pollen records from lake sediments) and to test hypotheses of past vegetation change. We used the TraCE-21ka transient climate simulation for 21-0 ka from CCSM3, a coupled atmosphere-ocean general circulation model. The TraCE-21ka simulated temperature, precipitation, and cloud data were regridded onto a 10-minute grid of North America. These regridded climate data, along with soil data and atmospheric carbon dioxide concentrations, were used as input to LPJ-GUESS, a general ecosystem model, to simulate North America vegetation from 21-0 ka. LPJ-GUESS simulates many of the processes controlling the distribution of vegetation (e.g., competition), although some important processes (e.g., dispersal) are not simulated. We evaluate the LPJ-GUESS-simulated vegetation (in the form of plant functional types and biomes) for key time periods and compare the simulated vegetation with observed paleovegetation data, such as data archived in the Neotoma Paleoecology Database. In general, vegetation simulated by LPJ-GUESS reproduces the major North America vegetation patterns (e
Soft Robotics: New Perspectives for Robot Bodyware and Control
Laschi, Cecilia; Cianchetti, Matteo
2014-01-01
The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. PMID:25022259
Predicting p Ka values from EEM atomic charges
2013-01-01
The acid dissociation constant p Ka is a very important molecular property, and there is a strong interest in the development of reliable and fast methods for p Ka prediction. We have evaluated the p Ka prediction capabilities of QSPR models based on empirical atomic charges calculated by the Electronegativity Equalization Method (EEM). Specifically, we collected 18 EEM parameter sets created for 8 different quantum mechanical (QM) charge calculation schemes. Afterwards, we prepared a training set of 74 substituted phenols. Additionally, for each molecule we generated its dissociated form by removing the phenolic hydrogen. For all the molecules in the training set, we then calculated EEM charges using the 18 parameter sets, and the QM charges using the 8 above mentioned charge calculation schemes. For each type of QM and EEM charges, we created one QSPR model employing charges from the non-dissociated molecules (three descriptor QSPR models), and one QSPR model based on charges from both dissociated and non-dissociated molecules (QSPR models with five descriptors). Afterwards, we calculated the quality criteria and evaluated all the QSPR models obtained. We found that QSPR models employing the EEM charges proved as a good approach for the prediction of p Ka (63% of these models had R2 > 0.9, while the best had R2 = 0.924). As expected, QM QSPR models provided more accurate p Ka predictions than the EEM QSPR models but the differences were not significant. Furthermore, a big advantage of the EEM QSPR models is that their descriptors (i.e., EEM atomic charges) can be calculated markedly faster than the QM charge descriptors. Moreover, we found that the EEM QSPR models are not so strongly influenced by the selection of the charge calculation approach as the QM QSPR models. The robustness of the EEM QSPR models was subsequently confirmed by cross-validation. The applicability of EEM QSPR models for other chemical classes was illustrated by a case study focused on
Whitesides, George M
2018-04-09
This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stoianovici, D
2000-09-01
The industrial revolution demonstrated the capability of robotic systems to facilitate and improve manufacturing. As a result, robotics extended to various other domains, including the delivery of health care. Hence, robots have been developed to assist hospital staff, to facilitate laboratory analyses, to augment patient rehabilitation, and even to advance surgical performance. As robotics lead usefulness and gain wider acceptance among the surgical community, the urologist should become familiar with this new interdisciplinary field and its "URobotics" subset: robotics applied to urology. This article reviews the current applications and experience, issues and debates in surgical robotics, and highlights future directions in the field.
Interactive Exploration Robots: Human-Robotic Collaboration and Interactions
NASA Technical Reports Server (NTRS)
Fong, Terry
2017-01-01
For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.
Lanfranco, Anthony R.; Castellanos, Andres E.; Desai, Jaydev P.; Meyers, William C.
2004-01-01
Objective: To review the history, development, and current applications of robotics in surgery. Background: Surgical robotics is a new technology that holds significant promise. Robotic surgery is often heralded as the new revolution, and it is one of the most talked about subjects in surgery today. Up to this point in time, however, the drive to develop and obtain robotic devices has been largely driven by the market. There is no doubt that they will become an important tool in the surgical armamentarium, but the extent of their use is still evolving. Methods: A review of the literature was undertaken using Medline. Articles describing the history and development of surgical robots were identified as were articles reporting data on applications. Results: Several centers are currently using surgical robots and publishing data. Most of these early studies report that robotic surgery is feasible. There is, however, a paucity of data regarding costs and benefits of robotics versus conventional techniques. Conclusions: Robotic surgery is still in its infancy and its niche has not yet been well defined. Its current practical uses are mostly confined to smaller surgical procedures. PMID:14685095
Miniature in vivo robotics and novel robotic surgical platforms.
Shah, Bhavin C; Buettner, Shelby L; Lehman, Amy C; Farritor, Shane M; Oleynikov, Dmitry
2009-05-01
Robotic surgical systems, such as the da Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, California), have revolutionized laparoscopic surgery but are limited by large size, increased costs, and limitations in imaging. Miniature in vivo robots are being developed that are inserted entirely into the peritoneal cavity for laparoscopic and natural orifice transluminal endoscopic surgical (NOTES) procedures. In the future, miniature camera robots and microrobots should be able to provide a mobile viewing platform. This article discusses the current state of miniature robotics and novel robotic surgical platforms and the development of future robotic technology for general surgery and urology.
Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.
2004-02-03
A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.
Pre-Flight Testing and Performance of a Ka-Band Software Defined Radio
NASA Technical Reports Server (NTRS)
Downey, Joseph A.; Reinhart, Richard C.; Kacpura, Thomas
2012-01-01
National Aeronautics and Space Administration (NASA) has developed a space-qualified, reprogrammable, Ka-band Software Defined Radio (SDR) to be utilized as part of an on-orbit, reconfigurable testbed. The testbed will operate on the truss of the International Space Station beginning in late 2012. Three unique SDRs comprise the testbed, and each radio is compliant to the Space Telecommunications Radio System (STRS) Architecture Standard. The testbed provides NASA, industry, other Government agencies, and academic partners the opportunity to develop communications, navigation, and networking applications in the laboratory and space environment, while at the same time advancing SDR technology, reducing risk, and enabling future mission capability. Designed and built by Harris Corporation, the Ka-band SDR is NASA's first space-qualified Ka-band SDR transceiver. The Harris SDR will also mark the first NASA user of the Ka-band capabilities of the Tracking Data and Relay Satellite System (TDRSS) for on-orbit operations. This paper describes the testbed's Ka-band System, including the SDR, travelling wave tube amplifier (TWTA), and antenna system. The reconfigurable aspects of the system enabled by SDR technology are discussed and the Ka-band system performance is presented as measured during extensive pre-flight testing.
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.; Simons, Rainee N.
2015-01-01
This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).
Bier, J
2000-05-01
Content of this paper is the current state of the art of robots in surgery and the ongoing work on the field of surgical robotics at the Clinic for Maxillofacial Surgery at the Charité. Robots in surgery allows the surgeon to transform the accuracy of the imaging systems directly during the intervention and to plan an intervention beforehand. In this paper firstly the state of the art is described. Subsequently the scientific work at the clinic is described in detail. The paper closes with a outlook for future applications of robotics systems in maxillofacial surgery.
The rise and fall of Lake Bonneville between 45 and 10.5 ka
Benson, L.V.; Lund, S.P.; Smoot, J.P.; Rhode, D.E.; Spencer, R.J.; Verosub, K.L.; Louderback, L.A.; Johnson, C.A.; Rye, R.O.; Negrini, R.M.
2011-01-01
A sediment core taken from the western edge of the Bonneville Basin has provided high-resolution proxy records of relative lake-size change for the period 45.1-10.5 calendar ka (hereafter ka). Age control was provided by a paleomagnetic secular variation (PSV)-based age model for Blue Lake core BL04-4. Continuous records of ??18O and total inorganic carbon (TIC) generally match an earlier lake-level envelope based on outcrops and geomorphic features, but with differences in the timing of some hydrologic events/states. The Stansbury Oscillation was found to consist of two oscillations centered on 25 and 24 ka. Lake Bonneville appears to have reached its geomorphic highstand and began spilling at 18.5 ka. The fall from the highstand to the Provo level occurred at 17.0 ka and the lake intermittently overflowed at the Provo level until 15.2 ka, at which time the lake fell again, bottoming out at ~14.7 ka. The lake also fell briefly below the Provo level at ~15.9 ka. Carbonate and ??18O data indicate that between 14.7 and 13.1 ka the lake slowly rose to the Gilbert shoreline and remained at about that elevation until 11.6 ka, when it fell again. Chemical and sedimentological data indicate that a marsh formed in the Blue Lake area at 10.5 ka.Relatively dry periods in the BL04-4 records are associated with Heinrich events H1-H4, suggesting that either the warming that closely followed a Heinrich event increased the evaporation rate in the Bonneville Basin and (or) that the core of the polar jet stream (PJS) shifted north of the Bonneville Basin in response to massive losses of ice from the Laurentide Ice Sheet (LIS) during the Heinrich event. The second Stansbury Oscillation occurred during Heinrich event H2, and the Gilbert wet event occurred during the Younger Dryas cold interval. Several relatively wet events in BL04-4 occur during Dansgaard-Oeschger (DO) warm events.The growth of the Bear River glacier between 32 and 17 ka paralleled changes in the values of proxy
Robot-Aided Neurorehabilitation: A Robot for Wrist Rehabilitation
Krebs, Hermano Igo; Volpe, Bruce T.; Williams, Dustin; Celestino, James; Charles, Steven K.; Lynch, Daniel; Hogan, Neville
2009-01-01
In 1991, a novel robot, MIT-MANUS, was introduced to study the potential that robots might assist in and quantify the neuro-rehabilitation of motor function. MIT-MANUS proved an excellent tool for shoulder and elbow rehabilitation in stroke patients, showing in clinical trials a reduction of impairment in movements confined to the exercised joints. This successful proof of principle as to additional targeted and intensive movement treatment prompted a test of robot training examining other limb segments. This paper focuses on a robot for wrist rehabilitation designed to provide three rotational degrees-of-freedom. The first clinical trial of the device will enroll 200 stroke survivors. Ultimately 160 stroke survivors will train with both the proximal shoulder and elbow MIT-MANUS robot, as well as with the novel distal wrist robot, in addition to 40 stroke survivor controls. So far 52 stroke patients have completed the robot training (ongoing protocol). Here, we report on the initial results on 36 of these volunteers. These results demonstrate that further improvement should be expected by adding additional training to other limb segments. PMID:17894265
Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
Krebs, Hermano Igo; Volpe, Bruce T; Williams, Dustin; Celestino, James; Charles, Steven K; Lynch, Daniel; Hogan, Neville
2007-09-01
In 1991, a novel robot, MIT-MANUS, was introduced to study the potential that robots might assist in and quantify the neuro-rehabilitation of motor function. MIT-MANUS proved an excellent tool for shoulder and elbow rehabilitation in stroke patients, showing in clinical trials a reduction of impairment in movements confined to the exercised joints. This successful proof of principle as to additional targeted and intensive movement treatment prompted a test of robot training examining other limb segments. This paper focuses on a robot for wrist rehabilitation designed to provide three rotational degrees-of-freedom. The first clinical trial of the device will enroll 200 stroke survivors. Ultimately 160 stroke survivors will train with both the proximal shoulder and elbow MIT-MANUS robot, as well as with the novel distal wrist robot, in addition to 40 stroke survivor controls. So far 52 stroke patients have completed the robot training (ongoing protocol). Here, we report on the initial results on 36 of these volunteers. These results demonstrate that further improvement should be expected by adding additional training to other limb segments.
Performance of a Ka-band transponder breadboard for deep-space applications
NASA Technical Reports Server (NTRS)
Mysoor, N. R.; Lane, J. P.; Kayalar, S.; Kermode, A. W.
1995-01-01
This article summarizes the design concepts applied in the development of and advanced Ka-band (34.4 GHz/32 GHz) transponder breadboard for the next generation of space communications systems applications. The selected architecture upgrades the X-band (7.2 GHz/8.4 GHz) deep-space transponder (DST) to provide Da-band up/Ka- and X-band down capability. The Ka-band transponder breadboard incorporates several state-of-the-art components, including sampling mixers, a Ka-band dielectric resonator oscillator, and microwave monolithic integrated circuits (MMICs). The MMICs that were tested in the breadboard include upconverters, downconverters, automatic gain control circuits, mixers, phase modulators, and amplifiers. The measured receiver dynamic range, tracking range, acquisition rate, static phase error, and phase jitter characteristics of the Ka-band breadboard interfaced to the advanced engineering model X-band DST are in good agreement with the expected performance. The results show a receiver tracking threshold of -149 dBm with a dynamic range of 80 dB and a downlink phase jitter of 7 deg rms. The analytical results of phase noise and Allan standard deviation are in good agreement with the experimental results.
Bruemmer, David J [Idaho Falls, ID
2009-11-17
A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.
A Ka-Band Celestial Reference Frame with Applications to Deep Space Navigation
NASA Technical Reports Server (NTRS)
Jacobs, Christopher S.; Clark, J. Eric; Garcia-Miro, Cristina; Horiuchi, Shinji; Sotuela, Ioana
2011-01-01
The Ka-band radio spectrum is now being used for a wide variety of applications. This paper highlights the use of Ka-band as a frequency for precise deep space navigation based on a set of reference beacons provided by extragalactic quasars which emit broadband noise at Ka-band. This quasar-based celestial reference frame is constructed using X/Ka-band (8.4/32 GHz) from fifty-five 24-hour sessions with the Deep Space Network antennas in California, Australia, and Spain. We report on observations which have detected 464 sources covering the full 24 hours of Right Ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the international standard S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of approximately 200 micro-arcsec in alpha cos(delta) and approximately 300 micro-arcsec in delta. There is evidence for systematic errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of instrumental phase calibration, tropospheric refraction mis-modeling, and limited southern geometry. The motivation for extending the celestial reference frame to frequencies above 8 GHz is to access more compact source morphology for improved frame stability and to support spacecraft navigation for Ka-band based NASA missions.
Standard Observing Bands: Is Now the Time to Replace S/X with X/Ka?
NASA Technical Reports Server (NTRS)
Jacobs, C. S.; Lanyi, G. E.; Naudet, C. J.
2004-01-01
In this paper we will argue that the VLBI community should be developing a road map to transition from S/X to simultaneous X and Ka-band (32 GHz) observations. There are both negative and positive reasons for planning such a transition. On the negative side, we will outline concerns that S-band observations may be headed toward obsolescence. On the positive side, we will refer to evidence that X/Ka has potential for providing a more stable reference frame than S/X. We will propose timetables for a transition to X/Ka observing starting from the current status of X/Ka and plans that are now taking shape. First X/Ka fringes were obtained in 2001 with the Deep Space Network. Future plans will be discussed including a proposed X/Ka-band upgrade to the VLBA. Lastly, we will consider the need for a period of overlap between S/X and X/Ka so that the long and rich history of astrometric and geodetic VLBI is not compromised.
The climbing crawling robot (a unique cable robot for space and Earth)
NASA Technical Reports Server (NTRS)
Kerley, James J.; May, Edward; Eklund, Wayne
1991-01-01
Some of the greatest concerns in robotic designs have been the high center of gravity of the robot, the irregular or flat surface that the robot has to work on, the weight of the robot that has to handle heavy weights or use heavy forces, and the ability of the robot to climb straight up in the air. This climbing crawling robot handles these problems well with magnets, suction cups, or actuators. The cables give body to the robot and it performs very similar to a caterpillar. The computer program is simple and inexpensive as is the robot. One of the important features of this system is that the robot can work in pairs or triplets to handle jobs that would be extremely difficult for single robots. The light weight of the robot allows it to handle quite heavy weights. The number of feet give the robot many roots where a simple set of feet would give it trouble.
Robotic surgery: new robots and finally some real competition!
Rao, Pradeep P
2018-04-01
For the last 20 years, the predominant robot used in laparoscopic surgery has been Da Vinci by Intuitive Surgical. This monopoly situation has led to rising costs and relatively slow innovation. This article aims to discuss the two new robotic devices for laparoscopic surgery which have received regulatory approval for human use in different parts of the world. A short description of the Senhance Surgical Robotic System and the REVO-I Robot Platform and their pros and cons compared to the Da Vinci system is presented. A discussion about the differences between the three robotic systems now in the market is presented, as well as a short review of the present state of robotic assistance in surgery and where we are headed.
X/Ka Celestial Frame Improvements: Vision to Reality
NASA Technical Reports Server (NTRS)
Jacobs, C. S.; Bagri, D. S.; Britcliffe, M. J.; Clark, J. E.; Franco, M. M.; Garcia-Miro, C.; Goodhart, C. E.; Horiuchi, S.; Lowe, S. T.; Moll, V. E.;
2010-01-01
In order to extend the International Celestial Reference Frame from its S/X-band (2.3/8.4 GHz) basis to a complementary frame at X/Ka-band (8.4/32 GHz), we began in mid-2005 an ongoing series of X/Ka observations using NASA s Deep Space Network (DSN) radio telescopes. Over the course of 47 sessions, we have detected 351 extra-galactic radio sources covering the full 24 hours of right ascension and declinations down to -45 degrees. Angular source position accuracy is at the part-per-billion level. We developed an error budget which shows that the main errors arise from limited sensitivity, mismodeling of the troposphere, uncalibrated instrumental effects, and the lack of a southern baseline. Recent work has improved sensitivity by improving pointing calibrations and by increasing the data rate four-fold. Troposphere calibration has been demonstrated at the mm-level. Construction of instrumental phase calibrators and new digital baseband filtering electronics began in recent months. We will discuss the expected effect of these improvements on the X/Ka frame.
NASA Astrophysics Data System (ADS)
Miller, G. H.; Fogel, M. L.; Magee, J. W.; Gagan, M. K.
2016-12-01
Although many studies focus on how climate change impacted ancient societies, in Australia a growing body of evidence indicates that activities of the earliest human colonizers in turn altered the Australian climate. We utilize the stable isotopes of carbon and oxygen preserved in near-continuous 100 ka time series of avian eggshell from five regions across the Australian arid zone to reconstruct ecosystem status (d13C) and effective moisture (d18O). Training sets of sub-modern samples provide the basis for the reconstructions. Together, d13C and d18O provide independent estimates of ecosystem status and climate over the past 100 ka from the same dated sample, reducing correlation uncertainties between proxies. Changes in eggshell d13C document a dramatic reduction of palatable summer-wet C4 grasses in all regions between 50 and 45 ka, that has persisted through to modern times. Continuous 100 ka records of effective moisture derived from eggshell d18O show moist conditions from 100 to 60 ka, with variable drying after 60 ka, but the strong shift toward greatest aridity is coincident with the onset of the last glacial maximum 30 ka ago, 15 ka after the observed ecosystem restructuring. Combining the d13C and d18O time-series shows that an abrupt and permanent restructuring of the moisture/ecosystem balance occurred between 50 and 45 ka. Additional studies show that most large monsoon-fed inland arid-zone lakes carried permanent water at least intermittently between 120 and 50 ka, but never experienced permanent deep-water status after 45 ka, despite a wide range of global climate states, including the early Holocene when most other monsoon systems were reinvigorated. The lack of exceptional climate shifts either locally or globally between 60 and 40 ka eliminates climate as the cause of the ecosystem restructuring and persistent lake desiccation. Collectively these data suggest the wave of human colonization across Australia in altered land surface characteristics
A 130 ka reconstruction of rainfall on the Bolivian Altiplano
NASA Astrophysics Data System (ADS)
Placzek, C. J.; Quade, J.; Patchett, P. J.
2013-02-01
New efforts to link climate reconstructions from shoreline deposits and sediment cores yield an improved and more detailed lake history from the Bolivian Altiplano. On the Southern Altiplano, 10 lake oscillations have been identified from this new unified chronology, each coincident with North Atlantic cold events such as Heinrich Events H5, H2, H1, and the Younger Dryas. By coupling this new lake history to a hydrologic budget model we are able to evaluate precipitation variability on the Southern Bolivian Altiplano over the last 130 ka. These modeling efforts underscore the relative aridity of the Altiplano during the rare and small lake cycles occurring between 80 and 20 ka, when colder temperatures combined with little or no change in rainfall produced smaller paleolakes. Relative aridity between 80 and 20 ka contrasts with the immense Tauca lake cycle (18.1-14.1 ka), which was six times larger than modern Lake Titicaca and coincided with Heinrich Event 1. This improved paleolake record from the Southern Altiplano reveals a strong link between central Andean climate and Atlantic sea-surface temperature gradients during the late Pleistocene, even though today rainfall variability is driven mostly by Pacific sea-surface temperature anomalies associated with El Niño/Southern Oscillation. However, not all Heinrich Events appear to result in lake expansions, most conspicuously during the global cold interval between 80 and 20 ka when the Altiplano and Amazon Basin were relatively arid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morin, Stephen A.; Shepherd, Robert F.; Stokes, Adam
Systems and methods for providing flexible robotic actuators are disclosed. Some embodiments of the disclosed subject matter include a soft robot capable of providing a radial deflection motions; a soft tentacle actuator capable of providing a variety of motions and providing transportation means for various types of materials; and a hybrid robotic system that retains desirable characteristics of both soft robots and hard robots. Some embodiments of the disclosed subject matter also include methods for operating the disclosed robotic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruemmer, David J; Walton, Miles C
Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes amore » multi-robot common window comprised of information received from each of the plurality of robots.« less
Robot-assisted Ivor-Lewis esophagectomy with intrathoracic robot-sewn anastomosis.
Jin, Runsen; Xiang, Jie; Han, Dingpei; Zhang, Yajie; Li, Hecheng
2017-11-01
This video clip demonstrated a performance of robot-assisted Ivor-Lewis esophagectomy with intrathoracic robot-sewn anastomosis. The patient had an esophageal mass located approximately 33 cm away from incisor, and robot-assisted Ivor-Lewis esophagectomy was applied for him. Importantly, a double-layer esophago-gastric anastomosis was made by robotic hand-sewn suture. Our early experience demonstrated that the robot-sewn intrathoracic anastomosis is feasible and safe with a lower complication rate and the absence of anastomotic leakage.
Dichroic Filter for Separating W-Band and Ka-Band
NASA Technical Reports Server (NTRS)
Epp, Larry W.; Durden, Stephen L.; Jamnejad, Vahraz; Long, Ezra M.; Sosnowski, John B.; Higuera, Raymond J.; Chen, Jacqueline C.
2012-01-01
The proposed Aerosol/Cloud/Ecosystems (ACEs) mission development would advance cloud profiling radar from that used in CloudSat by adding a 35-GHz (Ka-band) channel to the 94-GHz (W-band) channel used in CloudSat. In order to illuminate a single antenna, and use CloudSat-like quasi-optical transmission lines, a spatial diplexer is needed to add the Ka-band channel. A dichroic filter separates Ka-band from W-band by employing advances in electrical discharge machining (EDM) and mode-matching analysis techniques developed and validated for designing dichroics for the Deep Space Network (DSN), to develop a preliminary design that both met the requirements of frequency separation and mechanical strength. First, a mechanical prototype was built using an approximately 102-micron-diameter EDM process, and tolerances of the hole dimensions, wall thickness, radius, and dichroic filter thickness measured. The prototype validated the manufacturing needed to design a dichroic filter for a higher-frequency usage than previously used in the DSN. The initial design was based on a Ka-band design, but thicker walls are required for mechanical rigidity than one obtains by simply scaling the Ka-band dichroic filter. The resulting trade of hole dimensions for mechanical rigidity (wall thickness) required electrical redesign of the hole dimensions. Updates to existing codes in the linear solver decreased the analysis time using mode-matching, enabling the electrical design to be realized quickly. This work is applicable to missions and instruments that seek to extend W-band cloud profiling measurements to other frequencies. By demonstrating a dichroic filter that passes W-band, but reflects a lower frequency, this opens up the development of instruments that both compare to and enhance CloudSat.
KaBOB: ontology-based semantic integration of biomedical databases.
Livingston, Kevin M; Bada, Michael; Baumgartner, William A; Hunter, Lawrence E
2015-04-23
The ability to query many independent biological databases using a common ontology-based semantic model would facilitate deeper integration and more effective utilization of these diverse and rapidly growing resources. Despite ongoing work moving toward shared data formats and linked identifiers, significant problems persist in semantic data integration in order to establish shared identity and shared meaning across heterogeneous biomedical data sources. We present five processes for semantic data integration that, when applied collectively, solve seven key problems. These processes include making explicit the differences between biomedical concepts and database records, aggregating sets of identifiers denoting the same biomedical concepts across data sources, and using declaratively represented forward-chaining rules to take information that is variably represented in source databases and integrating it into a consistent biomedical representation. We demonstrate these processes and solutions by presenting KaBOB (the Knowledge Base Of Biomedicine), a knowledge base of semantically integrated data from 18 prominent biomedical databases using common representations grounded in Open Biomedical Ontologies. An instance of KaBOB with data about humans and seven major model organisms can be built using on the order of 500 million RDF triples. All source code for building KaBOB is available under an open-source license. KaBOB is an integrated knowledge base of biomedical data representationally based in prominent, actively maintained Open Biomedical Ontologies, thus enabling queries of the underlying data in terms of biomedical concepts (e.g., genes and gene products, interactions and processes) rather than features of source-specific data schemas or file formats. KaBOB resolves many of the issues that routinely plague biomedical researchers intending to work with data from multiple data sources and provides a platform for ongoing data integration and development and for
2014-03-14
CAPE CANAVERAL, Fla. – Students from Hagerty High School in Oviedo, Fla., participants in FIRST Robotics, show off their robots' capabilities at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
Validation Studies for CHRISTINE-CC Using a Ka-Band Coupled-Cavity TWT
2006-04-01
Cavity TWT for 29-31 GHz Figure 3: Output power vs. input power at f=30.0 Communications Systems," I Ith Ka and Broadband GHz for the VTA-6430A1 Ka...Coupled-Cavity TWT DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: 2006 IEEE...Studies for CHRISTINE-CC Using a Ka-Band Coupled-Cavity TWT * D. Chernin, D. Dialetis, T. M. Antonsen, Jr.t, Science Applications International Corp McLean
Satellite Ka-band propagation measurements in Florida
NASA Technical Reports Server (NTRS)
Helmken, Henry; Henning, Rudolf
1995-01-01
Commercial growth of interactive, high data rate communication systems is expected to focus on the use of the Ka-band (20/30 GHz) radio spectrum. The ability to form narrow spot beams and the attendant small diameter antennas are attractive features to designers of mobile aeronautical and ground based satellite communication systems. However, Ka-band is strongly affected by weather, particularly rain, and hence systems designs may require a significant link margin for reliable operations. Perhaps the most stressing area in North America, weatherwise, is the Florida sub-tropical climatic region. As part of the NASA Advanced Communications Technology Satellite (ACTS) propagation measurements program, beacon and radiometer data have been recorded since December 1993 at the University of South Florida (USF), Tampa, Florida.
Vaccaro, Christine M; Crisp, Catrina C; Fellner, Angela N; Jackson, Christopher; Kleeman, Steven D; Pavelka, James
2013-01-01
The objective of this study was to compare the effect of virtual reality simulation training plus robotic orientation versus robotic orientation alone on performance of surgical tasks using an inanimate model. Surgical resident physicians were enrolled in this assessor-blinded randomized controlled trial. Residents were randomized to receive either (1) robotic virtual reality simulation training plus standard robotic orientation or (2) standard robotic orientation alone. Performance of surgical tasks was assessed at baseline and after the intervention. Nine of 33 modules from the da Vinci Skills Simulator were chosen. Experts in robotic surgery evaluated each resident's videotaped performance of the inanimate model using the Global Rating Scale (GRS) and Objective Structured Assessment of Technical Skills-modified for robotic-assisted surgery (rOSATS). Nine resident physicians were enrolled in the simulation group and 9 in the control group. As a whole, participants improved their total time, time to incision, and suture time from baseline to repeat testing on the inanimate model (P = 0.001, 0.003, <0.001, respectively). Both groups improved their GRS and rOSATS scores significantly (both P < 0.001); however, the GRS overall pass rate was higher in the simulation group compared with the control group (89% vs 44%, P = 0.066). Standard robotic orientation and/or robotic virtual reality simulation improve surgical skills on an inanimate model, although this may be a function of the initial "practice" on the inanimate model and repeat testing of a known task. However, robotic virtual reality simulation training increases GRS pass rates consistent with improved robotic technical skills learned in a virtual reality environment.
A ˜50 ka record of monsoonal variability in the Darjeeling foothill region, eastern Himalayas
NASA Astrophysics Data System (ADS)
Ghosh, Ruby; Bera, Subir; Sarkar, Anindya; Paruya, Dipak Kumar; Yao, Yi-Feng; Li, Cheng-Sen
2015-04-01
Pollen, phytoliths and δ 13C signatures of soil organic matter from two fluvial sedimentary sequences of the Darjeeling foothill region, eastern Himalayas are used to portray palaeoclimatic oscillations and their impact on regional plant communities over the last ˜50 ka. Quantitative palaeoclimate estimation using coexistence approach on pollen data and other proxies indicate significant oscillations in precipitation during the late part of MIS 3 (46.4-25.9 ka), early and middle part of MIS 2 (25.9-15.6 ka), and 5.4 to 3.5 ka. Middle to late MIS 3 (ca 46.4-31 ka.) was characterized by a comparatively low monsoonal activity and slightly higher temperature than that during ca 31 ka onwards. Simultaneous expansion of deciduous trees and chloridoid grasses also imply a drier and warmer phase. Between 31 and 22.3 ka (late MIS 3 to mid-MIS 2), higher precipitation and a slightly cooler temperature led to an increase in evergreen elements over deciduous taxa and wet-loving panicoid grasses over dry-loving chloridoid grasses than earlier. After ca 22.3 ka, shrinking of forest cover, expansion of C4 chloridoid grasses, Asteraceae and Cheno-ams in the vegetation with lowering of temperature and precipitation characterized the onset of the LGM which continued till 18.3 ka. End of the LGM is manifested by a restoration in the forest cover and in the temperature and precipitation regime. Later, during 5.4 to 4.3 ka, a strong monsoonal activity supported a dense moist evergreen forest cover that subsequently declined during 4.3 to 3.5 ka. A further increase in deciduous elements and non-arboreals might be a consequence of reduced precipitation and higher temperature during this phase. A comparison between monsoonal rainfall, MAT and palaeoatmospheric CO2 with floral dynamics since last ˜50 ka indicates that these fluctuations in plant succession were mainly driven by monsoonal variations.
Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots.
Vujovic, Vuk; Rosendo, Andre; Brodbeck, Luzius; Iida, Fumiya
2017-01-01
Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world. To test diverse robot morphologies, robot legs of variable shapes were generated during the evolutionary process and autonomously built using additive fabrication. We present two cases with evo-devo experiments and one with evolution, and we hypothesize that the addition of a developmental stage can be used within robotics to improve performance. Moreover, our results show that a nonlinear system-environment interaction exists, which explains the nontrivial locomotion patterns observed. In the future, robots will be present in our daily lives, and this work introduces for the first time physical robots that evolve and grow while interacting with the environment.
2014-03-14
CAPE CANAVERAL, Fla. – Students gather to watch as a DARwin-OP miniature humanoid robot from Virginia Tech Robotics demonstrates its soccer abilities at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
2014-03-14
CAPE CANAVERAL, Fla. – A child gets an up-close look at Charli, an autonomous walking robot developed by Virginia Tech Robotics, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
Put Your Robot In, Put Your Robot Out: Sequencing through Programming Robots in Early Childhood
ERIC Educational Resources Information Center
Kazakoff, Elizabeth R.; Bers, Marina Umaschi
2014-01-01
This article examines the impact of programming robots on sequencing ability in early childhood. Thirty-four children (ages 4.5-6.5 years) participated in computer programming activities with a developmentally appropriate tool, CHERP, specifically designed to program a robot's behaviors. The children learned to build and program robots over three…
A Ka-band (32 GHz) beacon link experiment (KABLE) with Mars Observer
NASA Technical Reports Server (NTRS)
Riley, A. L.; Hansen, D. M.; Mileant, A.; Hartop, R. W.
1987-01-01
A proposal for a Ka-Band (32 GHz) Link Experiment (KABLE) with the Mars Observer mission was submitted to NASA. The experiment will rely on the fourth harmonic of the spacecraft X-band transmitter to generate a 33.6 GHz signal. The experiment will rely also on the Deep Space Network (DSN) receiving station equipped to simultaneously receive X- and Ka-band signals. The experiment will accurately measure the spacecraft-to-Earth telecommunication link performance at Ka-band and X-band (8.4 GHz).
2014-03-14
CAPE CANAVERAL, Fla. – A miniature humanoid robot known as DARwin-OP, from Virginia Tech Robotics, plays soccer with a red tennis ball for a crowd of students at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
Robot-sewn ileoileal anastomosis during robot-assisted cystectomy.
Loertzer, P; Siemer, S; Stöckle, M; Ohlmann, C H
2018-07-01
To analyze the feasibility and perioperative results of patients undergoing robot-assisted cystectomy with intracorporeal urinary diversion and robot-sewn ileoileal anastomosis. This is a mono-centric analysis of perioperative data from 48 consecutive patients undergoing robot-assisted cystectomy with intracorporeal urinary diversion and robot-sewn ileoileal anastomosis. Data include the preoperative variables, operative and postoperative course and complication rates related to bowel anastomosis. End points were time spent for anastomosis and intra- and postoperative complication rates. Median operating time was 23.0 (13-60) min for the ileoileal anastomosis. Median overall operating time was 295 (200-780) min, with a median of 282 (200-418) min and 414.0 (225-780) min for the ileum conduit (N = 35) and ileal neobladder (N = 13). Two patients developed paralytic ileus; in another patient acute peritonitis occurred, but was caused by urinary leakage and therefore unrelated to the bowel anastomosis. No anastomotic leakage was noticed. Costs for the robot-sewn anastomosis was 8€ compared to 1250€ for a stapled anastomosis which was performed in previous cases. Limitations are the non-comparative nature of the analysis and the limited number of patients. Robot-sewn ileoileal anastomosis is feasible with low complication rates. Compared to the stapled anastomosis, a robot-sewn ileoileal anastomosis may serve as an alternative and cost-saving approach.
Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Martinez, Michael A.; Kuehl, Michael A.; Feddema, John T.
2001-01-01
The present invention provides a hopping robot that includes a misfire tolerant linear actuator suitable for long trips, low energy steering and control, reliable low energy righting, miniature low energy fuel control. The present invention provides a robot with hopping mobility, capable of traversing obstacles significant in size relative to the robot and capable of operation on unpredictable terrain over long range. The present invention further provides a hopping robot with misfire-tolerant combustion actuation, and with combustion actuation suitable for use in oxygen-poor environments.
Robot Wars: US Empire and geopolitics in the robotic age
Shaw, Ian GR
2017-01-01
How will the robot age transform warfare? What geopolitical futures are being imagined by the US military? This article constructs a robotic futurology to examine these crucial questions. Its central concern is how robots – driven by leaps in artificial intelligence and swarming – are rewiring the spaces and logics of US empire, warfare, and geopolitics. The article begins by building a more-than-human geopolitics to de-center the role of humans in conflict and foreground a worldly understanding of robots. The article then analyzes the idea of US empire, before speculating upon how and why robots are materializing new forms of proxy war. A three-part examination of the shifting spaces of US empire then follows: (1) Swarm Wars explores the implications of miniaturized drone swarming; (2) Roboworld investigates how robots are changing US military basing strategy and producing new topological spaces of violence; and (3) The Autogenic Battle-Site reveals how autonomous robots will produce emergent, technologically event-ful sites of security and violence – revolutionizing the battlespace. The conclusion reflects on the rise of a robotic US empire and its consequences for democracy. PMID:29081605
Robot Wars: US Empire and geopolitics in the robotic age.
Shaw, Ian Gr
2017-10-01
How will the robot age transform warfare? What geopolitical futures are being imagined by the US military? This article constructs a robotic futurology to examine these crucial questions. Its central concern is how robots - driven by leaps in artificial intelligence and swarming - are rewiring the spaces and logics of US empire, warfare, and geopolitics. The article begins by building a more-than-human geopolitics to de-center the role of humans in conflict and foreground a worldly understanding of robots. The article then analyzes the idea of US empire, before speculating upon how and why robots are materializing new forms of proxy war. A three-part examination of the shifting spaces of US empire then follows: (1) Swarm Wars explores the implications of miniaturized drone swarming; (2) Roboworld investigates how robots are changing US military basing strategy and producing new topological spaces of violence; and (3) The Autogenic Battle-Site reveals how autonomous robots will produce emergent, technologically event-ful sites of security and violence - revolutionizing the battlespace. The conclusion reflects on the rise of a robotic US empire and its consequences for democracy.
Paleomagnetic record for the past 80 ka from the Mahanadi basin, Bay of Bengal
NASA Astrophysics Data System (ADS)
Usapkar, A.; Dewangan, P.; Mazumdar, A.; Krishna, K. S.; Ramprasad, T.; Badesab, F. K.; Patil, M.; Gaikwad, V. V.
2018-01-01
High resolution paleomagnetic investigations were performed on a 50.08 m long sediment core (MD161/20) from Mahanadi basin, Bay of Bengal. Core yielded reliable paleomagnetic results for top 20 m below seafloor (mbsf) which spans about 80 ka. Based on the analysis of rock magnetic data, the core is subdivided into five distinct Zones: Zone 1 and Zone 2 cover top 20 mbsf and do not show any abrupt change in magnetic mineralogy, concentration and grain size. Zones 3 and 5 show significant reduction in χLF, χARM and SIRM due to dissolution of magnetic minerals. Zone 4 shows moderate values of χLF and SIRM. The low value of χARM suggests that magnetic signal is mostly carried by magnetic grains in PSD/MD state. The paleomagnetic data for the top 20 mbsf show four prominent geomagnetic excursions at ∼9 mbsf, ∼13.5 to 15 mbsf, ∼16.3 mbsf and ∼18 to 18.2 mbsf. The age-depth relationship is established using stratigraphic correlation between well-dated sedimentary core NGHP-01-19B and the core MD161/20. The ages of the observed excursions correspond to ∼18 to 20 ka, ∼42 to 49 ka, ∼54 to 57 ka and ∼69 to 70 ka. The excursions at ∼42 to 49 ka, ∼54 to 57 ka, and ∼67 to 70 ka is similar to the known excursions the Laschamp and the split Norwegian-Greenland Sea events (NGS-I and NGS-II). The excursion at 18-20 ka is not observed globally and may be related to lithological/sedimentological changes occurring during last glacial maxima (LGM). The virtual geomagnetic path (VGP) of Laschamp excursion traces clockwise loop. All excursions identified in present study fall in the periods of relatively low paleointensity.
INL Multi-Robot Control Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
2005-03-30
The INL Multi-Robot Control Interface controls many robots through a single user interface. The interface includes a robot display window for each robot showing the robotâs condition. More than one window can be used depending on the number of robots. The user interface also includes a robot control window configured to receive commands for sending to the respective robot and a multi-robot common window showing information received from each robot.
ERIC Educational Resources Information Center
Mullen, Frank
This curriculum outline consists of instructional materials and information concerning resources for use in teaching a course in robotics. Addressed in the individual sections of the outline are the following topics: the nature of an industrial robot; the parts of an industrial robot (the manipulator, the power structure, and the control system);…
ERIC Educational Resources Information Center
Reed, Dean; Harden, Thomas K.
Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…
NASA Astrophysics Data System (ADS)
Heath Pastore, Tracy; Barnes, Mitchell; Hallman, Rory
2005-05-01
Robot technology is developing at a rapid rate for both commercial and Department of Defense (DOD) applications. As a result, the task of managing both technology and experience information is growing. In the not-to-distant past, tracking development efforts of robot platforms, subsystems and components was not too difficult, expensive, or time consuming. To do the same today is a significant undertaking. The Mobile Robot Knowledge Base (MRKB) provides the robotics community with a web-accessible, centralized resource for sharing information, experience, and technology to more efficiently and effectively meet the needs of the robot system user. The resource includes searchable information on robot components, subsystems, mission payloads, platforms, and DOD robotics programs. In addition, the MRKB website provides a forum for technology and information transfer within the DOD robotics community and an interface for the Robotic Systems Pool (RSP). The RSP manages a collection of small teleoperated and semi-autonomous robotic platforms, available for loan to DOD and other qualified entities. The objective is to put robots in the hands of users and use the test data and fielding experience to improve robot systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HENSINGER, DAVID M.; JOHNSTON, GABRIEL A.; HINMAN-SWEENEY, ELAINE M.
2002-10-01
A distributed reconfigurable micro-robotic system is a collection of unlimited numbers of distributed small, homogeneous robots designed to autonomously organize and reorganize in order to achieve mission-specified geometric shapes and functions. This project investigated the design, control, and planning issues for self-configuring and self-organizing robots. In the 2D space a system consisting of two robots was prototyped and successfully displayed automatic docking/undocking to operate dependently or independently. Additional modules were constructed to display the usefulness of a self-configuring system in various situations. In 3D a self-reconfiguring robot system of 4 identical modules was built. Each module connects to its neighborsmore » using rotating actuators. An individual component can move in three dimensions on its neighbors. We have also built a self-reconfiguring robot system consisting of 9-module Crystalline Robot. Each module in this robot is actuated by expansion/contraction. The system is fully distributed, has local communication (to neighbors) capabilities and it has global sensing capabilities.« less
NASA Technical Reports Server (NTRS)
Hayati, Samad; Tso, Kam; Roston, Gerald
1988-01-01
Autonomous robot task execution requires that the end effector of the robot be positioned accurately relative to a reference world-coordinate frame. The authors present a complete formulation to identify the actual robot geometric parameters. The method applies to any serial link manipulator with arbitrary order and combination of revolute and prismatic joints. A method is also presented to solve the inverse kinematic of the actual robot model which usually is not a so-called simple robot. Experimental results performed by utilizing a PUMA 560 with simple measurement hardware are presented. As a result of this calibration a precision move command is designed and integrated into a robot language, RCCL, and used in the NASA Telerobot Testbed.
An overview of artificial intelligence and robotics. Volume 2: Robotics
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1982-01-01
This report provides an overview of the rapidly changing field of robotics. The report incorporates definitions of the various types of robots, a summary of the basic concepts, utilized in each of the many technical areas, review of the state of the art and statistics of robot manufacture and usage. Particular attention is paid to the status of robot development, the organizations involved, their activities, and their funding.
NASA Technical Reports Server (NTRS)
Morring, Frank, Jr.
2004-01-01
Tests with robots and the high-fidelity Hubble Space Telescope mockup astronauts use to train for servicing missions have convinced NASA managers it may be possible to maintain and upgrade the orbiting observatory without sending a space shuttle to do the job. In a formal request last week, the agency gave bidders until July 16 to sub-mit proposals for a robotic mission to the space telescope before the end of 2007. At a minimum, the mission would attach a rocket motor to deorbit the telescope safely when its service life ends. In the best case, it would use state-of-the- art robotics to prolong its life on orbit and install new instruments. With the space shuttle off-limits for the job under strict post-Columbia safety policies set by Administrator Sean O'Keefe, NASA has designed a "straw- man" robotic mission that would use an Atlas V or Delta N to launch a 20,ooO-lb. "Hubble Robotic Vehicle" to service the telescope. There, a robotic arm would grapple it, much as the shuttle does.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry
This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics naturalmore » human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.« less
Advances in Ka-Band Communication System for CubeSats and SmallSats
NASA Technical Reports Server (NTRS)
Kegege, Obadiah; Wong, Yen F.; Altunc, Serhat
2016-01-01
A study was performed that evaluated the feasibility of Ka-band communication system to provide CubeSat/SmallSat high rate science data downlink with ground antennas ranging from the small portable 1.2m/2.4m to apertures 5.4M, 7.3M, 11M, and 18M, for Low Earth Orbit (LEO) to Lunar CubeSat missions. This study included link analysis to determine the data rate requirement, based on the current TRL of Ka-band flight hardware and ground support infrastructure. Recent advances in Ka-band transceivers and antennas, options of portable ground stations, and various coverage distances were included in the analysis. The link/coverage analysis results show that Cubesat/Smallsat missions communication requirements including frequencies and data rates can be met by utilizing Near Earth Network (NEN) Ka-band support with 2 W and high gain (>6 dBi) antennas.
2012-03-01
by Toyota in the manufacturing world, such as just-in-time, kaizen , one-piece flow, jidoka, and heijunka. These techniques helped spawn the “lean...relentless reflection (hansei) and continuous improvement ( kaizen ) Similar to Principle 2, this principle shares similarity with space program
Ka-band MMIC subarray technology program (Ka-Mist)
NASA Technical Reports Server (NTRS)
Pottenger, Warren
1995-01-01
The broad objective of this program was to demonstrate a proof of concept insertion of Monolithic Microwave Integrated Circuit (MMIC) device technology into an innovative (tile architecture) active phased array antenna application supporting advanced EHF communication systems. Ka-band MMIC arrays have long been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in close proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments.
NASA Technical Reports Server (NTRS)
Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee
2015-01-01
Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera
Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain
2015-01-01
In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning. PMID:26485148
Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain
2015-01-01
In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.
A history of robots: from science fiction to surgical robotics.
Hockstein, N G; Gourin, C G; Faust, R A; Terris, D J
2007-01-01
Surgical robotics is an evolving field with great advances having been made over the last decade. The origin of robotics was in the science-fiction literature and from there industrial applications, and more recently commercially available, surgical robotic devices have been realized. In this review, we examine the field of robotics from its roots in literature to its development for clinical surgical use. Surgical mills and telerobotic devices are discussed, as are potential future developments.
Sea-level records at ~80 ka from tectonically stable platforms: Florida and Bermuda
Ludwig, K. R.; Muhs, D.R.; Simmons, K.R.; Halley, R.B.; Shinn, E.A.
1996-01-01
Studies from technically active coasts on New Guinea and Barbados have suggested that sea level at ???80 ka was significantly lower than present, whereas data from the Atlantic and Pacific coasts of North America indicate an ???80 ka sea level close to that of the present. We determined ages of corals from a shallow submerged reef off the Florida Keys and an emergent marine deposit on Bermuda. Both localities are on tectonically stable platforms distant from plate boundaries. Uranium-series ages show that corals at both localities grew during the ???80 ka sea-level highstand, and geologic data show that sea level at that time was no lower than 7-9 m below present (Florida) and may have been 1-2 m above present (Bermuda). The ice-volume discrepancy of the 80 ka sea-level estimates is greater than the volume of the Greenland or West Antarctic ice sheets. Comparison of our ages with high-latitude insolation values indicates that the sea-level stand near the present at ???80 ka could have been orbitally forced.
Robot Deception and Squirrel Behavior: A Case Study in Bio-inspired Robotics
2014-08-01
employed by doctors/ nurses among others. It is important to focus on this aspect when we consider a robot’s deceptive capabilities in human- robot ... Robot Deception and Squirrel Behavior: A Case Study in Bio-inspired Robotics Jaeeun Shim and Ronald C. Arkin Mobile Robot ...Abstract A common behavior in animals and human beings is deception. Deceptive behavior in robotics is potentially beneficial in several domains
NASA Technical Reports Server (NTRS)
2000-01-01
The Automated Endoscopic System for Optimal Positioning, or AESOP, was developed by Computer Motion, Inc. under a SBIR contract from the Jet Propulsion Lab. AESOP is a robotic endoscopic positioning system used to control the motion of a camera during endoscopic surgery. The camera, which is mounted at the end of a robotic arm, previously had to be held in place by the surgical staff. With AESOP the robotic arm can make more precise and consistent movements. AESOP is also voice controlled by the surgeon. It is hoped that this technology can be used in space repair missions which require precision beyond human dexterity. A new generation of the same technology entitled the ZEUS Robotic Surgical System can make endoscopic procedures even more successful. ZEUS allows the surgeon control various instruments in its robotic arms, allowing for the precision the procedure requires.
Effect of methylation on the side-chain pKa value of arginine.
Evich, Marina; Stroeva, Ekaterina; Zheng, Yujun George; Germann, Markus W
2016-02-01
Arginine methylation is important in biological systems. Recent studies link the deregulation of protein arginine methyltransferases with certain cancers. To assess the impact of methylation on interaction with other biomolecules, the pKa values of methylated arginine variants were determined using NMR data. The pKa values of monomethylated, symmetrically dimethylated, and asymmetrically dimethylated arginine are similar to the unmodified arginine (14.2 ± 0.4). Although the pKa value has not been significantly affected by methylation, consequences of methylation include changes in charge distribution and steric effects, suggesting alternative mechanisms for recognition. © 2015 The Protein Society.
Shepherd, Robert F.; Ilievski, Filip; Choi, Wonjae; Morin, Stephen A.; Stokes, Adam A.; Mazzeo, Aaron D.; Chen, Xin; Wang, Michael; Whitesides, George M.
2011-01-01
This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion. PMID:22123978
Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis).
Oliveira, Gustavo R; Silva, Maria C M; Lucena, Wagner A; Nakasu, Erich Y T; Firmino, Alexandre A P; Beneventi, Magda A; Souza, Djair S L; Gomes, José E; de Souza, José D A; Rigden, Daniel J; Ramos, Hudson B; Soccol, Carlos R; Grossi-de-Sa, Maria F
2011-09-09
The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.
Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis)
2011-01-01
Background The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Results Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. Conclusions The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis. PMID:21906288
EUReKA! A Conceptual Model of Emotion Understanding
Castro, Vanessa L.; Cheng, Yanhua; Halberstadt, Amy G.; Grühn, Daniel
2015-01-01
The field of emotion understanding is replete with measures, yet lacks an integrated conceptual organizing structure. To identify and organize skills associated with the recognition and knowledge of emotions, and to highlight the focus of emotion understanding as localized in the self, in specific others, and in generalized others, we introduce the conceptual framework of Emotion Understanding in Recognition and Knowledge Abilities (EUReKA). We then categorize fifty-six existing methods of emotion understanding within this framework to highlight current gaps and future opportunities in assessing emotion understanding across the lifespan. We hope the EUReKA model provides a systematic and integrated framework for conceptualizing and measuring emotion understanding for future research. PMID:27594904
Klibansky, David; Rothstein, Richard I
2012-09-01
The increasing complexity of intralumenal and emerging translumenal endoscopic procedures has created an opportunity to apply robotics in endoscopy. Computer-assisted or direct-drive robotic technology allows the triangulation of flexible tools through telemanipulation. The creation of new flexible operative platforms, along with other emerging technology such as nanobots and steerable capsules, can be transformational for endoscopic procedures. In this review, we cover some background information on the use of robotics in surgery and endoscopy, and review the emerging literature on platforms, capsules, and mini-robotic units. The development of techniques in advanced intralumenal endoscopy (endoscopic mucosal resection and endoscopic submucosal dissection) and translumenal endoscopic procedures (NOTES) has generated a number of novel platforms, flexible tools, and devices that can apply robotic principles to endoscopy. The development of a fully flexible endoscopic surgical toolkit will enable increasingly advanced procedures to be performed through natural orifices. The application of platforms and new flexible tools to the areas of advanced endoscopy and NOTES heralds the opportunity to employ useful robotic technology. Following the examples of the utility of robotics from the field of laparoscopic surgery, we can anticipate the emerging role of robotic technology in endoscopy.
NASA Astrophysics Data System (ADS)
Curry, B. B.
2014-12-01
Unprecedented age control on many last glacial stratigraphic units and morainal ice-margin positions are interpreted from AMS radiocarbon ages of tundra plant macrofossils archived in low-relief ice-walled lake plain (IWLP) deposits the Lake Michigan Lobe (south-central Laurentide Ice Sheet). IWLPs are periglacial features that formed on morainal dead-ice permafrost. Lacustrine sediment, and the fossils contained therein, had physical and temporal proximity to the glacier which formed the underlying moraine. In modern ice-walled lakes, as the lake's ice cover begins to melt, moats form which allows access of sloughing tundra-mantled active layer sediment (soil) into the lakes. Multiple AMS ages from two sites with proglacial sediment buried by glacial max LIS diamicton, and IWLPs reveal evidence of episodic plant growth and sedimentation including ca. 24.0 to 24.4 ka (post Shelby Phase), 22.5 to 21.1 ka (post Livingston Phase), 18.1 to 17.4 ka (post Woodstock Phase). Although presently based on negative evidence, the associated nonconformities (listed in title) indicate periods when cold conditions did not promote development of the estival moat. Although the evidence does not preclude tundra growth during the cold summers, there was little landscape modification due to limited thawing of the active layer. At approximately the onset of the 19.2-18.5 "warm" period, at least two large deglacial discharge events flooded the Fox and Kankakee tributary valleys of the Illinois River. The latter, known as the Kankakee Torrent, occurred at 19.05 - 18.85 ka (σ1 range) at the Oswego channel complex. The temporal coincidence of the torrents and sedimentation in ice-walled lakes suggests that the post-Livingston Phase nonconformity (21.1 - 19.2 ka) was a period of lessened meltwater discharge through subglacial conduits (tunnel valleys) as the frozen toe promoted formation of subglacial lakes, buildup of pore-water pressures, and the release of subglacial water as "torrents
TROTER's (Tiny Robotic Operation Team Experiment): A new concept of space robots
NASA Technical Reports Server (NTRS)
Su, Renjeng
1990-01-01
In view of the future need of automation and robotics in space and the existing approaches to the problem, we proposed a new concept of robots for space construction. The new concept is based on the basic idea of decentralization. Decentralization occurs, on the one hand, in using teams of many cooperative robots for construction tasks. Redundancy and modular design are explored to achieve high reliability for team robotic operations. Reliability requirement on individual robots is greatly reduced. Another area of decentralization is manifested by the proposed control hierarchy which eventually includes humans in the loop. The control strategy is constrained by various time delays and calls for different levels of abstraction of the task dynamics. Such technology is needed for remote control of robots in an uncertain environment. Thus, concerns of human safety around robots are relaxed. This presentation also introduces the required technologies behind the new robotic concept.
2014-03-14
CAPE CANAVERAL, Fla. – Andrew Nick of Kennedy Space Center's Swamp Works shows off RASSOR, a robotic miner, at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
Integrating robotic partial nephrectomy to an existing robotic surgery program.
Yuh, Bertram; Muldrew, Shantel; Menchaca, Anita; Yip, Wesley; Lau, Clayton; Wilson, Timothy; Josephson, David
2012-04-01
As more centers develop robotic proficiency, progressing to a successful robot-assisted partial nephrectomy (RAPN) program depends on a number of factors. We describe our technique, results, and analysis of program setup for RAPN. Between 2005 and 2011, 92 RAPNs were performed following maturation of a robotic prostatectomy program. Operating rooms and supply rooms were outfitted for efficient robotic throughput. Tilepro and intraoperative ultrasound were used for all cases. Training and experiential learning for surgeons, anesthesia and nursing staff was a high priority. An onsite robotic technician helped troubleshoot, prepare the room and staff prior to starting surgery, and provide assistance with different robotic models. Average operative time decreased over time from 235 min to 199 min (p = .03). Warm ischemia time decreased from 26 minutes to 23 minutes (p = .02) despite an increased complexity of tumors and operations on multiple tumors. Median estimated blood loss was 150 mL. Average length of hospital stay was 3 days (range 1-9). Average size of lesions was 2.7 cm (range 0.7-8.6). Final pathology demonstrated 71 (77%) malignant lesions and 21 (23%) benign lesions. The addition of a robot-assisted partial nephrectomy program to an institutional robotic program can be coordinated with several key steps. Outcomes from an operational, oncologic, and renal functional standpoint are acceptable. Despite increased complexity of tumors and treatment of multiple lesions, operative and warm ischemia times showed a decrease over time. An organizational model that involves the surgeons, anesthesia, nursing staff, and possibly a robotic technical specialist helps to overcome the learning curve.
Experiments for Ka-band mobile applications: The ACTS mobile terminal
NASA Technical Reports Server (NTRS)
Estabrook, Polly; Dessouky, Khaled; Jedrey, Thomas
1990-01-01
To explore the potential of Ka-band to support mobile satellite services, the Jet Propulsion Laboratory (JPL) has initiated the design and development of a Ka-band land-mobile terminal to be used with the Advanced Communications Technology Satellite (ACTS). The planned experimental setup with ACTS is described. Brief functional descriptions of the mobile and fixed terminals are provided. The inputs required from the propagation community to support the design activities and the planned experiments are also discussed.
Validation of SARAL/AltiKa data in the Amazon basin
NASA Astrophysics Data System (ADS)
Santos da Silva, Joecila; Calmant, Stephane; Medeiros Moreira, Daniel; Oliveira, Robson; Conchy, Taina; Gennero, Marie-Claude; Seyler, Frederique
2015-04-01
SARAL/AltiKa is a link between past missions (since it flies on the ERS-ENVISAT orbit with Ku band nadir altimeters in LRM) and future missions such as SWOT's Ka band interferometry swaths. In the present study, we compare the capability of its altimeter AltiKa to that of previous missions working in the Ku band such as ENVISAT and Jason-2 in retrieving water levels over the Amazon basin. Same as for the aforementioned preceding missions, the best results were obtained with the ICE-1 retracking algorithm. We qualitatively analyze the impact of rainfalls in the loss of measurements. Since making long -multi mission- time series is of major importance either for hydro-climatic studies or for basin management, we also present an estimate of the altimeter bias in order that the SARAL series of water level can be appended to those of these previous missions.
Development of Methods for the Determination of pKa Values
Reijenga, Jetse; van Hoof, Arno; van Loon, Antonie; Teunissen, Bram
2013-01-01
The acid dissociation constant (pKa) is among the most frequently used physicochemical parameters, and its determination is of interest to a wide range of research fields. We present a brief introduction on the conceptual development of pKa as a physical parameter and its relationship to the concept of the pH of a solution. This is followed by a general summary of the historical development and current state of the techniques of pKa determination and an attempt to develop insight into future developments. Fourteen methods of determining the acid dissociation constant are placed in context and are critically evaluated to make a fair comparison and to determine their applications in modern chemistry. Additionally, we have studied these techniques in light of present trends in science and technology and attempt to determine how these trends might affect future developments in the field. PMID:23997574
Robotic equipment malfunction during robotic prostatectomy: a multi-institutional study.
Lavery, Hugh J; Thaly, Rahul; Albala, David; Ahlering, Thomas; Shalhav, Arieh; Lee, David; Fagin, Randy; Wiklund, Peter; Dasgupta, Prokar; Costello, Anthony J; Tewari, Ashutosh; Coughlin, Geoff; Patel, Vipul R
2008-09-01
Robotic-assisted laparoscopic prostatectomy (RALP) is growing in popularity as a treatment option for prostate cancer. As a new technology, little is known regarding the reliability of the da Vinci robotic system. Intraoperative robotic equipment malfunction may force the surgeon to convert the procedure to an open or pure laparoscopic procedure, or possibly even abort the procedure. We report the first large-scale, multi-institutional review of robotic equipment malfunction. A questionnaire was designed to evaluate the rate of perioperative robotic malfunction during RALP. High-volume, experienced surgeons were asked to complete this evaluation based on the analysis of their data. Questions included the overall number of RALPs performed, the number of equipment malfunctions, the number of procedures that had to be converted or aborted, and the part of the robotic system that malfunctioned. Eleven institutions participated in the study with a median surgeon volume of 700 cases, accounting for a total case volume of 8240. Critical failure occurred in 34 cases (0.4%) leading to the cancellation of 24 cases prior to the procedure, and the conversion to two laparoscopic and eight open procedures. The most common components of the robot to malfunction were the arms and optical system. Critical robotic equipment malfunction is extremely rare in institutions that perform high volumes of RALPs, with a nonrecoverable malfunction rate of only 0.4%.
Risk Assessment of Mineral Groundwater Near Rogaška Slatina
NASA Astrophysics Data System (ADS)
Trcek, Branka; Leis, Albrecht
2017-10-01
Groundwater resources of mineral and thermo-mineral water are invaluable for planning a sustainable spatial and economic development of the Rogaška Slatina area, which requires a protection of this natural heritage. Numerous previous investigations of Rogaška groundwaters were subjects to balneology and to demands for larger exploitation quantities, that is why information are missing that are essential for definition of the Rogaška fractured aquifer system with mineral and thermo-mineral water and for its protection. The isotopic investigations of groundwaters stored in the Rogaška Slatina fractured aquifer system were performed aiming at answering open questions on the groundwater recharge and dynamics, on connections between different types of aquifers and on solute transport. Environmental isotopes 2H, 18O, 3H, 13C of dissolved inorganic carbon and 14C were analysed in mineral, thermo-mineral and spring waters. Results indicated the source and mechanism of groundwater recharge, its renewability, a transit time distribution, hydraulic interrelationships, the groundwater origin and its evolution due to effects of water-rock interaction. The mean residence time estimates of mineral and thermo- mineral water in the aquifer are between 3400 and 14000 years. On the other hand, the mixing processes between younger and older waters or mineral and spring waters are reflected as well as waters that infiltrated predominantly after the 1960s. These suggest the vulnerability of the research systems to man-made impacts. The presented results coupled with available information on a physical hydrogeology and water chemistry asses the optimal balance between the environmental protection and economic use of mineral water resources in the study area. They are essential for the protection strategy development of mineral and thermo-mineral water in the Rogaška Slatina area bringing together the state administration and local authorities and stakeholders.
Jacobsen, G; Elli, F; Horgan, S
2004-08-01
Minimally invasive surgical techniques have revolutionized the field of surgery. Telesurgical manipulators (robots) and new information technologies strive to improve upon currently available minimally invasive techniques and create new possibilities. A retrospective review of all robotic cases at a single academic medical center from August 2000 until November 2002 was conducted. A comprehensive literature evaluation on robotic surgical technology was also performed. Robotic technology is safely and effectively being applied at our institution. Robotic and information technologies have improved upon minimally invasive surgical techniques and created new opportunities not attainable in open surgery. Robotic technology offers many benefits over traditional minimal access techniques and has been proven safe and effective. Further research is needed to better define the optimal application of this technology. Credentialing and educational requirements also need to be delineated.
[Robots and intellectual property].
Larrieu, Jacques
2013-12-01
This topic is part of the global issue concerning the necessity to adapt intellectual property law to constant changes in technology. The relationship between robots and IP is dual. On one hand, the robots may be regarded as objects of intellectual property. A robot, like any new machine, could qualify for a protection by a patent. A copyright may protect its appearance if it is original. Its memory, like a database, could be covered by a sui generis right. On the other hand, the question of the protection of the outputs of the robot must be raised. The robots, as the physical embodiment of artificial intelligence, are becoming more and more autonomous. Robot-generated works include less and less human inputs. Are these objects created or invented by a robot copyrightable or patentable? To whom the ownership of these IP rights will be allocated? To the person who manufactured the machine ? To the user of the robot? To the robot itself? All these questions are worth discussing.
Moran, Michael E
2007-01-01
The foundation of surgical robotics is in the development of the robotic arm. This is a thorough review of the literature on the nature and development of this device with emphasis on surgical applications. We have reviewed the published literature and classified robotic arms by their application: show, industrial application, medical application, etc. There is a definite trend in the manufacture of robotic arms toward more dextrous devices, more degrees-of-freedom, and capabilities beyond the human arm. da Vinci designed the first sophisticated robotic arm in 1495 with four degrees-of-freedom and an analog on-board controller supplying power and programmability. von Kemplen's chess-playing automaton left arm was quite sophisticated. Unimate introduced the first industrial robotic arm in 1961, it has subsequently evolved into the PUMA arm. In 1963 the Rancho arm was designed; Minsky's Tentacle arm appeared in 1968, Scheinman's Stanford arm in 1969, and MIT's Silver arm in 1974. Aird became the first cyborg human with a robotic arm in 1993. In 2000 Miguel Nicolalis redefined possible man-machine capacity in his work on cerebral implantation in owl-monkeys directly interfacing with robotic arms both locally and at a distance. The robotic arm is the end-effector of robotic systems and currently is the hallmark feature of the da Vinci Surgical System making its entrance into surgical application. But, despite the potential advantages of this computer-controlled master-slave system, robotic arms have definite limitations. Ongoing work in robotics has many potential solutions to the drawbacks of current robotic surgical systems.
[History of robotics: from archytas of tarentum until Da Vinci robot. (Part II)].
Sánchez-Martín, F M; Jiménez Schlegl, P; Millán Rodríguez, F; Salvador-Bayarri, J; Monllau Font, V; Palou Redorta, J; Villavicencio Mavrich, H
2007-03-01
Robotic surgery is a reality. In order to to understand how new robots work is interesting to know the history of ancient (see part i) and modern robotics. The desire to design automatic machines imitating humans continued for more than 4000 years. Archytas of Tarentum (at around 400 a.C.), Heron of Alexandria, Hsieh-Fec, Al-Jazari, Bacon, Turriano, Leonardo da Vinci, Vaucanson o von Kempelen were robot inventors. At 1942 Asimov published the three robotics laws. Mechanics, electronics and informatics advances at XXth century developed robots to be able to do very complex self governing works. At 1985 the robot PUMA 560 was employed to introduce a needle inside the brain. Later on, they were designed surgical robots like World First, Robodoc, Gaspar o Acrobot, Zeus, AESOP, Probot o PAKI-RCP. At 2000 the FDA approved the da Vinci Surgical System (Intuitive Surgical Inc, Sunnyvale, CA, USA), a very sophisticated robot to assist surgeons. Currently urological procedures like prostatectomy, cystectomy and nephrectomy are performed with the da Vinci, so urology has become a very suitable speciality to robotic surgery.
2014-03-14
CAPE CANAVERAL, Fla. – A visitor to the Robot Rocket Rally takes an up-close look at RASSOR, a robotic miner developed by NASA Kennedy Space Center's Swamp Works. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
2014-03-14
CAPE CANAVERAL, Fla. – Students observe as Otherlab shows off a life-size, inflatable robot from its "" program. The demonstration was one of several provided during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots.
Zhao, Jing; Li, Wei; Mao, Xiaoqian; Li, Mengfan
2015-11-24
Brain-Robot Interaction (BRI), which provides an innovative communication pathway between human and a robotic device via brain signals, is prospective in helping the disabled in their daily lives. The overall goal of our method is to establish an SSVEP-based experimental procedure by integrating multiple software programs, such as OpenViBE, Choregraph, and Central software as well as user developed programs written in C++ and MATLAB, to enable the study of brain-robot interaction with humanoid robots. This is achieved by first placing EEG electrodes on a human subject to measure the brain responses through an EEG data acquisition system. A user interface is used to elicit SSVEP responses and to display video feedback in the closed-loop control experiments. The second step is to record the EEG signals of first-time subjects, to analyze their SSVEP features offline, and to train the classifier for each subject. Next, the Online Signal Processor and the Robot Controller are configured for the online control of a humanoid robot. As the final step, the subject completes three specific closed-loop control experiments within different environments to evaluate the brain-robot interaction performance. The advantage of this approach is its reliability and flexibility because it is developed by integrating multiple software programs. The results show that using this approach, the subject is capable of interacting with the humanoid robot via brain signals. This allows the mind-controlled humanoid robot to perform typical tasks that are popular in robotic research and are helpful in assisting the disabled.
SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots
Zhao, Jing; Li, Wei; Mao, Xiaoqian; Li, Mengfan
2015-01-01
Brain-Robot Interaction (BRI), which provides an innovative communication pathway between human and a robotic device via brain signals, is prospective in helping the disabled in their daily lives. The overall goal of our method is to establish an SSVEP-based experimental procedure by integrating multiple software programs, such as OpenViBE, Choregraph, and Central software as well as user developed programs written in C++ and MATLAB, to enable the study of brain-robot interaction with humanoid robots. This is achieved by first placing EEG electrodes on a human subject to measure the brain responses through an EEG data acquisition system. A user interface is used to elicit SSVEP responses and to display video feedback in the closed-loop control experiments. The second step is to record the EEG signals of first-time subjects, to analyze their SSVEP features offline, and to train the classifier for each subject. Next, the Online Signal Processor and the Robot Controller are configured for the online control of a humanoid robot. As the final step, the subject completes three specific closed-loop control experiments within different environments to evaluate the brain-robot interaction performance. The advantage of this approach is its reliability and flexibility because it is developed by integrating multiple software programs. The results show that using this approach, the subject is capable of interacting with the humanoid robot via brain signals. This allows the mind-controlled humanoid robot to perform typical tasks that are popular in robotic research and are helpful in assisting the disabled. PMID:26650051
Robotics for Human Exploration
NASA Technical Reports Server (NTRS)
Fong, Terrence; Deans, Mathew; Bualat, Maria
2013-01-01
Robots can do a variety of work to increase the productivity of human explorers. Robots can perform tasks that are tedious, highly repetitive or long-duration. Robots can perform precursor tasks, such as reconnaissance, which help prepare for future human activity. Robots can work in support of astronauts, assisting or performing tasks in parallel. Robots can also perform "follow-up" work, completing tasks designated or started by humans. In this paper, we summarize the development and testing of robots designed to improve future human exploration of space.
The Tactile Ethics of Soft Robotics: Designing Wisely for Human-Robot Interaction.
Arnold, Thomas; Scheutz, Matthias
2017-06-01
Soft robots promise an exciting design trajectory in the field of robotics and human-robot interaction (HRI), promising more adaptive, resilient movement within environments as well as a safer, more sensitive interface for the objects or agents the robot encounters. In particular, tactile HRI is a critical dimension for designers to consider, especially given the onrush of assistive and companion robots into our society. In this article, we propose to surface an important set of ethical challenges for the field of soft robotics to meet. Tactile HRI strongly suggests that soft-bodied robots balance tactile engagement against emotional manipulation, model intimacy on the bonding with a tool not with a person, and deflect users from personally and socially destructive behavior the soft bodies and surfaces could normally entice.
Tandem robot control system and method for controlling mobile robots in tandem
Hayward, David R.; Buttz, James H.; Shirey, David L.
2002-01-01
A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.
Robot-assisted general surgery.
Hazey, Jeffrey W; Melvin, W Scott
2004-06-01
With the initiation of laparoscopic techniques in general surgery, we have seen a significant expansion of minimally invasive techniques in the last 16 years. More recently, robotic-assisted laparoscopy has moved into the general surgeon's armamentarium to address some of the shortcomings of laparoscopic surgery. AESOP (Computer Motion, Goleta, CA) addressed the issue of visualization as a robotic camera holder. With the introduction of the ZEUS robotic surgical system (Computer Motion), the ability to remotely operate laparoscopic instruments became a reality. US Food and Drug Administration approval in July 2000 of the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, CA) further defined the ability of a robotic-assist device to address limitations in laparoscopy. This includes a significant improvement in instrument dexterity, dampening of natural hand tremors, three-dimensional visualization, ergonomics, and camera stability. As experience with robotic technology increased and its applications to advanced laparoscopic procedures have become more understood, more procedures have been performed with robotic assistance. Numerous studies have shown equivalent or improved patient outcomes when robotic-assist devices are used. Initially, robotic-assisted laparoscopic cholecystectomy was deemed safe, and now robotics has been shown to be safe in foregut procedures, including Nissen fundoplication, Heller myotomy, gastric banding procedures, and Roux-en-Y gastric bypass. These techniques have been extrapolated to solid-organ procedures (splenectomy, adrenalectomy, and pancreatic surgery) as well as robotic-assisted laparoscopic colectomy. In this chapter, we review the evolution of robotic technology and its applications in general surgical procedures.
pKa values in proteins determined by electrostatics applied to molecular dynamics trajectories.
Meyer, Tim; Knapp, Ernst-Walter
2015-06-09
For a benchmark set of 194 measured pKa values in 13 proteins, electrostatic energy computations are performed in which pKa values are computed by solving the Poisson-Boltzmann equation. In contrast to the previous approach of Karlsberg(+) (KB(+)) that essentially used protein crystal structures with variations in their side chain conformations, the present approach (KB2(+)MD) uses protein conformations from four molecular dynamics (MD) simulations of 10 ns each. These MD simulations are performed with different specific but fixed protonation patterns, selected to sample the conformational space for the different protonation patterns faithfully. The root-mean-square deviation between computed and measured pKa values (pKa RMSD) is shown to be reduced from 1.17 pH units using KB(+) to 0.96 pH units using KB2(+)MD. The pKa RMSD can be further reduced to 0.79 pH units, if each conformation is energy-minimized with a dielectric constant of εmin = 4 prior to calculating the electrostatic energy. The electrostatic energy expressions upon which the computations are based have been reformulated such that they do not involve terms that mix protein and solvent environment contributions and no thermodynamic cycle is needed. As a consequence, conformations of the titratable residues can be treated independently in the protein and solvent environments. In addition, the energy terms used here avoid the so-called intrinsic pKa and can therefore be interpreted without reference to arbitrary protonation states and conformations.
A 600-ka Arctic sea-ice record from Mendeleev Ridge based on ostracodes
Cronin, Thomas M.; Polyak, L.V.; Reed, D.; Kandiano, E. S.; Marzen, R. E.; Council, E. A.
2013-01-01
Arctic paleoceanography and sea-ice history were reconstructed from epipelagic and benthic ostracodes from a sediment core (HLY0503-06JPC, 800 m water depth) located on the Mendeleev Ridge, Western Arctic Ocean. The calcareous microfaunal record (ostracodes and foraminifers) covers several glacial/interglacial cycles back to estimated Marine Isotope Stage 13 (MIS 13, ∼500 ka) with an average sedimentation rate of ∼0.5 cm/ka for most of the stratigraphy (MIS 5–13). Results based on ostracode assemblages and an unusual planktic foraminiferal assemblage in MIS 11 dominated by a temperate-water species Turborotalita egelida show that extreme interglacial warmth, high surface ocean productivity, and possibly open ocean convection characterized MIS 11 and MIS 13 (∼400 and 500 ka, respectively). A major shift in western Arctic Ocean environments toward perennial sea ice occurred after MIS 11 based on the distribution of an ice-dwelling ostracode Acetabulastoma arcticum. Spectral analyses of the ostracode assemblages indicate sea ice and mid-depth ocean circulation in western Arctic Ocean varied primarily at precessional (∼22 ka) and obliquity (∼40 ka) frequencies.
NASA Technical Reports Server (NTRS)
1988-01-01
Martin Marietta Aero and Naval Systems has advanced the CAD art to a very high level at its Robotics Laboratory. One of the company's major projects is construction of a huge Field Material Handling Robot for the Army's Human Engineering Lab. Design of FMR, intended to move heavy and dangerous material such as ammunition, was a triumph in CAD Engineering. Separate computer problems modeled the robot's kinematics and dynamics, yielding such parameters as the strength of materials required for each component, the length of the arms, their degree of freedom and power of hydraulic system needed. The Robotics Lab went a step further and added data enabling computer simulation and animation of the robot's total operational capability under various loading and unloading conditions. NASA computer program (IAC), integrated Analysis Capability Engineering Database was used. Program contains a series of modules that can stand alone or be integrated with data from sensors or software tools.
2014-03-14
CAPE CANAVERAL, Fla. – A visitor to the Robot Rocket Rally tries his hand at virtual reality in a demonstration of the Oculus Rift technology, provided by the Open Source Robotics Foundation. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
Principles of robotics: regulating robots in the real world
NASA Astrophysics Data System (ADS)
Boden, Margaret; Bryson, Joanna; Caldwell, Darwin; Dautenhahn, Kerstin; Edwards, Lilian; Kember, Sarah; Newman, Paul; Parry, Vivienne; Pegman, Geoff; Rodden, Tom; Sorrell, Tom; Wallis, Mick; Whitby, Blay; Winfield, Alan
2017-04-01
This paper proposes a set of five ethical principles, together with seven high-level messages, as a basis for responsible robotics. The Principles of Robotics were drafted in 2010 and published online in 2011. Since then the principles have influenced, and continue to influence, a number of initiatives in robot ethics but have not, to date, been formally published. This paper remedies that omission.
Test results of 12/18 kA ReBCO coated conductor current leads
NASA Astrophysics Data System (ADS)
Kovalev, I. A.; Surin, M. I.; Naumov, A. V.; Novikov, M. S.; Novikov, S. I.; Ilin, A. A.; Polyakov, A. V.; Scherbakov, V. I.; Shutova, D. I.
2017-07-01
A pair of hybrid current leads (brass + stacked & soldered ReBCO tapes) rated for 12 kA in steady state and for up to 18 kA at pulsed over current conditions was designed, developed and tested at NRC ;Kurchatov Institute; (NRC ;KI;). During the experiment at LN2 temperature, the current leads (CLs) were successfully charged with 18 kA at 100 A/s ramp rate. To date, as far as we know, this is the highest current capacity achieved for 2G HTS current leads. The feasibility of ;stack-and-soldering technique; for 10 kA+ class coated conductor CLs for accelerators and fusion was demonstrated. This paper gives an overview of the leads design and presents the preliminary test results. Detailed studies of magnetic properties and current sharing process for the stacked and staggered HTS joints are also reported.
Supersmart Robots: The Next Generation of Robots Has Evolutionary Capabilities
ERIC Educational Resources Information Center
Simkins, Michael
2008-01-01
Robots that can learn new behaviors. Robots that can reproduce themselves. Science fiction? Not anymore. Roboticists at Cornell's Computational Synthesis Lab have developed just such engineered creatures that offer interesting implications for education. The team, headed by Hod Lipson, was intrigued by the question, "How can you get robots to be…
Fundamentals of soft robot locomotion
2017-01-01
Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human–robot interaction and locomotion. Although field applications have emerged for soft manipulation and human–robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. PMID:28539483
Fundamentals of soft robot locomotion.
Calisti, M; Picardi, G; Laschi, C
2017-05-01
Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human-robot interaction and locomotion. Although field applications have emerged for soft manipulation and human-robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. © 2017 The Author(s).
100-kA vacuum current breaker of a modular design
NASA Astrophysics Data System (ADS)
Ivanov, V. P.; Vozdvijenskii, V. A.; Jagnov, V. A.; Solodovnikov, S. G.; Mazulin, A. V.; Ryjkov, V. M.
1994-05-01
Direct current breaker of a modular design is developed for the strong field tokamak power supply system. The power supply system comprises four 800 MW alternative current generators with 4 GJ flywheels, thyristor rectifiers providing inductive stores pumping by a current up to 100 kA for 1 - 4 sec. To form current pulses of various shapes in the tokamak windings current breakers are used with either pneumatic or explosive drive, at a current switching synchronously of not worse than 100 mks. Current breakers of these types require that the current conducting elements be replaced after each shot. For recent years vacuum arc quenching chambers with an axial magnetic field are successfully employed as repetitive performance current breakers, basically for currents up to 40 kA. In the report some results of researches of a vacuum switch modular are presented which we used as prototype switch for currents of the order of 100 kA.
Exploring TeleRobotics: A Radio-Controlled Robot
ERIC Educational Resources Information Center
Deal, Walter F., III; Hsiung, Steve C.
2007-01-01
Robotics is a rich and exciting multidisciplinary area to study and learn about electronics and control technology. The interest in robotic devices and systems provides the technology teacher with an excellent opportunity to make many concrete connections between electronics, control technology, and computers and science, engineering, and…
Liang, Yuhua Jake; Lee, Seungcheol Austin
2016-09-01
Human-robot interaction (HRI) will soon transform and shift the communication landscape such that people exchange messages with robots. However, successful HRI requires people to trust robots, and, in turn, the trust affects the interaction. Although prior research has examined the determinants of human-robot trust (HRT) during HRI, no research has examined the messages that people received before interacting with robots and their effect on HRT. We conceptualize these messages as SMART (Strategic Messages Affecting Robot Trust). Moreover, we posit that SMART can ultimately affect actual HRI outcomes (i.e., robot evaluations, robot credibility, participant mood) by affording the persuasive influences from user-generated content (UGC) on participatory Web sites. In Study 1, participants were assigned to one of two conditions (UGC/control) in an original experiment of HRT. Compared with the control (descriptive information only), results showed that UGC moderated the correlation between HRT and interaction outcomes in a positive direction (average Δr = +0.39) for robots as media and robots as tools. In Study 2, we explored the effect of robot-generated content but did not find similar moderation effects. These findings point to an important empirical potential to employ SMART in future robot deployment.
Next-generation robotic surgery--from the aspect of surgical robots developed by industry.
Nakadate, Ryu; Arata, Jumpei; Hashizume, Makoto
2015-02-01
At present, much of the research conducted worldwide focuses on extending the ability of surgical robots. One approach is to extend robotic dexterity. For instance, accessibility and dexterity of the surgical instruments remains the largest issue for reduced port surgery such as single port surgery or natural orifice surgery. To solve this problem, a great deal of research is currently conducted in the field of robotics. Enhancing the surgeon's perception is an approach that uses advanced sensor technology. The real-time data acquired through the robotic system combined with the data stored in the robot (such as the robot's location) provide a major advantage. This paper aims at introducing state-of-the-art products and pre-market products in this technological advancement, namely the robotic challenge in extending dexterity and hopefully providing the path to robotic surgery in the near future.
Humanlike robots: the upcoming revolution in robotics
NASA Astrophysics Data System (ADS)
Bar-Cohen, Yoseph
2009-08-01
Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.
Humanlike Robots - The Upcoming Revolution in Robotics
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
2009-01-01
Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.
Flex Robotic System in transoral robotic surgery: The first 40 patients.
Mattheis, Stefan; Hasskamp, Pia; Holtmann, Laura; Schäfer, Christina; Geisthoff, Urban; Dominas, Nina; Lang, Stephan
2017-03-01
The Flex Robotic System is a new robotic device specifically developed for transoral robotic surgery (TORS). We performed a prospective clinical study, assessing the safety and efficacy of the Medrobotics Flex Robotic System. A total of 40 patients required a surgical procedure for benign lesions (n = 30) or T1 and T2 carcinomas (n = 10). Access and visualization of different anatomic subsites were individually graded by the surgeon. Setup times, access and visualization times, surgical results, as well as adverse events were documented intraoperatively. The lesions could be exposed and visualized properly in 38 patients (95%) who went on to have a surgical procedure performed with the Flex Robotic System, which were intraoperatively evaluated as successful. No serious adverse events occurred. Lesions in the oropharynx, hypopharynx, or supraglottic larynx could be successfully resected using the Flex Robotic System, thus making the system a safe and effective tool in transoral robotic surgery. © 2016 Wiley Periodicals, Inc. Head Neck 39: 471-475, 2017. © 2016 Wiley Periodicals, Inc.
Inverse kinematic solution for near-simple robots and its application to robot calibration
NASA Technical Reports Server (NTRS)
Hayati, Samad A.; Roston, Gerald P.
1986-01-01
This paper provides an inverse kinematic solution for a class of robot manipulators called near-simple manipulators. The kinematics of these manipulators differ from those of simple-robots by small parameter variations. Although most robots are by design simple, in practice, due to manufacturing tolerances, every robot is near-simple. The method in this paper gives an approximate inverse kinematics solution for real time applications based on the nominal solution for these robots. The validity of the results are tested both by a simulation study and by applying the algorithm to a PUMA robot.
Competencies Identification for Robotics Training.
ERIC Educational Resources Information Center
Tang, Le D.
A study focused on the task of identifying competencies for robotics training. The level of robotics training was limited to that of robot technicians. Study objectives were to obtain a list of occupational competencies; to rank their order of importance; and to compare opinions from robot manufacturers, robot users, and robotics educators…
Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.
Marras, Stefano; Porfiri, Maurizio
2012-08-07
The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its 'engineered' member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a 'dummy'. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot-animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour.
Promoting Interactions Between Humans and Robots Using Robotic Emotional Behavior.
Ficocelli, Maurizio; Terao, Junichi; Nejat, Goldie
2016-12-01
The objective of a socially assistive robot is to create a close and effective interaction with a human user for the purpose of giving assistance. In particular, the social interaction, guidance, and support that a socially assistive robot can provide a person can be very beneficial to patient-centered care. However, there are a number of research issues that need to be addressed in order to design such robots. This paper focuses on developing effective emotion-based assistive behavior for a socially assistive robot intended for natural human-robot interaction (HRI) scenarios with explicit social and assistive task functionalities. In particular, in this paper, a unique emotional behavior module is presented and implemented in a learning-based control architecture for assistive HRI. The module is utilized to determine the appropriate emotions of the robot to display, as motivated by the well-being of the person, during assistive task-driven interactions in order to elicit suitable actions from users to accomplish a given person-centered assistive task. A novel online updating technique is used in order to allow the emotional model to adapt to new people and scenarios. Experiments presented show the effectiveness of utilizing robotic emotional assistive behavior during HRI scenarios.
Genetic variation in RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 and risk of colon or rectal cancer
Slattery, Martha L.; Lundgreen, Abbie; Herrick, Jennifer S.; Wolff, Roger K.
2010-01-01
RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 are involved in several pathways central to the carcinogenic process, including regulation of cell growth, insulin, and inflammation. We evaluated genetic variation in their candidate genes to obtain a better understanding of their association with colon and rectal cancer. We used data from two population-based case-control studies of colon (n=1574 cases, 1940 controls) and rectal (n=791 cases, 999 controls) cancer. We observed genetic variation in RPS6KA1, RPS6KA2, and PRS6KB2 were associated with risk of developing colon cancer while only genetic variation in RPS6KA2 was associated with altering risk of rectal cancer. These genes also interacted significantly with other genes operating in similar mechanisms, including Akt1, FRAP1, NFκB1, and PIK3CA. Assessment of tumor markers indicated that these genes and this pathway may importantly contributed to CIMP+ tumors and tumors with KRAS2 mutations. Our findings implicate these candidate genes in the etiology of colon and rectal cancer and provide information on how these genes operate with other genes in the pathway. Our data further suggest that this pathway may lead to CIMP+ and KRAS2-mutated tumors. PMID:21035469
Evolution of robots throughout history from Hephaestus to Da Vinci Robot.
Iavazzo, Christos; Gkegke, Xanthi-Ekaterini D; Iavazzo, Paraskevi-Evangelia; Gkegkes, Ioannis D
2014-01-01
Da Vinci robot is increasingly used for operations adding the advantages of robots to the favor of medicine. This is a historical article with the aim to present the evolution of robots in the medical area from the time of ancient myths to Renaissance and finally to the current revolutionary applications. We endeavored to collect several elegant narratives on the topic. The use of imagination could help the reader to find similarities. A trip from the Greek myths of Hephaestus through Aristotle and Leonardo Da Vinci to the robots of Karel Capek and Isaac Asimov and finally the invention of the medical robots is presented.
[Rehabilitation and nursing-care robots].
Hachisuka, Kenji
2016-04-01
In the extremely aged society, rehabilitation staff will be required to provide ample rehabilitation training for more stroke patients and more aged people with disabilities despite limitations in human resources. A nursing-care robot is one potential solution from the standpoint of rehabilitation. The nursing-care robot is defined as a robot which assists aged people and persons with disabilities in daily life and social life activities. The nursing-care robot consists of an independent support robot, caregiver support robot, and life support robot. Although many nursing-care robots have been developed, the most appropriate robot must be selected according to its features and the needs of patients and caregivers in the field of nursing-care.
Shenoy, Ravikiran; Nathwani, Dinesh
2017-01-01
Robots have been successfully used in commercial industry and have enabled humans to perform tasks which are repetitive, dangerous and requiring extreme force. Their role has evolved and now includes many aspects of surgery to improve safety and precision. Orthopaedic surgery is largely performed on bones which are rigid immobile structures which can easily be performed by robots with great precision. Robots have been designed for use in orthopaedic surgery including joint arthroplasty and spine surgery. Experimental studies have been published evaluating the role of robots in arthroscopy and trauma surgery. In this article, we will review the incorporation of robots in orthopaedic surgery looking into the evidence in their use. © The Authors, published by EDP Sciences, 2017.
Shenoy, Ravikiran; Nathwani, Dinesh
2017-01-01
Robots have been successfully used in commercial industry and have enabled humans to perform tasks which are repetitive, dangerous and requiring extreme force. Their role has evolved and now includes many aspects of surgery to improve safety and precision. Orthopaedic surgery is largely performed on bones which are rigid immobile structures which can easily be performed by robots with great precision. Robots have been designed for use in orthopaedic surgery including joint arthroplasty and spine surgery. Experimental studies have been published evaluating the role of robots in arthroscopy and trauma surgery. In this article, we will review the incorporation of robots in orthopaedic surgery looking into the evidence in their use. PMID:28534472
NASA's Evolution to Ka-Band Space Communications for Near-Earth Spacecraft
NASA Technical Reports Server (NTRS)
McCarthy, Kevin; Stocklin, Frank; Geldzahler, Barry; Friedman, Daniel; Celeste, Peter
2010-01-01
This slide presentation reviews the exploration of NASA using a Ka-band system for spacecraft communications in Near-Earth orbits. The reasons for changing to Ka-band are the higher data rates, and the current (X-band spectrum) is becoming crowded. This will require some modification to the current ground station antennas systems. The results of a Request for Information (RFI) are discussed, and the recommended solution is reviewed.
Ravankar, Abhijeet; Ravankar, Ankit A; Kobayashi, Yukinori; Emaru, Takanori
2017-08-15
Hitchhiking is a means of transportation gained by asking other people for a (free) ride. We developed a multi-robot system which is the first of its kind to incorporate hitchhiking in robotics, and discuss its advantages. Our method allows the hitchhiker robot to skip redundant computations in navigation like path planning, localization, obstacle avoidance, and map update by completely relying on the driver robot. This allows the hitchhiker robot, which performs only visual servoing, to save computation while navigating on the common path with the driver robot. The driver robot, in the proposed system performs all the heavy computations in navigation and updates the hitchhiker about the current localized positions and new obstacle positions in the map. The proposed system is robust to recover from `driver-lost' scenario which occurs due to visual servoing failure. We demonstrate robot hitchhiking in real environments considering factors like service-time and task priority with different start and goal configurations of the driver and hitchhiker robots. We also discuss the admissible characteristics of the hitchhiker, when hitchhiking should be allowed and when not, through experimental results.
Rain Fade Compensation Alternatives for Ka Band Communication Satellites
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.
1997-01-01
Future satellite communications systems operating in Ka-band frequency band are subject to degradation produced by the troposphere which is much more severe than those found at lower frequency bands. These impairments include signal absorption by rain, clouds and gases, and amplitude scintillation's arising from refractive index irregularities. For example, rain attenuation at 20 GHz is almost three times that at 11 GHz. Although some of these impairments can be overcome by oversizing the ground station antennas and high power amplifiers, the current trend is using small (less than 20 inches apertures), low-cost ground stations (less than $1000) that can be easily deployed at user premises. As a consequence, most Ka-band systems are expected to employ different forms of fade mitigation that can be implemented relatively easily and at modest cost. The rain fade mitigation approaches are defined by three types of Ka-band communications systems - a low service rate (less than 1.5 Mb/s), a moderate service rate (1.5 to 6 Mb/s) system and a high service rate (greater than 43 Mb/s) system. The ACTS VSAT network, which includes an adaptive rain fade technique, is an example of a moderate service rate.
Reverberation Mapping of the Kepler target KA1858+48
NASA Astrophysics Data System (ADS)
Pei, Liuyi; Barth, A. J.; Malkan, M. A.; Cenko, S. B.; Clubb, K. I.; Filippenko, A. V.; Gates, E. L.; Horst, J.; Joner, M. D.; Leonard, D. C.; Sand, D. J.
2013-01-01
KA1858+48 is a Seyfert 1 galaxy at redshift 0.078 and is among the brightest active galaxies being monitored by the Kepler mission. We have carried out a reverberation mapping program designed to measure the broad-line region size and estimate the mass of the black hole in KA1858+48. We obtained spectroscopic data using the Kast Spectrograph at the Lick 3 m telescope during dark runs from late winter through fall of 2012, by requesting an observation on each night that the Kast Spectrograph was mounted on the telescope. We also obtained V-band images from the Nickel 1 m telescope at Lick Observatory, the 0.9 m telescope at Brigham Young University West Mountain Observatory, the Faulkes Telescope North at the Las Cumbres Observatory Global Telescope, the KAIT telescope at Lick Observatory, and the 1 m telescope at Mt. Laguna Observatory. The H-beta light curve shows a lag time of approximately 12 days with respect to the V-band continuum flux variations. We will present the continuum and emission-line light curves, cross-correlation lag measurements, and a preliminary estimate of the black hole mass in KA1858+48.
Educational Robotics as Mindtools
ERIC Educational Resources Information Center
Mikropoulos, Tassos A.; Bellou, Ioanna
2013-01-01
Although there are many studies on the constructionist use of educational robotics, they have certain limitations. Some of them refer to robotics education, rather than educational robotics. Others follow a constructionist approach, but give emphasis only to design skills, creativity and collaboration. Some studies use robotics as an educational…
Box, W.D.
1997-02-11
A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.
Box, W.D.
1998-08-11
A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.
Box, W. Donald
1998-01-01
A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.
Box, W. Donald
1997-01-01
A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.
NASA Technical Reports Server (NTRS)
Barlow, Edward; Marzwell, Nevellie; Fuller, Sawyer; Fionni, Paolo; Tretton, Andy; Burdick, Joel; Schell, Steve
2003-01-01
A small prototype mobile robot is capable of (1) hopping to move rapidly or avoid obstacles and then (2) moving relatively slowly and precisely on the ground by use of wheels in the manner of previously reported exploratory robots of the "rover" type. This robot is a descendant of a more primitive hopping robot described in "Minimally Actuated Hopping Robot" (NPO- 20911), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 50. There are many potential applications for robots with hopping and wheeled-locomotion (roving) capabilities in diverse fields of endeavor, including agriculture, search-and-rescue operations, general military operations, removal or safe detonation of land mines, inspection, law enforcement, and scientific exploration on Earth and remote planets. The combination of hopping and roving enables this robot to move rapidly over very rugged terrain, to overcome obstacles several times its height, and then to position itself precisely next to a desired target. Before a long hop, the robot aims itself in the desired hopping azimuth and at a desired takeoff angle above horizontal. The robot approaches the target through a series of hops and short driving operations utilizing the steering wheels for precise positioning.
Marine04 Marine radiocarbon age calibration, 26 ? 0 ka BP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughen, K; Baille, M; Bard, E
2004-11-01
New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration datasets extend an additional 2000 years, from 0-26 ka cal BP (Before Present, 0 cal BP = AD 1950), and provide much higher resolution, greater precision and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically dated tree-ring samples, converted with a box-diffusion model to marine mixed-layer ages, cover the period from 0-10.5 ka cal BP. Beyond 10.5 ka cal BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals.more » The marine records are corrected with site-specific {sup 14}C reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 ka cal BP. A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the radiocarbon age to calculate the underlying calibration curve. The marine datasets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring datasets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al.« less
Human-robot interaction tests on a novel robot for gait assistance.
Tagliamonte, Nevio Luigi; Sergi, Fabrizio; Carpino, Giorgio; Accoto, Dino; Guglielmelli, Eugenio
2013-06-01
This paper presents tests on a treadmill-based non-anthropomorphic wearable robot assisting hip and knee flexion/extension movements using compliant actuation. Validation experiments were performed on the actuators and on the robot, with specific focus on the evaluation of intrinsic backdrivability and of assistance capability. Tests on a young healthy subject were conducted. In the case of robot completely unpowered, maximum backdriving torques were found to be in the order of 10 Nm due to the robot design features (reduced swinging masses; low intrinsic mechanical impedance and high-efficiency reduction gears for the actuators). Assistance tests demonstrated that the robot can deliver torques attracting the subject towards a predicted kinematic status.
Robot environment expert system
NASA Technical Reports Server (NTRS)
Potter, J. L.
1985-01-01
The Robot Environment Expert System uses a hexidecimal tree data structure to model a complex robot environment where not only the robot arm moves, but also the robot itself and other objects may move. The hextree model allows dynamic updating, collision avoidance and path planning over time, to avoid moving objects.
Design and Validation of High Date Rate Ka-Band Software Defined Radio for Small Satellite
NASA Technical Reports Server (NTRS)
Xia, Tian
2016-01-01
The Design and Validation of High Date Rate Ka- Band Software Defined Radio for Small Satellite project will develop a novel Ka-band software defined radio (SDR) that is capable of establishing high data rate inter-satellite links with a throughput of 500 megabits per second (Mb/s) and providing millimeter ranging precision. The system will be designed to operate with high performance and reliability that is robust against various interference effects and network anomalies. The Ka-band radio resulting from this work will improve upon state of the art Ka-band radios in terms of dimensional size, mass and power dissipation, which limit their use in small satellites.
Hazardous Environment Robotics
NASA Technical Reports Server (NTRS)
1996-01-01
Jet Propulsion Laboratory (JPL) developed video overlay calibration and demonstration techniques for ground-based telerobotics. Through a technology sharing agreement with JPL, Deneb Robotics added this as an option to its robotics software, TELEGRIP. The software is used for remotely operating robots in nuclear and hazardous environments in industries including automotive and medical. The option allows the operator to utilize video to calibrate 3-D computer models with the actual environment, and thus plan and optimize robot trajectories before the program is automatically generated.
Robot-Aided Neurorehabilitation
Krebs, Hermano Igo; Hogan, Neville; Aisen, Mindy L.; Volpe, Bruce T.
2009-01-01
Our goal is to apply robotics and automation technology to assist, enhance, quantify, and document neurorehabilitation. This paper reviews a clinical trial involving 20 stroke patients with a prototype robot-aided rehabilitation facility developed at the Massachusetts Institute of Technology, Cambridge, (MIT) and tested at Burke Rehabilitation Hospital, White Plains, NY. It also presents our approach to analyze kinematic data collected in the robot-aided assessment procedure. In particular, we present evidence 1) that robot-aided therapy does not have adverse effects, 2) that patients tolerate the procedure, and 3) that peripheral manipulation of the impaired limb may influence brain recovery. These results are based on standard clinical assessment procedures. We also present one approach using kinematic data in a robot-aided assessment procedure. PMID:9535526
Coordinated Control Of Mobile Robotic Manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1995-01-01
Computationally efficient scheme developed for on-line coordinated control of both manipulation and mobility of robots that include manipulator arms mounted on mobile bases. Applicable to variety of mobile robotic manipulators, including robots that move along tracks (typically, painting and welding robots), robots mounted on gantries and capable of moving in all three dimensions, wheeled robots, and compound robots (consisting of robots mounted on other robots). Theoretical basis discussed in several prior articles in NASA Tech Briefs, including "Increasing the Dexterity of Redundant Robots" (NPO-17801), "Redundant Robot Can Avoid Obstacles" (NPO-17852), "Configuration-Control Scheme Copes With Singularities" (NPO-18556), "More Uses for Configuration Control of Robots" (NPO-18607/NPO-18608).
Developing a successful robotics program.
Luthringer, Tyler; Aleksic, Ilija; Caire, Arthur; Albala, David M
2012-01-01
Advancements in the robotic surgical technology have revolutionized the standard of care for many surgical procedures. The purpose of this review is to evaluate the important considerations in developing a new robotics program at a given healthcare institution. Patients' interest in robotic-assisted surgery has and continues to grow because of improved outcomes and decreased periods of hospitalization. Resulting market forces have created a solid foundation for the implementation of robotic surgery into surgical practice. Given proper surgeon experience and an efficient system, robotic-assisted procedures have been cost comparable to open surgical alternatives. Surgeon training and experience is closely linked to the efficiency of a new robotics program. Formally trained robotic surgeons have better patient outcomes and shorter operative times. Training in robotics has shown no negative impact on patient outcomes or mentor learning curves. Individual economic factors of local healthcare settings must be evaluated when planning for a new robotics program. The high cost of the robotic surgical platform is best offset with a large surgical volume. A mature, experienced surgeon is integral to the success of a new robotics program.
Ravankar, Abhijeet; Ravankar, Ankit A.; Kobayashi, Yukinori; Emaru, Takanori
2017-01-01
Hitchhiking is a means of transportation gained by asking other people for a (free) ride. We developed a multi-robot system which is the first of its kind to incorporate hitchhiking in robotics, and discuss its advantages. Our method allows the hitchhiker robot to skip redundant computations in navigation like path planning, localization, obstacle avoidance, and map update by completely relying on the driver robot. This allows the hitchhiker robot, which performs only visual servoing, to save computation while navigating on the common path with the driver robot. The driver robot, in the proposed system performs all the heavy computations in navigation and updates the hitchhiker about the current localized positions and new obstacle positions in the map. The proposed system is robust to recover from ‘driver-lost’ scenario which occurs due to visual servoing failure. We demonstrate robot hitchhiking in real environments considering factors like service-time and task priority with different start and goal configurations of the driver and hitchhiker robots. We also discuss the admissible characteristics of the hitchhiker, when hitchhiking should be allowed and when not, through experimental results. PMID:28809803
NASA Astrophysics Data System (ADS)
Kuznetsov, D. N.; Syryamkin, V. I.
2015-11-01
Modern technologies play a very important role in our lives. It is hard to imagine how people can get along without personal computers, and companies - without powerful computer centers. Nowadays, many devices make modern medicine more effective. Medicine is developing constantly, so introduction of robots in this sector is a very promising activity. Advances in technology have influenced medicine greatly. Robotic surgery is now actively developing worldwide. Scientists have been carrying out research and practical attempts to create robotic surgeons for more than 20 years, since the mid-80s of the last century. Robotic assistants play an important role in modern medicine. This industry is new enough and is at the early stage of development; despite this, some developments already have worldwide application; they function successfully and bring invaluable help to employees of medical institutions. Today, doctors can perform operations that seemed impossible a few years ago. Such progress in medicine is due to many factors. First, modern operating rooms are equipped with up-to-date equipment, allowing doctors to make operations more accurately and with less risk to the patient. Second, technology has enabled to improve the quality of doctors' training. Various types of robots exist now: assistants, military robots, space, household and medical, of course. Further, we should make a detailed analysis of existing types of robots and their application. The purpose of the article is to illustrate the most popular types of robots used in medicine.
Evolution of robotics in surgery and implementing a perioperative robotics nurse specialist role.
Francis, Paula
2006-03-01
Use of robotics is expanding rapidly in the medical arena. Not only are a growing number of facilities purchasing robotic systems, but the number of surgeons using them also is increasing, which creates many challenges (eg, cost, training, safety). The evolution of robotics in surgery is presented within the context of virtual reality, telepresence, telemanipulation, and passive (ie, master-slave) robotic surgical systems. A new perioperative nursing role, the robotics nurse specialist, was developed and implemented at one facility. The need for a robotics nurse specialist and how this role can help the entire surgical team promote positive patient and facility outcomes also is discussed.
NASA Technical Reports Server (NTRS)
1992-01-01
The PER-Force robotic handcontroller provides a sense of touch or "feel" to an operator manipulating robots. The force simulation and wide range of motion greatly enhances the efficiency of robotic and computer operations. The handcontroller was developed for the Space Station by Cybernet Systems Corporation under a Small Business Innovation Research (SBIR) contract. Commercial applications include underwater use, underground excavations, research laboratories, hazardous waste handling and in manufacturing operations in which it is unsafe or impractical for humans to work.
Sabanović, Selma
2014-06-01
Using interviews, participant observation, and published documents, this article analyzes the co-construction of robotics and culture in Japan through the technical discourse and practices of robotics researchers. Three cases from current robotics research--the seal-like robot PARO, the Humanoid Robotics Project HRP-2 humanoid, and 'kansei robotics' - show the different ways in which scientists invoke culture to provide epistemological grounding and possibilities for social acceptance of their work. These examples show how the production and consumption of social robotic technologies are associated with traditional crafts and values, how roboticists negotiate among social, technical, and cultural constraints while designing robots, and how humans and robots are constructed as cultural subjects in social robotics discourse. The conceptual focus is on the repeated assembly of cultural models of social behavior, organization, cognition, and technology through roboticists' narratives about the development of advanced robotic technologies. This article provides a picture of robotics as the dynamic construction of technology and culture and concludes with a discussion of the limits and possibilities of this vision in promoting a culturally situated understanding of technology and a multicultural view of science.
ROBOTIC SURGERY: BIOETHICAL ASPECTS
SIQUEIRA-BATISTA, Rodrigo; SOUZA, Camila Ribeiro; MAIA, Polyana Mendes; SIQUEIRA, Sávio Lana
2016-01-01
ABSTRACT Introduction: The use of robots in surgery has been increasingly common today, allowing the emergence of numerous bioethical issues in this area. Objective: To present review of the ethical aspects of robot use in surgery. Method: Search in Pubmed, SciELO and Lilacs crossing the headings "bioethics", "surgery", "ethics", "laparoscopy" and "robotic". Results: Of the citations obtained, were selected 17 articles, which were used for the preparation of the article. It contains brief presentation on robotics, its inclusion in health and bioethical aspects, and the use of robots in surgery. Conclusion: Robotic surgery is a reality today in many hospitals, which makes essential bioethical reflection on the relationship between health professionals, automata and patients. PMID:28076489
Kwech, Horst
1989-04-18
A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.
NASA Astrophysics Data System (ADS)
Laird, John E.
2009-05-01
Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2005-03-30
The Robotic Follow Algorithm enables allows any robotic vehicle to follow a moving target while reactively choosing a route around nearby obstacles. The robotic follow behavior can be used with different camera systems and can be used with thermal or visual tracking as well as other tracking methods such as radio frequency tags.
[Robotic surgery in gynecology].
Csorba, Roland
2012-06-24
Minimally invasive surgery has revolutionized gynecological interventions over the past 30 years. The introduction of the da Vinci robotic surgery in 2005 has resulted in large changes in surgical management. The robotic platform allows less experienced laparoscopic surgeons to perform more complex procedures. It can be utilized mainly in general gynecology and reproductive gynecology. The robot is being increasingly used for procedures such as hysterectomy, myomectomy, adnexal surgery, and tubal anastomosis. In urogynecology, the robot is being utilized for sacrocolopexy as well. In the field of gynecologic oncology, the robot is being increasingly used for hysterectomy and lymphadenectomy in oncologic diseases. Despite the rapid and widespread adaption of robotic surgery in gynecology, there are no randomized trials comparing its efficacy and safety to other traditional surgical approaches. This article presents the development, technical aspects and indications of robotic surgery in gynecology, based on the previously published reviews. Robotic surgery can be highly advantageous with the right amount of training, along with appropriate patient selection. Patients will have less blood loss, less post-operative pain, faster recovery, and fewer complications compared to open surgery and laparoscopy. However, until larger randomized control trials are completed which report long-term outcomes, robotic surgery cannot be stated to have priority over other surgical methods.
Continuum limbed robots for locomotion
NASA Astrophysics Data System (ADS)
Mutlu, Alper
This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.
NASA's K/Ka-Band Broadband Aeronautical Terminal for Duplex Satellite Video Communications
NASA Technical Reports Server (NTRS)
Densmore, A.; Agan, M.
1994-01-01
JPL has recently begun the development of a Broadband Aeronautical Terminal (BAT) for duplex video satellite communications on commercial or business class aircraft. The BAT is designed for use with NASA's K/Ka-band Advanced Communications Technology Satellite (ACTS). The BAT system will provide the systems and technology groundwork for an eventual commercial K/Ka-band aeronautical satellite communication system. With industry/government partnerships, three main goals will be addressed by the BAT task: 1) develop, characterize and demonstrate the performance of an ACTS based high data rate aeronautical communications system; 2) assess the performance of current video compression algorithms in an aeronautical satellite communication link; and 3) characterize the propagation effects of the K/Ka-band channel for aeronautical communications.
NASA Technical Reports Server (NTRS)
Whittaker, William; Lowrie, James W.; Mccain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter
1994-01-01
Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.
Predicting the pKa and stability of organic acids and bases at an oil-water interface.
Andersson, M P; Olsson, M H M; Stipp, S L S
2014-06-10
We have used density functional theory and the implicit solvent model, COSMO-RS, to investigate how the acidity constant, pKa, of organic acids and bases adsorbed at the organic compound-aqueous solution interface changes, compared to its value in the aqueous phase. The pKa determine the surface charge density of the molecules that accumulate at the fluid-fluid interface. We have estimated the pKa by comparing the stability of the protonated and unprotonated forms of a series of molecules in the bulk aqueous solution and at an interface where parts of each molecule reside in the hydrophobic phase and the rest remains in the hydrophilic phase. We found that the pKa for acids is shifted by ∼1 pH unit to higher values compared to the bulk water pKa, whereas they are shifted to lower values by a similar amount for bases. Because this pKa shift is similar in magnitude for each of the molecules studied, we propose that the pKa for molecules at a water-organic compound interface can easily be predicted by adding a small shift to the aqueous pKa. This shift is general and correlates with the functional group. We also found that the relative composition of molecules at the fluid-fluid interface is not the same as in the bulk. For example, species such as carboxylic acids are enriched at the interface, where they can dominate surface properties, even when they are a modest component in the bulk fluid. For high surface concentrations of carboxylic acid groups at an interface, such as a self-assembled monolayer, we have demonstrated that the pKa depends on the degree of deprotonation through direct hydrogen bonding between protonated and deprotonated acidic headgroups.
[Robotic laparoscopic cholecystectomy].
Langer, D; Pudil, J; Ryska, M
2006-09-01
Laparoscopic approach profusely utilized in many surgical fields was enhanced by da Vinci robotic surgical system in range of surgery wards, imprimis in the United States today. There was multispecialized robotic centre program initiated in the Central Military Hospital in Prague in December 2005. Within the scope of implementing the da Vinci robotic system to clinical practice we executed robotic-assisted laparoscopic cholecystectomy. We have accomplished elective laparoscopic cholecystectomy using the da Vinci robotic surgical system. Operating working group (two doctors, two scrub nurses) had completed certificated foreign training. Both of the surgeons have many years experience of laparoscopic cholecystectomy. Operator controlled instruments from the surgeon's console, assistant placed clips on ends of cystic duct and cystic artery from auxiliary port after capnoperitoneum installation. We evacuated gallbladder in plastic bag from abdominal cavity in place of original paraumbilical port. We were exploiting three working arms in all our cases, holding surgical camera, electrocautery hook and Cadiere forceps. We had been observing procedure time, technical complications connected with robotic system, length of hospital stay and complication incidence rate. We managed to finish all operations in laparoscopic way. Group of our patients formed 11 male patients (35.5%) and 20 women (64.5%), mean aged 52.5 years in range of 27 77 years. The average operation procedure lasted 100 minutes, in the group of last 11 patients only 69 minutes. We recorded paraumbilical wound infections in 3 (9.7 %) patients. We had not experienced any technical problems with robotic surgical system. Length of hospital stay was 3 days. Considering our initial experience with robotic lasparoscopic cholecystectomy we evaluate da Vinci robotic surgical system to be safe and sophisticated operating manipulator which however does not substitute the surgeon key-role of controlling position and
ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David
2000-01-01
The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with ACTS. The ACTS experiments program proposed to validate Ka-band satellite and ground-station technology, demonstrate future telecommunication services, demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals and the lessons learned throughout their 6-year operation, including the inclined orbit phase-of-operations. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector-based offset-fed antenna systems with antennas ranging in size from 0.35 to 3.4 in. in diameter. Gateway earth stations included two systems referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET).
Mergeable nervous systems for robots.
Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco
2017-09-12
Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.
Open Issues in Evolutionary Robotics.
Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne
2016-01-01
One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.
Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.
Ampatzis, Christos; Tuci, Elio; Trianni, Vito; Christensen, Anders Lyhne; Dorigo, Marco
2009-01-01
This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two modules (two fully autonomous robots) of a mobile self-reconfigurable system without a priori introduced behavioral or morphological heterogeneities. The controllers are dynamic neural networks evolved in simulation that directly control all the actuators of the two robots. The neurocontrollers cause the dynamic specialization of the robots by allocating roles between them based solely on their interaction. We show that the best evolved controller proves to be successful when tested on a real hardware platform, the swarm-bot. The performance achieved is similar to the one achieved by existing modular or behavior-based approaches, also due to the effect of an emergent recovery mechanism that was neither explicitly rewarded by the fitness function, nor observed during the evolutionary simulation. Our results suggest that direct access to the orientations or intentions of the other agents is not a necessary condition for robot coordination: Our robots coordinate without direct or explicit communication, contrary to what is assumed by most research works in collective robotics. This work also contributes to strengthening the evidence that evolutionary robotics is a design methodology that can tackle real-world tasks demanding fine sensory-motor coordination.
[Robotics in pediatric surgery].
Camps, J I
2011-10-01
Despite the extensive use of robotics in the adult population, the use of robotics in pediatrics has not been well accepted. There is still a lack of awareness from pediatric surgeons on how to use the robotic equipment, its advantages and indications. Benefit is still controversial. Dexterity and better visualization of the surgical field are one of the strong values. Conversely, cost and a lack of small instruments prevent the use of robotics in the smaller patients. The aim of this manuscript is to present the controversies about the use of robotics in pediatric surgery.
2008-01-01
Robotic colorectal surgery has gradually been performed more with the help of the technological advantages of the da Vinci® system. Advanced technological advantages of the da Vinci® system compared with standard laparoscopic colorectal surgery have been reported. These are a stable camera platform, three-dimensional imaging, excellent ergonomics, tremor elimination, ambidextrous capability, motion scaling, and instruments with multiple degrees of freedom. However, despite these technological advantages, most studies did not report the clinical advantages of robotic colorectal surgery compared to standard laparoscopic colorectal surgery. Only one study recently implies the real benefits of robotic rectal cancer surgery. The purpose of this review article is to outline the early concerns of robotic colorectal surgery using the da Vinci® system, to present early clinical outcomes from the most current series, and to discuss not only the safety and the feasibility but also the real benefits of robotic colorectal surgery. Moreover, this article will comment on the possible future clinical advantages and limitations of the da Vinci® system in robotic colorectal surgery. PMID:19108010
Toward a framework for levels of robot autonomy in human-robot interaction.
Beer, Jenay M; Fisk, Arthur D; Rogers, Wendy A
2014-07-01
A critical construct related to human-robot interaction (HRI) is autonomy, which varies widely across robot platforms. Levels of robot autonomy (LORA), ranging from teleoperation to fully autonomous systems, influence the way in which humans and robots may interact with one another. Thus, there is a need to understand HRI by identifying variables that influence - and are influenced by - robot autonomy. Our overarching goal is to develop a framework for levels of robot autonomy in HRI. To reach this goal, the framework draws links between HRI and human-automation interaction, a field with a long history of studying and understanding human-related variables. The construct of autonomy is reviewed and redefined within the context of HRI. Additionally, the framework proposes a process for determining a robot's autonomy level, by categorizing autonomy along a 10-point taxonomy. The framework is intended to be treated as guidelines to determine autonomy, categorize the LORA along a qualitative taxonomy, and consider which HRI variables (e.g., acceptance, situation awareness, reliability) may be influenced by the LORA.
Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion
Marras, Stefano; Porfiri, Maurizio
2012-01-01
The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its ‘engineered’ member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a ‘dummy’. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot–animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour. PMID:22356819
Ka-band MMIC arrays for ACTS Aero Terminal Experiment
NASA Technical Reports Server (NTRS)
Raquet, C.; Zakrajsek, R.; Lee, R.; Turtle, J.
1992-01-01
An antenna system consisting of three experimental Ka-band active arrays using GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification is presented. The MMIC arrays are to be demonstrated in the ACTS Aeronautical Terminal Experiment, planned for early 1994. The experiment is outlined, with emphasis on a description of the antenna system. Attention is given to the way in which proof-of-concept MMIC arrays featuring three different state-of-the-art approaches to Ka-band MMIC insertion are being incorporated into an experimental aircraft terminal for the demonstration of an aircraft-to-satellite link, providing a basis for follow-on MMIC array development.
[Robot-aided training in rehabilitation].
Hachisuka, Kenji
2010-02-01
Recently, new training techniques that involve the use of robots have been used in the rehabilitation of patients with hemiplegia and paraplegia. Robots used for training the arm include the MIT-MANUS, Arm Trainer, mirror-image motion enabler (MIME) robot, and the assisted rehabilitation and measurement (ARM) Guide. Robots that are used for lower-limb training are the Rehabot, Gait Trainer, Lokomat, LOPES Exoskeleton Robot, and Gait Assist Robot. Robot-aided therapy has enabled the functional training of the arm and the lower limbs in an effective, easy, and comfortable manner. Therefore, with this type of therapy, the patients can repeatedly undergo sufficient and accurate training for a prolonged period. However, evidence of the benefits of robot-aided training has not yet been established.
Current status of robotic simulators in acquisition of robotic surgical skills.
Kumar, Anup; Smith, Roger; Patel, Vipul R
2015-03-01
This article provides an overview of the current status of simulator systems in robotic surgery training curriculum, focusing on available simulators for training, their comparison, new technologies introduced in simulation focusing on concepts of training along with existing challenges and future perspectives of simulator training in robotic surgery. The different virtual reality simulators available in the market like dVSS, dVT, RoSS, ProMIS and SEP have shown face, content and construct validity in robotic skills training for novices outside the operating room. Recently, augmented reality simulators like HoST, Maestro AR and RobotiX Mentor have been introduced in robotic training providing a more realistic operating environment, emphasizing more on procedure-specific robotic training . Further, the Xperience Team Trainer, which provides training to console surgeon and bed-side assistant simultaneously, has been recently introduced to emphasize the importance of teamwork and proper coordination. Simulator training holds an important place in current robotic training curriculum of future robotic surgeons. There is a need for more procedure-specific augmented reality simulator training, utilizing advancements in computing and graphical capabilities for new innovations in simulator technology. Further studies are required to establish its cost-benefit ratio along with concurrent and predictive validity.
Assessment of the Atmospheric Channel for Short (Ka-Band and Optical) Wavelengths
NASA Technical Reports Server (NTRS)
Piazzolla, Sabino
2007-01-01
Atmospheric turbulence under clear sky conditions is an impairment of the atmospheric channel that greatly affects propagation of optical signal in the troposphere. The turbulence manifests itself in a number of forms within the optical domain, from the twinkling of a star in a clear night, to resolution degradation in a large aperture telescope. Therefore, a body of analytical, numerical, and experimental tools has been developed in optics to study, simulate, and control effects of atmospheric turbulence on an optical signal. Incidentally, there has been an increasing demand for high data rate returns from NASA missions which has led to envision utilizing a carrier signal in the Ka-Band range. The impact of atmospheric turbulence effects must be evaluated and considered for this frequency domain. The purpose of this work is to show that when the turbulence strength from the optical case to the KaBand ease is properly scaled, one can apply the same mathematical simulation developed for optical to predict turbulence effects within the Ka-Band domain. As a demonstration of this principle, we present how the scintillations of a Ka-Band downlink return of a deep space signal was successfully reproduced through wave-optics simulation.
Robotic follow system and method
Bruemmer, David J [Idaho Falls, ID; Anderson, Matthew O [Idaho Falls, ID
2007-05-01
Robot platforms, methods, and computer media are disclosed. The robot platform includes perceptors, locomotors, and a system controller, which executes instructions for a robot to follow a target in its environment. The method includes receiving a target bearing and sensing whether the robot is blocked front. If the robot is blocked in front, then the robot's motion is adjusted to avoid the nearest obstacle in front. If the robot is not blocked in front, then the method senses whether the robot is blocked toward the target bearing and if so, sets the rotational direction opposite from the target bearing, and adjusts the rotational velocity and translational velocity. If the robot is not blocked toward the target bearing, then the rotational velocity is adjusted proportional to an angle of the target bearing and the translational velocity is adjusted proportional to a distance to the nearest obstacle in front.
Combined virtual and real robotic test-bed for single operator control of multiple robots
NASA Astrophysics Data System (ADS)
Lee, Sam Y.-S.; Hunt, Shawn; Cao, Alex; Pandya, Abhilash
2010-04-01
Teams of heterogeneous robots with different dynamics or capabilities could perform a variety of tasks such as multipoint surveillance, cooperative transport and explorations in hazardous environments. In this study, we work with heterogeneous robots of semi-autonomous ground and aerial robots for contaminant localization. We developed a human interface system which linked every real robot to its virtual counterpart. A novel virtual interface has been integrated with Augmented Reality that can monitor the position and sensory information from video feed of ground and aerial robots in the 3D virtual environment, and improve user situational awareness. An operator can efficiently control the real multi-robots using the Drag-to-Move method on the virtual multi-robots. This enables an operator to control groups of heterogeneous robots in a collaborative way for allowing more contaminant sources to be pursued simultaneously. The advanced feature of the virtual interface system is guarded teleoperation. This can be used to prevent operators from accidently driving multiple robots into walls and other objects. Moreover, the feature of the image guidance and tracking is able to reduce operator workload.
Ching, Joan M; Williams, Barbara L; Idemoto, Lori M; Blackmore, C Craig
2014-08-01
Virginia Mason Medical Center (Seattle) employed the Lean concept of Jidoka (automation with a human touch) to plan for and deploy bar code medication administration (BCMA) to hospitalized patients. Integrating BCMA technology into the nursing work flow with minimal disruption was accomplished using three steps ofJidoka: (1) assigning work to humans and machines on the basis of their differing abilities, (2) adapting machines to the human work flow, and (3) monitoring the human-machine interaction. Effectiveness of BCMA to both reinforce safe administration practices and reduce medication errors was measured using the Collaborative Alliance for Nursing Outcomes (CALNOC) Medication Administration Accuracy Quality Study methodology. Trained nurses observed a total of 16,149 medication doses for 3,617 patients in a three-year period. Following BCMA implementation, the number of safe practice violations decreased from 54.8 violations/100 doses (January 2010-September 2011) to 29.0 violations/100 doses (October 2011-December 2012), resulting in an absolute risk reduction of 25.8 violations/100 doses (95% confidence interval [CI]: 23.7, 27.9, p < .001). The number of medication errors decreased from 5.9 errors/100 doses at baseline to 3.0 errors/100 doses after BCMA implementation (absolute risk reduction: 2.9 errors/100 doses [95% CI: 2.2, 3.6,p < .001]). The number of unsafe administration practices (estimate, -5.481; standard error 1.133; p < .001; 95% CI: -7.702, -3.260) also decreased. As more hospitals respond to health information technology meaningful use incentives, thoughtful, methodical, and well-managed approaches to technology deployment are crucial. This work illustrates how Jidoka offers opportunities for a smooth transition to new technology.
NASA Astrophysics Data System (ADS)
Vega-Hissi, Esteban G.; Estrada, Mario R.; Lavecchia, Martín J.; Pis Diez, Reinaldo
2013-01-01
The pKa, the negative logarithm of the acid dissociation equilibrium constant, of the carboxylic acid groups of unconjugated bilirubin in water is a discussed issue because there are quite different experimental values reported. Using quantum mechanical calculations we have studied the conformational behavior of unconjugated bilirubin species (in gas phase and in solution modeled implicitly and explicitly) to provide evidence that may clarify pKa values because of its pathophysiological relevance. Our results show that rotation of carboxylate group, which is not restricted, settles it in a suitable place to establish stronger interactions that stabilizes the monoanion and the dianion to be properly solvated, demonstrating that the rationalization used to justify the high pKa values of unconjugated bilirubin is inappropriate. Furthermore, low unconjugated bilirubin (UCB) pKa values were estimated from a linear regression analysis.
KC-135 materials handling robotics
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1991-01-01
Robot dynamics and control will become an important issue for implementing productive platforms in space. Robotic operations will become necessary for man-tended stations and for efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to an anticipated increase in acceleration levels due to manipulator motion and for safety concerns. The objective of this study will be to provide baseline data to meet that need. Most texts and papers dealing with the kinematics and dynamics of robots assume that the manipulator is composed of joints separated by rigid links. However, in recent years several groups have begun to study the dynamics of flexible manipulators, primarily for applying robots in space and for improving the efficiency and precision of robotic systems. Robotic systems which are being planned for implementation in space have a number of constraints to overcome. Additional concepts which have to be worked out in any robotic implementation for a space platform include teleoperation and degree of autonomous control. Some significant results in developing a robotic workcell for performing robotics research on the KC-135 aircraft in preperation for space-based robotics applications in the future were generated. In addition, it was shown that TREETOPS can be used to simulate the dynamics of robot manipulators for both space and ground-based applications.
A Human-Robot Interaction Perspective on Assistive and Rehabilitation Robotics.
Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D; Bianchi, Matteo
2017-01-01
Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human-robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions.
Human-robot skills transfer interfaces for a flexible surgical robot.
Calinon, Sylvain; Bruno, Danilo; Malekzadeh, Milad S; Nanayakkara, Thrishantha; Caldwell, Darwin G
2014-09-01
In minimally invasive surgery, tools go through narrow openings and manipulate soft organs to perform surgical tasks. There are limitations in current robot-assisted surgical systems due to the rigidity of robot tools. The aim of the STIFF-FLOP European project is to develop a soft robotic arm to perform surgical tasks. The flexibility of the robot allows the surgeon to move within organs to reach remote areas inside the body and perform challenging procedures in laparoscopy. This article addresses the problem of designing learning interfaces enabling the transfer of skills from human demonstration. Robot programming by demonstration encompasses a wide range of learning strategies, from simple mimicking of the demonstrator's actions to the higher level imitation of the underlying intent extracted from the demonstrations. By focusing on this last form, we study the problem of extracting an objective function explaining the demonstrations from an over-specified set of candidate reward functions, and using this information for self-refinement of the skill. In contrast to inverse reinforcement learning strategies that attempt to explain the observations with reward functions defined for the entire task (or a set of pre-defined reward profiles active for different parts of the task), the proposed approach is based on context-dependent reward-weighted learning, where the robot can learn the relevance of candidate objective functions with respect to the current phase of the task or encountered situation. The robot then exploits this information for skills refinement in the policy parameters space. The proposed approach is tested in simulation with a cutting task performed by the STIFF-FLOP flexible robot, using kinesthetic demonstrations from a Barrett WAM manipulator. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Sample Return Robot Centennial Challenge
2012-06-15
Intrepid Systems robot, foreground, and the University of Waterloo (Canada) robot, take to the practice field on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Robot teams will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink
NASA Technical Reports Server (NTRS)
Budinger, James M.; Niederhaus, Charles; Reinhart, Richard; Downey, Joe; Roberts, Anthony
2016-01-01
As the scientific capabilities and number of small spacecraft missions in the near Earth region increase, standard yet configurable user spacecraft terminals operating in Ka-band are needed to lower mission cost and risk and enable significantly higher data return than current UHF or S-band terminals. These compact Ka-band terminals are intended to operate with both the current and next generation of Ka-band relay satellites and via direct data communications with near Earth tracking terminals. This presentation provides an overview of emerging NASA-sponsored and commercially provided technologies in software defined radios (SDRs), transceivers, and electronically steered antennas that will enable data rates from hundreds of kbps to over 1 Gbps and operate in multiple frequency bands (such as S- and X-bands) and expand the use of NASA's common Ka-bands frequencies: 22.55-23.15 GHz for forward data or uplink; and 25.5-27.0 GHz for return data or downlink. Reductions in mass, power and volume come from integration of multiple radio functions, operations in Ka-band, high efficiency amplifiers and receivers, and compact, flat and vibration free electronically steered narrow beam antennas for up to + 60 degrees field of regard. The software defined near Earth space transceiver (SD-NEST) described in the presentation is intended to be compliant with NASA's space telecommunications radio system (STRS) standard for communications waveforms and hardware interoperability.
Robotic-assisted repair of iatrogenic ureteral ligation following robotic-assisted hysterectomy.
Kalisvaart, Jonathan F; Finley, David S; Ornstein, David K
2008-01-01
Ureteral injuries, while rare, do occur during gynecologic procedures. The expansion of laparoscopic and robotic pelvic surgical procedures increases the risk of ureteral injury from these procedures and suggests a role for minimally invasive approaches to the delayed repair of ureteral injuries. We present, to our knowledge, the first case of delayed robotic-assisted ureteral deligation and ureterolysis following iatrogenic ureteral injury occurring during a robotic abdominal hysterectomy. We present a case report and review of the literature. A 57-year-old female underwent a seemingly uncomplicated robotic-assisted laparoscopic total abdominal hysterectomy and bilateral oophorectomy for symptomatic fibroids. On postoperative day 8, she presented with persistent right flank pain. Imaging studies revealed high-grade ureteral obstruction consistent with suture ligation of the right ureter. She underwent successful robotic-assisted ureteral deligation and ureterolysis. Her postoperative course was unremarkable, and she was discharged home on postoperative day 1 from the deligation. Robotic-assisted management of complications from urologic or gynecologic surgery is technically feasible. This can potentially preserve the advantages to the patient that are being seen from the initial less-invasive surgery.
NASA Technical Reports Server (NTRS)
Pedersen, L.; Kortenkamp, D.; Wettergreen, D.; Nourbakhsh, I.; Korsmeyer, David (Technical Monitor)
2003-01-01
In this paper we summarize a survey conducted by NASA to determine the state-of-the-art in space robotics and to predict future robotic capabilities under either nominal and intensive development effort. The space robotics assessment study examined both in-space operations including assembly, inspection, and maintenance and planetary surface operations like mobility and exploration. Applications of robotic autonomy and human-robot cooperation were considered. The study group devised a decomposition of robotic capabilities and then suggested metrics to specify the technical challenges associated with each. The conclusion of this paper identifies possible areas in which investment in space robotics could lead to significant advances of important technologies.
Microvibrations in a 20 M Long Ka-Band SAR Interferometer
NASA Astrophysics Data System (ADS)
Rodriques, G.; Ludwig, M.; Santiago-Prowald, J.
2014-06-01
Interferometric SAR operating at Ka-band has the potential for offering high-resolution 3D images of the surface of the Earth taken from a single-platform.The stability of the mechanical baseline of such an instrument has been considered as a key critical area for the feasibility of the concept.This paper is devoted to the analysis of the micro- vibrations in a 20-m long Ka-band SAR interferometer arising during typical attitude changing manoeuvers and the mechanical noise transmitted from reaction wheels. It is preliminarily concluded that the expected microvibration levels are within the requirements of the instrument.
EPSRC Principles of Robotics: commentary on safety, robots as products, and responsibility
NASA Astrophysics Data System (ADS)
Boddington, Paula
2017-04-01
The EPSRC Principles of Robotics refer to safety. How safety is understood is relative to how tasks are characterised and identified. But the exact task(s) a robot plays within a complex system of agency may be hard to identify. If robots are seen as products, it is nonetheless vital that the safety and other implications of their use in situ must also be considered carefully, and they must be fit for purpose. The Principles identify humans as responsible, rather than robots. We must thus understand how the replacement of human agency by robotic agency may impact upon attributions of responsibility. The Principles seek to fit into existing systems of law and ethics. But these may need development, and in certain context, attention to more local regulations is also needed. A distinction between ethical issues related to the design of robotics, and to their use, may be needed in the Principles.
Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned
NASA Technical Reports Server (NTRS)
Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich
2013-01-01
This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.
Urologic robots and future directions.
Mozer, Pierre; Troccaz, Jocelyne; Stoianovici, Dan
2009-01-01
Robot-assisted laparoscopic surgery in urology has gained immense popularity with the daVinci system, but a lot of research teams are working on new robots. The purpose of this study is to review current urologic robots and present future development directions. Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks on the basis of medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for a remote system could be augmented in reality, with haptic feedback, size reduction, and development of new tools for natural orifice translumenal endoscopic surgery. The paradigm of image-guided robots is close to clinical availability and the most advanced robots are presented with end-user technical assessments. It is also notable that the potential of robots lies much further ahead than the accomplishments of the daVinci system. The integration of imaging with robotics holds a substantial promise, because this can accomplish tasks otherwise impossible. Image-guided robots have the potential to offer a paradigm shift.
UROLOGIC ROBOTS AND FUTURE DIRECTIONS
Mozer, Pierre; Troccaz, Jocelyne; Stoianovici, Dan
2009-01-01
Purpose of review Robot-assisted laparoscopic surgery in urology has gained immense popularity with the Da Vinci system but a lot of research teams are working on new robots. The purpose of this paper is to review current urologic robots and present future developments directions. Recent findings Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. Summary The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks based on medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for remote system could be augmented reality, haptic feed back, size reduction and development of new tools for NOTES surgery. The paradigm of image-guided robots is close to a clinical availability and the most advanced robots are presented with end-user technical assessments. It is also notable that the potential of robots lies much further ahead than the accomplishments of the daVinci system. The integration of imaging with robotics holds a substantial promise, because this can accomplish tasks otherwise impossible. Image guided robots have the potential to offer a paradigm shift. PMID:19057227
ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David
2000-01-01
The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with the ACTS satellite. The ACTS experiment's program proposed to validate Ka-band satellite and ground station technology. demonstrate future telecommunication services. demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals (Part 1) and the lessons learned throughout their six year operation including the inclined orbit phase of operations (Full Report). An overview of the Ka-band technology and components developed for the ACTS ground stations is presented. Next. the performance of the ground station technology and its evolution during the ACTS campaign are discussed to illustrate the technical tradeoffs made during the program and highlight technical advances by industry to support the ACTS experiments program and terminal operations. Finally. lessons learned during development and operation of the user terminals are discussed for consideration of commercial adoption into future Ka-band systems. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector based offset-fed antenna systems ranging in size from 0.35m to 3.4m antenna diameter. Gateway earth stations included two systems, referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET). The NGS provides tracking, telemetry, and control (TT&C) and Time Division Multiple Access (TDMA) network control functions. The LET supports technology verification and high data rate experiments. The ground
X/X/Ka-band prime focus feed antenna for the Mars Observer beacon spacecraft
NASA Technical Reports Server (NTRS)
Stanton, P.; Reilly, H.; Esquivel, M.
1988-01-01
The results of an X/X/Ka-band feed design concept demonstration are presented. The purpose is to show the feasibility of adding a Ka-band beacon to the Mars Observer spacecraft. Scale model radiation patterns were made and analyzed.
[History of robotics: from Archytas of Tarentum until da Vinci robot. (Part I)].
Sánchez Martín, F M; Millán Rodríguez, F; Salvador Bayarri, J; Palou Redorta, J; Rodríguez Escovar, F; Esquena Fernández, S; Villavicencio Mavrich, H
2007-02-01
Robotic surgery is the newst technologic option in urology. To understand how new robots work is interesting to know their history. The desire to design machines imitating humans continued for more than 4000 years. There are references to King-su Tse (clasic China) making up automaton at 500 a. C. Archytas of Tarentum (at around 400 a.C.) is considered the father of mechanical engineering, and one of the occidental robotics classic referents. Heron of Alexandria, Hsieh-Fec, Al-Jazari, Roger Bacon, Juanelo Turriano, Leonardo da Vinci, Vaucanson o von Kempelen were robot inventors in the middle age, renaissance and classicism. At the XIXth century, automaton production underwent a peak and all engineering branches suffered a great development. At 1942 Asimov published the three robotics laws, based on mechanics, electronics and informatics advances. At XXth century robots able to do very complex self governing works were developed, like da Vinci Surgical System (Intuitive Surgical Inc, Sunnyvale, CA, USA), a very sophisticated robot to assist surgeons.
Robotic hand with modular extensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salisbury, Curt Michael; Quigley, Morgan
A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.
NASA Astrophysics Data System (ADS)
Belkin, Harvey E.; Raia, Federica; Rolandi, Giuseppe; Jackson, John C.; de Vivo, Benedetto
2010-05-01
The Campanian Plain in southern Italy has been volcanically active during the last 600 ka. The largest and best known eruption at 39 ka formed the Campanian Ignimbrite (CI), which has the largest volume (~310 km3) and the greatest areal extent. However, significant, but scattered deposits of older ignimbrites underlie the CI and document a long history of trachytic eruptions. We examined the geochemistry and mineralogy of 11 older ignimbrite strata by optical petrography, electron microprobe, scanning electron microscope, X-ray diffraction, and various whole-rock geochemical techniques. Strata at Durazzano (116.1 ka), Moschiano (184.7 ka), Seiano Valley A (245.9 ka), Seiano Valley B (289.6 ka), Taurano 7 (205.6 and 210.4 ka), Taurano 9 (183.8 ka), and Taurano 14 (157.4 ka) have been previously dated by the 40Ar/39Ar technique (Rolandi et al., 2003, Min. & Pet., 79) on hand-picked sanidine. The older ignimbrites are trachytic, but are highly altered with LOI from 8 to 17 wt%. Whole-rock compositions reflect variable element mobility during weathering; TiO2, Al2O3, Fe-oxide, and CaO tend to be enriched relative to average CI composition, whereas Na2O and K2O are depleted. X-ray diffraction identified major chabazite, kaolinite, and illite-smectite alteration products in some samples. The phenocryst mineralogy in all of the strata is typical for trachyte magma and consists of plagioclase (~An80 to ~An40), potassium feldspar (~Or50 to ~Or80), biotite (TiO2 = ~4.6 wt%, BaO = ~0.70 wt%, F = ~0.65 wt%), diopside (~Ca47Mg48Fe5 to ~Ca48Mg34Fe18), titanomagnetite, and uncommon Ca-amphibole. Relatively immobile trace elements Zr, Hf, Nb, and Th display similar abundance, linear trends, and ratios as those measured in the Campanian Ignimbrite: Th/Hf = ~4, Zr/Hf = ~50, and Zr/Nb = ~6. The similarity of trace element systematics and phenocryst mineralogy among the Campanian Ignimbrite and the older ignimbrites suggests that the magmagenesis processes and parental source have
Contribution of X/Ka VLBI to Multi-Wavelength Celestial Frame Studies
NASA Technical Reports Server (NTRS)
Jacobs, C. S.; Clark, J. E.; Garcia-Miro, C.; Horiuchi, S.; Sotuela, I.
2011-01-01
This paper is an update of Sotuela et al. (2011) which improves their simulated Gaia frame tie precision by approximately 10% by adding three additional VLBI observing sessions. Astrometry at X/Ka-band (8.4/32 GHz) using NASAs Deep Space Network has detected 466 quasars with accuracies of 200-300 micro-arc seconds. A program is underway to reduce errors by a factor of 2-3. From our sample, 245 sources have optical magnitudes V less than 20 and should also be detectable by Gaia. A covariance study using existing X/Ka data and simulated Gaia uncertainties for the 345 objects yields a frame tie precision of 10-15 micro-arc seconds (1 - sigma). The characterization of wavelength dependent systematic from extended source morphology and core shift should benefit greatly from adding X/Ka-band measurements to S/X-band (2.3/8.4 GHz) measurements thus helping to constrain astrophysical models of the wavelength dependence of positions.
NASA Astrophysics Data System (ADS)
Ayres, R.; Miller, S.
1982-06-01
The characteristics, applications, and operational capabilities of currently available robots are examined. Designed to function at tasks of a repetitive, hazardous, or uncreative nature, robot appendages are controlled by microprocessors which permit some simple decision-making on-the-job, and have served for sample gathering on the Mars Viking lander. Critical developmental areas concern active sensors at the robot grappler-object interface, where sufficient data must be gathered for the central processor to which the robot is attached to conclude the state of completion and suitability of the workpiece. Although present robots must be programmed through every step of a particular industrial process, thus limiting each robot to specialized tasks, the potential for closed cells of batch-processing robot-run units is noted to be close to realization. Finally, consideration is given to methods for retraining the human workforce that robots replace
Robotics research projects report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsia, T.C.
The research results of the Robotics Research Laboratory are summarized. Areas of research include robotic control, a stand-alone vision system for industrial robots, and sensors other than vision that would be useful for image ranging, including ultrasonic and infra-red devices. One particular project involves RHINO, a 6-axis robotic arm that can be manipulated by serial transmission of ASCII command strings to its interfaced controller. (LEW)
NASA Technical Reports Server (NTRS)
Voellmer, George M.
1992-01-01
Mechanism enables robot to change tools on end of arm. Actuated by motion of robot: requires no additional electrical or pneumatic energy to make or break connection between tool and wrist at end of arm. Includes three basic subassemblies: wrist interface plate attached to robot arm at wrist, tool interface plate attached to tool, and holster. Separate tool interface plate and holster provided for each tool robot uses.
Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.
de Greeff, Joachim; Belpaeme, Tony
2015-01-01
Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children's social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a "mental model" of the robot, tailoring the tutoring to the robot's performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot's bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance.
Robot Tracer with Visual Camera
NASA Astrophysics Data System (ADS)
Jabbar Lubis, Abdul; Dwi Lestari, Yuyun; Dafitri, Haida; Azanuddin
2017-12-01
Robot is a versatile tool that can function replace human work function. The robot is a device that can be reprogrammed according to user needs. The use of wireless networks for remote monitoring needs can be utilized to build a robot that can be monitored movement and can be monitored using blueprints and he can track the path chosen robot. This process is sent using a wireless network. For visual robot using high resolution cameras to facilitate the operator to control the robot and see the surrounding circumstances.
Perspectives future space on robotics
NASA Technical Reports Server (NTRS)
Lavery, Dave
1994-01-01
Last year's flight of the German ROTEX robot flight experiment heralded the start of a new era for space robotics. ROTEX is the first of at least 10 new robotic systems and experiments that will fly before 2000. These robots will augment astronaut on-orbit capabilities and extend virtual human presence to lunar and planetary surfaces. The robotic systems to be flown in the next five years fall into three categories: extravehicular robotic (EVR) servicers, science payload servicers, and planetary surface rovers. A description of the work on these systems is presented.
Sample Return Robot Centennial Challenge
2012-06-16
Intrepid Systems Team member Mark Curry, left, talks with NASA Deputy Administrator Lori Garver and NASA Chief Technologist Mason Peck, right, about his robot named "MXR - Mark's Exploration Robot" on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-15
Intrepid Systems robot "MXR - Mark's Exploration Robot" takes to the practice field and tries to capture the white object in the foreground on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Intrepid Systems' robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
Children visiting the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event try to catch basketballs being thrown by a robot from FIRST Robotics at Burncoat High School (Mass.) on Saturday, June 16, 2012 at WPI in Worcester, Mass. The TouchTomorrow event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-15
Intrepid Systems Team member Mark Curry, right, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "MXR - Mark's Exploration Robot" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Wilcox, Jennifer L; Bevilacqua, Philip C
2013-10-22
Shifting of pKa's in RNA is important for many biological processes; however, the driving forces responsible for shifting are not well understood. Herein, we determine how structural environments surrounding protonated bases affect pKa shifting in double-stranded RNA (dsRNA). Using (31)P NMR, we determined the pKa of the adenine in an A(+)·C base pair in various sequence and structural environments. We found a significant dependence of pKa on the base pairing strength of nearest neighbors and the location of a nearby bulge. Increasing nearest neighbor base pairing strength shifted the pKa of the adenine in an A(+)·C base pair higher by an additional 1.6 pKa units, from 6.5 to 8.1, which is well above neutrality. The addition of a bulge two base pairs away from a protonated A(+)·C base pair shifted the pKa by only ~0.5 units less than a perfectly base paired hairpin; however, positioning the bulge just one base pair away from the A(+)·C base pair prohibited formation of the protonated base pair as well as several flanking base pairs. Comparison of data collected at 25 °C and 100 mM KCl to biological temperature and Mg(2+) concentration revealed only slight pKa changes, suggesting that similar sequence contexts in biological systems have the potential to be protonated at biological pH. We present a general model to aid in the determination of the roles protonated bases may play in various dsRNA-mediated processes including ADAR editing, miRNA processing, programmed ribosomal frameshifting, and general acid-base catalysis in ribozymes.
Guarded Motion for Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
2005-03-30
The Idaho National Laboratory (INL) has created codes that ensure that a robot will come to a stop at a precise, specified distance from any obstacle regardless of the robot's initial speed, its physical characteristics, and the responsiveness of the low-level motor control schema. This Guarded Motion for Mobile Robots system iteratively adjusts the robot's action in response to information about the robot's environment.
NASA Technical Reports Server (NTRS)
Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Goza, S. Michael (Inventor)
2013-01-01
An improved robotic thumb for a robotic hand assembly is provided. According to one aspect of the disclosure, improved tendon routing in the robotic thumb provides control of four degrees of freedom with only five tendons. According to another aspect of the disclosure, one of the five degrees of freedom of a human thumb is replaced in the robotic thumb with a permanent twist in the shape of a phalange. According to yet another aspect of the disclosure, a position sensor includes a magnet having two portions shaped as circle segments with different center points. The magnet provides a linearized output from a Hall effect sensor.
Rose, Paul T; Nusbaum, Bernard
2014-01-01
The latest innovation to hair restoration surgery has been the introduction of a robotic system for harvesting grafts. This system uses the follicular unit extraction/follicular isolation technique method for harvesting follicular units, which is particularly well suited to the abilities of a robotic technology. The ARTAS system analyzes images of the donor area and then a dual-chamber needle and blunt dissecting punch are used to harvest the follicular units. The robotic technology is now being used in various locations around the world. This article discusses the use of the robotic system, its capabilities, and the advantages and disadvantages of the system. Copyright © 2014 Elsevier Inc. All rights reserved.
Leal Ghezzi, Tiago; Campos Corleta, Oly
2016-10-01
The idea of reproducing himself with the use of a mechanical robot structure has been in man's imagination in the last 3000 years. However, the use of robots in medicine has only 30 years of history. The application of robots in surgery originates from the need of modern man to achieve two goals: the telepresence and the performance of repetitive and accurate tasks. The first "robot surgeon" used on a human patient was the PUMA 200 in 1985. In the 1990s, scientists developed the concept of "master-slave" robot, which consisted of a robot with remote manipulators controlled by a surgeon at a surgical workstation. Despite the lack of force and tactile feedback, technical advantages of robotic surgery, such as 3D vision, stable and magnified image, EndoWrist instruments, physiologic tremor filtering, and motion scaling, have been considered fundamental to overcome many of the limitations of the laparoscopic surgery. Since the approval of the da Vinci(®) robot by international agencies, American, European, and Asian surgeons have proved its factibility and safety for the performance of many different robot-assisted surgeries. Comparative studies of robotic and laparoscopic surgical procedures in general surgery have shown similar results with regard to perioperative, oncological, and functional outcomes. However, higher costs and lack of haptic feedback represent the major limitations of current robotic technology to become the standard technique of minimally invasive surgery worldwide. Therefore, the future of robotic surgery involves cost reduction, development of new platforms and technologies, creation and validation of curriculum and virtual simulators, and conduction of randomized clinical trials to determine the best applications of robotics.
Mechanochemically Active Soft Robots.
Gossweiler, Gregory R; Brown, Cameron L; Hewage, Gihan B; Sapiro-Gheiler, Eitan; Trautman, William J; Welshofer, Garrett W; Craig, Stephen L
2015-10-14
The functions of soft robotics are intimately tied to their form-channels and voids defined by an elastomeric superstructure that reversibly stores and releases mechanical energy to change shape, grip objects, and achieve complex motions. Here, we demonstrate that covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation in soft robots into a mechanochromic, covalent chemical response. A bis-alkene functionalized spiropyran (SP) mechanophore is cured into a molded poly(dimethylsiloxane) (PDMS) soft robot walker and gripper. The stresses and strains necessary for SP activation are compatible with soft robot function. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional robotic device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the robot in a way that might be coupled to autonomous feedback loops that allow the robot to regulate its own activity. The demonstration motivates the simultaneous development of new combinations of mechanophores, materials, and soft, active devices for enhanced functionality.
2014-03-14
CAPE CANAVERAL, Fla. – Bruce Yost of NASA's Ames Research Center discusses a small satellite, known as PhoneSat, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
2014-03-14
CAPE CANAVERAL, Fla. – Ron Diftler of NASA's Johnson Space Center in Houston demonstrates the leg movements of Robonaut 2 during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Hirzinger, G.
(Robots in space)—The paper emphasizes the enormous automation impact in industry caused by microelectronics, a "byproduct" of space-technology. The evolutionary stages of robotic are outlined and it is shown that there are a lot of reasons for more automation, artificial intelligence and robotic in space, too. The telemanipulator concept is compared with the industrial robot concept, both showing up an increasing degree of similarity. The state of the art in sensory systems is discussed. By hand of the typical operations needed in space as rendezvous, assembly and docking the required robot skill is indicated. As a conclusion it is stated that the basic technologies available with industrial robots today could solve a lot of space problems. What remains to do—apart of course from ongoing research—is better integration and adaption of industrial techniques to the need of space technology.
NASA Technical Reports Server (NTRS)
Welch, Richard V.; Edmonds, Gary O.
1994-01-01
The use of robotics in situations involving hazardous materials can significantly reduce the risk of human injuries. The Emergency Response Robotics Project, which began in October 1990 at the Jet Propulsion Laboratory, is developing a teleoperated mobile robot allowing HAZMAT (hazardous materials) teams to remotely respond to incidents involving hazardous materials. The current robot, called HAZBOT III, can assist in locating characterizing, identifying, and mitigating hazardous material incidents without risking entry team personnel. The active involvement of the JPL Fire Department HAZMAT team has been vital in developing a robotic system which enables them to perform remote reconnaissance of a HAZMAT incident site. This paper provides a brief review of the history of the project, discusses the current system in detail, and presents other areas in which robotics can be applied removing people from hazardous environments/operations.
Murphy, D; Challacombe, B; Khan, M S; Dasgupta, P
2006-01-01
Urology has increasingly become a technology‐driven specialty. The advent of robotic surgical systems in the past 10 years has led to urologists becoming the world leaders in the use of such technology. In this paper, we review the history and current status of robotic technology in urology. From the earliest uses of robots for transurethral resection of the prostate, to robotic devices for manipulating laparoscopes and to the current crop of master–slave devices for robotic‐assisted laparoscopic surgery, the evolution of robotics in the urology operating theatre is presented. Future possibilities, including the prospects for nanotechnology in urology, are awaited. PMID:17099094
Robotic systems in spine surgery.
Onen, Mehmet Resid; Naderi, Sait
2014-01-01
Surgical robotic systems have been available for almost twenty years. The first surgical robotic systems were designed as supportive systems for laparoscopic approaches in general surgery (the first procedure was a cholecystectomy in 1987). The da Vinci Robotic System is the most common system used for robotic surgery today. This system is widely used in urology, gynecology and other surgical disciplines, and recently there have been initial reports of its use in spine surgery, for transoral access and anterior approaches for lumbar inter-body fusion interventions. SpineAssist, which is widely used in spine surgery, and Renaissance Robotic Systems, which are considered the next generation of robotic systems, are now FDA approved. These robotic systems are designed for use as guidance systems in spine instrumentation, cement augmentations and biopsies. The aim is to increase surgical accuracy while reducing the intra-operative exposure to harmful radiation to the patient and operating team personnel during the intervention. We offer a review of the published literature related to the use of robotic systems in spine surgery and provide information on using robotic systems.
Buttz, James H.; Shirey, David L.; Hayward, David R.
2003-01-01
A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.
Gutierrez, Mario; Ditto, Richard; Roy, Sanjoy
2018-05-09
A comprehensive review of operative outcomes of robotic surgical procedures performed with the da Vinci robotic system using either endoscopic linear staplers (ELS) or robotic staplers is not available in the published literature. We conducted a literature search to identify publications of robotic surgical procedures in all specialties performed with either ELS or robotic staplers. Twenty-nine manuscripts and six abstracts with relevant information on operative outcomes published from January 2011 to September 2017 were identified. Given the relatively recent market release of robotic staplers in 2014, comparative perioperative clinical outcomes data on the performance of ELS vs. robotic staplers in robotic surgery is very sparse in the published literature. Only three comparative studies of surgeries with the da Vinci robotic system plus ELS vs. da Vinci plus robotic staplers were identified; two in robotic colorectal surgery and the other in robotic gastric bypass surgery. These comparative studies illustrate some nuances in device design and usability, which may impact outcomes and cost, and therefore may be important to consider when selecting the appropriate stapling technologies/technique for different robotic surgeries. Comparative perioperative data on the use of ELS vs. robotic staplers in robotic surgery is scarce (three studies), and current literature identifies both types of devices as safe and effective. Given the longer clinical history of ELS and its relatively more robust evidence base, there may be trade-offs to consider before switching to robotic staplers in certain robotic procedures. However, this literature review may serve as an initial reference for future research.
Full autonomous microline trace robot
NASA Astrophysics Data System (ADS)
Yi, Deer; Lu, Si; Yan, Yingbai; Jin, Guofan
2000-10-01
Optoelectric inspection may find applications in robotic system. In micro robotic system, smaller optoelectric inspection system is preferred. However, as miniaturizing the size of the robot, the number of the optoelectric detector becomes lack. And lack of the information makes the micro robot difficult to acquire its status. In our lab, a micro line trace robot has been designed, which autonomous acts based on its optoelectric detection. It has been programmed to follow a black line printed on the white colored ground. Besides the optoelectric inspection, logical algorithm in the microprocessor is also important. In this paper, we propose a simply logical algorithm to realize robot's intelligence. The robot's intelligence is based on a AT89C2051 microcontroller which controls its movement. The technical details of the micro robot are as follow: dimension: 30mm*25mm*35*mm; velocity: 60mm/s.
NASA Astrophysics Data System (ADS)
Likhachev, Maxim; Arkin, Ronald C.
2000-10-01
The paper investigates how the psychological notion of comfort can be useful in the design of robotic systems. A review of the existing study of human comfort, especially regarding its presence in infants, is conducted with the goal being to determine the relevant characteristics for mapping it onto the robotics domain. Focus is place on the identification of the salient features in the environment that affect the comfort level. Factors involved include current state familiarity, working conditions, the amount and location of available resources, etc. As part of our newly developed comfort function theory, the notion of an object as a psychological attachment for a robot is also introduced, as espoused in Bowlby's theory of attachment. The output space of the comfort function and its dependency on the comfort level are analyzed. The results of the derivation of this comfort function are then presented in terms of the impact they have on robotic behavior. Justification for the use of the comfort function are then presented in terms of the impact they have on robotic behavior. Justification for the use of the comfort function in the domain of robotics is presented with relevance for real-world operations. Also, a transformation of the theoretical discussion into a mathematical framework suitable for implementation within a behavior-based control system is presented. The paper concludes with results of simulation studies and real robot experiments using the derived comfort function.
KREBS, H.I.; VOLPE, B.T.
2015-01-01
This chapter focuses on rehabilitation robotics which can be used to augment the clinician’s toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual’s functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We will provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we will then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We will present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. PMID:23312648
Krebs, H I; Volpe, B T
2013-01-01
This chapter focuses on rehabilitation robotics which can be used to augment the clinician's toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual's functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. Copyright © 2013 Elsevier B.V. All rights reserved.
A Human–Robot Interaction Perspective on Assistive and Rehabilitation Robotics
Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D.; Bianchi, Matteo
2017-01-01
Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human–robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions. PMID:28588473
Multi-Robot Assembly Strategies and Metrics.
Marvel, Jeremy A; Bostelman, Roger; Falco, Joe
2018-02-01
We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.
Multi-Robot Assembly Strategies and Metrics
MARVEL, JEREMY A.; BOSTELMAN, ROGER; FALCO, JOE
2018-01-01
We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies. PMID:29497234
NASA Astrophysics Data System (ADS)
Nyein, Aung Kyaw; Thu, Theint Theint
2008-10-01
In this paper, an articulated type of industrial used robot is discussed. The robot is mainly intended to be used in pick and place operation. It will sense the object at the specified place and move it to a desired location. A peripheral interface controller (PIC16F84A) is used as the main controller of the robot. Infrared LED and IR receiver unit for object detection and 4-bit bidirectional universal shift registers (74LS194) and high current and high voltage Darlington transistors arrays (ULN2003) for driving the arms' motors are used in this robot. The amount of rotation for each arm is regulated by the limit switches. The operation of the robot is very simple but it has the ability of to overcome resetting position after power failure. It can continue its work from the last position before the power is failed without needing to come back to home position.
2014-03-14
CAPE CANAVERAL, Fla. – Two young visitors get an up-close look at an engineering model of Robonaut 2, complete with a set of legs, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
Sample Return Robot Centennial Challenge
2012-06-16
NASA Deputy Administrator Lori Garver, left, listens as Worcester Polytechnic Institute (WPI) Robotics Resource Center Director and NASA-WPI Sample Return Robot Centennial Challenge Judge Ken Stafford points out how the robots navigate the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
NASA Deputy Administrator Lori Garver, right, listens as Worcester Polytechnic Institute (WPI) Robotics Resource Center Director and NASA-WPI Sample Return Robot Centennial Challenge Judge Ken Stafford points out how the robots navigate the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-15
University of Waterloo (Canada) Robotics Team members test their robot on the practice field one day prior to the NASA-WPI Sample Return Robot Centennial Challenge, Friday, June 15, 2012 at the Worcester Polytechnic Institute in Worcester, Mass. Teams will compete for a $1.5 million NASA prize to build an autonomous robot that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-14
A University of Waterloo Robotics Team member tests their robot on the practice field two days prior to the NASA-WPI Sample Return Robot Centennial Challenge, Thursday, June 14, 2012 at the Worcester Polytechnic Institute in Worcester, Mass. Teams will compete for a $1.5 million NASA prize to build an autonomous robot that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Design-Oriented Enhanced Robotics Curriculum
ERIC Educational Resources Information Center
Yilmaz, M.; Ozcelik, S.; Yilmazer, N.; Nekovei, R.
2013-01-01
This paper presents an innovative two-course, laboratory-based, and design-oriented robotics educational model. The robotics curriculum exposed senior-level undergraduate students to major robotics concepts, and enhanced the student learning experience in hybrid learning environments by incorporating the IEEE Region-5 annual robotics competition…
Tan, Huan; Liang, Chen
2011-01-01
This paper proposes a conceptual hybrid cognitive architecture for cognitive robots to learn behaviors from demonstrations in robotic aid situations. Unlike the current cognitive architectures, this architecture puts concentration on the requirements of the safety, the interaction, and the non-centralized processing in robotic aid situations. Imitation learning technologies for cognitive robots have been integrated into this architecture for rapidly transferring the knowledge and skills between human teachers and robots.
NASA Astrophysics Data System (ADS)
Cameron, Jonathan M.; Arkin, Ronald C.
1992-02-01
As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.
NASA Technical Reports Server (NTRS)
Cameron, Jonathan M.; Arkin, Ronald C.
1992-01-01
As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.
Basic Operational Robotics Instructional System
NASA Technical Reports Server (NTRS)
Todd, Brian Keith; Fischer, James; Falgout, Jane; Schweers, John
2013-01-01
The Basic Operational Robotics Instructional System (BORIS) is a six-degree-of-freedom rotational robotic manipulator system simulation used for training of fundamental robotics concepts, with in-line shoulder, offset elbow, and offset wrist. BORIS is used to provide generic robotics training to aerospace professionals including flight crews, flight controllers, and robotics instructors. It uses forward kinematic and inverse kinematic algorithms to simulate joint and end-effector motion, combined with a multibody dynamics model, moving-object contact model, and X-Windows based graphical user interfaces, coordinated in the Trick Simulation modeling environment. The motivation for development of BORIS was the need for a generic system for basic robotics training. Before BORIS, introductory robotics training was done with either the SRMS (Shuttle Remote Manipulator System) or SSRMS (Space Station Remote Manipulator System) simulations. The unique construction of each of these systems required some specialized training that distracted students from the ideas and goals of the basic robotics instruction.
The Power of Educational Robotics
NASA Astrophysics Data System (ADS)
Cummings, Timothy
The purpose of this action research project was to investigate the impact a students' participation in educational robotics has on his or her performance in the STEM subjects. This study attempted to utilize educational robotics as a method for increasing student achievement and engagement in STEM subjects. Over the course of 12 weeks, an after-school robotics program was offered to students. Guided by the standards and principles of VEX IQ, a leading resource in educational robotics, students worked in collaboration on creating a design for their robot, building and testing their robot, and competing in the VEX IQ Crossover Challenge. Student data was gathered through a pre-participation survey, observations from the work they performed in robotics club, their performance in STEM subject classes, and the analysis of their end-of-the-year report card. Results suggest that the students who participate in robotics club experienced a positive impact on their performance in STEM subject classes.
Pediatric robotic urologic surgery-2014
Kearns, James T.; Gundeti, Mohan S.
2014-01-01
We seek to provide a background of the current state of pediatric urologic surgery including a brief history, procedural outcomes, cost considerations, future directions, and the state of robotic surgery in India. Pediatric robotic urology has been shown to be safe and effective in cases ranging from pyeloplasty to bladder augmentation with continent urinary diversion. Complication rates are in line with other methods of performing the same procedures. The cost of robotic surgery continues to decrease, but setting up pediatric robotic urology programs can be costly in terms of both monetary investment and the training of robotic surgeons. The future directions of robot surgery include instrument and system refinements, augmented reality and haptics, and telesurgery. Given the large number of children in India, there is huge potential for growth of pediatric robotic urology in India. Pediatric robotic urologic surgery has been established as safe and effective, and it will be an important tool in the future of pediatric urologic surgery worldwide. PMID:25197187
Alac, Morana; Movellan, Javier; Tanaka, Fumihide
2011-12-01
Social roboticists design their robots to function as social agents in interaction with humans and other robots. Although we do not deny that the robot's design features are crucial for attaining this aim, we point to the relevance of spatial organization and coordination between the robot and the humans who interact with it. We recover these interactions through an observational study of a social robotics laboratory and examine them by applying a multimodal interactional analysis to two moments of robotics practice. We describe the vital role of roboticists and of the group of preverbal infants, who are involved in a robot's design activity, and we argue that the robot's social character is intrinsically related to the subtleties of human interactional moves in laboratories of social robotics. This human involvement in the robot's social agency is not simply controlled by individual will. Instead, the human-machine couplings are demanded by the situational dynamics in which the robot is lodged.
Referees check robots after qualifying match at regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Referees check the robots on the floor of the playing field after a qualifying match of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex . Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow- like disks from the floor, as well as climb onto the platform (with flags) and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
Robots: An Impact on Education.
ERIC Educational Resources Information Center
Blaesi, LaVon; Maness, Marion
1984-01-01
Provides background information on robotics and robots, considering impact of robots on the workplace and concerns of the work force. Discusses incorporating robotics into the educational system at all levels, exploring industry-education partnerships to fund introduction of new technology into the curriculum. New funding sources and funding…
NASA Astrophysics Data System (ADS)
Prescott, Tony J.
2017-04-01
The EPSRC principles of robotics make a number of commitments about the ontological status of robots such as that robots are "just tools" or can give only "an impression or real intelligence". This commentary proposes that this assumes, all too easily, that we know the boundary conditions of future robotics development, and argues that progress towards a more useful set of principles could begin by thinking carefully about the ontological status of robots. Whilst most robots are currently little more than tools, we are entering an era where there will be new kinds of entities that combine some of the properties of tools with psychological capacities that we had previously thought were reserved for complex biological organisms such as humans. The ontological status of robots might be best described as liminal - neither living nor simply mechanical. There is also evidence that people will treat robots as more than just tools regardless of the extent to which their machine nature is transparent. Ethical principles need to be developed that recognise these ontological and psychological issues around the nature of robots and how they are perceived.
Payne, Christopher J; Yang, Guang-Zhong
2014-08-01
Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.
Lendvay, Thomas Sean; Hannaford, Blake; Satava, Richard M
2013-01-01
In just over a decade, robotic surgery has penetrated almost every surgical subspecialty and has even replaced some of the most commonly performed open oncologic procedures. The initial reports on patient outcomes yielded mixed results, but as more medical centers develop high-volume robotics programs, outcomes appear comparable if not improved for some applications. There are limitations to the current commercially available system, and new robotic platforms, some designed to compete in the current market and some to address niche surgical considerations, are being developed that will change the robotic landscape in the next decade. Adoption of these new systems will be dependent on overcoming barriers to true telesurgery that range from legal to logistical. As additional surgical disciplines embrace robotics and open surgery continues to be replaced by robotic approaches, it will be imperative that adequate education and training keep pace with technology. Methods to enhance surgical performance in robotics through the use of simulation and telementoring promise to accelerate learning curves and perhaps even improve surgical readiness through brief virtual-reality warm-ups and presurgical rehearsal. All these advances will need to be carefully and rigorously validated through not only patient outcomes, but also cost efficiency.
Toward a framework for levels of robot autonomy in human-robot interaction
Beer, Jenay M.; Fisk, Arthur D.; Rogers, Wendy A.
2017-01-01
A critical construct related to human-robot interaction (HRI) is autonomy, which varies widely across robot platforms. Levels of robot autonomy (LORA), ranging from teleoperation to fully autonomous systems, influence the way in which humans and robots may interact with one another. Thus, there is a need to understand HRI by identifying variables that influence – and are influenced by – robot autonomy. Our overarching goal is to develop a framework for levels of robot autonomy in HRI. To reach this goal, the framework draws links between HRI and human-automation interaction, a field with a long history of studying and understanding human-related variables. The construct of autonomy is reviewed and redefined within the context of HRI. Additionally, the framework proposes a process for determining a robot’s autonomy level, by categorizing autonomy along a 10-point taxonomy. The framework is intended to be treated as guidelines to determine autonomy, categorize the LORA along a qualitative taxonomy, and consider which HRI variables (e.g., acceptance, situation awareness, reliability) may be influenced by the LORA. PMID:29082107
Human-Robot Planetary Exploration Teams
NASA Technical Reports Server (NTRS)
Tyree, Kimberly
2004-01-01
The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus
Dynamic photogrammetric calibration of industrial robots
NASA Astrophysics Data System (ADS)
Maas, Hans-Gerd
1997-07-01
Today's developments in industrial robots focus on aims like gain of flexibility, improvement of the interaction between robots and reduction of down-times. A very important method to achieve these goals are off-line programming techniques. In contrast to conventional teach-in-robot programming techniques, where sequences of actions are defined step-by- step via remote control on the real object, off-line programming techniques design complete robot (inter-)action programs in a CAD/CAM environment. This poses high requirements to the geometric accuracy of a robot. While the repeatability of robot poses in the teach-in mode is often better than 0.1 mm, the absolute pose accuracy potential of industrial robots is usually much worse due to tolerances, eccentricities, elasticities, play, wear-out, load, temperature and insufficient knowledge of model parameters for the transformation from poses into robot axis angles. This fact necessitates robot calibration techniques, including the formulation of a robot model describing kinematics and dynamics of the robot, and a measurement technique to provide reference data. Digital photogrammetry as an accurate, economic technique with realtime potential offers itself for this purpose. The paper analyzes the requirements posed to a measurement technique by industrial robot calibration tasks. After an overview on measurement techniques used for robot calibration purposes in the past, a photogrammetric robot calibration system based on off-the- shelf lowcost hardware components will be shown and results of pilot studies will be discussed. Besides aspects of accuracy, reliability and self-calibration in a fully automatic dynamic photogrammetric system, realtime capabilities are discussed. In the pilot studies, standard deviations of 0.05 - 0.25 mm in the three coordinate directions could be achieved over a robot work range of 1.7 X 1.5 X 1.0 m3. The realtime capabilities of the technique allow to go beyond kinematic robot
Robots As Intentional Agents: Using Neuroscientific Methods to Make Robots Appear More Social.
Wiese, Eva; Metta, Giorgio; Wykowska, Agnieszka
2017-01-01
Robots are increasingly envisaged as our future cohabitants. However, while considerable progress has been made in recent years in terms of their technological realization, the ability of robots to interact with humans in an intuitive and social way is still quite limited. An important challenge for social robotics is to determine how to design robots that can perceive the user's needs, feelings, and intentions, and adapt to users over a broad range of cognitive abilities. It is conceivable that if robots were able to adequately demonstrate these skills, humans would eventually accept them as social companions. We argue that the best way to achieve this is using a systematic experimental approach based on behavioral and physiological neuroscience methods such as motion/eye-tracking, electroencephalography, or functional near-infrared spectroscopy embedded in interactive human-robot paradigms. This approach requires understanding how humans interact with each other, how they perform tasks together and how they develop feelings of social connection over time, and using these insights to formulate design principles that make social robots attuned to the workings of the human brain. In this review, we put forward the argument that the likelihood of artificial agents being perceived as social companions can be increased by designing them in a way that they are perceived as intentional agents that activate areas in the human brain involved in social-cognitive processing. We first review literature related to social-cognitive processes and mechanisms involved in human-human interactions, and highlight the importance of perceiving others as intentional agents to activate these social brain areas. We then discuss how attribution of intentionality can positively affect human-robot interaction by (a) fostering feelings of social connection, empathy and prosociality, and by (b) enhancing performance on joint human-robot tasks. Lastly, we describe circumstances under which
Robots As Intentional Agents: Using Neuroscientific Methods to Make Robots Appear More Social
Wiese, Eva; Metta, Giorgio; Wykowska, Agnieszka
2017-01-01
Robots are increasingly envisaged as our future cohabitants. However, while considerable progress has been made in recent years in terms of their technological realization, the ability of robots to interact with humans in an intuitive and social way is still quite limited. An important challenge for social robotics is to determine how to design robots that can perceive the user’s needs, feelings, and intentions, and adapt to users over a broad range of cognitive abilities. It is conceivable that if robots were able to adequately demonstrate these skills, humans would eventually accept them as social companions. We argue that the best way to achieve this is using a systematic experimental approach based on behavioral and physiological neuroscience methods such as motion/eye-tracking, electroencephalography, or functional near-infrared spectroscopy embedded in interactive human–robot paradigms. This approach requires understanding how humans interact with each other, how they perform tasks together and how they develop feelings of social connection over time, and using these insights to formulate design principles that make social robots attuned to the workings of the human brain. In this review, we put forward the argument that the likelihood of artificial agents being perceived as social companions can be increased by designing them in a way that they are perceived as intentional agents that activate areas in the human brain involved in social-cognitive processing. We first review literature related to social-cognitive processes and mechanisms involved in human–human interactions, and highlight the importance of perceiving others as intentional agents to activate these social brain areas. We then discuss how attribution of intentionality can positively affect human–robot interaction by (a) fostering feelings of social connection, empathy and prosociality, and by (b) enhancing performance on joint human–robot tasks. Lastly, we describe circumstances under
RHOBOT: Radiation hardened robotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, P.C.; Posey, L.D.
1997-10-01
A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.
Leung, Universe
2014-01-01
Robotic surgery is an evolving technology that has been successfully applied to a number of surgical specialties, but its use in liver surgery has so far been limited. In this review article we discuss the challenges of minimally invasive liver surgery, the pros and cons of robotics, the evolution of medical robots, and the potentials in applying this technology to liver surgery. The current data in the literature are also presented. PMID:25392840
Results from Three Years of Ka-Band Propagation Characterization at Svalbard, Norway
NASA Technical Reports Server (NTRS)
Nessel, James; Zemba, Michael; Morse, Jacquelynne
2015-01-01
Over the next several years, NASA plans to launch several earth science missions which are expected to achieve data throughputs of 5-40 terabits per day transmitted from low earth orbiting spacecraft to ground stations. The current S-band and X-band frequency allocations in use by NASA, however, are incapable of supporting the data rates required to meet this demand. As such, NASA is in the planning stages to upgrade its existing Near Earth Network (NEN) polar ground stations to support Ka-band (25.5-27 GHz) operations. Consequently, it installed and operated a Ka-band radiometer at the Svalbard site. Svalbard was chosen as the appropriate site for two primary reasons: (1) Svalbard will be the first site to be upgraded to Ka-band operations within the NEN Polar Network enhancement plan, and (2) there exists a complete lack of Ka-band propagation data at this site (as opposed to the Fairbanks, AK NEN site, which has 5 years of characterization collected during the Advanced Communications Technology becomes imperative that characterization of propagation effects at these NEN sites is conducted to determine expected system Satellite (ACTS) campaign). processing and provide the Herein, we discuss the data three-year measurement results performance, particularly at low elevation angles ((is) less than 10 deg) from the ongoing Ka-band propagation characterization where spacecraft signal acquisition typically occurs. Since May 2011, NASA Glenn Research Center has installed and operated a Ka-band radiometer at the NEN site located in Svalbard, Norway. The Ka-band radiometer monitors the water vapor line, as well as 4 frequencies around 26.5 GHz at a fixed 10 deg elevation angle. Three-year data collection results indicate good campaign at Svalbard, Norway. Comparison of these results with the ITU models and existing ERA profile data indicates very good agreement when the 2010 rain maps and cloud statistics are used. Finally, the Svalbard data is used to derive the expected
Results from Three Years of Ka-band Propagation Characterization at Svalbard, Norway
NASA Technical Reports Server (NTRS)
Nessel, James A.; Zemba, Michael; Morse, Jacquelynne
2015-01-01
Over the next several years, NASA plans to launch several earth science missions which are expected to achieve data throughputs of 5-40 terabits per day transmitted from low earth orbiting spacecraft to ground stations. The current S-band and X-band frequency allocations in use by NASA, however, are incapable of supporting the data rates required to meet this demand. As such, NASA is in the planning stages to upgrade its existing Near Earth Network (NEN) polar ground stations to support Ka-band (25.5-27 GHz) operations. Consequently, it installed and operated a Ka-band radiometer at the Svalbard site. Svalbard was chosen as the appropriate site for two primary reasons: (1) Svalbard will be the first site to be upgraded to Ka-band operations within the NEN Polar Network enhancement plan, and (2) there exists a complete lack of Ka-band propagation data at this site (as opposed to the Fairbanks, AK NEN site, which has 5 years of characterization collected during the Advanced Communications Technology becomes imperative that characterization of propagation effects at these NEN sites is conducted to determine expected system Satellite (ACTS) campaign). processing and provide the Herein, we discuss the data three-year measurement results performance, particularly at low elevation angles ((is) less than 10 deg) from the ongoing Ka-band propagation characterization where spacecraft signal acquisition typically occurs. Since May 2011, NASA Glenn Research Center has installed and operated a Ka-band radiometer at the NEN site located in Svalbard, Norway. The Ka-band radiometer monitors the water vapor line, as well as 4 frequencies around 26.5 GHz at a fixed 10 deg elevation angle. Three-year data collection results indicate good campaign at Svalbard, Norway. Comparison of these results with the ITU models and existing ERA profile data indicates very good agreement when the 2010 rain maps and cloud statistics are used. Finally, the Svalbard data is used to derive the expected
Molecular Paleoclimate Reconstructions over the Last 9 ka from a Peat Sequence in South China
Wang, Xinxin; Huang, Xianyu; Sachse, Dirk; Ding, Weihua; Xue, Jiantao
2016-01-01
To achieve a better understanding of Holocene climate change in the monsoon regions of China, we investigated the molecular distributions and carbon and hydrogen isotope compositions (δ13C and δD values) of long-chain n-alkanes in a peat core from the Shiwangutian (SWGT) peatland, south China over the last 9 ka. By comparisons with other climate records, we found that the δ13C values of the long-chain n-alkanes can be a proxy for humidity, while the δD values of the long-chain n-alkanes primarily recorded the moisture source δD signal during 9–1.8 ka BP and responded to the dry climate during 1.8–0.3 ka BP. Together with the average chain length (ACL) and the carbon preference index (CPI) data, the climate evolution over last 9 ka in the SWGT peatland can be divided into three stages. During the first stage (9–5 ka BP), the δ13C values were depleted and CPI and Paq values were low, while ACL values were high. They reveal a period of warm and wet climate, which is regarded as the Holocene optimum. The second stage (5–1.8 ka BP) witnessed a shift to relatively cool and dry climate, as indicated by the more positive δ13C values and lower ACL values. During the third stage (1.8–0.3 ka BP), the δ13C, δD, CPI and Paq values showed marked increase and ACL values varied greatly, implying an abrupt change to cold and dry conditions. This climate pattern corresponds to the broad decline in Asian monsoon intensity through the latter part of the Holocene. Our results do not support a later Holocene optimum in south China as suggested by previous studies. PMID:27505008
Vulnerable users: deceptive robotics
NASA Astrophysics Data System (ADS)
Collins, Emily C.
2017-07-01
The Principles of Robotics were outlined by the EPSRC in 2010. They are aimed at regulating robots in the real world. This paper represents a response to principle number four which reads: "Robots are manufactured artefacts. They should not be designed in a deceptive way to exploit vulnerable users; instead their machine nature should be transparent". The following critique questions the principle's validity by asking whether it is correct as a statement about the nature of robots, and the relationship between robots and people. To achieve this, the principle is broken down into the following two main component statements: (1) "Robots should not be designed in a deceptive way to exploit vulnerable users", and, (2) "Machine nature should be transparent". It is argued that both of the component statements that make up this principle are fundamentally flawed because of the undefined nature of the critical terms: "deceptive", "vulnerable", and "machine nature", and that as such the principle as a whole is misleading.
ERIC Educational Resources Information Center
Faria, Carlos; Vale, Carolina; Machado, Toni; Erlhagen, Wolfram; Rito, Manuel; Monteiro, Sérgio; Bicho, Estela
2016-01-01
Robotics has been playing an important role in modern surgery, especially in procedures that require extreme precision, such as neurosurgery. This paper addresses the challenge of teaching robotics to undergraduate engineering students, through an experiential learning project of robotics fundamentals based on a case study of robot-assisted…
GPS Enabled Semi-Autonomous Robot
2017-09-01
equal and the goal has not yet been reached (i.e., any time the robot has reached a local minimum), and direct the robot to travel in a specific...whether the robot was turning or not. The challenge is overcome by ensuring the robot travels at its maximum speed at all times . Further research into...robot’s fixed reference frame was recalculated each time through the control loop. If the encoder data allows for the robot to appear to have travelled
Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra
2011-01-01
Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management.
NASA Astrophysics Data System (ADS)
Singer, Brad S.; Jicha, Brian R.; He, Huaiyu; Zhu, Rixiang
2014-04-01
New 40Ar/39Ar dating of a comenditic lava atop Tianchi Volcano, China, indicates eruption at 17.1 ± 0.9 ka. The flow interior records a pair of transitional virtual geomagnetic poles and a low paleointensity of ~25 μT. Thus, it records a geomagnetic field excursion that is younger than the 41 ka Laschamp or 32 ka Auckland excursions. Implications are: (1) following a repose of several tens of kyr, Tianchi Volcano became highly active immediately following termination of the last glaciation maximum. The flare-up of silicic eruptions may reflect rapid deglaciation of the edifice. (2) A 17 ka age for the Tianchi excursion provides the first direct radioisotopic evidence that excursional behavior, which is imprecisely dated and less well documented magnetically at several other sites, is a global feature of geodynamo behavior. (3) During the Brunhes chron, 13 well-dated excursions cluster into two periods, including seven between 17 and 212 ka, and six between about 530 and 730 ka.
Robotics in reproductive medicine.
Sroga, Julie; Patel, Sejal Dharia; Falcone, Tommaso
2008-01-01
In the past decade, robotic technology has been increasingly incorporated into various industries, including surgery and medicine. This chapter will review the history, development, current applications, and future of robotic technology in reproductive medicine. A literature search was performed for all publications regarding robotic technology in medicine, surgery, reproductive endocrinology, and its role in both surgical education and telepresence surgery. As robotic assisted surgery has emerged, this technology provides a feasible option for minimally invasive surgery, impacts surgical education, and plays a role in telepresence surgery.
Robotic Mining Competition - Activities
2018-05-17
Team members from Case Western Reserve University pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Activities
2018-05-17
Team members from The University of Utah pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Activities
2018-05-17
Team members from The University of Alabama pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Activities
2018-05-17
Team members from New York University work on their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Activities
2018-05-17
Team members from York College CUNY are with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Activities
2018-05-17
Team members from the University of Arkansas pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
The Celestial Reference Frame at X/Ka-band (8.4/32 GHz)
NASA Technical Reports Server (NTRS)
Jacobs, C. S.; Clark, J. E.; Heflin, M. B.; Skjerve, L. J.; Sovers, O. J.; Garcia-Miro, C.; Moll, V. E.; Horiuchi, S.
2011-01-01
A celestial reference frame at X/Ka-band (8.4/32 GHz) has been constructed using fifty-one 24-hour sessions with the Deep Space Network. We report on observations which have detected 436 sources covering the full 24 hours of right ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of 200 micro-arcsec in a cos delta and 290 micro-arcsec in delta. There is evidence for zonal errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of phase calibration, troposphere mismodelling, and limited southern geometry. The motivations for extending the ICRF to frequencies above 8 GHz are to access more compact source morphology for improved frame stability, to provide calibrators for phase referencing, and to support spacecraft navigation at Ka-band.
Fiore, Stephen M; Wiltshire, Travis J; Lobato, Emilio J C; Jentsch, Florian G; Huang, Wesley H; Axelrod, Benjamin
2013-01-01
As robots are increasingly deployed in settings requiring social interaction, research is needed to examine the social signals perceived by humans when robots display certain social cues. In this paper, we report a study designed to examine how humans interpret social cues exhibited by robots. We first provide a brief overview of perspectives from social cognition in humans and how these processes are applicable to human-robot interaction (HRI). We then discuss the need to examine the relationship between social cues and signals as a function of the degree to which a robot is perceived as a socially present agent. We describe an experiment in which social cues were manipulated on an iRobot Ava(TM) mobile robotics platform in a hallway navigation scenario. Cues associated with the robot's proxemic behavior were found to significantly affect participant perceptions of the robot's social presence and emotional state while cues associated with the robot's gaze behavior were not found to be significant. Further, regardless of the proxemic behavior, participants attributed more social presence and emotional states to the robot over repeated interactions than when they first interacted with it. Generally, these results indicate the importance for HRI research to consider how social cues expressed by a robot can differentially affect perceptions of the robot's mental states and intentions. The discussion focuses on implications for the design of robotic systems and future directions for research on the relationship between social cues and signals.
Duran, Cassidy; Kashef, Elika; El-Sayed, Hosam F; Bismuth, Jean
2011-01-01
Surgical robotics was first utilized to facilitate neurosurgical biopsies in 1985, and it has since found application in orthopedics, urology, gynecology, and cardiothoracic, general, and vascular surgery. Surgical assistance systems provide intelligent, versatile tools that augment the physician's ability to treat patients by eliminating hand tremor and enabling dexterous operation inside the patient's body. Surgical robotics systems have enabled surgeons to treat otherwise untreatable conditions while also reducing morbidity and error rates, shortening operative times, reducing radiation exposure, and improving overall workflow. These capabilities have begun to be realized in two important realms of aortic vascular surgery, namely, flexible robotics for exclusion of complex aortic aneurysms using branched endografts, and robot-assisted laparoscopic aortic surgery for occlusive and aneurysmal disease.
Comparison of AltiKa and CryoSat-2 Elevation and Elevation Rates over the Amundsen Sea Sector
NASA Astrophysics Data System (ADS)
Otosaka, I.; Shepherd, A.; Hogg, A.
2017-12-01
Altimeters have been successfully used for more than two decades to observe changes in the ice sheet surface and to estimate the contribution of ice sheets to sea level rise. The Satellite for Argos and AltiKa (SARAL) was launched in February 2013 as a joint mission between the French space agency (CNES) and the Indian Space Research Organisation (ISRO). While the altimeters previously launched into space are operating at Ku-band (13.6 GHz), the altimeter on board SARAL, AltiKa, is the first instrument to operate at Ka-band (36.8 GHz). The higher frequency of AltiKa is expected to lead to reduced penetration of the radar signal into the snowpack, compared to Ku-band. A comparison of ice sheet elevation measurements recorded at the two frequencies may therefore provide useful information on surface and its scattering properties. In this study, we compare elevation and elevation rates recorded by AltiKa and CryoSat-2 between March 2013 and April 2017 over the Amundsen Sea Sector (ASS), one of the most rapidly changing sectors of West Antarctica. Elevation and elevation rates are computed within 5 km grid cells using a plane fit method, taking into account the contributions of topography and fluctuations in elevation and backscatter. The drifting orbit and imaging modes of CryoSat-2 result in 78,7 % sampling of the study area, whereas AltiKa samples 39,7 % due to its sparser orbit pattern and due to loss of signal in steeply sloping coastal margins. Over the study period, the root mean square difference between elevation and elevation change recorded at Ka-band and Ku-band were 40.3 m and 0.54 m/yr, respectively. While the broad spatial pattern of elevation change is well resolved by both satellites, data gaps along the Getz coastline may be partly responsible for the lower elevation change rate observed at Ka-band. We also compared CryoSat-2 and AltiKa to coincident airborne data from NASA's Operation IceBridge (OIB). The mean difference of elevation rate between
NASA Astrophysics Data System (ADS)
Kozyrev, Iu. G.
Topics covered include terms, definitions, and classification; operator-directed manipulators; autooperators as used in automated pressure casting; construction and application of industrial robots; and the operating bases of automated systems. Attention is given to adaptive and interactive robots; gripping mechanisms; applications to foundary production, press-forging plants, heat treatment, welding, and assembly operations. A review of design recommendations includes a determination of fundamental structural and technological indicators for industrial robots and a consideration of drive mechanisms.
The Summer Robotic Autonomy Course
NASA Technical Reports Server (NTRS)
Nourbakhsh, Illah R.
2002-01-01
We offered a first Robotic Autonomy course this summer, located at NASA/Ames' new NASA Research Park, for approximately 30 high school students. In this 7-week course, students worked in ten teams to build then program advanced autonomous robots capable of visual processing and high-speed wireless communication. The course made use of challenge-based curricula, culminating each week with a Wednesday Challenge Day and a Friday Exhibition and Contest Day. Robotic Autonomy provided a comprehensive grounding in elementary robotics, including basic electronics, electronics evaluation, microprocessor programming, real-time control, and robot mechanics and kinematics. Our course then continued the educational process by introducing higher-level perception, action and autonomy topics, including teleoperation, visual servoing, intelligent scheduling and planning and cooperative problem-solving. We were able to deliver such a comprehensive, high-level education in robotic autonomy for two reasons. First, the content resulted from close collaboration between the CMU Robotics Institute and researchers in the Information Sciences and Technology Directorate and various education program/project managers at NASA/Ames. This collaboration produced not only educational content, but will also be focal to the conduct of formative and summative evaluations of the course for further refinement. Second, CMU rapid prototyping skills as well as the PI's low-overhead perception and locomotion research projects enabled design and delivery of affordable robot kits with unprecedented sensory- locomotory capability. Each Trikebot robot was capable of both indoor locomotion and high-speed outdoor motion and was equipped with a high-speed vision system coupled to a low-cost pan/tilt head. As planned, follow the completion of Robotic Autonomy, each student took home an autonomous, competent robot. This robot is the student's to keep, as she explores robotics with an extremely capable tool in the
NASA Technical Reports Server (NTRS)
Bradley, Arthur; Dubowsky, Steven; Quinn, Roger; Marzwell, Neville
2005-01-01
Robots that operate independently of one another will not be adequate to accomplish the future exploration tasks of long-distance autonomous navigation, habitat construction, resource discovery, and material handling. Such activities will require that systems widely share information, plan and divide complex tasks, share common resources, and physically cooperate to manipulate objects. Recognizing the need for interoperable robots to accomplish the new exploration initiative, NASA s Office of Exploration Systems Research & Technology recently funded the development of the Joint Technical Architecture for Robotic Systems (JTARS). JTARS charter is to identify the interface standards necessary to achieve interoperability among space robots. A JTARS working group (JTARS-WG) has been established comprising recognized leaders in the field of space robotics including representatives from seven NASA centers along with academia and private industry. The working group s early accomplishments include addressing key issues required for interoperability, defining which systems are within the project s scope, and framing the JTARS manuals around classes of robotic systems.
Laboratory systems integration: robotics and automation.
Felder, R A
1991-01-01
Robotic technology is going to have a profound impact on the clinical laboratory of the future. Faced with increased pressure to reduce health care spending yet increase services to patients, many laboratories are looking for alternatives to the inflexible or "fixed" automation found in many clinical analyzers. Robots are being examined by many clinical pathologists as an attractive technology which can adapt to the constant changes in laboratory testing. Already, laboratory designs are being altered to accommodate robotics and automated specimen processors. However, the use of robotics and computer intelligence in the clinical laboratory is still in its infancy. Successful examples of robotic automation exist in several laboratories. Investigators have used robots to automate endocrine testing, high performance liquid chromatography, and specimen transportation. Large commercial laboratories are investigating the use of specimen processors which combine the use of fixed automation and robotics. Robotics have also reduced the exposure of medical technologists to specimens infected with viral pathogens. The successful examples of clinical robotics applications were a result of the cooperation of clinical chemists, engineers, and medical technologists. At the University of Virginia we have designed and implemented a robotic critical care laboratory. Initial clinical experience suggests that robotic performance is reliable, however, staff acceptance and utilization requires continuing education. We are also developing a robotic cyclosporine which promises to greatly reduce the labor costs of this analysis. The future will bring lab wide automation that will fully integrate computer artificial intelligence and robotics. Specimens will be transported by mobile robots. Specimen processing, aliquotting, and scheduling will be automated.(ABSTRACT TRUNCATED AT 250 WORDS)
Measurement of the Robot Motor Capability of a Robot Motor System: A Fitts's-Law-Inspired Approach
Lin, Hsien-I; George Lee, C. S.
2013-01-01
Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly. PMID:23820745
Measurement of the robot motor capability of a robot motor system: a Fitts's-law-inspired approach.
Lin, Hsien-I; Lee, C S George
2013-07-02
Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly.
Gravish, Nick; Lauder, George V
2018-03-29
For centuries, designers and engineers have looked to biology for inspiration. Biologically inspired robots are just one example of the application of knowledge of the natural world to engineering problems. However, recent work by biologists and interdisciplinary teams have flipped this approach, using robots and physical models to set the course for experiments on biological systems and to generate new hypotheses for biological research. We call this approach robotics-inspired biology; it involves performing experiments on robotic systems aimed at the discovery of new biological phenomena or generation of new hypotheses about how organisms function that can then be tested on living organisms. This new and exciting direction has emerged from the extensive use of physical models by biologists and is already making significant advances in the areas of biomechanics, locomotion, neuromechanics and sensorimotor control. Here, we provide an introduction and overview of robotics-inspired biology, describe two case studies and suggest several directions for the future of this exciting new research area. © 2018. Published by The Company of Biologists Ltd.
Sample Return Robot Centennial Challenge
2012-06-16
A judge for the NASA-WPI Sample Return Robot Centennial Challenge follows a robot on the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
2017-02-01
DARPA ROBOTICS CHALLENGE (DRC) USING HUMAN-MACHINE TEAMWORK TO PERFORM DISASTER RESPONSE WITH A HUMANOID ROBOT FLORIDA INSTITUTE FOR HUMAN AND...AND SUBTITLE DARPA ROBOTICS CHALLENGE (DRC) USING HUMAN-MACHINE TEAMWORK TO PERFORM DISASTER RESPONSE WITH A HUMANOID ROBOT 5a. CONTRACT NUMBER...Human and Machine Cognition (IHMC) from 2012-2016 through three phases of the Defense Advanced Research Projects Agency (DARPA) Robotics Challenge
Bayesian model aggregation for ensemble-based estimates of protein pKa values
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosink, Luke J.; Hogan, Emilie A.; Pulsipher, Trenton C.
2014-03-01
This paper investigates an ensemble-based technique called Bayesian Model Averaging (BMA) to improve the performance of protein amino acid pmore » $$K_a$$ predictions. Structure-based p$$K_a$$ calculations play an important role in the mechanistic interpretation of protein structure and are also used to determine a wide range of protein properties. A diverse set of methods currently exist for p$$K_a$$ prediction, ranging from empirical statistical models to {\\it ab initio} quantum mechanical approaches. However, each of these methods are based on a set of assumptions that have inherent bias and sensitivities that can effect a model's accuracy and generalizability for p$$K_a$$ prediction in complicated biomolecular systems. We use BMA to combine eleven diverse prediction methods that each estimate pKa values of amino acids in staphylococcal nuclease. These methods are based on work conducted for the pKa Cooperative and the pKa measurements are based on experimental work conducted by the Garc{\\'i}a-Moreno lab. Our study demonstrates that the aggregated estimate obtained from BMA outperforms all individual prediction methods in our cross-validation study with improvements from 40-70\\% over other method classes. This work illustrates a new possible mechanism for improving the accuracy of p$$K_a$$ prediction and lays the foundation for future work on aggregate models that balance computational cost with prediction accuracy.« less
Integration of Haptics in Agricultural Robotics
NASA Astrophysics Data System (ADS)
Kannan Megalingam, Rajesh; Sreekanth, M. M.; Sivanantham, Vinu; Sai Kumar, K.; Ghanta, Sriharsha; Surya Teja, P.; Reddy, Rajesh G.
2017-08-01
Robots can differentiate with open loop system and closed loop system robots. We face many problems when we do not have a feedback from robots. In this research paper, we are discussing all possibilities to achieve complete closed loop system for Multiple-DOF Robotic Arm, which is used in a coconut tree climbing and cutting robot by introducing a Haptic device. We are working on various sensors like tactile, vibration, force and proximity sensors for getting feedback. For monitoring the robotic arm achieved by graphical user interference software which simulates the working of the robotic arm, send the feedback of all the real time analog values which are produced by various sensors and provide real-time graphs for estimate the efficiency of the Robot.
Robust Software Architecture for Robots
NASA Technical Reports Server (NTRS)
Aghazanian, Hrand; Baumgartner, Eric; Garrett, Michael
2009-01-01
Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys.
Sample Return Robot Centennial Challenge
2012-06-15
Wunderkammer Laboratory Team leader Jim Rothrock, left, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "Cerberus" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Rothrock's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-15
SpacePRIDE Team members Chris Williamson, right, and Rob Moore, second from right, answer questions from 8th grade Sullivan Middle School (Mass.) students about their robot on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. SpacePRIDE's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases.
Slater, Anthony Michael
2014-10-01
Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.
The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases
NASA Astrophysics Data System (ADS)
Slater, Anthony Michael
2014-10-01
Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.
Robot navigation research using the HERMIES mobile robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, D.L.
1989-01-01
In recent years robot navigation has attracted much attention from researchers around the world. Not only are theoretical studies being simulated on sophisticated computers, but many mobile robots are now used as test vehicles for these theoretical studies. Various algorithms have been perfected for navigation in a known static environment; but navigation in an unknown and dynamic environment poses a much more challenging problem for researchers. Many different methodologies have been developed for autonomous robot navigation, but each methodology is usually restricted to a particular type of environment. One important research focus of the Center for Engineering Systems Advanced researchmore » (CESAR) at Oak Ridge National Laboratory, is autonomous navigation in unknown and dynamic environments using the series of HERMIES mobile robots. The research uses an expert system for high-level planning interfaced with C-coded routines for implementing the plans, and for quick processing of data requested by the expert system. In using this approach, the navigation is not restricted to one methodology since the expert system can activate a rule module for the methodology best suited for the current situation. Rule modules can be added the rule base as they are developed and tested. Modules are being developed or enhanced for navigating from a map, searching for a target, exploring, artificial potential-field navigation, navigation using edge-detection, etc. This paper will report on the various rule modules and methods of navigation in use, or under development at CESAR, using the HERMIES-IIB robot as a testbed. 13 refs., 5 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This plan covers robotics Research, Development, Demonstration, Testing and Evaluation activities in the Program for the next five years. These activities range from bench-scale R D to full-scale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development Program (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management (ER WM) operations at DOE sites to be safer,more » faster and cheaper. Five priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. In July 1990 a forum was held announcing the robotics program. Over 60 organizations (industrial, university, and federal laboratory) made presentations on their robotics capabilities. To stimulate early interactions with the ER WM activities at DOE sites, as well as with the robotics community, the RTDP sponsored four technology demonstrations related to ER WM needs. These demonstrations integrated commercial technology with robotics technology developed by DOE in support of areas such as nuclear reactor maintenance and the civilian reactor waste program. 2 figs.« less
Robotic Mining Competition - Activities
2018-05-17
First-time participants from Saginaw Valley State University pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Activities
2018-05-17
Team members from York College CUNY make adjustments to their robot miner for its turn in the mining arena on the fourth day of NASA's 9th Robotic Mining Competition, May 17, inside the RobotPits at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Activities
2018-05-17
Team members from the South Dakota School of Mines & Technology pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Setup
2018-05-14
On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, college team members work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Setup
2018-05-14
On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from Temple University work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Activities
2018-05-17
Team members from the University of Colorado Boulder work on their robot miner in the RobotPits in the Educator Resource Center on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
ERIC Educational Resources Information Center
Cappelleri, D. J.; Vitoroulis, N.
2013-01-01
This paper presents a series of novel project-based learning labs for an introductory robotics course that are developed into a semester-long Robotic Decathlon. The last three events of the Robotic Decathlon are used as three final one-week-long project tasks; these replace a previous course project that was a semester-long robotics competition.…
Robots in Space -Psychological Aspects
NASA Technical Reports Server (NTRS)
Sipes, Walter E.
2006-01-01
A viewgraph presentation on the psychological aspects of developing robots to perform routine operations associated with monitoring, inspection, maintenance and repair in space is shown. The topics include: 1) Purpose; 2) Vision; 3) Current Robots in Space; 4) Ground Based Robots; 5) AERCam; 6) Rotating Bladder Robot (ROBLR); 7) DART; 8) Robonaut; 9) Full Immersion Telepresence Testbed; 10) ERA; and 11) Psychological Aspects
Cooperative Autonomous Robots for Reconnaissance
2009-03-06
REPORT Cooperative Autonomous Robots for Reconnaissance 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Collaborating mobile robots equipped with WiFi ...Cooperative Autonomous Robots for Reconnaissance Report Title ABSTRACT Collaborating mobile robots equipped with WiFi transceivers are configured as a mobile...equipped with WiFi transceivers are configured as a mobile ad-hoc network. Algorithms are developed to take advantage of the distributed processing
Review of emerging surgical robotic technology.
Peters, Brian S; Armijo, Priscila R; Krause, Crystal; Choudhury, Songita A; Oleynikov, Dmitry
2018-04-01
The use of laparoscopic and robotic procedures has increased in general surgery. Minimally invasive robotic surgery has made tremendous progress in a relatively short period of time, realizing improvements for both the patient and surgeon. This has led to an increase in the use and development of robotic devices and platforms for general surgery. The purpose of this review is to explore current and emerging surgical robotic technologies in a growing and dynamic environment of research and development. This review explores medical and surgical robotic endoscopic surgery and peripheral technologies currently available or in development. The devices discussed here are specific to general surgery, including laparoscopy, colonoscopy, esophagogastroduodenoscopy, and thoracoscopy. Benefits and limitations of each technology were identified and applicable future directions were described. A number of FDA-approved devices and platforms for robotic surgery were reviewed, including the da Vinci Surgical System, Sensei X Robotic Catheter System, FreeHand 1.2, invendoscopy E200 system, Flex® Robotic System, Senhance, ARES, the Single-Port Instrument Delivery Extended Research (SPIDER), and the NeoGuide Colonoscope. Additionally, platforms were reviewed which have not yet obtained FDA approval including MiroSurge, ViaCath System, SPORT™ Surgical System, SurgiBot, Versius Robotic System, Master and Slave Transluminal Endoscopic Robot, Verb Surgical, Miniature In Vivo Robot, and the Einstein Surgical Robot. The use and demand for robotic medical and surgical platforms is increasing and new technologies are continually being developed. New technologies are increasingly implemented to improve on the capabilities of previously established systems. Future studies are needed to further evaluate the strengths and weaknesses of each robotic surgical device and platform in the operating suite.
Robot computer problem solving system
NASA Technical Reports Server (NTRS)
Merriam, E. W.; Becker, J. D.
1973-01-01
A robot computer problem solving system which represents a robot exploration vehicle in a simulated Mars environment is described. The model exhibits changes and improvements made on a previously designed robot in a city environment. The Martian environment is modeled in Cartesian coordinates; objects are scattered about a plane; arbitrary restrictions on the robot's vision have been removed; and the robot's path contains arbitrary curves. New environmental features, particularly the visual occlusion of objects by other objects, were added to the model. Two different algorithms were developed for computing occlusion. Movement and vision capabilities of the robot were established in the Mars environment, using LISP/FORTRAN interface for computational efficiency. The graphical display program was redesigned to reflect the change to the Mars-like environment.
Walking Robot Locomotion System Conception
NASA Astrophysics Data System (ADS)
Ignatova, D.; Abadjieva, E.; Abadjiev, V.; Vatzkitchev, Al.
2014-09-01
This work is a brief analysis on the application and perspective of using the walking robots in different areas in practice. The most common characteristics of walking four legs robots are presented here. The specific features of the applied actuators in walking mechanisms are also shown in the article. The experience of Institute of Mechanics - BAS is illustrated in creation of Spiroid and Helicon1 gears and their assembly in actuation of studied robots. Loading on joints reductors of robot legs is modelled, when the geometrical and the walking parameters of the studied robot are preliminary defined. The obtained results are purposed for designing the control of the loading of reductor type Helicon in the legs of the robot, when it is experimentally tested.
NASA's Intelligent Robotics Group
2017-01-06
Shareable video highlighting the Intelligent Robotics Group's 25 years of experience developing tools to allow humans and robots to work as teammates. Highlights the VERVE software, which allows researchers to see a 3D representation of the robot's world and mentions how Nissan is using a version of VERVE in the autonomous vehicle research.
NASA Astrophysics Data System (ADS)
Sancho, Carlos; Arenas, Concha; Vázquez-Urbez, Marta; Pardo, Gonzalo; Lozano, María Victoria; Peña-Monné, José Luis; Hellstrom, John; Ortiz, José Eugenio; Osácar, María Cinta; Auqué, Luis; Torres, Trinidad
2015-11-01
The drainage area of the Iberian Ranges (NE Spain) houses one of the most extensive Quaternary fluvial tufaceous records in Europe. In this study, tufa deposits in the Añamaza, Mesa, Piedra and Ebrón river valleys were mapped, stratigraphically described and chronologically referenced from U/Th disequilibrium series, amino acid racemization and radiocarbon methods. Tufa deposits accumulated in cascades, barrage-cascades and related damming areas developed in stepped fluvial systems. The maximum frequency of tufa deposition was identified at 120 ka (Marine Oxygen Isotope Stage [MIS] 5e), 102 ka (MIS 5c), 85 ka ( MIS 5a) and 7 ka (MIS 1), probably under warmer and wetter conditions than today. Additional phases of tufa deposition appear at 353 ka ( end of MIS 11), 258-180 ka (MIS 7) and 171-154 ka (MIS 6). Although most tufa deposition episodes are clearly correlated with interstadial periods, the occurrence of tufa deposits during the penultimate glaciation (MIS 6) is remarkable, indicating that the onset of this stage was climatically favourable in the Iberian Peninsula. Biostatic conditions and the dynamics of karstic systems regulating tufa deposition seem to be sensitive to the precipitation regime, controlled by shifts in the position of North Atlantic atmospheric belts, and summer insolation, regulated by orbital forcing.
Robotics--The New Silent Majority: Engineering Robot Applications and Education.
ERIC Educational Resources Information Center
Kimbler, D. L.
1984-01-01
The impact of robotics in education is discussed in terms of academic assistance to industry in robotics as well as academic problems in handling the demands put upon it. Some potential solutions that can have lasting impact on educational systems are proposed. (JN)
Vision servo of industrial robot: A review
NASA Astrophysics Data System (ADS)
Zhang, Yujin
2018-04-01
Robot technology has been implemented to various areas of production and life. With the continuous development of robot applications, requirements of the robot are also getting higher and higher. In order to get better perception of the robots, vision sensors have been widely used in industrial robots. In this paper, application directions of industrial robots are reviewed. The development, classification and application of robot vision servo technology are discussed, and the development prospect of industrial robot vision servo technology is proposed.
[Mobile autonomous robots-Possibilities and limits].
Maehle, E; Brockmann, W; Walthelm, A
2002-02-01
Besides industrial robots, which today are firmly established in production processes, service robots are becoming more and more important. They shall provide services for humans in different areas of their professional and everyday environment including medicine. Most of these service robots are mobile which requires an intelligent autonomous behaviour. After characterising the different kinds of robots the relevant paradigms of intelligent autonomous behaviour for mobile robots are critically discussed in this paper and illustrated by three concrete examples of robots realized in Lübeck. In addition a short survey of actual kinds of surgical robots as well as an outlook to future developments is given.
Robotic assisted andrological surgery
Parekattil, Sijo J; Gudeloglu, Ahmet
2013-01-01
The introduction of the operative microscope for andrological surgery in the 1970s provided enhanced magnification and accuracy, unparalleled to any previous visual loop or magnification techniques. This technology revolutionized techniques for microsurgery in andrology. Today, we may be on the verge of a second such revolution by the incorporation of robotic assisted platforms for microsurgery in andrology. Robotic assisted microsurgery is being utilized to a greater degree in andrology and a number of other microsurgical fields, such as ophthalmology, hand surgery, plastics and reconstructive surgery. The potential advantages of robotic assisted platforms include elimination of tremor, improved stability, surgeon ergonomics, scalability of motion, multi-input visual interphases with up to three simultaneous visual views, enhanced magnification, and the ability to manipulate three surgical instruments and cameras simultaneously. This review paper begins with the historical development of robotic microsurgery. It then provides an in-depth presentation of the technique and outcomes of common robotic microsurgical andrological procedures, such as vasectomy reversal, subinguinal varicocelectomy, targeted spermatic cord denervation (for chronic orchialgia) and robotic assisted microsurgical testicular sperm extraction (microTESE). PMID:23241637
NASA Technical Reports Server (NTRS)
Tesar, Delbert; Butler, Michael S.
1989-01-01
Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.
Mars Telecommunications Orbiter Ka-band system design and operations
NASA Technical Reports Server (NTRS)
Noreen, Gary; Komarek, Tomas; Diehl, Roger; Shambayati, Shervin; Breidenthal, Julian; Lopez, Saturnino; Jordan, Frank
2003-01-01
NASA's Mars Telecommunications Orbiter (MTO) will relay broadband communications from landers, rovers and spacecraft in the vicinity of Mars to Earth. This paper describes the MTO communications system and how the MTO Ka-band system will be operated.
faqs.org Robotics FAQ Index faqs.org faqs.org - Internet FAQ Archives Robotics FAQ Index [By Updates | Archive Stats | Search | Help] Internet RFC Index Usenet FAQ Index Other FAQs Documents Tools
Training in urological robotic surgery. Future perspectives.
El Sherbiny, Ahmed; Eissa, Ahmed; Ghaith, Ahmed; Morini, Elena; Marzotta, Lucilla; Sighinolfi, Maria Chiara; Micali, Salvatore; Bianchi, Giampaolo; Rocco, Bernardo
2018-01-01
As robotics are becoming more integrated into the medical field, robotic training is becoming more crucial in order to overcome the lack of experienced robotic surgeons. However, there are several obstacles facing the development of robotic training programs like the high cost of training and the increased operative time during the initial period of the learning curve, which, in turn increase the operative cost. Robotic-assisted laparoscopic prostatectomy is the most commonly performed robotic surgery. Moreover, robotic surgery is becoming more popular among urologic oncologists and pediatric urologists. The need for a standardized and validated robotic training curriculum was growing along with the increased number of urologic centers and institutes adopting the robotic technology. Robotic training includes proctorship, mentorship or fellowship, telementoring, simulators and video training. In this chapter, we are going to discuss the different training methods, how to evaluate robotic skills, the available robotic training curriculum, and the future perspectives.
Robotic Precursor Missions for Mars Habitats
NASA Technical Reports Server (NTRS)
Huntsberger, Terry; Pirjanian, Paolo; Schenker, Paul S.; Trebi-Ollennu, Ashitey; Das, Hari; Joshi, Sajay
2000-01-01
Infrastructure support for robotic colonies, manned Mars habitat, and/or robotic exploration of planetary surfaces will need to rely on the field deployment of multiple robust robots. This support includes such tasks as the deployment and servicing of power systems and ISRU generators, construction of beaconed roadways, and the site preparation and deployment of manned habitat modules. The current level of autonomy of planetary rovers such as Sojourner will need to be greatly enhanced for these types of operations. In addition, single robotic platforms will not be capable of complicated construction scenarios. Precursor robotic missions to Mars that involve teams of multiple cooperating robots to accomplish some of these tasks is a cost effective solution to the possible long timeline necessary for the deployment of a manned habitat. Ongoing work at JPL under the Mars Outpost Program in the area of robot colonies is investigating many of the technology developments necessary for such an ambitious undertaking. Some of the issues that are being addressed include behavior-based control systems for multiple cooperating robots (CAMPOUT), development of autonomous robotic systems for the rescue/repair of trapped or disabled robots, and the design and development of robotic platforms for construction tasks such as material transport and surface clearing.
Robotics in percutaneous cardiovascular interventions.
Pourdjabbar, Ali; Ang, Lawrence; Behnamfar, Omid; Patel, Mitul P; Reeves, Ryan R; Campbell, Paul T; Madder, Ryan D; Mahmud, Ehtisham
2017-11-01
The fundamental technique of performing percutaneous cardiovascular (CV) interventions has remained unchanged and requires operators to wear heavy lead aprons to minimize exposure to ionizing radiation. Robotic technology is now being utilized in interventional cardiology partially as a direct result of the increasing appreciation of the long-term occupational hazards of the field. This review was undertaken to report the clinical outcomes of percutaneous robotic coronary and peripheral vascular interventions. Areas covered: A systematic literature review of percutaneous robotic CV interventions was undertaken. The safety and feasibility of percutaneous robotically-assisted CV interventions has been validated in simple to complex coronary disease, and iliofemoral disease. Studies have shown that robotically-assisted PCI significantly reduces operator exposure to harmful ionizing radiation without compromising procedural success or clinical efficacy. In addition to the operator benefits, robotically-assisted intervention has the potential for patient advantages by allowing more accurate lesion length measurement, precise stent placement and lower patient radiation exposure. However, further investigation is required to fully elucidate these potential benefits. Expert commentary: Incremental improvement in robotic technology and telecommunications would enable treatment of an even broader patient population, and potentially provide remote robotic PCI.
Magnetic Mineral diagenesis in changing water environments in the Black Sea since ˜41.6 ka
NASA Astrophysics Data System (ADS)
Liu, Jiabo; Nowaczyk, Norbert; Frank, Ute; Arz, Helge
2017-04-01
Magnetic mineral diagenesis plays a key role in the global iron cycle. To understand the authigenic magnetic mineral formation by diagenesis is also fundamentally important for the interpretation of environmental magnetic as well as paleomagnetic signals. Core MSM33-55-1, recovered from the SW Black Sea, was subjected to rock-magnetic and SEM studies. The results demonstrate that four different magnetic mineral assemblages associated to specific water conditions can be observed. Between ˜41.6 ka and ˜19 ka, magnetite and greigite are alternatively in dominance in the sediment. Due to low organic matter input during the late MIS 3 and the last glacial maximum (LGM), oxygenated bottom water in the Black Sea was favourable for preserving detrital magnetite. Greigite in this interval have irregular shapes and assemble in spots, which were formed in a micro environment with limited sulfate availability. Between ˜19 ka and ˜16.5 ka, black layers were deposited as a result of organic matter accumulation induced by productivity blooming and riverine discharge soaring after the LGM. Hence less oxygenated bottom water conditions developed, and more fine grained greigite was formed. After melt-water pulse (MWP) events (˜16.5 ka), both primary productivity and the sea level were continuously rising until ˜8.3 ka, leading to the depletion of oxygen in bottom water. In addition to greigite, pyrite was also formed and gradually in dominance as approaching the Holocene. The influx of salt water masses from the Mediterranean Sea after ˜8.3 ka contributed to the establishment of the anoxic Black Sea, which resulted in the formation of ubiquitous frambiods of pyrite. Additionally, bacterial magnetic minerals are likely present in the sediment younger than ˜8.3 ka as indicated by rock magnetic results. In this paper, four different magnetic mineral assemblages, reflecting gradual changes from an oxic to an anoix Black Sea, were identified, yielding insights into the relation
Ando, Noriyasu; Kanzaki, Ryohei
2017-09-01
The use of mobile robots is an effective method of validating sensory-motor models of animals in a real environment. The well-identified insect sensory-motor systems have been the major targets for modeling. Furthermore, mobile robots implemented with such insect models attract engineers who aim to avail advantages from organisms. However, directly comparing the robots with real insects is still difficult, even if we successfully model the biological systems, because of the physical differences between them. We developed a hybrid robot to bridge the gap. This hybrid robot is an insect-controlled robot, in which a tethered male silkmoth (Bombyx mori) drives the robot in order to localize an odor source. This robot has the following three advantages: 1) from a biomimetic perspective, the robot enables us to evaluate the potential performance of future insect-mimetic robots; 2) from a biological perspective, the robot enables us to manipulate the closed-loop of an onboard insect for further understanding of its sensory-motor system; and 3) the robot enables comparison with insect models as a reference biological system. In this paper, we review the recent works regarding insect-controlled robots and discuss the significance for both engineering and biology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transoral robotic supraglottic partial laryngectomy.
Kayhan, Fatma Tülin; Kaya, Kamil Hakan; Altintas, Ahmet; Sayin, Ibrahim
2014-07-01
Transoral robotic supraglottic laryngectomy is a new surgical way to perform endolaryngeal resection of supraglottic laryngeal carcinoma. The aim of this report was to present our initial experience about transoral robotic supraglottic laryngectomy for early supraglottic cancer. Subjects with early squamous cell carcinoma (T1-T2) of supraglottic region who managed using transoral robotic surgery in a tertiary referral center were included in the study. The technique of robot-assisted resection, intraoperative blood loss, mean robotic operating time, pathologic margin status, postoperative extubation, need for a tracheotomy, and length of hospitalization, complications, duration of oral nutrition, and neck dissection and radiotherapy needs were evaluated. Thirteen subjects (12 men, 1 woman) with T1-T2 supraglottic carcinoma were successfully operated on with transoral robotic surgery. In all subjects, negative margins were obtained. The mean total robotic surgery time was 31.6 (SD, 16.2) minutes (range, 20-80 minutes). Mean total blood loss was less than 40 mL. Subjects started oral nutrition with a mean of 10.8 (SD, 8.9) days (range, 4-30 days) postoperatively. The mean hospitalization was 15.4 (SD, 10.4) days (range, 7-42 days). Transoral robotic supraglottic laryngectomy with the da Vinci robotic system can be regarded as a feasible, safe, and effective technique. Although short-term results seem discouraging, long-term results are needed to evaluate the oncologic safety.
Student teams maneuver robots in qualifying match at regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
All four robots, maneuvered by student teams behind protective walls, converge on a corner of the playing field during qualifying matches of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex . Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow- like disks from the floor, as well as climb onto the platform (with flags) and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
NASA Technical Reports Server (NTRS)
Jakeman, Hali L.
2013-01-01
The Ka-Band Object Observation and Monitoring, or KaBOOM, project is designed mainly to track and characterize near Earth objects. However, a smaller goal of the project would be to monitor pulsars and study their radio frequency signals for use as a clock in interstellar travel. The use of pulsars and their timing accuracy has been studied for decades, but never in the Ka-band of the radio frequency spectrum. In order to begin the use of KaBOOM for this research, the control systems need to be analyzed to ensure its capability. Flaws in the control documentation leave it unclear as to whether the control software processes coordinates from the J200 epoch. This experiment will examine the control software of the Intertronic 12m antennas used for the KaBOOM project and detail its capabilities in its "equatorial mode." The antennas will be pointed at 4 chosen points in the sky on several days while probing the virtual azimuth and elevation (horizon coordinate) registers. The input right ascension and declination coordinates will then be converted separately from the control software to horizontal coordinates and compared, thus determining the ability of the control software to process equatorial coordinates.
Ando, Noriyasu; Emoto, Shuhei; Kanzaki, Ryohei
2016-12-19
Robotic odor source localization has been a challenging area and one to which biological knowledge has been expected to contribute, as finding odor sources is an essential task for organism survival. Insects are well-studied organisms with regard to odor tracking, and their behavioral strategies have been applied to mobile robots for evaluation. This "bottom-up" approach is a fundamental way to develop biomimetic robots; however, the biological analyses and the modeling of behavioral mechanisms are still ongoing. Therefore, it is still unknown how such a biological system actually works as the controller of a robotic platform. To answer this question, we have developed an insect-controlled robot in which a male adult silkmoth (Bombyx mori) drives a robot car in response to odor stimuli; this can be regarded as a prototype of a future insect-mimetic robot. In the cockpit of the robot, a tethered silkmoth walked on an air-supported ball and an optical sensor measured the ball rotations. These rotations were translated into the movement of the two-wheeled robot. The advantage of this "hybrid" approach is that experimenters can manipulate any parameter of the robot, which enables the evaluation of the odor-tracking capability of insects and provides useful suggestions for robotic odor-tracking. Furthermore, these manipulations are non-invasive ways to alter the sensory-motor relationship of a pilot insect and will be a useful technique for understanding adaptive behaviors.
Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction
de Greeff, Joachim; Belpaeme, Tony
2015-01-01
Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children’s social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a “mental model” of the robot, tailoring the tutoring to the robot’s performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot’s bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance. PMID:26422143
Experiments in autonomous robotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamel, W.R.
1987-01-01
The Center for Engineering Systems Advanced Research (CESAR) is performing basic research in autonomous robotics for energy-related applications in hazardous environments. The CESAR research agenda includes a strong experimental component to assure practical evaluation of new concepts and theories. An evolutionary sequence of mobile research robots has been planned to support research in robot navigation, world sensing, and object manipulation. A number of experiments have been performed in studying robot navigation and path planning with planar sonar sensing. Future experiments will address more complex tasks involving three-dimensional sensing, dexterous manipulation, and human-scale operations.
Three laws of robotics and surgery.
Moran, Michael
2008-08-01
In 1939, Isaac Asimov solidified the modern science fiction genre of robotics in his short story "Strange Playfellow" but altered our thinking about robots in Runaround in 1942 by formulating the Three Laws. He took an engineer's perspective on advanced robotic technologies. Surgical robots by definition violate the first law, yet his discussions are poignant for our understanding of future potential of robotic urologic surgery. We sought to better understand Asimov's visions by reading his fiction and autobiography. We then sought to place his perceptions of science fact next to the Three Laws (he later added a fourth law, the zeroth). Asimov's Three Laws are often quoted in medical journals during discussions about robotic surgery. His First Law states: "A robot may not injure a human being, or, through inaction, allow a human being to come to harm. " This philosophy would directly conflict with the application in surgery. In fact, most of his robotic stories deal with robots that come into conflicts with the laws. Robots in his cleverly orchestrated works evolve unique solutions to complex hierarchical conflicts with these laws. Asimov anticipated the coming maelstrom of intelligent robotic technologies with prescient unease. Despite his scholarly intuitions, he was able to fathom medical/surgical applications in many of his works. These fictional robotic physicians were able to overcome the first law and aid in the care and management of the sick/injured. Isaac Asimov published over 500 books on topics ranging from Shakespeare to science. Despite his widespread influence, he refused to visit the MIT robotics laboratory to see current, state-of-the-art systems. He managed to lay the foundation of modern robotic control systems with a human-oriented safety mechanism in his laws. "If knowledge can create problems, it is not through ignorance that we can solve them " (I Asimov).
Early Deglaciation of Drangajökull, Vestfirðir, Iceland: Smaller than Present by 9.2 ka
NASA Astrophysics Data System (ADS)
Harning, D.; Geirsdottir, A.; Miller, G. H.; Zalzal, K.
2016-12-01
The Holocene histories of Iceland's largest ice caps suggest rapid early Holocene deglaciation and disappearance by 9 ka, other than possible small remnants of Vatnajökull. The least documented is Drangajökull, Vestfirðir, NW Iceland, where our team has been working since 2010. A recent study claims Drangajökull behaved differently than the other Iceland ice caps, deglaciating much later, and persisting through the Holocene Thermal Maximum (HTM). We test this postulate through a suite of sediment cores from threshold lakes both proximal and distal to the ice cap's contemporary margin. Distal lakes document rapid early Holocene deglaciation across the southern highland plateau, with the northern margin of the ice cap reaching a size comparable to Drangajökull's contemporary limit by 10.3 ka. A proximal lake to the north records a transient readvance at 9.6 ka, likely in association with meltwater pulses from the disintegrating Laurentide Ice Sheet (LIS). Two other southeastern proximal lakes, whose catchments extend well beneath the modern ice cap, demonstrate that Drangajökull was already smaller than present before 9.2 ka. Supporting evidence for local early Holocene warmth is derived from biological summer temperature proxies in a lake record, with age control (tephra/14C) demonstrating continuous sediment accumulation from 10.3 ka to present. Peak warmth (HTM) inferred from elevated algal productivity occurred between 8.9 and 7.2 ka. The record of terrestrial warmth closely aligns with regional SST and precipitation records that together with lake sediment characteristics provide firm evidence that Drangajökull responded similarly to Iceland's other large ice caps. Drangajökull was smaller than its contemporary margin before 9.2 ka, and likely disappeared entirely during the warmer and drier summers between 9 and 7 ka, reforming in the Late Holocene.
Honda humanoid robots development.
Hirose, Masato; Ogawa, Kenichi
2007-01-15
Honda has been doing research on robotics since 1986 with a focus upon bipedal walking technology. The research started with straight and static walking of the first prototype two-legged robot. Now, the continuous transition from walking in a straight line to making a turn has been achieved with the latest humanoid robot ASIMO. ASIMO is the most advanced robot of Honda so far in the mechanism and the control system. ASIMO's configuration allows it to operate freely in the human living space. It could be of practical help to humans with its ability of five-finger arms as well as its walking function. The target of further development of ASIMO is to develop a robot to improve life in human society. Much development work will be continued both mechanically and electronically, staying true to Honda's 'challenging spirit'.
Robotic Mining Competition - Setup
2018-05-14
On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from the University of Minnesota-Twin Cities work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Setup
2018-05-14
On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from the South Dakota School of Mines & Technology work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Setup
2018-05-14
On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from Montana Tech of the University of Montana work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Activities
2018-05-17
Team members from the University of Arkansas make adjustments to their robot miner for its turn in the mining arena on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. They are in the RobotPits inside the Educator Resource Center. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Setup
2018-05-14
On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from the Illinois Institute of Technology work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Setup
2018-05-14
On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from the University of North Carolina at Charlotte work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Activities
2018-05-17
Team members and their faculty advisor, far left, from The University of North Carolina at Charlotte pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Activities
2018-05-17
First-time participants from the University of Maine, along with their faculty advisor, at far right, are with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
NASA Astrophysics Data System (ADS)
Hicks, Rob W., II; Hall, Ernest L.
2000-10-01
Lawn mowing is considered by many to be one of the most boring and tiring routine household tasks. It is also one of the most promising personal robot applications. Several devices have not been invented and some manufactured products are available for lawn mowing. The purpose of this paper is to survey the state of the art in robotic lawn mowers to highlight the requirements and capabilities of current devices. A brief survey of available robot products, typical patents and some test bed prototypes are presented. Some enabling technologies which could make the devices more capable are also suggested. Some predictions indicate that the robot lawn mower will be the breakthrough device in robotics. The significance of this research lies in the presentation of an overview of a potential major market for personal robots.
NASA Technical Reports Server (NTRS)
Voellmer, George
1992-01-01
The Robotics Branch of the Goddard Space Flight Center has under development a robot that fits inside a Get Away Special can. In the RObotic Materials Processing System (ROMPS) HitchHiker experiment, this robot is used to transport pallets containing wafers of different materials from their storage rack to a halogen lamp furnace for rapid thermal processing in a microgravity environment. It then returns them to their storage rack. A large part of the mechanical design of the robot dealt with the potential misalignment between the various components that are repeatedly mated and demated. A system of tapered guides and compliant springs was designed to work within the robot's force and accuracy capabilities. This paper discusses the above and other robot design issues in detail, and presents examples of ROMPS robot analyses that are applicable to other HitcherHiker materials handling missions.
Robotic Technology Development at Ames: The Intelligent Robotics Group and Surface Telerobotics
NASA Technical Reports Server (NTRS)
Bualat, Maria; Fong, Terrence
2013-01-01
Future human missions to the Moon, Mars, and other destinations offer many new opportunities for exploration. But, astronaut time will always be limited and some work will not be feasible for humans to do manually. Robots, however, can complement human explorers, performing work autonomously or under remote supervision from Earth. Since 2004, the Intelligent Robotics Group has been working to make human-robot interaction efficient and effective for space exploration. A central focus of our research has been to develop and field test robots that benefit human exploration. Our approach is inspired by lessons learned from the Mars Exploration Rovers, as well as human spaceflight programs, including Apollo, the Space Shuttle, and the International Space Station. We conduct applied research in computer vision, geospatial data systems, human-robot interaction, planetary mapping and robot software. In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and likely operational and functional risks. These assumptions, however, are not grounded by actual experimental data. Moreover, no crew-controlled surface telerobotic system has yet been fully tested, or rigorously validated, through flight testing. During Summer 2013, we conducted a series of tests to examine how astronauts in the International Space Station (ISS) can remotely operate a planetary rover across short time delays. The tests simulated portions of a proposed human-robotic Lunar Waypoint mission, in which astronauts in lunar orbit remotely operate a planetary rover on the lunar Farside to deploy a radio telescope array. We used these tests to obtain baseline-engineering data.
Preliminary Results from NASA/GSFC Ka-Band High Rate Demonstration for Near-Earth Communications
NASA Technical Reports Server (NTRS)
Wong, Yen; Gioannini, Bryan; Bundick, Steven N.; Miller, David T.
2004-01-01
In early 2000, the National Aeronautics and Space Administration (NASA) commenced the Ka-Band Transition Project (KaTP) as another step towards satisfying wideband communication requirements of the space research and earth exploration-satellite services. The KaTP team upgraded the ground segment portion of NASA's Space Network (SN) in order to enable high data rate space science and earth science services communications. The SN ground segment is located at the White Sands Complex (WSC) in New Mexico. NASA conducted the SN ground segment upgrades in conjunction with space segment upgrades implemented via the Tracking and Data Relay Satellite (TDRS)-HIJ project. The three new geostationary data relay satellites developed under the TDRS-HIJ project support the use of the inter-satellite service (ISS) allocation in the 25.25-27.5 GHz band (the 26 GHz band) to receive high speed data from low earth-orbiting customer spacecraft. The TDRS H spacecraft (designated TDRS-8) is currently operational at a 171 degrees west longitude. TDRS I and J spacecraft on-orbit testing has been completed. These spacecraft support 650 MHz-wide Ka-band telemetry links that are referred to as return links. The 650 MHz-wide Ka-band telemetry links have the capability to support data rates up to at least 1.2 Gbps. Therefore, the TDRS-HIJ spacecraft will significantly enhance the existing data rate elements of the NASA Space Network that operate at S-band and Ku-band.
Robotic transthoracic esophagectomy.
Puntambekar, Shailesh; Kenawadekar, Rahul; Kumar, Sanjay; Joshi, Saurabh; Agarwal, Geetanjali; Reddy, Sunil; Mallik, Jainul
2015-04-23
We have initially published our experience with the robotic transthoracic esophagectomy in 32 patients from a single institute. The present paper is the extension of our experience with robotic system and to best of our knowledge this represents the largest series of robotic transthoracic esophagectomy worldwide. The objective of this study was to investigate the feasibility of the robotic transthoracic esophagectomy for esophageal cancer in a series of patients from a single institute. A retrospective review of medical records was conducted for 83 esophageal cancer patients who underwent robotic esophagectomy at our institute from December 2009 to December 2012. All patients underwent a thorough clinical examination and pre-operative investigations. All patients underwent robotic esophageal mobilization. En-bloc dissection with lymphadenectomy was performed in all cases with preservation of Azygous vein. Relevant data were gathered from medical records. The study population comprised of 50 men and 33 women with mean age of 59.18 years. The mean operative time was 204.94 mins (range 180 to 300). The mean blood loss was 86.75 ml (range 50 to 200). The mean number of lymph node yield was 18. 36 (range 13 to 24). None of the patient required conversion. The mean ICU stay and hospital stay was 1 day (range 1 to 3) and 10.37 days (range 10 to 13), respectively. A total of 16 (19.28%) complication were reported in these patents. Commonly reported complication included dysphagia, pleural effusion and anastomotic leak. No treatment related mortality was observed. After a median follow-up period of 10 months, 66 patients (79.52%) survived with disease free stage. We found robot-assisted thoracoscopic esophagectomy feasible in cases of esophageal cancer. The procedure allowed precise en-bloc dissection with lymphadenectomy in mediastinum with reduced operative time, blood loss and complications.
NASA Technical Reports Server (NTRS)
Boston, Penelope J.
2016-01-01
The search for life and its study is known as astrobiology. Conducting that search on other planets in our Solar System is a major goal of NASA and other space agencies, and a driving passion of the community of scientists and engineers around the world. We practice for that search in many ways, from exploring and studying extreme environments on Earth, to developing robots to go to other planets and help us look for any possible life that may be there or may have been there in the past. The unique challenges of space exploration make collaborations between robots and humans essential. The products of those collaborations will be novel and driven by the features of wholly new environments. For space and planetary environments that are intolerable for humans or where humans present an unacceptable risk to possible biologically sensitive sites, autonomous robots or telepresence offer excellent choices. The search for life signs on Mars fits within this category, especially in advance of human landed missions there, but also as assistants and tools once humans reach the Red Planet. For planetary destinations where we do not envision humans ever going in person, like bitterly cold icy moons, or ocean worlds with thick ice roofs that essentially make them planetary-sized ice caves, we will rely on robots alone to visit those environments for us and enable us to explore and understand any life that we may find there. Current generation robots are not quite ready for some of the tasks that we need them to do, so there are many opportunities for roboticists of the future to advance novel types of mobility, autonomy, and bio-inspired robotic designs to help us accomplish our astrobiological goals. We see an exciting partnership between robotics and astrobiology continually strengthening as we jointly pursue the quest to find extraterrestrial life.
Automatic control system generation for robot design validation
NASA Technical Reports Server (NTRS)
Bacon, James A. (Inventor); English, James D. (Inventor)
2012-01-01
The specification and drawings present a new method, system and software product for and apparatus for generating a robotic validation system for a robot design. The robotic validation system for the robot design of a robotic system is automatically generated by converting a robot design into a generic robotic description using a predetermined format, then generating a control system from the generic robotic description and finally updating robot design parameters of the robotic system with an analysis tool using both the generic robot description and the control system.
NASA Astrophysics Data System (ADS)
da Cunha, Antonio R.; Duarte, Evandro L.; Lamy, M. Teresa; Coutinho, Kaline
2014-08-01
We combined theoretical and experimental studies to elucidate the important deprotonation process of Emodin in water. We used the UV/Visible spectrophotometric titration curves to obtain its pKa values, pKa1 = 8.0 ± 0.1 and pKa2 = 10.9 ± 0.2. Additionally, we obtained the pKa values of Emodin in the water-methanol mixture (1:3v/v). We give a new interpretation of the experimental data, obtaining apparent pKa1 = 6.2 ± 0.1, pKa2 = 8.3 ± 0.1 and pKa3 > 12.7. Performing quantum mechanics calculations for all possible deprotonation sites and tautomeric isomers of Emodin in vacuum and in water, we identified the sites of the first and second deprotonation. We calculated the standard deprotonation free energy of Emodin in water and the pKa1, using an explicit model of the solvent, with Free Energy Perturbation theory in Monte Carlo simulations obtaining, ΔGaq = 12.1 ± 1.4 kcal/mol and pKa1 = 8.7 ± 0.9. With the polarizable continuum model for the solvent, we obtained ΔGaq = 11.6 ± 1.0 kcal/mol and pKa1 = 8.3 ± 0.7. Both solvent models gave theoretical results in very good agreement with the experimental values.
Conformal Robotic Stereolithography
Stevens, Adam G.; Oliver, C. Ryan; Kirchmeyer, Matthieu; Wu, Jieyuan; Chin, Lillian; Polsen, Erik S.; Archer, Chad; Boyle, Casey; Garber, Jenna
2016-01-01
Abstract Additive manufacturing by layerwise photopolymerization, commonly called stereolithography (SLA), is attractive due to its high resolution and diversity of materials chemistry. However, traditional SLA methods are restricted to planar substrates and planar layers that are perpendicular to a single-axis build direction. Here, we present a robotic system that is capable of maskless layerwise photopolymerization on curved surfaces, enabling production of large-area conformal patterns and the construction of conformal freeform objects. The system comprises an industrial six-axis robot and a custom-built maskless projector end effector. Use of the system involves creating a mesh representation of the freeform substrate, generation of a triangulated toolpath with curved layers that represents the target object to be printed, precision mounting of the substrate in the robot workspace, and robotic photopatterning of the target object by coordinated motion of the robot and substrate. We demonstrate printing of conformal photopatterns on spheres of various sizes, and construction of miniature three-dimensional objects on spheres without requiring support features. Improvement of the motion accuracy and development of freeform toolpaths would enable construction of polymer objects that surpass the size and support structure constraints imparted by traditional SLA systems. PMID:29577062
Ultra-Compact Ka-Band Parabolic Deployable Antenna for RADAR and Interplanetary CubeSats
NASA Technical Reports Server (NTRS)
Sauder, Jonathan; Chahat, Nacer; Thomson, Mark; Hodges, Richard; Peral, Eva; Rahmat-Samii, Yahya
2015-01-01
Over the past several years, technology and launch opportunities for CubeSats have exploded, enabling a wide variety of missions. However, as instruments become more complex and CubeSats travel deeper into space, data communication rates become an issue. To solve this challenge, JPL has initiated a research and technology development effort to design a 0.5 meter Ka-band parabolic deployable antenna (KaPDA) which would stow in 1.5U (10 x 10 x 15 cu cm) and provide 42dB of gain (50% efficiency). A folding rib architecture and dual reflector Cassegrainian design was selected as it best balances RF gain and stowed size. The design implements an innovative telescoping waveguide and gas powered deployment. RF simulations show that after losses, the antenna would have over 42 dB gain, supported by preliminary test results. KaPDA would create opportunities for a host of new CubeSat missions by allowing high data rate communication which would enable using high fidelity instruments or venturing further into deep space, including potential interplanetary missions. Additionally KaPDA would provide a solution for other small antenna needs and the opportunity to obtain Earth science data. This paper discusses the design challenges encountered, the architecture of the solution, and the antennas expected performance capabilities.
ERIC Educational Resources Information Center
Sultan, Alan
2011-01-01
Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…
NASA Astrophysics Data System (ADS)
Lane, Gerald R.
1999-07-01
To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.
NASA Astrophysics Data System (ADS)
Cukur, D.; Krastel, S.; Schmincke, H.; Sumita, M.; Tomonaga, Y.; Damci, E.
2013-12-01
Lake Van is the largest soda lake in the world with a present surface of 3,574 km2 and a maximum water depth of 450 m. Sedimentary deposits in the lake preserve one of the most complete record of continental climate in the Middle East since the Middle Pleistocene. We studied these deposits to characterize the evolution of the lake level and its possible relationships with changes in climate, volcanic, and regional tectonics since the formation of the lake ca. 600 ka ago. Changes in lake level were determined based on high-resolution seismic reflection profiles showing erosional surfaces, changes in stratal geometries such as downward shifts in coastal onlap, and recognition of distinctive stratigraphic features such as prograding delta clinoforms. Our results show that Lake Van has undergone drastic changes in surface elevation by as much as 600 meters over the past ca. 600 ka. Five major lowstands occurred at ca. ~600 ka, ca. 365-340 ka, ca 290-230 ka; ca. 150-130 ka; and ca. 30-14 ka. During a first period (A) (ca. 600-ca 230 ka) lake levels changed drastically by hundreds of m but at longer time intervals between low and high stands. Changes occurred more frequently but mostly by a few tens of m during the past ca. 230 ka years where we can distinguish a first period (B1) of stepwise transgressions between ca. 230 and 150 ka followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise again during period B2 lasting until ca 30 ka. During the past 30 ka a regression and a final transgression each lasted ca. 15 ka years. The major lowstand periods in Lake Van occurred during glacial periods, arguing for a climatic control of these lake-level fluctuations (i.e., significantly reduced precipitation leading to lake level low stands). Although climate forcing may have been the dominant cause for the drastic lake level changes of Lake Van, volcanic and tectonic forcing factors are also invoked. For example, the number of distinct tephra layers
Aerial Explorers and Robotic Ecosystems
NASA Technical Reports Server (NTRS)
Young, Larry A.; Pisanich, Greg
2004-01-01
A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.
ERIC Educational Resources Information Center
Navah, Jan
2012-01-01
Kids love to build robots, letting their imaginations run wild with thoughts of what they might look like and what they could be programmed to do. Yet when students use cereal boxes and found objects to make robots, often the projects look too similar and tend to fall apart. This alternative allows students to "build" robots in a different way,…
2014-03-14
CAPE CANAVERAL, Fla. – A torso model of Robonaut 2, identical to R2 already on the International Space Station, is introduced to a crowd of onlookers by Ron Diftler of NASA's Johnson Space Center in Houston. The demonstration was one of several provided during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.; Waldron, Kenneth J.
1990-01-01
Proposed agile walking robot operates over rocky, sandy, and sloping terrain. Offers stability and climbing ability superior to other conceptual mobile robots. Equipped with six articulated legs like those of insect, continually feels ground under leg before applying weight to it. If leg sensed unexpected object or failed to make contact with ground at expected point, seeks alternative position within radius of 20 cm. Failing that, robot halts, examines area around foot in detail with laser ranging imager, and replans entire cycle of steps for all legs before proceeding.
Thurlkill, Richard L; Cross, David A; Scholtz, J Martin; Pace, C Nick
2005-12-01
The pKa of fentanyl has not been measured previously at varying extremes of body temperature. The goal of this laboratory investigation was to test the hypothesis that the pKa of fentanyl changes with temperature. The investigation involved measuring the pKa values of aqueous fentanyl at varying temperatures. The investigation was conducted in a controlled laboratory environment. No human or animal subjects were involved. Because no live subjects were involved in the investigation, no interventions were necessary. This paper reports the effect of temperature on the pKa of fentanyl. The pKa of aqueous fentanyl was measured at 15 degrees C, 25 degrees C, 37 degrees C, 42 degrees C, and 47.5 degrees C by potentiometric titration in 0.01 mmol/L of potassium chloride after extensive degassing. Data were analyzed using the least squares method with an appropriately fitting equation. The pKa of fentanyl was found to change in a similar manner to the neutral point of water at varying temperatures. This finding has implications for the bioavailability of fentanyl at extremes of body temperature in association with the clinical acid-base management of the patient. Clinical implications for differing methods of intraoperative acid-base management at varying temperatures are discussed.
NASA Technical Reports Server (NTRS)
Toral, Marco; Wesdock, John; Kassa, Abby; Pogorelc, Patsy; Jenkens, Robert (Technical Monitor)
2002-01-01
In June 2000, NASA launched the first of three next generation Tracking and Data Relay Satellites (TDRS-H) equipped with a Ka-band forward and return service capability. This Ka-band service supports forward data rates up to 25 Mb/sec using the 22.55 - 23.55 GHz space-to-space allocation. Return services are supported via channel bandwidths of 225 and 650 MHz for data rates up to 800 Mb/sec (QPSK) using the 25.25 - 27.5 GHz space-to-space allocation. As part of NASA's acceptance of the TDRS-H spacecraft, an extensive on-orbit calibration, verification and characterization effort was performed to ensure that on-orbit spacecraft performance is within specified limits. This process verified the compliance of the Ka-band communications payload with all performance specifications and demonstrated an end-to-end Ka-band service capability. This paper summarizes the results of the TDRS-H Ka-band communications payload on-orbit performance verification and end-to-end service characterization. Performance parameters addressed include Effective Isotropically Radiated Power (EIRP), antenna Gain-to-System Noise Temperature (G/T), antenna gain pattern, frequency tunability and accuracy, channel magnitude response, and Ka-band service Bit-Error-Rate (BER) performance.
NASA Technical Reports Server (NTRS)
Toral, Marco; Wesdock, John; Kassa, Abby; Pogorelc, Patsy; Jenkens, Robert (Technical Monitor)
2002-01-01
In June 2000, NASA launched the first of three next generation Tracking and Data Relay Satellites (TDRS-H) equipped with a Ka-band forward and return service capability. This Ka-band service supports forward data rates of up to 25 Mb/sec using the 22.55-23.55 GHz space-to-space allocation. Return services are supported via channel bandwidths of 225 and 650 MHz for data rates up to at least 800 Mb/sec using the 25.25 - 27.5 GHz space-to-space allocation. As part of NASA's acceptance of the TDRS-H spacecraft, an extensive on-orbit calibration, verification and characterization effort was performed to ensure that on-orbit spacecraft performance is within specified limits. This process verified the compliance of the Ka-band communications payload with all performance specifications, and demonstrated an end-to-end Ka-band service capability. This paper summarizes the results of the TDRS-H Ka-band communications payload on-orbit performance verification and end-to-end service characterization. Performance parameters addressed include antenna gain pattern, antenna Gain-to-System Noise Temperature (G/T), Effective Isotropically Radiated Power (EIRP), antenna pointing accuracy, frequency tunability, channel magnitude response, and Ka-band service Bit-Error-Rate (BER) performance.
Beyond speculative robot ethics: a vision assessment study on the future of the robotic caretaker.
van der Plas, Arjanna; Smits, Martijntje; Wehrmann, Caroline
2010-11-01
In this article we develop a dialogue model for robot technology experts and designated users to discuss visions on the future of robotics in long-term care. Our vision assessment study aims for more distinguished and more informed visions on future robots. Surprisingly, our experiment also led to some promising co-designed robot concepts in which jointly articulated moral guidelines are embedded. With our model, we think to have designed an interesting response on a recent call for a less speculative ethics of technology by encouraging discussions about the quality of positive and negative visions on the future of robotics.
SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion.
Bartlett, Nicholas W; Tolley, Michael T; Overvelde, Johannes T B; Weaver, James C; Mosadegh, Bobak; Bertoldi, Katia; Whitesides, George M; Wood, Robert J
2015-07-10
Roboticists have begun to design biologically inspired robots with soft or partially soft bodies, which have the potential to be more robust and adaptable, and safer for human interaction, than traditional rigid robots. However, key challenges in the design and manufacture of soft robots include the complex fabrication processes and the interfacing of soft and rigid components. We used multimaterial three-dimensional (3D) printing to manufacture a combustion-powered robot whose body transitions from a rigid core to a soft exterior. This stiffness gradient, spanning three orders of magnitude in modulus, enables reliable interfacing between rigid driving components (controller, battery, etc.) and the primarily soft body, and also enhances performance. Powered by the combustion of butane and oxygen, this robot is able to perform untethered jumping. Copyright © 2015, American Association for the Advancement of Science.
Equipment and technology in surgical robotics.
Sim, Hong Gee; Yip, Sidney Kam Hung; Cheng, Christopher Wai Sam
2006-06-01
Contemporary medical robotic systems used in urologic surgery usually consist of a computer and a mechanical device to carry out the designated task with an image acquisition module. These systems are typically from one of the two categories: offline or online robots. Offline robots, also known as fixed path robots, are completely automated with pre-programmed motion planning based on pre-operative imaging studies where precise movements within set confines are carried out. Online robotic systems rely on continuous input from the surgeons and change their movements and actions according to the input in real time. This class of robots is further divided into endoscopic manipulators and master-slave robotic systems. Current robotic surgical systems have resulted in a paradigm shift in the minimally invasive approach to complex laparoscopic urological procedures. Future developments will focus on refining haptic feedback, system miniaturization and improved augmented reality and telesurgical capabilities.
Results from Two Years of Ka-Band Propagation Characterization at Svalbard, Norway
NASA Technical Reports Server (NTRS)
Nessel, James A.; Morse, Jacquelynne Rose; Zemba, Michael
2014-01-01
Over the several years, NASA plans to launch several earth science missions which are expected to achieve data throughputs of 5-40 terabits per day transmitted from low earth orbiting spacecraft to ground stations. The current S-band and X-band frequency allocations in use by NASA, however, are incapable of supporting the data rates required to meet this demand. As such, NASA is in the planning stages to upgrade its existing Near Earth Network (NEN) Polar ground stations to support Ka-band (25.5-27 GHz) operations. Consequently, it becomes imperative that characterization of propagation effects at these NEN sites is conducted to determine expected system performance, particularly at low elevation angles ((is) less than 10 deg) where spacecraft signal acquisition typically occurs. Since May 2011, NASA Glenn Research Center has installed and operated a Ka-band radiometer at the NEN site located in Svalbard, Norway. The Ka-band radiometer monitors the water vapor line, as well as 6 frequencies around 26.5 GHz at multiple elevation angles: 45 deg, 20 deg, and 10 deg. Two year data collection results indicate comparable performance to previously characterized northern latitude sites in the United States, i.e., Fairbanks, Alaska. It is observed that cloud cover at the Svalbard site remains the dominant loss mechanism for Ka-band links, resulting in a margin requirement of 4.1 dB to maintain link availability of 99% at 10 deg elevation.
Morone, Giovanni; Paolucci, Stefano; Cherubini, Andrea; De Angelis, Domenico; Venturiero, Vincenzo; Coiro, Paola; Iosa, Marco
2017-01-01
In this review, we give a brief outline of robot-mediated gait training for stroke patients, as an important emerging field in rehabilitation. Technological innovations are allowing rehabilitation to move toward more integrated processes, with improved efficiency and less long-term impairments. In particular, robot-mediated neurorehabilitation is a rapidly advancing field, which uses robotic systems to define new methods for treating neurological injuries, especially stroke. The use of robots in gait training can enhance rehabilitation, but it needs to be used according to well-defined neuroscientific principles. The field of robot-mediated neurorehabilitation brings challenges to both bioengineering and clinical practice. This article reviews the state of the art (including commercially available systems) and perspectives of robotics in poststroke rehabilitation for walking recovery. A critical revision, including the problems at stake regarding robotic clinical use, is also presented.
Morone, Giovanni; Paolucci, Stefano; Cherubini, Andrea; De Angelis, Domenico; Venturiero, Vincenzo; Coiro, Paola; Iosa, Marco
2017-01-01
In this review, we give a brief outline of robot-mediated gait training for stroke patients, as an important emerging field in rehabilitation. Technological innovations are allowing rehabilitation to move toward more integrated processes, with improved efficiency and less long-term impairments. In particular, robot-mediated neurorehabilitation is a rapidly advancing field, which uses robotic systems to define new methods for treating neurological injuries, especially stroke. The use of robots in gait training can enhance rehabilitation, but it needs to be used according to well-defined neuroscientific principles. The field of robot-mediated neurorehabilitation brings challenges to both bioengineering and clinical practice. This article reviews the state of the art (including commercially available systems) and perspectives of robotics in poststroke rehabilitation for walking recovery. A critical revision, including the problems at stake regarding robotic clinical use, is also presented. PMID:28553117
Assistant Personal Robot (APR): Conception and Application of a Tele-Operated Assisted Living Robot.
Clotet, Eduard; Martínez, Dani; Moreno, Javier; Tresanchez, Marcel; Palacín, Jordi
2016-04-28
This paper presents the technical description, mechanical design, electronic components, software implementation and possible applications of a tele-operated mobile robot designed as an assisted living tool. This robotic concept has been named Assistant Personal Robot (or APR for short) and has been designed as a remotely telecontrolled robotic platform built to provide social and assistive services to elderly people and those with impaired mobility. The APR features a fast high-mobility motion system adapted for tele-operation in plain indoor areas, which incorporates a high-priority collision avoidance procedure. This paper presents the mechanical architecture, electrical fundaments and software implementation required in order to develop the main functionalities of an assistive robot. The APR uses a tablet in order to implement the basic peer-to-peer videoconference and tele-operation control combined with a tactile graphic user interface. The paper also presents the development of some applications proposed in the framework of an assisted living robot.
Controlling robots in the home: Factors that affect the performance of novice robot operators.
McGinn, Conor; Sena, Aran; Kelly, Kevin
2017-11-01
For robots to successfully integrate into everyday life, it is important that they can be effectively controlled by laypeople. However, the task of manually controlling mobile robots can be challenging due to demanding cognitive and sensorimotor requirements. This research explores the effect that the built environment has on the manual control of domestic service robots. In this study, a virtual reality simulation of a domestic robot control scenario was developed. The performance of fifty novice users was evaluated, and their subjective experiences recorded through questionnaires. Through quantitative and qualitative analysis, it was found that untrained operators frequently perform poorly at navigation-based robot control tasks. The study found that passing through doorways accounted for the largest number of collisions, and was consistently identified as a very difficult operation to perform. These findings suggest that homes and other human-orientated settings present significant challenges to robot control. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Howard, Andrew B.; Ansar, Adnan I.; Litwin, Todd E.; Goldberg, Steven B.
2009-01-01
The JPL Robot Vision Library (JPLV) provides real-time robot vision algorithms for developers who are not vision specialists. The package includes algorithms for stereo ranging, visual odometry and unsurveyed camera calibration, and has unique support for very wideangle lenses
Jacob, Brian P; Gagner, Michel
2003-12-01
Robotics are now being used in all surgical fields, including general surgery. By increasing intra-abdominal articulations while operating through small incisions, robotics are increasingly being used for a large number of visceral and solid organ operations, including those for the gallbladder, esophagus, stomach, intestines, colon, and rectum, as well as for the endocrine organs. Robotics and general surgery are blending for the first time in history and as a specialty field should continue to grow for many years to come. We continuously demand solutions to questions and limitations that are experienced in our daily work. Laparoscopy is laden with limitations such as fixed axis points at the trocar insertion sites, two-dimensional video monitors, limited dexterity at the instrument tips, lack of haptic sensation, and in some cases poor ergonomics. The creation of a surgical robot system with 3D visual capacity seems to deal with most of these limitations. Although some in the surgical community continue to test the feasibility of these surgical robots and to question the necessity of such an expensive venture, others are already postulating how to improve the next generation of telemanipulators, and in so doing are looking beyond today's horizon to find simpler solutions. As the robotic era enters the world of the general surgeon, more and more complex procedures will be able to be approached through small incisions. As technology catches up with our imaginations, robotic instruments (as opposed to robots) and 3D monitoring will become routine and continue to improve patient care by providing surgeons with the most precise, least traumatic ways of treating surgical disease.
Flexible robotics: a new paradigm.
Aron, Monish; Haber, Georges-Pascal; Desai, Mihir M; Gill, Inderbir S
2007-05-01
The use of robotics in urologic surgery has seen exponential growth over the last 5 years. Existing surgical robots operate rigid instruments on the master/slave principle and currently allow extraluminal manipulations and surgical procedures. Flexible robotics is an entirely novel paradigm. This article explores the potential of flexible robotic platforms that could permit endoluminal and transluminal surgery in the future. Computerized catheter-control systems are being developed primarily for cardiac applications. This development is driven by the need for precise positioning and manipulation of the catheter tip in the three-dimensional cardiovascular space. Such systems employ either remote navigation in a magnetic field or a computer-controlled electromechanical flexible robotic system. We have adapted this robotic system for flexible ureteropyeloscopy and have to date completed the initial porcine studies. Flexible robotics is on the horizon. It has potential for improved scope-tip precision, superior operative ergonomics, and reduced occupational radiation exposure. In the near future, in urology, we believe that it holds promise for endoluminal therapeutic ureterorenoscopy. Looking further ahead, within the next 3-5 years, it could enable transluminal surgery.
Thubagere, Anupama J; Li, Wei; Johnson, Robert F; Chen, Zibo; Doroudi, Shayan; Lee, Yae Lim; Izatt, Gregory; Wittman, Sarah; Srinivas, Niranjan; Woods, Damien; Winfree, Erik; Qian, Lulu
2017-09-15
Two critical challenges in the design and synthesis of molecular robots are modularity and algorithm simplicity. We demonstrate three modular building blocks for a DNA robot that performs cargo sorting at the molecular level. A simple algorithm encoding recognition between cargos and their destinations allows for a simple robot design: a single-stranded DNA with one leg and two foot domains for walking, and one arm and one hand domain for picking up and dropping off cargos. The robot explores a two-dimensional testing ground on the surface of DNA origami, picks up multiple cargos of two types that are initially at unordered locations, and delivers them to specified destinations until all molecules are sorted into two distinct piles. The robot is designed to perform a random walk without any energy supply. Exploiting this feature, a single robot can repeatedly sort multiple cargos. Localization on DNA origami allows for distinct cargo-sorting tasks to take place simultaneously in one test tube or for multiple robots to collectively perform the same task. Copyright © 2017, American Association for the Advancement of Science.
Robots for use in autism research.
Scassellati, Brian; Admoni, Henny; Matarić, Maja
2012-01-01
Autism spectrum disorders are a group of lifelong disabilities that affect people's ability to communicate and to understand social cues. Research into applying robots as therapy tools has shown that robots seem to improve engagement and elicit novel social behaviors from people (particularly children and teenagers) with autism. Robot therapy for autism has been explored as one of the first application domains in the field of socially assistive robotics (SAR), which aims to develop robots that assist people with special needs through social interactions. In this review, we discuss the past decade's work in SAR systems designed for autism therapy by analyzing robot design decisions, human-robot interactions, and system evaluations. We conclude by discussing challenges and future trends for this young but rapidly developing research area.
Multiagent robotic systems' ambient light sensor
NASA Astrophysics Data System (ADS)
Iureva, Radda A.; Maslennikov, Oleg S.; Komarov, Igor I.
2017-05-01
Swarm robotics is one of the fastest growing areas of modern technology. Being subclass of multi-agent systems it inherits the main part of scientific-methodological apparatus of construction and functioning of practically useful complexes, which consist of rather autonomous independent agents. Ambient light sensors (ALS) are widely used in robotics. But speaking about swarm robotics, the technology which has great number of specific features and is developing, we can't help mentioning that its important to use sensors on each robot not only in order to help it to get directionally oriented, but also to follow light emitted by robot-chief or to help to find the goal easier. Key words: ambient light sensor, swarm system, multiagent system, robotic system, robotic complexes, simulation modelling
Robot transparency, trust and utility
NASA Astrophysics Data System (ADS)
Wortham, Robert H.; Theodorou, Andreas
2017-07-01
As robot reasoning becomes more complex, debugging becomes increasingly hard based solely on observable behaviour, even for robot designers and technical specialists. Similarly, non-specialist users have difficulty creating useful mental models of robot reasoning from observations of robot behaviour. The EPSRC Principles of Robotics mandate that our artefacts should be transparent, but what does this mean in practice, and how does transparency affect both trust and utility? We investigate this relationship in the literature and find it to be complex, particularly in nonindustrial environments where, depending on the application and purpose of the robot, transparency may have a wider range of effects on trust and utility. We outline our programme of research to support our assertion that it is nevertheless possible to create transparent agents that are emotionally engaging despite having a transparent machine nature.
MEMS, Ka-Band Single-Pole Double-Throw (SPDT) Switch for Switched Line Phase Shifters
NASA Technical Reports Server (NTRS)
Scardelletti, Maximilian C.; Ponchak, George E.; Varaljay, Nicholas C.
2002-01-01
Ka-band MEMS doubly anchored cantilever beam capacitive shunt devices are used to demonstrate a MEMS SPDT switch fabricated on high resistivity silicon (HRS) utilizing finite ground coplanar waveguide (FGC) transmission lines. The SPDT switch has an insertion loss (IL), return loss (RL), and isolation of 0.3dB, 40dB, and 30 dB, respectively at Ka-band.
Damholdt, Malene F.; Nørskov, Marco; Yamazaki, Ryuji; Hakli, Raul; Hansen, Catharina Vesterager; Vestergaard, Christina; Seibt, Johanna
2015-01-01
Attitudes toward robots influence the tendency to accept or reject robotic devices. Thus it is important to investigate whether and how attitudes toward robots can change. In this pilot study we investigate attitudinal changes in elderly citizens toward a tele-operated robot in relation to three parameters: (i) the information provided about robot functionality, (ii) the number of encounters, (iii) personality type. Fourteen elderly residents at a rehabilitation center participated. Pre-encounter attitudes toward robots, anthropomorphic thinking, and personality were assessed. Thereafter the participants interacted with a tele-operated robot (Telenoid) during their lunch (c. 30 min.) for up to 3 days. Half of the participants were informed that the robot was tele-operated (IC) whilst the other half were naïve to its functioning (UC). Post-encounter assessments of attitudes toward robots and anthropomorphic thinking were undertaken to assess change. Attitudes toward robots were assessed with a new generic 35-items questionnaire (attitudes toward social robots scale: ASOR-5), offering a differentiated conceptualization of the conditions for social interaction. There was no significant difference between the IC and UC groups in attitude change toward robots though trends were observed. Personality was correlated with some tendencies for attitude changes; Extraversion correlated with positive attitude changes to intimate-personal relatedness with the robot (r = 0.619) and to psychological relatedness (r = 0.581) whilst Neuroticism correlated negatively (r = -0.582) with mental relatedness with the robot. The results tentatively suggest that neither information about functionality nor direct repeated encounters are pivotal in changing attitudes toward robots in elderly citizens. This may reflect a cognitive congruence bias where the robot is experienced in congruence with initial attitudes, or it may support action-based explanations of cognitive dissonance reductions
Damholdt, Malene F; Nørskov, Marco; Yamazaki, Ryuji; Hakli, Raul; Hansen, Catharina Vesterager; Vestergaard, Christina; Seibt, Johanna
2015-01-01
Attitudes toward robots influence the tendency to accept or reject robotic devices. Thus it is important to investigate whether and how attitudes toward robots can change. In this pilot study we investigate attitudinal changes in elderly citizens toward a tele-operated robot in relation to three parameters: (i) the information provided about robot functionality, (ii) the number of encounters, (iii) personality type. Fourteen elderly residents at a rehabilitation center participated. Pre-encounter attitudes toward robots, anthropomorphic thinking, and personality were assessed. Thereafter the participants interacted with a tele-operated robot (Telenoid) during their lunch (c. 30 min.) for up to 3 days. Half of the participants were informed that the robot was tele-operated (IC) whilst the other half were naïve to its functioning (UC). Post-encounter assessments of attitudes toward robots and anthropomorphic thinking were undertaken to assess change. Attitudes toward robots were assessed with a new generic 35-items questionnaire (attitudes toward social robots scale: ASOR-5), offering a differentiated conceptualization of the conditions for social interaction. There was no significant difference between the IC and UC groups in attitude change toward robots though trends were observed. Personality was correlated with some tendencies for attitude changes; Extraversion correlated with positive attitude changes to intimate-personal relatedness with the robot (r = 0.619) and to psychological relatedness (r = 0.581) whilst Neuroticism correlated negatively (r = -0.582) with mental relatedness with the robot. The results tentatively suggest that neither information about functionality nor direct repeated encounters are pivotal in changing attitudes toward robots in elderly citizens. This may reflect a cognitive congruence bias where the robot is experienced in congruence with initial attitudes, or it may support action-based explanations of cognitive dissonance reductions
Coordination of multiple robot arms
NASA Technical Reports Server (NTRS)
Barker, L. K.; Soloway, D.
1987-01-01
Kinematic resolved-rate control from one robot arm is extended to the coordinated control of multiple robot arms in the movement of an object. The structure supports the general movement of one axis system (moving reference frame) with respect to another axis system (control reference frame) by one or more robot arms. The grippers of the robot arms do not have to be parallel or at any pre-disposed positions on the object. For multiarm control, the operator chooses the same moving and control reference frames for each of the robot arms. Consequently, each arm then moves as though it were carrying out the commanded motions by itself.
Sample Return Robot Centennial Challenge
2012-06-16
"Harry" a Goldendoodle is seen wearing a NASA backpack during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
Team members of "Survey" drive their robot around the campus on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Survey team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Perspectives of construction robots
NASA Astrophysics Data System (ADS)
Stepanov, M. A.; Gridchin, A. M.
2018-03-01
This article is an overview of construction robots features, based on formulating the list of requirements for different types of construction robots in relation to different types of construction works.. It describes a variety of construction works and ways to construct new or to adapt existing robot designs for a construction process. Also, it shows the prospects of AI-controlled machines, implementation of automated control systems and networks on construction sites. In the end, different ways to develop and improve, including ecological aspect, the construction process through the wide robotization, creating of data communication networks and, in perspective, establishing of fully AI-controlled construction complex are formulated.
K/Ka-band Antenna for Broadband Aeronautical Mobile Application
NASA Technical Reports Server (NTRS)
Densmore, A.
1994-01-01
The Jet Propulsion Laboratory (JPL) has recently begun the development of a Broadband Aeronauical Terminal (BAT) for duplex video satellite communications on commercial or business class aircraft. The BAT is designed for use with NASA's K/Ka-band Advanced Communications Technology Satellite (ACTS).
Neuromodulation as a Robot Controller: A Brain Inspired Strategy for Controlling Autonomous Robots
2009-09-01
To Appear in IEEE Robotics and Automation Magazine PREPRINT 1 Neuromodulation as a Robot Controller: A Brain Inspired Strategy for Controlling...Introduction We present a strategy for controlling autonomous robots that is based on principles of neuromodulation in the mammalian brain...object, ignore irrelevant distractions, and respond quickly and appropriately to the event [1]. There are separate neuromodulators that alter responses to
Thapa, Bishnu; Schlegel, H Bernhard
2016-07-21
The pKa's of substituted thiols are important for understanding their properties and reactivities in applications in chemistry, biochemistry, and material chemistry. For a collection of 175 different density functionals and the SMD implicit solvation model, the average errors in the calculated pKa's of methanethiol and ethanethiol are almost 10 pKa units higher than for imidazole. A test set of 45 substituted thiols with pKa's ranging from 4 to 12 has been used to assess the performance of 8 functionals with 3 different basis sets. As expected, the basis set needs to include polarization functions on the hydrogens and diffuse functions on the heavy atoms. Solvent cavity scaling was ineffective in correcting the errors in the calculated pKa's. Inclusion of an explicit water molecule that is hydrogen bonded with the H of the thiol group (in neutral) or S(-) (in thiolates) lowers error by an average of 3.5 pKa units. With one explicit water and the SMD solvation model, pKa's calculated with the M06-2X, PBEPBE, BP86, and LC-BLYP functionals are found to deviate from the experimental values by about 1.5-2.0 pKa units whereas pKa's with the B3LYP, ωB97XD and PBEVWN5 functionals are still in error by more than 3 pKa units. The inclusion of three explicit water molecules lowers the calculated pKa further by about 4.5 pKa units. With the B3LYP and ωB97XD functionals, the calculated pKa's are within one unit of the experimental values whereas most other functionals used in this study underestimate the pKa's. This study shows that the ωB97XD functional with the 6-31+G(d,p) and 6-311++G(d,p) basis sets, and the SMD solvation model with three explicit water molecules hydrogen bonded to the sulfur produces the best result for the test set (average error -0.11 ± 0.50 and +0.15 ± 0.58, respectively). The B3LYP functional also performs well (average error -1.11 ± 0.82 and -0.78 ± 0.79, respectively).
CFDP Performance over Weather-dependent Ka-band Channel
NASA Technical Reports Server (NTRS)
Sung, I. U.; Gao, Jay L.
2006-01-01
This study presents an analysis of the delay performance of the CCSDS File Delivery Protocol (CFDP) over weather-dependent Ka-band channel. The Ka-band channel condition is determined by the strength of the atmospheric noise temperature, which is weather dependent. Noise temperature data collected from the Deep Space Network (DSN) Madrid site is used to characterize the correlations between good and bad channel states in a two-state Markov model. Specifically, the probability distribution of file delivery latency using the CFDP deferred Negative Acknowledgement (NAK) mode is derived and quantified. Deep space communication scenarios with different file sizes and bit error rates (BERs) are studied and compared. Furthermore, we also examine the sensitivity of our analysis with respect to different data sampling methods. Our analysis shows that while the weather-dependent channel only results in fairly small increases in the average number of CFDP retransmissions required, the maximum number of transmissions required to complete 99 percentile, on the other hand, is significantly larger for the weather-dependent channel due to the significant correlation of poor weather states.
CFDP Performance over Weather-Dependent Ka-Band Channel
NASA Technical Reports Server (NTRS)
U, Sung I.; Gao, Jay L.
2006-01-01
This study presents an analysis of the delay performance of the CCSDS File Delivery Protocol (CFDP) over weather-dependent Ka-band channel. The Ka-band channel condition is determined by the strength of the atmospheric noise temperature, which is weather dependent. Noise temperature data collected from the Deep Space Network (DSN) Madrid site is used to characterize the correlations between good and bad channel states in a two-state Markov model. Specifically, the probability distribution of file delivery latency using the CFDP deferred Negative Acknowledgement (NAK) mode is derived and quantified. Deep space communication scenarios with different file sizes and bit error rates (BERs) are studied and compared. Furthermore, we also examine the sensitivity of our analysis with respect to different data sampling methods. Our analysis shows that while the weather-dependent channel only results in fairly small increases in the average number of CFDP retransmissions required, the maximum number of transmissions required to complete 99 percentile, on the other hand, is significantly larger for the weather-dependent channel due to the significant correlation of poor weather states.
Spaceflight Ka-Band High-Rate Radiation-Hard Modulator
NASA Technical Reports Server (NTRS)
Jaso, Jeffery M.
2011-01-01
A document discusses the creation of a Ka-band modulator developed specifically for the NASA/GSFC Solar Dynamics Observatory (SDO). This flight design consists of a high-bandwidth, Quadriphase Shift Keying (QPSK) vector modulator with radiation-hardened, high-rate driver circuitry that receives I and Q channel data. The radiationhard design enables SDO fs Ka-band communications downlink system to transmit 130 Mbps (300 Msps after data encoding) of science instrument data to the ground system continuously throughout the mission fs minimum life of five years. The low error vector magnitude (EVM) of the modulator lowers the implementation loss of the transmitter in which it is used, thereby increasing the overall communication system link margin. The modulator comprises a component within the SDO transmitter, and meets the following specifications over a 0 to 40 C operational temperature range: QPSK/OQPSK modulator, 300-Msps symbol rate, 26.5-GHz center frequency, error vector magnitude less than or equal to 10 percent rms, and compliance with the NTIA (National Telecommunications and Information Administration) spectral mask.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salisbury, Curt Michael; Dullea, Kevin J.
Technologies pertaining to a robotic hand are described herein. The robotic hand includes one or more fingers releasably attached to a robotic hand frame. The fingers can abduct and adduct as well as flex and tense. The fingers are releasably attached to the frame by magnets that allow for the fingers to detach from the frame when excess force is applied to the fingers.
New stapling devices in robotic surgery
Casiraghi, Monica; Pardolesi, Alessandro; Borri, Alessandro; Spaggiari, Lorenzo
2017-01-01
Minimally invasive thoracic surgery is rapidly diffusing worldwide. Robotic anatomic pulmonary resection is gaining popularity and acceptance in the thoracic community for the reported feasibility, safety, and good outcomes. The last available robotic system, da Vinci Xi System, added new technical improvements on robotic device allowing best performances in robotic lung resection. We report our initial experience in the use of EndoWrist Stapler during robotic anatomic surgery for lung cancer. PMID:29078608
Human-Robot Teaming: From Space Robotics to Self-Driving Cars
NASA Technical Reports Server (NTRS)
Fong, Terry
2017-01-01
In this talk, I describe how NASA Ames has been developing and testing robots for space exploration. In our research, we have focused on studying how human-robot teams can increase the performance, reduce the cost, and increase the success of space missions. A key tenet of our work is that humans and robots should support one another in order to compensate for limitations of manual control and autonomy. This principle has broad applicability beyond space exploration. Thus, I will conclude by discussing how we have worked with Nissan to apply our methods to self-driving cars, enabling humans to support autonomous vehicles operating in unpredictable and difficult situations.
Robotic System For Greenhouse Or Nursery
NASA Technical Reports Server (NTRS)
Gill, Paul; Montgomery, Jim; Silver, John; Heffelfinger, Neil; Simonton, Ward; Pease, Jim
1993-01-01
Report presents additional information about robotic system described in "Robotic Gripper With Force Control And Optical Sensors" (MFS-28537). "Flexible Agricultural Robotics Manipulator System" (FARMS) serves as prototype of robotic systems intended to enhance productivities of agricultural assembly-line-type facilities in large commercial greenhouses and nurseries.
2012-03-08
Spectators crew on teams during the 2012 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Bayou Regional Competition March 15-17, 2012, in Kenner, La. Students from 49 high school teams in six states participated in the annual robotics tournament.
Gurusamy, Kurinchi Selvan; Samraj, Kumarakrishnan; Fusai, Giuseppe; Davidson, Brian R
2012-09-12
The role of a robotic assistant in laparoscopic cholecystectomy is controversial. While some trials have shown distinct advantages of a robotic assistant over a human assistant others have not, and it is unclear which robotic assistant is best. The aims of this review are to assess the benefits and harms of a robot assistant versus human assistant or versus another robot assistant in laparoscopic cholecystectomy, and to assess whether the robot can substitute the human assistant. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE, and Science Citation Index Expanded (until February 2012) for identifying the randomised clinical trials. Only randomised clinical trials (irrespective of language, blinding, or publication status) comparing robot assistants versus human assistants in laparoscopic cholecystectomy were considered for the review. Randomised clinical trials comparing different types of robot assistants were also considered for the review. Two authors independently identified the trials for inclusion and independently extracted the data. We calculated the risk ratio (RR) or mean difference (MD) with 95% confidence interval (CI) using the fixed-effect and the random-effects models based on intention-to-treat analysis, when possible, using Review Manager 5. We included six trials with 560 patients. One trial involving 129 patients did not state the number of patients randomised to the two groups. In the remaining five trials 431 patients were randomised, 212 to the robot assistant group and 219 to the human assistant group. All the trials were at high risk of bias. Mortality and morbidity were reported in only one trial with 40 patients. There was no mortality or morbidity in either group. Mortality and morbidity were not reported in the remaining trials. Quality of life or the proportion of patients who were discharged as day-patient laparoscopic cholecystectomy patients were not reported in any
New trends in robotics for agriculture: integration and assessment of a real fleet of robots.
Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo
2014-01-01
Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis.
New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots
Gonzalez-de-Soto, Mariano; Pajares, Gonzalo
2014-01-01
Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis. PMID:25143976
Hazardous materials emergency response mobile robot
NASA Technical Reports Server (NTRS)
Stone, Henry W. (Inventor); Lloyd, James W. (Inventor); Alahuzos, George A. (Inventor)
1995-01-01
A simple or unsophisticated robot incapable of effecting straight-line motion at the end of its arm is presented. This robot inserts a key held in its end effector or hand into a door lock with nearly straight-line motion by gently thrusting its back heels downwardly so that it pivots forwardly on its front toes while holding its arm stationary. The relatively slight arc traveled by the robot's hand is compensated by a complaint tool with which the robot hand grips the door key. A visible beam is projected through the axis of the hand or gripper on the robot arm end at an angle to the general direction in which the robot thrusts the gripper forward. As the robot hand approaches a target surface, a video camera on the robot wrist watches the beam spot on the target surface fall from a height proportional to the distance between the robot hand and the target surface until the beam spot is nearly aligned with the top of the robot hand. Holes in the front face of the hand are connected through internal passages inside the arm to an on-board chemical sensor. Full rotation of the hand or gripper about the robot arm's wrist is made possible by slip rings in the wrist which permit passage of the gases taken in through the nose holes in the front of the hand through the wrist regardless of the rotational orientation of the wrist.
NASA Technical Reports Server (NTRS)
Ezer, Neta; Zumbado, Jennifer Rochlis; Sandor, Aniko; Boyer, Jennifer
2011-01-01
Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed. Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator
2007-01-06
NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.
Feinberg, Adam W
2015-01-01
In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.
NASA Technical Reports Server (NTRS)
2007-01-01
NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.
Nathoo, Narendra; Pesek, Todd; Barnett, Gene H
2003-12-01
Ultimately, neurosurgery performed via a robotic interface will serve to improve the standard of a neurosurgeon's skills, thus making a good surgeon a better surgeon. In fact, computer and robotic instrumentation will become allies to the neurosurgeon through the use of these technologies in training, diagnostic, and surgical events. Nonetheless, these technologies are still in an early stage of development, and each device developed will entail its own set of challenges and limitations for use in clinical settings. The future operating room should be regarded as an integrated information system incorporating robotic surgical navigators and telecontrolled micromanipulators, with the capabilities of all principal neurosurgical concepts, sharing information, and under the control of a single person, the neurosurgeon. The eventual integration of robotic technology into mainstream clinical neurosurgery offers the promise of a future of safer, more accurate, and less invasive surgery that will result in improved patient outcome.
A ~25 ka Indian Ocean monsoon variability record from the Andaman Sea
Rashid, H.; Flower, B.P.; Poore, R.Z.; Quinn, T.M.
2007-01-01
Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.
A power autonomous monopedal robot
NASA Astrophysics Data System (ADS)
Krupp, Benjamin T.; Pratt, Jerry E.
2006-05-01
We present the design and initial results of a power-autonomous planar monopedal robot. The robot is a gasoline powered, two degree of freedom robot that runs in a circle, constrained by a boom. The robot uses hydraulic Series Elastic Actuators, force-controllable actuators which provide high force fidelity, moderate bandwidth, and low impedance. The actuators are mounted in the body of the robot, with cable drives transmitting power to the hip and knee joints of the leg. A two-stroke, gasoline engine drives a constant displacement pump which pressurizes an accumulator. Absolute position and spring deflection of each of the Series Elastic Actuators are measured using linear encoders. The spring deflection is translated into force output and compared to desired force in a closed loop force-control algorithm implemented in software. The output signal of each force controller drives high performance servo valves which control flow to each of the pistons of the actuators. In designing the robot, we used a simulation-based iterative design approach. Preliminary estimates of the robot's physical parameters were based on past experience and used to create a physically realistic simulation model of the robot. Next, a control algorithm was implemented in simulation to produce planar hopping. Using the joint power requirements and range of motions from simulation, we worked backward specifying pulley diameter, piston diameter and stroke, hydraulic pressure and flow, servo valve flow and bandwidth, gear pump flow, and engine power requirements. Components that meet or exceed these specifications were chosen and integrated into the robot design. Using CAD software, we calculated the physical parameters of the robot design, replaced the original estimates with the CAD estimates, and produced new joint power requirements. We iterated on this process, resulting in a design which was prototyped and tested. The Monopod currently runs at approximately 1.2 m/s with the weight of all
Hwang, Jihong; Park, Taezoon; Hwang, Wonil
2013-05-01
The affective interaction between human and robots could be influenced by various aspects of robots, which are appearance, countenance, gesture, voice, etc. Among these, the overall shape of robot could play a key role in invoking desired emotions to the users and bestowing preferred personalities to robots. In this regard, the present study experimentally investigates the effects of overall robot shape on the emotions invoked in users and the perceived personalities of robot with an objective of deriving guidelines for the affective design of service robots. In so doing, 27 different shapes of robot were selected, modeled and fabricated, which were combinations of three different shapes of head, trunk and limb (legs and arms) - rectangular-parallelepiped, cylindrical and human-like shapes. For the experiment, visual images and real prototypes of these robot shapes were presented to participants, and emotions invoked and personalities perceived from the presented robots were measured. The results showed that the overall shape of robot arouses any of three emotions named 'concerned', 'enjoyable' and 'favorable', among which 'concerned' emotion is negatively correlated with the 'big five personality factors' while 'enjoyable' and 'favorable' emotions are positively correlated. It was found that the 'big five personality factors', and 'enjoyable' and 'favorable' emotions are more strongly perceived through the real prototypes than through the visual images. It was also found that the robot shape consisting of cylindrical head, human-like trunk and cylindrical head is the best for 'conscientious' personality and 'favorable' emotion, the robot shape consisting of cylindrical head, human-like trunk and human-like limb for 'extroverted' personality, the robot shape consisting of cylindrical head, cylindrical trunk and cylindrical limb for 'anti-neurotic' personality, and the robot shape consisting of rectangular-parallelepiped head, human-like trunk and human-like limb
Del Giudice, C; Pellerin, O; Nouri Neville, M; Amouyal, G; Fitton, I; Leré-Déan, C; Sapoval, M
2018-03-01
To compare outcomes of percutaneous robot-assisted uterine fibroid embolization (UFE) using two different endovascular robotic catheters. Twenty-one patients with a symptomatic uterine fibroid were prospectively enrolled in a single-center study to be treated with a percutaneous robot-assisted embolization using the Magellan system. Fourteen patients were treated using a first generation steerable robotic catheter, version 1.0 (group 1), and seven were treated using the new version 1.1 (group 2). Demographic, pathologic, and procedural variables were recorded. Dose Area Product (DAP) and physician equivalent doses were registered for each procedure. Procedural related complications and clinical midterm outcomes were also evaluated. Successful robot-assisted UFE was obtained in eight patients (57.1%) in group 1 and 7 patients (100%) in group 2 (p = 0.01). A successful robot-assisted catheterization of the internal iliac artery anterior branch was performed in all patients of both groups. Median selective target vessel catheterization time was 21.0 ± 12.8 vs 13.4 ± 7 min (p = 0.04) and total fluoroscopy time was 30.3 ± 11.2 vs 19.3 ± 5.9 min, respectively, in group 1 and 2. Mean DAP decreased from 18472.6 ± 15622 to 5469.1 ± 4461.0 cGy·cm 2 (p = 0.04). All patients obtained a symptoms relief at 6 months follow-up. Robot-assisted uterine fibroid embolization is safe and effective. New version of steerable robotic catheter allows performing a faster procedure without related adverse events compared to old version.
Robotics On-Board Trainer (ROBoT)
NASA Technical Reports Server (NTRS)
Johnson, Genevieve; Alexander, Greg
2013-01-01
ROBoT is an on-orbit version of the ground-based Dynamics Skills Trainer (DST) that astronauts use for training on a frequent basis. This software consists of two primary software groups. The first series of components is responsible for displaying the graphical scenes. The remaining components are responsible for simulating the Mobile Servicing System (MSS), the Japanese Experiment Module Remote Manipulator System (JEMRMS), and the H-II Transfer Vehicle (HTV) Free Flyer Robotics Operations. The MSS simulation software includes: Robotic Workstation (RWS) simulation, a simulation of the Space Station Remote Manipulator System (SSRMS), a simulation of the ISS Command and Control System (CCS), and a portion of the Portable Computer System (PCS) software necessary for MSS operations. These components all run under the CentOS4.5 Linux operating system. The JEMRMS simulation software includes real-time, HIL, dynamics, manipulator multi-body dynamics, and a moving object contact model with Tricks discrete time scheduling. The JEMRMS DST will be used as a functional proficiency and skills trainer for flight crews. The HTV Free Flyer Robotics Operations simulation software adds a functional simulation of HTV vehicle controllers, sensors, and data to the MSS simulation software. These components are intended to support HTV ISS visiting vehicle analysis and training. The scene generation software will use DOUG (Dynamic On-orbit Ubiquitous Graphics) to render the graphical scenes. DOUG runs on a laptop running the CentOS4.5 Linux operating system. DOUG is an Open GL-based 3D computer graphics rendering package. It uses pre-built three-dimensional models of on-orbit ISS and space shuttle systems elements, and provides realtime views of various station and shuttle configurations.
Weak acid-concentration Atot and dissociation constant Ka of plasma proteins in racehorses.
Stampfli, H R; Misiaszek, S; Lumsden, J H; Carlson, G P; Heigenhauser, G J
1999-07-01
The plasma proteins are a significant contributor to the total weak acid concentration as a net anionic charge. Due to potential species difference, species-specific values must be confirmed for the weak acid anionic concentrations of proteins (Atot) and the effective dissociation constant for plasma weak acids (Ka). We studied the net anion load Atot of equine plasma protein in 10 clinically healthy mature Standardbred horses. A multi-step titration procedure, using a tonometer covering a titration range of PCO2 from 25 to 145 mmHg at 37 degrees C, was applied on the plasma of these 10 horses. Blood gases (pH, PCO2) and electrolytes required to calculate the strong ion difference ([SID] = [(Na(+) + K(+) + Ca(2+) + Mg(2+))-(Cl(-) + Lac(-) + PO4(2-))]) were simultaneously measured over a physiological pH range from 6.90-7.55. A nonlinear regression iteration to determine Atot and Ka was performed using polygonal regression curve fitting applied to the electrical neutrality equation of the physico-chemical system. The average anion-load Atot for plasma protein of 10 Standardbred horses was 14.89 +/- 0.8 mEq/l plasma and Ka was 2.11 +/- 0.50 x 10(-7) Eq/l (pKa = 6.67). The derived conversion factor (iterated Atot concentration/average plasma protein concentration) for calculation of Atot in plasma is 0.21 mEq/g protein (protein-unit: g/l). This value compares closely with the 0.24 mEq/g protein determined by titration of Van Slyke et al. (1928) and 0.22 mEq/g protein recently published by Constable (1997) for horse plasma. The Ka value compares closely with the value experimentally determined by Constable in 1997 (2.22 x 10(7) Eq/l). Linear regression of a set of experimental data from 5 Thoroughbred horses on a treadmill exercise test, showed excellent correlation with the regression lines not different from identity for the calculated and measured variables pH, HCO3 and SID. Knowledge of Atot and Ka for the horse is useful especially in exercise studies and in
Ka-band SAR interferometry studies for the SWOT mission
NASA Astrophysics Data System (ADS)
Fernandez, D. E.; Fu, L.; Rodriguez, E.; Hodges, R.; Brown, S.
2008-12-01
The primary objective of the NRC Decadal Survey recommended SWOT (Surface Water and Ocean Topography) Mission is to measure the water elevation of the global oceans, as well as terrestrial water bodies (such as rivers, lakes, reservoirs, and wetlands), to answer key scientific questions on the kinetic energy of ocean circulation, the spatial and temporal variability of the world's surface freshwater storage and discharge, and to provide societal benefits on predicting climate change, coastal zone management, flood prediction, and water resources management. The SWOT mission plans to carry the following suite of microwave instruments: a Ka-band interferometer, a dual-frequency nadir altimeter, and a multi-frequency water-vapor radiometer dedicated to measuring wet tropospheric path delay to correct the radar measurements. We are currently funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) to reduce the risk of the main technological drivers of SWOT, by addressing the following technologies: the Ka-band radar interferometric antenna design, the on-board interferometric SAR processor, and the internally calibrated high-frequency radiometer. The goal is to significantly enhance the readiness level of the new technologies required for SWOT, while laying the foundations for the next-generation missions to map water elevation for studying Earth. The first two technologies address the challenges of the Ka-band SAR interferometry, while the high- frequency radiometer addresses the requirement for small-scale wet tropospheric corrections for coastal zone applications. In this paper, we present the scientific rational, need and objectives behind these technology items currently under development.
NASA Astrophysics Data System (ADS)
Batistela, Vagner Roberto; Pellosi, Diogo Silva; de Souza, Franciane Dutra; da Costa, Willian Ferreira; de Oliveira Santin, Silvana Maria; de Souza, Vagner Roberto; Caetano, Wilker; de Oliveira, Hueder Paulo Moisés; Scarminio, Ieda Spacino; Hioka, Noboru
2011-09-01
Xanthenes form to an important class of dyes which are widely used. Most of them present three acid-base groups: two phenolic sites and one carboxylic site. Therefore, the p Ka determination and the attribution of each group to the corresponding p Ka value is a very important feature. Attempts to obtain reliable p Ka through the potentiometry titration and the electronic absorption spectrophotometry using the first and second orders derivative failed. Due to the close p Ka values allied to strong UV-Vis spectral overlap, multivariate analysis, a powerful chemometric method, is applied in this work. The determination was performed for eosin Y, erythrosin B, and bengal rose B, and also for other synthesized derivatives such as 2-(3,6-dihydroxy-9-acridinyl) benzoic acid, 2,4,5,7-tetranitrofluorescein, eosin methyl ester, and erythrosin methyl ester in water. These last two compounds (esters) permitted to attribute the p Ka of the phenolic group, which is not easily recognizable for some investigated dyes. Besides the p Ka determination, the chemometry allowed for estimating the electronic spectrum of some prevalent protolytic species and the substituents effects evaluation.
Robotic instrumentation: Evolution and microsurgical applications
Parekattil, Sijo J.; Moran, Michael E.
2010-01-01
This article presents a review of the history and evolution of robotic instrumentation and its applications in urology. A timeline for the evolution of robotic instrumentation is presented to better facilitate an understanding of our current-day applications. Some new directions including robotic microsurgical applications (robotic assisted denervation of the spermatic cord for chronic orchialgia and robotic assisted vasectomy reversal) are presented. There is a paucity of prospective comparative effectiveness studies for a number of robotic applications. However, right or wrong, human nature has always led to our infatuation with the concept of using tools to meet our needs. This chapter is a brief tribute to where we have come from and where we may be potentially heading in the field of robotic assisted urologic surgery. PMID:21116362
Simulation and animation of sensor-driven robots.
Chen, C; Trivedi, M M; Bidlack, C R
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.
Simulation and animation of sensor-driven robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.; Trivedi, M.M.; Bidlack, C.R.
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aide the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the usersmore » visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.« less
The problem with multiple robots
NASA Technical Reports Server (NTRS)
Huber, Marcus J.; Kenny, Patrick G.
1994-01-01
The issues that can arise in research associated with multiple, robotic agents are discussed. Two particular multi-robot projects are presented as examples. This paper was written in the hope that it might ease the transition from single to multiple robot research.
Adaptive Language Games with Robots
NASA Astrophysics Data System (ADS)
Steels, Luc
2010-11-01
This paper surveys recent research into language evolution using computer simulations and robotic experiments. This field has made tremendous progress in the past decade going from simple simulations of lexicon formation with animallike cybernetic robots to sophisticated grammatical experiments with humanoid robots.
A Mini-Curriculum for Robotics Education.
ERIC Educational Resources Information Center
Jones, Preston K.
This practicum report documents the development of a four-lesson multimedia program for robotics instruction for fourth and seventh grade students. The commercial film "Robot Revolution" and the videocassette tape "Robotics" were used, along with two author-developed slide/audiotape presentations and 14 overhead transparency foils. Two robots,…
Sample Return Robot Centennial Challenge
2012-06-16
Panoramic of some of the exhibits available on the campus of the Worcester Polytechnic Institute (WPI) during their "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Anthony Shrout)
Sample Return Robot Centennial Challenge
2012-06-16
Posters for the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event are seen posted around the campus on Saturday, June 16, 2012 at WPI in Worcester, Mass. The TouchTomorrow event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Teen Sized Humanoid Robot: Archie
NASA Astrophysics Data System (ADS)
Baltes, Jacky; Byagowi, Ahmad; Anderson, John; Kopacek, Peter
This paper describes our first teen sized humanoid robot Archie. This robot has been developed in conjunction with Prof. Kopacek’s lab from the Technical University of Vienna. Archie uses brushless motors and harmonic gears with a novel approach to position encoding. Based on our previous experience with small humanoid robots, we developed software to create, store, and play back motions as well as control methods which automatically balance the robot using feedback from an internal measurement unit (IMU).
Recent Trends in Robotics Research
NASA Astrophysics Data System (ADS)
Ejiri, Masakazu
My views on recent trends in the strategy and practice of Japan's robotics research are briefly introduced. To meet ever-increasing public expectations, robotics researchers and engineers have to be more seriously concerned about robots' intrinsic weaknesses. Examples of these are power-related and reliability issues. Resolving these issues will increase the feasibility of creating successful new industry, and the likelihood of robotics becoming a key technology for providing a safe and stress-free society in the future.
NASA Technical Reports Server (NTRS)
1994-01-01
A commercially available ANDROS Mark V-A robot was used by Jet Propulsion Laboratory (JPL) as the departure point in the development of the HAZBOT III, a prototype teleoperated mobile robot designed for response to emergencies. Teleoperated robots contribute significantly to reducing human injury levels by performing tasks too hazardous for humans. ANDROS' manufacturer, REMOTEC, Inc., in turn, adopted some of the JPL concepts, particularly the control panel. HAZBOT III has exceptional mobility, employs solid state electronics and brushless DC motors for safer operation, and is designed so combustible gases cannot penetrate areas containing electronics and motors. Other features include the six-degree-of-freedom manipulator, the 30-pound squeeze force parallel jaw gripper and two video cameras, one for general viewing and navigation and the other for manipulation/grasping.
Anthropomorphism in Human–Robot Co-evolution
Damiano, Luisa; Dumouchel, Paul
2018-01-01
Social robotics entertains a particular relationship with anthropomorphism, which it neither sees as a cognitive error, nor as a sign of immaturity. Rather it considers that this common human tendency, which is hypothesized to have evolved because it favored cooperation among early humans, can be used today to facilitate social interactions between humans and a new type of cooperative and interactive agents – social robots. This approach leads social robotics to focus research on the engineering of robots that activate anthropomorphic projections in users. The objective is to give robots “social presence” and “social behaviors” that are sufficiently credible for human users to engage in comfortable and potentially long-lasting relations with these machines. This choice of ‘applied anthropomorphism’ as a research methodology exposes the artifacts produced by social robotics to ethical condemnation: social robots are judged to be a “cheating” technology, as they generate in users the illusion of reciprocal social and affective relations. This article takes position in this debate, not only developing a series of arguments relevant to philosophy of mind, cognitive sciences, and robotic AI, but also asking what social robotics can teach us about anthropomorphism. On this basis, we propose a theoretical perspective that characterizes anthropomorphism as a basic mechanism of interaction, and rebuts the ethical reflections that a priori condemns “anthropomorphism-based” social robots. To address the relevant ethical issues, we promote a critical experimentally based ethical approach to social robotics, “synthetic ethics,” which aims at allowing humans to use social robots for two main goals: self-knowledge and moral growth. PMID:29632507
The Human-Robot Interaction Operating System
NASA Technical Reports Server (NTRS)
Fong, Terrence; Kunz, Clayton; Hiatt, Laura M.; Bugajska, Magda
2006-01-01
In order for humans and robots to work effectively together, they need to be able to converse about abilities, goals and achievements. Thus, we are developing an interaction infrastructure called the "Human-Robot Interaction Operating System" (HRI/OS). The HRI/OS provides a structured software framework for building human-robot teams, supports a variety of user interfaces, enables humans and robots to engage in task-oriented dialogue, and facilitates integration of robots through an extensible API.
Ka-Band, Multi-Gigabit-Per-Second Transceiver
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.; Smith, Francis J.; Harris, Johnny M.; Landon, David G.; Haddadin, Osama S.; McIntire, William K.; Sun, June Y.
2011-01-01
A document discusses a multi-Gigabit-per-second, Ka-band transceiver with a software-defined modem (SDM) capable of digitally encoding/decoding data and compensating for linear and nonlinear distortions in the end-to-end system, including the traveling-wave tube amplifier (TWTA). This innovation can increase data rates of space-to-ground communication links, and has potential application to NASA s future spacebased Earth observation system. The SDM incorporates an extended version of the industry-standard DVB-S2, and LDPC rate 9/10 FEC codec. The SDM supports a suite of waveforms, including QPSK, 8-PSK, 16-APSK, 32- APSK, 64-APSK, and 128-QAM. The Ka-band and TWTA deliver an output power on the order of 200 W with efficiency greater than 60%, and a passband of at least 3 GHz. The modem and the TWTA together enable a data rate of 20 Gbps with a low bit error rate (BER). The payload data rates for spacecraft in NASA s integrated space communications network can be increased by an order of magnitude (>10 ) over current state-of-practice. This innovation enhances the data rate by using bandwidth-efficient modulation techniques, which transmit a higher number of bits per Hertz of bandwidth than the currently used quadrature phase shift keying (QPSK) waveforms.
ERIC Educational Resources Information Center
Clark, Lisa J.
2002-01-01
Introduces a project for elementary school students in which students build a robot by following instructions and then write a computer program to run their robot by using LabView graphical development software. Uses ROBOLAB curriculum which is designed for grade levels K-12. (YDS)
Broeders, Ivo A M J
2014-02-01
Robotic systems were introduced 15 years ago to support complex endoscopic procedures. The technology is increasingly used in gastro-intestinal surgery. In this article, literature on experimental- and clinical research is reviewed and ergonomic issues are discussed. literature review was based on Medline search using a large variety of search terms, including e.g. robot(ic), randomized, rectal, oesophageal, ergonomics. Review articles on relevant topics are discussed with preference. There is abundant evidence of supremacy in performing complex endoscopic surgery tasks when using the robot in an experimental setting. There is little high-level evidence so far on translation of these merits to clinical practice. Robotic systems may appear helpful in complex gastro-intestinal surgery. Moreover, dedicated computer based technology integrated in telepresence systems opens the way to integration of planning, diagnostics and therapy. The first high tech add-ons such as near infrared technology are under clinical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Robotic Surgery for Lung Cancer
Ambrogi, Marcello C; Fanucchi, Olivia; Melfi, Franco; Mussi, Alfredo
2014-01-01
During the last decade the role of minimally invasive surgery has been increased, especially with the introduction of the robotic system in the surgical field. The most important advantages of robotic system are represented by the wristed instrumentation and the depth perception, which can overcome the limitation of traditional thoracoscopy. However, some data still exist in literature with regard to robotic lobectomy. The majority of papers are focused on its safety and feasibility, but further studies with long follow-ups are necessary in order to assess the oncologic outcomes. We reviewed the literature on robotic lobectomy, with the main aim to better define the role of robotic system in the clinical practice. PMID:25207216
Microwave Spectrum of the H_2S Dimer: Observation of K_{a}=1 Lines
NASA Astrophysics Data System (ADS)
Das, Arijit; Mandal, Pankaj; Lovas, Frank J.; Medcraft, Chris; Arunan, Elangannan
2017-06-01
Large amplitude tunneling motions in (H_2S)_{2} complicate the analysis of its microwave spectrum. The previous rotational spectrum of (H_2S)_{2} was observed using the Balle-Flygare pulsed nozzle FT microwave spectrometers at NIST and IISc. For most isotopomers of (H_2S)_{2} a two state pattern of a-type K_{a}=0 transitions had been observed and were interpreted to arise from E_{1}^{+/-} and E_{2}^{+/-} states of the six tunneling states expected for (H_2S)_{2}. K_{a}=0 lines gave us only the distance between the acceptor and donor S atoms. The (B+C)/2 for E_{1} and E_{2} states were found to be 1749.3091(8) MHz and 1748.1090(8) MHz respectively. In this work, we have observed the K_{a}=1 microwave transitions which enable us to determine finer structural details of the dimer. The observation of the K_{a}=1 lines indicate that (H_2S)_{2} is not spherical in nature, their interactions do have some anisotropy. Preliminary assignment of K_{a}=1 lines for the E_{1} state results in B=1752.859 MHz and C=1745.780 MHz. We also report a new progression of lines which probably belongs to the parent isotopomers. F. J. Lovas, P. K. Mandal and E. Arunan, unpublished work P. K. Mandal Ph.D. Dissertation, Indian Institute of Science, (2005) F. J. Lovas, R. D. Suenram, and L. H. Coudert. 43rd Int.Symp. on Molecular Spectroscopy. (1988)
Propagation experiment of COMETS Ka/Q-band communication link for future satellite cellular system
NASA Technical Reports Server (NTRS)
Hase, Yoshihiro
1995-01-01
Mobile/Personal Satellite Communication Systems in L/S-bands are going into the operational phase. In the future, they will be operated in much higher frequency bands, for example in Ka-band, because the available bandwidth in L-band is limited. Systems with large on-board antennas in higher frequencies allow the same configuration as terrestrial cellular radio systems, since the on-board antennas will have many small spot beams. This may be true especially in a low earth orbit system such as Teledesic, which will use Ka-band. The most important parameter of Satellite Cellular may be cell size, that is, a diameter of the spot beam. A system designer needs the local correlation data in a cell and the size of the correlative area. On the other hand, the most significant difficulty of Ka and higher band systems is the countermeasure to rain attenuation. Many-cell systems can manage the limited power of on-board transponders by controlling output power of each beam depending on the rain attenuation of each cell. If the cell size is equal to the correlative area, the system can probably achieve the maximum performance. Propagation data of Ka and higher band obtained in the past shows a long term cumulative feature and link availability, but do not indicate the correlative area. The Japanese COMETS satellite, which will be launched in February 1997, has transponders in Ka and Q-band. The CRL is planning to measure the correlative area using 21 GHz and 44 GHz CW transmissions from the COMETS.
New methods of measuring and calibrating robots
NASA Astrophysics Data System (ADS)
Janocha, Hartmut; Diewald, Bernd
1995-10-01
ISO 9283 and RIA R15.05 define industrial robot parameters which are applied to compare the efficiency of different robots. Hitherto, however, no suitable measurement systems have been available. ICAROS is a system which combines photogrammetrical procedures with an inertial navigation system. For the first time, this combination allows the high-precision static and dynamic measurement of the position as well as of the orientation of the robot endeffector. Thus, not only the measuring data for the determination of all industrial robot parameters can be acquired. By integration of a new over-all-calibration procedure, ICAROS also allows the reduction of the absolute robot pose errors to the range of its repeatability. The integration of both system components as well as measurement and calibration results are presented in this paper, using a six-axes robot as example. A further approach also presented here takes into consideration not only the individual robot errors but also the tolerances of workpieces. This allows the adjustment of off-line programs of robots based on inexact or idealized CAD data in any pose. Thus the robot position which is defined relative to the workpiece to be processed, is achieved as required. This includes the possibility to transfer teached robot programs to other devices without additional expenditure. The adjustment is based on the measurement of the robot position using two miniaturized CCD cameras mounted near the endeffector which are carried along by the robot during the correction phase. In the area viewed by both cameras, the robot position is determined in relation to prominent geometry elements, e.g. lines or holes. The scheduled data to be compared therewith can either be calculated in modern off-line programming systems during robot programming, or they can be determined at the so-called master robot if a transfer of the robot program is desired.
Analyzing Cyber-Physical Threats on Robotic Platforms.
Ahmad Yousef, Khalil M; AlMajali, Anas; Ghalyon, Salah Abu; Dweik, Waleed; Mohd, Bassam J
2018-05-21
Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream) and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT) was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBot TM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS) and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications.
Autonomous mobile robot research using the HERMIES-III robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, F.G.; Beckerman, M.; Spelt, P.F.
1989-01-01
This paper reports on the status and future directions in the research, development and experimental validation of intelligent control techniques for autonomous mobile robots using the HERMIES-III robot at the Center for Engineering Systems Advanced research (CESAR) at Oak Ridge National Laboratory (ORNL). HERMIES-III is the fourth robot in a series of increasingly more sophisticated and capable experimental test beds developed at CESAR. HERMIES-III is comprised of a battery powered, onmi-directional wheeled platform with a seven degree-of-freedom manipulator arm, video cameras, sonar range sensors, laser imaging scanner and a dual computer system containing up to 128 NCUBE nodes in hypercubemore » configuration. All electronics, sensors, computers, and communication equipment required for autonomous operation of HERMIES-III are located on board along with sufficient battery power for three to four hours of operation. The paper first provides a more detailed description of the HERMIES-III characteristics, focussing on the new areas of research and demonstration now possible at CESAR with this new test-bed. The initial experimental program is then described with emphasis placed on autonomous performance of human-scale tasks (e.g., valve manipulation, use of tools), integration of a dexterous manipulator and platform motion in geometrically complex environments, and effective use of multiple cooperating robots (HERMIES-IIB and HERMIES- III). The paper concludes with a discussion of the integration problems and safety considerations necessarily arising from the set-up of an experimental program involving human-scale, multi-autonomous mobile robots performance. 10 refs., 3 figs.« less
Augmented Robotics Dialog System for Enhancing Human–Robot Interaction
Alonso-Martín, Fernando; Castro-González, Aívaro; de Gorostiza Luengo, Francisco Javier Fernandez; Salichs, Miguel Ángel
2015-01-01
Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human–robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human–robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications. PMID:26151202
Augmented Robotics Dialog System for Enhancing Human-Robot Interaction.
Alonso-Martín, Fernando; Castro-González, Aĺvaro; Luengo, Francisco Javier Fernandez de Gorostiza; Salichs, Miguel Ángel
2015-07-03
Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human-robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human-robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications.
Tactile surface classification for limbed robots using a pressure sensitive robot skin.
Shill, Jacob J; Collins, Emmanuel G; Coyle, Eric; Clark, Jonathan
2015-02-02
This paper describes an approach to terrain identification based on pressure images generated through direct surface contact using a robot skin constructed around a high-resolution pressure sensing array. Terrain signatures for classification are formulated from the magnitude frequency responses of the pressure images. The initial experimental results for statically obtained images show that the approach yields classification accuracies [Formula: see text]. The methodology is extended to accommodate the dynamic pressure images anticipated when a robot is walking or running. Experiments with a one-legged hopping robot yield similar identification accuracies [Formula: see text]. In addition, the accuracies are independent with respect to changing robot dynamics (i.e., when using different leg gaits). The paper further shows that the high-resolution capabilities of the sensor enables similarly textured surfaces to be distinguished. A correcting filter is developed to accommodate for failures or faults that inevitably occur within the sensing array with continued use. Experimental results show using the correcting filter can extend the effective operational lifespan of a high-resolution sensing array over 6x in the presence of sensor damage. The results presented suggest this methodology can be extended to autonomous field robots, providing a robot with crucial information about the environment that can be used to aid stable and efficient mobility over rough and varying terrains.
2017 Robotic Mining Competition
2017-05-23
College team members prepare to enter the robotic mining arena for a test run during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
2017 Robotic Mining Competition
2017-05-24
The robotic miner from Mississippi State University digs in the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
2017 Robotic Mining Competition
2017-05-24
A robotic miner digs in the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
Datteri, Edoardo
2013-03-01
This article addresses prospective and retrospective responsibility issues connected with medical robotics. It will be suggested that extant conceptual and legal frameworks are sufficient to address and properly settle most retrospective responsibility problems arising in connection with injuries caused by robot behaviours (which will be exemplified here by reference to harms occurred in surgical interventions supported by the Da Vinci robot, reported in the scientific literature and in the press). In addition, it will be pointed out that many prospective responsibility issues connected with medical robotics are nothing but well-known robotics engineering problems in disguise, which are routinely addressed by roboticists as part of their research and development activities: for this reason they do not raise particularly novel ethical issues. In contrast with this, it will be pointed out that novel and challenging prospective responsibility issues may emerge in connection with harmful events caused by normal robot behaviours. This point will be illustrated here in connection with the rehabilitation robot Lokomat.
Intelligent robot trends for 1998
NASA Astrophysics Data System (ADS)
Hall, Ernest L.
1998-10-01
An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The use of these machines in factory automation can improve productivity, increase product quality and improve competitiveness. This paper presents a discussion of recent technical and economic trends. Technically, the machines are faster, cheaper, more repeatable, more reliable and safer. The knowledge base of inverse kinematic and dynamic solutions and intelligent controls is increasing. More attention is being given by industry to robots, vision and motion controls. New areas of usage are emerging for service robots, remote manipulators and automated guided vehicles. Economically, the robotics industry now has a 1.1 billion-dollar market in the U.S. and is growing. Feasibility studies results are presented which also show decreasing costs for robots and unaudited healthy rates of return for a variety of robotic applications. However, the road from inspiration to successful application can be long and difficult, often taking decades to achieve a new product. A greater emphasis on mechatronics is needed in our universities. Certainly, more cooperation between government, industry and universities is needed to speed the development of intelligent robots that will benefit industry and society.
Sample Return Robot Centennial Challenge
2012-06-16
Visitors, some with their dogs, line up to make their photo inside a space suit exhibit during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
The bronze statue of the goat mascot for Worcester Polytechnic Institute (WPI) named "Gompei" is seen wearing a staff t-shirt for the "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
A deformable spherical planet exploration robot
NASA Astrophysics Data System (ADS)
Liang, Yi-shan; Zhang, Xiu-li; Huang, Hao; Yang, Yan-feng; Jin, Wen-tao; Sang, Zhong-xun
2013-03-01
In this paper, a deformable spherical planet exploration robot has been introduced to achieve the task of environmental detection in outer space or extreme conditions. The robot imitates the morphology structure and motion mechanism of tumbleweeds. The robot is wind-driven. It consists of an axle, a spherical steel skeleton and twelve airbags. The axle is designed as two parts. The robot contracts by contracting the two-part axle. The spherical robot installs solar panels to provide energy for its control system.
Baseline Field Testing of BB-2590 Lithium-Ion Batteries using an iRobot FasTac 510 Robot
2010-09-17
No. 21320 Baseline Field Testing of BB-2590 Lithium - Ion Batteries using an iRobot FasTac 510 Robot U.S. Army Tank...SEP 2010 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Baseline Field Testing of BB-2590 Lithium - Ion Batteries using an iRobot...COVERED (From - To) Baseline Field Testing of BB-2590 Lithium - Ion Batteries using an 4. TITLE AND SUBTITLE iRobot FasTac 510 Robot 5a. CONTRACT
Scaling effects in spiral capsule robots.
Liang, Liang; Hu, Rong; Chen, Bai; Tang, Yong; Xu, Yan
2017-04-01
Spiral capsule robots can be applied to human gastrointestinal tracts and blood vessels. Because of significant variations in the sizes of the inner diameters of the intestines as well as blood vessels, this research has been unable to meet the requirements for medical applications. By applying the fluid dynamic equations, using the computational fluid dynamics method, to a robot axial length ranging from 10 -5 to 10 -2 m, the operational performance indicators (axial driving force, load torque, and maximum fluid pressure on the pipe wall) of the spiral capsule robot and the fluid turbulent intensity around the robot spiral surfaces was numerically calculated in a straight rigid pipe filled with fluid. The reasonableness and validity of the calculation method adopted in this study were verified by the consistency of the calculated values by the computational fluid dynamics method and the experimental values from a relevant literature. The results show that the greater the fluid turbulent intensity, the greater the impact of the fluid turbulence on the driving performance of the spiral capsule robot and the higher the energy consumption of the robot. For the same level of size of the robot, the axial driving force, the load torque, and the maximum fluid pressure on the pipe wall of the outer spiral robot were larger than those of the inner spiral robot. For different requirements of the operating environment, we can choose a certain kind of spiral capsule robot. This study provides a theoretical foundation for spiral capsule robots.
An integrated Ka/Ku-band payload for personal, mobile and private business communications
NASA Technical Reports Server (NTRS)
Hayes, Edward J.; Keelty, J. Malcolm
1991-01-01
The Canadian Department of Communications has been studying options for a government-sponsored demonstration payload to be launched before the end of the century. A summary of the proposed system concepts and network architectures for providing an advanced private business network service at Ku-band and personal and mobile communications at Ka-band is presented. The system aspects addressed include coverage patterns, traffic capacity, and grade of service, multiple access options as well as special problems, such as Doppler in mobile applications. Earth terminal types and the advanced payload concept proposed in a feasibility study for the demonstration mission are described. This concept is a combined Ka-band/Ku-band payload which incorporates a number of advanced satellite technologies including a group demodulator to convert single-channel-per-carrier frequency division multiple access uplink signals to a time division multiplex downlink, on-board signal regeneration, and baseband switching to support packet switched data operation. The on-board processing capability of the payload provides a hubless VSAT architecture which permits single-hop full mesh interconnectivity. The Ka-band and Ku-band portions of the payload are fully integrated through an on-board switch, thereby providing the capability for fully integrated services, such as using the Ku-band VSAT terminals as gateway stations for the Ka-band personal and mobile communications services.
Humans and Robots. Educational Brief.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
This brief discusses human movement and robotic human movement simulators. The activity for students in grades 5-12 provides a history of robotic movement and includes making an End Effector for the robotic arms used on the Space Shuttle and the International Space Station (ISS). (MVL)
NASA Astrophysics Data System (ADS)
Sharkey, Amanda J. C.
2007-09-01
Swarm Robotics (SR) is closely related to Swarm Intelligence, and both were initially inspired by studies of social insects. Their guiding principles are based on their biological inspiration and take the form of an emphasis on decentralized local control and communication. Earlier studies went a step further in emphasizing the use of simple reactive robots that only communicate indirectly through the environment. More recently SR studies have moved beyond these constraints to explore the use of non-reactive robots that communicate directly, and that can learn and represent their environment. There is no clear agreement in the literature about how far such extensions of the original principles could go. Should there be any limitations on the individual abilities of the robots used in SR studies? Should knowledge of the capabilities of social insects lead to constraints on the capabilities of individual robots in SR studies? There is a lack of explicit discussion of such questions, and researchers have adopted a variety of constraints for a variety of reasons. A simple taxonomy of swarm robotics is presented here with the aim of addressing and clarifying these questions. The taxonomy distinguishes subareas of SR based on the emphases and justifications for minimalism and individual simplicity.
NASA Astrophysics Data System (ADS)
Wang, Jingzhong; Jia, Hongjuan
2017-09-01
Lake Lop Nur is located in the eastern part of the Tarim Basin in Xinjiang, northwestern China. A 220-cm-long sediment core was collected from the center of the ear-shaped depression forming the basin and dated with AMS14C. Grain size, total organic matter (TOC), total nitrogen (TN), and TOC/TN (C/N) analyses were used to reconstruct climatic conditions from 13.0 to 5.6 cal ka BP. The results showed five main climatic stages. Zone I (13.0-11.3 cal ka BP) was a wet-dry environment, whereas Zone II (11.3-8.9 cal ka BP) consisted of a primarily wet environment. Zone III (8.9-7.7 cal ka BP) was subdivided into Zone IIIa (8.9-8.2 cal ka BP) that indicated lake constriction and dry climate, and Zone IIIb (8.2-7.7 cal ka BP) in which the proxies indicated wet conditions. In Zone IV (7.7-6.6 cal ka BP), the climate presented a bit wet conditions. In Zone V (6.6-5.6 cal ka BP), abundant glauberite is present in the sediment and silt dominates the lithology; these results indicate the lake shrank and the overall climate was dry. Abrupt environmental events were also identified, including six dry events at 11.0, 10.5, 9.3, 8.6, 8.2, and 7.6 cal ka BP and one flood event from 7.8 to 7.7 cal ka BP in the Early-Middle Holocene.
Mobility Systems For Robotic Vehicles
NASA Astrophysics Data System (ADS)
Chun, Wendell
1987-02-01
The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.
Jones, Raya A
2017-08-01
Rhetorical moves that construct humanoid robots as social agents disclose tensions at the intersection of science and technology studies (STS) and social robotics. The discourse of robotics often constructs robots that are like us (and therefore unlike dumb artefacts). In the discourse of STS, descriptions of how people assimilate robots into their activities are presented directly or indirectly against the backdrop of actor-network theory, which prompts attributing agency to mundane artefacts. In contradistinction to both social robotics and STS, it is suggested here that to view a capacity to partake in dialogical action (to have a 'voice') is necessary for regarding an artefact as authentically social. The theme is explored partly through a critical reinterpretation of an episode that Morana Alač reported and analysed towards demonstrating her bodies-in-interaction concept. This paper turns to 'body' with particular reference to Gibsonian affordances theory so as to identify the level of analysis at which dialogicality enters social interactions.
Interactive autonomy and robotic skills
NASA Technical Reports Server (NTRS)
Kellner, A.; Maediger, B.
1994-01-01
Current concepts of robot-supported operations for space laboratories (payload servicing, inspection, repair, and ORU exchange) are mainly based on the concept of 'interactive autonomy' which implies autonomous behavior of the robot according to predefined timelines, predefined sequences of elementary robot operations and within predefined world models supplying geometrical and other information for parameter instantiation on the one hand, and the ability to override and change the predefined course of activities by human intervention on the other hand. Although in principle a very powerful and useful concept, in practice the confinement of the robot to the abstract world models and predefined activities appears to reduce the robot's stability within real world uncertainties and its applicability to non-predefined parts of the world, calling for frequent corrective interaction by the operator, which in itself may be tedious and time-consuming. Methods are presented to improve this situation by incorporating 'robotic skills' into the concept of interactive autonomy.
State Estimation for Tensegrity Robots
NASA Technical Reports Server (NTRS)
Caluwaerts, Ken; Bruce, Jonathan; Friesen, Jeffrey M.; Sunspiral, Vytas
2016-01-01
Tensegrity robots are a class of compliant robots that have many desirable traits when designing mass efficient systems that must interact with uncertain environments. Various promising control approaches have been proposed for tensegrity systems in simulation. Unfortunately, state estimation methods for tensegrity robots have not yet been thoroughly studied. In this paper, we present the design and evaluation of a state estimator for tensegrity robots. This state estimator will enable existing and future control algorithms to transfer from simulation to hardware. Our approach is based on the unscented Kalman filter (UKF) and combines inertial measurements, ultra wideband time-of-flight ranging measurements, and actuator state information. We evaluate the effectiveness of our method on the SUPERball, a tensegrity based planetary exploration robotic prototype. In particular, we conduct tests for evaluating both the robot's success in estimating global position in relation to fixed ranging base stations during rolling maneuvers as well as local behavior due to small-amplitude deformations induced by cable actuation.
Robotic microsurgery in male infertility and urology-taking robotics to the next level.
Gudeloglu, Ahmet; Brahmbhatt, Jamin V; Parekattil, Sijo J
2014-03-01
The initial reports of robotic assisted microsurgery began to appear in the early 1990s. Animal and early human studies were the initial publications. Larger series papers have recently been published from a few institutions. The field of robotic assisted microsurgery is still in evolution and so are adjunctive tools and instruments. It is clearly a different and unique skill set-is it microsurgery or is it robotic surgery, or both. It is clear from history that the art of surgery evolves over time to encompass new technology as long as the outcomes are better for the patient. Our current robotic platforms may not be ideal for microsurgery, however, the use of adjunctive tools and instrument refinement will further its future potential. This review article presents the current state of the art in various robotic assisted microsurgical procedures in male infertility and urology. Some novel applications of taking microsurgery to areas not classically accessible (intra-abdominal vasovasostomy) and adjunctive tools will also be presented.
Robots that can adapt like animals.
Cully, Antoine; Clune, Jeff; Tarapore, Danesh; Mouret, Jean-Baptiste
2015-05-28
Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and rescue, disaster response, health care and transportation. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets to deep oceans. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility. Whereas animals can quickly adapt to injuries, current robots cannot 'think outside the box' to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage, but current techniques are slow even with small, constrained search spaces. Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot's prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles
Robots that can adapt like animals
NASA Astrophysics Data System (ADS)
Cully, Antoine; Clune, Jeff; Tarapore, Danesh; Mouret, Jean-Baptiste
2015-05-01
Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and rescue, disaster response, health care and transportation. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets to deep oceans. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility. Whereas animals can quickly adapt to injuries, current robots cannot `think outside the box' to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage, but current techniques are slow even with small, constrained search spaces. Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot's prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles
Robotic bariatric surgery: a systematic review.
Fourman, Matthew M; Saber, Alan A
2012-01-01
Obesity is a nationwide epidemic, and the only evidence-based, durable treatment of this disease is bariatric surgery. This field has evolved drastically during the past decade. One of the latest advances has been the increased use of robotics within this field. The goal of our study was to perform a systematic review of the recent data to determine the safety and efficacy of robotic bariatric surgery. The setting was the University Hospitals Case Medical Center (Cleveland, OH). A PubMed search was performed for robotic bariatric surgery from 2005 to 2011. The inclusion criteria were English language, original research, human, and bariatric surgical procedures. Perioperative data were then collected from each study and recorded. A total of 18 studies were included in our review. The results of our systematic review showed that bariatric surgery, when performed with the use of robotics, had similar or lower complication rates compared with traditional laparoscopy. Two studies showed shorter operative times using the robot for Roux-en-Y gastric bypass, but 4 studies showed longer operative times in the robotic arm. In addition, the learning curve appears to be shorter when robotic gastric bypass is compared with the traditional laparoscopic approach. Most investigators agreed that robotic laparoscopic surgery provides superior imaging and freedom of movement compared with traditional laparoscopy. The application of robotics appears to be a safe option within the realm of bariatric surgery. Prospective randomized trials comparing robotic and laparoscopic outcomes are needed to further define the role of robotics within the field of bariatric surgery. Longer follow-up times would also help elucidate any long-term outcomes differences with the use of robotics versus traditional laparoscopy. Copyright © 2012 American Society for Metabolic and Bariatric Surgery. All rights reserved.
Polverino, Giovanni; Phamduy, Paul; Porfiri, Maurizio
2013-01-01
The possibility of integrating bioinspired robots in groups of live social animals may constitute a valuable tool to study the basis of social behavior and uncover the fundamental determinants of animal functions and dysfunctions. In this study, we investigate the interactions between individual golden shiners (Notemigonus crysoleucas) and robotic fish swimming together in a water tunnel at constant flow velocity. The robotic fish is designed to mimic its live counterpart in the aspect ratio, body shape, dimension, and locomotory pattern. Fish positional preference with respect to the robot is experimentally analyzed as the robot's color pattern and tail-beat frequency are varied. Behavioral observations are corroborated by particle image velocimetry studies aimed at investigating the flow structure behind the robotic fish. Experimental results show that the time spent by golden shiners in the vicinity of the bioinspired robotic fish is the highest when the robot mimics their natural color pattern and beats its tail at the same frequency. In these conditions, fish tend to swim at the same depth of the robotic fish, where the wake from the robotic fish is stronger and hydrodynamic return is most likely to be effective. PMID:24204882
Polverino, Giovanni; Phamduy, Paul; Porfiri, Maurizio
2013-01-01
The possibility of integrating bioinspired robots in groups of live social animals may constitute a valuable tool to study the basis of social behavior and uncover the fundamental determinants of animal functions and dysfunctions. In this study, we investigate the interactions between individual golden shiners (Notemigonus crysoleucas) and robotic fish swimming together in a water tunnel at constant flow velocity. The robotic fish is designed to mimic its live counterpart in the aspect ratio, body shape, dimension, and locomotory pattern. Fish positional preference with respect to the robot is experimentally analyzed as the robot's color pattern and tail-beat frequency are varied. Behavioral observations are corroborated by particle image velocimetry studies aimed at investigating the flow structure behind the robotic fish. Experimental results show that the time spent by golden shiners in the vicinity of the bioinspired robotic fish is the highest when the robot mimics their natural color pattern and beats its tail at the same frequency. In these conditions, fish tend to swim at the same depth of the robotic fish, where the wake from the robotic fish is stronger and hydrodynamic return is most likely to be effective.
An Ultralightweight and Living Legged Robot.
Vo Doan, Tat Thang; Tan, Melvin Y W; Bui, Xuan Hien; Sato, Hirotaka
2018-02-01
In this study, we describe the most ultralightweight living legged robot to date that makes it a strong candidate for a search and rescue mission. The robot is a living beetle with a wireless electronic backpack stimulator mounted on its thorax. Inheriting from the living insect, the robot employs a compliant body made of soft actuators, rigid exoskeletons, and flexure hinges. Such structure would allow the robot to easily adapt to any complex terrain due to the benefit of soft interface, self-balance, and self-adaptation of the insect without any complex controller. The antenna stimulation enables the robot to perform not only left/right turning but also backward walking and even cessation of walking. We were also able to grade the turning and backward walking speeds by changing the stimulation frequency. The power required to drive the robot is low as the power consumption of the antenna stimulation is in the order of hundreds of microwatts. In contrast to the traditional legged robots, this robot is of low cost, easy to construct, simple to control, and has ultralow power consumption.
Gangarapu, Satesh; Marcelis, Antonius T M; Zuilhof, Han
2013-04-02
The pKa of the conjugate acids of alkanolamines, neurotransmitters, alkaloid drugs and nucleotide bases are calculated with density functional methods (B3LYP, M08-HX and M11-L) and ab initio methods (SCS-MP2, G3). Implicit solvent effects are included with a conductor-like polarizable continuum model (CPCM) and universal solvation models (SMD, SM8). G3, SCS-MP2 and M11-L methods coupled with SMD and SM8 solvation models perform well for alkanolamines with mean unsigned errors below 0.20 pKa units, in all cases. Extending this method to the pKa calculation of 35 nitrogen-containing compounds spanning 12 pKa units showed an excellent correlation between experimental and computational pKa values of these 35 amines with the computationally low-cost SM8/M11-L density functional approach. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Ballhaus, W. L.; Alder, L. J.; Chen, V. W.; Dickson, W. C.; Ullman, M. A.; Wilson, E.
1993-01-01
Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modeling and control of extremely flexible space structures.
Gala, Rajiv B; Margulies, Rebecca; Steinberg, Adam; Murphy, Miles; Lukban, James; Jeppson, Peter; Aschkenazi, Sarit; Olivera, Cedric; South, Mary; Lowenstein, Lior; Schaffer, Joseph; Balk, Ethan M; Sung, Vivian
2014-01-01
The Society of Gynecologic Surgeons Systematic Review Group performed a systematic review of both randomized and observational studies to compare robotic vs nonrobotic surgical approaches (laparoscopic, abdominal, and vaginal) for treatment of both benign and malignant gynecologic indications to compare surgical and patient-centered outcomes, costs, and adverse events associated with the various surgical approaches. MEDLINE and the Cochrane Central Register of Controlled Trials were searched from inception to May 15, 2012, for English-language studies with terms related to robotic surgery and gynecology. Studies of any design that included at least 30 women who had undergone robotic-assisted laparoscopic gynecologic surgery were included for review. The literature yielded 1213 citations, of which 97 full-text articles were reviewed. Forty-four studies (30 comparative and 14 noncomparative) met eligibility criteria. Study data were extracted into structured electronic forms and reconciled by a second, independent reviewer. Our analysis revealed that, compared with open surgery, robotic surgery consistently confers shorter hospital stay. The proficiency plateau seems to be lower for robotic surgery than for conventional laparoscopy. Of the various gynecologic applications, there seems to be evidence that renders robotic techniques advantageous over traditional open surgery for management of endometrial cancer. However, insofar as superiority, conflicting data are obtained when comparing robotics vs laparoscopic techniques. Therefore, the specific method of minimally invasive surgery, whether conventional laparoscopy or robotic surgery, should be tailored to patient selection, surgeon ability, and equipment availability. Copyright © 2014 AAGL. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio
2014-03-01
We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.
Young Children Treat Robots as Informants.
Breazeal, Cynthia; Harris, Paul L; DeSteno, David; Kory Westlund, Jacqueline M; Dickens, Leah; Jeong, Sooyeon
2016-04-01
Children ranging from 3 to 5 years were introduced to two anthropomorphic robots that provided them with information about unfamiliar animals. Children treated the robots as interlocutors. They supplied information to the robots and retained what the robots told them. Children also treated the robots as informants from whom they could seek information. Consistent with studies of children's early sensitivity to an interlocutor's non-verbal signals, children were especially attentive and receptive to whichever robot displayed the greater non-verbal contingency. Such selective information seeking is consistent with recent findings showing that although young children learn from others, they are selective with respect to the informants that they question or endorse. Copyright © 2016 Cognitive Science Society, Inc.
Advances in Robotic Servicing Technology Development
NASA Technical Reports Server (NTRS)
Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin
2015-01-01
NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and near Earth asteroid boulder retrieval; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.
Advances in Robotic Servicing Technology Development
NASA Technical Reports Server (NTRS)
Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin
2015-01-01
NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.
Robotic inferior vena cava surgery.
Davila, Victor J; Velazco, Cristine S; Stone, William M; Fowl, Richard J; Abdul-Muhsin, Haidar M; Castle, Erik P; Money, Samuel R
2017-03-01
Inferior vena cava (IVC) surgery is uncommon and has traditionally been performed through open surgical approaches. Renal cell carcinoma with IVC extension generally requires vena cavotomy and reconstruction. Open removal of malpositioned IVC filters (IVCF) is occasionally required after endovascular retrieval attempts have failed. As our experience with robotic surgery has advanced, we have applied this technology to surgery of the IVC. We reviewed our institution's experience with robotic surgical procedures involving the IVC to determine its safety and efficacy. All patients undergoing robotic surgery that included cavotomy and repair from 2011 to 2014 were retrospectively reviewed. Data were obtained detailing preoperative demographics, operative details, and postoperative morbidity and mortality. Ten patients (6 men) underwent robotic vena caval procedures at our institution. Seven patients underwent robotic nephrectomy with removal of IVC tumor thrombus and retroperitoneal lymph node dissection. Three patients underwent robotic explantation of an IVCF after multiple endovascular attempts at removal had failed. The patients with renal cell carcinoma were a mean age of was 65.4 years (range, 55-74 years). Six patients had right-sided malignancy. All patients had T3b lesions at time of diagnosis. Mean tumor length extension into the IVC was 5 cm (range, 1-8 cm). All patients underwent robotic radical nephrectomy, with caval tumor thrombus removal and retroperitoneal lymph node dissection. The average operative time for patients undergoing surgery for renal cell carcinoma was 273 minutes (range, 137-382 minutes). Average intraoperative blood loss was 428 mL (range, 150-1200 mL). The patients with IVCF removal were a mean age of 33 years (range, 24-41 years). Average time from IVCF placement until robotic removal was 35.5 months (range, 4.3-57.3 months). Before robotic IVCF removal, a minimum of two endovascular retrievals were attempted. Average operative time
Hierarchical Modelling Of Mobile, Seeing Robots
NASA Astrophysics Data System (ADS)
Luh, Cheng-Jye; Zeigler, Bernard P.
1990-03-01
This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.
Hierarchical modelling of mobile, seeing robots
NASA Technical Reports Server (NTRS)
Luh, Cheng-Jye; Zeigler, Bernard P.
1990-01-01
This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.
Robotics Literacy Captivates Elementary Students.
ERIC Educational Resources Information Center
Friedman, Madeleine
1986-01-01
Describes a robotics literacy course offered for elementary age children at Broward Community College (Florida) and discusses the motivation for offering such a course, the course philosophy and objectives, and participant reactions. A sampling of robots and robotics devices and some of their teaching applications are included. (MBR)
A Ka-band chirped-pulse Fourier transform microwave spectrometer
NASA Astrophysics Data System (ADS)
Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matt T.; Seifert, Nathan A.; Brandon Carroll, P.; Widicus Weaver, Susanna L.; Pate, Brooks H.
2012-10-01
The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25 to 40 GHz (Ka-band) is presented. This spectrometer is well-suited for the study of complex organic molecules of astronomical interest in the size range of 6-10 atoms that have strong rotational transitions in Ka-band under pulsed jet sample conditions (Trot = 1-10 K). The spectrometer permits acquisition of the full spectral band in a single data acquisition event. Sensitivity is enhanced by using two pulsed jet sources and acquiring 10 broadband measurements for each sample injection cycle. The spectrometer performance is benchmarked by measuring the pure rotational spectrum of several isotopologues of acetaldehyde in natural abundance. The rotational spectra of the singly substituted 13C and 18O isotopologues of the two lowest energy conformers of ethyl formate have been analyzed and the resulting substitution structures for these conformers are compared to electronic structure theory calculations.
Full Ka Band Waveguide-to-Microstrip Inline Transition Design
NASA Astrophysics Data System (ADS)
Li, Jianxing; Li, Lei; Qiao, Yu; Chen, Juan; Chen, Jianzhong; Zhang, Anxue
2018-05-01
In this paper, a compact and broadband inline waveguide-to-microstrip transition is proposed to cover the full Ka band. The transition can be segmented from the electric point of view into three building blocks, comprising a microstrip line to rectangular coaxial line, a wedged rectangular coaxial line to ridged waveguide, and a final tapered ridged waveguide impedance transformer to standard waveguide. Both good electrical performance and simple modular assembly without any soldering have been simultaneously obtained. The validation of the design concept has been conducted by numerical simulations and experimental measurements. The experimental results of a fabricated back-to-back transition prototype coincide with the simulated results. It shows that the proposed transition achieves good return loss of lower than 15.5 dB and low insertion loss with a fluctuation between 0.23 to 0.60 dB across the entire Ka band. Details of design considerations and operation mechanism as well as simulation and measurement results are presented.
Robotic technology evolution and transfer
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.
1992-01-01
A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.