Sample records for jimmy pea ja

  1. Jimmy Carter National Historic Site : transportation assistance group report

    DOT National Transportation Integrated Search

    2016-10-16

    The Jimmy Carter National Historic Site (NHS), a National Park Service (NPS) site, in Plains, Georgia currently comprises four distinct sites associated with former President Jimmy Carter: the Boyhood Farm, where he was raised; the Plains Depot, whic...

  2. Jimmy Carter and the Rhetoric of Charisma.

    ERIC Educational Resources Information Center

    Campbell, J. Louis, III

    1979-01-01

    Analyzes Jimmy Carter's success in the 1976 presidential primaries in terms of his rhetorical style based on Max Weber's concept of charisma and Ernest Bormann's theory of fantasy and rhetorical vision. The combination of Carter's charismatic message and the country's social fantasies produced his election. (JMF)

  3. Charisma and Christianity: Is Jimmy Lee Swaggart a Cynic?

    ERIC Educational Resources Information Center

    Corder, Lloyd E.

    Since the advent of cable television in the early seventies, the success of television evangelists including Oral Roberts, Jim Bakker, Robert Schuller, and Jimmy Swaggart has grown, both in terms of finances and in conversion of souls. Although many television preachers use similar strategies for getting donations, their backgrounds and messages…

  4. Myths and Political Rhetoric: Jimmy Carter Accepts the Nomination.

    ERIC Educational Resources Information Center

    Corso, Dianne M.

    Like other political speakers who have drawn on the personification, identification, and dramatic encounter images of mythology to pressure and persuade audiences, Jimmy Carter evoked the myths of the hero, the American Dream, and the ideal political process in his presidential nomination acceptance speech. By stressing his unknown status, his…

  5. Co-brand strategy of evaluation of visual images in furniture design: Jimmy S.P.A. and STRAUSS as examples

    NASA Astrophysics Data System (ADS)

    Chen, Tien-Li; Pan, Fang-Ming; Tsai, Jen-Hui

    2013-03-01

    This study aimed to investigate the correlation of the image associated by the design Co-Brand (Jimmy S.P.A. and STRAUSS) and the impression perceived by subject of viewers. Visual images were used to examine the merit of the evaluation. The best result is provided using an object as an appropriate evaluation method. There are a lot of factors which influence to evaluation of a design. This study is limited to distinguish the appearance from Jimmy's picture books transform furniture and so on. Co-Brand of Jimmy S.P.A. and STRAUSS is not easy because there are not from the same cultural, and industry background and applying different marketing strategy, it is a way to combine the two brands by designing, used questionnaire of SD (Semantic differential evaluation) evaluation method to test out the perception of viewers, the objective of this study is to investigate and appraised the Co-Brands use by of the image in furniture from patrons. SD evaluation result showed, if design cannot understand the perception image of Jimmy S.P.A and STRAUSS with viewers mind, furniture design also can't transmit feeling with design.

  6. Expression of the 12-oxophytodienoic acid 10,11-reductase gene in the compatible interaction between pea and fungal pathogen.

    PubMed

    Ishiga, Yasuhiro; Funato, Akiko; Tachiki, Tomoyuki; Toyoda, Kazuhiro; Shiraishi, Tomonori; Yamada, Tetsuji; Ichinose, Yuki

    2002-10-01

    Suppressors produced by Mycosphaerella pinodes are glycopeptides to block pea defense responses induced by elicitors. A clone, S64, was isolated as cDNA for suppressor-inducible gene from pea epicotyls. The treatment of pea epicotyls with suppressor alone induced an increase of S64 mRNA within 1 h, and it reached a maximum level at 3 h after treatment. The induction was not affected by application of the elicitor, indicating that the suppressor has a dominant action to regulate S64 gene expression. S64 was also induced by inoculation with a virulent pathogen, M. pinodes, but not by inoculation with a non-pathogen, Ascochyta rabiei, nor by treatment with fungal elicitor. The deduced structure of S64 showed high homology to 12-oxophytodienoic acid reductase (OPR) in Arabidopsis thaliana. A recombinant protein derived from S64 had OPR activity, suggesting compatibility-specific activation of the octadecanoid pathway in plants. Treatment with jasmonic acid (JA) or methyl jasmonic acid, end products of the octadecanoid pathway, inhibited the elicitor-induced accumulation of PAL mRNA in pea. These results indicate that the suppressor-induced S64 gene expression leads to the production of JA or related compounds, which might contribute to the establishment of compatibility by inhibiting the phenylpropanoid biosynthetic pathway.

  7. Bean alpha-amylase inhibitors in transgenic peas inhibit development of pea weevil larvae.

    PubMed

    de Sousa-Majer, Maria José; Hardie, Darryl C; Turner, Neil C; Higgins, Thomas J V

    2007-08-01

    This glasshouse study used an improved larval measurement procedure to evaluate the impact of transgenic pea, Pisum sativum L., seeds expressing a-amylase inhibitor (AI)-1 or -2 proteins on pea weevil, Bruchus pisorum L. Seeds of transgenic 'Laura' and 'Greenfeast' peas expressing alpha-(AI)-1 reduced pea weevil survival by 93-98%. Larval mortality occurred at an early instar. Conversely, in nontransgenic cultivars, approximately 98-99% of the pea weevils emerged as adults. By measuring the head capsule size, we determined that larvae died at the first to early third instar in alpha-(AI)-1 transgenic peas, indicating that this inhibitor is highly effective in controlling this insect. By contrast, transgenic Laura and 'Dundale' expressing alpha-(AI)-2 did not affect pea weevil survival, but they did delay larval development. After 77 d of development, the head capsule size indicated that the larvae were still at the third instar stage in transgenic alpha-(AI)-2 peas, whereas adult bruchids had developed in the nontransgenic peas.

  8. Effect of roasted pea flour/starch and encapsulated pea starch incorporation on the in vitro starch digestibility of pea breads.

    PubMed

    Lu, Zhan-Hui; Donner, Elizabeth; Liu, Qiang

    2018-04-15

    Oven or microwave roasting and alginate encapsulation of pea flour and starch to produce novel pea ingredients for enrichment of slowly digestible starch (SDS) and resistant starch (RS) content in pea bread were investigated. Pea flour treated either by oven roasting (160°C, 30min) or by microwave roasting (1.1kW, 6min) effectively retained its low starch digestibility similar to its native form (∼25% SDS; ∼60% RS). When oven roasting was applied to pea starch, SDS content increased triply compared to the fully boiled counterpart. Alginate encapsulation effectively controlled carbohydrate release to simulated gastric, intestinal and colonic fluids, and thus largely enriched the SDS and RS fractions in starch. Pea bread containing up to 37.5% of encapsulated roasted MPS pea starch not only provided high SDS and RS fractions (23.9% SDS and 30.2% RS) compared to a white bread control (0.2% SDS and 2.5% RS), but also provided an acceptable palatability. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Peas in a Pod: Environment and Ionization in Green Pea Galaxies

    NASA Astrophysics Data System (ADS)

    Kurtz, Heather; Jaskot, Anne; Drew, Patrick; Pare, Dylan; Griffin, Jon; Petersen, Michael

    2016-01-01

    The Green Peas are extreme, highly ionized, starburst galaxies with strong [OIII] 5007 emission. Using the Sloan Digital Sky Survey, we present statistics on the environment of Green Peas and investigate its effects on their ionized gas properties. Although most dwarf starburst galaxies are in low-density environments, we identify a sample of Green Peas in dense environments. Emission line observations with the WIYN 0.9-meter telescope at Kitt Peak reveal that one cluster Green Pea is more highly ionized in the direction of the cluster center. Ram pressure stripping likely generates this ionization gradient. We explore the role of the environment in enhancing star formation rates and ionization, and we compare the nebular properties of Green Peas in high-density environments to those in low-density environments.

  10. The pea stem

    PubMed Central

    Karahara, Ichirou

    2012-01-01

    The Casparian strip is commonly observed in the endodermis of roots of vascular plants and, in some cases, also in the stems. Pea stems develop the Casparian strip, and its development has been reported to be regulated by blue light. In addition, for the purpose of photobiological studies, pea stems provide a unique experimental system for other physiological studies of the development of the Casparian strip. In this article, I have briefly summarized (1) the effects of environmental factors on the development of the Casparian strip, (2) the advantage of using pea stems for physiological studies of the development of the Casparian strip, and (3) cellular events indicated to be involved in the development of the Casparian strip, focusing on the studies using pea stems as well as other recent studies. PMID:22899074

  11. How does pea architecture influence light sharing in virtual wheat–pea mixtures? A simulation study based on pea genotypes with contrasting architectures

    PubMed Central

    Barillot, Romain; Combes, Didier; Chevalier, Valérie; Fournier, Christian; Escobar-Gutiérrez, Abraham J.

    2012-01-01

    Background and aims Light interception is a key factor driving the functioning of wheat–pea intercrops. The sharing of light is related to the canopy structure, which results from the architectural parameters of the mixed species. In the present study, we characterized six contrasting pea genotypes and identified architectural parameters whose range of variability leads to various levels of light sharing within virtual wheat–pea mixtures. Methodology Virtual plants were derived from magnetic digitizations performed during the growing cycle in a greenhouse experiment. Plant mock-ups were used as inputs of a radiative transfer model in order to estimate light interception in virtual wheat–pea mixtures. The turbid medium approach, extended to well-mixed canopies, was used as a framework for assessing the effects of leaf area index (LAI) and mean leaf inclination on light sharing. Principal results Three groups of pea genotypes were distinguished: (i) early and leafy cultivars, (ii) late semi-leafless cultivars and (iii) low-development semi-leafless cultivars. Within open canopies, light sharing was well described by the turbid medium approach and was therefore determined by the architectural parameters that composed LAI and foliage inclination. When canopy closure started, the turbid medium approach was unable to properly infer light partitioning because of the vertical structure of the canopy. This was related to the architectural parameters that determine the height of pea genotypes. Light capture was therefore affected by the development of leaflets, number of branches and phytomers, as well as internode length. Conclusions This study provides information on pea architecture and identifies parameters whose variability can be used to drive light sharing within wheat–pea mixtures. These results could be used to build up the architecture of pea ideotypes adapted to multi-specific stands towards light competition. PMID:23240074

  12. Wound and methyl jasmonate induced pigeon pea defensive proteinase inhibitor has potency to inhibit insect digestive proteinases.

    PubMed

    Lomate, Purushottam R; Hivrale, Vandana K

    2012-08-01

    Wounding of plants by chewing insects or other damage induces the synthesis of defensive proteinase inhibitors (PI) in both wounded and distal unwounded leaves. In the present paper we report the characterization of inducible defensive PI from pigeon pea (Cajanus cajan) and its in vitro interaction with Helicoverpa armigera gut proteinases (HGP). We found that PI activity was induced in local as well as systemic leaves of pigeon pea by the wounding and methyl jasmonate (MeJA) application. Consistent induction of PI was observed in two wild cultivars of pigeon pea at various growth stages. The estimated molecular weight of inducible PI was ~16.5 kDa. Electrophoretic analysis and enzyme assays revealed that the induced PI significantly inhibited total gut proteinase as well as trypsin-like activity from the midgut of H. armigera. The induced PI was found to be inhibitor of trypsin as well as chymotrypsin. Study could be important to know the further roles of defensive PIs. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Replication of pea enation mosaic virus RNA in isolated pea nuclei

    PubMed Central

    Powell, C. A.; Zoeten, G. A. de

    1977-01-01

    Isolated nuclei from healthy pea plants were primed with pea enation mosaic virus (PEMV), southern bean mosaic virus (SBMV), radish mosaic virus (RdMV), tobacco mosaic virus (TMV), PEMV RNA, SBMV RNA, RdMV RNA, or TMV RNA. RNA replication occurred only with PEMV RNA and not with intact PEMV or any of the other viruses or RNAs, as judged by ensuing actinomycin D-insensitive polymerase activity. Molecular hybridization experiments showed that some of the product of the polymerase was PEMV-specific (-)RNA. The substrate and ionic requirements of this polymerase were the same as those for the RNA-dependent RNA polymerase present in nuclei isolated from PEMV-infected pea plants. No virus particles could be recovered from nuclei primed with PEMV RNA. These results are discussed in relation to the possible mechanism for in vivo infection of pea cells. PMID:16592421

  14. Influences of pea morphology and interacting factors on pea aphid (Homoptera: Aphididae) reproduction.

    PubMed

    Buchman, N; Cuddington, K

    2009-08-01

    It has been claimed that plant architecture can alter aphid reproductive rates, but the mechanism driving this effect has not been identified. We studied interactions between plant architecture, aphid density, environmental conditions, and nutrient availability on the reproduction of pea aphids [Acyrthosiphon pisum (Harris)] using four near-isogenic peas (Pisum sativum L.) that differ in morphology. Manipulations of aphid density (1, 5, and 10 adults per plant) allowed us to examine any effects of plant morphology on crowding and consequently reproduction. Pea morphology per se did not alter pea aphid crowding, as measured by mean nearest neighbor distance, and there was no effect on reproduction. In addition, reproduction increased with increasing adult density, indicating positive density dependence. In a separate experiment, peas were fertilized to determine whether differences between nutrient availability of the four different morphologies might drive any observed differences in aphid reproduction. Although plant nitrogen content was altered by fertilization treatments, this did not have an impact on aphid reproduction. Greenhouse experiments, however, suggested that pea morphology can interact with environmental conditions to reduce aphid reproduction under some conditions. We conclude that plant morphology only influences aphid reproduction when environmental conditions are less than optimal.

  15. Public Policy and Mental Illnesses: Jimmy Carter's Presidential Commission on Mental Health

    PubMed Central

    Grob, Gerald N

    2005-01-01

    President Jimmy Carter's Presidential Commission on Mental Health was intended to recommend policies to overcome obvious deficiencies in the mental health system. Bureaucratic rivalries within and between governments; tensions and rivalries within the mental health professions; identity and interest group politics; the difficulties of distinguishing the respective etiological roles of such elements as poverty, racism, stigmatization, and unemployment; and an illusory faith in prevention all influenced the commission's deliberations and subsequent enactment of the short-lived Mental Health Systems Act. The commission's work led to the formulation of the influential National Plan for the Chronically Mentally Ill, but a system of care and treatment for persons with serious mental illnesses was never created. PMID:16201999

  16. Response of Pea Varieties to Damage Degree of Pea Weevil, Bruchus pisorum L.

    PubMed Central

    Nikolova, Ivelina Mitkova

    2016-01-01

    A study was conducted to determine the response of five pea varieties (Pisum sativum L.) to damage degree of Bruchus pisorum: Glyans, Modus, Kamerton, and Svit (Ukrainian cultivars) and Pleven 4 (Bulgarian cultivar). The seeds were classified into three types: healthy seeds (type 1), damaged seeds with parasitoid emergence hole (type 2), and damaged seeds with bruchid emergence hole (type 3) and they were sown. It was found that the weight of 1000 seeds did not affect the field germination of the pea varieties. Healthy and damaged seeds with parasitoid emergence holes (first and second seed types) provide a very good opportunity for growth and development while plants from damaged seeds with bruchid emergence holes had poor germination and vigor and low productivity. These seeds cannot provide the creation of well-garnished seeding and stable crop yields. Among tested varieties, the Ukrainian variety Glyans had considerably higher seed weight, field germination, and index germination and weak egg-laying activity of B. pisorum compared to others. Use of spring pea cultivars that are weakly preferred by the pea weevil in breeding programs would reduce losses due to pea weevil and provide an environmentally safer option to its control. PMID:27042379

  17. Ground water in Fountain and Jimmy Camp Valleys, El Paso County, Colorado with a section on Computations of drawdowns caused by the pumping of wells in Fountain Valley

    USGS Publications Warehouse

    Jenkins, Edward D.; Glover, Robert E.

    1964-01-01

    The part of Fountain Valley considered in this report extends from Colorado Springs to the Pueblo County line. It is 23 miles long and has an area of 26 square miles. The part of Jimmy Camp Valley discussed is 11 miles long and has an area of 9 square miles. The topography is characterized by level flood plains and alluvial terraces that parallel the valley and by rather steep hills along the valley sides. The climate is semiarid, average annual precipitation being about 13 inches. Farming and stock raising are the principal occupations in the valleys; however, some of the agricultural land near Colorado Springs is being used for housing developments. The Pierre Shale and alluvium underlie most of the area, and mesa gravel caps the shale hills adjacent to Fountain Valley. The alluvium yields water to domestic, stock, irrigation, and public-supply wells and is capable of yielding large quantities of water for intermittent periods. Several springs issue along the sides of the valley at the contact of the mesa gravel and the underlying Pierre Shale. The water table ranges in depth from less than 10 feet along the bottom lands to about 80 feet along the sides of the valleys; the saturated thickness ranges from less than a foot to about 50 feet. The ground-water reservoir in Fountain Valley is recharged by precipitation that falls within the area, by percolation from Fountain Creek, which originates in the Pikes Peak, Monument Valley, and Rampart Range areas, and by seepage from irrigation water. This reservoir contains about 70,000 acre-feet of ground water in storage. The ground-water reservoir in Jimmy Camp Valley is recharged from precipitation that falls within the area, by percolation from Jimmy Camp Creek during periods of streamflow, and by seepage from irrigation water. The Jimmy Camp ground-water reservoir contains about 25,000 acre-feet of water in storage. Ground water is discharged from the area by movement to the south, by evaporation and transpiration in

  18. 78 FR 63160 - United States Standards for Feed Peas, Split Peas, and Lentils

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... DEPARTMENT OF AGRICULTURE Grain Inspection, Packers and Stockyards Administration United States... Administration, USDA ACTION: Notice and request for comments. SUMMARY: The Department of Agriculture's (USDA... Standards for Feed Peas, Split Peas, and Lentils under the Agriculture Marketing Act (AMA) of 1946. To...

  19. Pea Marker Database (PMD) - A new online database combining known pea (Pisum sativum L.) gene-based markers.

    PubMed

    Kulaeva, Olga A; Zhernakov, Aleksandr I; Afonin, Alexey M; Boikov, Sergei S; Sulima, Anton S; Tikhonovich, Igor A; Zhukov, Vladimir A

    2017-01-01

    Pea (Pisum sativum L.) is the oldest model object of plant genetics and one of the most agriculturally important legumes in the world. Since the pea genome has not been sequenced yet, identification of genes responsible for mutant phenotypes or desirable agricultural traits is usually performed via genetic mapping followed by candidate gene search. Such mapping is best carried out using gene-based molecular markers, as it opens the possibility for exploiting genome synteny between pea and its close relative Medicago truncatula Gaertn., possessing sequenced and annotated genome. In the last 5 years, a large number of pea gene-based molecular markers have been designed and mapped owing to the rapid evolution of "next-generation sequencing" technologies. However, the access to the complete set of markers designed worldwide is limited because the data are not uniformed and therefore hard to use. The Pea Marker Database was designed to combine the information about pea markers in a form of user-friendly and practical online tool. Version 1 (PMD1) comprises information about 2484 genic markers, including their locations in linkage groups, the sequences of corresponding pea transcripts and the names of related genes in M. truncatula. Version 2 (PMD2) is an updated version comprising 15944 pea markers in the same format with several advanced features. To test the performance of the PMD, fine mapping of pea symbiotic genes Sym13 and Sym27 in linkage groups VII and V, respectively, was carried out. The results of mapping allowed us to propose the Sen1 gene (a homologue of SEN1 gene of Lotus japonicus (Regel) K. Larsen) as the best candidate gene for Sym13, and to narrow the list of possible candidate genes for Sym27 to ten, thus proving PMD to be useful for pea gene mapping and cloning. All information contained in PMD1 and PMD2 is available at www.peamarker.arriam.ru.

  20. Immunofluorescence detection of pea protein in meat products.

    PubMed

    Petrášová, Michaela; Pospiech, Matej; Tremlová, Bohuslava; Javůrková, Zdeňka

    2016-08-01

    In this study we developed an immunofluorescence method to detect pea protein in meat products. Pea protein has a high nutritional value but in sensitive individuals it may be responsible for causing allergic reactions. We produced model meat products with various additions of pea protein and flour; the detection limit (LOD) of the method for pea flour was 0.5% addition, and for pea protein it was 0.001% addition. The repeatabilities and reproducibilities for samples both positive and negative for pea protein were all 100%. In a blind test with model products and commercial samples, there was no statistically significant difference (p > 0.05) between the declared concentrations of pea protein and flour and the immunofluorescence method results. Sensitivity was 1.06 and specificity was 1.00. These results show that the immunofluorescence method is suitable for the detection of pea protein in meat products.

  1. Pea weevil damage and chemical characteristics of pea cultivars determining their resistance to Bruchus pisorum L.

    PubMed

    Nikolova, I

    2016-04-01

    Bruchus pisorum (L.) is one of the most intractable pest problems of cultivated pea in Europe. Development of resistant cultivars is very important to environmental protection and would solve this problem to a great extent. Therefore, the resistance of five spring pea cultivars was studied to B. pisorum: Glyans, Modus; Kamerton and Svit and Pleven 4 based on the weevil damage and chemical composition of seeds. The seeds were classified as three types: healthy seeds (type one), damaged seeds with parasitoid emergence holes (type two) and damaged seeds with bruchid emergence holes (type three). From visibly damaged pea seeds by pea weevil B. pisorum was isolated the parasitoid Triaspis thoracica Curtis (Hymenoptera, Braconidae). Modus, followed by Glyans was outlined as resistant cultivars against the pea weevil. They had the lowest total damaged seed degree, loss in weight of damaged seeds (type two and type three) and values of susceptibility coefficients. A strong negative relationship (r = -0.838) between the weight of type one seeds and the proportion of type three seeds was found. Cultivars with lower protein and phosphorus (P) content had a lower level of damage. The crude protein, crude fiber and P content in damaged seeds significantly or no significantly were increased as compared with the healthy seeds due to weevil damage. The P content had the highest significant influence on pea weevil infestation. Use of chemical markers for resistance to the creation of new pea cultivars can be effective method for defense and control against B. pisorum.

  2. Pea3 transcription factor promotes neurite outgrowth

    PubMed Central

    Kandemir, Basak; Caglayan, Berrak; Hausott, Barbara; Erdogan, Burcu; Dag, Ugur; Demir, Ozlem; Sogut, Melis S.; Klimaschewski, Lars; Kurnaz, Isil A.

    2014-01-01

    Pea3 subfamily of E–twenty six transcription factors consist of three major -exhibit branching morphogenesis, the function of Pea3 family in nervous system development and regeneration is only beginning to unfold. In this study, we provide evidence that Pea3 can directs neurite extension and axonal outgrowth in different model systems, and that Serine 90 is important for this function. We have also identified neurofilament-L and neurofilament-M as two putative novel targets for Pea3. PMID:25018694

  3. Milky J “Hubble Gotchu" of Late Night with Jimmy Fallon visits Goddard

    NASA Image and Video Library

    2017-12-08

    Fans of 'Late Night with Jimmy Fallon' know the setup: A guy in a Yankees jacket shows off Hubble images and shouts to the audience that, 'Hubble gotchu!' Monday night's episode showcased footage shot right here at Goddard Space Flight Center. Left to Right: Phil Driggers, Katie Lilly, Milky J “Hubble Gotchu”, Mike Menzel, Amber Straughn, Ray Lundquist. Read more about Milky J's visit here: geeked.gsfc.nasa.gov/?p=2066 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook Credit: NASA/Goddard Space Flight Center/Chris Gun

  4. Domestication of Pea (Pisum sativum L.): The Case of the Abyssinian Pea

    PubMed Central

    Weeden, Norman F.

    2018-01-01

    Phylogenetic relationships of the Abyssinian pea (Pisum sativum ssp. abyssinicum) to other subspecies and species in the genus were investigated to test between different hypotheses regarding its origin and domestication. An extensive sample of the Pisum sativum ssp. sativum germplasm was investigated, including groups a-1, a-2, b, c, and d as identified by Kwon et al. (2012). A broad sample of P. fulvum but relatively few P. s. ssp. elatius accessions were analyzed. Partial sequences of 18 genes were compared and these results combined with comparisons of additional genes done by others and available in the literature. In total, 54 genes or gene fragment sequences were involved in the study. The observed affinities between alleles in P. ssp. sativum, P. s. ssp. abyssinicum, P. s. ssp. elatius, and P. fulvum clearly demonstrated a close relationship among the three P. sativum subspecies and rejected the hypothesis that the Abyssinian pea was formed by hybridization between one of the P. sativum subspecies and P. fulvum. If hybridization were involved in the generation of the Abyssinian pea, it must have been between P. s. ssp. sativum and P. s. ssp. elatius, although the Abyssinian pea possesses a considerable number of highly unique alleles, implying that the actual P. s. ssp. elatius germplasm involved in such a hybridization has yet to be tested or that the hybridization occurred much longer ago than the postulated 4000 years bp. Analysis of the P. s. ssp. abyssinicum alleles in genomic regions thought to contain genes critical for domestication indicated that the indehiscent pod trait was independently developed in the Abyssinian pea, whereas the loss of seed dormancy was either derived from P. s. ssp. sativum or at least partially developed before the P. s. ssp. abyssinicum lineage diverged from that leading to P. s. ssp. sativum. PMID:29720994

  5. Review of the health benefits of peas (Pisum sativum L.).

    PubMed

    Dahl, Wendy J; Foster, Lauren M; Tyler, Robert T

    2012-08-01

    Pulses, including peas, have long been important components of the human diet due to their content of starch, protein and other nutrients. More recently, the health benefits other than nutrition associated with pulse consumption have attracted much interest. The focus of the present review paper is the demonstrated and potential health benefits associated with the consumption of peas, Pisum sativum L., specifically green and yellow cotyledon dry peas, also known as smooth peas or field peas. These health benefits derive mainly from the concentration and properties of starch, protein, fibre, vitamins, minerals and phytochemicals in peas. Fibre from the seed coat and the cell walls of the cotyledon contributes to gastrointestinal function and health, and reduces the digestibility of starch in peas. The intermediate amylose content of pea starch also contributes to its lower glycaemic index and reduced starch digestibility. Pea protein, when hydrolysed, may yield peptides with bioactivities, including angiotensin I-converting enzyme inhibitor activity and antioxidant activity. The vitamin and mineral contents of peas may play important roles in the prevention of deficiency-related diseases, specifically those related to deficiencies of Se or folate. Peas contain a variety of phytochemicals once thought of only as antinutritive factors. These include polyphenolics, in coloured seed coat types in particular, which may have antioxidant and anticarcinogenic activity, saponins which may exhibit hypocholesterolaemic and anticarcinogenic activity, and galactose oligosaccharides which may exert beneficial prebiotic effects in the large intestine.

  6. Genomic Tools in Pea Breeding Programs: Status and Perspectives

    PubMed Central

    Tayeh, Nadim; Aubert, Grégoire; Pilet-Nayel, Marie-Laure; Lejeune-Hénaut, Isabelle; Warkentin, Thomas D.; Burstin, Judith

    2015-01-01

    Pea (Pisum sativum L.) is an annual cool-season legume and one of the oldest domesticated crops. Dry pea seeds contain 22–25% protein, complex starch and fiber constituents, and a rich array of vitamins, minerals, and phytochemicals which make them a valuable source for human consumption and livestock feed. Dry pea ranks third to common bean and chickpea as the most widely grown pulse in the world with more than 11 million tons produced in 2013. Pea breeding has achieved great success since the time of Mendel's experiments in the mid-1800s. However, several traits still require significant improvement for better yield stability in a larger growing area. Key breeding objectives in pea include improving biotic and abiotic stress resistance and enhancing yield components and seed quality. Taking advantage of the diversity present in the pea genepool, many mapping populations have been constructed in the last decades and efforts have been deployed to identify loci involved in the control of target traits and further introgress them into elite breeding materials. Pea now benefits from next-generation sequencing and high-throughput genotyping technologies that are paving the way for genome-wide association studies and genomic selection approaches. This review covers the significant development and deployment of genomic tools for pea breeding in recent years. Future prospects are discussed especially in light of current progress toward deciphering the pea genome. PMID:26640470

  7. Yield potential of pigeon pea cultivars

    USDA-ARS?s Scientific Manuscript database

    Yield potential of twelve vegetable pigeon pea (Cajanus cajun) cultivars was evaluated at two locations in eastern Kenya during 2012 and 2013 cropping years. Pigeon pea pod numbers, seeds per pod, seed mass, grain yield and shelling percentage were quantified in three replicated plots, arranged in a...

  8. Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions

    PubMed Central

    Morton, Roger L.; Schroeder, Hart E.; Bateman, Kaye S.; Chrispeels, Maarten J.; Armstrong, Eric; Higgins, Thomas J. V.

    2000-01-01

    Two α-amylase inhibitors, called αAI-1 and αAI-2, that share 78% amino acid sequence identity and have a differential specificity toward mammalian and insect α-amylases are present in different accessions of the common bean (Phaseolus vulgaris). Using greenhouse-grown transgenic peas (Pisum sativum), we have shown previously that expression of αAI-1 in pea seeds can provide complete protection against the pea weevil (Bruchus pisorum). Here, we report that αAI-1 also protects peas from the weevil under field conditions. The high degree of protection is explained by our finding that αAI-1 inhibits pea bruchid α-amylase by 80% over a broad pH range (pH 4.5–6.5). αAI-2, on the other hand, is a much less effective inhibitor of pea bruchid α-amylase, inhibiting the enzyme by only 40%, and only in the pH 4.0–4.5 range. Nevertheless, this inhibitor was still partially effective in protecting field-grown transgenic peas against pea weevils. The primary effect of αAI-2 appeared to be a delay in the maturation of the larvae. This contrasts with the effect of αAI-1, which results in larval mortality at the first or second instar. These results are discussed in relationship to the use of amylase inhibitors with different specificities to bring about protection of crops from their insect pests or to decrease insect pest populations below the economic injury level. PMID:10759552

  9. 21 CFR 155.170 - Canned peas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the pea plant of the species Pisum sativum L. but excluding the subspecies macrocarpum. Only sweet... any combination of two or more of the dry or liquid forms of sugar, invert sugar sirup, dextrose... characteristics. Where the peas are of sweet green wrinkled varieties or hybrids having similar characteristics...

  10. 21 CFR 155.170 - Canned peas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the pea plant of the species Pisum sativum L. but excluding the subspecies macrocarpum. Only sweet... any combination of two or more of the dry or liquid forms of sugar, invert sugar sirup, dextrose... characteristics. Where the peas are of sweet green wrinkled varieties or hybrids having similar characteristics...

  11. 21 CFR 155.170 - Canned peas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the pea plant of the species Pisum sativum L. but excluding the subspecies macrocarpum. Only sweet... any combination of two or more of the dry or liquid forms of sugar, invert sugar sirup, dextrose... characteristics. Where the peas are of sweet green wrinkled varieties or hybrids having similar characteristics...

  12. [Content of salicylic and jasmonic acids in pea roots (Pisum sativum L.) at the initial stage of symbiotic or pathogenic interaction with bacteria of the family Rhizobiaceae].

    PubMed

    Rudikovskaya, E G; Akimova, G P; Rudikovskii, A V; Katysheva, N B; Dudareva, L V

    2017-01-01

    A change in the contents of endogenous salicylic and jasmonic acids in the roots of the host plant at the preinfectious stage of interaction with symbiotic (Rhizobium leguminosarum) and pathogenic (Agrobacterium rizogenes) bacteria belonging for to the family Rhizobiaceae was studied. It was found that the jasmonic acid content increased 1.5–2 times 5 min after inoculation with these bacterial species. It was shown that dynamics of the change in the JA and SA contents depends on the type of infection. Thus, the JA content decreased in the case of pathogenesis, while the SA content increased. At the same time, an increased JA content was observed during symbiosis. The observed regularities could indicate the presence of different strategies of hormonal regulation for interaction with symbiotic and pathogenic bacteria belonging to the family Rhizobiaceae in peas plants.

  13. Vicilin and convicilin are potential major allergens from pea.

    PubMed

    Sanchez-Monge, R; Lopez-Torrejón, G; Pascual, C Y; Varela, J; Martin-Esteban, M; Salcedo, G

    2004-11-01

    Allergic reactions to pea (Pisum sativum) ingestion are frequently associated with lentil allergy in the Spanish population. Vicilin have been described as a major lentil allergen. To identify the main IgE binding components from pea seeds and to study their potential cross-reactivity with lentil vicilin. A serum pool or individual sera from 18 patients with pea allergy were used to detect IgE binding proteins from pea seeds by immunodetection and immunoblot inhibition assays. Protein preparations enriched in pea vicilin were obtained by gel filtration chromatography followed by reverse-phase high-performance liquid chromatography (HPLC). IgE binding components were identified by means of N-terminal amino acid sequencing. Complete cDNAs encoding pea vicilin were isolated by PCR, using primers based on the amino acid sequence of the reactive proteins. IgE immunodetection of crude pea extracts revealed that convicilin (63 kDa), as well as vicilin (44 kDa) and one of its proteolytic fragments (32 kDa), reacted with more than 50% of the individual sera tested. Additional proteolytic subunits of vicilin (36, 16 and 13 kDa) bound IgE from approximately 20% of the sera. The lentil vicilin allergen Len c 1 strongly inhibited the IgE binding to all components mentioned above. The characterization of cDNA clones encoding pea vicilin has allowed the deduction of its complete amino acid sequence (90% of sequence identity to Len c 1), as well as those of its reactive proteolytic processed subunits. Vicilin and convicilin are potential major allergens from pea seeds. Furthermore, proteolytic fragments from vicilin are also relevant IgE binding pea components. All these proteins cross-react with the major lentil allergen Len c 1.

  14. Pre-fractionation strategies to resolve pea (Pisum sativum) sub-proteomes

    PubMed Central

    Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana; Kukavica, Biljana M.; Lüthje, Sabine

    2015-01-01

    Legumes are important crop plants and pea (Pisum sativum L.) has been investigated as a model with respect to several physiological aspects. The sequencing of the pea genome has not been completed. Therefore, proteomic approaches are currently limited. Nevertheless, the increasing numbers of available EST-databases as well as the high homology of the pea and medicago genome (Medicago truncatula Gaertner) allow the successful identification of proteins. Due to the un-sequenced pea genome, pre-fractionation approaches have been used in pea proteomic surveys in the past. Aside from a number of selective proteome studies on crude extracts and the chloroplast, few studies have targeted other components such as the pea secretome, an important sub-proteome of interest due to its role in abiotic and biotic stress processes. The secretome itself can be further divided into different sub-proteomes (plasma membrane, apoplast, cell wall proteins). Cell fractionation in combination with different gel-electrophoresis, chromatography methods and protein identification by mass spectrometry are important partners to gain insight into pea sub-proteomes, post-translational modifications and protein functions. Overall, pea proteomics needs to link numerous existing physiological and biochemical data to gain further insight into adaptation processes, which play important roles in field applications. Future developments and directions in pea proteomics are discussed. PMID:26539198

  15. Fibril formation from pea protein and subsequent gel formation.

    PubMed

    Munialo, Claire Darizu; Martin, Anneke H; van der Linden, Erik; de Jongh, Harmen H J

    2014-03-19

    The objective of this study was to characterize fibrillar aggregates made using pea proteins, to assemble formed fibrils into protein-based gels, and to study the rheological behavior of these gels. Micrometer-long fibrillar aggregates were observed after pea protein solutions had been heated for 20 h at pH 2.0. Following heating of pea proteins, it was observed that all of the proteins were hydrolyzed into peptides and that 50% of these peptides were assembled into fibrils. Changes on a structural level in pea proteins were studied using circular dichroism, transmission electron microscopy, and particle size analysis. During the fibril assembly process, an increase in aggregate size was observed, which coincided with an increase in thioflavin T binding, indicating the presence of β-sheet aggregates. Fibrils made using pea proteins were more branched and curly. Gel formation of preformed fibrils was induced by slow acidification from pH 7.0 to a final pH of around pH 5.0. The ability of pea protein-based fibrillar gels to fracture during an amplitude sweep was comparable to those of soy protein and whey protein-based fibrillar gels, although gels prepared from fibrils made using pea protein and soy protein were weaker than those of whey protein. The findings show that fibrils can be prepared from pea protein, which can be incorporated into protein-based fibrillar gels.

  16. 21 CFR 158.170 - Frozen peas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and designations shall apply: Size designation Round hole sieve size through which peas will pass... paragraph (a)(2) of this section or the applicable sieve size. However, the optional descriptive words... transfer peas to U.S. No. 8 sieve, using (20 cm.) size for container of less than 3 lb. net weight and (30...

  17. 21 CFR 158.170 - Frozen peas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and designations shall apply: Size designation Round hole sieve size through which peas will pass... paragraph (a)(2) of this section or the applicable sieve size. However, the optional descriptive words... transfer peas to U.S. No. 8 sieve, using (20 cm.) size for container of less than 3 lb. net weight and (30...

  18. 21 CFR 158.170 - Frozen peas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and designations shall apply: Size designation Round hole sieve size through which peas will pass... paragraph (a)(2) of this section or the applicable sieve size. However, the optional descriptive words... transfer peas to U.S. No. 8 sieve, using (20 cm.) size for container of less than 3 lb. net weight and (30...

  19. 21 CFR 158.170 - Frozen peas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and designations shall apply: Size designation Round hole sieve size through which peas will pass... paragraph (a)(2) of this section or the applicable sieve size. However, the optional descriptive words... transfer peas to U.S. No. 8 sieve, using (20 cm.) size for container of less than 3 lb. net weight and (30...

  20. Potential alternative hosts for a powdery mildew on pea

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew of pea (Pisum sativum) is an important disease in the field and in the greenhouse. The most widely documented powdery mildew on pea is Erysiphe pisi, but E. trifolii and E. baeumleri have also been reported. From greenhouse-grown peas, we obtained powdery mildew samples with rDNA ITS ...

  1. Nodulation, Nitrogen Fixation, and Hydrogen Oxidation by Pigeon Pea Bradyrhizobium spp. in Symbiotic Association with Pigeon Pea, Cowpea, and Soybean †

    PubMed Central

    Nautiyal, C. S.; Hegde, S. V.; van Berkum, P.

    1988-01-01

    The pigeon pea strains of Bradyrhizobium CC-1, CC-8, UASGR(S), and F4 were evaluated for nodulation, effectiveness for N2 fixation, and H2 oxidation with homologous and nonhomologous host plants. Strain CC-1 nodulated Macroptilium atropurpureum, Vigna unguiculata, Glycine max, and G. soja but did not nodulate Pisum sativum, Phaseolus vulgaris, Trigonella foenum-graecum, and Trifolium repens. Strain F4 nodulated G. max cv. Peking and PI 434937 (Malayan), but the symbioses formed were poor. Similarly, G. max cv. Peking, cv. Bragg, PI 434937, PR 13-28-2-8-7, and HM-1 were nodulated by strain CC-1, and symbioses were also poor. G. max cv. Williams and cv. Clark were not nodulated. H2 uptake activity was expressed with pigeon pea and cowpea, but not with soybean. G. max cv. Bragg grown in Bangalore, India, in local soil not previously exposed to Bradyrhizobium japonicum formed nodules with indigenous Bradyrhizobium spp. Six randomly chosen isolates, each originating from a different nodule, formed effective symbioses with pigeon pea host ICPL-407, nodulated PR 13-28-2-8-7 soybean forming moderately effective symbioses, and did not nodulate Williams soybean. These results indicate the six isolates to be pigeon pea strains although they originated from soybean nodules. Host-determined nodulation of soybean by pigeon pea Bradyrhizobium spp. may depend upon the ancestral backgrounds of the cultivars. The poor symbioses formed by the pigeon pea strains with soybean indicate that this crop should be inoculated with B. japonicum for its cultivation in soils containing only pigeon pea Bradyrhizobium spp. PMID:16347542

  2. PEA: an integrated R toolkit for plant epitranscriptome analysis.

    PubMed

    Zhai, Jingjing; Song, Jie; Cheng, Qian; Tang, Yunjia; Ma, Chuang

    2018-05-29

    The epitranscriptome, also known as chemical modifications of RNA (CMRs), is a newly discovered layer of gene regulation, the biological importance of which emerged through analysis of only a small fraction of CMRs detected by high-throughput sequencing technologies. Understanding of the epitranscriptome is hampered by the absence of computational tools for the systematic analysis of epitranscriptome sequencing data. In addition, no tools have yet been designed for accurate prediction of CMRs in plants, or to extend epitranscriptome analysis from a fraction of the transcriptome to its entirety. Here, we introduce PEA, an integrated R toolkit to facilitate the analysis of plant epitranscriptome data. The PEA toolkit contains a comprehensive collection of functions required for read mapping, CMR calling, motif scanning and discovery, and gene functional enrichment analysis. PEA also takes advantage of machine learning technologies for transcriptome-scale CMR prediction, with high prediction accuracy, using the Positive Samples Only Learning algorithm, which addresses the two-class classification problem by using only positive samples (CMRs), in the absence of negative samples (non-CMRs). Hence PEA is a versatile epitranscriptome analysis pipeline covering CMR calling, prediction, and annotation, and we describe its application to predict N6-methyladenosine (m6A) modifications in Arabidopsis thaliana. Experimental results demonstrate that the toolkit achieved 71.6% sensitivity and 73.7% specificity, which is superior to existing m6A predictors. PEA is potentially broadly applicable to the in-depth study of epitranscriptomics. PEA Docker image is available at https://hub.docker.com/r/malab/pea, source codes and user manual are available at https://github.com/cma2015/PEA. chuangma2006@gmail.com. Supplementary data are available at Bioinformatics online.

  3. Comparative Transcriptomic Analyses of Vegetable and Grain Pea (Pisum sativum L.) Seed Development

    PubMed Central

    Liu, Na; Zhang, Guwen; Xu, Shengchun; Mao, Weihua; Hu, Qizan; Gong, Yaming

    2015-01-01

    Understanding the molecular mechanisms regulating pea seed developmental process is extremely important for pea breeding. In this study, we used high-throughput RNA-Seq and bioinformatics analyses to examine the changes in gene expression during seed development in vegetable pea and grain pea, and compare the gene expression profiles of these two pea types. RNA-Seq generated 18.7 G of raw data, which were then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Our results illustrate that transcriptional control during pea seed development is a highly coordinated process. There were 459 and 801 genes differentially expressed at early and late seed maturation stages between vegetable pea and grain pea, respectively. Soluble sugar and starch metabolism related genes were significantly activated during the development of pea seeds coinciding with the onset of accumulation of sugar and starch in the seeds. A comparative analysis of genes involved in sugar and starch biosynthesis in vegetable pea (high seed soluble sugar and low starch) and grain pea (high seed starch and low soluble sugar) revealed that differential expression of related genes at late development stages results in a negative correlation between soluble sugar and starch biosynthetic flux in vegetable and grain pea seeds. RNA-Seq data was validated by using real-time quantitative RT-PCR analysis for 30 randomly selected genes. To our knowledge, this work represents the first report of seed development transcriptomics in pea. The obtained results provide a foundation to support future efforts to unravel the underlying mechanisms that control the developmental biology of pea seeds, and serve as a valuable resource for improving pea breeding. PMID:26635856

  4. Estimating demand for perennial pigeon pea in Malawi using choice experiments.

    PubMed

    Waldman, Kurt B; Ortega, David L; Richardson, Robert B; Snapp, Sieglinde S

    2017-01-01

    Perennial crops have numerous ecological and agronomic advantages over their annual counterparts. We estimate discrete choice models to evaluate farmers' preferences for perennial attributes of pigeon pea intercropped with maize in central and southern Malawi. Pigeon pea is a nitrogen-fixing leguminous crop, which has the potential to ameliorate soil fertility problems related to continuous maize cultivation, which are common in Southern Africa. Adoption of annual pigeon pea is relatively low but perennial production of pigeon pea may be more appealing to farmers due to some of the ancillary benefits associated with perenniality. We model perennial production of pigeon pea as a function of the attributes that differ between annual and perennial production: lower labor and seed requirements resulting from a single planting with multiple harvests, enhanced soil fertility and higher levels of biomass production. The primary tradeoff associated with perennial pigeon pea intercropped with maize is competition with maize in subsequent years of production. While maize yield is approximately twice as valuable to farmers as pigeon pea yield, we find positive yet heterogeneous demand for perenniality driven by soil fertility improvements and pigeon pea grain yield.

  5. Growth parameters of vegetable pigeon pea cultivars

    USDA-ARS?s Scientific Manuscript database

    Pigeon pea is an important crop in the dry regions of eastern Kenya, due to its drought tolerance and high protein content; however, farmer’s yield is limiting. Ojwang et al. (HortTech Vol 26 (1), 2016) evaluated twelve pigeon pea cultivars for flowering, plant height, branches, pod length and yield...

  6. 7 CFR 319.56-45 - Shelled garden peas from Kenya.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United States from Kenya only under the following conditions and in accordance with all other applicable...

  7. 7 CFR 319.56-45 - Shelled garden peas from Kenya.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319.56-45 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United...

  8. 7 CFR 319.56-45 - Shelled garden peas from Kenya.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319.56-45 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United...

  9. 7 CFR 319.56-45 - Shelled garden peas from Kenya.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319.56-45 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United...

  10. 7 CFR 319.56-45 - Shelled garden peas from Kenya.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319.56-45 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United...

  11. Ly α and UV Sizes of Green Pea Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huan; Wang, Junxian; Malhotra, Sangeeta

    Green Peas are nearby analogs of high-redshift Ly α -emitting galaxies (LAEs). To probe their Ly α escape, we study the spatial profiles of Ly α and UV continuum emission of 24 Green Pea galaxies using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope . We extract the spatial profiles of Ly α emission from their 2D COS spectra, and of the UV continuum from both 2D spectra and NUV images. The Ly α emission shows more extended spatial profiles than the UV continuum, in most Green Peas. The deconvolved full width at half maximum of the Lymore » α spatial profile is about 2–4 times that of the UV continuum, in most cases. Because Green Peas are analogs of high z LAEs, our results suggest that most high- z LAEs probably have larger Ly α sizes than UV sizes. We also compare the spatial profiles of Ly α photons at blueshifted and redshifted velocities in eight Green Peas with sufficient data quality, and find that the blue wing of the Ly α line has a larger spatial extent than the red wing in four Green Peas with comparatively weak blue Ly α line wings. We show that Green Peas and MUSE z = 3–6 LAEs have similar Ly α and UV continuum sizes, which probably suggests that starbursts in both low- z and high- z LAEs drive similar gas outflows illuminated by Ly α light. Five Lyman continuum (LyC) leakers in this sample have similar Ly α to UV continuum size ratios (∼1.4–4.3) to the other Green Peas, indicating that their LyC emissions escape through ionized holes in the interstellar medium.« less

  12. Lyα and UV Sizes of Green Pea Galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Leitherer, Claus; Wofford, Aida; Jiang, Tianxing; Wang, Junxian

    2017-03-01

    Green Peas are nearby analogs of high-redshift Lyα-emitting galaxies (LAEs). To probe their Lyα escape, we study the spatial profiles of Lyα and UV continuum emission of 24 Green Pea galaxies using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope. We extract the spatial profiles of Lyα emission from their 2D COS spectra, and of the UV continuum from both 2D spectra and NUV images. The Lyα emission shows more extended spatial profiles than the UV continuum, in most Green Peas. The deconvolved full width at half maximum of the Lyα spatial profile is about 2-4 times that of the UV continuum, in most cases. Because Green Peas are analogs of high z LAEs, our results suggest that most high-z LAEs probably have larger Lyα sizes than UV sizes. We also compare the spatial profiles of Lyα photons at blueshifted and redshifted velocities in eight Green Peas with sufficient data quality, and find that the blue wing of the Lyα line has a larger spatial extent than the red wing in four Green Peas with comparatively weak blue Lyα line wings. We show that Green Peas and MUSE z = 3-6 LAEs have similar Lyα and UV continuum sizes, which probably suggests that starbursts in both low-z and high-z LAEs drive similar gas outflows illuminated by Lyα light. Five Lyman continuum (LyC) leakers in this sample have similar Lyα to UV continuum size ratios (˜1.4-4.3) to the other Green Peas, indicating that their LyC emissions escape through ionized holes in the interstellar medium.

  13. Insecticidal components from field pea extracts: sequences of some variants of pea albumin 1b.

    PubMed

    Taylor, Wesley G; Sutherland, Daniel H; Olson, Douglas J H; Ross, Andrew R S; Fields, Paul G

    2004-12-15

    Methanol soluble insecticidal peptides with masses of 3752, 3757, and 3805 Da, isolated from crude extracts (C8 extracts) derived from the protein-enriched flour of commercial field peas [Pisum sativum (L.)], were purified by reversed phase chromatography and, after reduction and alkylation, were sequenced by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry with the aid of various peptidases. These major peptides were variants of pea albumin 1b (PA1b) with methionine sulfoxide rather than methionine at position 12. Peptide 3752 showed additional variations at positions 29 (valine for isoleucine) and 34 (histidine for asparagine). A minor, 37 amino acid peptide with a molecular mass of 3788 Da was also sequenced and differed from a known PA1b variant at positions 1, 25, and 31. Sequence variants of PA1b with their molecular masses were compiled, and variants that matched the accurate masses of the experimental peptides were used to narrow the search. MALDI postsource decay experiments on pronase fragments helped to confirm the sequences. Whole and dehulled field peas gave insecticidal C8 extracts in the laboratory that were enriched in peptides with masses of 3736, 3741, and 3789 Da, as determined by high-performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry. It was therefore concluded that oxidation of the methionine residues to methionine sulfoxide occurred primarily during the processing of dehulled peas in a mill.

  14. Pea amyloplast DNA is qualitatively similar to pea chloroplast DNA

    NASA Technical Reports Server (NTRS)

    Gaynor, J. J.

    1984-01-01

    Amyloplast DNA (apDNA), when subjected to digestion with restriction endonucleases, yields patterns nearly identical to that of DNA from mature pea chloroplasts (ctDNA). Southern transfers of apDNA and ctDNA, probed with the large subunit (LS) gene of ribulose-1,5-bisphosphate carboxylase (Rubisco), shows hybridization to the expected restriction fragments for both apDNA and ctDNA. However, Northern transfers of total RNA from chloroplasts and amyloplasts, probed again with the LS gene of Rubisco, shows that no detectable LS meggage is found in amyloplasts although LS expression in mature chloroplasts is high. Likewise, two dimensional polyacrylamide gel electrophoresis of etiolated gravisensitive pea tissue shows that both large and small subunits of Rubisco are conspicuously absent; however, in greening tissue these two constitute the major soluble proteins. These findings suggest that although the informational content of these two organelle types is equivalent, gene expression is quite different and is presumably under nuclear control.

  15. 2-Pentadecyl-2-Oxazoline, the Oxazoline of Pea, Modulates Carrageenan-Induced Acute Inflammation

    PubMed Central

    Petrosino, Stefania; Campolo, Michela; Impellizzeri, Daniela; Paterniti, Irene; Allarà, Marco; Gugliandolo, Enrico; D’Amico, Ramona; Siracusa, Rosalba; Cordaro, Marika; Esposito, Emanuela; Di Marzo, Vincenzo; Cuzzocrea, Salvatore

    2017-01-01

    N-acylethanolamines (NAEs) involve a family of lipid molecules existent in animal and plant, with N-palmitoylethanolamide (PEA) that arouses great attention owing to its anti-inflammatory, analgesic and neuroprotective activities. Because PEA is produced on demand and exerts pleiotropic effects, the modulation of specific amidases for NAEs (and in particular NAE-hydrolyzing acid amidase NAAA, which is more selective for PEA) could be a condition to preserve its levels. Here we investigate the effect of 2-Pentadecyl-2-oxazoline (PEA-OXA) the oxazoline of PEA, on human recombinant NAAA in vitro and in an established model of Carrageenan (CAR)-induced rat paw inflammation. PEA-OXA dose-dependently significantly inhibited recombinant NAAA and, orally administered to rats (10 mg/kg), limiting histological damage, thermal hyperalgesia and the increase of infiltrating inflammatory cells after CAR injection in the rat right hindpaw, compared to ultramicronized PEA given orally at the same dose (10 mg/kg). These effects were accompanied by elevation of paw PEA levels. Moreover, PEA-OXA markedly reduced neutrophil infiltration and pro-inflammatory cytokine release and prevented CAR-induced IκB-α degradation, nuclear translocation of NF-κB p65, the increase of inducible nitric oxide synthase, cyclooxygenase-2, intercellular adhesion molecule-1, and mast cell activation. Experiments in PPAR-α knockout mice showed that the anti-inflammatory effects of PEA-OXA were not dependent on the presence of PPAR-α receptors. In conclusion, NAAA modulators as PEA-OXA could help to maximize the tissue availability of PEA by increasing its levels and anti-inflammatory effects. PMID:28611664

  16. The Pisum Genus: Getting out of Pea Soup!

    USDA-ARS?s Scientific Manuscript database

    Pea (Pisum sativum L.) has long been a model for plant genetics and is a widely grown pulse crop producing protein-rich seeds in a sustainable manner. However, many questions remain open about (sub)species relationships in the Pisumgenus. The ongoing pea genome sequencing project and the recent geno...

  17. Characterization of pea (Pisum sativum) seed protein fractions.

    PubMed

    Rubio, Luis A; Pérez, Alicia; Ruiz, Raquel; Guzmán, M Ángeles; Aranda-Olmedo, Isabel; Clemente, Alfonso

    2014-01-30

    Legume seed proteins have to be chemically characterized in order to properly link their nutritional effects with their chemical structure. Vicilin and albumin fractions devoid of cross-contamination, as assessed by mass peptide fingerprinting analysis, were obtained from defatted pea (Pisum sativum cv. Bilbo) meal. The extracted protein fractions contained 56.7-67.7 g non-starch polysaccharides kg⁻¹. The vicilin fraction was higher than legumins in arginine, isoleucine, leucine, phenylalanine and lysine. The most abundant amino acids in the albumin fraction were aspartic acid, glutamic acid, lysine and arginine, and the amounts of methionine were more than double than those in legumins and vicilins. The pea albumin fraction showed a clear enrichment of protease inhibitory activity when compared with the seed meal. In vitro digestibility values for pea proteins were 0.63 ±  0.04, 0.88 ±  0.04 and 0.41 ±  0.23 for legumins, vicilins and albumins respectively. Vicilin and albumin fractions devoid of cross-contamination with other proteins were obtained from pea seed meal. The vicilin fraction also contained low amounts of soluble non-starch polysaccharides and was enriched in isoleucine, leucine, phenylalanine and lysine. In vitro digestibility values for pea proteins were similar or even numerically higher than those for control proteins. © 2013 Society of Chemical Industry.

  18. Potential alternative hosts for the pea powdery mildew pathogen Erysiphe trifolii

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew of pea (Pisum sativum) is an important disease in the field and in the greenhouse. The most widely documented powdery mildew pathogen on pea is Erysiphe pisi, but E. baeumleri and E. trifolii have also been reported. We recently showed that E. trifolii is frequently found on pea in th...

  19. Genetically modified α-amylase inhibitor peas are not specifically allergenic in mice.

    PubMed

    Lee, Rui-Yun; Reiner, Daniela; Dekan, Gerhard; Moore, Andrew E; Higgins, T J V; Epstein, Michelle M

    2013-01-01

    Weevils can devastate food legumes in developing countries, but genetically modified peas (Pisum sativum), chickpeas and cowpeas expressing the gene for alpha-amylase inhibitor-1 (αAI) from the common bean (Phaseolus vulgaris) are completely protected from weevil destruction. αAI is seed-specific, accumulated at high levels and undergoes post-translational modification as it traverses the seed endomembrane system. This modification was thought to be responsible for the reported allergenicity in mice of the transgenic pea but not the bean. Here, we observed that transgenic αAI peas, chickpeas and cowpeas as well as non-transgenic beans were all allergenic in BALB/c mice. Even consuming non-transgenic peas lacking αAI led to an anti-αAI response due to a cross-reactive response to pea lectin. Our data demonstrate that αAI transgenic peas are not more allergenic than beans or non-transgenic peas in mice. This study illustrates the importance of repeat experiments in independent laboratories and the potential for unexpected cross-reactive allergic responses upon consumption of plant products in mice.

  20. Genetically Modified α-Amylase Inhibitor Peas Are Not Specifically Allergenic in Mice

    PubMed Central

    Dekan, Gerhard; Moore, Andrew E.; Higgins, T. J. V.; Epstein, Michelle M.

    2013-01-01

    Weevils can devastate food legumes in developing countries, but genetically modified peas (Pisum sativum), chickpeas and cowpeas expressing the gene for alpha-amylase inhibitor-1 (αAI) from the common bean (Phaseolus vulgaris) are completely protected from weevil destruction. αAI is seed-specific, accumulated at high levels and undergoes post-translational modification as it traverses the seed endomembrane system. This modification was thought to be responsible for the reported allergenicity in mice of the transgenic pea but not the bean. Here, we observed that transgenic αAI peas, chickpeas and cowpeas as well as non-transgenic beans were all allergenic in BALB/c mice. Even consuming non-transgenic peas lacking αAI led to an anti-αAI response due to a cross-reactive response to pea lectin. Our data demonstrate that αAI transgenic peas are not more allergenic than beans or non-transgenic peas in mice. This study illustrates the importance of repeat experiments in independent laboratories and the potential for unexpected cross-reactive allergic responses upon consumption of plant products in mice. PMID:23326368

  1. Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism.

    PubMed

    Rigamonti, Elena; Parolini, Cinzia; Marchesi, Marta; Diani, Erika; Brambilla, Stefano; Sirtori, Cesare R; Chiesa, Giulia

    2010-05-01

    Controversial data on the lipid-lowering effect of dietary pea proteins have been provided and the mechanisms behind this effect are not completely understood. The aim of the study was to evaluate a possible hypolipidemic activity of a pea protein isolate and to determine whether pea proteins could affect the hepatic lipid metabolism through regulation of genes involved in cholesterol and fatty acid homeostasis. Rats were fed Nath's hypercholesterolemic diets for 28 days, the protein sources being casein or a pea protein isolate from Pisum sativum. After 14 and 28 days of dietary treatment, rats fed pea proteins had markedly lower plasma cholesterol and triglyceride levels than rats fed casein (p<0.05). Pea protein-fed rats displayed higher hepatic mRNA levels of LDL receptor versus those fed casein (p<0.05). Hepatic mRNA concentration of genes involved in fatty acids synthesis, such as fatty acid synthase and stearoyl-CoA desaturase, was lower in pea protein-fed rats than in rats fed casein (p<0.05). In conclusion, the present study demonstrates a marked cholesterol and triglyceride-lowering activity of pea proteins in rats. Moreover, pea proteins appear to affect cellular lipid homeostasis by upregulating genes involved in hepatic cholesterol uptake and by downregulating fatty acid synthesis genes.

  2. THE ORIGIN AND OPTICAL DEPTH OF IONIZING RADIATION IN THE 'GREEN PEA' GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskot, A. E.; Oey, M. S.

    2013-04-01

    Although Lyman-continuum (LyC) radiation from star-forming galaxies likely drove the reionization of the universe, observations of star-forming galaxies at low redshift generally indicate low LyC escape fractions. However, the extreme [O III]/[O II] ratios of the z = 0.1-0.3 Green Pea galaxies may be due to high escape fractions of ionizing radiation. To analyze the LyC optical depths and ionizing sources of these rare, compact starbursts, we compare nebular photoionization and stellar population models with observed emission lines in the Peas' Sloan Digital Sky Survey (SDSS) spectra. We focus on the six most extreme Green Peas, the galaxies with themore » highest [O III]/[O II] ratios and the best candidates for escaping ionizing radiation. The Balmer line equivalent widths and He I {lambda}3819 emission in the extreme Peas support young ages of 3-5 Myr, and He II {lambda}4686 emission in five extreme Peas signals the presence of hard ionizing sources. Ionization by active galactic nuclei or high-mass X-ray binaries is inconsistent with the Peas' line ratios and ages. Although stacked spectra reveal no Wolf-Rayet (WR) features, we tentatively detect WR features in the SDSS spectra of three extreme Peas. Based on the Peas' ages and line ratios, we find that WR stars, chemically homogeneous O stars, or shocks could produce the observed He II emission. If hot stars are responsible, then the Peas' optical depths are ambiguous. However, accounting for emission from shocks lowers the inferred optical depth and suggests that the Peas may be optically thin. The Peas' ages likely optimize the escape of LyC radiation; they are old enough for supernovae and stellar winds to reshape the interstellar medium, but young enough to possess large numbers of UV-luminous O or WR stars.« less

  3. Immunolocalization of pectic polysaccharides during abscission in pea seeds (Pisum sativum L.) and in abscission less def pea mutant seeds.

    PubMed

    Lee, YeonKyeong; Ayeh, Kwadwo Owusu; Ambrose, Mike; Hvoslef-Eide, Anne Kathrine

    2016-08-31

    In pea seeds (Pisum sativum L.), the presence of the Def locus determines abscission event between its funicle and the seed coat. Cell wall remodeling is a necessary condition for abscission of pea seed. The changes in cell wall components in wild type (WT) pea seed with Def loci showing seed abscission and in abscission less def mutant peas were studied to identify the factors determining abscission and non-abscission event. Changes in pectic polysaccharides components were investigated in WT and def mutant pea seeds using immunolabeling techniques. Pectic monoclonal antibodies (1 → 4)-β-D-galactan (LM5), (1 → 5)-α-L-arabinan(LM6), partially de-methyl esterified homogalacturonan (HG) (JIM5) and methyl esterified HG (JIM7) were used for this study. Prior to abscission zone (AZ) development, galactan and arabinan reduced in the predestined AZ of the pea seed and disappeared during the abscission process. The AZ cells had partially de-methyl esterified HG while other areas had highly methyl esterified HG. A strong JIM5 labeling in the def mutant may be related to cell wall rigidity in the mature def mutants. In addition, the appearance of pectic epitopes in two F3 populations resulting from cross between WT and def mutant parents was studied. As a result, we identified that homozygous dominant lines (Def/Def) showing abscission and homozygous recessive lines (def/def) showing non-abscission had similar immunolabeling pattern to their parents. However, the heterogeneous lines (Def/def) showed various immunolabeling pattern and the segregation pattern of the Def locus. Through the study of the complexity and variability of pectins in plant cell walls as well as understanding the segregation patterns of the Def locus using immunolabeling techniques, we conclude that cell wall remodeling occurs in the abscission process and de-methyl esterification may play a role in the non-abscission event in def mutant. Overall, this study contributes new insights into

  4. 7 CFR 457.140 - Dry pea crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Dry pea crop insurance provisions. 457.140 Section 457.140 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.140 Dry pea crop insurance...

  5. 7 CFR 457.137 - Green pea crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Green pea crop insurance provisions. 457.137 Section 457.137 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.137 Green pea crop insurance...

  6. 1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA PATCH ISLAND. REMAINS OF SEA WALL VISIBLE IN FOREGROUND AND RIGHT OF IMAGE. - Fort Delaware, Sea Wall, Pea Patch Island, Delaware City, New Castle County, DE

  7. Genome Sequence of the Pea Aphid Acyrthosiphon pisum

    PubMed Central

    2010-01-01

    Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems. PMID:20186266

  8. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds.

    PubMed

    Ferraro, Kiva; Jin, Alena L; Nguyen, Trinh-Don; Reinecke, Dennis M; Ozga, Jocelyn A; Ro, Dae-Kyun

    2014-09-16

    Proanthocyanidins (PAs) accumulate in the seeds, fruits and leaves of various plant species including the seed coats of pea (Pisum sativum), an important food crop. PAs have been implicated in human health, but molecular and biochemical characterization of pea PA biosynthesis has not been established to date, and detailed pea PA chemical composition has not been extensively studied. PAs were localized to the ground parenchyma and epidermal cells of pea seed coats. Chemical analyses of PAs from seeds of three pea cultivars demonstrated cultivar variation in PA composition. 'Courier' and 'Solido' PAs were primarily prodelphinidin-types, whereas the PAs from 'LAN3017' were mainly the procyanidin-type. The mean degree of polymerization of 'LAN3017' PAs was also higher than those from 'Courier' and 'Solido'. Next-generation sequencing of 'Courier' seed coat cDNA produced a seed coat-specific transcriptome. Three cDNAs encoding anthocyanidin reductase (PsANR), leucoanthocyanidin reductase (PsLAR), and dihydroflavonol reductase (PsDFR) were isolated. PsANR and PsLAR transcripts were most abundant earlier in seed coat development. This was followed by maximum PA accumulation in the seed coat. Recombinant PsANR enzyme efficiently synthesized all three cis-flavan-3-ols (gallocatechin, catechin, and afzalechin) with satisfactory kinetic properties. The synthesis rate of trans-flavan-3-ol by co-incubation of PsLAR and PsDFR was comparable to cis-flavan-3-ol synthesis rate by PsANR. Despite the competent PsLAR activity in vitro, expression of PsLAR driven by the Arabidopsis ANR promoter in wild-type and anr knock-out Arabidopsis backgrounds did not result in PA synthesis. Significant variation in seed coat PA composition was found within the pea cultivars, making pea an ideal system to explore PA biosynthesis. PsANR and PsLAR transcript profiles, PA localization, and PA accumulation patterns suggest that a pool of PA subunits are produced in specific seed coat cells early in

  9. KASP assays for powdery mildew resistance breeding in pea

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew of pea, caused by Erysiphe pisi DC, is a serious production constraint to pea (Pisum sativum L.) production in the U.S. and elsewhere. Utilization of genetic resistance to powdery mildew using er1 has been an effective strategy to manage this disease. This gene, er1, conferring powde...

  10. Effects of ionizing radiation on sensorial, chemical, and microbiological quality of frozen corn and peas.

    PubMed

    Fan, Xuetong; Sokorai, Kimberly J B

    2007-08-01

    The effects of irradiation (0, 1.8, and 4.5 kGy) on the quality of frozen corn and peas were investigated during a 12month period of postirradiation storage at -18 degrees C. Irradiation of frozen corn and peas caused a reduction in ascorbic acid content of both vegetables and a loss of texture in peas but had no significant effects on instrumental color parameters (L*, a*, and b*), carotenoid and chlorophyll content, or antioxidant capacity of corn and peas. Irradiation reduced microbial loads of frozen peas and increased display life at 23 degrees C of thawed peas by preserving the green color, apparently because of slower increases in the population of acid-producing microorganisms in the irradiated samples. Overall, irradiation significantly reduced the microbial load and increased the display life of peas and had minimal detrimental effects on the quality of frozen corn and peas.

  11. Ersiphe trifolii-a newly recognized powdery mildew pathogen of pea.

    USDA-ARS?s Scientific Manuscript database

    Population diversity of powdery mildews infecting pea (Pisum sativum) in the US Pacific Northwest was investigated in order to assess inconsistent resistance performances of pea genotypes in different environments. Phylogenetic analyses based on ITS sequences, in combination with assessment of morph...

  12. 76 FR 37136 - Post-Entry Amendment (PEA) Processing Test: Modification, Clarification, and Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    .... Customs and Border Protection's (CBP's) Post-Entry Amendment (PEA) Processing test, which allows the...: The Post-Entry Amendment (PEA) Processing test modification set forth in this document is effective...: Background I. Post-Entry Amendment Processing Test Program The Post-Entry Amendment (PEA) Processing test...

  13. A peptide that binds the pea aphid gut impedes entry of Pea enation mosaic virus into the aphid hemocoel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Sijun, E-mail: sliu@iastate.ed; Sivakumar, S., E-mail: sivaento@iastate.ed; Sparks, Wendy O., E-mail: wosparks@iastate.ed

    2010-05-25

    Development of ways to block virus transmission by aphids could lead to novel and broad-spectrum means of controlling plant viruses. Viruses in the Luteoviridae enhanced are obligately transmitted by aphids in a persistent manner that requires virion accumulation in the aphid hemocoel. To enter the hemocoel, the virion must bind and traverse the aphid gut epithelium. By screening a phage display library, we identified a 12-residue gut binding peptide (GBP3.1) that binds to the midgut and hindgut of the pea aphid Acyrthosiphon pisum. Binding was confirmed by labeling the aphid gut with a GBP3.1-green fluorescent protein fusion. GBP3.1 reduced uptakemore » of Pea enation mosaic virus (Luteoviridae) from the pea aphid gut into the hemocoel. GBP3.1 also bound to the gut epithelia of the green peach aphid and the soybean aphid. These results suggest a novel strategy for inhibiting plant virus transmission by at least three major aphid pest species.« less

  14. Addition of sucralose enhances the release of satiety hormones in combination with pea protein.

    PubMed

    Geraedts, Maartje C P; Troost, Freddy J; Saris, Wim H M

    2012-03-01

    Exposing the intestine to proteins or tastants, particularly sweet, affects satiety hormone release. There are indications that each sweetener has different effects on this release, and that combining sweeteners with other nutrients might exert synergistic effects on hormone release. STC-1 cells were incubated with acesulfame-K, aspartame, saccharine, sucralose, sucrose, pea, and pea with each sweetener. After a 2-h incubation period, cholecystokinin(CCK) and glucagon-like peptide 1 (GLP-1) concentrations were measured. Using Ussing chamber technology, the mucosal side of human duodenal biopsies was exposed to sucrose, sucralose, pea, and pea with each sweetener. CCK and GLP-1 levels were measured in basolateral secretions. In STC-1 cells, exposure to aspartame, sucralose, sucrose, pea, and pea with sucralose increased CCK levels, whereas GLP-1 levels increased after addition of all test products. Addition of sucrose and sucralose to human duodenal biopsies did not affect CCK and GLP-1 release; addition of pea stimulated CCK and GLP-1 secretion. Combining pea with sucrose and sucralose induced even higher levels of CCK and GLP-1. Synchronous addition of pea and sucralose to enteroendocrine cells induced higher levels of CCK and GLP-1 than addition of each compound alone. This study shows that combinations of dietary compounds synergize to enhance satiety hormone release. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Relating physico-chemical properties of frozen green peas (Pisum sativum L.) to sensory quality.

    PubMed

    Nleya, Kathleen M; Minnaar, Amanda; de Kock, Henriëtte L

    2014-03-30

    The acceptability of frozen green peas depends on their sensory quality. There is a need to relate physico-chemical parameters to sensory quality. In this research, six brands of frozen green peas representing product sold for retail and caterer's markets were purchased and subjected to descriptive sensory evaluation and physico-chemical analyses (including dry matter content, alcohol insoluble solids content, starch content, °Brix, residual peroxidase activity, size sorting, hardness using texture analysis and colour measurements) to assess and explain product quality. The sensory quality of frozen green peas, particularly texture properties, were well explained using physico-chemical methods of analysis notably alcohol insoluble solids, starch content, hardness and °Brix. Generally, retail class peas were of superior sensory quality to caterer's class peas although one caterer's brand was comparable to the retail brands. Retail class peas were sweeter, smaller, greener, more moist and more tender than the caterer's peas. Retail class peas also had higher °Brix, a(*) , hue and chroma values; lower starch, alcohol insoluble solids, dry matter content and hardness measured. The sensory quality of frozen green peas can be partially predicted by measuring physico-chemical parameters particularly °Brix and to a lesser extent hardness by texture analyser, alcohol insoluble solids, dry matter and starch content. © 2013 Society of Chemical Industry.

  16. Physicochemical and sensory characteristics of soy sauce substituted with pigeon pea (Cajanus cajan (Linn.))

    NASA Astrophysics Data System (ADS)

    Retnaningsih, C.; Sumardi; Meiliana; Surya, A.

    2018-01-01

    The objective of this study wasto investigate the physicochemical and sensory properties of the soy sauce substituted with pigeon pea. Soybean was substituted by 20%, 50%, 75%, and 100% of pigeon pea. The observation included viscosity, total solids, protein levels, antioxidant activity, and sensory characteristics. The results showed that the more substitution of pigeon pea, the less the protein content of soy sauce and the more the antioxidant activity as well as total solids. The most favored group was 25% pigeon pea substitution. It is suggested that soy sauce could be prepared using 25% to 75% pigeon pea substitution.

  17. Discrete forms of amylose are synthesized by isoforms of GBSSI in pea.

    PubMed

    Edwards, Anne; Vincken, Jean-Paul; Suurs, Luc C J M; Visser, Richard G F; Zeeman, Sam; Smith, Alison; Martin, Cathie

    2002-08-01

    Amyloses with distinct molecular masses are found in the starch of pea embryos compared with the starch of pea leaves. In pea embryos, a granule-bound starch synthase protein (GBSSIa) is required for the synthesis of a significant portion of the amylose. However, this protein seems to be insignificant in the synthesis of amylose in pea leaves. cDNA clones encoding a second isoform of GBSSI, GBSSIb, have been isolated from pea leaves. Comparison of GBSSIa and GBSSIb activities shows them to have distinct properties. These differences have been confirmed by the expression of GBSSIa and GBSSIb in the amylose-free mutant of potato. GBSSIa and GBSSIb make distinct forms of amylose that differ in their molecular mass. These differences in product specificity, coupled with differences in the tissues in which GBSSIa and GBSSIb are most active, explain the distinct forms of amylose found in different tissues of pea. The shorter form of amylose formed by GBSSIa confers less susceptibility to the retrogradation of starch pastes than the amylose formed by GBSSIb. The product specificity of GBSSIa could provide beneficial attributes to starches for food and nonfood uses.

  18. Forecasting model for Pea seed-borne mosaic virus epidemics in field pea crops in a Mediterranean-type environment.

    PubMed

    Congdon, B S; Coutts, B A; Jones, R A C; Renton, M

    2017-09-15

    An empirical model was developed to forecast Pea seed-borne mosaic virus (PSbMV) incidence at a critical phase of the annual growing season to predict yield loss in field pea crops sown under Mediterranean-type conditions. The model uses pre-growing season rainfall to calculate an index of aphid abundance in early-August which, in combination with PSbMV infection level in seed sown, is used to forecast virus crop incidence. Using predicted PSbMV crop incidence in early-August and day of sowing, PSbMV transmission from harvested seed was also predicted, albeit less accurately. The model was developed so it provides forecasts before sowing to allow sufficient time to implement control recommendations, such as having representative seed samples tested for PSbMV transmission rate to seedlings, obtaining seed with minimal PSbMV infection or of a PSbMV-resistant cultivar, and implementation of cultural management strategies. The model provides a disease forecast risk indication, taking into account predicted percentage yield loss to PSbMV infection and economic factors involved in field pea production. This disease risk forecast delivers location-specific recommendations regarding PSbMV management to end-users. These recommendations will be delivered directly to end-users via SMS alerts with links to web support that provide information on PSbMV management options. This modelling and decision support system approach would likely be suitable for use in other world regions where field pea is grown in similar Mediterranean-type environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The Influence of Lead on Generation of Signalling Molecules and Accumulation of Flavonoids in Pea Seedlings in Response to Pea Aphid Infestation.

    PubMed

    Woźniak, Agnieszka; Drzewiecka, Kinga; Kęsy, Jacek; Marczak, Łukasz; Narożna, Dorota; Grobela, Marcin; Motała, Rafał; Bocianowski, Jan; Morkunas, Iwona

    2017-08-24

    The aim of this study was to investigate the effect of an abiotic factor, i.e., lead at various concentrations (low causing a hormesis effect and causing high toxicity effects), on the generation of signalling molecules in pea ( Pisum sativum L. cv. Cysterski) seedlings and then during infestation by the pea aphid ( Acyrthosiphon pisum Harris). The second objective was to verify whether the presence of lead in pea seedling organs and induction of signalling pathways dependent on the concentration of this metal trigger defense responses to A. pisum . Therefore, the profile of flavonoids and expression levels of genes encoding enzymes of the flavonoid biosynthesis pathway (phenylalanine ammonialyase and chalcone synthase) were determined. A significant accumulation of total salicylic acid (TSA) and abscisic acid (ABA) was recorded in the roots and leaves of pea seedlings growing on lead-supplemented medium and next during infestation by aphids. Increased generation of these phytohormones strongly enhanced the biosynthesis of flavonoids, including a phytoalexin, pisatin. This research provides insights into the cross-talk between the abiotic (lead) and biotic factor (aphid infestation) on the level of the generation of signalling molecules and their role in the induction of flavonoid biosynthesis.

  20. Strains of Pseudomonas syringae pv. syringae from pea are phylogenetically and pathogenically diverse.

    PubMed

    Martín-Sanz, Alberto; de la Vega, Marcelino Pérez; Murillo, Jesús; Caminero, Constantino

    2013-07-01

    Pseudomonas syringae pv. syringae causes extensive yield losses in the pea crop worldwide, although there is little information on its host specialization and its interactions with pea. A collection of 88 putative P. syringae pv. syringae strains (including 39 strains isolated from pea) was characterized by repetitive polymerase chain reaction (rep-PCR), multilocus sequence typing (MLST), and syrB amplification and evaluated for pathogenicity and virulence. rep-PCR data grouped the strains from pea into two groups (1B and 1C) together with strains from other hosts; a third group (1A) was formed exclusively with strains isolated from non-legume species. MLST data included all strains from pea in the genomospecies 1 of P. syringae pathovars defined in previous studies; they were distributed in the same three groups defined by rep-PCR. The inoculations performed in two pea cultivars showed that P. syringae pv. syringae strains from groups 1A and 1C were less virulent than strains from group 1B, suggesting a possible pathogenic specialization in this group. This study shows the existence of genetically and pathogenically distinct P. syringae pv. syringae strain groups from pea, which will be useful for the diagnostic and epidemiology of this pathogen and for disease resistance breeding.

  1. Physicochemical properties and in vitro digestibility of flour and starch from pea (Pisum sativum L.) cultivars.

    PubMed

    Chung, Hyun-Jung; Liu, Qiang

    2012-01-01

    Flours and isolated starches from three different cultivars (1544-8, 1658-11 and 1760-8) of pea grown under identical environmental conditions were evaluated for their physicochemical properties and in vitro digestibility. The protein content, total starch content and apparent amylose content of pea flour ranged from 24.4 to 26.3%, 48.8 to 50.2%, and 13.9 to 16.7%, respectively. In pea starches, the 1760-8 showed higher apparent amylose content and total starch content than the other cultivars. Pea starch granules were irregularly shaped, ranging from oval to round with a smooth surface. All pea starches showed C-type X-ray diffraction pattern with relative crystallinity ranging between 23.7 and 24.7%. Pea starch had only a single endothermic transition (12.1-14.2 J/g) in the DSC thermogram, whereas pea flour showed two separate endothermic transitions corresponding to starch gelatinization (4.54-4.71 J/g) and disruption of the amylose-lipid complex (0.36-0.78 J/g). In pea cultivars, the 1760-8 had significantly higher setback and final viscosity than the other cultivars in both pea flour (672 and 1170cP, respectively) and isolated starch (2901 and 4811cP). The average branch chain length of pea starches ranged from 20.1 to 20.3. The 1760-8 displayed a larger proportion of short branch chains, DP (degree of polymerization) 6-12 (21.1%), and a smaller proportion of long branch chains, DP≥37 (8.4%). The RDS, SDS and RS contents of pea flour ranged from 23.7 to 24.1%, 11.3 to 12.8%, and 13.2 to 14.8%, respectively. In pea starches, the 1760-8 showed a lower RDS content but higher SDS and RS contents. The expected glycemic index (eGI), based on the hydrolysis index, ranged from 36.9 to 37.7 and 69.8 to 70.7 for pea flour and isolated pea starch, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Pea (Pisum sativum L.)

    USDA-ARS?s Scientific Manuscript database

    Pea belongs to the Leguminosae plant family, the third largest flowering plant family with 800 genera and over 18,000 species. Tribe Fabeae is considered one of the youngest groups in the legumes and Bayesian molecular clock and ancestral range analysis suggest a crown age of 23 – 16 Mya, in the mi...

  3. Purification and characterization of ornithine transcarbamylase from pea (Pisum sativum L.)

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Richardson, D. P.

    1991-01-01

    Pea (Pisum sativum) ornithine transcarbamylase (OTC) was purified to homogeneity from leaf homogenates in a single-step procedure, using delta-N-(phosphonacetyl)-L-ornithine-Sepharose 6B affinity chromatography. The 1581-fold purified OTC enzyme exhibited a specific activity of 139 micromoles citrulline per minute per milligram of protein at 37 degrees C, pH 8.5. Pea OTC represents approximately 0.05% of the total soluble protein in the leaf. The molecular weight of the native enzyme was approximately 108,200, as estimated by Sephacryl S-200 gel filtration chromatography. The purified protein ran as a single molecular weight band of 36,500 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results suggest that the pea OTC is a trimer of identical subunits. The overall amino acid composition of pea OTC is similar to that found in other eukaryotic and prokaryotic OTCs, but the number of arginine residues is approximately twofold higher. The increased number of arginine residues probably accounts for the observed isoelectric point of 7.6 for the pea enzyme, which is considerably more basic than isoelectric point values that have been reported for other OTCs.

  4. Plant characteristics and growth parameters of vegetable pigeon pea cultivars

    USDA-ARS?s Scientific Manuscript database

    Pigeon pea is an important crop in dry land and semi-arid regions and is a supplementary source of dietary protein for the resource-constrained farmers. The aim of this research was to evaluate growth parameters of twelve vegetable pigeon pea genotypes at two locations in Eastern Kenya. The number o...

  5. [Possibility of using flour of pigeon pea in products prepared with rice or wheat flour].

    PubMed

    Mueses, C; de León, L; Bressani, R

    1993-03-01

    The present study reports on the development of foods containing processed pigeon pea (Cajanus cajan) flour. The pigeon pea flours described in a previous publication were prepared from dehulled pigeon peas by cooking in autoclave, by extrusion-cooking and by cooking/dehydration by drum-drying. Mixtures of cooked pigeon peas and rice were first evaluated biological through a protein complementation design using NPR. The results of this study showed that the two products had high protein quality and were similar when mixed in ratios of 80:20 to 40:60. For the evaluation of the processed pigeon pea flour, mixtures with rice (80:20) were used. All pigeon pea flours gave similar protein quality values. On the basis of these results three products were developed and tested. One was a gruel ("atole"), a second a fruit-flavored thick drink with and without 15% milk. Cookies were also prepared with a series of blends of pigeon pea flour (extrusion-cooked) and wheat. The gruel and the fruit flavored products had high acceptability based on a sensory evaluation test. Cookies with 100% pigeon pea flour were unacceptable, however, mixtures of 75% wheat flour and 25% pigeon pea flour gave cookies of attractive appearance and good taste. The study showed the possibility of preparing and utilizing tropical grain legume flours for food products of relatively high acceptability and nutritive value.

  6. The effects of fermentation and enzymatic treatment of pea on nutrient digestibility and growth performance of broilers.

    PubMed

    Goodarzi Boroojeni, F; Senz, M; Kozłowski, K; Boros, D; Wisniewska, M; Rose, D; Männer, K; Zentek, J

    2017-10-01

    The present study examined the impacts of native, fermented or enzymatically treated peas (Pisum sativum L.) inclusion in broiler diets, on growth performance and nutrient digestibility. For the fermentation process, Madonna pea was mixed with water (1/1) containing 2.57×108 Bacillus subtilis (GalliPro®) spores/kg pea and then, incubated for 48 h at 30 °C. For the enzymatic treatment process, the used water for dough production contained three enzymes, AlphaGalTM (α-galactosidase), RONOZYME® ProAct and VP (protease and pectinases respectively - DSM, Switzerland) and the pea dough incubated for 24 h at 30°C. Nine corn-wheat-soybean diets were formulated by supplying 10%, 20% and 30% of the required CP with either native, fermented or enzymatically treated peas. Performance was recorded weekly and at the end of the experiment (day 35), apparent ileal digestibility (AID) of CP, amino acids (AA), crude fat, starch, Ca, P and K were determined. Data were subjected to ANOVA using GLM procedure with a 3×3 factorial arrangement of treatments. Both processes reduced α-galactosides, phytate, trypsin inhibitor activity and resistant starch in peas. Increasing levels of pea products up to 300 g/kg diet, reduced BW gain and feed intake (P⩽0.05). Broilers fed diets containing enzymatically treated pea had the best feed conversion ratio at day 35. Different types of pea product and their inclusion levels had no effect on AID of all nutrients. The interaction between type of the pea products and inclusion levels was significant for AID of starch. For native pea diets, 10% group showed similar AID of starch to 20% native pea but it had higher AID than 30% native pea. For fermented and enzymatically treated groups, all three levels displayed similar AID of starch. In conclusion, enzymatic treatment and fermentation could improve the nutritional quality of pea. Inclusion of enzymatically treated pea in broiler diets could improve broiler performance compared with other pea

  7. Germinated Pigeon Pea (Cajanus cajan): a novel diet for lowering oxidative stress and hyperglycemia.

    PubMed

    Uchegbu, Nneka N; Ishiwu, Charles N

    2016-09-01

    This work studied the antioxidant activity of extract of germinated pigeon pea (Cajanus cajan) in alloxan-induced diabetic rats. Germination was carried out in a dark chamber under room temperature (28°C). The total phenolic, 1,1,diphenyl-2-picrylhy-drazyl free radical (DPPH) scavenging, the inhibition of α-amylase and α-glucosidase were done in vitro and blood glucose levels of the animal were investigated. Lipid peroxidation (LPO) and reduced glutathione (GSH) were analyzed spectrophotometrically. The total phenolic and DPPH scavenging activity increased by 30% and 63%, respectively, after germinating pigeon pea. Also after germination there was an increase in the inhibitory potential of pigeon pea extract against α-glucosidase compared with the nongerminated pigeon pea extract. There was a significant increase (P < 0.05) in fasting blood glucose level of alloxan-induced rats. Consumption of germinated pigeon pea extract gave rise to a reduced fasting blood glucose level in diabetic rats. On administration of germinated pigeon pea extract, LPO reduced drastically but there was an increase in the level of GSH. This study concluded that intake of germinated pigeon pea is a good dietary supplement for controlling hyperglycemia and LPO.

  8. Influence of the inclusion of cooked cereals and pea starch in diets based on soy or pea protein concentrate on nutrient digestibility and performance of young pigs.

    PubMed

    Parera, N; Lázaro, R P; Serrano, M P; Valencia, D G; Mateos, G G

    2010-02-01

    An experiment was conducted to compare different dietary vegetable sources of starch and protein on the coefficient of apparent total tract digestibility (CATTD) of energy and nutrients and performance of piglets from 29 to 60 d of age. The experiment was completely randomized with 6 treatments arranged factorially with 3 sources of starch (cooked-flaked corn, cooked-flaked rice, and pea starch) and 2 sources of protein [soy protein concentrate (SPC) and pea protein concentrate (PPC)]. The pea starch and the PPC used were obtained by dehulling and grinding pea seeds to a mean particle size of 30 microm. Each treatment was replicated 6 times (6 pigs per pen). For the entire experiment, piglets fed cooked rice had greater ADG than piglets fed pea starch with piglets fed cooked corn being intermediate (471, 403, and 430 g/d, respectively; P < 0.05). Protein source did not have any effect on piglet performance. The CATTD of DM, OM, and GE were greater (P < 0.05) for diets based on cooked rice than diets based on cooked corn with diets based on pea starch being intermediate. Crude protein digestibility was not affected by source of starch but was greater for the diets based on SPC than for diets based on PPC (0.836 vs. 0.821; P < 0.01). Protein source did not affect the digestibility of any of the other dietary components. It is concluded that cooked rice is an energy source of choice in diets for young pigs. The inclusion of PPC in the diet reduced protein digestibility but had no effects on energy digestibility or piglet performance. Therefore, the finely ground starch and protein fractions of peas can be used in substitution of cooked corn or SPC, respectively, in diets for young pigs.

  9. Protein-enriched pea flour extract protects stored milled rice against the rice weevil, Sitophilus oryzae.

    PubMed

    Pretheep-Kumar, P; Mohan, S; Ramaraju, K

    2004-01-01

    Studies were conducted to evaluate the effect of a protein-enriched pea (Pisum sativum var. Bonneville) flour extract against the rice weevil, Sitophilus oryzae in its repellency, toxicity, effect on fecundity, stability and sensory properties. Milled rice admixed with pea flour extract at 1% concentration significantly repelled S. oryzae. Mortality of S. oryzae was found to increase and fecundity was markedly suppressed, in rice treated with 1% pea flour extract. The toxicity and reproductive effects of the pea protein-enriched rice were found to be stable for a period of 5 months. The sensory characteristics of stored rice when eaten were not affected by the treatment with pea flour extract. This study indicates that the protein-enriched flour extract obtained from the Bonneville pea may be feasible to protect stored milled rice from insect attack.

  10. Rapid transcriptome characterization and parsing of sequences in a non-model host-pathogen interaction; pea-Sclerotinia sclerotiorum

    PubMed Central

    2012-01-01

    Background White mold, caused by Sclerotinia sclerotiorum, is one of the most important diseases of pea (Pisum sativum L.), however, little is known about the genetics and biochemistry of this interaction. Identification of genes underlying resistance in the host or pathogenicity and virulence factors in the pathogen will increase our knowledge of the pea-S. sclerotiorum interaction and facilitate the introgression of new resistance genes into commercial pea varieties. Although the S. sclerotiorum genome sequence is available, no pea genome is available, due in part to its large genome size (~3500 Mb) and extensive repeated motifs. Here we present an EST data set specific to the interaction between S. sclerotiorum and pea, and a method to distinguish pathogen and host sequences without a species-specific reference genome. Results 10,158 contigs were obtained by de novo assembly of 128,720 high-quality reads generated by 454 pyrosequencing of the pea-S. sclerotiorum interactome. A method based on the tBLASTx program was modified to distinguish pea and S. sclerotiorum ESTs. To test this strategy, a mixture of known ESTs (18,490 pea and 17,198 S. sclerotiorum ESTs) from public databases were pooled and parsed; the tBLASTx method successfully separated 90.1% of the artificial EST mix with 99.9% accuracy. The tBLASTx method successfully parsed 89.4% of the 454-derived EST contigs, as validated by PCR, into pea (6,299 contigs) and S. sclerotiorum (2,780 contigs) categories. Two thousand eight hundred and forty pea ESTs and 996 S. sclerotiorum ESTs were predicted to be expressed specifically during the pea-S. sclerotiorum interaction as determined by homology search against 81,449 pea ESTs (from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings) and 57,751 S. sclerotiorum ESTs (from mycelia at neutral pH, developing apothecia and developing sclerotia). Among those ESTs specifically expressed, 277 (9.8%) pea ESTs

  11. Characterization of two brassinosteroid C-6 oxidase genes in pea.

    PubMed

    Jager, Corinne E; Symons, Gregory M; Nomura, Takahito; Yamada, Yumiko; Smith, Jennifer J; Yamaguchi, Shinjiro; Kamiya, Yuji; Weller, James L; Yokota, Takao; Reid, James B

    2007-04-01

    C-6 oxidation genes play a key role in the regulation of biologically active brassinosteroid (BR) levels in the plant. They control BR activation, which involves the C-6 oxidation of 6-deoxocastasterone (6-DeoxoCS) to castasterone (CS) and in some cases the further conversion of CS to brassinolide (BL). C-6 oxidation is controlled by the CYP85A family of cytochrome P450s, and to date, two CYP85As have been isolated in tomato (Solanum lycopersicum), two in Arabidopsis (Arabidopsis thaliana), one in rice (Oryza sativa), and one in grape (Vitis vinifera). We have now isolated two CYP85As (CYP85A1 and CYP85A6) from pea (Pisum sativum). However, unlike Arabidopsis and tomato, which both contain one BR C-6 oxidase that converts 6-DeoxoCS to CS and one BR C-6 Baeyer-Villiger oxidase that converts 6-DeoxoCS right through to BL, the two BR C-6 oxidases in pea both act principally to convert 6-DeoxoCS to CS. The isolation of these two BR C-6 oxidation genes in pea highlights the species-specific differences associated with C-6 oxidation. In addition, we have isolated a novel BR-deficient mutant, lke, which blocks the function of one of these two BR C-6 oxidases (CYP85A6). The lke mutant exhibits a phenotype intermediate between wild-type plants and previously characterized pea BR mutants (lk, lka, and lkb) and contains reduced levels of CS and increased levels of 6-DeoxoCS. To date, lke is the only mutant identified in pea that blocks the latter steps of BR biosynthesis and it will therefore provide an excellent tool to further examine the regulation of BR biosynthesis and the relative biological activities of CS and BL in pea.

  12. Requirement of PEA3 for Transcriptional Activation of FAK Gene in Tumor Metastasis

    PubMed Central

    Li, Shufeng; Huang, Xiaofeng; Zhang, Dapeng; Huang, Qilai; Pei, Guoshun; Wang, Lixiang; Jiang, Wenhui; Hu, Qingang; Tan, Renxiang; Hua, Zi-Chun

    2013-01-01

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase critically involved in cancer metastasis. We found an elevation of FAK expression in highly metastatic melanoma B16F10 cells compared with its less metastatic partner B16F1 cells. Down-regulation of the FAK expression by either small interfering RNA or dominant negative FAK (FAK Related Non-Kinase, FRNK) inhibited the B16F10 cell migration in vitro and invasiveness in vivo. The mechanism by which FAK activity is up-regulated in highly metastatic cells remains unclear. In this study, we reported for the first time that one of the Est family proteins, PEA3, is able to transactivate FAK expression through binding to the promoter region of FAK. We identified a PEA3-binding site between nucleotides −170 and +43 in the FAK promoter that was critical for the responsiveness to PEA3. A stronger affinity of PEA3 to this region contributed to the elevation of FAK expression in B16F10 cells. Both in vitro and in vivo knockdown of PEA3 gene successfully mimicked the cell migration and invasiveness as that induced by FAK down-regulation. The activation of the well-known upstream of PEA3, such as epidermal growth factor, JNK, and ERK can also induce FAK expression. Furthermore, in the metastatic human clinic tumor specimens from the patients with human primary oral squamous cell carcinoma, we observed a strong positive correlation among PEA3, FAK, and carcinoma metastasis. Taking together, we hypothesized that PEA3 might play an essential role in the activation of the FAK gene during tumor metastasis. PMID:24260201

  13. Discrete Forms of Amylose Are Synthesized by Isoforms of GBSSI in PeaW⃞

    PubMed Central

    Edwards, Anne; Vincken, Jean-Paul; Suurs, Luc C. J. M.; Visser, Richard G. F.; Zeeman, Sam; Smith, Alison; Martin, Cathie

    2002-01-01

    Amyloses with distinct molecular masses are found in the starch of pea embryos compared with the starch of pea leaves. In pea embryos, a granule-bound starch synthase protein (GBSSIa) is required for the synthesis of a significant portion of the amylose. However, this protein seems to be insignificant in the synthesis of amylose in pea leaves. cDNA clones encoding a second isoform of GBSSI, GBSSIb, have been isolated from pea leaves. Comparison of GBSSIa and GBSSIb activities shows them to have distinct properties. These differences have been confirmed by the expression of GBSSIa and GBSSIb in the amylose-free mutant of potato. GBSSIa and GBSSIb make distinct forms of amylose that differ in their molecular mass. These differences in product specificity, coupled with differences in the tissues in which GBSSIa and GBSSIb are most active, explain the distinct forms of amylose found in different tissues of pea. The shorter form of amylose formed by GBSSIa confers less susceptibility to the retrogradation of starch pastes than the amylose formed by GBSSIb. The product specificity of GBSSIa could provide beneficial attributes to starches for food and nonfood uses. PMID:12172021

  14. Protein-enriched pea flour extract protects stored milled rice against the rice weevil, Sitophilus oryzae

    PubMed Central

    Pretheep-Kumar, P.; Mohan, S.; Ramaraju, K.

    2004-01-01

    Studies were conducted to evaluate the effect of a protein-enriched pea (Pisum sativum var. Bonneville) flour extract against the rice weevil, Sitophilus oryzae in its repellency, toxicity, effect on fecundity, stability and sensory properties. Milled rice admixed with pea flour extract at 1% concentration significantly repelled S. oryzae. Mortality of S. oryzae was found to increase and fecundity was markedly suppressed, in rice treated with 1% pea flour extract. The toxicity and reproductive effects of the pea protein-enriched rice were found to be stable for a period of 5 months. The sensory characteristics of stored rice when eaten were not affected by the treatment with pea flour extract. This study indicates that the protein-enriched flour extract obtained from the Bonneville pea may be feasible to protect stored milled rice from insect attack. PMID:15861241

  15. 7 CFR 201.56-6 - Legume or pea family, Fabaceae (Leguminosae).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Legume or pea family, Fabaceae (Leguminosae). 201.56-6 Section 201.56-6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL...-6 Legume or pea family, Fabaceae (Leguminosae). Kinds of seed: Alfalfa, alyceclover, asparagusbean...

  16. 7 CFR 201.56-6 - Legume or pea family, Fabaceae (Leguminosae).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Legume or pea family, Fabaceae (Leguminosae). 201.56-6 Section 201.56-6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL...-6 Legume or pea family, Fabaceae (Leguminosae). Kinds of seed: Alfalfa, alyceclover, asparagusbean...

  17. Isolation and characterization of the pea cytochrome c oxidase Vb gene.

    PubMed

    Kubo, Nakao; Arimura, Shin-Ichi; Tsutsumi, Nobuhiro; Kadowaki, Koh-Ichi; Hirai, Masashi

    2006-11-01

    Three copies of the gene that encodes cytochrome c oxidase subunit Vb were isolated from the pea (PscoxVb-1, PscoxVb-2, and PscoxVb-3). Northern Blot and reverse transcriptase-PCR analyses suggest that all 3 genes are transcribed in the pea. Each pea coxVb gene has an N-terminal extended sequence that can encode a mitochondrial targeting signal, called a presequence. The localization of green fluorescent proteins fused with the presequence strongly suggests the targeting of pea COXVb proteins to mitochondria. Each pea coxVb gene has 5 intron sites within the coding region. These are similar to Arabidopsis and rice, although the intron lengths vary greatly. A phylogenetic analysis of coxVb suggests the occurrence of gene duplication events during angiosperm evolution. In particular, 2 duplication events might have occurred in legumes, grasses, and Solanaceae. A comparison of amino acid sequences in COXVb or its counterpart shows the conservation of several amino acids within a zinc finger motif. Interestingly, a homology search analysis showed that bacterial protein COG4391 and a mitochondrial complex I 13 kDa subunit also have similar amino acid compositions around this motif. Such similarity might reflect evolutionary relationships among the 3 proteins.

  18. Faba beans and peas in poultry feed: economic assessment.

    PubMed

    Proskina, Liga; Cerina, Sallija

    2017-10-01

    Broiler diets mainly consist of cereals and protein-rich feed sources; in the EU-27, poultry farming consumes 24% of the total amount of protein-rich feedstuffs. Since the EU produces only 30% of the total quantity of protein crops used for feed, it is necessary to promote the use of traditional European protein crops (beans, peas) for feed in livestock farming. The research aim is to identify economic gains from the production of broiler chicken meat, replacing soybean meal with domestic faba beans and field peas in broiler chicken diets. Adding field peas and faba beans to the broiler feed ration resulted in a significant live weight increase (5.74-11.95%) at the selling age, a decrease in the feed conversion ratio by 0.61-6.06%, and decrease in the product unit cost (15.34-37.06%) as well as an increase in the production efficiency factor (8.70-48.54), compared with the control group. The optimum kind of legume species used in the broiler diet was peas, which were added in the amount of 200 g kg -1 , resulting in live weight gain, a decrease in the feed conversion ratio and an increase in the production efficiency factor. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Genetic diversity and trait genomic prediction in a pea diversity panel.

    PubMed

    Burstin, Judith; Salloignon, Pauline; Chabert-Martinello, Marianne; Magnin-Robert, Jean-Bernard; Siol, Mathieu; Jacquin, Françoise; Chauveau, Aurélie; Pont, Caroline; Aubert, Grégoire; Delaitre, Catherine; Truntzer, Caroline; Duc, Gérard

    2015-02-21

    Pea (Pisum sativum L.), a major pulse crop grown for its protein-rich seeds, is an important component of agroecological cropping systems in diverse regions of the world. New breeding challenges imposed by global climate change and new regulations urge pea breeders to undertake more efficient methods of selection and better take advantage of the large genetic diversity present in the Pisum sativum genepool. Diversity studies conducted so far in pea used Simple Sequence Repeat (SSR) and Retrotransposon Based Insertion Polymorphism (RBIP) markers. Recently, SNP marker panels have been developed that will be useful for genetic diversity assessment and marker-assisted selection. A collection of diverse pea accessions, including landraces and cultivars of garden, field or fodder peas as well as wild peas was characterised at the molecular level using newly developed SNP markers, as well as SSR markers and RBIP markers. The three types of markers were used to describe the structure of the collection and revealed different pictures of the genetic diversity among the collection. SSR showed the fastest rate of evolution and RBIP the slowest rate of evolution, pointing to their contrasted mode of evolution. SNP markers were then used to predict phenotypes -the date of flowering (BegFlo), the number of seeds per plant (Nseed) and thousand seed weight (TSW)- that were recorded for the collection. Different statistical methods were tested including the LASSO (Least Absolute Shrinkage ans Selection Operator), PLS (Partial Least Squares), SPLS (Sparse Partial Least Squares), Bayes A, Bayes B and GBLUP (Genomic Best Linear Unbiased Prediction) methods and the structure of the collection was taken into account in the prediction. Despite a limited number of 331 markers used for prediction, TSW was reliably predicted. The development of marker assisted selection has not reached its full potential in pea until now. This paper shows that the high-throughput SNP arrays that are being

  20. PED/PEA-15 inhibits hydrogen peroxide-induced apoptosis in Ins-1E pancreatic beta-cells via PLD-1.

    PubMed

    Fiory, Francesca; Parrillo, Luca; Raciti, Gregory Alexander; Zatterale, Federica; Nigro, Cecilia; Mirra, Paola; Falco, Roberta; Ulianich, Luca; Di Jeso, Bruno; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco

    2014-01-01

    The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from Tg(PED/PEA-15) mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1E(PED/PEA-15)). In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1E(PED/PEA-15) cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1E(PED/PEA-15). These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism.

  1. Saponin content and trypsin inhibitor activity in processed and cooked pigeon pea cultivars.

    PubMed

    Duhan, A; Khetarpaul, N; Bishnoi, S

    2001-01-01

    Four high-yielding varieties of pigeon pea namely UPAS-120, Manak, JCPL-151. ICPL-87 had considerable amounts of antinutrients i.e. saponins and trypsin inhibitors. Saponin content of these unprocessed cultivars ranged from 2164 to 3494 mg/100 g. There were significant varietal variations in trypsin inhibitor activity (1007-1082 TIU/g) of these pigeon pea cultivars. Some simple, inexpensive and easy-to-use domestic processing and cooking methods, namely, soaking (6, 12, 18 h), soaking (12 h)-dehulling, ordinary cooking, pressure cooking and germination (24, 36, 48 h) were found to be quite effective in lowering the level of saponins and trypsin inhibitors in all the pigeon pea cultivars. Pressure cooking of soaked and dehulled seeds lowered the content of saponins to a maximum extent (28 to 38%) followed by ordinary cooking of soaked and dehulled seeds (28 to 35%), soaked dehulled raw seeds (22 to 27%) and 48 h germinated seeds (15 to 19%). Loss of TIA was marginal due to soaking but ordinary as well as pressure cooking of unsoaked and soaked-dehulled pigeon pea seeds reduced the TIA drastically. Pressure cooking of pigeon pea seeds completely destroyed the TIA while it was reduced to the extent of 86-88% against the control in 48 h pigeon pea sprouts.

  2. Effects of pea chips on pig performance, carcass quality and composition, and palatability of pork.

    PubMed

    Newman, D J; Harris, E K; Lepper, A N; Berg, E P; Stein, H H

    2011-10-01

    Pea chips are produced as a by-product when field peas are processed to produce split peas for human consumption. The objective of this experiment was to test the hypothesis that inclusion of pea chips in diets fed to finishing pigs does not negatively influence pig growth performance, carcass composition, and the palatability of pork. A total of 24 barrows (initial BW: 58.0 ± 6.6 kg) were allotted to 1 of 4 treatments and fed early finishing diets for 35 d and late finishing diets for 35 d. A corn-soybean meal (SBM) control diet and 3 diets containing pea chips were formulated for each phase. Pea chips replaced 33.3, 66.6, or 100% of the SBM in the control diet. Pigs were housed individually, and all pigs were slaughtered at the conclusion of the experiment. Overall, there were no differences (P > 0.11) in final BW, ADFI, and G:F of pigs among treatments, but there was a quadratic response in ADG (P = 0.04), with the smallest value observed in pigs fed the control diet. Dressing percentage linearly decreased (P = 0.04) as pea chips replaced SBM in diets, but there were no differences (P > 0.20) among treatments in HCW, LM area, 10th-rib backfat, lean meat percentage, and marbling. Likewise, pH in loin and ham, drip loss, and purge loss were not influenced (P > 0.13) by treatment. However, there was a quadratic response (P = 0.08) in 24-h pH in the shoulder, with the smallest value present in pigs fed the diet, in which 66.6% of the SBM was replaced by pea chips. Subjective LM color and Japanese color score standard were reduced (quadratic, P = 0.03 and 0.05, respectively) and LM b* values and hue angle were increased (quadratic, P = 0.09 and 0.10, respectively) when pea chips replaced SBM in the diets. Ham L* (quadratic, P = 0.04), a* (linear, P = 0.02), b* (quadratic, P = 0.07), color saturation (linear, P = 0.02), and hue angle (quadratic, P = 0.05) were increased when pea chips replaced SBM. However, there were no differences (P > 0.16) in shoulder and fat

  3. Insecticidal components from field pea extracts: soyasaponins and lysolecithins.

    PubMed

    Taylor, Wesley G; Fields, Paul G; Sutherland, Daniel H

    2004-12-15

    Extracts from field peas (Pisum sativum L.) have previously been shown to have a utility to control insect pests. To identify potentially new bioinsecticides in field crops, we describe the fractionation of impure extracts (C8 extracts) derived from protein-rich fractions of commercial pea flour. The activity of separated fractions was determined by a flour disk antifeedant bioassay with the rice weevil [Sitophilus oryzae (L.)], an insect pest of stored products. Bioassay-guided fractionation showed that the triterpenoid saponin fractions were partly responsible for the antifeedant activity of C8 extracts. Soyasaponin I (soyasaponin Bb), isolated from peas and soybeans, and mixtures of soyasaponins, comprised of soyasaponins I-III and isolated from soybeans, were inactive antifeedants, but dehydrosoyasaponin I (the C-22 ketone derivative of soyasaponin I), a minor component found in C8 extracts, was shown to be an active component. Dehydrosoyasaponin I (soyasaponin Be) and soyasaponin VI (soyasaponin betag) coeluted under conditions of silica gel thin-layer chromatography and C18 high-performance liquid chromatography. However, dehydrosoyasaponin I could be isolated from saponin-enriched fractions with a reversed phase column of styrene/divinylbenzene operated at alkaline pH. Phospholipids of the lysolecithin type were also identified in saponin fractions of C8 extracts from peas. Three of the lysolecithins were inactive alone against rice weevils, but mixtures of these phospholipids enhanced the insecticidal activity of dehydrosoyasaponin I.

  4. Genetic Diversity of Chinese and Global Pea (Pisum sativum L.) Collections.

    USDA-ARS?s Scientific Manuscript database

    Pea (Pisum sativum L.) is an important food and feed legume grown across many temperate regions of the world, especially from Asia to Europe and North America. The goal of this study was to use 30 informative pea microsatellite markers to compare genetic diversity in a global core from the USDA and ...

  5. Oxidative processes in soybean and pea seeds: effect of light, temperature, and water content

    NASA Technical Reports Server (NTRS)

    Vertucci, C. W.; Leopold, A. C.

    1987-01-01

    Oxidative processes are probable determinants of longevity of seeds in storage. Measurements of actual oxygen uptake rates were made for soybean and pea seeds as a comparison of short and long lived seeds when light, temperature, and moisture contents were varied. In both peas and soybeans, the oxygen uptake was depressed at low temperatures (<16 degrees C) and low water contents (< 0.25 gram H2O per gram dry weight). Apparent activation energies under these conditions are very high, while apparent activation energies of seeds at higher water contents and at temperatures greater than 22 degrees C are much less. Light enhances the level of oxygen uptake in pea, but reduces the level of oxygen uptake in soybean. The complexities of the interactions of oxygen uptake with environmental conditions in soybean compared to pea suggest that oxidative processes occur in soybean at low water contents, but are essentially absent in pea. It is suggested that the additional oxidative processes in soybean with moisture contents between 0.10 and 0.24 gram per gram may contribute to the poorer longevity of soybean seed compared to pea seed.

  6. Phenetic, genetic diversity and symbiotic compatibility of rhizobial strains nodulating pigeon pea in Northern India.

    PubMed

    Arora, Naveen Kumar; Khare, Ekta; Singh, Sachin; Tewari, Sakshi

    2018-01-01

    Pigeon pea ( Cajanus cajan ) is one of the most important legumes grown in the northern province of Uttar Pradesh, India. However, its productively in Uttar Pradesh is lower than the average yield of adjoining states. During the course of the present study, a survey of pigeon pea growing agricultural fields was carried out and it was found that 80% of plants were inadequately nodulated. The study was aimed to evaluate the pigeon pea symbiotic compatibility and nodulation efficiency of root nodulating bacteria isolated from various legumes, and to explore the phenetic and genetic diversity of rhizobial population nodulating pigeon pea growing in fields of Uttar Pradesh. Amongst all the 96 isolates, 40 isolates showed nodulation in pigeon pea. These 40 isolates were further characterized by phenotypic, biochemical and physiological tests. Intrinsic antibiotic resistance pattern was taken to generate similarity matrix revealing 10 phenons. The study shows that most of the isolates nodulating pigeon pea in this region were rapid growers. The dendrogram generated using the NTSYSpc software grouped RAPD patterns into 19 clusters. The high degree of phenetic and genetic diversity encountered is probably because of a history of mixed cropping of legumes. The assessment of diversity is a very important tool and can be used to improve the nodulation and quality of pigeon pea crop. It is also concluded that difference between phenetic and RAPD clustering pattern is an indication that rhizobial diversity of pigeon pea is not as yet completely understood and settled.

  7. Nitrous oxide emissions from crop rotations including wheat, rapeseed and dry pea

    NASA Astrophysics Data System (ADS)

    Jeuffroy, M. H.; Baranger, E.; Carrouée, B.; de Chezelles, E.; Gosme, M.; Hénault, C.; Schneider, A.; Cellier, P.

    2012-07-01

    Approximately 65% of anthropogenic emissions of N2O, a potent greenhouse gas, originate from soils at global scale, and particularly after N fertilisation of the main crops in Europe. Thanks to their capacity to fix atmospheric N2 through biological fixation, legumes allow to reduce N fertilizer use, and possibly N2O emission. Nevertheless, the decomposition of crop organic matter during the crop cycle and during the residue decomposition, and possibly the N fixation process itself, could lead to N2O emissions. The objective of this study was to quantify N2O emissions from a dry pea crop (Pisum sativum, harvested at maturity) and from the subsequent crops in comparison with N2O emissions from wheat and oilseed-rape crops, fertilized or not, in various rotations. A field experiment was conducted during 4 consecutive years, aiming at comparing the emissions during the pea crop, in comparison with those during the wheat (fertilized or not) or oilseed rape crops, and after the pea crop, in comparison with other preceding crops. N2O fluxes were measured using static chambers. In spite of low N2O fluxes, mainly linked with the site soil characteristics, fluxes during the crop were significantly lower for pea and unfertilized wheat than for fertilized wheat and oilseed rape. The effect of the preceding crop was not significant, while soil mineral N at harvest was higher after pea. These results, combined with the emission reduction allowed by the production and transport of the N fertiliser not applied on the pea crop, should be confirmed in a larger range of soil types. Nevertheless, they demonstrate the absence of N2O emission linked to the symbiotic N fixation process, and allow us to estimate the decrease of N2O emissions to 20-25% by including one pea crop in a three-year rotation. At a larger scale, this reduction of GHG emissions at field level has to be cumulated with the reduction of GHG emissions linked with the lower level of production and transport of the N

  8. PEAS AND PARTICLES, TEACHER'S GUIDE.

    ERIC Educational Resources Information Center

    1966

    THIS TEACHER'S GUIDE IS DESIGNED FOR USE WITH AN ELEMENTARY SCIENCE STUDY UNIT ON "PEAS AND PARTICLES" WHICH DEALS WITH LARGE NUMBERS AND ESTIMATIONS. ITS PURPOSE IS TO GIVE ELEMENTARY SCHOOL CHILDREN AN UNDERSTANDING OF WHAT LARGE NUMBERS MEAN THROUGH INFORMAL ACTIVITIES INVOLVING FAMILIAR OBJECTS. THE MATERIAL HAS BEEN FOUND SUITABLE…

  9. CEI-PEA Alert, Summer 2006

    ERIC Educational Resources Information Center

    Center for Educational Innovation - Public Education Association, 2006

    2006-01-01

    The "CEI-PEA Alert" is an advocacy newsletter that deals with topics of interest to all concerned with the New York City public schools. This issue includes: (1) Practical Skills & High Academic Standards: Career Technical Education; (2) Parents: Help Your Children Gain "Soft Skills" for the Workforce; (3) Culinary Arts…

  10. Biological control of fusarial wilt of pigeon pea by Bacillus brevis.

    PubMed

    Bapat, S; Shah, A K

    2000-02-01

    A virulent strain of pigeon pea wilt pathogen was isolated from wilted pigeon pea plants and was identified as Fusarium oxysporum f. sp. udum. Many bacterial cultures showing antagonism to the pathogen were isolated from various ecological niches. When tested under pot and field conditions, development of fusarial wilt symptoms was prevented in pigeon pea seeds treated with one such antagonist, Bacillus brevis. A formulation of B. brevis with vermiculite as a carrier had a shelf life of at least 6 months. Bacillus brevis produced an extracellular antagonistic substance which induced swelling of the pathogen's hyphal tips, and cells were bulbous and swollen with shrunken and granulated cytoplasm. The antagonistic substance also inhibited germination of conidia, and was fungicidal to the vegetative mycelia of the pathogen. Comparison of the properties of our antagonistic substance with that of known antibiotics produced by B. brevis suggests that our antagonistic substance is a novel compound. The observations reported here indicate that this strain of B. brevis may have potential as a biocontrol agent against fusarial wilt in pigeon pea.

  11. Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi.

    PubMed

    Souza Filho, Pedro F; Nair, Ramkumar B; Andersson, Dan; Lennartsson, Patrik R; Taherzadeh, Mohammad J

    2018-01-01

    Currently around one billion people in the world do not have access to a diet which provides enough protein and energy. However, the production of one of the main sources of protein, animal meat, causes severe impacts on the environment. The present study investigates the production of a vegan-mycoprotein concentrate from pea-industry byproduct (PpB), using edible filamentous fungi, with potential application in human nutrition. Edible fungal strains of Ascomycota ( Aspergillus oryzae , Fusarium venenatum , Monascus purpureus , Neurospora intermedia ) and Zygomycota ( Rhizopus oryzae ) phyla were screened and selected for their protein production yield. A. oryzae had the best performance among the tested fungi, with a protein yield of 0.26 g per g of pea-processing byproduct from the bench scale airlift bioreactor cultivation. It is estimated that by integrating the novel fungal process at an existing pea-processing industry, about 680 kg of fungal biomass attributing to about 38% of extra protein could be produced for each 1 metric ton of pea-processing byproduct. This study is the first of its kind to demonstrate the potential of the pea-processing byproduct to be used by filamentous fungi to produce vegan-mycoprotein for human food applications. The pea-processing byproduct (PpB) was proved to be an efficient medium for the growth of filamentous fungi to produce a vegan-protein concentrate. Moreover, an industrial scenario for the production of vegan-mycoprotein concentrate for human nutrition is proposed as an integrated process to the existing PPI production facilities.

  12. Hypocholesterolaemic effects of lupin protein and pea protein/fibre combinations in moderately hypercholesterolaemic individuals.

    PubMed

    Sirtori, Cesare R; Triolo, Michela; Bosisio, Raffaella; Bondioli, Alighiero; Calabresi, Laura; De Vergori, Viviana; Gomaraschi, Monica; Mombelli, Giuliana; Pazzucconi, Franco; Zacherl, Christian; Arnoldi, Anna

    2012-04-01

    The present study was aimed to evaluate the effect of plant proteins (lupin protein or pea protein) and their combinations with soluble fibres (oat fibre or apple pectin) on plasma total and LDL-cholesterol levels. A randomised, double-blind, parallel group design was followed: after a 4-week run-in period, participants were randomised into seven treatment groups, each consisting of twenty-five participants. Each group consumed two bars containing specific protein/fibre combinations: the reference group consumed casein+cellulose; the second and third groups consumed bars containing lupin or pea proteins+cellulose; the fourth and fifth groups consumed bars containing casein and oat fibre or apple pectin; the sixth group and seventh group received bars containing combinations of pea protein and oat fibre or apple pectin, respectively. Bars containing lupin protein+cellulose ( - 116 mg/l, - 4·2%), casein+apple pectin ( - 152 mg/l, - 5·3%), pea protein+oat fibre ( - 135 mg/l, - 4·7%) or pea protein+apple pectin ( - 168 mg/l, - 6·4%) resulted in significant reductions of total cholesterol levels (P<0·05), whereas no cholesterol changes were observed in the subjects consuming the bars containing casein+cellulose, casein+oat fibre or pea protein+cellulose. The present study shows the hypocholesterolaemic activity and potential clinical benefits of consuming lupin protein or combinations of pea protein and a soluble fibre, such as oat fibre or apple pectin.

  13. Cross-reactivity of a new food ingredient, dun pea, with legumes, and risk of anaphylaxis in legume allergic children.

    PubMed

    Richard, C; Jacquenet, S; Sergeant, P; Moneret-Vautrin, D A

    2015-07-01

    Legume allergy is the fifth food allergy in Europe. The dun pea (Pisum sativum sativum var. arvense), a pea belonging to the same subspecies as green pea, has been recently introduced as an ingredient in the human food industry. The aims of this study were to evaluate the cross-reactivity between dun pea and other legumes and to search for modification of allergenicity induced by food technologies. A series of 36 patients with legume and/or peanut allergy was studied. They underwent skin tests to peanut and a panel of legumes including dun pea. Specific IgE to dun pea and cross-reactivity to peanut allergens, particularly to Ara h 1, were evaluated by ELISA. Proteins and allergens of different pea extracts were studied by SDS-PAGE and immunoblots. In France and Belgium, 7.7% of severe food anaphylaxis cases were due to legumes. Patients with isolated legume allergy had positive prick tests to dun pea, whereas patients with isolated peanut allergy had negative prick tests. Cross-reactivity between sIgE to peanut and dun pea was observed, and more frequently than expected (96%) peanut-allergic patients with legume sensitization or allergy had sIgE to Ara h 1. Analysis of dun pea allergens suggested that protein epitopes were presented differently in dun pea seeds, isolate and flour. This study identifies, for the first time, a risk of dun pea allergy in legume-allergic patients and in a subset of peanut-allergic patients.

  14. Carbohydrate binding specificity of pea lectin studied by NMR spectroscopy and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Cheong, Youngjoo; Shim, Gyuchang; Kang, Dongil; Kim, Yangmee

    1999-02-01

    The conformational details of Man( α1,6)Man( α)OMe are investigated through NMR spectroscopy in conjunction with molecular modeling. The lowest energy structure (M1) in the adiabatic energy map calculated with a dielectric constant of 50 has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=180°. The other low energy structure (M2) has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=-60°. Molecular dynamics simulations and NMR experiments prove that Man( α1,6)Man( α)OMe in the free form exists with conformational averaging of M1 and M2 conformers predominantly. Molecular dynamics simulations of the pea lectin-carbohydrate complex with explicit water molecules starting from the X-ray crystallographic structure of pea lectin show that the protein-carbohydrate interaction centers mainly on the hydrogen bonds and van der Waals interactions between protein and carbohydrate. From the molecular dynamics simulation, it is found that the M1 structure can bind to pea lectin better than the M2 structure. The origin of this selectivity is the water- mediated hydrogen bond interactions between the remote mannose and the binding site of pea lectin as well as the direct hydrogen bond interaction between the terminal mannose and pea lectin. Extensive networks of interactions in the carbohydrate binding site and the metal binding site are important in maintaining the carbohydrate binding properties of pea lectin. Especially, the predominant factors of mannose binding specificity of pea lectin are the hydrogen bond interactions between the 4th hydroxyl groups of the terminal sugar ring and the side chains of Asp-81 and Asn-125 in the carbohydrate binding site, and the additional interactions between these side chains of Asp-81 and Asn-125 and the calcium ion in the metal binding site of pea lectin.

  15. Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto)-fermented pigeon pea.

    PubMed

    Lee, Bao-Hong; Lai, Yi-Syuan; Wu, She-Ching

    2015-12-01

    Because of the high incidence of cardiovascular diseases in Asian countries, traditional fermented foods from Asia have been increasingly investigated for antiatherosclerotic effects. This study investigated the production of nattokinase, a serine fibrinolytic enzyme, in pigeon pea by Bacillus subtilis fermentation. B. subtilis 14714, B. subtilis 14715, B. subtilis 14716, and B. subtilis 14718 were employed to produce nattokinase. The highest nattokinase activity in pigeon pea was obtained using B. subtilis 14715 fermentation for 32 hours. In addition, the levels of antioxidants (phenolics and flavonoids) and angiotensin converting enzyme inhibitory activity were increased in B. subtilis 14715-fermented pigeon pea, compared with those in nonfermented pigeon pea. In an animal model, we found that both water extracts of pigeon pea (100 mg/kg body weight) and water extracts of B. subtilis-fermented pigeon pea (100 mg/kg body weight) significantly improved systolic blood pressure (21 mmHg) and diastolic blood pressure (30 mmHg) in spontaneously hypertensive rats. These results suggest that Bacillus-fermented pigeon pea has benefits for cardiovascular health and can be developed as a new dietary supplement or functional food that prevents hypertension. Copyright © 2015. Published by Elsevier B.V.

  16. Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea.

    PubMed

    Desgroux, Aurore; L'Anthoëne, Virginie; Roux-Duparque, Martine; Rivière, Jean-Philippe; Aubert, Grégoire; Tayeh, Nadim; Moussart, Anne; Mangin, Pierre; Vetel, Pierrick; Piriou, Christophe; McGee, Rebecca J; Coyne, Clarice J; Burstin, Judith; Baranger, Alain; Manzanares-Dauleux, Maria; Bourion, Virginie; Pilet-Nayel, Marie-Laure

    2016-02-20

    Genome-wide association (GWA) mapping has recently emerged as a valuable approach for refining the genetic basis of polygenic resistance to plant diseases, which are increasingly used in integrated strategies for durable crop protection. Aphanomyces euteiches is a soil-borne pathogen of pea and other legumes worldwide, which causes yield-damaging root rot. Linkage mapping studies reported quantitative trait loci (QTL) controlling resistance to A. euteiches in pea. However the confidence intervals (CIs) of these QTL remained large and were often linked to undesirable alleles, which limited their application in breeding. The aim of this study was to use a GWA approach to validate and refine CIs of the previously reported Aphanomyces resistance QTL, as well as identify new resistance loci. A pea-Aphanomyces collection of 175 pea lines, enriched in germplasm derived from previously studied resistant sources, was evaluated for resistance to A. euteiches in field infested nurseries in nine environments and with two strains in climatic chambers. The collection was genotyped using 13,204 SNPs from the recently developed GenoPea Infinium® BeadChip. GWA analysis detected a total of 52 QTL of small size-intervals associated with resistance to A. euteiches, using the recently developed Multi-Locus Mixed Model. The analysis validated six of the seven previously reported main Aphanomyces resistance QTL and detected novel resistance loci. It also provided marker haplotypes at 14 consistent QTL regions associated with increased resistance and highlighted accumulation of favourable haplotypes in the most resistant lines. Previous linkages between resistance alleles and undesired late-flowering alleles for dry pea breeding were mostly confirmed, but the linkage between loci controlling resistance and coloured flowers was broken due to the high resolution of the analysis. A high proportion of the putative candidate genes underlying resistance loci encoded stress-related proteins and

  17. VizieR Online Data Catalog: Lyα profile in 43 Green Pea galaxies (Yang+, 2017)

    NASA Astrophysics Data System (ADS)

    Yang, H.; Malhotra, S.; Gronke, M.; Rhoads, J. E.; Leitherer, C.; Wofford, A.; Jiang, T.; Dijkstra, M.; Tilvi, V.; Wang, J.

    2018-03-01

    In SDSS DR7, a sample of 251 Green Peas was observed as serendipitous spectroscopic targets (Cardamone+ 2009MNRAS.399.1191C). A subset of 66 Green Peas have sufficient signal-to-noise ratio (S/N) in both continuum and emission lines (Hα, Hβ, and [OIII]λ5007) to study galactic properties. In Paper I (Yang+ 2016ApJ...820..130Y), we matched these 66 Green Peas with the COS archive and studied Lyα escape in a sample of 12 Green Peas with COS UV spectra. To address the bias and expand the sample size, we took the Lyα spectra of 20 additional Green Peas (PI S. Malhotra, GO 14201). We also supplement this sample with 11 additional Green Peas from published literature. In total, we have 43 Green Peas from six HST programs -- 20 galaxies from GO 14201 (PI S. Malhotra), 9 galaxies from GO 12928 (PI A. Henry; Henry+ 2015ApJ...809...19H), 7 galaxies from GO 11727 and GO 13017 (PI T. Heckman; Heckman+ 2011ApJ...730....5H ; Alexandroff+ 2015ApJ...810..104A), 2 galaxies from GO 13293 (PI A. Jaskot; Jaskot & Oey 2014ApJ...791L..19J), and 5 galaxies from GO 13744 (PI T. Thuan; Izotov+ 2016MNRAS.461.3683I). (4 data files).

  18. Fermented pigeon pea (Cajanus cajan) ingredients in pasta products.

    PubMed

    Torres, Alexia; Frias, J; Granito, M; Vidal-Valverde, C

    2006-09-06

    Pigeon pea (Cajanus cajan var. aroíto) seeds were fermented in order to remove antinutritional factors and to obtain functional legume flour to be used as pasta ingredients. Fermentation brought about a drastic reduction of alpha-galactosides (82%), phytic acid (48%), and trypsin inhibitor activity (39%). Fermented legume flours presented a notable increase of fat and total soluble available carbohydrates, a slight decrease of protein, dietary fiber, calcium, vitamin B2, vitamin E, and total antioxidant capacity, and a decrease of soluble dietary fiber, Na, K, Mg, and Zn contents. No changes were observed in the level of starch and tannins as a consequence of fermentation. The fermented flour was used as an ingredient to make pasta products in a proportion of 5, 10, and 12%. The supplemented pasta products obtained had longer cooking times, higher cooking water absorptions, higher cooking loss, and higher protein loss in water than control pasta (100% semolina). From sensory evaluations, fortified pasta with 5 and 10% fermented pigeon pea flour had an acceptability score similar to control pasta. Pasta supplemented with 10% fermented pigeon pea flour presented higher levels of protein, fat, dietary fiber, mineral, vitamin E, and Trolox equivalent antioxidant capacity than 100% semolina pasta and similar vitamins B1 and B2 contents. Protein efficiency ratios and true protein digestibility improved (73 and 6%, respectively) after supplementation with 10% fermented pigeon pea flour; therefore, the nutritional value was enhanced.

  19. Nutritional evaluation of low-phytate peas (Pisum sativum L.) for young broiler chicks.

    PubMed

    Thacker, Philip; Deep, Aman; Petri, Daniel; Warkentin, Thomas

    2013-02-01

    This experiment determined the effects of including normal and low-phytate peas in diets fed to young broiler chickens on performance, phosphorus availability and bone strength. A total of 180, day-old, male broilers (Ross-308 line) were assigned to six treatments. The control was based on corn and soybean meal while two additional corn-based diets were formulated containing 30% of either normal or low-phytate pea providing 0.45% available phosphorus. For each of these three diets, a similar diet was formulated by reducing the amount of dicalcium phosphate to produce a diet with 0.3% available phosphorus. The total tract apparent availability (TTAA) of phosphorus was higher (p = 0.02) for broilers fed the low-phytate pea than for birds fed the normal pea diets. Birds fed diets containing the lower level of phosphorus had a higher TTAA of phosphorus (50.64 vs. 46.68%) than broilers fed diets adequate in phosphorus. Protein source had no effect on weight gain, feed intake or feed conversion. Broilers fed the low phosphorus diets had lower weight gain (p = 0.04) and feed intake (p < 0.01) than broilers fed the higher phosphorus level. Bone strength was higher (p < 0.01) for broilers fed diets based on low-phytate pea than for those fed diets based on normal pea or soybean meal. Increasing the availability of the phosphorus in peas could mean that less inorganic phosphorus would be required in order to meet the nutritional requirements of broilers. Since inorganic phosphorus sources tend to be expensive, a reduction in their use would lower ration costs. In addition, increased availability of phosphorus would reduce the amount of phosphorus excreted thus reducing the amount of phosphorus that can potentially pollute the environment.

  20. Establishing alighting preferences and species transmission differences for Pea seed-borne mosaic virus aphid vectors.

    PubMed

    Congdon, B S; Coutts, B A; Renton, M; Flematti, G R; Jones, R A C

    2017-09-15

    Pea seed-borne mosaic virus (PSbMV) infection causes a serious disease of field pea (Pisum sativum) crops worldwide. The PSbMV transmission efficiencies of five aphid species previously found landing in south-west Australian pea crops in which PSbMV was spreading were studied. With plants of susceptible pea cv. Kaspa, the transmission efficiencies of Aphis craccivora, Myzus persicae, Acyrthosiphon kondoi and Rhopalosiphum padi were 27%, 26%, 6% and 3%, respectively. Lipaphis erysimi did not transmit PSbMV in these experiments. The transmission efficiencies found for M. persicae and A. craccivora resembled earlier findings, but PSbMV vector transmission efficiency data were unavailable for A. kondoi, R. padi and L. erysimi. With plants of partially PSbMV resistant pea cv. PBA Twilight, transmission efficiencies of M. persicae, A. craccivora and R. padi were 16%, 12% and 1%, respectively, reflecting putative partial resistance to aphid inoculation. To examine aphid alighting preferences over time, free-choice assays were conducted with two aphid species representing efficient (M. persicae) and inefficient (R. padi) vector species. For this, alatae were set free on multiple occasions (10-15 repetitions each) amongst PSbMV-infected and mock-inoculated pea or faba bean (Vicia faba) plants. Following release, non-viruliferous R. padi alatae exhibited a general preference for PSbMV-infected pea and faba bean plants after 30min-4h, but preferred mock-inoculated plants after 24h. In contrast, non-viruliferous M. persicae alatae alighted on mock-inoculated pea plants preferentially for up to 48h following their release. With faba bean, M. persicae preferred infected plants at the front of assay cages, but mock-inoculated ones their backs, apparently due to increased levels of natural light there. When preliminary analyses were performed to detect PSbMV-induced changes in the volatile organic compound profiles of pea and faba bean plants, higher numbers of volatiles

  1. Effect of extrusion on the nutritional value of peas for broiler chickens.

    PubMed

    Hejdysz, Marcin; Kaczmarek, Sebastian Andrzej; Rutkowski, Andrzej

    2016-10-01

    The study was conducted to investigate the nutritional value of five samples of raw and extruded pea seeds (Pisum sativum L., Tarachalska cv.) from different experimental fields. The study included 150 male 1-day-old Ross 308 chickens, which were randomly assigned to three dietary treatments (50 replications each) and kept in individual cages. From days 1 to 16, all birds received only the basal diets. From days 17 to 21, the control group received still the basal diet, but for the two other groups, 20% of basal diet was replaced by raw or extruded peas. Furthermore, the groups receiving raw or extruded peas were divided into five subgroups of 10 animals each, where the diets contained one of the five pea samples of the same cultivar grown at different locations, respectively. On days 19 and 20, excreta were individually collected, and then all chickens were sacrificed and ileal digesta were sampled for determination of ileal digestibility, which was calculated by the difference method. Extrusion of pea seeds decreased the contents of crude fibre, acid and neutral detergent fibre, trypsin inhibitor activity (TIA), phytic P and resistant starch (RS) (p ≤ 0.05), but increased the contents of apparent metabolisable energy (AMEN) by approximately 2.25 MJ/kg dry matter (DM). Furthermore, extrusion improved the DM and crude protein digestibility significantly by about 21.3% and 11.6%, respectively. Similar results were observed for the digestibility of all analysed amino acids. In conclusion, extrusion markedly influenced the chemical composition of peas, reduced their contents of phytic P, TIA and RS and consequently had a positive impact on nutrient digestibility and AMEN values.

  2. Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea

    PubMed Central

    2014-01-01

    Background Pea has a complex genome of 4.3 Gb for which only limited genomic resources are available to date. Although SNP markers are now highly valuable for research and modern breeding, only a few are described and used in pea for genetic diversity and linkage analysis. Results We developed a large resource by cDNA sequencing of 8 genotypes representative of modern breeding material using the Roche 454 technology, combining both long reads (400 bp) and high coverage (3.8 million reads, reaching a total of 1,369 megabases). Sequencing data were assembled and generated a 68 K unigene set, from which 41 K were annotated from their best blast hit against the model species Medicago truncatula. Annotated contigs showed an even distribution along M. truncatula pseudochromosomes, suggesting a good representation of the pea genome. 10 K pea contigs were found to be polymorphic among the genetic material surveyed, corresponding to 35 K SNPs. We validated a subset of 1538 SNPs through the GoldenGate assay, proving their ability to structure a diversity panel of breeding germplasm. Among them, 1340 were genetically mapped and used to build a new consensus map comprising a total of 2070 markers. Based on blast analysis, we could establish 1252 bridges between our pea consensus map and the pseudochromosomes of M. truncatula, which provides new insight on synteny between the two species. Conclusions Our approach created significant new resources in pea, i.e. the most comprehensive genetic map to date tightly linked to the model species M. truncatula and a large SNP resource for both academic research and breeding. PMID:24521263

  3. Effect of the combinations between pea proteins and soluble fibres on cholesterolaemia and cholesterol metabolism in rats.

    PubMed

    Parolini, Cinzia; Manzini, Stefano; Busnelli, Marco; Rigamonti, Elena; Marchesi, Marta; Diani, Erika; Sirtori, Cesare R; Chiesa, Giulia

    2013-10-01

    Many functional foods and dietary supplements have been reported to be beneficial for the management of dyslipidaemia, one of the major risk factors for CVD. Soluble fibres and legume proteins are known to be a safe and practical approach for cholesterol reduction. The present study aimed at investigating the hypocholesterolaemic effect of the combinations of these bioactive vegetable ingredients and their possible effects on the expression of genes regulating cholesterol homeostasis. A total of six groups of twelve rats each were fed, for 28 d, Nath's hypercholesterolaemic diets, differing in protein and fibre sources, being, respectively, casein and cellulose (control), pea proteins and cellulose (pea), casein and oat fibres (oat), casein and apple pectin (pectin), pea proteins and oat fibres (pea+oat) and pea proteins and apple pectin (pea+pectin). Administration of each vegetable-containing diet was associated with lower total cholesterol concentrations compared with the control. The combinations (pea+oat and pea+pectin) were more efficacious than fibres alone in modulating cholesterolaemia ( - 53 and - 54%, respectively, at 28 d; P< 0·005). In rats fed the diets containing oat fibres or apple pectin, alone or in combination with pea proteins, a lower hepatic cholesterol content (P< 0·005) and higher hepatic mRNA concentrations of CYP7A1 and NTCP were found when compared with the control rats (P< 0·05). In summary, the dietary combinations of pea proteins and oat fibres or apple pectin are extremely effective in lowering plasma cholesterol concentrations in rats and affect cellular cholesterol homeostasis by up-regulating genes involved in hepatic cholesterol turnover.

  4. Immunological and biochemical evidence for nuclear localization of annexin in peas

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Dauwalder, M.; Roux, S. J.

    1998-01-01

    Immunofluorescent localization of annexins using an anti-pea annexin polyclonal antibody (anti-p35) in pea (Pisum sativum) leaf and stem epidermal peels showed staining of the nuclei and the cell periphery. Nuclear staining was also seen in cell teases prepared from pea plumules. The amount of nuclear stain was reduced both by fixation time and by dehydration and organic solvent treatment. Observation with confocal microscopy demonstrated that the anti-p35 stain was diffusely distributed throughout the nuclear structure. Immunoblots of purified nuclei, nuclear envelope matrix, nucleolar, and chromatin fractions showed a cross-reactive protein band of 35 kDa. These data are the first to show annexins localized in plant cell nuclei where they may play a role in nuclear function.

  5. Feeding value of field pea as a protein source in forage-based diets fed to beef cattle.

    PubMed

    Soto-Navarro, S A; Encinias, A M; Bauer, M L; Lardy, G P; Caton, J S

    2012-02-01

    Three studies were conducted to evaluate the feasibility of field peas as a protein source in diets for beef cattle. In the first study, 4 cultivars of field pea were incubated in situ to determine rate and extent of CP disappearance. Results indicate that field pea cultivars vary in CP content (22.6, 26.1, 22.6, and 19.4%, DM basis for Profi, Arvika, Carneval, and Trapper, respectively). Soluble protein fraction ranged from 34.9% for Trapper to 54.9% for Profi. Degradable CP fraction was greater (P = 0.01) for Trapper compared with the other cultivars, and no differences (P ≥ 0.25) were observed among Profi, Arvika, and Carneval. Rate of CP degradation differed (P ≤ 0.03) for all cultivars, with Profi being the greatest and Trapper the smallest (10.8, 10.0, 8.1, and 6.3 ± 1.4%/h for Profi, Carneval, Arvika, and Trapper, respectively). Estimated RDP was not different (P = 0.21) for all 4 cultivars. In the second study, 30 crossbred beef steers (301 ± 15 kg) were individually fed and used to evaluate effects of field pea processing (whole, rolled, or ground) on steer performance. Diets contained 40% field pea grain. Growing steers consuming whole field pea had greater ADG (P = 0.08) than those consuming processed field pea (1.69, 1.52, and 1.63 ± 0.05 kg/d, for whole, rolled, and ground, respectively). However, DMI (kg/d and as % of BW) and G:F were not different (P ≥ 0.24). In the third study, 35 individually fed gestating beef cows (694 ± 17 kg) were used to evaluate the use of field pea as a protein supplement for medium quality grass hay (9.3% CP). Treatments consisted of whole field peas at 1) 0 g (CON), 2) 680 g (FP680), 3) 1,360 g (FP1360), and 4) 2,040 g (FP2040), and 5) 1,360 g of 74% barley and 26% canola meal (BCM). Total intake (forage + supplement) of gestating beef cows increased with increasing field pea level (linear, P = 0.01; supplemented vs. nonsupplemented, P = 0.01). In summary, protein quantity and rate of ruminal protein degradation

  6. Studying Lyman-alpha escape and reionization in Green Pea galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Gronke, Max; Leitherer, Claus; Wofford, Aida; Dijkstra, Mark

    2017-01-01

    Green Pea galaxies are low-redshift galaxies with extreme [OIII]5007 emission line. We built the first statistical sample of Green Peas observed by HST/COS and used them as analogs of high-z Lyman-alpha emitters to study Ly-alpha escape and Ly-alpha sizes. Using the HST/COS 2D spectra, we found that Ly-alpha sizes of Green Peas are larger than the UV continuum sizes. We found many correlations between Ly-alpha escape fraction and galactic properties -- dust extinction, Ly-alpha kinematic features, [OIII]/[OII] ratio, and gas outflow velocities. We fit an empirical relation to predict Ly-alpha escape fraction from dust extinction and Ly-alpha red-peak velocity. In the JWST era, we can use this relation to derive the IGM HI column density along the line of sight of each high-z Ly-alpha emitter and probe the reionization process.

  7. Differential impact of environmental stresses on the pea mitochondrial proteome.

    PubMed

    Taylor, Nicolas L; Heazlewood, Joshua L; Day, David A; Millar, A Harvey

    2005-08-01

    Exposure to adverse environmental conditions causes oxidative stress in many organisms, leading either to disease and debilitation or to response and tolerance. Mitochondria are a key site of oxidative stress and of cellular response and play important roles in cell survival. We analyzed the response of mitochondria in pea (Pisum sativum) plants to the common stresses associated with drought, cold, and herbicides. These treatments all altered photosynthetic and respiratory rates of pea leaves to various extents, but only herbicides significantly increased lipid peroxidation product accumulation. Mitochondria isolated from the stressed pea plants maintained their electron transport chain activity, but changes were evident in the abundance of uncoupling proteins, non-phosphorylating respiratory pathways, and oxidative modification of lipoic acid moieties on mitochondrial proteins. These data suggest that herbicide treatment placed a severe oxidative stress on mitochondria, whereas chilling and particularly drought were milder stresses. Detailed analysis of the soluble proteome of mitochondria by gel electrophoresis and mass spectrometry revealed differential degradation of key matrix enzymes during treatments with chilling being significantly more damaging than drought. Differential induction of heat shock proteins and specific losses of other proteins illustrated the diversity of response to these stresses at the protein level. Cross-species matching was required for mass spectrometry identification of nine proteins because only a limited number of pea cDNAs have been sequenced, and the full pea genome is not available. Blue-native separation of intact respiratory chain complexes revealed little if any change in response to environmental stresses. Together these data suggest that although many of the molecular events identified by chemical stresses of mitochondria from a range of model eukaryotes are also apparent during environmental stress of plants, their extent

  8. Insecticidal components from field pea extracts: isolation and separation of peptide mixtures related to pea albumin 1b.

    PubMed

    Taylor, Wesley G; Fields, Paul G; Elder, James L

    2004-12-15

    Chromatographic fractionation of crude extracts (C8 extracts) from the protein-enriched flour of commercial field peas (Pisum sativum L.) has been shown here to yield peptide mixtures related to the pea albumin 1b (PA1b) family of cysteine-rich plant peptides. The mixtures were obtained initially by flash chromatography with silica gel. Following elution of soyasaponins and lysolecithins, the end fractions obtained with the use of two flash chromatographic solvent systems displayed activity in a flour disk antifeedant bioassay with the rice weevil [Sitophilus oryzae (L.)]. Chemical properties of these mixtures were compared by thin-layer chromatography, high-performance liquid chromatography (HPLC), IR, MS, and amino acid analyses. The major peptides of C8 extracts, with average masses of 3752, 3757, and 3805 Da, were isolated by anion exchange chromatography. Samples enriched in the peptide of mass 3752 were isolated by cation exchange chromatography. Reduction plus alkylation experiments in combination with electrospray ionization mass spectrometry showed that C8 extracts contained about 10 peptides and, like PA1b, each peptide possessed six cysteine residues (three disulfide bonds). Disulfide bond reduction with 2-mercaptoethanol destroyed the antifeedant activity. The native peptides of C8 extracts were found to be resolved into nine peaks with XTerra HPLC columns operating at alkaline pH. These columns were employed to assess the distribution of pea peptides in the isolated fractions, with photodiode array and electrospray detection.

  9. Pea, Pisum sativum, and Its Anticancer Activity

    PubMed Central

    Rungruangmaitree, Runchana; Jiraungkoorskul, Wannee

    2017-01-01

    Pisum sativum (Family: Fabaceae), as known as green pea or garden pea, has long been important in diet due to its content of fiber, protein, starch, trace elements, and many phytochemical substances. It has been shown to possess antibacterial, antidiabetic, antifungal, anti-inflammatory, antihypercholesterolemia, and antioxidant activities and also shown anticancer property. Its nonnutritive biologically active components include alkaloids, flavonoids, glycosides, isoflavones, phenols, phytosterols, phytic acid, protease inhibitors, saponins, and tannins. This plant is rich in apigenin, hydroxybenzoic, hydroxycinnamic, luteolin, and quercetin, all of which have been reported to contribute to its remedial properties including anticarcinogenesis property. Based on established literature on the anticancer property of P. sativum and possible mode of action, this review article has focused to demonstrate that P. sativum could be further explored for the development of anticancer treatment. PMID:28503053

  10. Effective stabilization of CLA by microencapsulation in pea protein.

    PubMed

    Costa, A M M; Nunes, J C; Lima, B N B; Pedrosa, C; Calado, V; Torres, A G; Pierucci, A P T R

    2015-02-01

    CLA was microencapsulated by spray drying in ten varied wall systems (WS) consisting of pea protein isolate or pea protein concentrate (PPC) alone at varied core:WS ratios (1:2; 1:3 and 1:4), or blended with maltodextrin (M) and carboxymethylcellulose at a pea protein:carbohydrate ratio of 3:1. The physical-chemical properties of the CLA microparticles were characterised by core retention, microencapsulation efficiency (ME), particle size and moisture. CLA:M:PPC (1:1:3) showed the most promising results, thus we evaluated the effect of M addition in the WS on other physical-chemical characteristics and oxidative stability (CLA isomer profile, quantification of CLA and volatile compounds by SPME coupled with CG-MS) during two months of storage at room temperature, CLA:PPC (1:4) was selected for comparisons. CLA:M:PPC (1:1:3) microparticles demonstrated better morphology, solubility, dispersibility and higher glass-transition temperature values. M addition did not influence the oxidative stability of CLA, however its presence improved physical-chemical characteristics necessary for food applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. NUTRALYS® pea protein: characterization of in vitro gastric digestion and in vivo gastrointestinal peptide responses relevant to satiety

    PubMed Central

    Overduin, Joost; Guérin-Deremaux, Laetitia; Wils, Daniel; Lambers, Tim T.

    2015-01-01

    Background Pea protein (from Pisum sativum) is under consideration as a sustainable, satiety-inducing food ingredient. Objective In the current study, pea-protein-induced physiological signals relevant to satiety were characterized in vitro via gastric digestion kinetics and in vivo by monitoring post-meal gastrointestinal hormonal responses in rats. Design Under in vitro simulated gastric conditions, the digestion of NUTRALYS® pea protein was compared to that of two dairy proteins, slow-digestible casein and fast-digestible whey. In vivo, blood glucose and gastrointestinal hormonal (insulin, ghrelin, cholecystokinin [CCK], glucagon-like peptide 1 [GLP-1], and peptide YY [PYY]) responses were monitored in nine male Wistar rats following isocaloric (11 kcal) meals containing 35 energy% of either NUTRALYS® pea protein, whey protein, or carbohydrate (non-protein). Results In vitro, pea protein transiently aggregated into particles, whereas casein formed a more enduring protein network and whey protein remained dissolved. Pea-protein particle size ranged from 50 to 500 µm, well below the 2 mm threshold for gastric retention in humans. In vivo, pea-protein and whey-protein meals induced comparable responses for CCK, GLP-1, and PYY, that is, the anorexigenic hormones. Pea protein induced weaker initial, but equal 3-h integrated ghrelin and insulin responses than whey protein, possibly due to the slower gastric breakdown of pea protein observed in vitro. Two hours after meals, CCK levels were more elevated in the case of protein meals compared to that of non-protein meals. Conclusions These results indicate that 1) pea protein transiently aggregates in the stomach and has an intermediately fast intestinal bioavailability in between that of whey and casein; 2) pea-protein- and dairy-protein-containing meals were comparably efficacious in triggering gastrointestinal satiety signals. PMID:25882536

  12. Assessing the effects of architectural variations on light partitioning within virtual wheat–pea mixtures

    PubMed Central

    Barillot, Romain; Escobar-Gutiérrez, Abraham J.; Fournier, Christian; Huynh, Pierre; Combes, Didier

    2014-01-01

    Background and Aims Predicting light partitioning in crop mixtures is a critical step in improving the productivity of such complex systems, and light interception has been shown to be closely linked to plant architecture. The aim of the present work was to analyse the relationships between plant architecture and light partitioning within wheat–pea (Triticum aestivum–Pisum sativum) mixtures. An existing model for wheat was utilized and a new model for pea morphogenesis was developed. Both models were then used to assess the effects of architectural variations in light partitioning. Methods First, a deterministic model (L-Pea) was developed in order to obtain dynamic reconstructions of pea architecture. The L-Pea model is based on L-systems formalism and consists of modules for ‘vegetative development’ and ‘organ extension’. A tripartite simulator was then built up from pea and wheat models interfaced with a radiative transfer model. Architectural parameters from both plant models, selected on the basis of their contribution to leaf area index (LAI), height and leaf geometry, were then modified in order to generate contrasting architectures of wheat and pea. Key results By scaling down the analysis to the organ level, it could be shown that the number of branches/tillers and length of internodes significantly determined the partitioning of light within mixtures. Temporal relationships between light partitioning and the LAI and height of the different species showed that light capture was mainly related to the architectural traits involved in plant LAI during the early stages of development, and in plant height during the onset of interspecific competition. Conclusions In silico experiments enabled the study of the intrinsic effects of architectural parameters on the partitioning of light in crop mixtures of wheat and pea. The findings show that plant architecture is an important criterion for the identification/breeding of plant ideotypes, particularly

  13. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum).

    PubMed

    Pandey, Nalini; Singh, Gaurav Kumar

    2012-03-01

    Pea plants (Pisum sativum cv. Swati) exposed to different concentration of cadmium (50,100, 200 microM Cd) under controlled glass house conditions were quantified for different physiological parameters and antioxidative enzymes. In pea plants, Cd produced a significant inhibition of growth and induced chlorosis, marginal yellowing and necrosis in young leaves, the effect being most pronounced at 200 microM Cd supply. An alteration in the activated oxygen metabolism of pea plants were also detected as evidenced by an increase in concentration of H2O2 and TBARS along with decrease in the chlorophyll and carotenoid concentration in leaves. Cadmium toxicity induced an increase in non-protein thiol, ascorbate, proline and cysteine concentration. A significant increment in the activity of SOD, APX and GR, and a decrease in CAT was observed as a result of Cd treatment. The enhanced activity of SOD and inhibition of CAT and POD produces a high build up of H2O2 which appears to be the main cause of oxidative stress due to Cd toxicity in pea plants.

  14. Validation of quantitative method for azoxystrobin residues in green beans and peas.

    PubMed

    Abdelraheem, Ehab M H; Hassan, Sayed M; Arief, Mohamed M H; Mohammad, Somaia G

    2015-09-01

    This study presents a method validation for extraction and quantitative analysis of azoxystrobin residues in green beans and peas using HPLC-UV and the results confirmed by GC-MS. The employed method involved initial extraction with acetonitrile after the addition of salts (magnesium sulfate and sodium chloride), followed by a cleanup step by activated neutral carbon. Validation parameters; linearity, matrix effect, LOQ, specificity, trueness and repeatability precision were attained. The spiking levels for the trueness and the precision experiments were (0.1, 0.5, 3 mg/kg). For HPLC-UV analysis, mean recoveries ranged between 83.69% to 91.58% and 81.99% to 107.85% for green beans and peas, respectively. For GC-MS analysis, mean recoveries ranged from 76.29% to 94.56% and 80.77% to 100.91% for green beans and peas, respectively. According to these results, the method has been proven to be efficient for extraction and determination of azoxystrobin residues in green beans and peas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Changes in the germination process and growth of pea in effect of laser seed irradiation

    NASA Astrophysics Data System (ADS)

    Podleśna, Anna; Gładyszewska, Bożena; Podleśny, Janusz; Zgrajka, Wojciech

    2015-10-01

    The aim of this study was to determine the effect of pre-sowing helium-neon (He-Ne) laser irradiation of pea seeds on changes in seed biochemical processes, germination rate, seedling emergence, growth rate, and yield. The first experimental factor was exposure to laser radiation: D0 - no irradiation, D3 - three exposures, D5 - five exposures, and the harvest dates were the second factor. Pre-sowing treatment of pea seeds with He-Ne laser light increased the concentrations of amylolytic enzymes and the content of indole-3-acetic acid (IAA) in pea seeds and seedlings. The exposure of seeds to He-Ne laser light improved the germination rate and uniformity and modified growth stages, which caused acceleration of flowering and ripening of pea plants. Laser light stimulation improved the morphological characteristics of plants by increasing plant height and leaf surface area. Irradiation improved the yield of vegetative and reproductive organs of pea, although the effects varied at the different growth stages. The increase in the seed yield resulted from a higher number of pods and seeds per plant, whereas no significant changes were observed in the number of seeds per pod. Both radiation doses exerted similarly stimulating effects on pea growth, development, and yield.

  16. Pea disease diagnostic series - White mold

    USDA-ARS?s Scientific Manuscript database

    White mold is a serious disease of pea worldwide, and it is caused by the fungus Sclerotinia sclerotiorum. Water soaked lesions and white mycelial growth may occur on leaves, stems and pods, and are characteristics of the disease. The pathogen may form black fruiting bodies called sclerotia on infec...

  17. Effect of Root-Zone Moisture Variations on Growth of Lettuce and Pea Plants

    NASA Astrophysics Data System (ADS)

    Ilieva, Iliana; Ivanova, Tania

    2008-06-01

    Variations in substrate moisture lead to changes in water and oxygen availability to plant roots. Ground experiments were carried out in the laboratory prototype of SVET-2 Space Greenhouse to study the effect of variation of root-zone moisture conditions on growth of lettuce and pea plants. The effect of transient increase (for 1 day) and drastic increase (waterlogging for 10 days) of substrate moisture was studied with 16-day old pea and 21-day old lettuce plants respectively. Pea height and fresh biomass accumulation were not affected by transient substrate moisture increase. Net photosynthetic rate (Pn) of pea plants showed fast response to substrate moisture variation, while chlorophyll content did not change. Drastic change of substrate moisture suppressed lettuce Pn, chlorophyll biosynthesis and plant growth. These parameters slowly recovered after termination of waterlogging treatment but lettuce yield was greatly affected. The results showed that the most sensitive physiological parameter to substrate moisture variations is photosynthesis.

  18. Nitrous oxide emissions from crop rotations including wheat, oilseed rape and dry peas

    NASA Astrophysics Data System (ADS)

    Jeuffroy, M. H.; Baranger, E.; Carrouée, B.; de Chezelles, E.; Gosme, M.; Hénault, C.; Schneider, A.; Cellier, P.

    2013-03-01

    Approximately 65% of anthropogenic emissions of N2O, a potent greenhouse gas (GHG), originate from soils at a global scale, and particularly after N fertilisation of the main crops in Europe. Thanks to their capacity to fix atmospheric N2 through biological fixation, legumes can reduce N fertilizer use, and possibly N2O emissions. Nevertheless, the decomposition of crop organic matter during the crop cycle and residue decomposition, and possibly the N fixation process itself, could lead to N2O emissions. The objective of this study was to quantify N2O emissions from a dry pea crop (Pisum sativum, harvested at maturity) and from the subsequent crops in comparison with N2O emissions from wheat and oilseed rape crops, fertilized or not, in various rotations. A field experiment was conducted over 4 consecutive years to compare the emissions during the pea crop, in comparison with those during the wheat (fertilized or not) or oilseed rape crops, and after the pea crop, in comparison with other preceding crops. N2O fluxes were measured using static chambers. In spite of low N2O fluxes, mainly due to the site's soil characteristics, fluxes during the crop were significantly lower for pea and unfertilized wheat than for fertilized wheat and oilseed rape. The effect of the preceding crop was not significant, while soil mineral N at harvest was higher after the pea crop. These results should be confirmed over a wider range of soil types. Nevertheless, they demonstrate the absence of N2O emissions linked to the symbiotic N fixation process, and allow us to estimate the decrease in N2O emissions by 20-25% through including one pea crop in a three-year rotation. On a larger scale, this reduction of GHG emissions at field level has to be added to the decrease due to the reduced production and transport of the N fertilizer not applied to the pea crop.

  19. Improving quality of an innovative pea puree by high hydrostatic pressure.

    PubMed

    Klug, Tâmmila Venzke; Martínez-Sánchez, Ascensión; Gómez, Perla A; Collado, Elena; Aguayo, Encarna; Artés, Francisco; Artés-Hernández, Francisco

    2017-10-01

    The food industry is continuously innovating to fulfill consumer demand for new, healthy, ready-to-eat products. Pea purees could satisfy this trend by increasing the intake of legumes, which are an important source of nutrients. Moreover, sensorial properties like viscosity could be improved by high hydrostatic pressure (HHP). In this study the effect of a boiling treatment (10 min) followed by HHP at 550 kPa (0, 5 or 10 min) on the rheological properties, associated with enzymatic activity and particle size, as well as on the microbial and sensory quality of a pea-based puree stored for 36 days at 5 °C, has been assessed. The particle size of pea puree decreased after all processing treatments, but increased during storage in HHP-treated samples. Conversely, boiling treatment showed an increase in polygalacturonase activity at the end of the storage period, with a decrease in particle size, viscosity and stability. However, 5 min of 550 kPa HHP showed the highest mean particle size, mean surface diameter and viscosity regarding the remaining treatments. The microbial load remained low during storage. HHP treatment can be used by the food industry to improve the rheological properties, viscosity and stability of pea purees. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Patterns of Genetic Structure and Linkage Disequilibrium in a Large Collection of Pea Germplasm

    PubMed Central

    Siol, Mathieu; Jacquin, Françoise; Chabert-Martinello, Marianne; Smýkal, Petr; Le Paslier, Marie-Christine; Aubert, Grégoire; Burstin, Judith

    2017-01-01

    Pea (Pisum sativum, L.) is a major pulse crop used both for animal and human alimentation. Owing to its association with nitrogen-fixing bacteria, it is also a valuable component for low-input cropping systems. To evaluate the genetic diversity and the scale of linkage disequilibrium (LD) decay in pea, we genotyped a collection of 917 accessions, gathering elite cultivars, landraces, and wild relatives using an array of ∼13,000 single nucleotide polymorphisms (SNP). Genetic diversity is broadly distributed across three groups corresponding to wild/landraces peas, winter types, and spring types. At a finer subdivision level, genetic groups relate to local breeding programs and type usage. LD decreases steeply as genetic distance increases. When considering subsets of the data, LD values can be higher, even if the steep decay remains. We looked for genomic regions exhibiting high level of differentiation between wild/landraces, winter, and spring pea, respectively. Two regions on linkage groups 5 and 6 containing 33 SNPs exhibit stronger differentiation between winter and spring peas than would be expected under neutrality. Interestingly, QTL for resistance to cold acclimation and frost resistance have been identified previously in the same regions. PMID:28611254

  1. Effect of Processing on the in Vitro and in Vivo Protein Quality of Yellow and Green Split Peas (Pisum sativum).

    PubMed

    Nosworthy, Matthew G; Franczyk, Adam J; Medina, Gerardo; Neufeld, Jason; Appah, Paulyn; Utioh, Alphonsus; Frohlich, Peter; House, James D

    2017-09-06

    In order to determine the effect of extrusion, baking, and cooking on the protein quality of yellow and green split peas, a rodent bioassay was conducted and compared to an in vitro method of protein quality determination. The Protein Digestibility-Corrected Amino Acid Score (PDCAAS) of green split peas (71.4%) was higher than that of yellow split peas (67.8%), on average. Similarly, the average Digestible Indispensable Amino Acid Score (DIAAS) of green split peas (69%) was higher than that of yellow split peas (67%). Cooked green pea flour had lower PDCAAS and DIAAS values (69.19% and 67%) than either extruded (73.61%, 70%) or baked (75.22%, 70%). Conversely, cooked yellow split peas had the highest PDCCAS value (69.19%), while extruded yellow split peas had the highest DIAAS value (67%). Interestingly, a strong correlation was found between in vivo and in vitro analysis of protein quality (R 2 = 0.9745). This work highlights the differences between processing methods on pea protein quality and suggests that in vitro measurements of protein digestibility could be used as a surrogate for in vivo analysis.

  2. Pea disease diagnostic series - Powdery Mildew

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew is a serious disease of pea worldwide, and it could be caused by two fungal species Erysiphe pisi and E. trifolii. White powdery patches on leaves, stems and pods are characteristics of the disease. The pathogen may form black fruiting bodies called chasmothecia near the end of the gr...

  3. Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon.

    PubMed

    Rahman, Mohammad Farhadur; Ghosal, Anubrata; Alam, Mohammad Firoz; Kabir, Ahmad Humayan

    2017-01-01

    Cadmium (Cd) is an important phytotoxic element causing health hazards. This work investigates whether and how silicon (Si) influences the alleviation of Cd toxicity in field peas at biochemical and molecular level. The addition of Si in Cd-stressed plants noticeably increased growth and development as well as total protein and membrane stability of Cd-stressed plants, suggesting that Si does have critical roles in Cd detoxification in peas. Furthermore, Si supplementation in Cd-stressed plants showed simultaneous significant increase and decrease of Cd and Fe in roots and shoots, respectively, compared with Cd-stressed plants. At molecular level, GSH1 (phytochelatin precursor) and MT A (metallothionein) transcripts predominantly expressed in roots and strongly induced due to Si supplementation in Cd-stressed plants compared with Cd-free conditions, suggesting that these chelating agents may bind to Cd leading to vacuolar sequestration in roots. Furthermore, pea Fe transporter (RIT1) showed downregulation in shoots when plants were treated with Si along with Cd compared with Cd-treated conditions. It is consistent with the physiological observations and supports the conclusion that alleviation of Cd toxicity in pea plants might be associated with Cd sequestration in roots and reduced Cd translocation in shoots through the regulation of Fe transport. Furthermore, increased CAT, POD, SOD and GR activity along with elevated S-metabolites (cysteine, methionine, glutathione) implies the active involvement of ROS scavenging and plays, at least in part, to the Si-mediated alleviation of Cd toxicity in pea. The study provides first mechanistic evidence on the beneficial effect of Si on Cd toxicity in pea plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effects of pigeon pea and plantain starches on the compressional, mechanical, and disintegration properties of paracetamol tablets.

    PubMed

    Dare, Kunle; Akin-Ajani, Dorothy O; Odeku, Oluwatoyin A; Itiola, Oludele A; Odusote, Omotunde M

    2006-03-01

    A study has been made of the effects of pigeon pea starch obtained from the plant Cajanus cajan (L) Millisp. (family Fabaceae) and plantain starch obtained from the unripe fruit of Musa paradisiaca L. (family Musaceae) on the compressional, mechanical, and disintegration properties of paracetamol tablets in comparison with official corn starch BP. Analysis of compressional properties was done by using density measurements, and the Heckel and Kawakita equations, whereas the mechanical properties of the tablets were evaluated by using tensile strength (T--a measure of bond strength) and brittle fracture index (BFI--a measure of lamination tendency). The ranking for the mean yield pressure, P(y), for the formulations containing the different starches was generally corn < pigeon pea < plantain starch while the ranking for P(k), an inverse measure of the amount of plasticity, was pigeon pea < plantain < corn starch, which indicated that formulations containing corn starch generally exhibited the fastest onset of plastic deformation, whereas those formulations containing pigeon pea starch exhibited the highest amount of plastic deformation during tableting. The tensile strength of the tablets increased with increase in concentration of the starches while the Brittle Fracture Index decreased. The ranking for T was pigeon pea > plantain > corn starch while the ranking for BFI was corn > plantain > pigeon pea starch. The bonding capacity of the formulations was in general agreement with the tensile strength results. The disintegration time (DT) of the formulation increased with concentration of plantain and corn starches but decreased with concentration of pigeon pea starch. The general ranking of DT values was plantain < pigeon pea < corn starch. Notably, formulations containing pigeon pea starch exhibited the highest bond strength and lowest brittleness, suggesting the usefulness of pigeon pea starch in producing strong tablets with minimal lamination tendency. Plantain

  5. A Single, Plastic Population of Mycosphaerella pinodes Causes Ascochyta Blight on Winter and Spring Peas (Pisum sativum) in France

    PubMed Central

    Guibert, Michèle; Leclerc, Aurélie; Andrivon, Didier; Tivoli, Bernard

    2012-01-01

    Plant diseases are caused by pathogen populations continuously subjected to evolutionary forces (genetic flow, selection, and recombination). Ascochyta blight, caused by Mycosphaerella pinodes, is one of the most damaging necrotrophic pathogens of field peas worldwide. In France, both winter and spring peas are cultivated. Although these crops overlap by about 4 months (March to June), primary Ascochyta blight infections are not synchronous on the two crops. This suggests that the disease could be due to two different M. pinodes populations, specialized on either winter or spring pea. To test this hypothesis, 144 pathogen isolates were collected in the field during the winter and spring growing seasons in Rennes (western France), and all the isolates were genotyped using amplified fragment length polymorphism (AFLP) markers. Furthermore, the pathogenicities of 33 isolates randomly chosen within the collection were tested on four pea genotypes (2 winter and 2 spring types) grown under three climatic regimes, simulating winter, late winter, and spring conditions. M. pinodes isolates from winter and spring peas were genetically polymorphic but not differentiated according to the type of cultivars. Isolates from winter pea were more pathogenic than isolates from spring pea on hosts raised under winter conditions, while isolates from spring pea were more pathogenic than those from winter pea on plants raised under spring conditions. These results show that disease developed on winter and spring peas was initiated by a single population of M. pinodes whose pathogenicity is a plastic trait modulated by the physiological status of the host plant. PMID:23023742

  6. Effect of pigeon pea (Cajanus cajan L.) on high-fat diet-induced hypercholesterolemia in hamsters.

    PubMed

    Dai, Fan-Jhen; Hsu, Wei-Hsuan; Huang, Jan-Jeng; Wu, She-Ching

    2013-03-01

    Obesity is associated with increased systemic and airway oxidative stress, which may result from a combination of adipokine imbalance and antioxidant defenses reduction. Obesity-mediated oxidative stress plays an important role in the pathogenesis of dyslipidemia, vascular disease, and nonalcoholic hepatic steatosis. The antidyslipidemic activity of pigeon pea were evaluated by high-fat diet (HFD) hamsters model, in which the level of high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), and total triglyceride (TG) were examined. We found that pigeon pea administration promoted cholesterol converting to bile acid in HFD-induced hamsters, thereby exerting hypolipidemic activity. In the statistical results, pigeon pea significantly increased hepatic carnitine palmitoyltransferase-1 (CPT-1), LDL receptor, and cholesterol 7α-hydroxylase (also known as cytochrome P450 7A1, CYP7A1) expression to attenuate dyslipidemia in HFD-fed hamsters; and markedly elevated antioxidant enzymes in the liver of HFD-induced hamsters, further alleviating lipid peroxidation. These effects may attribute to pigeon pea contained large of unsaturated fatty acids (UFA; C18:2) and phytosterol (β-sitosterol, campesterol, and stigmasterol). Moreover, the effects of pigeon pea on dyslipidemia were greater than β-sitosterol administration (4%), suggesting that phytosterone in pigeon pea could prevent metabolic syndrome. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A highly infective plant-associated bacterium influences reproductive rates in pea aphids

    PubMed Central

    Hendry, Tory A.; Clark, Kelley J.; Baltrus, David A.

    2016-01-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321

  8. A highly infective plant-associated bacterium influences reproductive rates in pea aphids.

    PubMed

    Hendry, Tory A; Clark, Kelley J; Baltrus, David A

    2016-02-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction.

  9. A novel plasmid pEA68 of Erwinia amylovora and the description of a new family of plasmids.

    PubMed

    Ismail, Emadeldeen; Blom, Jochen; Bultreys, Alain; Ivanović, Milan; Obradović, Aleksa; van Doorn, Joop; Bergsma-Vlami, Maria; Maes, Martine; Willems, Anne; Duffy, Brion; Stockwell, Virginia O; Smits, Theo H M; Puławska, Joanna

    2014-12-01

    Recent genome analysis of Erwinia amylovora, the causal agent of fire blight disease on Rosaceae, has shown that the chromosome is highly conserved among strains and that plasmids are the principal source of genomic diversity. A new circular plasmid, pEA68, was found in E. amylovora strain 692 (LMG 28361), isolated in Poland from Sorbus (mountain ash) with fire blight symptoms. Annotation of the 68,763-bp IncFIIa-type plasmid revealed that it contains 79 predicted CDS, among which two operons (tra, pil) are associated with mobility. The plasmid is maintained stably in E. amylovora and does not possess genes associated with antibiotic resistance or known virulence genes. Curing E. amylovora strain 692 of pEA68 did not influence its virulence in apple shoots nor amylovoran synthesis. Of 488 strains of E. amylovora from seventeen countries, pEA68 was only found in two additional strains from Belgium. Although the spread of pEA68 is currently limited to Europe, pEA68 comprises, together with pEA72 and pEA78 both found in North America, a new plasmid family that spans two continents.

  10. Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions.

    PubMed

    Zahir, Z A; Munir, A; Asghar, H N; Shaharoona, B; Arshad, M

    2008-05-01

    A series of experiments were conducted to assess the effectiveness of rhizobacteria containing 1-aminocyclopropane- 1-carboxylate (ACC) deaminase for growth promotion of peas under drought conditions. Ten rhizobacteria isolated from the rhizosphere of different crops (peas, wheat, and maize) were screened for their growth promoting ability in peas under axenic condition. Three rhizobacterial isolates, Pseudomonas fluorescens biotype G (ACC-5), P. fluorescens (ACC-14), and P. putida biotype A (Q-7), were selected for pot trial on the basis of their source, ACC deaminase activity, root colonization, and growth promoting activity under axenic conditions. Inoculated and uninoculated (control) seeds of pea cultivar 2000 were sown in pots (4 seeds/pot) at different soil moisture levels (25, 50, 75, and 100% of field capacity). Results revealed that decreasing the soil moisture levels from 100 to 25% of field capacity significantly decreased the growth of peas. However, inoculation of peas with rhizobacteria containing ACC deaminase significantly decreased the "drought stress imposed effects" on growth of peas, although with variable efficacy at different moisture levels. At the lowest soil moisture level (25% field capacity), rhizobacterial isolate Pseudomonas fluorescens biotype G (ACC-5) was found to be more promising compared with the other isolates, as it caused maximum increases in fresh weight, dry weight, root length, shoot length, number of leaves per plant, and water use efficiency on fresh and dry weight basis (45, 150, 92, 45, 140, 46, and 147%, respectively) compared with respective uninoculated controls. It is highly likely that rhizobacteria containing ACC deaminase might have decreased the drought-stress induced ethylene in inoculated plants, which resulted in better growth of plants even at low moisture levels. Therefore, inoculation with rhizobacteria containing ACC deaminase could be helpful in eliminating the inhibitory effects of drought stress on the

  11. Nutritional composition and antinutritional properties of maize ogi cofermented with pigeon pea.

    PubMed

    Okafor, Uchechukwu I; Omemu, Adebunkola M; Obadina, Adewale O; Bankole, Mobolaji O; Adeyeye, Samuel A O

    2018-03-01

    Maize was cofermented with pigeon pea for ogi production and evaluated for nutritional (proximate composition, minerals, vitamins, and amino acid profile analyses) and antinutritional (phytate, tannin, and trypsin inhibitor activity analyses) qualities. White maize and pigeon pea were mixed at ratios of 90:10, 80:20, 70:30, 60:40, and 50:50, respectively, with 100:0 serving as the control. Mixtures were cofermented for 96 hr at 27°C ± 2°C and nutritional, mineral, and antinutritional qualities were analyzed using analysis of variance. Results of proximate analysis showed that the values were significantly difference at p  ≤   .05. Maize cofermented with pigeon pea at a ratio of 60:40 had the highest protein (22.79 mg/100 g), fat (19.27 mg/100 g), ash (2.98 mg/100 g), crude fiber (0.73 mg/100 g), and lowest moisture (1.98 mg/100 g) content, and was significantly ( p  ≤   .05) different from the other ratios. Of all the mixtures analyzed, 60:40 was significantly ( p  ≤   .05) different and had the highest Vitamin B 1 , B 2 , and B 3 contents. Amino acid profile results showed that maize cofermented with pigeon pea at a ratio of 60:40 showed the highest contents of lysine (93.95 mg/g), tryptophan (20.38 mg/g), isoleucine (54.78 mg/g), phenylalanine (86.23 mg/g), leucine (109.55 mg/g), and valine (68.29 mg/g), respectively, and was significantly ( p  ≤   .05) different from the other ratios. Results of antinutritional analysis showed low phytate, tannin, and trypsin inhibitor values in maize cofermented with pigeon pea at a ratio of 60:40 when compared with other ratios. The cofermented maize-pigeon pea product 60:40 had high amino acid profile than the others.

  12. 21 CFR 155.170 - Canned peas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., glucose sirup, and fructose. (viii) Spice. (ix) Flavoring (except artificial). (x) Color additives. (xi... additive has been added, the name of the food shall include the term “artificially colored.” (ii) The... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Canned peas. 155.170 Section 155.170 Food and...

  13. Mechanism of gibberellin-dependent stem elongation in peas

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.; Sovonick-Dunford, S. A.

    1989-01-01

    Stem elongation in peas (Pisum sativum L.) is under partial control by gibberellins, yet the mechanism of such control is uncertain. In this study, we examined the cellular and physical properties that govern stem elongation, to determine how gibberellins influence pea stem growth. Stem elongation of etiolated seedlings was retarded with uniconozol, a gibberellin synthesis inhibitor, and the growth retardation was reversed by exogenous gibberellin. Using the pressure probe and vapor pressure osmometry, we found little effect of uniconozol and gibberellin on cell turgor pressure or osmotic pressure. In contrast, these treatments had major effects on in vivo stress relaxation, measured by turgor relaxation and pressure-block techniques. Uniconozol-treated plants exhibited reduced wall relaxation (both initial rate and total amount). The results show that growth retardation is effected via a reduction in the wall yield coefficient and an increase in the yield threshold. These effects were largely reversed by exogenous gibberellin. When we measured the mechanical characteristics of the wall by stress/strain (Instron) analysis, we found only minor effects of uniconozol and gibberellin on the plastic compliance. This observation indicates that these agents did not alter wall expansion through effects on the mechanical (viscoelastic) properties of the wall. Our results suggest that wall expansion in peas is better viewed as a chemorheological, rather than a viscoelastic, process.

  14. Auxin Does Not Alter the Permeability of Pea Segments to Tritium-labeled Water.

    PubMed

    Dowler, M J; Rayle, D L

    1974-02-01

    The possibility of an auxin effect on the permeability of pea (Pisum sativum L. ev. Alaska) segments to tritium-labeled water has been investigated by three separate laboratories, and the combined results are presented. We were unable to obtain any indication of a rapid effect of indoleacetic acid on the efflux of (3)HHO when pea segments previously "loaded" for 90 minutes with (3)HHO were transferred to unlabeled aqueous medium with indoleacetic acid. We were able to confirm that segments pretreated with (3)HHO plus indoleacetic acid for 60 to 90 minutes can show an enhanced (3)HHO release as compared with minus indoleacetic acid controls. However, this phenomenon appears to be due to an increased uptake of (3)HHO during the prolonged indoleacetic acid pretreatment, and therefore we conclude that auxin does not alter the permeability of pea segments to (3)HHO in either short term or long term tests. We confirm previous reports that the uptake of (3)HHO in pea segments proceeds largely through the cut surfaces, and that the cuticle is a potent barrier to (3)HHO flux.

  15. EDTA a novel inducer of pisatin, a phytoalexin indicator of the non-host resistance in peas.

    PubMed

    Hadwiger, Lee A; Tanaka, Kiwamu

    2014-12-23

    Pea pod endocarp suppresses the growth of an inappropriate fungus or non-pathogen by generating a "non-host resistance response" that completely suppresses growth of the challenging fungus within 6 h. Most of the components of this resistance response including pisatin production can be elicited by an extensive number of both biotic and abiotic inducers. Thus this phytoalexin serves as an indicator to be used in evaluating the chemical properties of inducers that can initiate the resistance response. Many of the pisatin inducers are reported to interact with DNA and potentially cause DNA damage. Here we propose that EDTA (ethylenediaminetetraacetic acid) is an elicitor to evoke non-host resistance in plants. EDTA is manufactured as a chelating agent, however at low concentration it is a strong elicitor, inducing the phytoalexin pisatin, cellular DNA damage and defense-responsive genes. It is capable of activating complete resistance in peas against a pea pathogen. Since there is also an accompanying fragmentation of pea DNA and alteration in the size of pea nuclei, the potential biochemical insult as a metal chelator may not be its primary action. The potential effects of EDTA on the structure of DNA within pea chromatin may assist the transcription of plant defense genes.

  16. Effects of MeJA on Arabidopsis metabolome under endogenous JA deficiency

    NASA Astrophysics Data System (ADS)

    Cao, Jingjing; Li, Mengya; Chen, Jian; Liu, Pei; Li, Zhen

    2016-11-01

    Jasmonates (JAs) play important roles in plant growth, development and defense. Comprehensive metabolomics profiling of plants under JA treatment provides insights into the interaction and regulation network of plant hormones. Here we applied high resolution mass spectrometry based metabolomics approach on Arabidopsis wild type and JA synthesis deficiency mutant opr3. The effects of exogenous MeJA treatment on the metabolites of opr3 were investigated. More than 10000 ion signals were detected and more than 2000 signals showed significant variation in different genotypes and treatment groups. Multivariate statistic analyses (PCA and PLS-DA) were performed and a differential compound library containing 174 metabolites with high resolution precursor ion-product ions pairs was obtained. Classification and pathway analysis of 109 identified compounds in this library showed that glucosinolates and tryptophan metabolism, amino acids and small peptides metabolism, lipid metabolism, especially fatty acyls metabolism, were impacted by endogenous JA deficiency and exogenous MeJA treatment. These results were further verified by quantitative reverse transcription PCR (RT-qPCR) analysis of 21 related genes involved in the metabolism of glucosinolates, tryptophan and α-linolenic acid pathways. The results would greatly enhance our understanding of the biological functions of JA.

  17. Protective Effects of Ultramicronized Palmitoylethanolamide (PEA-um) in Myocardial Ischaemia and Reperfusion Injury in VIVO.

    PubMed

    Di Paola, Rosanna; Cordaro, Marika; Crupi, Rosalia; Siracusa, Rosalba; Campolo, Michela; Bruschetta, Giuseppe; Fusco, Roberta; Pugliatti, Pietro; Esposito, Emanuela; Cuzzocrea, Salvatore

    2016-08-01

    Myocardial infarction is the leading cause of death, occurs after prolonged ischemia of the coronary arteries. Restore blood flow is the first intervention help against heart attack. However, reperfusion of the arteries leads to ischemia/reperfusion injury (I/R). The fatty acid amide palmitoylethanolamide (PEA) is an endogenous compound widely present in living organisms, with analgesic and anti-inflammatory properties. The present study evaluated the effect of ultramicronized palmitoylethanolamide (PEA-um) treatment on the inflammatory process associated with myocardial I/R. Myocardial ischemia reperfusion injury was induced by occlusion of the left anterior descending coronary artery for 30 min followed by 2 h of reperfusion. PEA-um, was administered (10 mg/kg) 15 min after ischemia and 1 h after reperfusion. In this study, we demonstrated that PEA-um treatment reduces myocardial tissue injury, neutrophil infiltration, adhesion molecules (ICAM-1, P-selectin) expression, proinflammatory cytokines (TNF-α, IL-1β) production, nitrotyrosine and PAR formation, nuclear factor kB expression, and apoptosis (Fas-L, Bcl-2) activation. In addition to study whether the protective effect of PEA-um on myocardial ischemia reperfusion injury is also related to the activation of PPAR-α, in a separate set of experiments it has been performed myocardial I/R in PPARα mice. Genetic ablation of peroxisome proliferator activated receptor (PPAR)-α in PPAR-αKO mice exacerbated Myocardial ischemia reperfusion injury when compared with PPAR-αWT mice. PEA-um induced cardioprotection in PPAR-α wild-type mice, but the same effect cannot be observed in PPAR-αKO mice. Our results have clearly shown a modulation of the inflammatory process, associated with myocardial ischemia reperfusion injury, following administration of PEA-um.

  18. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition.

    PubMed

    Bourgeois, Michael; Jacquin, Françoise; Savois, Vincent; Sommerer, Nicolas; Labas, Valérie; Henry, Céline; Burstin, Judith

    2009-01-01

    Pea (Pisum sativum L.) is the most cultivated European pulse crop and the pea seeds mainly serve as a protein source for monogastric animals. Because the seed protein composition impacts on seed nutritional value, we aimed at identifying the determinants of its variability. This paper presents the first pea mature seed proteome reference map, which includes 156 identified proteins (http://www.inra.fr/legumbase/peaseedmap/). This map provides a fine dissection of the pea seed storage protein composition revealing a large diversity of storage proteins resulting both from gene diversity and post-translational processing. It gives new insights into the pea storage protein processing (especially 7S globulins) as a possible adaptation towards progressive mobilization of the proteins during germination. The nonstorage seed proteome revealed the presence of proteins involved in seed defense together with proteins preparing germination. The plasticity of the seed proteome was revealed for seeds produced in three successive years of cultivation, and 30% of the spots were affected by environmental variations. This work pinpoints seed proteins most affected by environment, highlighting new targets to stabilize storage protein composition that should be further analyzed.

  19. Physiological Studies on Pea Tendrils. IV. Flavonoids and Contact Coiling

    PubMed Central

    Jaffe, M. J.; Galston, A. W.

    1967-01-01

    Pea tendrils contain high concentrations of flavonoids, mainly quercetin-triglucosyl-p-coumarate (QGC). QGC is most abundant near the highly responsive apex of the tendril, and least abundant at the base. After mechanical stimulation, and during coiling of the tendril, the QGC titer drops to about 30% of its original value. The kinetics of flavonoid disappearance are significantly correlated with the kinetics of coiling. Aqueous extracts of unstimulated pea tendrils or 10 μm QGC inhibit contact coiling of excised tendrils. Extracts of coiled tendrils do not. The evidence indicates a possible regulatory role for flavonoids in contact coiling. PMID:16656581

  20. Functional Conservation of PISTILLATA Activity in a Pea Homolog Lacking the PI Motif1

    PubMed Central

    Berbel, Ana; Navarro, Cristina; Ferrándiz, Cristina; Cañas, Luis Antonio; Beltrán, José-Pío; Madueño, Francisco

    2005-01-01

    Current understanding of floral development is mainly based on what we know from Arabidopsis (Arabidopsis thaliana) and Antirrhinum majus. However, we can learn more by comparing developmental mechanisms that may explain morphological differences between species. A good example comes from the analysis of genes controlling flower development in pea (Pisum sativum), a plant with more complex leaves and inflorescences than Arabidopsis and Antirrhinum, and a different floral ontogeny. The analysis of UNIFOLIATA (UNI) and STAMINA PISTILLOIDA (STP), the pea orthologs of LEAFY and UNUSUAL FLORAL ORGANS, has revealed a common link in the regulation of flower and leaf development not apparent in Arabidopsis. While the Arabidopsis genes mainly behave as key regulators of flower development, where they control the expression of B-function genes, UNI and STP also contribute to the development of the pea compound leaf. Here, we describe the characterization of P. sativum PISTILLATA (PsPI), a pea MADS-box gene homologous to B-function genes like PI and GLOBOSA (GLO), from Arabidopsis and Antirrhinum, respectively. PsPI encodes for an atypical PI-type polypeptide that lacks the highly conserved C-terminal PI motif. Nevertheless, constitutive expression of PsPI in tobacco (Nicotiana tabacum) and Arabidopsis shows that it can specifically replace the function of PI, being able to complement the strong pi-1 mutant. Accordingly, PsPI expression in pea flowers, which is dependent on STP, is identical to PI and GLO. Interestingly, PsPI is also transiently expressed in young leaves, suggesting a role of PsPI in pea leaf development, a possibility that fits with the established role of UNI and STP in the control of this process. PMID:16113230

  1. The Effects of Light and Temperature on Biotin Synthesis in Pea Sprouts.

    PubMed

    Kamiyama, Shin; Ohnuki, Risa; Moriki, Aoi; Abe, Megumi; Ishiguro, Mariko; Sone, Hideyuki

    2016-01-01

    Biotin is an essential micronutrient, and is a cofactor for several carboxylases that are involved in the metabolism of glucose, fatty acids, and amino acids. Because plant cells can synthesize their own biotin, a wide variety of plant-based foods contains significant amounts of biotin; however, the influence of environmental conditions on the biotin content in plants remains largely unclear. In the present study, we investigated the effects of different cultivation conditions on the biotin content and biotin synthesis in pea sprouts (Pisum sativum). In the experiment, the pea sprouts were removed from their cotyledons and cultivated by hydroponics under five different lighting and temperature conditions (control [25ºC, 12-h light/12-h dark cycle], low light [25ºC, 4-h light/20-h dark cycle], dark [25ºC, 24 h dark], low temperature [12ºC, 12-h light/12-h dark cycle], and cold [6ºC, 12-h light/12-h dark cycle]) for 10 d. Compared to the biotin content of pea sprouts under the control conditions, the biotin contents of pea sprouts under the low-light, dark, and cold conditions had significantly decreased. The dark group showed the lowest biotin content among the groups. Expression of the biotin synthase gene (bio2) was also significantly decreased under the dark and cold conditions compared to the control condition, in a manner similar to that observed for the biotin content. No significant differences in the adenosine triphosphate content were observed among the groups. These results indicate that environmental conditions such as light and temperature modulate the biotin content of pea plant tissues by regulating the expression of biotin synthase.

  2. Ultramicronized palmitoylethanolamide (PEA-um(®)) in the treatment of idiopathic pulmonary fibrosis.

    PubMed

    Di Paola, Rosanna; Impellizzeri, Daniela; Fusco, Roberta; Cordaro, Marika; Siracusa, Rosalba; Crupi, Rosalia; Esposito, Emanuela; Cuzzocrea, Salvatore

    2016-09-01

    Pulmonary fibrosis is a chronic condition characterized by progressive scarring of lung parenchyma. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (PEA-um(®)), an endogenous fatty acid amide, in mice subjected to idiopathic pulmonary fibrosis. Idiopathic pulmonary fibrosis was induced in male mice by a single intratracheal administration of saline with bleomycin sulphate (1mg/kg body weight) in a volume of 100μL. PEA-um(®) was injected intraperitoneally at 1, 3 or 10mg/kg 1h after bleomycin instillation and daily thereafter. Animals were sacrificed after 7 and 21days by pentobarbitone overdose. One cohort of mice was sacrificed after seven days of bleomycin administration, followed by bronchoalveloar lavage and determination of myeloperoxidase activity, lung edema and histopathology features. In the 21-day cohort, mortality was assessed daily, and surviving mice were sacrificed followed by the above analyses together with immunohistochemical localization of CD8, tumor necrosis factor-α, CD4, interleukin-1β, transforming growth factor-β, inducible nitric oxide synthase and basic fibroblast growth factor. Compared to bleomycin-treated mice, animals that received also PEA-um(®) (3 or 10mg/kg) had significantly decreased weight loss, mortality, inflammation, lung damage at the histological level, and lung fibrosis at 7 and 21days. PEA-um(®) (1mg/kg) did not significantly inhibit the inflammation response and lung fibrosis. This study demonstrates that PEA-um(®) (3 and 10mg/kg) reduces the extent of lung inflammation in a mouse model of idiopathic pulmonary fibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of an extruded pea or rice diet on postprandial insulin and cardiovascular responses in dogs.

    PubMed

    Adolphe, J L; Drew, M D; Silver, T I; Fouhse, J; Childs, H; Weber, L P

    2015-08-01

    Peas are increasing in popularity as a source of carbohydrate, protein and fibre in extruded canine diets. The aim of this study was to test the health effects of two canine diets with identical macronutrient profiles, but containing either yellow field peas or white rice as the carbohydrate source on metabolism, cardiovascular outcomes and adiposity. First, the acute glycemic, insulinemic and cardiovascular responses to the pea- or rice-based diets were determined in normal weight beagles (n = 7 dogs). The glycemic index did not differ between the pea diet (56 ± 12) and rice diet (63 ± 9). Next, obese beagles (n = 9) were fed the yellow field pea diet or white rice diet ad libitum for 12 weeks in a crossover study. Adiposity (measured using computed tomography), metabolic (oral glucose tolerance test, plasma leptin, adiponectin, C-reactive protein) and cardiovascular assessments (echocardiography and blood pressure) were performed before and after each crossover study period. After 12 weeks on each diet, peak insulin (p = 0.05) and area under the curve (AUC) for insulin after a 10 g oral glucose tolerance test (p = 0.05) were lower with the pea than the rice diet. Diet did not show a significant effect on body weight, fat distribution, cardiovascular variables, adiponectin or leptin. In conclusion, a diet containing yellow field peas reduced the postprandial insulin response after glucose challenge in dogs despite continued obesity, indicating improved metabolic health. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  4. Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes.

    PubMed

    Barac, Miroljub; Cabrilo, Slavica; Pesic, Mirjana; Stanojevic, Sladjana; Zilic, Sladjana; Macej, Ognjen; Ristic, Nikola

    2010-01-01

    Extractability, extractable protein compositions, technological-functional properties of pea (Pisum sativum) proteins from six genotypes grown in Serbia were investigated. Also, the relationship between these characteristics was presented. Investigated genotypes showed significant differences in storage protein content, composition and extractability. The ratio of vicilin:legumin concentrations, as well as the ratio of vicilin + convicilin: Legumin concentrations were positively correlated with extractability. Our data suggest that the higher level of vicilin and/or a lower level of legumin have a positive influence on protein extractability. The emulsion activity index (EAI) was strongly and positively correlated with the solubility, while no significant correlation was found between emulsion stability (ESI) and solubility, nor between foaming properties and solubility. No association was evident between ESI and EAI. A moderate positive correlation between emulsion stability and foam capacity was observed. Proteins from the investigated genotypes expressed significantly different emulsifying properties and foam capacity at different pH values, whereas low foam stability was detected. It appears that genotype has considerable influence on content, composition and technological-functional properties of pea bean proteins. This fact can be very useful for food scientists in efforts to improve the quality of peas and pea protein products.

  5. Application of pigeon pea (Cajanus cajan) stalks as raw material for xylooligosaccharides production.

    PubMed

    Samanta, A K; Jayapal, Natasha; Kolte, A P; Senani, S; Sridhar, Manpal; Mishra, Sukriti; Prasad, C S; Suresh, K P

    2013-04-01

    Pigeon pea (Cajanus cajan) is a perennial plant widely cultivated in tropical and subtropical regions of many countries. The present studies aimed to produce xylooligosaccharides (XOS) from pigeon pea stalks in order to do value addition. The chemical analysis of stalks revealed 18.33 ± 1.40 % hemicelluloses in addition to cellulose, protein, and lignin. Sodium hydroxide coupled with steam application enabled almost 96 % recovery of original xylan, present in the pigeon pea stalks. Enzymatic hydrolysis of xylan led to production of XOS namely, xylobiose and xylotriose. Response surface model indicated a maximum yield of xylobiose (0.502 mg/ml) under the hydrolysis conditions of pH 4.91, temperature at 48.11 °C, enzyme dose at 11.01 U, and incubation time at 15.65 h. The ideal conditions for higher xylotriose yield (0.204 mg/ml) were pH 5.44, temperature at 39.29 °C, enzyme dose at 3.23 U, and incubation time at 15.26 h. The present investigation was successful in assessing the prospect of using pigeon pea stalks as a raw material for xylan extraction vis-à-vis XOS production.

  6. Doing the Basics Better in Africa: How School Support, Autonomy, and Accountability Improved Outcomes for Girls in PEAS Schools

    ERIC Educational Resources Information Center

    Hills, Libby

    2017-01-01

    Promoting Equality in African Schools (PEAS) seeks to expand access to sustainably delivered, quality secondary education in Africa. PEAS builds and runs chains of not-for-profit, low-cost private schools in public-private partnership with governments. External evaluation data show that PEAS schools in Uganda are delivering higher quality…

  7. Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera)

    PubMed Central

    Sabater-Muñoz, Beatriz; Legeai, Fabrice; Rispe, Claude; Bonhomme, Joël; Dearden, Peter; Dossat, Carole; Duclert, Aymeric; Gauthier, Jean-Pierre; Ducray, Danièle Giblot; Hunter, Wayne; Dang, Phat; Kambhampati, Srini; Martinez-Torres, David; Cortes, Teresa; Moya, Andrès; Nakabachi, Atsushi; Philippe, Cathy; Prunier-Leterme, Nathalie; Rahbé, Yvan; Simon, Jean-Christophe; Stern, David L; Wincker, Patrick; Tagu, Denis

    2006-01-01

    Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect. PMID:16542494

  8. In vitro digestibility, protein composition and techno-functional properties of Saskatchewan grown yellow field peas (Pisum sativum L.) as affected by processing.

    PubMed

    Ma, Zhen; Boye, Joyce I; Hu, Xinzhong

    2017-02-01

    Saskatchewan grown yellow field pea was subjected to different processing conditions including dehulling, micronization, roasting, conventional/microwave cooking, germination, and combined germination and conventional cooking/roasting. Their nutritional and antinutritional compositions, functional properties, microstructure, thermal properties, in vitro protein and starch digestibility, and protein composition were studied. Processed field peas including conventional cooked yellow peas (CCYP), microwave cooked yellow peas (MCYP), germinated-conventional cooked yellow peas (GCCYP), and germinated-roasted yellow peas (GRYP) exhibited the significantly higher in vitro protein digestibility (IVPD), which was in accordance with their significantly lower trypsin inhibitor activity and tannin content. The SDS-PAGE and size exclusion HPLC profiles of untreated pea proteins and their hydrolysates also confirmed the IVPD result that these four treatments facilitated the hydrolysis of pea proteins to a greater extent. The CCYP, MCYP, GCCYP, and GRYP also exhibited significantly higher starch digestibility which was supported by their lower onset (T o ), peak (T p ), and conclusion (T c ) temperatures obtained from DSC thermogram, their lower pasting properties and starch damage results, as well as their distinguished amorphous flakes' configuration observed on the scanning electron microscopic image. LC/ESI-MS/MS analysis following in-gel digests of SDS-PAGE separated proteins allowed detailed compositional characterization of pea proteins. The present study would provide fundamental information to help to better understand the functionality of field peas as ingredients, and particularly in regards to agri-food industry to improve the process efficiency of field peas with enhanced nutritional and techno-functional qualities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Genetic control of floral zygomorphy in pea (Pisum sativum L.).

    PubMed

    Wang, Zheng; Luo, Yonghai; Li, Xin; Wang, Liping; Xu, Shilei; Yang, Jun; Weng, Lin; Sato, Shusei; Tabata, Satoshi; Ambrose, Mike; Rameau, Catherine; Feng, Xianzhong; Hu, Xiaohe; Luo, Da

    2008-07-29

    Floral zygomorphy (flowers with bilateral symmetry) has multiple origins and typically manifests two kinds of asymmetries, dorsoventral (DV) and organ internal (IN) asymmetries in floral and organ planes, respectively, revealing the underlying key regulators in plant genomes that generate and superimpose various mechanisms to build up complexity and different floral forms during plant development. In this study, we investigate the loci affecting these asymmetries during the development of floral zygomorphy in pea (Pisum sativum L.). Two genes, LOBED STANDARD 1 (LST1) and KEELED WINGS (K), were cloned that encode TCP transcription factors and have divergent functions to constitute the DV asymmetry. A previously undescribed regulator, SYMMETRIC PETALS 1 (SYP1), has been isolated as controlling IN asymmetry. Genetic analysis demonstrates that DV and IN asymmetries could be controlled independently by the two kinds of regulators in pea, and their interactions help to specify the type of zygomorphy. Based on the genetic analysis in pea, we suggest that variation in both the functions and interactions of these regulators could give rise to the wide spectrum of floral symmetries among legume species and other flowering plants.

  10. An Evaluation of the Pea Pod System for Assessing Body Composition of Moderately Premature Infants.

    PubMed

    Forsum, Elisabet; Olhager, Elisabeth; Törnqvist, Caroline

    2016-04-22

    (1) BACKGROUND: Assessing the quality of growth in premature infants is important in order to be able to provide them with optimal nutrition. The Pea Pod device, based on air displacement plethysmography, is able to assess body composition of infants. However, this method has not been sufficiently evaluated in premature infants; (2) METHODS: In 14 infants in an age range of 3-7 days, born after 32-35 completed weeks of gestation, body weight, body volume, fat-free mass density (predicted by the Pea Pod software), and total body water (isotope dilution) were assessed. Reference estimates of fat-free mass density and body composition were obtained using a three-component model; (3) RESULTS: Fat-free mass density values, predicted using Pea Pod, were biased but not significantly (p > 0.05) different from reference estimates. Body fat (%), assessed using Pea Pod, was not significantly different from reference estimates. The biological variability of fat-free mass density was 0.55% of the average value (1.0627 g/mL); (4) CONCLUSION: The results indicate that the Pea Pod system is accurate for groups of newborn, moderately premature infants. However, more studies where this system is used for premature infants are needed, and we provide suggestions regarding how to develop this area.

  11. Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections.

    PubMed

    Liu, Rong; Fang, Li; Yang, Tao; Zhang, Xiaoyan; Hu, Jinguo; Zhang, Hongyan; Han, Wenliang; Hua, Zeke; Hao, Junjie; Zong, Xuxiao

    2017-07-19

    Frost stress is one of the major abiotic stresses causing seedling death and yield reduction in winter pea. To improve the frost tolerance of pea, field evaluation of frost tolerance was conducted on 672 diverse pea accessions at three locations in Northern China in three growing seasons from 2013 to 2016 and marker-trait association analysis of frost tolerance were performed with 267 informative SSR markers in this study. Sixteen accessions were identified as the most winter-hardy for their ability to survive in all nine field experiments with a mean survival rate of 0.57, ranging from 0.41 to 0.75. Population structure analysis revealed a structured population of two sub-populations plus some admixtures in the 672 accessions. Association analysis detected seven markers that repeatedly had associations with frost tolerance in at least two different environments with two different statistical models. One of the markers is the functional marker EST1109 on LG VI which was predicted to co-localize with a gene involved in the metabolism of glycoproteins in response to chilling stress and may provide a novel mechanism of frost tolerance in pea. These winter-hardy germplasms and frost tolerance associated markers will play a vital role in marker-assisted breeding for winter-hardy pea cultivar.

  12. Response of the calf pancreas to differently processed soya bean and pea diets.

    PubMed

    Le Dréan, G; Le Huërou-Luron, I; Philouze-Romé, V; Toullec, R; Guilloteau, P

    1995-01-01

    The purpose of this study was to determine the effect of replacing skim-milk powder by differently treated soya bean or pea products on growth, pancreas size and pancreatic enzyme activities in calves. Three separate experiments have been performed. In experiments 1 and 2, 28 and 21 male Holstein calves were divided into 4 or 3 groups, respectively, and fed either dairy products or milk substitutes in which protein was mainly provided by soya bean products differing in their protein concentration due to the technological processing applied. In experiment 3, 45 male Holstein calves were divided into 3 groups and were fed either dairy products, or raw or flaked pea flour as a protein source. After an experimental period of 99 +/- 4 days in experiments 1 and 2, and of 88 days in experiment 3, animal growth rate was significantly lower with raw pea flour (16%) and with the soya bean diet, which was highly concentrated in carbohydrates and allergenic proteins (13-27%). Pancreas weight decreased significantly (16-18%) with pea diets and tended to be lower (NS) with the water extracted, concentrated and heated flour (soya bean). Amylase-specific activity increased significantly (43%) with pea diets but showed opposite tendencies with the most refined soya bean products. Proteolytic enzyme activities were slightly influenced by dietary protein source, but this was not as obvious as in the literature reviewed. Specific messenger RNAs corresponding to amylase, trypsin and chymotrypsin seemed to increase (NS) with the soya bean diets, particularly with the less elaborated one. However, further investigations are required before any conclusions may be drawn concerning regulation levels of pancreatic adaptation to dietary protein. According to this study and the literature, results concerning pancreatic response to diets were different suggesting that the origin of soya bean, pea seeds and technological treatments applied to them were of great importance. Also, the level of

  13. 21 CFR 155.172 - Canned dry peas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Canned dry peas. 155.172 Section 155.172 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CANNED VEGETABLES Requirements for Specific Standardized Canned Vegetables § 155.172 Canned dry...

  14. Effect of gamma irradiation on physicochemical properties of stored pigeon pea (Cajanus cajan) flour

    PubMed Central

    Bamidele, Oluwaseun P; Akanbi, Charles T

    2013-01-01

    The effect of gamma irradiation at various doses (5, 10, 15, 20 kGy) was observed on pigeon pea flour stored for 3 months on proximate composition, functional properties, and peroxide value. Sensory evaluation was also carried out on bean cake (moinmoin) made from nonirradiated and irradiated pigeon pea flour. The results showed that stored gamma-irradiated samples had significantly lower (P < 0.05) value of protein and little or no effect on moisture content. There were slight decreases in crude fiber and ash content of the irradiated samples compared with the control sample. The result of functional properties of the irradiated flours showed slight increase in water absorption capacity, swelling capacity and bulk density. The peroxide value of crude oil increased significantly with dose increases for the period of storage. The sensory evaluation of moinmoin samples prepared from irradiated pigeon pea flour showed no significant difference from the moinmoin sample prepared from nonirradiated flour. It can be concluded that gamma irradiation can extend the shelf life of pigeon pea flour. PMID:24804044

  15. Effect of gamma irradiation on physicochemical properties of stored pigeon pea (Cajanus cajan) flour.

    PubMed

    Bamidele, Oluwaseun P; Akanbi, Charles T

    2013-09-01

    The effect of gamma irradiation at various doses (5, 10, 15, 20 kGy) was observed on pigeon pea flour stored for 3 months on proximate composition, functional properties, and peroxide value. Sensory evaluation was also carried out on bean cake (moinmoin) made from nonirradiated and irradiated pigeon pea flour. The results showed that stored gamma-irradiated samples had significantly lower (P < 0.05) value of protein and little or no effect on moisture content. There were slight decreases in crude fiber and ash content of the irradiated samples compared with the control sample. The result of functional properties of the irradiated flours showed slight increase in water absorption capacity, swelling capacity and bulk density. The peroxide value of crude oil increased significantly with dose increases for the period of storage. The sensory evaluation of moinmoin samples prepared from irradiated pigeon pea flour showed no significant difference from the moinmoin sample prepared from nonirradiated flour. It can be concluded that gamma irradiation can extend the shelf life of pigeon pea flour.

  16. Synergistic enhancement in the co-gelation of salt-soluble pea proteins and whey proteins.

    PubMed

    Wong, Douglas; Vasanthan, Thava; Ozimek, Lech

    2013-12-15

    This paper investigated the enhancement of thermal gelation properties when salt-soluble pea proteins were co-gelated with whey proteins in NaCl solutions, using different blend ratios, total protein concentrations, pH, and salt concentrations. Results showed that the thermal co-gelation of pea/whey proteins blended in ratio of 2:8 in NaCl solutions showed synergistic enhancement in storage modulus, gel hardness, paste viscosity and minimum gelation concentrations. The highest synergistic enhancement was observed at pH 6.0 as compared with pH 4.0 and 8.0, and at the lower total protein concentration of 10% as compared with 16% and 22% (w/v), as well as in lower NaCl concentrations of 0.5% and 1.0% as compared with 1.5%, 2.0%, 2.5%, and 3.0% (w/v). The least gelation concentrations were also lower in the different pea/whey protein blend ratios than in pure pea or whey proteins, when dissolved in 1.0% or 2.5% (w/v) NaCl aqueous solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Influence of grinding on the nutritive value of peas for ruminants: comparison between in vitro and in situ approaches

    PubMed Central

    Giger-Reverdin, Sylvie; Maaroufi, Chiraze; Chapoutot, Patrick; Peyronnet, Corinne; Sauvant, Daniel

    2014-01-01

    In ruminant nutrition, peas are characterized by high protein solubility and degradability, which impair its protein value estimated by the official in situ method. Grinding can be used as a technological treatment of pea seeds to modify their nutritional value. The aim of this study was to compare the in situ method with an in vitro method on the same pea either in a coarse pea flour form (PCF) or in a ground pea fine flour form (PFF) to understand the effect of grinding. Both forms were also reground (GPCF and GPFF). PCF presented a lower rate of in vitro degradation than PFF, and more stable fermentation parameters (pH, ammonia, soluble carbohydrates) even if gas production was higher for the PCF after 48 h of incubation. In situ dry matter and protein degradation were lower for PCF than those for PFF; these differences were more marked than with the in vitro method. Reground peas were very similar to PFF. The values for pea protein digestible in the intestine (PDI) were higher for PCF than those for PFF. This study points out the high sensitivity of the in situ method to grinding. The study needs to be validated by in vivo measurements. PMID:25473488

  18. Quality evaluation of stiff porridges prepared from Irish potato (Solanum tuberosum) and pigeon pea (Cajanus cajan) starch blends.

    PubMed

    Abu, Joseph Oneh; Enyinnaya, Chinma Chiemela; James, Samaila; Okeleke, Ezinne

    2012-06-01

    Quality attributes of stiff porridges prepared from Irish potato and pigeon pea starch blends were studied. Starches were extracted from Irish potato and pigeon pea using a wet extraction method. Various ratios of the starches were mixed and analyzed for chemical, functional and pasting properties. The starch blends were then prepared into stiff porridges for sensory evaluation using a 20-man sensory panel. Substitution of Irish potato starch with pigeon pea starch led to increases in protein (0.15 to 1.2%), fat (0.26 to 0.56%) and ash (0.30 to 0.69%) while the amylose content of the starch blends decreased (from 23.8 to 18.4%) respectively. Functional properties such as bulk density (0.75 to 0.60 g/cm(3)), water absorption capacity (3.1 to 2.6 g water/ g sample) and dispersibility (58.6 to 42.7%) decreased significantly (P < 0.05) at the highest concentration (50%) of pigeon pea starch respectively. Pasting properties such as peak, breakdown, final and setback viscosities increased with increasing levels of pigeon pea starch while peak time and pasting temperature decreased. The sensory attributes of stiff porridges were not adversely affected by pigeon pea starch inclusion. Therefore it should be possible to incorporate up to 50% of low digestible pigeon pea starch into Irish potato starch from legumes such as pigeon pea as alternatives to cassava starch in the preparation of stiff porridges. Such porridges made from Irish potato and legume starches could provide additional incentive for individuals requiring decreased and or slow starch digestibility such as diabetics.

  19. Thermochemical characterization of pigeon pea stalk for its efficient utilization as an energy source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katyal, S.K.; Iyer, P.V.R.

    2000-05-01

    Pigeon pea stalk is a widely available biomass species in India. In this article the potential use of pigeon pea stalk as a fuel source through thermochemical conversion methods such as combustion, gasification, and pyrolysis has been investigated through experimentation using a thermogravimetric analyzer and pilot-plant-scale equipment. It has been proposed that pigeon pea stalks can be effectively utilized in two ways. The first is to pyrolyze the material to produce value-added products such as char, tar, and fuel gas. The second alternative is to partially pyrolyze the material to remove tar-forming volatiles, followed by gasification of reactive char tomore » generate producer gas.« less

  20. Transcriptional profiling of the pea shoot apical meristem reveals processes underlying its function and maintenance

    PubMed Central

    Wong, Chui E; Bhalla, Prem L; Ottenhof, Harald; Singh, Mohan B

    2008-01-01

    Background Despite the importance of the shoot apical meristem (SAM) in plant development and organ formation, our understanding of the molecular mechanisms controlling its function is limited. Genomic tools have the potential to unravel the molecular mysteries of the SAM, and legume systems are increasingly being used in plant-development studies owing to their unique characteristics such as nitrogen fixation, secondary metabolism, and pod development. Garden pea (Pisum sativum) is a well-established classic model species for genetics studies that has been used since the Mendel era. In addition, the availability of a plethora of developmental mutants makes pea an ideal crop legume for genomics studies. This study aims to utilise genomics tools in isolating genes that play potential roles in the regulation of SAM activity. Results In order to identify genes that are differentially expressed in the SAM, we generated 2735 ESTs from three cDNA libraries derived from freshly micro-dissected SAMs from 10-day-old garden peas (Pisum sativum cv Torsdag). Custom-designed oligonucleotide arrays were used to compare the transcriptional profiles of pea SAMs and non-meristematic tissues. A total of 184 and 175 transcripts were significantly up- or down-regulated in the pea SAM, respectively. As expected, close to 61% of the transcripts down-regulated in the SAM were found in the public database, whereas sequences from the same source only comprised 12% of the genes that were expressed at higher levels in the SAM. This highlights the under-representation of transcripts from the meristematic tissues in the current public pea protein database, and demonstrates the utility of our SAM EST collection as an essential genetic resource for revealing further information on the regulation of this developmental process. In addition to unknowns, many of the up-regulated transcripts are known to encode products associated with cell division and proliferation, epigenetic regulation, auxin

  1. Pea Chaperones under Centrifugation

    NASA Astrophysics Data System (ADS)

    Talalaiev, Oleksandr

    2008-06-01

    Etiolated Pisum sativum seedlings were subjected to altered g-forces by centrifugation (3-14g). By using semiquantitative RT-PCR, we studied transcripts of pea genes coding for chaperones that are representatives of small heat shock proteins (sHsps) family. Four members from the different classes of sHsps: cytosolic Hsp17.7 and Hsp18.1 (class I and class II accordingly), chloroplast Hsp21 (class III) and endoplasmic reticulum Hsp22.7 (class IV) were investigated. We conclude that exposure to 3, 7, 10 and 14g for 1h did not affect the level of sHsp transcripts.

  2. Broad bean and pea by-products as sources of fibre-rich ingredients: potential antioxidant activity measured in vitro.

    PubMed

    Mateos-Aparicio, Inmaculada; Redondo-Cuenca, Araceli; Villanueva-Suárez, María-José

    2012-02-01

    By-products generated during the processing of plant food can be considered a promising source of dietary fibre as a functional compound. The dietary fibre composition, soluble sugars and antioxidant activity of the extractable polyphenols of pea and broad bean by-products have been analysed in this study. Total dietary fibre using AOAC methods plus hydrolysis (broad bean pod: 337.3 g kg⁻¹; pea pod: 472.6 g kg⁻¹) is higher (P < 0.05) in both by-products than with the Englyst method (broad bean pod: 309.7 g kg⁻¹; pea pod: 434.6 g kg⁻¹). The main monomers are uronic acids, glucose, arabinose and galactose in broad bean pods. However, pea pods are very rich in glucose and xylose. The soluble sugars analysed by high-performance liquid chromatography in both by-products have glucose as the most important component, followed by sucrose and fructose. The ferric reducing antioxidant power (broad bean pod: 406.4 µmol Trolox equivalents g⁻¹; pea pod: 25.9 µmol Trolox equivalents g⁻¹) and scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radical (EC₅₀ of broad bean pod: 0.4 mg mL⁻¹; EC₅₀ of pea pod: 16.0 mg mL⁻¹) were also measured. Broad bean and pea by-products are very rich in dietary fibre, particularly insoluble dietary fibre and their extractable polyphenols demonstrate antioxidant activity. Therefore they might be regarded as functional ingredients. Copyright © 2011 Society of Chemical Industry.

  3. Profile and Functional Properties of Seed Proteins from Six Pea (Pisum sativum) Genotypes

    PubMed Central

    Barac, Miroljub; Cabrilo, Slavica; Pesic, Mirjana; Stanojevic, Sladjana; Zilic, Sladjana; Macej, Ognjen; Ristic, Nikola

    2010-01-01

    Extractability, extractable protein compositions, technological-functional properties of pea (Pisum sativum) proteins from six genotypes grown in Serbia were investigated. Also, the relationship between these characteristics was presented. Investigated genotypes showed significant differences in storage protein content, composition and extractability. The ratio of vicilin:legumin concentrations, as well as the ratio of vicilin + convicilin: Legumin concentrations were positively correlated with extractability. Our data suggest that the higher level of vicilin and/or a lower level of legumin have a positive influence on protein extractability. The emulsion activity index (EAI) was strongly and positively correlated with the solubility, while no significant correlation was found between emulsion stability (ESI) and solubility, nor between foaming properties and solubility. No association was evident between ESI and EAI. A moderate positive correlation between emulsion stability and foam capacity was observed. Proteins from the investigated genotypes expressed significantly different emulsifying properties and foam capacity at different pH values, whereas low foam stability was detected. It appears that genotype has considerable influence on content, composition and technological-functional properties of pea bean proteins. This fact can be very useful for food scientists in efforts to improve the quality of peas and pea protein products. PMID:21614186

  4. Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the open field during winter in Qingdao.

    USDA-ARS?s Scientific Manuscript database

    As a cool season crop, pea (Pisum sativum L.) can tolerate frost at the vegetative stage but has yield loss when freezing stress occurs at reproductive stage. Cold tolerance improvement of pea varieties is important for the stable yield and the expansion of winter pea planting area. Under the natura...

  5. Microbiological quality of frozen cauliflower, corn, and peas obtained at retail markets.

    PubMed Central

    Barnard, R J; Duran, A P; Swartzentruber, A; Schwab, A H; Wentz, B A; Read, R B

    1982-01-01

    The microbiological quality of blanched frozen cauliflower, cut corn, and peas at the retail level was determined. At 35 degrees C, mean aerobic plate count (APC) values for cauliflower, corn, and peas, respectively, were 30,000, 6,100, and 4,700 per g; at 30 degrees C, the mean APC values were 45,000, 8,500, and 6,800 per g, respectively. Geometric means for coliform, Escherichia coli, and Staphylococcus aureus counts for all three vegetables were less than 10 per g. PMID:6751226

  6. Analysis of the state of posttranslational calmodulin methylation in developing pea plants. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Sukheung; Roberts, D.M.

    1990-07-01

    A specific calmodulin-N-methyltransferase was used in a radiometric assay to analyze the degree of methylation of lysine-115 in pea (Pisum sativum) plants. Calmodulin was isolated from dissected segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by incubation with the calmodulin methyltransferase in the presence of ({sup 3}H)methyl-S-adenosylmethionine. By this approach, the presence of unmethylated calmodulins were demonstrated in pea tissues, and the levels of methylation varied depending on the developmental state of the tissue tested. Calmodulin methylation levels were lower in apical root segments of both etiolated andmore » green plants, and in the young lateral roots compared with the mature, differentiated root tissues. The incorporation of methyl groups into these calmodulin samples appears to be specific for position 115 since site-directed mutants of calmodulin with substitutions at this position competitively inhibited methyl group incorporation. The present findings, combined with previous data showing differences in the ability of methylated and unmethylated calmodulins to activate pea NAD kinase raise the possibility that posttranslational methylation of calmodulin could be another mechanism for regulating calmodulin activity.« less

  7. Structure of allelic variants of subtype 5 of histone H1 in pea Pisum sativum L.

    PubMed

    Bogdanova, V S; Lester, D R; Berdnikov, V A; Andersson, I

    2005-06-01

    The pea genome contains seven histone H1 genes encoding different subtypes. Previously, the DNA sequence of only one gene, His1, coding for the subtype H1-1, had been identified. We isolated a histone H1 allele from a pea genomic DNA library. Data from the electrophoretic mobility of the pea H1 subtypes and their N-bromosuccinimide cleavage products indicated that the newly isolated gene corresponded to the H1-5 subtype encoded by His5. We confirmed this result by sequencing the gene from three pea lines with H1-5 allelic variants of altered electrophoretic mobility. The allele of the slow H1-5 variant differed from the standard allele by a nucleotide substitution that caused the replacement of the positively charged lysine with asparagine in the DNA-interacting domain of the histone molecule. A temperature-related occurrence had previously been demonstrated for this H1-5 variant in a study on a worldwide collection of pea germplasm. The variant tended to occur at higher frequencies in geographic regions with a cold climate. The fast allelic variant of H1-5 displayed a deletion resulting in the loss of a duplicated pentapeptide in the C-terminal domain.

  8. Inheritance patterns of secondary symbionts during sexual reproduction of pea aphid biotypes.

    PubMed

    Peccoud, Jean; Bonhomme, Joël; Mahéo, Frédérique; de la Huerta, Manon; Cosson, Olivier; Simon, Jean-Christophe

    2014-06-01

    Herbivorous insects frequently harbor bacterial symbionts that affect their ecology and evolution. Aphids host the obligatory endosymbiont Buchnera, which is required for reproduction, together with facultative symbionts whose frequencies vary across aphid populations. These maternally transmitted secondary symbionts have been particularly studied in the pea aphid, Acyrthosiphon pisum, which harbors at least 8 distinct bacterial species (not counting Buchnera) having environmentally dependent effects on host fitness. In particular, these symbiont species are associated with pea aphid populations feeding on specific plants. Although they are maternally inherited, these bacteria are occasionally transferred across insect lineages. One mechanism of such nonmaternal transfer is paternal transmission to the progeny during sexual reproduction. To date, transmission of secondary symbionts during sexual reproduction of aphids has been investigated in only a handful of aphid lineages and 3 symbiont species. To better characterize this process, we investigated inheritance patterns of 7 symbiont species during sexual reproduction of pea aphids through a crossing experiment involving 49 clones belonging to 9 host-specialized biotypes, and 117 crosses. Symbiont species in the progeny were detected with diagnostic qualitative PCR at the fundatrix stage hatching from eggs and in later parthenogenetic generations. We found no confirmed case of paternal transmission of symbionts to the progeny, and we observed that maternal transmission of a particular symbiont species (Serratia symbiotica) was quite inefficient. We discuss these observations in respect to the ecology of the pea aphid. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  9. Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens.

    PubMed

    Zimmermann, Jana; Saalbach, Isolde; Jahn, Doreen; Giersberg, Martin; Haehnel, Sigrun; Wedel, Julia; Macek, Jeanette; Zoufal, Karen; Glünder, Gerhard; Falkenburg, Dieter; Kipriyanov, Sergey M

    2009-09-11

    Coccidiosis caused by protozoans of genus Eimeria is a chicken parasitic disease of great economical importance. Conventional disease control strategies depend on vaccination and prophylactic use of anticoccidial drugs. Alternative solution to prevent and treat coccidiosis could be provided by passive immunization using orally delivered neutralizing antibodies. We investigated the possibility to mitigate the parasitic infection by feeding poultry with antibody expressing transgenic crop seeds. Using the phage display antibody library, we generated a panel of anti-Eimeria scFv antibody fragments with high sporozoite-neutralizing activity. These antibodies were expressed either transiently in agrobacteria-infiltrated tobacco leaves or stably in seeds of transgenic pea plants. Comparison of the scFv antibodies purified either from tobacco leaves or from the pea seeds demonstrated no difference in their antigen-binding activity and molecular form compositions. Force-feeding experiments demonstrated that oral delivery of flour prepared from the transgenic pea seeds had higher parasite neutralizing activity in vivo than the purified antibody fragments isolated from tobacco. The pea seed content was found to protect antibodies against degradation by gastrointestinal proteases (>100-fold gain in stability). Ad libitum feeding of chickens demonstrated that the transgenic seeds were well consumed and not shunned. Furthermore, feeding poultry with shred prepared from the antibody expressing pea seeds led to significant mitigation of infection caused both by high and low challenge doses of Eimeria oocysts. The results suggest that our strategy offers a general approach to control parasitic infections in production animals using cost-effective antibody expression in crop seeds affordable for the animal health market.

  10. Dynamic effects of adrenaline (epinephrine) in out-of-hospital cardiac arrest with initial pulseless electrical activity (PEA).

    PubMed

    Nordseth, Trond; Olasveengen, Theresa Mariero; Kvaløy, Jan Terje; Wik, Lars; Steen, Petter Andreas; Skogvoll, Eirik

    2012-08-01

    In cardiac arrest, pulseless electrical activity (PEA) is a challenging clinical syndrome. In a randomized study comparing intravenous (i.v.) access and drugs versus no i.v. access or drugs during advanced life support (ALS), adrenaline (epinephrine) improved return of spontaneous circulation (ROSC) in patients with PEA. Originating from this study, we investigated the time-dependent effects of adrenaline on clinical state transitions in patients with initial PEA, using a non-parametric multi-state statistical model. Patients with available defibrillator recordings were included, of whom 101 received adrenaline and 73 did not. There were significantly more state transitions in the adrenaline group than in the no-adrenaline group (rate ratio = 1.6, p<0.001). Adrenaline markedly increased the rate of transition from PEA to ROSC during ALS and slowed the rate of being declared dead; e.g. by 20 min 20% of patients in the adrenaline group had been declared dead and 25% had obtained ROSC, whereas 50% in the no-adrenaline group have been declared dead and 15% had obtained ROSC. The differential effect of adrenaline could be seen after approx. 10 min of ALS for most transitions. For both groups the probability of deteriorating from PEA to asystole was highest during the first 15 min. Adrenaline increased the rate of transition from PEA to ventricular fibrillation or -tachycardia (VF/VT), and from ROSC to VF/VT. Adrenaline has notable clinical effects during ALS in patients with initial PEA. The drug extends the time window for ROSC to develop, but also renders the patient more unstable. Further research should investigate the optimal dose, timing and mode of adrenaline administration during ALS. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. The Diversity of Pea Microsymbionts in Various Types of Soils and Their Effects on Plant Host Productivity

    PubMed Central

    Wielbo, Jerzy; Podleśna, Anna; Kidaj, Dominika; Podleśny, Janusz; Skorupska, Anna

    2015-01-01

    The growth and yield of peas cultivated on eight different soils, as well as the diversity of pea microsymbionts derived from these soils were investigated in the present study. The experimental plot was composed of soils that were transferred from different parts of Poland more than a century ago. The soils were located in direct vicinity of each other in the experimental plot. All soils examined contained pea microsymbionts, which were suggested to belong to Rhizobium leguminosarum sv. viciae based on the nucleotide sequence of the partial 16S rRNA gene. PCR-RFLP analyses of the 16S-23S rRNA gene ITS region and nodD alleles revealed the presence of numerous and diversified groups of pea microsymbionts and some similarities between the tested populations, which may have been the result of the spread or displacement of strains. However, most populations retained their own genetic distinction, which may have been related to the type of soil. Most of the tested populations comprised low-effective strains for the promotion of pea growth. No relationships were found between the characteristics of soil and symbiotic effectiveness of rhizobial populations; however, better seed yield was obtained for soil with medium biological productivity inhabited by high-effective rhizobial populations than for soil with high agricultural quality containing medium-quality pea microsymbionts, and these results showed the importance of symbiosis for plant hosts. PMID:26370165

  12. Symbiotic activity of pea (Pisum sativum) after application of Nod factors under field conditions.

    PubMed

    Siczek, Anna; Lipiec, Jerzy; Wielbo, Jerzy; Kidaj, Dominika; Szarlip, Paweł

    2014-04-29

    Growth and symbiotic activity of legumes are mediated by Nod factors (LCO, lipo-chitooligosaccharides). To assess the effects of application of Nod factors on symbiotic activity and yield of pea, a two-year field experiment was conducted on a Haplic Luvisol developed from loess. Nod factors were isolated from Rhizobium leguminosarum bv. viciae strain GR09. Pea seeds were treated with the Nod factors (10⁻¹¹ M) or water (control) before planting. Symbiotic activity was evaluated by measurements of nitrogenase activity (acetylene reduction assay), nodule number and mass, and top growth by shoot mass, leaf area, and seed and protein yield. Nod factors generally improved pea yield and nitrogenase activity in the relatively dry growing season 2012, but not in the wet growing season in 2013 due to different weather conditions.

  13. GREEN PEA GALAXIES REVEAL SECRETS OF Lyα ESCAPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huan; Wang, Junxian; Malhotra, Sangeeta

    2016-04-01

    We analyze archival Lyα spectra of 12 “Green Pea” galaxies observed with the Hubble Space Telescope, model their Lyα profiles with radiative transfer models, and explore the dependence of the Lyα escape fraction on various properties. Green Pea galaxies are nearby compact starburst galaxies with [O iii] λ5007 equivalent widths (EWs) of hundreds of Å. All 12 Green Pea galaxies in our sample show Lyα lines in emission, with an Lyα EW distribution similar to high-redshift Lyα emitters. Combining the optical and UV spectra of Green Pea galaxies, we estimate their Lyα escape fractions and find correlations between Lyα escape fractionmore » and kinematic features of Lyα profiles. The escape fraction of Lyα in these galaxies ranges from 1.4% to 67%. We also find that the Lyα escape fraction depends strongly on metallicity and moderately on dust extinction. We compare their high-quality Lyα profiles with single H i shell radiative transfer models and find that the Lyα escape fraction anticorrelates with the derived H i column densities. Single-shell models fit most Lyα profiles well, but not the ones with the highest escape fractions of Lyα. Our results suggest that low H i column density and low metallicity are essential for Lyα escape and make a galaxy an Lyα emitter.« less

  14. Heat stress response in pea involves interaction of mitochondrial nucleoside diphosphate kinase with a novel 86-kilodalton protein.

    PubMed

    Escobar Galvis, M L; Marttila, S; Håkansson, G; Forsberg, J; Knorpp, C

    2001-05-01

    In this work we have further characterized the first mitochondrial nucleoside diphosphate kinase (mtNDPK) isolated from plants. The mitochondrial isoform was found to be especially abundant in reproductive and young tissues. Expression of the pea (Pisum sativum L. cv Oregon sugarpod) mtNDPK was not affected by different stress conditions. However, the pea mtNDPK was found to interact with a novel 86-kD protein, which is de novo synthesized in pea leaves upon exposure to heat. Thus, we have evidence for the involvement of mtNDPK in mitochondrial heat response in pea in vivo. Studies on oligomerization revealed that mtNDPK was found in complexes of various sizes, corresponding to the sizes of e.g. hexamers, tetramers, and dimers, indicating flexibility in oligomerization. This flexibility, also found for other NDPK isoforms, has been correlated with the ability of this enzyme to interact with other proteins. We believe that the mtNDPK is involved in heat stress response in pea, possibly as a modulator of the 86-kD protein.

  15. Biological changes of green pea (Pisum sativum L.) by selenium enrichment.

    PubMed

    Garousi, Farzaneh; Kovács, Béla; Domokos-Szabolcsy, Éva; Veres, Szilvia

    2017-03-01

    Supplement of common fertilizers with selenium (Se) for crop production will be an effective way to produce selenium-rich food and feed. The value of green pea seeds and forages as alternative protein source can be improved by using agronomic biofortification. Therefore, biological changes of green pea (Pisum sativum L.) and influences of inorganic forms of Se (sodium selenite and sodium selenate) at different concentrations on the accumulation of magnesium (Mg) and phosphorus (P) were investigated in greenhouse experiment. 3 mg kg -1 of selenite had positive effects to enhance photosynthetic attributes and decrease lipid peroxidation significantly. At the same time, Se accumulation increased in all parts of plant by increasing Se supply. Moreover, Mg and P accumulations were significantly increased at 3 mg kg -1 selenite and 1 mg kg -1 selenate treatments, respectively. By contrast higher selenite concentrations (≥30 mg kg -1 ) exerted toxic effects on plants. Relative chlorophyll content, actual photochemical efficiency of PSII (Ф PSII ) and Mg accumulation showed significant decrease while membrane lipid peroxidation increased. Thus, the present findings prove Se biofortification has positive effects on biological traits of green pea to provide it as a proper functional product.

  16. Bowman-Birk inhibitor-like protein is secreted by sprouted pea seeds in response to induced colonization by enteropathogenic Escherichia coli.

    PubMed

    Anuradha, Ravi; Raveendran, Muthuraj; Babu, Subramanian

    2013-11-01

    The interaction between the clinical isolate of enteropathogenic Escherichia coli (EPEC) SBANU8 and pea sprouts was compared with avirulent K 12. E. coli. This was carried out by repeated co-incubation with pea sprouts for 5 days, and the protein profile of the culture supernatant was analyzed by single and two-dimensional electrophoresis. Mass spectrometry analysis led to the identification of two serine protease inhibitors including a Bowman-Birk-type protein secreted by pea sprouts in response to clinical isolate. Expression of the E. coli intimin gene involved in animal host colonization and virulence was studied by reverse transcription polymerase chain reaction. Expression of this gene was high in SBANU8 when co-incubated with pea sprouts. The present study gives baseline data on the molecular level interactions of EPEC and pea sprouts, which are needed to design the outbreak control strategies.

  17. PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana

    PubMed Central

    Balfanz, Sabine

    2017-01-01

    The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP]i) whereas type 2 tyramine receptors can mediate Ca2+ signals or both Ca2+ signals and effects on [cAMP]i. Here; we report that the American cockroach (Periplaneta americana) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP]i. Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine. PMID:29084141

  18. PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana.

    PubMed

    Blenau, Wolfgang; Balfanz, Sabine; Baumann, Arnd

    2017-10-30

    The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP] i ) whereas type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . Here; we report that the American cockroach ( Periplaneta americana ) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP] i . Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana ; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine.

  19. Emulsifying and foaming properties of commercial yellow pea (Pisum sativum L.) seed flours.

    PubMed

    Aluko, Rotimi E; Mofolasayo, Olawunmi A; Watts, Beverley M

    2009-10-28

    Commercial yellow pea seed flours prepared by a patented wet-milling process and pea protein isolate (PPI) were analyzed for emulsifying and foaming properties at pH 3.0, 5.0, and 7.0 and compared to soybean protein isolate (SPI). PPI and SPI formed emulsions with significantly smaller (p < 0.05) oil droplet sizes, 16-30 and 23-54 microm, respectively, than flours that primarily contained fiber such as Centara III and IV, or those that consisted mainly of starch: Centu-tex, Uptake 80 and Accu-gel. PPI was a better emulsifier than SPI at pH 7.0, and a better foaming agent at pH 3.0 and pH 7.0, although foaming capacity varied with sample concentration. Centu-tex and Uptake 80 have exactly the same chemical composition, but the latter has a much smaller flour particle size range, and had significantly smaller (p < 0.05) emulsion oil droplets. Incorporation of pea starch into SPI emulsions produced a synergistic effect that led to significant increases (p < 0.05) in emulsification capacity (reduced emulsion oil droplet size) when compared to SPI or starch alone. These results showed that PPI had generally significantly higher (p < 0.05) emulsion and foam forming properties than SPI, and that pea starch could be used to improve the quality of SPI-stabilized food emulsions.

  20. Potential of roselle and blue pea in the dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Dayang, S.; Irwanto, M.; Gomesh, N.; Ismail, B.

    2017-09-01

    This paper discovers the use of natural dyes from Roselle flower and Blue Pea flower which act as a sensitizer in DSSC and in addition has a potential in absorbing visible light spectrum. The dyes were extracted using distilled water (DI) and ethanol (E) extract solvent in an ultrasonic cleaner for 30 minutes with a frequency of 37 Hz by using `degas' mode at the temperature of 30°C. Absorption spectra of roselle dye and blue pea dye with different extract solvent were tested using Evolution 201 UV-Vis Spectrophotometer. It was found that Roselle dye absorbs at a range of 400 nm - 620 nm and Blue Pea absorbs at the range of wavelength 500 nm - 680 nm. Fourier-Transform Infrared (FTIR) was used to identify the functional active group in extract dye. The concept of Dye-Sensitized Solar Cell (DSSC) similar to photosynthesis process has attracted much attention since it demonstrates a great potential due to the use of low-cost materials and environmentally friendly sources of technology.

  1. Dryland pea production and water use in responses to tillage, crop rotation, and weed management practice

    USDA-ARS?s Scientific Manuscript database

    Pea has been used to replace fallow and sustain dryland crop yields in arid and semiarid regions, but information to optimize its management is required. We evaluated pea growth, yield, and water use in response to tillage, crop rotation, and weed management practice from 2005 to 2010 in the norther...

  2. Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens

    PubMed Central

    Zimmermann, Jana; Saalbach, Isolde; Jahn, Doreen; Giersberg, Martin; Haehnel, Sigrun; Wedel, Julia; Macek, Jeanette; Zoufal, Karen; Glünder, Gerhard; Falkenburg, Dieter; Kipriyanov, Sergey M

    2009-01-01

    Background Coccidiosis caused by protozoans of genus Eimeria is a chicken parasitic disease of great economical importance. Conventional disease control strategies depend on vaccination and prophylactic use of anticoccidial drugs. Alternative solution to prevent and treat coccidiosis could be provided by passive immunization using orally delivered neutralizing antibodies. We investigated the possibility to mitigate the parasitic infection by feeding poultry with antibody expressing transgenic crop seeds. Results Using the phage display antibody library, we generated a panel of anti-Eimeria scFv antibody fragments with high sporozoite-neutralizing activity. These antibodies were expressed either transiently in agrobacteria-infiltrated tobacco leaves or stably in seeds of transgenic pea plants. Comparison of the scFv antibodies purified either from tobacco leaves or from the pea seeds demonstrated no difference in their antigen-binding activity and molecular form compositions. Force-feeding experiments demonstrated that oral delivery of flour prepared from the transgenic pea seeds had higher parasite neutralizing activity in vivo than the purified antibody fragments isolated from tobacco. The pea seed content was found to protect antibodies against degradation by gastrointestinal proteases (>100-fold gain in stability). Ad libitum feeding of chickens demonstrated that the transgenic seeds were well consumed and not shunned. Furthermore, feeding poultry with shred prepared from the antibody expressing pea seeds led to significant mitigation of infection caused both by high and low challenge doses of Eimeria oocysts. Conclusion The results suggest that our strategy offers a general approach to control parasitic infections in production animals using cost-effective antibody expression in crop seeds affordable for the animal health market. PMID:19747368

  3. Elevated CO2 increases R gene-dependent resistance of Medicago truncatula against the pea aphid by up-regulating a heat shock gene.

    PubMed

    Sun, Yucheng; Guo, Huijuan; Yuan, Erliang; Ge, Feng

    2018-03-01

    Resistance against pathogens and herbivorous insects in many plant results from the expression of resistance (R) genes. Few reports, however, have considered the effects of elevated CO 2 on R gene-based resistance in plants. The current study determined the responses of two near isogenic Medicago truncatula genotypes (Jester has an R gene and A17 does not) to the pea aphid and elevated CO 2 in open-top chambers in the field. Aphid abundance, mean relative growth rate and feeding efficiency were increased by elevated CO 2 on A17 plants but were reduced on Jester plants. According to proteomic and gene expression data, elevated CO 2 enhanced pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) but decreased the effector-triggered immunity (ETI) in aphid-infested A17 plants. For aphid-infested Jester plants, by contrast, elevated CO 2 enhanced the ETI-related heat shock protein (HSP) 90 and its co-chaperones, the jasmonic acid (JA) signaling pathway, and ubiquitin-mediated proteolysis. In a loss-of-function experiment, silencing of the HSP90 gene in Jester plants impaired the JA signaling pathway and ubiquitin-mediated proteolysis against the aphid under ambient CO 2 , and negated the increased resistance against the aphid under elevated CO 2 . Our results suggest that increases in expression of HSP90 are responsible for the enhanced resistance against the aphid under elevated CO 2 . © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  4. Molecular cloning of isoflavone reductase from pea (Pisum sativum L.): evidence for a 3R-isoflavanone intermediate in (+)-pisatin biosynthesis.

    PubMed

    Paiva, N L; Sun, Y; Dixon, R A; VanEtten, H D; Hrazdina, G

    1994-08-01

    Isoflavone reductase (IFR) reduces achiral isoflavones to chiral isoflavanones during the biosynthesis of chiral pterocarpan phytoalexins. A cDNA clone for IFR from pea (Pisum sativum) was isolated using the polymerase chain reaction and expressed in Escherichia coli. Analysis of circular dichroism (CD) spectra of the reduction product sophorol obtained using the recombinant enzyme indicated that the isoflavanone possessed the 3R stereochemistry, in contrast to previous reports indicating a 3S-isoflavanone as the product of the pea IFR. Analysis of CD spectra of sophorol produced using enzyme extracts of CuCl2-treated pea seedlings confirmed the 3R stereochemistry. Thus, the stereochemistry of the isoflavanone intermediate in (+)-pisatin biosynthesis in pea is the same as that in (-)-medicarpin biosynthesis in alfalfa, although the final pterocarpans have the opposite stereochemistry. At the amino acid level the pea IFR cDNA was 91.8 and 85.2% identical to the IFRs from alfalfa and chickpea, respectively. IFR appears to be encoded by a single gene in pea. Its transcripts are highly induced in CuCl2-treated seedlings, consistent with the appearance of IFR enzyme activity and pisatin accumulation.

  5. Purification, crystallization and preliminary X-ray analysis of urease from pigeon pea (Cajanus cajan)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balasubramanian, Anuradha; Ponnuraj, Karthe, E-mail: pkarthe@hotmail.com

    Urease from pigeon pea was purified and crystallized and X-ray diffraction data were collected at 2.5 Å resolution. Urease is a seed protein that is common to most Leguminosae. It also occurs in many bacteria, fungi and several species of yeast. Urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, thus allowing organisms to use exogenous and internally generated urea as a nitrogen source. Urease from pigeon pea seeds has been purified to electrophoretic homogeneity using a series of steps involving ammonium sulfate fractionation, acid precipitation, ion-exchange and size-exclusion chromatography techniques. The pigeon pea urease was crystallized andmore » the resulting crystals diffracted to 2.5 Å resolution. The crystals belong to the rhombohedral space group R32, with unit-cell parameters a = b = 176.29, c = 346.44 Å.« less

  6. The composition of pigeon peas (Cajanus cajan (L.) Millsp.) grown in Botswana.

    PubMed

    Amarteifio, J O; Munthali, D C; Karikari, S K; Morake, T K

    2002-01-01

    This study investigated the composition of pigeon peas (Cajanus cajan), grown at Sebele, Botswana. The raw seeds of six varieties were analyzed for dry matter, crude fat, protein, fiber, and ash, using Association of Official Analytical Chemists procedures. Major minerals, Ca, K, P, Mg, Na and trace minerals, Cu, Fe and Zn were also assessed. The range of nutrient contents obtained were: dry matter 86.6-88.0%, crude protein 19.0-21.7%, crude fat 1.2-1.3%, crude fiber 9.8-13.0%, and ash 3.9-4.3%. Minerals ranges (mg/100 g dry matter) were: K 1845-1941, P 163-293, Ca 120-167, Mg 113-127, Na 11.3-12.0, Zn 7.2-8.2, Fe 2.5-4.7 and Cu 1.6-1.8. There were no significant differences in Na among the six varieties (p > 0.05). For the other components, varietal differences (p < 0.05) were observed. The values obtained for the dry matter, crude protein, fat, ash, Ca, Cu, Fe, and Mg were similar to those in pigeon peas grown elsewhere, while those for crude fiber and Zn were higher. In general, the composition of pigeon peas compared favorably with those of other legumes such as Bambara groundnut (Vigna subterranea). The levels of crude protein, crude fiber, K, Ca, P and Mg indicated that pigeon peas could be valuable in the diet of the people of Botswana. This crop would positively contribute protein in the diet and the diversification of agricultural produce.

  7. Acute effects of pea protein and hull fibre alone and combined on blood glucose, appetite, and food intake in healthy young men--a randomized crossover trial.

    PubMed

    Mollard, Rebecca C; Luhovyy, Bohdan L; Smith, Christopher; Anderson, G Harvey

    2014-12-01

    Whether pulse components can be used as value-added ingredients in foods formulated for blood glucose (BG) and food intake (FI) control requires investigation. The objective of this study was to examine of the effects of pea components on FI at an ad libitum meal, as well as appetite and BG responses before and after the meal. In a repeated-measures crossover trial, men (n = 15) randomly consumed (i) pea hull fibre (7 g), (ii) pea protein (10 g), (iii) pea protein (10 g) plus hull fibre (7 g), (iv) yellow peas (406 g), and (v) control. Pea hull fibre and protein were served with tomato sauce and noodles, while yellow peas were served with tomato sauce. Control was noodles and tomato sauce. FI was measured at a pizza meal (135 min). Appetite and BG were measured pre-pizza (0-135 min) and post-pizza (155-215 min). Protein plus fibre and yellow peas led to lower pre-pizza BG area under the curve compared with fibre and control. At 30 min, BG was lower after protein plus fibre and yellow peas compared with fibre and control, whereas at 45 and 75 min, protein plus fibre and yellow peas led to lower BG compared with fibre (p < 0.05). Following the pizza meal (155 min), yellow peas led to lower BG compared with fibre (p < 0.05). No differences were observed in FI or appetite. This trial supports the use of pea components as value-added ingredients in foods designed to improve glycemic control.

  8. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector.

    PubMed

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen

    2016-11-18

    Understanding the molecular mechanisms involved in plant virus-vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus , Luteoviridae ) and Pea enation mosaic virus 2 (PEMV2, Umbravirus , Tombusviridae ) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum , and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum . Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.

  9. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector

    PubMed Central

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C.; Miller, W. Allen

    2016-01-01

    Understanding the molecular mechanisms involved in plant virus–vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae) and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits. PMID:27869713

  10. Characterization of five fungal endophytes producing Cajaninstilbene acid isolated from pigeon pea [Cajanus cajan (L.) Millsp].

    PubMed

    Gao, Yuan; Zhao, Jin Tong; Zu, Yuan Gang; Fu, Yu Jie; Wang, Wei; Luo, Meng; Efferth, Thomas

    2011-01-01

    Five fungal endophytes (K4, K5, K6, K9, K14) producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid) were isolated from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L) among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS) rRNA and β-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA.

  11. Effect of Xyloglucan Oligosaccharides on Growth, Viscoelastic Properties, and Long-Term Extension of Pea Shoots.

    PubMed Central

    Cutillas-Iturralde, A.; Lorences, E. P.

    1997-01-01

    The growth-promoting effect of xyloglucan-derived oligosaccharides was investigated using a bioassay with entire pea (Pisum sativum L., var Alaska) shoots. After a 24-h incubation period at 25[deg]C, xyloglucan oligosaccharide (XGO) solutions with concentrations of 10-6 M notably increased the growth rate of pea shoots, whereas the same oligosaccharides at 10-7 M were less effective. To investigate the possible correlation between growth rate changes in the XGO-treated shoots and changes in the wall mechanical properties of their growing regions (third internodes), we used a short-term creep assay. The promotion of elongation by XGOs was reflected in an enhancement of the viscoelasticity of the growing regions of the shoots. To show whether this effect on wall viscoelastic properties was the cause or a consequence of their growth promotion, we tested the effect of XGOs on the long-term extension of isolated cell walls. We characterized an acid-induced extension in isolated cell walls from pea shoots that was not inhibited by preincubation in neutral buffers. Exogenously added XGOs did not alter the pattern of pea segment extension at any pH tested, indicating that XGOs have no direct effect on cell wall viscoelasticity. Finally, preincubation of pea segments in neutral buffers with XGOs enhanced their capacity to extend under acidic conditions. This finding suggests that XGOs at a neutral pH can act via transglycosylation, weakening the wall matrix and making the wall more responsive to other mechanisms of acid-induced extension as an expansin-mediated extension. PMID:12223593

  12. Development of SCAR markers linked to sin-2, the stringless pod locus in pea (Pisum sativum L.)

    USDA-ARS?s Scientific Manuscript database

    With increasing consumer demand for vegetables, edible-podded peas have become more popular. Stringlessness is one of most important traits for snap peas. A single recessive gene, sin-2, controls this trait. Because pollen carrying the stringless gene is less competitive than pollen carrying the str...

  13. A community resource for exploring and utilizing genetic diversity in the USDA Pea Single Plant Plus Collection

    USDA-ARS?s Scientific Manuscript database

    Globally, pea (Pisum sativum L.) is an important temperate legume crop for food, feed, and fodder, and many breeding programs exist to develop cultivars adapted to these end uses. In order to conserve genetic diversity useful to researchers, large pea collections have been constructed by numerous na...

  14. Growth performance and carcass characteristics of guinea fowl broilers fed micronized-dehulled pea (Pisum sativum L.) as a substitute for soybean meal.

    PubMed

    Laudadio, V; Nahashon, S N; Tufarelli, V

    2012-11-01

    This study was conducted to evaluate the effect of substitution of soybean meal (SBM) with dehulled-micronized peas (Pisum sativum) in diets of guinea fowl broilers on their growth performance, carcass yields, and fatty acid composition of meat. One hundred forty 1-d-old guinea fowl keets were randomly assigned to 2 dietary treatments, which were fed from hatch to 12 wk. The birds were fed 2 wheat middling-based diets comprising a control diet, which contained SBM (78 g/kg) and a test diet containing dehulled-micronized peas (180 g/kg) as the main protein source. The substitution of SBM with peas had no adverse effect on growth performance, dressing percentage, or breast and thigh muscle relative weights of the guinea broilers. However, a reduction of abdominal fat content (P < 0.05) was observed in birds fed the pea diet compared with the control. Breast and thigh meat of birds fed the pea diet had higher lightness scores (P < 0.05) and water-holding capacity (P < 0.01) than the control. Meat from guinea fowls fed the pea diet had less cholesterol (P < 0.01) and lipids (P < 0.05), and higher concentrations of phospholipids (P < 0.05). Feeding peas increased polyunsaturated fatty acid concentration in breast and thigh muscles, and decreased the saturated fatty acid concentration. Feeding the pea diet also lowered the n-6/n-3 polyunsaturated fatty acid ratio of the guinea broiler muscles. Our results suggest that replacing the conventional SBM as the protein source with dehulled-micronized pea meal in diets of guinea fowls broilers can improve carcass quality and favorable lipid profile without adversely affecting growth performance traits.

  15. Heat Stress Response in Pea Involves Interaction of Mitochondrial Nucleoside Diphosphate Kinase with a Novel 86-Kilodalton Protein1

    PubMed Central

    Escobar Galvis, Martha L.; Marttila, Salla; Håkansson, Gunilla; Forsberg, Jens; Knorpp, Carina

    2001-01-01

    In this work we have further characterized the first mitochondrial nucleoside diphosphate kinase (mtNDPK) isolated from plants. The mitochondrial isoform was found to be especially abundant in reproductive and young tissues. Expression of the pea (Pisum sativum L. cv Oregon sugarpod) mtNDPK was not affected by different stress conditions. However, the pea mtNDPK was found to interact with a novel 86-kD protein, which is de novo synthesized in pea leaves upon exposure to heat. Thus, we have evidence for the involvement of mtNDPK in mitochondrial heat response in pea in vivo. Studies on oligomerization revealed that mtNDPK was found in complexes of various sizes, corresponding to the sizes of e.g. hexamers, tetramers, and dimers, indicating flexibility in oligomerization. This flexibility, also found for other NDPK isoforms, has been correlated with the ability of this enzyme to interact with other proteins. We believe that the mtNDPK is involved in heat stress response in pea, possibly as a modulator of the 86-kD protein. PMID:11351071

  16. Effect of feeding soybean meal and differently processed peas on the gut mucosal immune system of broilers.

    PubMed

    Röhe, I; Göbel, T W; Goodarzi Boroojeni, F; Zentek, J

    2017-07-01

    Peas are traditionally used as a protein source for poultry. However, peas contain antinutritional factors (ANF), which are associated with the initiation of local and systemic immune reactions. The current study examined the effect of feeding raw or differently processed peas in comparison with feeding a soybean meal (SBM) based control diet (C) on the gut mucosal immune system of broilers in a 35 day feeding trial. In six replicates, a total of 360 one-day-old male broilers were randomly allocated to four different groups receiving C, or three treatment diets containing raw, fermented, and enzymatically pre-digested peas, each supplying 30% of required crude protein. After slaughtering, jejunal samples were taken for immunohistochemical, flow cytometric, and gene expression analyses. Investigations were focused on the topological distribution of intraepithelial leukocytes (villus tip, villus mid, and crypt region) as well as on the further characterization of the different intraepithelial lymphocytes (IEL) and concomitant pro- and anti-inflammatory cytokines. Broilers receiving the raw or processed pea diets had higher numbers of intraepithelial CD45+ leukocytes in the tip (P = 0.004) and mid region (P < 0.001) of villi than birds fed C. Higher numbers of intraepithelial CD3+ lymphocytes were found in the villus tip (P = 0.002) and mid region (P = 0.003) of birds fed raw or processed pea containing diets in comparison with those fed C. The flow cytometric phenotyping showed a similar relative distribution of IEL among the feeding groups. The expression of intestinal pro- and anti-inflammatory cytokines was affected by feeding the different diets only to a minor extent. To conclude, feeding of diets formulated with raw and processed peas in comparison with feeding a SBM control diet initiated mucosal immune responses in the jejunum of broilers indicated by a quantitative increase of intraepithelial T cells. Further research is needed in order to ascertain the

  17. Cloning and characterization of TPE4A, a thiol-protease gene induced during ovary senescence and seed germination in pea.

    PubMed

    Cercós, M; Santamaría, S; Carbonell, J

    1999-04-01

    A cDNA clone encoding a thiol-protease (TPE4A) was isolated from senescent ovaries of pea (Pisum sativum) by reverse transcriptase-polymerase chain reaction. The deduced amino acid sequence of TPE4A has the conserved catalytic amino acids of papain. It is very similar to VSCYSPROA, a thiol-protease induced during seed germination in common vetch. TPE4A mRNA levels increase during the senescence of unpollinated pea ovaries and are totally suppressed by treatment with gibberellic acid. In situ hybridization indicated that TPE4A mRNA distribution in senescent pea ovaries is different from that of previously reported thiol-proteases induced during senescence, suggesting the involvement of different proteases in the mobilization of proteins from senescent pea ovaries. TPE4A is also induced during the germination of pea seeds, indicating that a single protease gene can be induced during two different physiological processes, senescence and germination, both of which require protein mobilization.

  18. Effect of isolation techniques on the characteristics of pigeon pea (Cajanus cajan) protein isolates.

    PubMed

    Adenekan, Monilola K; Fadimu, Gbemisola J; Odunmbaku, Lukumon A; Oke, Emmanuel K

    2018-01-01

    In this study, the effect of different isolation techniques on the isolated proteins from pigeon pea was investigated. Water, methanol, ammonium sulfate, and acetone were used for the precipitation of proteins from pigeon pea. Proximate composition, and antinutritional and functional properties of the pigeon pea flour and the isolated proteins were measured. Data generated were statistically analyzed. The proximate composition of the water-extracted protein isolate was moisture 8.30%, protein 91.83%, fat 0.25%, ash 0.05%, and crude fiber 0.05%. The methanol-extracted protein isolate composition was moisture 7.87%, protein 91.83%, fat 0.17%, and ash 0.13%, while crude fiber and carbohydrates were not detected. The composition of the ammonium sulfate-extracted protein isolate was moisture 7.73%, protein 91.73%, fat 0.36, ash 0.13%, and crude fiber 0.67%. The acetone-extracted protein isolate composition was moisture 8.03%, protein 91.50%, ash 0.67%, and fat 0.30%, but crude fiber and carbohydrates were not detected. The isolate precipitated with ammonium sulfate displayed the highest foaming capacity (37.63%) and foaming stability (55.75%). Isolates precipitated with methanol and acetone had the highest water absorption capacity (160%). Pigeon pea protein isolates extracted with methanol and ammonium sulfate had the highest oil absorption capacity of 145%. Protein isolates recovered through acetone and methanol had the highest emulsifying capacity of 2.23% and emulsifying stability of 91.47%, respectively. The proximate composition of the recovered protein isolates were of high purity. This shows the efficiency of the extraction techniques. The isolates had desirable solubility index. All the isolation techniques brought significant impact on the characteristics of the isolated pigeon pea protein.

  19. Assessment of flubendiamide residues in pigeon pea in different agro-climatic zones of India.

    PubMed

    Kale, V D; Walunj, A R; Battu, R S; Sahoo, Sanjay K; Singh, Balwinder; Paramasivam, M; Roy, Sankhajit; Banerjee, Tirthankar; Banerjee, Hemanta; Rao, Cherukuri Sreenivasa; Reddy, D Jagdishwar; Reddy, K Narasimha; Reddy, C Narendra; Tripathy, Vandana; Jaya, Maisnam; Pant, Shashi; Gupta, Monika; Singh, Geeta; Sharma, K K

    2012-07-01

    Supervised field trials were conducted at the research farms of four agricultural universities located at different agro-climatic zones of India to find out the harvest time residues of flubendiamide and its des-iodo metabolite on pigeon pea (Cajanus cajan) during the year 2006-2007. Two spray applications of flubendiamide 20 WDG at 50 g (T(1)) and 100 g (T(2)) a.i./ha were given to the crop at 15-days interval. The foliage samples at different time intervals were drawn at only one location, however, the harvest time samples of pigeon pea grain, shell, and straw were drawn at all the four locations. The residues were estimated by HPLC coupled with UV-VIS variable detector. No residues of flubendiamide and its des-iodo metabolite were found at harvest of the crop at or above the LOQ level of 0.05 μg/g. On the basis of the data generated, a pre-harvest interval (PHI) of 28 days has been recommended and the flubendiamide 20 WDG has been registered for use on pigeon pea by Central Insecticide Board and Registration Committee, Ministry of Agriculture, Government of India and the MRL has been fixed by Ministry of Health and Family Welfare, Government of India under Prevention of Food and Adulteration as 0.05 μg/g on pigeon pea grains.

  20. RADIO DETECTION OF GREEN PEAS: IMPLICATIONS FOR MAGNETIC FIELDS IN YOUNG GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborti, Sayan; Yadav, Naveen; Ray, Alak

    Green Peas are a new class of young, emission line galaxies that were discovered by citizen volunteers in the Galaxy Zoo project. Their low stellar mass, low metallicity, and very high star formation rates make Green Peas the nearby (z {approx} 0.2) analogs of the Lyman break galaxies which account for the bulk of the star formation in the early universe (z {approx} 2-5). They thus provide accessible laboratories in the nearby universe for understanding star formation, supernova feedback, particle acceleration, and magnetic field amplification in early galaxies. We report the first direct radio detection of Green Peas with lowmore » frequency Giant Metrewave Radio Telescope observations and our stacking detection with archival Very Large Array FIRST data. We show that the radio emission implies that these extremely young galaxies already have magnetic fields ({approx}> 30 {mu}G) even larger than that of the Milky Way. This is at odds with the present understanding of magnetic field growth based on amplification of seed fields by dynamo action over a galaxy's lifetime. Our observations strongly favor models with pregalactic magnetic fields at {mu}G levels.« less

  1. 7 CFR 457.140 - Dry pea crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... business enterprise regularly engaged in the processing of contract seed peas, that possesses all licenses... your production guarantee. Base contract price. The price per pound stipulated in the processor/seed... producer for at least 50 percent of the total production under contract with the processor/seed company...

  2. 7 CFR 457.140 - Dry pea crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... business enterprise regularly engaged in the processing of contract seed peas, that possesses all licenses... your production guarantee. Base contract price. The price per pound stipulated in the processor/seed... producer for at least 50 percent of the total production under contract with the processor/seed company...

  3. 7 CFR 457.140 - Dry pea crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... business enterprise regularly engaged in the processing of contract seed peas, that possesses all licenses... your production guarantee. Base contract price. The price per pound stipulated in the processor/seed... producer for at least 50 percent of the total production under contract with the processor/seed company...

  4. Pea (Pisum sp.) genetic resources, its analysis and exploration

    USDA-ARS?s Scientific Manuscript database

    Pea is important temperate region pulse, with feed, fodder and vegetable uses. Originated and domesticated in Middle East and Mediterranean, it formed important dietary components of early civilizations. Although Pisum is a small genus with two or three species, it is very diverse and structured, r...

  5. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids.

    PubMed

    Zhang, Lizhi; Garneau, Matthew G; Majumdar, Rajtilak; Grant, Jan; Tegeder, Mechthild

    2015-01-01

    The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic-active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane-localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element-companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  6. The effect of pea albumin 1F on glucose metabolism in mice.

    PubMed

    Dun, Xin-Peng; Li, Fa-Fang; Wang, Jian-He; Chen, Zheng-Wang

    2008-06-01

    Pea albumin 1F (PA1F), a plant peptide isolated from pea seeds, can dramatically increase blood glucose concentration by subcutaneous injection with a dosage of 5 or 10 microg/g (body weight) in normal and type II diabetic mice (KK/upj-Ay). The voltage-dependent anion channel 1 (VDAC-1) has been identified as the PA1F binding protein from mice pancreatic cell membrane, which may be involved in the regulation of enhancing blood glucose in response to PA1F binding. The results clearly show that peptide-signaling molecules from plants can affect mammalian physiological functions, especially, in association with glucose metabolism.

  7. Differential uptake of photosynthetic and non-photosynthetic proteins by pea root plastids.

    PubMed

    Yan, Xianxi; Khan, Sultan; Hase, Toshiharu; Emes, Michael J; Bowsher, Caroline G

    2006-11-27

    The photosynthetic proteins RuBiSCO, ferredoxin I and ferredoxin NADP(+)-oxidoreductase (pFNR) were efficiently imported into isolated pea chloroplasts but not into pea root plastids. By contrast non-photosynthetic ferredoxin III and heterotrophic FNR (hFNR) were efficiently imported into both isolated chloroplasts and root plastids. Chimeric ferredoxin I/III (transit peptide of ferredoxin I attached to the mature region of ferredoxin III) only imported into chloroplasts. Ferredoxin III/I (transit peptide of ferredoxin III attached to the mature region of ferredoxin I) imported into both chloroplasts and root plastids. This suggests that import depends on specific interactions between the transit peptide and the translocon apparatus.

  8. Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics

    PubMed Central

    2011-01-01

    Background The rhizosphere is the microbe-rich zone around plant roots and is a key determinant of the biosphere's productivity. Comparative transcriptomics was used to investigate general and plant-specific adaptations during rhizosphere colonization. Rhizobium leguminosarum biovar viciae was grown in the rhizospheres of pea (its legume nodulation host), alfalfa (a non-host legume) and sugar beet (non-legume). Gene expression data were compared to metabolic and transportome maps to understand adaptation to the rhizosphere. Results Carbon metabolism was dominated by organic acids, with a strong bias towards aromatic amino acids, C1 and C2 compounds. This was confirmed by induction of the glyoxylate cycle required for C2 metabolism and gluconeogenesis in all rhizospheres. Gluconeogenesis is repressed in R. leguminosarum by sugars, suggesting that although numerous sugar and putative complex carbohydrate transport systems are induced in the rhizosphere, they are less important carbon sources than organic acids. A common core of rhizosphere-induced genes was identified, of which 66% are of unknown function. Many genes were induced in the rhizosphere of the legumes, but not sugar beet, and several were plant specific. The plasmid pRL8 can be considered pea rhizosphere specific, enabling adaptation of R. leguminosarum to its host. Mutation of many of the up-regulated genes reduced competitiveness for pea rhizosphere colonization, while two genes specifically up-regulated in the pea rhizosphere reduced colonization of the pea but not alfalfa rhizosphere. Conclusions Comparative transcriptome analysis has enabled differentiation between factors conserved across plants for rhizosphere colonization as well as identification of exquisite specific adaptation to host plants. PMID:22018401

  9. Osmolytic Effect of Sucrose on Thermal Denaturation of Pea Seedling Copper Amine Oxidase.

    PubMed

    Amani, Mojtaba; Barzegar, Aboozar; Mazani, Mohammad

    2017-04-01

    Protein stability is a subject of interest by many researchers. One of the common methods to increase the protein stability is using the osmolytes. Many studies and theories analyzed and explained osmolytic effect by equilibrium thermodynamic while most proteins undergo an irreversible denaturation. In current study we investigated the effect of sucrose as an osmolyte on the thermal denaturation of pea seedlings amine oxidase by the enzyme activity, fluorescence spectroscopy, circular dichroism, and differential scanning calorimetry. All experiments are in agreement that pea seedlings amine oxidase denaturation is controlled kinetically and its kinetic stability is increased in presence of sucrose. Differential scanning calorimetry experiments at different scanning rates showed that pea seedlings amine oxidase unfolding obeys two-state irreversible model. Fitting the differential scanning calorimetry data to two-state irreversible model showed that unfolding enthalpy and T * , temperature at which rate constant equals unit per minute, are increased while activation energy is not affected by increase in sucrose concentration. We concluded that osmolytes decrease the molecular oscillation of irreversible proteins which leads to decline in unfolding rate constant.

  10. Evaluation of Sorption Mechanism of Pb (II) and Ni (II) onto Pea (Pisum sativum) Peels.

    PubMed

    Haq, Atta Ul; Saeed, Muhammad; Anjum, Salma; Bokhari, Tanveer Hussain; Usman, Muhammad; Tubbsum, Saiqa

    2017-07-01

    The present study was carried out to know the sorption mechanism of Pb (II) and Ni (II) in aqueous solution using pea peels under the influence of sorbent dose, pH, temperature, initial metal ion concentration and contact time. SEM and FTIR were used for characterization of pea peels. The study showed that solution pH affects sorption process and the optimum pH for Pb (II) was 6.0 while for that of Ni (II) was 7.0. Pseudo-second order kinetic model was found to be the most suitable one to explain the kinetic data not only due to high value of R 2 (>0.99) but also due to the closeness of the experimental sorption capacity values to that of calculated sorption capacity values of pseudo second order kinetic model. It can be seen from the results that Freundlich isotherm explains well the equilibrium data (R 2 >0.99). Sorption capacity of pea peels was 140.84 and 32.36 for Pb (II) and Ni (II) mg g -1 respectively. The positive value of ΔH° and negative values of ΔG° suggest that sorption of Pb (II) and Ni (II) onto pea peels is an endothermic and spontaneous process respectively.

  11. Co-inoculation of a Pea Core-Collection with Diverse Rhizobial Strains Shows Competitiveness for Nodulation and Efficiency of Nitrogen Fixation Are Distinct traits in the Interaction

    PubMed Central

    Bourion, Virginie; Heulin-Gotty, Karine; Aubert, Véronique; Tisseyre, Pierre; Chabert-Martinello, Marianne; Pervent, Marjorie; Delaitre, Catherine; Vile, Denis; Siol, Mathieu; Duc, Gérard; Brunel, Brigitte; Burstin, Judith; Lepetit, Marc

    2018-01-01

    Pea forms symbiotic nodules with Rhizobium leguminosarum sv. viciae (Rlv). In the field, pea roots can be exposed to multiple compatible Rlv strains. Little is known about the mechanisms underlying the competitiveness for nodulation of Rlv strains and the ability of pea to choose between diverse compatible Rlv strains. The variability of pea-Rlv partner choice was investigated by co-inoculation with a mixture of five diverse Rlv strains of a 104-pea collection representative of the variability encountered in the genus Pisum. The nitrogen fixation efficiency conferred by each strain was determined in additional mono-inoculation experiments on a subset of 18 pea lines displaying contrasted Rlv choice. Differences in Rlv choice were observed within the pea collection according to their genetic or geographical diversities. The competitiveness for nodulation of a given pea-Rlv association evaluated in the multi-inoculated experiment was poorly correlated with its nitrogen fixation efficiency determined in mono-inoculation. Both plant and bacterial genetic determinants contribute to pea-Rlv partner choice. No evidence was found for co-selection of competitiveness for nodulation and nitrogen fixation efficiency. Plant and inoculant for an improved symbiotic association in the field must be selected not only on nitrogen fixation efficiency but also for competitiveness for nodulation. PMID:29367857

  12. Co-inoculation of a Pea Core-Collection with Diverse Rhizobial Strains Shows Competitiveness for Nodulation and Efficiency of Nitrogen Fixation Are Distinct traits in the Interaction.

    PubMed

    Bourion, Virginie; Heulin-Gotty, Karine; Aubert, Véronique; Tisseyre, Pierre; Chabert-Martinello, Marianne; Pervent, Marjorie; Delaitre, Catherine; Vile, Denis; Siol, Mathieu; Duc, Gérard; Brunel, Brigitte; Burstin, Judith; Lepetit, Marc

    2017-01-01

    Pea forms symbiotic nodules with Rhizobium leguminosarum sv. viciae (Rlv). In the field, pea roots can be exposed to multiple compatible Rlv strains. Little is known about the mechanisms underlying the competitiveness for nodulation of Rlv strains and the ability of pea to choose between diverse compatible Rlv strains. The variability of pea-Rlv partner choice was investigated by co-inoculation with a mixture of five diverse Rlv strains of a 104-pea collection representative of the variability encountered in the genus Pisum . The nitrogen fixation efficiency conferred by each strain was determined in additional mono-inoculation experiments on a subset of 18 pea lines displaying contrasted Rlv choice. Differences in Rlv choice were observed within the pea collection according to their genetic or geographical diversities. The competitiveness for nodulation of a given pea-Rlv association evaluated in the multi-inoculated experiment was poorly correlated with its nitrogen fixation efficiency determined in mono-inoculation. Both plant and bacterial genetic determinants contribute to pea-Rlv partner choice. No evidence was found for co-selection of competitiveness for nodulation and nitrogen fixation efficiency. Plant and inoculant for an improved symbiotic association in the field must be selected not only on nitrogen fixation efficiency but also for competitiveness for nodulation.

  13. Understanding the role of H(2)O(2) during pea seed germination: a combined proteomic and hormone profiling approach.

    PubMed

    Barba-Espín, Gregorio; Diaz-Vivancos, Pedro; Job, Dominique; Belghazi, Maya; Job, Claudette; Hernández, José Antonio

    2011-11-01

    In a previous publication, we showed that the treatment of pea seeds in the presence of hydrogen peroxide (H(2)O(2)) increased germination performance as well as seedling growth. To gain insight into the mechanisms responsible for this behaviour, we have analysed the effect of treating mature pea seeds in the presence of 20 mm H(2)O(2) on several oxidative features such as protein carbonylation, endogenous H(2)O(2) and lipid peroxidation levels. We report that H(2)O(2) treatment of the pea seeds increased their endogenous H(2)O(2) content and caused carbonylation of storage proteins and of several metabolic enzymes. Under the same conditions, we also monitored the expression of two MAPK genes known to be activated by H(2)O(2) in adult pea plants. The expression of one of them, PsMAPK2, largely increased upon pea seed imbibition in H(2)O(2) , whereas no change could be observed in expression of the other, PsMAPK3. The levels of several phytohormones such as 1-aminocyclopropane carboxylic acid, indole-3-acetic acid and zeatin appeared to correlate with the measured oxidative indicators and with the expression of PsMAPK2. Globally, our results suggest a key role of H(2)O(2) in the coordination of pea seed germination, acting as a priming factor that involves specific changes at the proteome, transcriptome and hormonal levels. © 2011 Blackwell Publishing Ltd.

  14. Stamina pistilloida, the Pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences, and leaves.

    PubMed

    Taylor, S; Hofer, J; Murfet, I

    2001-01-01

    Isolation and characterization of two severe alleles at the Stamina pistilloida (Stp) locus reveals that Stp is involved in a wide range of developmental processes in the garden pea. The most severe allele, stp-4, results in flowers consisting almost entirely of sepals and carpels. Production of ectopic secondary flowers in stp-4 plants suggests that Stp is involved in specifying floral meristem identity in pea. The stp mutations also reduce the complexity of the compound pea leaf, and primary inflorescences often terminate prematurely in an aberrant sepaloid flower. In addition, stp mutants were shorter than their wild-type siblings due to a reduction in cell number in their internodes. Fewer cells were also found in the epidermis of the leaf rachis of stp mutants. Examination of the effects of stp-4 in double mutant combinations with af, tl, det, and veg2-2-mutations known to influence leaf, inflorescence, and flower development in pea-suggests that Stp function is independent of these genes. A synergistic interaction between weak mutant alleles at Stp and Uni indicated that these two genes act together, possibly to regulate primordial growth. Molecular analysis revealed that Stp is the pea homolog of the Antirrhinum gene Fimbriata (Fim) and of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Differences between Fim/UFO and Stp mutant phenotypes and expression patterns suggest that expansion of Stp activity into the leaf was an important step during evolution of the compound leaf in the garden pea.

  15. A diagnostic guide for Fusarium Root Rot of pea

    USDA-ARS?s Scientific Manuscript database

    Fusarium root rot, caused by Fusarium solani f. sp. pisi, is a major root rot pathogen in pea production areas worldwide. Here we provide a diagnostic guide that describes: the taxonomy of the pathogen, signs and symptoms of the pathogen, host range, geographic distribution, methods used to isolate ...

  16. Alterations in the Helicoverpa armigera Midgut Digestive Physiology after Ingestion of Pigeon Pea Inducible Leucine Aminopeptidase

    PubMed Central

    Lomate, Purushottam R.; Jadhav, Bhakti R.; Giri, Ashok P.; Hivrale, Vandana K.

    2013-01-01

    Jasmonate inducible plant leucine aminopeptidase (LAP) is proposed to serve as direct defense in the insect midgut. However, exact functions of inducible plant LAPs in the insect midgut remain to be estimated. In the present investigation, we report the direct defensive role of pigeon pea inducible LAP in the midgut of Helicoverpa armigera (Lepidoptera: Noctuidae) and responses of midgut soluble aminopeptidases and serine proteinases upon LAP ingestion. Larval growth and survival was significantly reduced on the diets supplemented with pigeon pea LAP. Aminopeptidase activities in larvae remain unaltered in presence or absence of inducible LAP in the diet. On the contrary, serine proteinase activities were significantly decreased in the larvae reared on pigeon pea LAP containing diet as compared to larvae fed on diet without LAP. Our data suggest that pigeon pea inducible LAP is responsible for the degradation of midgut serine proteinases upon ingestion. Reduction in the aminopeptidase activity with LpNA in the H. armigera larvae was compensated with an induction of aminopeptidase activity with ApNA. Our findings could be helpful to further dissect the roles of plant inducible LAPs in the direct plant defense against herbivory. PMID:24098675

  17. Alterations in the Helicoverpa armigera midgut digestive physiology after ingestion of pigeon pea inducible leucine aminopeptidase.

    PubMed

    Lomate, Purushottam R; Jadhav, Bhakti R; Giri, Ashok P; Hivrale, Vandana K

    2013-01-01

    Jasmonate inducible plant leucine aminopeptidase (LAP) is proposed to serve as direct defense in the insect midgut. However, exact functions of inducible plant LAPs in the insect midgut remain to be estimated. In the present investigation, we report the direct defensive role of pigeon pea inducible LAP in the midgut of Helicoverpa armigera (Lepidoptera: Noctuidae) and responses of midgut soluble aminopeptidases and serine proteinases upon LAP ingestion. Larval growth and survival was significantly reduced on the diets supplemented with pigeon pea LAP. Aminopeptidase activities in larvae remain unaltered in presence or absence of inducible LAP in the diet. On the contrary, serine proteinase activities were significantly decreased in the larvae reared on pigeon pea LAP containing diet as compared to larvae fed on diet without LAP. Our data suggest that pigeon pea inducible LAP is responsible for the degradation of midgut serine proteinases upon ingestion. Reduction in the aminopeptidase activity with LpNA in the H. armigera larvae was compensated with an induction of aminopeptidase activity with ApNA. Our findings could be helpful to further dissect the roles of plant inducible LAPs in the direct plant defense against herbivory.

  18. Pea VEGETATIVE2 Is an FD Homolog That Is Essential for Flowering and Compound Inflorescence Development

    PubMed Central

    Sussmilch, Frances C.; Berbel, Ana; Hecht, Valérie; Vander Schoor, Jacqueline K.; Ferrándiz, Cristina; Madueño, Francisco; Weller, James L.

    2015-01-01

    As knowledge of the gene networks regulating inflorescence development in Arabidopsis thaliana improves, the current challenge is to characterize this system in different groups of crop species with different inflorescence architecture. Pea (Pisum sativum) has served as a model for development of the compound raceme, characteristic of many legume species, and in this study, we characterize the pea VEGETATIVE2 (VEG2) locus, showing that it is critical for regulation of flowering and inflorescence development and identifying it as a homolog of the bZIP transcription factor FD. Through detailed phenotypic characterizations of veg2 mutants, expression analyses, and the use of protein-protein interaction assays, we find that VEG2 has important roles during each stage of development of the pea compound inflorescence. Our results suggest that VEG2 acts in conjunction with multiple FLOWERING LOCUS T (FT) proteins to regulate expression of downstream target genes, including TERMINAL FLOWER1, LEAFY, and MADS box homologs, and to facilitate cross-regulation within the FT gene family. These findings further extend our understanding of the mechanisms underlying compound inflorescence development in pea and may have wider implications for future manipulation of inflorescence architecture in related legume crop species. PMID:25804541

  19. Characterization of Five Fungal Endophytes Producing Cajaninstilbene Acid Isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.

    PubMed Central

    Zu, Yuan Gang; Fu, Yu Jie; Wang, Wei; Luo, Meng; Efferth, Thomas

    2011-01-01

    Five fungal endophytes (K4, K5, K6, K9, K14) producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid) were isolated from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L) among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS) rRNA and β-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA. PMID:22102911

  20. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds.

    PubMed

    Ndiaye, Fatou; Vuong, Tri; Duarte, Jairo; Aluko, Rotimi E; Matar, Chantal

    2012-02-01

    Enzymatic protein hydrolysates of yellow pea seed have been shown to possess high anti-oxidant and anti-bacterial activities. The aim of this work was to confirm the anti-oxidant, anti-inflammatory and immunomodulating activities of an enzymatic protein hydrolysate of yellow field pea seeds. The anti-oxidant and anti-inflammatory properties of peptides from yellow field pea proteins (Pisum sativum L.) were investigated in LPS/IFN-γ-activated RAW 264.7 NO⁻ macrophages. The immunomodulating potential of pea protein hydrolysate (PPH) was then studied in a murine model. Pea protein hydrolysate, after a 12 h pre-treatment, showed significant inhibition of NO production by activated macrophages up to 20%. Moreover, PPH significantly inhibited their secretion of pro-inflammatory cytokines, TNF-α- and IL-6, up to 35 and 80%, respectively. Oral administration of PPH in mice enhanced the phagocytic activity of their peritoneal macrophages and stimulated the gut mucosa immune response. The number of IgA+ cells was elevated in the small intestine lamina propria, accompanied by an increase in the number of IL-4+, IL-10+ and IFN-γ+ cells. This was correlated to up-regulation of IL-6 secretion by small intestine epithelial cells (IEC), probably responsible for B-cell terminal differentiation to IgA-secreting cells. Moreover, PPH might have increased IL-6 production in IECs via the stimulation of toll-like receptors (TLRs) family, especially TLR2 and TLR4 since either anti-TLR2 or anti-TLR4 was able to completely abolish PPH-induced IL-6 secretion. Enzymatic protein degradation confers anti-oxidant, anti-inflammatory and immunomodulating potentials to pea proteins, and the resulted peptides could be used as an alternative therapy for the prevention of inflammatory-related diseases.

  1. Physiological effects of a pea protein isolate in gnotobiotic rats: comparison with a soybean isolate and meat.

    PubMed

    Lhoste, E F; Mouzon, B; Andrieux, C; Gueugneau, A M; Fiszlewicz, M; Corring, T; Szylit, O

    1998-01-01

    Pea proteins have been considered for the introduction into the human diet only recently. This protein source was tested on nutritional and digestive parameters in heteroxenic male Fischer rats inoculated with a human faecal microflora from a methane producer. Compared to soybean proteins, pea proteins have similar effects on the rat's endogenous and bacterial digestive patterns. Compared to the pea proteins, a diet containing a standard meat meal enhanced the pH and the production of ammonia, while a lyophilized beef meat enhanced that of urea. The diet containing the standard meat decreases short-chain fatty acids and modifies the ratio of caecal short-chain fatty acids. Both animal diets decreased the specific activities of pancreatic proteases such as chymotrypsin (EC 3.4.21.1), trypsin (EC 3.4.21.4), and carboxypeptidase A (EC 3.4.17.1) when compared to the diet containing the pea isolate. In conclusion, the whole composition of the diet, more than the origin of the dietary protein, influences the rat's digestive pattern.

  2. Development of cookies made with cocoyam, fermented sorghum and germinated pigeon pea flour blends using response surface methodology.

    PubMed

    Okpala, Laura C; Okoli, Eric C

    2014-10-01

    Cookies were produced from blends of cocoyam, fermented sorghum and germinated pigeon pea flours. The study was carried out to evaluate the effects of varying the proportions of these components on the sensory and protein quality of the cookies. The sensory attributes studied were colour, taste, texture, crispness and general acceptability while the protein quality indices were biological value (BV) and net protein utilization (NPU). Mixture response surface methodology was used to model the sensory and protein quality with single, binary and ternary combinations of germinated pigeon pea, fermented sorghum and cocoyam flours. Results showed that BV and NPU of most of the cookies were above minimum acceptable levels. With the exception of cookies containing high levels of pigeon pea flour, cookies had acceptable sensory scores. Increase in pigeon pea flour resulted in increase in the BV and NPU. Regression equations suggested that the ternary blends produced the highest increase in all the sensory attributes (with the exception of colour).

  3. UV-induced changes of active components and antioxidant activity in postharvest pigeon pea [Cajanus cajan (L.) Millsp.] leaves.

    PubMed

    Wei, Zuo-Fu; Luo, Meng; Zhao, Chun-Jian; Li, Chun-Ying; Gu, Cheng-Bo; Wang, Wei; Zu, Yuan-Gang; Efferth, Thomas; Fu, Yu-Jie

    2013-02-13

    In this study, the effect of UV irradiation (UV-A, UV-B, and UV-C) on phytochemicals, total phenolics, and antioxidant activity of postharvest pigeon pea leaves was evaluated. The response of pigeon pea leaves to UV irradiation was phytochemical specific. UV-B and UV-C induced higher levels of phytochemicals, total phenolics, and antioxidant activity in pigeon pea leaves compared with UV-A. Furthermore, UV-B irradiation proved to possess a long-lasting effect on the levels of phenolics and antioxidant activity. After adapting for 48 h at 4 °C following 4 h UV-B irradiation, total phenolics and antioxidant activity were approximately 1.5-fold and 2.2-fold increased from 39.4 mg GAE/g DM and 15.0 μmol GAE/g DM to 59.1 mg GAE/g DM and 32.5 μmol GAE/g DM, respectively. These results indicate that UV irradiation of pigeon pea leaves can be beneficial in terms of increasing active components and antioxidant activity.

  4. Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids.

    PubMed

    Terpolilli, Jason J; Masakapalli, Shyam K; Karunakaran, Ramakrishnan; Webb, Isabel U C; Green, Rob; Watmough, Nicholas J; Kruger, Nicholas J; Ratcliffe, R George; Poole, Philip S

    2016-10-15

    Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the tricarboxylic acid (TCA) cycle to generate NAD(P)H for reduction of N2 Metabolic flux analysis of laboratory-grown Rhizobium leguminosarum showed that the flux from [(13)C]succinate was consistent with respiration of an obligate aerobe growing on a TCA cycle intermediate as the sole carbon source. However, the instability of fragile pea bacteroids prevented their steady-state labeling under N2-fixing conditions. Therefore, comparative metabolomic profiling was used to compare free-living R. leguminosarum with pea bacteroids. While the TCA cycle was shown to be essential for maximal rates of N2 fixation, levels of pyruvate (5.5-fold reduced), acetyl coenzyme A (acetyl-CoA; 50-fold reduced), free coenzyme A (33-fold reduced), and citrate (4.5-fold reduced) were much lower in bacteroids. Instead of completely oxidizing acetyl-CoA, pea bacteroids channel it into both lipid and the lipid-like polymer poly-β-hydroxybutyrate (PHB), the latter via a type III PHB synthase that is active only in bacteroids. Lipogenesis may be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Direct reduction by NAD(P)H of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance the production of NAD(P)H from oxidation of acetyl-CoA in the TCA cycle with its storage in PHB and lipids. Biological nitrogen fixation by symbiotic bacteria (rhizobia) in legume root nodules is an energy-expensive process. Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the TCA cycle to generate NAD(P)H for reduction of N2 However, direct reduction of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox

  5. Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids

    PubMed Central

    Terpolilli, Jason J.; Masakapalli, Shyam K.; Karunakaran, Ramakrishnan; Webb, Isabel U. C.; Green, Rob; Watmough, Nicholas J.; Kruger, Nicholas J.; Ratcliffe, R. George

    2016-01-01

    ABSTRACT Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the tricarboxylic acid (TCA) cycle to generate NAD(P)H for reduction of N2. Metabolic flux analysis of laboratory-grown Rhizobium leguminosarum showed that the flux from [13C]succinate was consistent with respiration of an obligate aerobe growing on a TCA cycle intermediate as the sole carbon source. However, the instability of fragile pea bacteroids prevented their steady-state labeling under N2-fixing conditions. Therefore, comparative metabolomic profiling was used to compare free-living R. leguminosarum with pea bacteroids. While the TCA cycle was shown to be essential for maximal rates of N2 fixation, levels of pyruvate (5.5-fold reduced), acetyl coenzyme A (acetyl-CoA; 50-fold reduced), free coenzyme A (33-fold reduced), and citrate (4.5-fold reduced) were much lower in bacteroids. Instead of completely oxidizing acetyl-CoA, pea bacteroids channel it into both lipid and the lipid-like polymer poly-β-hydroxybutyrate (PHB), the latter via a type III PHB synthase that is active only in bacteroids. Lipogenesis may be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Direct reduction by NAD(P)H of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance the production of NAD(P)H from oxidation of acetyl-CoA in the TCA cycle with its storage in PHB and lipids. IMPORTANCE Biological nitrogen fixation by symbiotic bacteria (rhizobia) in legume root nodules is an energy-expensive process. Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the TCA cycle to generate NAD(P)H for reduction of N2. However, direct reduction of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent

  6. Effect of genotype and environment on the concentrations of starch and protein in, and the physicochemical properties of starch from, field pea and fababean.

    PubMed

    Hood-Niefer, Shannon D; Warkentin, Thomas D; Chibbar, Ravindra N; Vandenberg, Albert; Tyler, Robert T

    2012-01-15

    The effects of genotype and environment and their interaction on the concentrations of starch and protein in, and the amylose content and thermal and pasting properties of starch from, pea and fababean are not well known. Differences due to genotype were observed in the concentrations of starch and protein in pea and fababean, in the onset temperature (To) and peak temperature (Tp) of gelatinization of fababean starch, and in the pasting, trough, cooling and final viscosities of pea starch and fababean starch. Significant two-way interactions (location × genotype) were observed for the concentration of starch in fababean and the amylose content, To, endothermic enthalpy of gelatinization (ΔH) and trough viscosity of fababean starch. Significant three-way interactions (location × year × genotype) were observed for the concentration of starch in pea and the pasting, trough, cooling and final viscosities of pea starch. Differences observed in the concentrations of starch and protein in pea and fababean were sufficient to be of practical significance to end-users, but the relatively small differences in amylose content and physicochemical properties of starch from pea and fababean were not. Copyright © 2011 Society of Chemical Industry.

  7. Genetic improvement of grass pea for low neurotoxin (β-ODAP) content.

    PubMed

    Kumar, Shiv; Bejiga, G; Ahmed, S; Nakkoul, H; Sarker, A

    2011-03-01

    Grass pea is a promising crop for adaptation under climate change because of its tolerance to drought, water-logging and salinity, and being almost free from insect-pests and diseases. In spite of such virtues, global area under its cultivation has decreased because of ban on its cultivation in many countries. The ban is imposed due to its association with neurolathyrism, a non-reversible neurological disorder in humans and animals due to presence of neurotoxin, β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP) in its seedlings and seeds. The traditional varieties of grass pea contain 0.5-2.5% β-ODAP. Exploitable genetic variability for β-ODAP has been observed for development of low ODAP varieties, which along with improved agronomic and detoxification practices can help reduce the risk of lathyrism. Collaborative efforts between ICARDA and NARS have resulted in development of improved varieties such as Wasie in Ethiopia, Ratan, Prateek and Mahateora in India, and BARI Khesari-1 and BARI Khesari-2 in Bangladesh with <0.10% β-ODAP. Soil application of 15-20 kg ha(-1) zinc sulphate, early planting, and soaking seeds in water have shown significant effects on β-ODAP. Because of the often cross-pollination nature, the current breeding procedures being followed in grass pea requires paradigm shift in its approach for a possible genetic breakthrough. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Function of antioxidant enzymes and metabolites during maturation of pea fruits.

    PubMed

    Matamoros, Manuel A; Loscos, Jorge; Dietz, Karl-Josef; Aparicio-Tejo, Pedro M; Becana, Manuel

    2010-01-01

    In plant cells, antioxidants keep reactive oxygen species at low concentrations, avoiding oxidative damage while allowing them to play crucial functions in signal transduction. However, little is known about the role of antioxidants during fruit maturation, especially in legumes. Snap pea (Pisum sativum) plants, which have edible fruits, were grown under nodulating and non-nodulating conditions. Fruits were classified in three maturity stages and antioxidants were determined in the seeds and seedless pods. Maturation or prolonged storage of fruits at 25 degrees C led to a decline in antioxidant activities and metabolites and in gamma-glutamylcysteine synthetase protein. Notable exceptions were superoxide dismutase activity and glutathione peroxidase protein, which increased in one or both of these processes. During maturation, cytosolic peroxiredoxin decreased in seeds but increased in pods, and ascorbate oxidase activity was largely reduced in seeds. In stored fruits, ascorbate oxidase activity was nearly abolished in seeds but doubled in pods. It is concluded that symbiotic nitrogen fixation is as effective as nitrogen fertilization in maintaining the antioxidant capacity of pea fruits and that, contrary to climacteric fruits, a general decrease in antioxidants during maturation does not involve oxidative stress. Results underscore the importance of the antioxidant system in reproductive organs and point to ascorbate-glutathione metabolism and cytosolic peroxiredoxin as key players in pea fruit development.

  9. Function of antioxidant enzymes and metabolites during maturation of pea fruits

    PubMed Central

    Matamoros, Manuel A.; Loscos, Jorge; Dietz, Karl-Josef; Aparicio-Tejo, Pedro M.; Becana, Manuel

    2010-01-01

    In plant cells, antioxidants keep reactive oxygen species at low concentrations, avoiding oxidative damage while allowing them to play crucial functions in signal transduction. However, little is known about the role of antioxidants during fruit maturation, especially in legumes. Snap pea (Pisum sativum) plants, which have edible fruits, were grown under nodulating and non-nodulating conditions. Fruits were classified in three maturity stages and antioxidants were determined in the seeds and seedless pods. Maturation or prolonged storage of fruits at 25 °C led to a decline in antioxidant activities and metabolites and in γ-glutamylcysteine synthetase protein. Notable exceptions were superoxide dismutase activity and glutathione peroxidase protein, which increased in one or both of these processes. During maturation, cytosolic peroxiredoxin decreased in seeds but increased in pods, and ascorbate oxidase activity was largely reduced in seeds. In stored fruits, ascorbate oxidase activity was nearly abolished in seeds but doubled in pods. It is concluded that symbiotic nitrogen fixation is as effective as nitrogen fertilization in maintaining the antioxidant capacity of pea fruits and that, contrary to climacteric fruits, a general decrease in antioxidants during maturation does not involve oxidative stress. Results underscore the importance of the antioxidant system in reproductive organs and point to ascorbate–glutathione metabolism and cytosolic peroxiredoxin as key players in pea fruit development. PMID:19822534

  10. Protein gels and emulsions from mixtures of Cape hake and pea proteins.

    PubMed

    Tomé, Ana Sofia; Pires, Carla; Batista, Irineu; Sousa, Isabel; Raymundo, Anabela

    2015-01-01

    Portioning of frozen fish generates by-products such as fish 'sawdust' and cut-offs which can be further processed into protein concentrates and isolates. The objective of the present work was to produce gels and emulsions using recovered Cape hake protein powder (HPP). In previous works, the structures of the gels produced by HPP were found to be strong, with a high rubbery character. In this work, the addition of commercial pea proteins (PPC) to HPP gels and emulsions was studied. Physical properties of gels and emulsions prepared with different proportions of mixtures of PPC and HPP were evaluated. In general, gels and emulsions showed high values for whiteness and, as expected, the higher content of HPP in the protein mixtures led to higher firmness values of the gels. The gel network was rapidly formed upon heating due to the fish protein macromolecules and further reinforced by the pea protein macromolecules when cooled to 5 °C. Both visco-elastic parameters, storage and loss moduli, of the produced gels increased with the HPP proportion in the protein mixtures, corresponding to more structured systems. For the emulsions, two different pH environments were studied: 3.8 and 7.0. At neutral pH a synergy was found between the vegetable and fish protein, which is not so strong when pH is lowered to 3.8, near the isoelectric point of pea proteins (pI = 4.5). This evidence was supported by the results from the texture measurements, viscosity and visco-elastic parameters. Gels made from Cape hake proteins showed a softer texture and were less rubbery with the addition of pea proteins. Emulsions stabilised by these mixtures showed slightly different behaviour when produced at pH 7.0 or pH 3.8. © 2014 Society of Chemical Industry.

  11. Growth performance and carcass and meat quality of broiler chickens fed diets containing micronized-dehulled peas (Pisum sativum cv. Spirale) as a substitute of soybean meal.

    PubMed

    Laudadio, V; Tufarelli, V

    2010-07-01

    An experiment was carried out to evaluate the effects of diets containing peas on productive traits, carcass yields, and fatty acid profiles (breast and drumstick meat) of broiler chickens. Hubbard strain broiler chicks, divided into 2 groups, received from 14 d to slaughtering age (49 d) a wheat middlings-based diet containing soybean (190 g/kg) or micronized-dehulled peas (400 g/kg) as the main protein source. The inclusion of peas did not significantly change the growth performance of birds. The pea level had no effect on the dressing percentage, the percentage of breast or drumstick muscles, and abdominal fat. The muscles of birds fed the pea diet had significant (P < 0.05) lower L* (lightness) and b* (yellowness, drumstick muscle) values and fat content. Instead, total collagen and water-holding capacity values were higher in the pea treatment. The polyunsaturated fatty acid concentration in breast and drumstick muscles was significantly increased with the alternative protein source inclusion, whereas the saturated fatty acid was similar among treatments. The n-6/n-3 polyunsaturated fatty acid ratio of the broiler drumstick meat decreased significantly in the pea group. Dietary pea inclusion improved the saturation index of meat without altering atherogenic and thrombogenic indexes. It can be concluded that the pea treatment tested had a positive effect on the performance and meat quality of broiler chickens.

  12. Green Pea and Garlic Puree Model Food Development for Thermal Pasteurization Process Quality Evaluation.

    PubMed

    Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S; Barbosa-Cánovas, Gustavo V; Liu, Fang

    2017-07-01

    Development and selection of model foods is a critical part of microwave thermal process development, simulation validation, and optimization. Previously developed model foods for pasteurization process evaluation utilized Maillard reaction products as the time-temperature integrators, which resulted in similar temperature sensitivity among the models. The aim of this research was to develop additional model foods based on different time-temperature integrators, determine their dielectric properties and color change kinetics, and validate the optimal model food in hot water and microwave-assisted pasteurization processes. Color, quantified using a * value, was selected as the time-temperature indicator for green pea and garlic puree model foods. Results showed 915 MHz microwaves had a greater penetration depth into the green pea model food than the garlic. a * value reaction rates for the green pea model were approximately 4 times slower than in the garlic model food; slower reaction rates were preferred for the application of model food in this study, that is quality evaluation for a target process of 90 °C for 10 min at the cold spot. Pasteurization validation used the green pea model food and results showed that there were quantifiable differences between the color of the unheated control, hot water pasteurization, and microwave-assisted thermal pasteurization system. Both model foods developed in this research could be utilized for quality assessment and optimization of various thermal pasteurization processes. © 2017 Institute of Food Technologists®.

  13. Evaluation of Clausena pentaphylla (Roxb.) DC oil as a fungitoxicant against storage mycoflora of pigeon pea seeds.

    PubMed

    Pandey, Abhay K; Palni, Uma T; Tripathi, Nijendra N

    2013-05-01

    The present study aimed to evaluate the antifungal activity of 30 essential oils against four dominant fungi Aspergillus flavus Link., A. niger van Tieghem, A. ochraceus Wilhelm and A. terreus Thom of stored pigeon pea seeds at a concentration of 0.36 µL mL(-1). Various fungitoxic properties, such as minimum inhibitory concentration, minimum fungicidal concentration and fungitoxic spectrum, of the most potent oil were determined. The efficacy of the most potent oil in preservation of pigeon pea seeds for 6 months was also carried out by storing 1 kg of seeds in the oil vapour. Clausena pentaphylla and Citrus limon oils were more effective against all the fungi tested, which exhibited 100% per cent mycelial inhibition. The minimum inhibitory concentration of C. pentaphylla oil was determined as 0.07 µL mL(-1) against all the test fungi and was found to be more toxic than Citrus limon oil. C. pentaphylla oil exhibited a broad range of fungitoxicity against 16 other storage fungi of pigeon pea seeds. C. pentaphylla oil significantly protected 1 kg seeds of pigeon pea from fungal deterioration and was superior to synthetic fumigants. The oil did not show any phytotoxicity and the protein content of the seeds was significantly retained for up to 6 months of storage. Thus, C. pentaphylla oil may be used as an effective fumigant in the ecofriendly management of storage fungi of pigeon pea seeds. © 2012 Society of Chemical Industry.

  14. Granary trial of protein-enriched pea flour for the control of three stored-product insects in barley.

    PubMed

    Hou, Xingwei; Fields, Paul G

    2003-06-01

    A granary trial was conducted to evaluate the efficacy of protein-enriched pea flour against three common stored-grain insects, Sitophilus oryzae (L.), Tribolium castaneum (Herbst), and Cryptolestes ferrugineus (Stephens). Six 30-t farm granaries were filled with approximately 11 t of barley. The barley was either not treated, treated with protein-enriched pea flour at 0.1% throughout the entire grain mass, or treated at 0.5% throughout the top half of the grain mass. Adult insects were released in screened boxes (two insects per kilogram barley for S. oryzae and T. castaneum 1.4 insects per kilogram barley for C. ferrugineus). Barley was sampled four times during the 70-d trial. The number and mortality of adults and emerged adults in the samples were noted. Four kinds of traps, flight, surface-pitfall, probe-pitfall, and sticky-bar, were placed at different locations in the granaries to estimate the movement of insects. The 0.1% protein-enriched pea flour treatment reduced adult numbers of S. oryzae by 93%, T. castaneum by 66%, and C. ferrugineus by 58%, and reduced the emerged adults by 87, 77, and 77%, respectively. Treating the top half of the barley with 0.5% protein-enriched pea flour had similar effects as treating the entire grain mass with 0.1% pea-protein flour. However, the top-half treatment failed to prevent insects from penetrating into the untreated lower layer. Differences between traps are discussed.

  15. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase.

    PubMed

    Kumar, Vinay; Chattopadhyay, Arnab; Ghosh, Sumit; Irfan, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-06-01

    Soya bean (Glycine max) and grass pea (Lathyrus sativus) seeds are important sources of dietary proteins; however, they also contain antinutritional metabolite oxalic acid (OA). Excess dietary intake of OA leads to nephrolithiasis due to the formation of calcium oxalate crystals in kidneys. Besides, OA is also a known precursor of β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), a neurotoxin found in grass pea. Here, we report the reduction in OA level in soya bean (up to 73%) and grass pea (up to 75%) seeds by constitutive and/or seed-specific expression of an oxalate-degrading enzyme, oxalate decarboxylase (FvOXDC) of Flammulina velutipes. In addition, β-ODAP level of grass pea seeds was also reduced up to 73%. Reduced OA content was interrelated with the associated increase in seeds micronutrients such as calcium, iron and zinc. Moreover, constitutive expression of FvOXDC led to improved tolerance to the fungal pathogen Sclerotinia sclerotiorum that requires OA during host colonization. Importantly, FvOXDC-expressing soya bean and grass pea plants were similar to the wild type with respect to the morphology and photosynthetic rates, and seed protein pool remained unaltered as revealed by the comparative proteomic analysis. Taken together, these results demonstrated improved seed quality and tolerance to the fungal pathogen in two important legume crops, by the expression of an oxalate-degrading enzyme. © 2016 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Lyα Profile, Dust, and Prediction of Lyα Escape Fraction in Green Pea Galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Gronke, Max; Rhoads, James E.; Leitherer, Claus; Wofford, Aida; Jiang, Tianxing; Dijkstra, Mark; Tilvi, V.; Wang, Junxian

    2017-08-01

    We studied Lyman-α (Lyα) escape in a statistical sample of 43 Green Peas with HST/COS Lyα spectra. Green Peas are nearby star-forming galaxies with strong [O III]λ5007 emission lines. Our sample is four times larger than the previous sample and covers a much more complete range of Green Pea properties. We found that about two-thirds of Green Peas are strong Lyα line emitters with rest-frame Lyα equivalent width > 20 \\mathringA . The Lyα profiles of Green Peas are diverse. The Lyα escape fraction, defined as the ratio of observed Lyα flux to intrinsic Lyα flux, shows anti-correlations with a few Lyα kinematic features—both the blue peak and red peak velocities, the peak separations, and the FWHM of the red portion of the Lyα profile. Using properties measured from Sloan Digital Sky Survey optical spectra, we found many correlations—the Lyα escape fraction generally increases at lower dust reddening, lower metallicity, lower stellar mass, and higher [O III]/[O II] ratio. We fit their Lyα profiles with the H I shell radiative transfer model and found that the Lyα escape fraction is anti-correlated with the best-fit N H I . Finally, we fit an empirical linear relation to predict {f}{esc}{Lyα } from the dust extinction and Lyα red peak velocity. The standard deviation of this relation is about 0.3 dex. This relation can be used to isolate the effect of intergalactic medium (IGM) scatterings from Lyα escape and to probe the IGM optical depth along the line of sight of each z> 7 Lyα emission-line galaxy in the James Webb Space Telescope era.

  17. 7 CFR 457.137 - Green pea crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... processor contracts to us on or before the acreage reporting date. 7. Insured Crop (a) In accordance with... calendar year in which the insured peas would normally be harvested if you provide notice to us that the... operation of harvesting equipment; and (ii) Abnormally hot or cold temperatures that cause an unexpected...

  18. 7 CFR 457.137 - Green pea crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... processor contracts to us on or before the acreage reporting date. 7. Insured Crop (a) In accordance with... calendar year in which the insured peas would normally be harvested if you provide notice to us that the... operation of harvesting equipment; and (ii) Abnormally hot or cold temperatures that cause an unexpected...

  19. 7 CFR 457.137 - Green pea crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... processor contracts to us on or before the acreage reporting date. 7. Insured Crop (a) In accordance with... calendar year in which the insured peas would normally be harvested if you provide notice to us that the... operation of harvesting equipment; and (ii) Abnormally hot or cold temperatures that cause an unexpected...

  20. Instrumental and sensory properties of pea protein-fortified extruded rice snacks.

    PubMed

    Philipp, Claudia; Buckow, Roman; Silcock, Pat; Oey, Indrawati

    2017-12-01

    Characteristic attributes of pea-protein fortified, extruded rice snacks were evaluated by mechanical, acoustic and descriptive sensory analysis. The addition of pea protein isolate (0 to 45% (w/w)) to rice flour and extruder screw speed strongly affected the expansion behaviour and therefore, textural attributes of extruded snack products. The sensory panel described the texture of highly expanded extrudates as crisp, while low expanded extrudates were perceived as hard, crunchy and non-crisp. Results of the instrumental and sensory analysis were compared and showed a high correlation between mechanical and sensory hardness (r=0.98), as well as acoustic and sensory crispness (r=0.88). However, poor and/or negative correlations between acoustic and sensory hardness and crunchiness were observed (r=-0.35 and -0.84, respectively). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots

    NASA Technical Reports Server (NTRS)

    Wu, L. L.; Mitchell, J. P.; Cohn, N. S.; Kaufman, P. B.

    1993-01-01

    The invertase (EC 3.2.1.26) purified from cell walls of dwarf pea stems to homogeneity has a molecular mass of 64 kilodaltons (kD). Poly(A)+RNA was isolated from shoots of dwarf pea plants, and a cDNA library was constructed using lambda gt11 as an expression vector. The expression cDNA library was screened with polyclonal antibodies against pea cell wall invertase. One invertase cDNA clone was characterized as a full-length cDNA with 1,863 base pairs. Compared with other known invertases, one homologous region in the amino acid sequence was found. The conserved motif, Asn-Asp-Pro-Asn-Gly, is located near the N-terminal end of invertase. Northern blot analysis showed that the amount of invertase mRNA (1.86 kb) was rapidly induced to a maximal level 4 h after GA3 treatment, then gradually decreased to the control level. The mRNA level at 4 h in GA3-treated peas was fivefold higher than that of the control group. The maximal increase in activity of pea cell wall invertase elicited by GA3 occcured at 8 h after GA3 treatment. This invertase isoform was shown immunocytochemically to be localized in the cell walls, where a 10-fold higher accumulation occurred in GA3-treated tissue compared with control tissue. This study indicates that the expression of the pea shoot cell-wall invertase gene could be regulated by GA3 at transcriptional and/or translational levels.

  2. Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil.

    PubMed

    Bajaj, Poonam R; Bhunia, Kanishka; Kleiner, Leslie; Joyner Melito, Helen S; Smith, Denise; Ganjyal, Girish; Sablani, Shyam S

    2017-03-01

    Unhydrolysed pea protein (UN) forms very viscous emulsions when used at higher concentrations. To overcome this, UN was hydrolysed using enzymes alcalase, flavourzyme, neutrase, alcalase-flavourzyme, and neutrase-flavourzyme at 50 °C for 0 min, 30 min, 60 min, and 120 min to form hydrolysed proteins A, F, N, AF, and NF, respectively. All hydrolysed proteins had lower apparent viscosity and higher solubility than UN. Foaming capacity of A was the highest, followed by NF, N, and AF. Hydrolysed proteins N60, A60, NF60, and AF60 were prepared by hydrolysing UN for 60 min and used further for microencapsulation. At 20% oil loading (on a total solid basis), the encapsulated powder N60 had the highest microencapsulation efficiency (ME = 56.2). A decrease in ME occurred as oil loading increased to 40%. To improve the ME of N60, >90%, UN and maltodextrin were added. Flowability and particle size distribution of microencapsulated powders with >90% microencapsulation efficiency and morphology of all powders were investigated. This study identified a new way to improve pea protein functionality in emulsions, as well as a new application of hydrolysed pea protein as wall material for microencapsulation.

  3. Genomic diversity and macroecology of the crop wild relatives of domesticated pea.

    PubMed

    Smýkal, Petr; Hradilová, Iveta; Trněný, Oldřich; Brus, Jan; Rathore, Abhishek; Bariotakis, Michael; Das, Roma Rani; Bhattacharyya, Debjyoti; Richards, Christopher; Coyne, Clarice J; Pirintsos, Stergios

    2017-12-12

    There is growing interest in the conservation and utilization of crop wild relatives (CWR) in international food security policy and research. Legumes play an important role in human health, sustainable food production, global food security, and the resilience of current agricultural systems. Pea belongs to the ancient set of cultivated plants of the Near East domestication center and remains an important crop today. Based on genome-wide analysis, P. fulvum was identified as a well-supported species, while the diversity of wild P. sativum subsp. elatius was structured into 5 partly geographically positioned clusters. We explored the spatial and environmental patterns of two progenitor species of domesticated pea in the Mediterranean Basin and in the Fertile Crescent in relation to the past and current climate. This study revealed that isolation by distance does not explain the genetic structure of P. sativum subsp. elatius in its westward expansion from its center of origin. The genetic diversity of wild pea may be driven by Miocene-Pliocene events, while the phylogenetic diversity centers may reflect Pleisto-Holocene climatic changes. These findings help set research and discussion priorities and provide geographical and ecological information for germplasm-collecting missions, as well as for the preservation of extant diversity in ex-situ collections.

  4. A dehydrin cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression.

    PubMed

    Robertson, M; Chandler, P M

    1994-11-01

    Dehydrins are a family of proteins characterised by conserved amino acid motifs, and induced in plants by dehydration or treatment with ABA. An antiserum was raised against a synthetic oligopeptide based on the most highly conserved dehydrin amino acid motif, the lysine-rich (core sequence KIKEK-LPG). This antiserum detected a novel M(r) 40,000 polypeptide and enabled isolation of a corresponding cDNA clone, pPsB61 (B61). The deduced amino acid sequence contained two lysine-rich blocks, however the remainder of the sequenced differed markedly from other pea dehydrins. Surprisingly, the sequence contained a stretch of serine residues, a characteristic common to dehydrins from many plant species but which is missing in pea dehydrin. The expression patterns of B61 mRNA and polypeptide were distinctively different from those of the pea dehydrins during seed development, germination and in young seedlings exposed to dehydration stress or treated with ABA. In particular, dehydration stress led to slightly reduced levels of B61 RNA, and ABA application to young seedlings had no marked effect on its abundance. The M(r) 40,000 polypeptide is thus related to pea dehydrin by the presence of the most highly conserved amino acid sequence motifs, but lacks the characteristic expression pattern of dehydrin. By analogy with heat shock cognate proteins we refer to this protein as a dehydrin cognate.

  5. Kinetic features of gravicurvature of pea (Pisum sativum) and cress (Lepidium sativum) roots

    NASA Astrophysics Data System (ADS)

    Polishchuk, O. V.

    The upper sides of roots oriented horizontally grow more rapidly than the lower sides, causing the root ultimately to grow downward; this phenomenon is known as positive gravitropism. This ability is based on implicit mechanism which is being extensively investigated. Elaborate analysis of kinetic features of gravicurvature may complement the investigation. Pea and cress roots have positive gravitropism as roots of majority of higher plants. Mainly we investigated dependence of gravicurvature angle on time of gravistimulation. Two-day-old seedlings of cress (Lepidium sativum L. cv. P896) and four-day-old pea ones (Pisum sativum L. cv. Damir-2) were placed on 1% agar medium in Petri dishes and turned on angle of gravistimulation. Then they were photographed at the same position each hour of gravistimulation. Photographs were analyzed with the help of Image Tool software program. Both pea and cress roots showed two phases of gravitropic response during gravistimulation for 6 hours when the initial angle of gravistimulation was 135 degrees. Two peaks of the rate of bending were observed. In cress roots, the first peak was much lower and the distance between the two peaks was greater than in pea roots. Curves of gravitropic bending of cress roots grown in agar had one or two inflections while in the case of roots grown on filter paper curves had no inflections. These data are in agreement with the effect of the external medium on the gravitropic curvature of rice roots reported by Staves et al. (1997). Our results may reflect the fact that at least two systems that contribute to gravicurvature may exist in roots. These systems may be ligand-receptor complexes that may be formed with different kinetics in two different regions of the root. The most probable ligand is auxin and the regions appear to be central elongation zone (CEZ) and distal elongation zone (DEZ), that were reported to be centers of tropic bending in roots. Thus, dependence of rate of root bending on

  6. Oviposition Preference of Pea Weevil, Bruchus pisorum L. Among Host and Non-host Plants and its Implication for Pest Management

    PubMed Central

    Mendesil, Esayas; Rämert, Birgitta; Marttila, Salla; Hillbur, Ylva; Anderson, Peter

    2016-01-01

    The pea weevil, Bruchus pisorum L. is a major insect pest of field pea, Pisum sativum L. worldwide and current control practices mainly depend on the use of chemical insecticides that can cause adverse effects on environment and human health. Insecticides are also unaffordable by many small-scale farmers in developing countries, which highlights the need for investigating plant resistance traits and to develop alternative pest management strategies. The aim of this study was to determine oviposition preference of pea weevil among P. sativum genotypes with different level of resistance (Adet, 32410-1 and 235899-1) and the non-host leguminous plants wild pea (Pisum fulvum Sibth. et Sm.) and grass pea (Lathyrus sativus L.), in no-choice and dual-choice tests. Pod thickness and micromorphological traits of the pods were also examined. In the no-choice tests significantly more eggs were laid on the susceptible genotype Adet than on the other genotypes. Very few eggs were laid on P. fulvum and L. sativus. In the dual-choice experiments Adet was preferred by the females for oviposition. Furthermore, combinations of Adet with either 235899-1 or non-host plants significantly reduced the total number of eggs laid by the weevil in the dual-choice tests. Female pea weevils were also found to discriminate between host and non-host plants during oviposition. The neoplasm (Np) formation on 235899-1 pods was negatively correlated with oviposition by pea weevil. Pod wall thickness and trichomes might have influenced oviposition preference of the weevils. These results on oviposition behavior of the weevils can be used in developing alternative pest management strategies such as trap cropping using highly attractive genotype and intercropping with the non-host plants. PMID:26779220

  7. Bioassay-guided fractionation of a hepatoprotective and antioxidant extract of pea by-product.

    PubMed

    Seida, Ahmed A; El Tanbouly, Nebal D; Islam, Wafaa T; Eid, Hanaa H; El Maraghy, Shohda A; El Senousy, Amira S

    2015-01-01

    The hepatoprotective and antioxidant activities of the hydroalcoholic extract (PE) of pea (Pisum sativum L.) by-product were evaluated, using CCl4-induced oxidative stress and hepatic damage in rats. These activities were assessed via measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST), total protein and albumin, malondialdehyde (MDA), reduced glutathione (GSH), protein thiols (PSH), nitrite/nitrate levels, glutathione-peroxidase (GSH-Px), glutathione-S-transferase (GST) activities, as well as, histopathological evaluation. PE revealed significant hepatoprotective and antioxidant activities mostly found in n-butanol fraction. Chromatographic fractionation of this active fraction led to the isolation of five flavonoid glycosides namely, quercetin-3-O-sophorotrioside (1), quercetin-3-O-rutinoside (2), quercetin-3-O-(6″″-O-E sinapoyl)-sophorotrioside (3), quercetin-3-O-(6″″-O-E feruloyl)-sophorotrioside (4) and quercetin-3-O-β-D-glucopyranoside (5). The isolated compounds were quantified in PE, using a validated HPLC method and the nutritional composition of pea by-product was also investigated. Our results suggest that pea by-product contained biologically active constituents which can be utilised to obtain high value added products for nutraceutical use.

  8. Pea VEGETATIVE2 Is an FD Homolog That Is Essential for Flowering and Compound Inflorescence Development.

    PubMed

    Sussmilch, Frances C; Berbel, Ana; Hecht, Valérie; Vander Schoor, Jacqueline K; Ferrándiz, Cristina; Madueño, Francisco; Weller, James L

    2015-04-01

    As knowledge of the gene networks regulating inflorescence development in Arabidopsis thaliana improves, the current challenge is to characterize this system in different groups of crop species with different inflorescence architecture. Pea (Pisum sativum) has served as a model for development of the compound raceme, characteristic of many legume species, and in this study, we characterize the pea VEGETATIVE2 (VEG2) locus, showing that it is critical for regulation of flowering and inflorescence development and identifying it as a homolog of the bZIP transcription factor FD. Through detailed phenotypic characterizations of veg2 mutants, expression analyses, and the use of protein-protein interaction assays, we find that VEG2 has important roles during each stage of development of the pea compound inflorescence. Our results suggest that VEG2 acts in conjunction with multiple FLOWERING LOCUS T (FT) proteins to regulate expression of downstream target genes, including TERMINAL FLOWER1, LEAFY, and MADS box homologs, and to facilitate cross-regulation within the FT gene family. These findings further extend our understanding of the mechanisms underlying compound inflorescence development in pea and may have wider implications for future manipulation of inflorescence architecture in related legume crop species. © 2015 American Society of Plant Biologists. All rights reserved.

  9. Light regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway.

    PubMed

    Weller, James L; Hecht, Valérie; Vander Schoor, Jacqueline K; Davidson, Sandra E; Ross, John J

    2009-03-01

    Light regulation of gibberellin (GA) biosynthesis occurs in several species, but the signaling pathway through which this occurs has not been clearly established. We have isolated a new pea (Pisum sativum) mutant, long1, with a light-dependent elongated phenotype that is particularly pronounced in the epicotyl and first internode. The long1 mutation impairs signaling from phytochrome and cryptochrome photoreceptors and interacts genetically with a mutation in LIP1, the pea ortholog of Arabidopsis thaliana COP1. Mutant long1 seedlings show a dramatic impairment in the light regulation of active GA levels and the expression of several GA biosynthetic genes, most notably the GA catabolism gene GA2ox2. The long1 mutant carries a nonsense mutation in a gene orthologous to the ASTRAY gene from Lotus japonicus, a divergent ortholog of the Arabidopsis bZIP transcription factor gene HY5. Our results show that LONG1 has a central role in mediating the effects of light on GA biosynthesis in pea and demonstrate the importance of this regulation for appropriate photomorphogenic development. By contrast, LONG1 has no effect on GA responsiveness, implying that interactions between LONG1 and GA signaling are not a significant component of the molecular framework for light-GA interactions in pea.

  10. Pea DNA topoisomerase I is phosphorylated and stimulated by casein kinase 2 and protein kinase C.

    PubMed

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-08-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants.

  11. Relationship between proportion and composition of albumins, and in vitro protein digestibility of raw and cooked pea seeds (Pisum sativum L.).

    PubMed

    Park, Sei Joon; Kim, Tae Wan; Baik, Byung-Kee

    2010-08-15

    Peas provide an excellent plant protein resource for human diets, but their proteins are less readily digestible than animal proteins. To identify the relationship between composition and in vitro digestibility of pea protein, eight pea varieties with a wide range of protein content (157.3-272.7 g kg(-1)) were determined for the proportion of albumins and globulins, their compositions using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and in vitro protein digestibility (IVPD) before and after heat treatment using a multi-enzyme (trypsin, chymotrypsin and peptidase) method. The proportion of albumins based on total seed protein content decreased from 229 to 147 g kg(-1) as seed protein content increased from 157.3 to 272.7 g kg(-1), while the proportion of globulins increased from 483 to 590 g kg(-1). The IVPDs of eight raw pea seeds were 79.9-83.5%, with significant varietal variations, and those were improved to 85.9-86.8% by cooking. Albumins, including (pea albumins 2) PA2, trypsin inhibitor, lectin and lipoxygenase, were identified as proteolytic resistant proteins. Globulins were mostly digested by protease treatment after heating. The quantitative ratio of albumins and globulins, and the quantitative variations of albumin protein components, including lipoxygenase, PA2, lectins and trypsin inhibitors, appear to influence the protein digestibility of both raw and cooked pea seeds. Copyright (c) 2010 Society of Chemical Industry.

  12. Multiple, Distinct Isoforms of Sucrose Synthase in Pea1

    PubMed Central

    Barratt, D.H. Paul; Barber, Lorraine; Kruger, Nicholas J.; Smith, Alison M.; Wang, Trevor L.; Martin, Cathie

    2001-01-01

    Genes encoding three isoforms of sucrose synthase (Sus1, Sus2, and Sus3) have been cloned from pea (Pisum sativum). The genes have distinct patterns of expression in different organs of the plant, and during organ development. Studies of the isoforms expressed as recombinant proteins in Escherichia coli show that they differ in kinetic properties. Although not of great magnitude, the differences in properties are consistent with some differentiation of physiological function between the isoforms. Evidence for differentiation of function in vivo comes from the phenotypes of rug4 mutants of pea, which carry mutations in the gene encoding Sus1. One mutant line (rug4-c) lacks detectable Sus1 protein in both the soluble and membrane-associated fractions of the embryo, and Sus activity in the embryo is reduced by 95%. The starch content of the embryo is reduced by 30%, but the cellulose content is unaffected. The results imply that different isoforms of Sus may channel carbon from sucrose towards different metabolic fates within the cell. PMID:11598239

  13. Effects of hormonal priming on seed germination of pigeon pea under cadmium stress.

    PubMed

    Sneideris, Larissa C; Gavassi, Marina A; Campos, Marcelo L; D'Amico-Damião, Victor; Carvalho, Rogério F

    2015-09-01

    In this work we investigated whether priming with auxin, cytokinin, gibberellin, abscisic acid and ethylene, alters the physiological responses of seeds of pigeon pea germinated under water and cadmium stress. Seeds treated with water or non-treated seeds were used as control. Although compared to non-treated seeds we found that the hormone treatments improve the germination of pigeon pea under cadmium stress, however, these treatments did not differ from water. However, we also observed a trend of tolerance to the effects of cadmium in the presence of ethylene, suggesting that the use of this hormone may be an efficient method to overcome seed germination under metal stress.

  14. Quantification, dissipation behavior and risk assessment of ethion in green pea by gas chromatography-electron capture detector.

    PubMed

    Jan, Ishrat; Dar, Alamgir A; Mubashir, Sofi; Alam Wani, Ashraf; Mukhtar, Malik; Sofi, Khurshid A; Dar, Irshad H; Sofi, Javid A

    2018-05-01

    Residue investigation was carried out to scrutinize the persistence, dissipation behavior, half-life, and risk assessment of ethion on green pea fruit by spraying ethion at the fruiting stage followed by another application at 10 day intervals. The samples were extracted by using a quick, easy, low-cost, effective, rugged, and safe method, and the residues of ethion were analyzed by gas chromatography with electron capture detection. Here we report a novel, accurate, and cost-effective gas chromatography method for the determination of average deposits of ethion on green pea. The initial deposits were found to be 4.65 mg/kg following the application of insecticide. Residues of ethion reached below the detection limit of 0.10 mg/kg after 25 days at recommended dosage. The half-life of ethion was found to be 4.62 days. For risk assessment studies, the 25th day will be safe for consumers for the consumption of green peas. The developed method is simple, sensitive, selective, and repeatable and can be extended for ethion-based standardization of herbal formulations containing green pea and its use in pesticide industries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. In vitro regeneration through organogenesis and somatic embryogenesis in pigeon pea [ Cajanus cajan (L.) Millsp.] cv. JKR105.

    PubMed

    Krishna, Gaurav; Reddy, P Sairam; Ramteke, Pramod W; Rambabu, Pogiri; Sohrab, Sayed S; Rana, Debashis; Bhattacharya, Parthasarathi

    2011-10-01

    In vitro regeneration of pigeon pea through organogenesis and somatic embryogenesis was demonstrated with pigeon pea cv. JKR105. Embryonic axes explants of pigeon pea showed greater regeneration of shoot buds on 2.5 mg L(-1) 6-benzylaminopurine (BAP) in the medium, followed by further elongation at lower concentrations. Rooting of shoots was observed on half-strength Murashige and Skoog (MS) medium with 2 % sucrose and 0.5 mg L(-1) 3-indolebutyric acid (IBA). On the other hand, the regeneration of globular embryos from cotyledon explant was faster and greater with thidiazuron (TDZ) than BAP with sucrose as carbohydrate source. These globular embryos were maturated on MS medium with abscisic acid (ABA) and finally germinated on half-strength MS medium at lower concentrations of BAP. Comparison of regeneration pathways in pigeon pea cv. JKR105 showed that the turnover of successful establishment of plants achieved through organogenesis was more compared to somatic embryogenesis, despite the production of more embryos than shoot buds.

  16. Nutritional Combined Greenhouse Gas Life Cycle Analysis for Incorporating Canadian Yellow Pea into Cereal-Based Food Products

    PubMed Central

    Marinangeli, Christopher P. F.; Tremorin, Denis

    2018-01-01

    Incorporating low cost pulses, such as yellow peas, that are rich in nutrients and low in fertilizer requirements, into daily food items, can improve the nutritional and sustainability profile of national diets. This paper systematically characterized the effect of using Canadian grown whole yellow pea and refined wheat flours on nutritional density and carbon footprint in cereal-based food products. Canada-specific production data and the levels of 27 macro- and micronutrients were used to calculate the carbon footprint and nutrient balance score (NBS), respectively, for traditional and reformulated pan bread, breakfast cereal, and pasta. Results showed that partial replacement of refined wheat flour with yellow pea flour increased the NBS of pan bread, breakfast cereal, and pasta by 11%, 70%, and 18%, and decreased the life cycle carbon footprint (kg CO2 eq/kg) by 4%, 11%, and 13%, respectively. The cultivation stage of wheat and yellow peas, and the electricity used during the manufacturing stage of food production, were the hotspots in the life cycle. The nutritional and greenhouse gas (GHG) data were combined as the nutrition carbon footprint score (NCFS) (NBS/g CO2 per serving), a novel indicator that reflects product-level nutritional quality per unit environmental impact. Results showed that yellow pea flour increased the NCFS by 15% for pan bread, 90% for breakfast cereal, and 35% for pasta. The results and framework of this study are relevant for food industry, consumers, as well as global and national policy-makers evaluating the effect of dietary change and food reformulation on nutritional and climate change targets. PMID:29659497

  17. Characteristics of plastids responsible for starch synthesis in developing pea embryos.

    PubMed

    Smith, A M; Quinton-Tulloch, J; Denyer, K

    1990-03-01

    The nature of the starch-synthesising plastids in developing pea (Pisum sativum L.) embryos has been investigated. Chlorophyll and starch were distributed throughout the cotyledon during development. Chlorophyll content increased initially, then showed little change up to the point of drying out of the embryo. Starch content per embryo increased dramatically throughout development. The chlorophyll content per unit volume was highest on the outer edge of the cotyledon, while the starch content was highest on inner face. Nycodenz gradients, which fractionated mechanically-prepared plastids according to their starch content, failed to achieve any significant separation of plastids rich in starch and ADP-glucose pyrophosphorylase from those rich in chlorophyll and a Calvin-cycle marker enzyme, NADP-glyceraldehyde-3-phosphate dehydrogenase. However, material that was not sufficiently dense to enter the gradients was enriched in activity of the Calvin-cycle marker enzyme relative to that of ADP-glucose pyrophosphorylase. Nomarski and epi-fluorescence microscopy showed that intact, isolated plastids, including those with very large starch grains, invariably contained chlorophyll in stromal structures peripheral to the starch grain. We suggest that the starch-storing plastids of developing pea embryos are derived directly from chloroplasts, and retain chloroplast-like characteristics throughout their development. Developing pea embryos also contain chloroplasts which store little or no starch. These are probably located primarily on the outer edge of the cotyledons where there is sufficient light for photosynthesis at some stages of development.

  18. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  19. Aggressiveness Changes in Populations of Didymella pinodes over Winter and Spring Pea Cropping Seasons

    PubMed Central

    Laloi, G.; Montarry, J.; Guibert, M.; Andrivon, D.; Michot, D.

    2016-01-01

    ABSTRACT Ascochyta blight, caused by the necrotrophic ascomycete Didymella pinodes, is responsible for severe losses in winter and spring pea crops. Despite different climatic conditions, epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting gene flow either between the two crops or from reservoir sources during the cropping season. This should lead to similar pathogenicity characteristics in isolates sampled from the two crops. However, these hypotheses have never been formally tested. We therefore sampled a total of 520 D. pinodes strains throughout a growing season from winter and spring pea plots (WP and SP, respectively) and from winter and spring trap plants (TWP and TSP). Amplified fragment length polymorphism (AFLP) markers revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. These results support the idea that alloinoculum contributes to the carryover of epidemics between winter and spring crops and that the most aggressive isolates are selected as an epidemic progresses. IMPORTANCE Ascochyta blight, caused by Didymella pinodes, is responsible for severe losses in pea crops. While previous studies have shown that ascochyta blight epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting that isolates from the two crops present similar pathogenicity characteristics, that hypothesis have never been tested. Genetic analysis of subpopulations sampled throughout a growing season from winter and spring pea plots revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. PMID:27208102

  20. Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum sativum) ferritin.

    PubMed Central

    Lobreaux, S; Yewdall, S J; Briat, J F; Harrison, P M

    1992-01-01

    The iron storage protein, ferritin, is widely distributed in the living kingdom. Here the complete cDNA and derived amino-acid sequence of pea seed ferritin are described, together with its predicted secondary structure, namely a four-helix-bundle fold similar to those of mammalian ferritins, with a fifth short helix at the C-terminus. An N-terminal extension of 71 residues contains a transit peptide (first 47 residues) responsible for plastid targetting as in other plant ferritins, and this is cleaved before assembly. The second part of the extension (24 residues) belongs to the mature subunit; it is cleaved during germination. The amino-acid sequence of pea seed ferritin is aligned with those of other ferritins (49% amino-acid identity with H-chains and 40% with L-chains of human liver ferritin in the aligned region). A three-dimensional model has been constructed by fitting the aligned sequence to the coordinates of human H-chains, with appropriate modifications. A folded conformation with an 11-residue helix is predicted for the N-terminal extension. As in mammalian ferritins, 24 subunits assemble into a hollow shell. In pea seed ferritin, its N-terminal extension is exposed on the outside surface of the shell. Within each pea subunit is a ferroxidase centre resembling those of human ferritin H-chains except for a replacement of Glu-62 by His. The channel at the 4-fold-symmetry axes defined by E-helices, is predicted to be hydrophilic in plant ferritins, whereas it is hydrophobic in mammalian ferritins. Images Fig. 3. Fig. 5. Fig. 6. PMID:1472006

  1. Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery.

    PubMed

    Tuteja, Narendra; Banu, Mst Sufara Akhter; Huda, Kazi Md Kamrul; Gill, Sarvajeet Singh; Jain, Parul; Pham, Xuan Hoi; Tuteja, Renu

    2014-01-01

    The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum) and its novel function in salinity stress tolerance in plant. The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS) accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities. To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance.

  2. Long-term iron deficiency: Tracing changes in the proteome of different pea (Pisum sativum L.) cultivars.

    PubMed

    Meisrimler, Claudia-Nicole; Wienkoop, Stefanie; Lyon, David; Geilfus, Christoph-Martin; Lüthje, Sabine

    2016-05-17

    Iron deficiency (-Fe) is one of the major problems in crop production. Dicots, like pea (Pisum sativum L.), are Strategy I plants, which induce a group of specific enzymes such as Fe(III)-chelate reductase (FRO), Fe responsive transporter (IRT) and H(+)-ATPase (HA) at the root plasma membrane under -Fe. Different species and cultivars have been shown to react diversely to -Fe. Furthermore, different kinds of experimental set-ups for -Fe have to be distinguished: i) short-term vs. long-term, ii) constant vs. acute alteration and iii) buffered vs. unbuffered systems. The presented work compares the effects of constant long-term -Fe in an unbuffered system on roots of four different pea cultivars in a timely manner (12, 19 and 25days). To differentiate the effects of -Fe and plant development, control plants (+Fe) were analyzed in comparison to -Fe plants. Besides physiological measurements, an integrative study was conducted using a comprehensive proteome analysis. Proteins, related to stress adaptation (e.g. HSP), reactive oxygen species related proteins and proteins of the mitochondrial electron transport were identified to be changed in their abundance. Regulations and possible functions of identified proteins are discussed. Pea (Pisum sativum L.) belongs to the legume family (Fabaceae) and is an important crop plant due to high Fe, starch and protein contents. According to FAOSTAT data (September 2015), world production of the garden pea quadrupled from 1970 to 2012. Since the initial studies by Gregor Mendel, the garden pea became the most-characterized legume and has been used in numerous investigations in plant biochemistry and physiology, but is not well represented in the "omics"-related fields. A major limitation in pea production is the Fe availability from soils. Adaption mechanisms to Fe deficiency vary between species, and even cultivars have been shown to react diversely. A label-free proteomic approach, in combination with physiological measurements

  3. Effect of feeding soybean meal and differently processed peas on intestinal morphology and functional glucose transport in the small intestine of broilers.

    PubMed

    Röhe, I; Boroojeni, F Goodarzi; Zentek, J

    2017-09-01

    Peas are locally grown legumes being rich in protein and starch. However, the broad usage of peas as a feed component in poultry nutrition is limited to anti-nutritional factors, which might impair gut morphology and function. This study investigated the effect of feeding raw or differently processed peas compared with feeding a soybean meal-based control diet (C) on intestinal morphology and nutrient transport in broilers. A total of 360 day-old broiler chicks were fed with one of the following diets: The C diet, and 3 diets containing raw peas (RP), fermented peas (FP) and enzymatically pre-digested peas (EP), each supplying 30% of dietary crude protein. After 35 d, jejunal samples of broilers were taken for analyzing histomorphological parameters, active glucose transport in Ussing chambers and the expression of genes related to glucose absorption, intestinal permeability and cell maturation. Villus length (P = 0.017) and crypt depth (P = 0.009) of EP-fed broilers were shorter compared to birds received C. The villus surface area was larger in broilers fed C compared to those fed with the pea-containing feed (P = 0.005). Glucose transport was higher for broilers fed C in comparison to birds fed with the EP diet (P = 0.044). The sodium-dependent glucose co-transporter 1 (SGLT-1) expression was down-regulated in RP (P = 0.028) and FP (P = 0.015) fed broilers. Correlation analyses show that jejunal villus length negatively correlates with the previously published number of jejunal intraepithelial T cells (P = 0.014) and that jejunal glucose transport was negatively correlated with the occurrence of jejunal intraepithelial leukocytes (P = 0.041). To conclude, the feeding of raw and processed pea containing diets compared to a soybean based diet reduced the jejunal mucosal surface area of broilers, which on average was accompanied by lower glucose transport capacities. These morphological and functional alterations were associated with observed mucosal immune

  4. Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy.

    PubMed

    Pandey, Jitendra Kumar; Dubey, Gunjan; Gopal, R

    2015-10-01

    Pigeon pea is one of the most important legume crops in India and dimethoate is a widely used insecticide in various crop plants. We studied the effect of dimethoate on growth and photosynthetic activity of pigeon pea plants over a short and long term exposure. Plant growth parameters, photosynthetic pigment content and chlorophyll fluorescence response of pigeon pea (Cajanus cajan L.) plants treated with various concentrations of the insecticide dimethoate (10, 20, 40 and 80 ppm) have been compared for 30 days at regular intervals of 10 days each. Laser induced chlorophyll fluorescence spectra and fluorescence-induction kinetics (FIK) curve of dimethoate treated pigeon pea plants were recorded after 10, 20 and 30 days of treatment. Fluorescence intensity ratio at the two fluorescence maxima (F685/F730) was calculated by evaluating curve-fitted parameters. The variable chlorophyll fluorescence decrease ratio (Rfd) was determined from the FIK curves. Our study revealed that after 10 days of treatment, 10 ppm of dimethoate showed stimulatory response whereas 20, 40 and 80 ppm of dimethoate showed inhibitory response for growth and photosynthetic activity of pigeon pea plants, but after 20 and 30 days of treatment all the tested concentrations of dimethoate became inhibitory. This study clearly shows that dimethoate is highly toxic to the pigeon pea plant, even at very low concentration (10 ppm), if used for a prolonged duration. Our study may thus be helpful in determining the optimal dose of dimethoate in agricultural practices. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Functional Properties of Pea (Pisum sativum, L.) Protein Isolates Modified with Chymosin

    PubMed Central

    Barać, Miroljub; Čabrilo, Slavica; Pešić, Mirjana; Stanojević, Slađana; Pavlićević, Milica; Maćej, Ognjen; Ristić, Nikola

    2011-01-01

    In this paper, the effects of limited hydrolysis on functional properties, as well as on protein composition of laboratory-prepared pea protein isolates, were investigated. Pea protein isolates were hydrolyzed for either 15, 30 and 60 min with recombined chymosin (Maxiren). The effect of enzymatic action on solubility, emulsifying and foaming properties at different pH values (3.0; 5.0; 7.0 and 8.0) was monitored. Chymosin can be a very useful agent for improvement of functional properties of isolates. Action of this enzyme caused a low degree of hydrolysis (3.9–4.7%), but improved significantly functional properties of pea protein isolates (PPI), especially at lower pH values (3.0–5.0). At these pH values all hydrolysates had better solubility, emulsifying activity and foaming stability, while longer-treated samples (60 min) formed more stable emulsions at higher pH values (7.0, 8.0) than initial isolates. Also, regardless of pH value, all hydrolysates showed improved foaming ability. A moderate positive correlation between solubility and emulsifying activity index (EAI) (0.74) and negative correlation between solubility and foam stability (−0.60) as well as between foam stability (FS) and EAI (−0.77) were observed. Detected enhancement in functional properties was a result of partial hydrolysis of insoluble protein complexes. PMID:22272078

  6. Purification and Characterization of a Lectin from Green Split Peas (Pisum sativum).

    PubMed

    Ng, Tzi Bun; Chan, Yau Sang; Ng, Charlene Cheuk Wing; Wong, Jack Ho

    2015-11-01

    Lectins have captured the attention of a large number of researchers on account of their various exploitable activities, including antitumor, immunomodulatory, antifungal, as well as HIV reverse transcriptase inhibitory activities. A mannose/glucose-specific lectin was isolated from green split peas (a variety of Pisum sativum) and characterized. The purification step involved anion-exchange chromatography on a DEAE-cellulose column, cation-exchange chromatography on an SP-Sepharose column, and gel filtration by fast protein liquid chromatography (FPLC) on Superdex 200. The purified lectin had a native molecular mass of around 50 kDa as determined by size exclusion chromatography. It appeared as a heterotetramer, composed of two distinct polypeptide bands with a molecular mass of 6 and 19 kDa, respectively, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The N-terminal sequence of green split pea lectin shows some degree of homology compared to lectins from other legume species. Its hemagglutinating activity was inhibited by glucose, mannose, and sucrose, and attenuated at pH values higher than 12 or lower than 3. Hemagglutinating activity was preserved at temperatures lower than 80 °C. The lectin did not show antifungal activity toward fungi including Fusarium oxysporum, Botrytis cinerea, and Mycosphaerella arachidicola. Green split pea lectin showed a mitogenic effect toward murine splenocytes and could inhibit the activity of HIV-1 reverse transcriptase.

  7. Auxin Biosynthesis in Pea: Characterization of the Tryptamine Pathway1[W][OA

    PubMed Central

    Quittenden, Laura J.; Davies, Noel W.; Smith, Jason A.; Molesworth, Peter P.; Tivendale, Nathan D.; Ross, John J.

    2009-01-01

    One pathway leading to the bioactive auxin, indole-3-acetic acid (IAA), is known as the tryptamine pathway, which is suggested to proceed in the sequence: tryptophan (Trp), tryptamine, N-hydroxytryptamine, indole-3-acetaldoxime, indole-3-acetaldehyde (IAAld), IAA. Recently, this pathway has been characterized by the YUCCA genes in Arabidopsis (Arabidopsis thaliana) and their homologs in other species. YUCCA is thought to be responsible for the conversion of tryptamine to N-hydroxytryptamine. Here we complement the genetic findings with a compound-based approach in pea (Pisum sativum), detecting potential precursors by gas chromatography/tandem-mass spectrometry. In addition, we have synthesized deuterated forms of many of the intermediates involved, and have used them to quantify the endogenous compounds, and to investigate their metabolic fates. Trp, tryptamine, IAAld, indole-3-ethanol, and IAA were detected as endogenous constituents, whereas indole-3-acetaldoxime and one of its products, indole-3-acetonitrile, were not detected. Metabolism experiments indicated that the tryptamine pathway to IAA in pea roots proceeds in the sequence: Trp, tryptamine, IAAld, IAA, with indole-3-ethanol as a side-branch product of IAAld. N-hydroxytryptamine was not detected, but we cannot exclude that it is an intermediate between tryptamine and IAAld, nor can we rule out the possibility of a Trp-independent pathway operating in pea roots. PMID:19710233

  8. AphidBase: A centralized bioinformatic resource for annotation of the pea aphid genome

    PubMed Central

    Legeai, Fabrice; Shigenobu, Shuji; Gauthier, Jean-Pierre; Colbourne, John; Rispe, Claude; Collin, Olivier; Richards, Stephen; Wilson, Alex C. C.; Tagu, Denis

    2015-01-01

    AphidBase is a centralized bioinformatic resource that was developed to facilitate community annotation of the pea aphid genome by the International Aphid Genomics Consortium (IAGC). The AphidBase Information System designed to organize and distribute genomic data and annotations for a large international community was constructed using open source software tools from the Generic Model Organism Database (GMOD). The system includes Apollo and GBrowse utilities as well as a wiki, blast search capabilities and a full text search engine. AphidBase strongly supported community cooperation and coordination in the curation of gene models during community annotation of the pea aphid genome. AphidBase can be accessed at http://www.aphidbase.com. PMID:20482635

  9. Expression of hemagglutinin protein of Rinderpest virus in transgenic pigeon pea [Cajanus cajan (L.) Millsp.] plants.

    PubMed

    Satyavathi, V V; Prasad, V; Khandelwal, Abha; Shaila, M S; Sita, G Lakshmi

    2003-03-01

    Rinderpest virus is the causative agent of a devastating, often fatal disease in wild and domestic bovids that is endemic in Africa, the Middle East and South Asia. The existing live attenuated vaccine is heat-labile, and thus there is a need for the development of new strategies for vaccination. This paper reports the development of transgenic pigeon pea [ Cajanus cajun (L.) Millsp.] expressing one of the protective antigens, the hemagglutinin (H) protein of Rinderpest virus. A 2-kb fragment containing the coding region of the H protein was cloned into pBI121 and mobilized into Agrobacterium tumefaciensstrain EHA105. Embryonic axes and cotyledonary nodes from germinated seeds of pigeon pea were used for transformation. The presence of the transgene in transgenic plants was confirmed by Southern blots, and the specific transcription of the marker gene in the plants was demonstrated by reverse transcription-polymerase chain reaction. Integration of the H gene into the pigeon pea genome was confirmed by Southern hybridization. The expression of the H protein in the transgenic lines was confirmed by Western blot analysis using a polyclonal monospecific antibody to the H protein. The highest level of expression of the hemagglutinin protein in leaves of pigeon pea was 0.49% of the total soluble protein. The transgenic plants were fertile and the transgene expressed in the progeny.

  10. Pea DNA Topoisomerase I Is Phosphorylated and Stimulated by Casein Kinase 2 and Protein Kinase C

    PubMed Central

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-01-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg2+-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants. PMID:12913165

  11. 78 FR 68410 - United States Standards for Whole Dry Peas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... proposed at the request of the Dry Pea industry and will help facilitate the marketing of the class, Smooth... . SUPPLEMENTARY INFORMATION: Background Section 203(c) of the Agricultural Marketing Act of 1946, as amended (AMA... carrying out this authority in a manner that facilitates the marketing of agricultural commodities. GIPSA...

  12. Pea p68, a DEAD-Box Helicase, Provides Salinity Stress Tolerance in Transgenic Tobacco by Reducing Oxidative Stress and Improving Photosynthesis Machinery

    PubMed Central

    Tuteja, Narendra; Banu, Mst. Sufara Akhter; Huda, Kazi Md. Kamrul; Gill, Sarvajeet Singh; Jain, Parul; Pham, Xuan Hoi; Tuteja, Renu

    2014-01-01

    Background The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum) and its novel function in salinity stress tolerance in plant. Results The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS) accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities. Conclusions To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance. PMID:24879307

  13. Histo-chemical and biochemical analysis reveals association of er1 mediated powdery mildew resistance and redox balance in pea.

    PubMed

    Mohapatra, Chinmayee; Chand, Ramesh; Navathe, Sudhir; Sharma, Sandeep

    2016-09-01

    Powdery mildew caused by Erysiphe pisi is one of the important diseases responsible for heavy yield losses in pea crop worldwide. The most effective method of controlling the disease is the use of resistant varieties. The resistance to powdery mildew in pea is recessive and governed by a single gene er1. The objective of present study is to investigate if er1 mediated powdery mildew resistance is associated with changes in the redox status of the pea plant. 16 pea genotypes were screened for powdery mildew resistance in field condition for two years and, also, analyzed for the presence/absence of er1 gene. Histochemical analysis with DAB and NBT staining indicates accumulation of reactive oxygen species (ROS) in surrounding area of powdery mildew infection which was higher in susceptible genotypes as compared to resistant genotypes. A biochemical study revealed that the activity of superoxide dismutase (SOD) and catalase, enzymes involved in scavenging ROS, was increased in, both, resistant and susceptible genotypes after powdery mildew infection. However, both enzymes level was always higher in resistant than susceptible genotypes throughout time course of infection. Moreover, irrespective of any treatment, the total phenol (TP) and malondialdehyde (MDA) content was significantly high and low in resistant genotypes, respectively. The powdery mildew infection elevated the MDA content but decreased the total phenol in pea genotypes. Statistical analysis showed a strong positive correlation between AUDPC and MDA; however, a negative correlation was observed between AUDPC and SOD, CAT and TP. Heritability of antioxidant was also high. The study identified few novel genotypes resistant to powdery mildew infection that carried the er1 gene and provided further clue that er1 mediated defense response utilizes antioxidant machinery to confer powdery mildew resistance in pea. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Bacterial Communities Associated with Host-Adapted Populations of Pea Aphids Revealed by Deep Sequencing of 16S Ribosomal DNA

    PubMed Central

    Gauthier, Jean-Pierre; Outreman, Yannick; Mieuzet, Lucie; Simon, Jean-Christophe

    2015-01-01

    Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was

  15. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development.

    PubMed Central

    Lobreaux, S; Briat, J F

    1991-01-01

    Iron concentration and ferritin distribution have been determined in different organs of pea (Pisum sativum) during development under conditions of continuous iron supply from hydroponic cultures. No ferritin was detected in total protein extracts from roots or leaves. However, a transient iron accumulation in the roots, which corresponds to an increase in iron uptake, was observed when young fruits started to develop. Ferritin was detectable in total protein extracts of flowers and pods, and it accumulated in seeds. In seeds, the same relative amount of ferritin was detected in cotyledons and in the embryo axis. In cotyledons, ferritin and iron concentration decrease progressively during the first week of germination. Ferritin in the embryo axis was processed, and disappeared, during germination, within the first 4 days of radicle and epicotyl growth. This degradation of ferritin in vivo was marked by a shortening of a 28 kDa subunit, giving 26.5 and 25 kDa polypeptides, reminiscent of the radical damage occurring in pea seed ferritin during iron exchange in vitro [Laulhere, Laboure & Briat (1989) J. Biol. Chem. 264, 3629-3635]. Developmental control of iron concentration and ferritin distribution in different organs of pea is discussed. Images Fig. 4. Fig. 6. Fig. 7. PMID:2006922

  16. Aggressiveness Changes in Populations of Didymella pinodes over Winter and Spring Pea Cropping Seasons.

    PubMed

    Laloi, G; Montarry, J; Guibert, M; Andrivon, D; Michot, D; Le May, C

    2016-07-15

    Ascochyta blight, caused by the necrotrophic ascomycete Didymella pinodes, is responsible for severe losses in winter and spring pea crops. Despite different climatic conditions, epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting gene flow either between the two crops or from reservoir sources during the cropping season. This should lead to similar pathogenicity characteristics in isolates sampled from the two crops. However, these hypotheses have never been formally tested. We therefore sampled a total of 520 D. pinodes strains throughout a growing season from winter and spring pea plots (WP and SP, respectively) and from winter and spring trap plants (TWP and TSP). Amplified fragment length polymorphism (AFLP) markers revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. These results support the idea that alloinoculum contributes to the carryover of epidemics between winter and spring crops and that the most aggressive isolates are selected as an epidemic progresses. Ascochyta blight, caused by Didymella pinodes, is responsible for severe losses in pea crops. While previous studies have shown that ascochyta blight epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting that isolates from the two crops present similar pathogenicity characteristics, that hypothesis have never been tested. Genetic analysis of subpopulations sampled throughout a growing season from winter and spring pea plots revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance.

    PubMed

    Klein, Anthony; Houtin, Hervé; Rond, Céline; Marget, Pascal; Jacquin, Françoise; Boucherot, Karen; Huart, Myriam; Rivière, Nathalie; Boutet, Gilles; Lejeune-Hénaut, Isabelle; Burstin, Judith

    2014-06-01

    Avoidance mechanisms and intrinsic resistance are complementary strategies to improve winter frost tolerance and yield potential in field pea. The development of the winter pea crop represents a major challenge to expand plant protein production in temperate areas. Breeding winter cultivars requires the combination of freezing tolerance as well as high seed productivity and quality. In this context, we investigated the genetic determinism of winter frost tolerance and assessed its genetic relationship with yield and developmental traits. Using a newly identified source of frost resistance, we developed a population of recombinant inbred lines and evaluated it in six environments in Dijon and Clermont-Ferrand between 2005 and 2010. We developed a genetic map comprising 679 markers distributed over seven linkage groups and covering 947.1 cM. One hundred sixty-one quantitative trait loci (QTL) explaining 9-71 % of the phenotypic variation were detected across the six environments for all traits measured. Two clusters of QTL mapped on the linkage groups III and one cluster on LGVI reveal the genetic links between phenology, morphology, yield-related traits and frost tolerance in winter pea. QTL clusters on LGIII highlighted major developmental gene loci (Hr and Le) and the QTL cluster on LGVI explained up to 71 % of the winter frost damage variation. This suggests that a specific architecture and flowering ideotype defines frost tolerance in winter pea. However, two consistent frost tolerance QTL on LGV were independent of phenology and morphology traits, showing that different protective mechanisms are involved in frost tolerance. Finally, these results suggest that frost tolerance can be bred independently to seed productivity and quality.

  18. The potential of pigeon pea (Cajanus cajan) beverage as an anti-diabetic functional drink

    NASA Astrophysics Data System (ADS)

    Ariviani, S.; Affandi, D. R.; Listyaningsih, E.; Handajani, S.

    2018-01-01

    The number of patients with diabetes continues to increase. Diabetes complications might induce serious diseases such as kidney, nervous, cardiovascular diseases and stroke. Diabetic complications can be prevented by keeping blood glucose and cholesterol at normal levels. This study aims to determine the potential of pigeon pea beverage for lowering glucose and total cholesterol plasma levels and increasing the antioxidant status of diabetic-hypercholesterolemia rats. The research was conducted using 18 Sprague Dawley male rats aged 3 months old with an average body weight of 154 g. The rats were divided into three groups: normal group, D-H group (diabetic-hypercholesterolemia group), and pigeon pea beverage group. The results showed that pigeon pea beverage diet showed hypoglycemic and hypocholesterolemic activities, and could improve the antioxidant status of diabetic-hypercholesterolemia rats. Plasma glucose and total cholesterol levels of diabetic-hypercholesterolemia rats decreased 33.86% and 19.78% respectively. The improvement of the plasma antioxidant status was indicated by the decrease of plasma MDA (malondialdehyde) level, reaching 37.16%. The research result provides an alternative to diabetes management by using the local bean as an anti-diabetic functional drink.

  19. [Enhanced Resistance of Pea Plants to Oxidative: Stress Caused by Paraquat during Colonization by Aerobic Methylobacteria].

    PubMed

    Agafonova, N V; Doronina, N Y; Trotsenko, Yu A

    2016-01-01

    The influence of colonization of the pea (Pisum sativum L.) by aerobic methylobacteria of five different species (Methylophilus flavus Ship, Methylobacterium extorquens G10, Methylobacillus arboreus Iva, Methylopila musalis MUSA, Methylopila turkiensis Sidel) on plant resistance to paraquat-induced stresses has been studied. The normal conditions of pea colonization by methylobacteria were characterized by a decrease in the activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidases) and in the concentrations of endogenous H2O2, proline, and malonic dialdehyde, which is a product of lipid peroxidation and indicator of damage to plant cell membranes, and an increase in the activity of the photosynthetic apparatus (the content of chlorophylls a, b and carotenoids). In the presence of paraquat, the colonized plants had higher activities of antioxidant enzymes, stable photosynthetic indices, and a less intensive accumulation of the products of lipid peroxidation as compared to noncolonized plants. Thus, colonization by methylobacteria considerably increased the adaptive protection of pea plants to the paraquat-induced oxidative stress.

  20. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea.

    PubMed

    Desgroux, Aurore; Baudais, Valentin N; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie

    2017-01-01

    Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes ( PsLE, PsTFL1 ) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6 , was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven

  1. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea

    PubMed Central

    Desgroux, Aurore; Baudais, Valentin N.; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie

    2018-01-01

    Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes (PsLE, PsTFL1) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6, was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional

  2. The first genetic map of pigeon pea based on diversity arrays technology (DArT) markers.

    PubMed

    Yang, Shi Ying; Saxena, Rachit K; Kulwal, Pawan L; Ash, Gavin J; Dubey, Anuja; Harper, John D I; Upadhyaya, Hari D; Gothalwal, Ragini; Kilian, Andrzej; Varshney, Rajeev K

    2011-04-01

    With an objective to develop a genetic map in pigeon pea (Cajanus spp.), a total of 554 diversity arrays technology (DArT) markers showed polymorphism in a pigeon pea F(2) mapping population of 72 progenies derived from an interspecific cross of ICP 28 (Cajanus cajan) and ICPW 94 (Cajanus scarabaeoides). Approximately 13% of markers did not conform to expected segregation ratio. The total number of DArT marker loci segregating in Mendelian manner was 405 with 73.1% (P > 0.001) of DArT markers having unique segregation patterns. Two groups of genetic maps were generated using DArT markers. While the maternal genetic linkage map had 122 unique DArT maternal marker loci, the paternal genetic linkage map has a total of 172 unique DArT paternal marker loci. The length of these two maps covered 270.0 cM and 451.6 cM, respectively. These are the first genetic linkage maps developed for pigeon pea, and this is the first report of genetic mapping in any grain legume using diversity arrays technology.

  3. Size measuring techniques as tool to monitor pea proteins intramolecular crosslinking by transglutaminase treatment.

    PubMed

    Djoullah, Attaf; Krechiche, Ghali; Husson, Florence; Saurel, Rémi

    2016-01-01

    In this work, techniques for monitoring the intramolecular transglutaminase cross-links of pea proteins, based on protein size determination, were developed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of transglutaminase-treated low concentration (0.01% w/w) pea albumin samples, compared to the untreated one (control), showed a higher electrophoretic migration of the major albumin fraction band (26 kDa), reflecting a decrease in protein size. This protein size decrease was confirmed, after DEAE column purification, by dynamic light scattering (DLS) where the hydrodynamic radius of treated samples appears to be reduced compared to the control one. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Pea aphid infestation induces changes in flavonoids, antioxidative defence, soluble sugars and sugar transporter expression in leaves of pea seedlings.

    PubMed

    Morkunas, Iwona; Woźniak, Agnieszka; Formela, Magda; Mai, Van Chung; Marczak, Łukasz; Narożna, Dorota; Borowiak-Sobkowiak, Beata; Kühn, Christina; Grimm, Bernhard

    2016-07-01

    The perception of aphid infestation induces highly coordinated and sequential defensive reactions in plants at the cellular and molecular levels. The aim of the study was to explore kinetics of induced antioxidative defence responses in leaf cells of Pisum sativum L.cv. Cysterski upon infestation of the pea aphid Acyrthosiphon pisum at varying population sizes, including accumulation of flavonoids, changes of carbon metabolism, and expression of nuclear genes involved in sugar transport. Within the first 96 h, after A. pisum infestation, flavonoid accumulation and increased peroxidase activity were observed in leaves. The level of pisatin increased after 48 h of infestation and reached a maximum at 96 h. At this time point, a higher concentration of flavonols was observed in the infested tissue than in the control. Additionally, strong post-infestation accumulation of chalcone synthase (CHS) and isoflavone synthase (IFS) transcription products was also found. The levels of sucrose and fructose in 24-h leaves infested by 10, 20, and 30 aphids were significantly lower than in the control. Moreover, in leaves infested by 30 aphids, the reduced sucrose level observed up to 48 h was accompanied by a considerable increase in the expression level of the PsSUT1 gene encoding the sucrose transporter. In conclusion, A. pisum infestation on pea leads to stimulation of metabolic pathways associated with defence.

  5. Stamina pistilloida, the Pea Ortholog of Fim and UFO, Is Required for Normal Development of Flowers, Inflorescences, and Leaves

    PubMed Central

    Taylor, Scott; Hofer, Julie; Murfet, Ian

    2001-01-01

    Isolation and characterization of two severe alleles at the Stamina pistilloida (Stp) locus reveals that Stp is involved in a wide range of developmental processes in the garden pea. The most severe allele, stp-4, results in flowers consisting almost entirely of sepals and carpels. Production of ectopic secondary flowers in stp-4 plants suggests that Stp is involved in specifying floral meristem identity in pea. The stp mutations also reduce the complexity of the compound pea leaf, and primary inflorescences often terminate prematurely in an aberrant sepaloid flower. In addition, stp mutants were shorter than their wild-type siblings due to a reduction in cell number in their internodes. Fewer cells were also found in the epidermis of the leaf rachis of stp mutants. Examination of the effects of stp-4 in double mutant combinations with af, tl, det, and veg2-2—mutations known to influence leaf, inflorescence, and flower development in pea—suggests that Stp function is independent of these genes. A synergistic interaction between weak mutant alleles at Stp and Uni indicated that these two genes act together, possibly to regulate primordial growth. Molecular analysis revealed that Stp is the pea homolog of the Antirrhinum gene Fimbriata (Fim) and of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Differences between Fim/UFO and Stp mutant phenotypes and expression patterns suggest that expansion of Stp activity into the leaf was an important step during evolution of the compound leaf in the garden pea. PMID:11158527

  6. Characterization of the nutritional value of air-classified protein and starch fractions of field pea and zero-tannin faba bean in grower pigs.

    PubMed

    Gunawardena, C K; Zijlstra, R T; Beltranena, E

    2010-02-01

    Most pulse (nonoilseed legume) seed flours can be fractionated rapidly and economically by air classification into protein and starch concentrates. The nutritional value of air-classified field pea and faba bean concentrates requires characterization to assess the feeding opportunity for pigs. Thus, the objectives were to characterize the apparent total tract digestibility (ATTD) of DM, OM, energy, starch, CP, fat, and ash; apparent ileal digestibility of CP and starch; standardized ileal digestibility (SID) of AA; and the SID AA, DE, and NE content of air-classified zero-tannin faba bean and field pea protein and starch concentrates in grower pigs. Pulse protein and starch concentrates were compared with soy protein concentrate and corn starch, respectively, as corresponding standards. The corn starch diet served as an N-free diet to correct for basal endogenous AA losses. In a Youden square design, 8 ileal-cannulated barrows (24.9 +/- 2.3 kg of BW) were fed 6 diets over 7 periods at 3 times the maintenance DE requirement. Periods encompassed a 5-d diet acclimation, 3-d feces collection, and 3-d ileal digesta collection. The ATTD of GE was 2% greater (P < 0.05) for faba bean than soy and was intermediate for field pea protein (95.6, 93.7, and 94.9%, respectively). The ATTD of GE was 3.6% greater (P < 0.05) for corn and field pea than faba bean starch (96.2, 95.1, and 92.3%, respectively). The DE content of faba bean was 5.0% greater (P < 0.05) than for field pea or soy protein (4.47, 4.23, and 4.26 Mcal/kg, respectively). The DE content of faba bean and field pea was 1.7% greater (P < 0.05) than for corn starch (3.72, 3.77, and 3.68 Mcal/kg, respectively). The NE content was 5% greater (P < 0.05) for faba bean than field pea and soy protein (3.08, 2.94, and 2.92 Mcal/kg, respectively). The NE content for field pea starch was 2.0% greater (P < 0.05) than for corn starch and faba bean starch (2.68, 2.63, and 2.61 Mcal/kg, respectively). Protein concentrates had a 14

  7. Antioxidant and anti-inflammatory effects of pigeon pea (Cajanus cajan L.) extracts on hydrogen peroxide- and lipopolysaccharide-treated RAW264.7 macrophages.

    PubMed

    Lai, Yi-Syuan; Hsu, Wei-Hsuan; Huang, Jan-Jeng; Wu, She-Ching

    2012-12-01

    Chronic inflammation has been linked to a wide range of progressive diseases, including cancer, neurological disease, metabolic disorder, and cardiovascular disease. Epidemiological studies have provided convincing evidence that natural dietary compounds, which humans consume as food, possess many biological activities, including chemopreventative activities against various chronic inflammatory diseases. Here, we investigated the effect of 50% ethanol extracts of pigeon pea, as well as its major component, cyanidin-3-monoglucoside, an anthocyanin, on DNA damage, the activity of antioxidant enzymes, and free radical scavenging capacity in hydrogen peroxide (H(2)O(2))-treated RAW264.7 macrophages. High-pressure liquid chromatography results indicated that 2 mg of the 50% ethanol extracts of pigeon pea contained 45 μg of cyanidin-3-monoglucoside. A comet assay indicated that 50% ethanol extracts of pigeon pea (2 mg mL(-1)) and of cyanidin-3-monoglucoside (10 μM) protected RAW264.7 cells from DNA damage induced by a 24 h H(2)O(2) treatment. These results can be attributed to the prevention of reduction in antioxidant enzyme activity and lipid peroxidation in H(2)O(2)-treated murine RAW264.7 macrophages by the 50% ethanol extracts of pigeon pea. Moreover, as there is an active interplay between oxidative stress and inflammation, we also evaluated the anti-inflammatory activity of the 50% ethanol extracts of pigeon pea and cyanidin-3-monoglucoside in lipopolysaccharide-treated RAW264.7 macrophages. We found that the 50% ethanol extracts of pigeon pea and of cyanidin-3-monoglucoside suppressed the production of inflammatory cytokines, including TNF-α, IL-1β, and IL-6, in these macrophages. These results imply that pigeon pea could be developed as a functional food by the food industry, or could be utilized for the commercial production of anthocyanins as antioxidants.

  8. Geographical gradient of the eIF4E alleles conferring resistance to potyviruses in pea (Pisum) germplasm.

    PubMed

    Konečná, Eva; Šafářová, Dana; Navrátil, Milan; Hanáček, Pavel; Coyne, Clarice; Flavell, Andrew; Vishnyakova, Margarita; Ambrose, Mike; Redden, Robert; Smýkal, Petr

    2014-01-01

    The eukaryotic translation initiation factor 4E was shown to be involved in resistance against several potyviruses in plants, including pea. We combined our knowledge of pea germplasm diversity with that of the eIF4E gene to identify novel genetic diversity. Germplasm of 2803 pea accessions was screened for eIF4E intron 3 length polymorphism, resulting in the detection of four eIF4E(A-B-C-S) variants, whose distribution was geographically structured. The eIF4E(A) variant conferring resistance to the P1 PSbMV pathotype was found in 53 accessions (1.9%), of which 15 were landraces from India, Afghanistan, Nepal, and 7 were from Ethiopia. A newly discovered variant, eIF4E(B), was present in 328 accessions (11.7%) from Ethiopia (29%), Afghanistan (23%), India (20%), Israel (25%) and China (39%). The eIF4E(C) variant was detected in 91 accessions (3.2% of total) from India (20%), Afghanistan (33%), the Iberian Peninsula (22%) and the Balkans (9.3%). The eIF4E(S) variant for susceptibility predominated as the wild type. Sequencing of 73 samples, identified 34 alleles at the whole gene, 26 at cDNA and 19 protein variants, respectively. Fifteen alleles were virologically tested and 9 alleles (eIF4E(A-1-2-3-4-5-6-7), eIF4E(B-1), eIF4E(C-2)) conferred resistance to the P1 PSbMV pathotype. This work identified novel eIF4E alleles within geographically structured pea germplasm and indicated their independent evolution from the susceptible eIF4E(S1) allele. Despite high variation present in wild Pisum accessions, none of them possessed resistance alleles, supporting a hypothesis of distinct mode of evolution of resistance in wild as opposed to crop species. The Highlands of Central Asia, the northern regions of the Indian subcontinent, Eastern Africa and China were identified as important centers of pea diversity that correspond with the diversity of the pathogen. The series of alleles identified in this study provides the basis to study the co-evolution of potyviruses and the

  9. Geographical Gradient of the eIF4E Alleles Conferring Resistance to Potyviruses in Pea (Pisum) Germplasm

    PubMed Central

    Konečná, Eva; Šafářová, Dana; Navrátil, Milan; Hanáček, Pavel; Coyne, Clarice; Flavell, Andrew; Vishnyakova, Margarita; Ambrose, Mike; Redden, Robert; Smýkal, Petr

    2014-01-01

    Background The eukaryotic translation initiation factor 4E was shown to be involved in resistance against several potyviruses in plants, including pea. We combined our knowledge of pea germplasm diversity with that of the eIF4E gene to identify novel genetic diversity. Methodology/Principal findings Germplasm of 2803 pea accessions was screened for eIF4E intron 3 length polymorphism, resulting in the detection of four eIF4EA-B-C-S variants, whose distribution was geographically structured. The eIF4EA variant conferring resistance to the P1 PSbMV pathotype was found in 53 accessions (1.9%), of which 15 were landraces from India, Afghanistan, Nepal, and 7 were from Ethiopia. A newly discovered variant, eIF4EB, was present in 328 accessions (11.7%) from Ethiopia (29%), Afghanistan (23%), India (20%), Israel (25%) and China (39%). The eIF4EC variant was detected in 91 accessions (3.2% of total) from India (20%), Afghanistan (33%), the Iberian Peninsula (22%) and the Balkans (9.3%). The eIF4ES variant for susceptibility predominated as the wild type. Sequencing of 73 samples, identified 34 alleles at the whole gene, 26 at cDNA and 19 protein variants, respectively. Fifteen alleles were virologically tested and 9 alleles (eIF4EA-1-2-3-4-5-6-7, eIF4EB-1, eIF4EC-2) conferred resistance to the P1 PSbMV pathotype. Conclusions/Significance This work identified novel eIF4E alleles within geographically structured pea germplasm and indicated their independent evolution from the susceptible eIF4ES1 allele. Despite high variation present in wild Pisum accessions, none of them possessed resistance alleles, supporting a hypothesis of distinct mode of evolution of resistance in wild as opposed to crop species. The Highlands of Central Asia, the northern regions of the Indian subcontinent, Eastern Africa and China were identified as important centers of pea diversity that correspond with the diversity of the pathogen. The series of alleles identified in this study provides the basis

  10. Close-up view Pea pods in Russian Lada greenhouse

    NASA Image and Video Library

    2003-05-12

    ISS007-E-05295 (May 2003) --- Inside the Russian Lada greenhouse, these peas have dried and “gone to seed.” They are part of an experiment to investigate plant development and genetics. The crew of the International Space Station (ISS) will soon harvest the seeds. Eventually, some will be re-planted onboard the ISS and some will be returned to Earth for further study.

  11. The major nucleoside triphosphatase in pea (Pisum sativum L.) nuclei and in rat liver nuclei share common epitopes also present in nuclear lamins

    NASA Technical Reports Server (NTRS)

    Tong, C. G.; Dauwalder, M.; Clawson, G. A.; Hatem, C. L.; Roux, S. J.

    1993-01-01

    The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis.

  12. Effects of phytoestrogen extracts isolated from rye, green and yellow pea seeds on hormone production and proliferation of trophoblast tumor cells Jeg3.

    PubMed

    Matscheski, A; Richter, D-U; Hartmann, A-M; Effmert, U; Jeschke, U; Kupka, M S; Abarzua, S; Briese, V; Ruth, W; Kragl, U; Piechulla, B

    2006-01-01

    Phytoestrogens are a diverse group of non-steroidal plant compounds. Because they have chemical structures similar to estrogens they are able to bind on estrogen receptors in humans. In this study, we tested the effects of crude phytoestrogen extracts from rye (Secale cereale), green pea (Pisum sativum) and yellow pea seeds (Pisum sativum cv.) on cell proliferation and the production of progesterone in trophoblast tumor cells of the cell line Jeg3. Isoflavone extracts from green and yellow pea seeds and lignan extracts from rye seeds were obtained, using different extraction methods. Isolated extracts were incubated in different concentrations with trophoblast tumor cells. Untreated cells were used as controls. At designated times, aliquots were removed and tested for estradiol and progesterone production. In addition, we tested the effects of the phytoestrogen extracts on cell proliferation. Cell proliferation is significantly inhibited by potential phytoestrogens isolated from rye, green and yellow pea seeds in trophoblast tumor cells of the cell line Jeg3. We found a correlation between the effects of proliferation and production of estradiol in isoflavone extracts from green and yellow pea seeds in Jeg3 cells. In addition, higher concentrations of isoflavones isolated from green pea seeds and lignans from rye showed also a inhibition of progesterone production whereas higher concentrations of rye lignans elevated estradiol production in Jeg3 cells. A useful indicator test system for potential phytoestrogens could be established. Based on the obtained results it is proposed that green and yellow pea seeds contain measurable concentrations of isoflavones and rye seeds contain lignans which can be isolated and used for special human diet programs. Copyright 2006 S. Karger AG, Basel.

  13. Pigeon pea potential for summer grazing in the Southern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Stocker cattle production in the southern Great Plains (SGP) faces forage quality gaps during July through September. A study was conducted in 2008 through 2010 to determine if pigeon pea [Cajanus cajan (L.) Millsp.] could fill this deficit period. Six, 0.41 ha experimental paddocks were randomly ...

  14. Selenoamino Acid-Enriched Green Pea as a Value-Added Plant Protein Source for Humans and Livestock.

    PubMed

    Garousi, Farzaneh; Domokos-Szabolcsy, Éva; Jánószky, Mihály; Kovács, Andrea Balláné; Veres, Szilvia; Soós, Áron; Kovács, Béla

    2017-06-01

    Selenium deficiency in various degrees affects around 15% of the world's population, contributing to a variety of health problems. In this study, we examined the accumulation and biotransformation of soil applied Se-supplementation (sodium selenite and sodium selenate forms) at different concentrations, along with growth and yield formation of green pea, in a greenhouse experiment. Biotransformation of inorganic Se was evaluated using HPLC-ICP-MS for Se-species separation in the above ground parts of green pea. Results showed 3 mg kg -1 Se IV increased green pea growth biomarkers and also caused an increase in protein content in leaves by 17%. Selenomethionine represented 65% of the total selenium content in shoots, but was lower in pods and seeds (54 and 38%, respectively). Selenomethionine was the major species in all plant parts and the only organic selenium form in the lower Se IV concentration range. Elevating the dose of Se IV (≥30 mg kg -1 ) triggered detrimental effects on growth and protein content and caused higher accumulation of inorganic Se in forms of Se VI and Se IV . Selenocysteine, another organic form of proteinogenic amino acid, was determined when Se IV (≥10 mg kg -1 ) was applied in higher concentrations. Thus, agronomic biofortification using the appropriate chemical form and concentration of Se will have positive effects on green pea growth and its enriched shoots and seeds provide a value-added protein source for livestock and humans with significant increased selenomethionine.

  15. Comparative study of the functional properties of three legume seed isolates: adzuki, pea and soy bean.

    PubMed

    Barac, Miroljub B; Pesic, Mirjana B; Stanojevic, Sladjana P; Kostic, Aleksandar Z; Bivolarevic, Vanja

    2015-05-01

    The aim of this work was to compare functional properties including solubility, emulsifying and foaming properties of native and thermally treated adzuki, soy and pea protein isolates prepared under the same conditions. These functional properties were tested at four pH values: pH 3.0, pH 5.0, pH 7.0 and pH 8.0. The lowest solubility at all pH values were obtained for isolate of adzuki whereas isolates of soybean had the highest values at almost all pHs. Thermal treatment reduced solubility of soy and pea isolates at all pH values, whereas solubility of adzuki isolate was unchanged, except at pH 8. Native isolate of adzuki had the best emulsifying properties at pH 7.0 whereas at the other pH values some of native pea and soybean protein isolates were superior. After thermal treatment, depending on tested pH and selected variety all of three species could be a good emulsifier. Native soy protein isolates formed the most stable foams at all pHs. Thermal treatment significantly improved foaming properties of adzuki isolate, whereas reduced foaming capacity of soy and pea isolates, but could improve foam stability of these isolates at specific pH. Appropriate selection of legume seed as well as variety could have great importance in achievement of desirable functional properties of final products. All three tested species could find specific application in wide range of food products.

  16. [Non-thermal effect of GSM electromagnetic radiation on quality of pea seeds].

    PubMed

    Veselova, T V; Veselovskiĭ, V A; Deev, L I; Baĭzhumanov, A A

    2012-01-01

    The seeds with low level of room temperature phosphorescence (RTP) were selected from a lot of air-dry peas (Pisum sativum) with 62% germination. These strong seeds (95-97% germination percentage) in air-dry, imbibed or emerged states were exposed to 905 MHz GSM-band electromagnetic radiation (EMR). The following effects of EMR were observed. Fraction II with higher RTP level appeared in the air-dry seeds. The germination rate decreased 2-3 fold in the air-dry, swollen and sprouting seeds due to an increase in the ratio of the seedlings with morphological defects (from 3 to 38%) and suffocated seeds (from 1 to 15%). We suggest tentative mechanisms to account for the decreased fitness of peas under GSM-band EMR (905 MHz); also discussed is the role of non-enzymatic hydrolysis of carbohydrates and amino-carbonyl reaction in this process.

  17. Purification and immunolocalization of an annexin-like protein in pea seedlings

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Dauwalder, M.; Roux, S. J.

    1992-01-01

    As part of a study to identify potential targets of calcium action in plant cells, a 35-kDa, annexin-like protein was purified from pea (Pisum sativum L.) plumules by a method used to purify animal annexins. This protein, called p35, binds to a phosphatidylserine affinity column in a calcium-dependent manner and binds 45Ca2+ in a dot-blot assay. Preliminary sequence data confirm a relationship for p35 with the annexin family of proteins. Polyclonal antibodies have been raised which recognize p35 in Western and dot blots. Immunofluorescence and immunogold techniques were used to study the distribution and subcellular localization of p35 in pea plumules and roots. The highest levels of immunostain were found in young developing vascular cells producing wall thickenings and in peripheral root-cap cells releasing slime. This localization in cells which are actively involved in secretion is of interest because one function suggested for the animal annexins is involvement in the mediation of exocytosis.

  18. Land use in, and water quality of, the Pea Hill Arm of Lake Gaston, Virginia and North Carolina, 1988-90

    USGS Publications Warehouse

    Woodside, Michael D.

    1994-01-01

    The City of Virginia Beach currently (1994) supplies water to about 400,000 people in southeastern Virginia. The city plans to withdraw water from the Pea Hill Arm of Lake Gaston to meet projected water needs of the population to the year 2030. The purpose of this report is to (1) describe the temporal and spatial distribution of selected water-quality constituents, (2) document current (1989) land use and land cover in the Pea Hill Arm drainage basin, and (3) discuss relations, if any, between the quality of water in the inlets within the Pea Hill Arm and land uses. The report focuses on water-quality problems in the basin, including changes in concentrations of major ions, nutrients, and algae associated with urban development adjacent to water bodies.The Pea Hill Arm was classified as mesotrophic on the basis of the range of concentrations of total phosphorus (0.001 to 0.61 milligrams per liter); the range of concentrations of total organic-plus-ammonia nitrogen (0.2 to 1.4 milligrams per liter); and the range of concentrations of chlorophyll a (1.4 to 56 micrograms per liter). These water-quality data were collected at 3 feet below the water surface during water years 1989-90.Thermal stratification in Pea Hill Arm generally began in April and ended in September. Water below a depth of about 25 feet generally became anoxic by June. Destratification generally began in late September and was completed by November. Lake Gaston followed the same general stratification and destratification pattern as Pea Hill Arm, except Lake Gaston was partially destratified during the summer when large amounts of water were released from John H. Kerr Reservoir and Lake Gaston Dams. During water year 1988, streamflows were 33 percent below the long-term mean-annual streamflows at one of the major streams to Lake Gaston. Low streamflows contributed to elevated specific conductances and concentrations of sodium, calcium, magnesium, and alkalinity from October 1988 to February 1989 at

  19. Risk assessment, dissipation behavior and persistence of quinalphos in/on green pea by gas chromatography with electron capture detector.

    PubMed

    Dar, Alamgir A; Jan, Ishrat; Wani, Ashraf A; Mubashir, Sofi; Sofi, Khurshid A; Sofi, Javid A; Dar, Irshad H

    2018-06-01

    Chemical investigation was carried out to examine the risk assessment, dissipation behavior, persistence, and half-life period of quinalphos in/on green pea fruit by spraying quinalphos at fruiting stage followed by another application after 10-day interval. The samples were extracted by using the quick, easy, cheap, effective, rugged, and safe method, and the residues of quinalphos were analyzed by gas chromatography with electron capture detector. Herein, we report a novel, accurate, and cost-effective gas chromatography method for the determination of average deposits of quinalphos in/on green pea. The initial deposits and half-life of quinalphos were found to be 1.20 mg/kg and 2.77 days, respectively, following the application of insecticide. Residues of quinalphos reached below detection limit of 0.05 mg/kg after 10 days at recommended dosage. For risk assessment studies, the tenth day will be safe for consumers for consumption of green pea. The developed method is simple, selective, and repeatable, and it can be extended for quinalphos-based standardization of herbal formulations containing green pea and its use in pesticide industries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Pea (Pisum sativum) genes, participating in symbiosis with nitrogen-fixing bacteria. III. Study of the structure of the ENOD12 early nodulin gene for various types of peas using the polymerase chain reaction (PCR)].

    PubMed

    Kozik, A V; Matvienko, M A; Men', A E; Zalenskiĭ, A O; Tikhonovich, I A

    1992-01-01

    We have determined the length of early noduline gene ENOD12 in various varieties and lines of pea (Pisum sativum) using the polymerase chain reaction (PCR). It was demonstrated that promoter regions of ENOD12A and ENOD12B genes in line 2150 (Afghanistan) are longer than these in variety "Feltham first". The disparity is 14 bp. When studying these genes in 7 different lines and varieties of pea it was found that ENOD12A gene is more variable in size than the ENOD12B gene. We showed the possibility to analyze the heritage of ENOD12 gene's alleles by using the PCR method.

  1. The pea aphid uses a version of the terminal system during oviparous, but not viviparous, development

    PubMed Central

    2013-01-01

    Background In most species of aphid, female nymphs develop into either sexual or asexual adults depending on the length of the photoperiod to which their mothers were exposed. The progeny of these sexual and asexual females, in turn, develop in dramatically different ways. The fertilized oocytes of sexual females begin embryogenesis after being deposited on leaves (oviparous development) while the oocytes of asexual females complete embryogenesis within the mother (viviparous development). Compared with oviparous development, viviparous development involves a smaller transient oocyte surrounded by fewer somatic epithelial cells and a smaller early embryo that comprises fewer cells. To investigate whether patterning mechanisms differ between the earliest stages of the oviparous and viviparous modes of pea aphid development, we examined the expression of pea aphid orthologs of genes known to specify embryonic termini in other insects. Results Here we show that pea aphid oviparous ovaries express torso-like in somatic posterior follicle cells and activate ERK MAP kinase at the posterior of the oocyte. In addition to suggesting that some posterior features of the terminal system are evolutionarily conserved, our detection of activated ERK in the oocyte, rather than in the embryo, suggests that pea aphids may transduce the terminal signal using a mechanism distinct from the one used in Drosophila. In contrast with oviparous development, the pea aphid version of the terminal system does not appear to be used during viviparous development, since we did not detect expression of torso-like in the somatic epithelial cells that surround either the oocyte or the blastoderm embryo and we did not observe restricted activated ERK in the oocyte. Conclusions We suggest that while oviparous oocytes and embryos may specify posterior fate through an aphid terminal system, viviparous oocytes and embryos employ a different mechanism, perhaps one that does not rely on an interaction

  2. The Pea Seedling as a Model of Normal and Abnormal Morphogenesis

    ERIC Educational Resources Information Center

    Kurkdjian, Armen; And Others

    1974-01-01

    Describes several simple and inexpensive experiments designed to facilitate the study of normal and abnormal morphogenesis in the biology laboratory. Seedlings of the common garden pea are used in the experiments, and abnormal morphogenesis (tumors) are induced by a virulent strain of the crown-gall organism, Agrobacterium tumefaciens. (JR)

  3. Unintended changes in protein expression revealed by proteomic analysis of seeds from transgenic pea expressing a bean alpha-amylase inhibitor gene.

    PubMed

    Chen, Hancai; Bodulovic, Greg; Hall, Prudence J; Moore, Andy; Higgins, Thomas J V; Djordjevic, Michael A; Rolfe, Barry G

    2009-09-01

    Seeds of genetically modified (GM) peas (Pisum sativum L.) expressing the gene for alpha-amylase inhibitor-1 (alphaAI1) from the common bean (Phaseolus vulgaris L. cv. Tendergreen) exhibit resistance to the pea weevil (Bruchus pisorum). A proteomic analysis was carried out to compare seeds from GM pea lines expressing the bean alphaAI1 protein and the corresponding alphaAI1-free segregating lines and non-GM parental line to identify unintended alterations to the proteome of GM peas due to the introduction of the gene for alphaAI1. Proteomic analysis showed that in addition to the presence of alphaAI1, 33 other proteins were differentially accumulated in the alphaAI1-expressing GM lines compared with their non-GM parental line and these were grouped into five expression classes. Among these 33 proteins, only three were found to be associated with the expression of alphaAI1 in the GM pea lines. The accumulation of the remaining 30 proteins appears to be associated with Agrobacterium-mediated transformation events. Sixteen proteins were identified after MALDI-TOF-TOF analysis. About 56% of the identified proteins with altered accumulation in the GM pea were storage proteins including legumin, vicilin or convicilin, phaseolin, cupin and valosin-containing protein. Two proteins were uniquely expressed in the alphaAI1-expressing GM lines and one new protein was present in both the alphaAI1-expressing GM lines and their alphaAI1-free segregating lines, suggesting that both transgenesis and transformation events led to demonstrable changes in the proteomes of the GM lines tested.

  4. Purification, crystallization and preliminary X-ray analysis of urease from pigeon pea (Cajanus cajan).

    PubMed

    Balasubramanian, Anuradha; Ponnuraj, Karthe

    2008-07-01

    Urease is a seed protein that is common to most Leguminosae. It also occurs in many bacteria, fungi and several species of yeast. Urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, thus allowing organisms to use exogenous and internally generated urea as a nitrogen source. Urease from pigeon pea seeds has been purified to electrophoretic homogeneity using a series of steps involving ammonium sulfate fractionation, acid precipitation, ion-exchange and size-exclusion chromatography techniques. The pigeon pea urease was crystallized and the resulting crystals diffracted to 2.5 A resolution. The crystals belong to the rhombohedral space group R32, with unit-cell parameters a = b = 176.29, c = 346.44 A.

  5. Evidence against the involvement of ionically bound cell wall proteins in pea epicotyl growth

    NASA Technical Reports Server (NTRS)

    Melan, M. A.; Cosgrove, D. J.

    1988-01-01

    Ionically bound cell wall proteins were extracted from 7 day old etiolated pea (Pisum sativum L. cv Alaska) epicotyls with 3 molar LiCl. Polyclonal antiserum was raised in rabbits against the cell wall proteins. Growth assays showed that treatment of growing region segments (5-7 millimeters) of peas with either dialyzed serum, serum globulin fraction, affinity purified immunoglobulin, or papain-cleaved antibody fragments had no effect on growth. Immunofluorescence microscopy confirmed antibody binding to cell walls and penetration of the antibodies into the tissues. Western blot analysis, immunoassay results, and affinity chromatography utilizing Sepharose-bound antibodies confirmed recognition of the protein preparation by the antibodies. Experiments employing in vitro extension as a screening measure indicated no effect upon extension by antibodies, by 50 millimolar LiCl perfusion of the apoplast or by 3 molar LiCl extraction. Addition of cell wall protein to protease pretreated segments did not restore extension nor did addition of cell wall protein to untreated segments increase extension. It is concluded that, although evidence suggests that protein is responsible for the process of extension, the class(es) of proteins which are extracted from pea cell walls with 3 molar LiCl are probably not involved in this process.

  6. Host Adaptation of Soybean Dwarf Virus Following Serial Passages on Pea (Pisum sativum) and Soybean (Glycine max)

    PubMed Central

    Tian, Bin; Gildow, Frederick E.; Stone, Andrew L.; Sherman, Diana J.; Damsteegt, Vernon D.; Schneider, William L.

    2017-01-01

    Soybean Dwarf Virus (SbDV) is an important plant pathogen, causing economic losses in soybean. In North America, indigenous strains of SbDV mainly infect clover, with occasional outbreaks in soybean. To evaluate the risk of a US clover strain of SbDV adapting to other plant hosts, the clover isolate SbDV-MD6 was serially transmitted to pea and soybean by aphid vectors. Sequence analysis of SbDV-MD6 from pea and soybean passages identified 11 non-synonymous mutations in soybean, and six mutations in pea. Increasing virus titers with each sequential transmission indicated that SbDV-MD6 was able to adapt to the plant host. However, aphid transmission efficiency on soybean decreased until the virus was no longer transmissible. Our results clearly demonstrated that the clover strain of SbDV-MD6 is able to adapt to soybean crops. However, mutations that improve replication and/or movement may have trade-off effects resulting in decreased vector transmission. PMID:28635666

  7. [Leaf water potential of spring wheat and field pea under different tillage patterns and its relationships with environmental factors].

    PubMed

    Zhang, Ming; Zhang, Ren-Zhi; Cai, Li-Qun

    2008-07-01

    Based on a long-term experiment, the leaf water potential of spring wheat and field pea, its relationships with environmental factors, and the diurnal variations of leaf relative water content and water saturation deficient under different tillage patterns were studied. The results showed that during whole growth period, field pea had an obviously higher leaf water potential than spring wheat, but the two crops had similar diurnal variation trend of their leaf water potential, i.e., the highest in early morning, followed by a descent, and a gradual ascent after the descent. For spring wheat, the maximum leaf water potential appeared at its jointing and heading stages, followed by at booting and flowering stages, and the minimum appeared at filling stage. For field pea, the maximum leaf water potential achieved at squaring stage, followed by at branching and flowering stages, and the minimum was at podding stage. The leaf relative water content of spring wheat was the highest at heading stage, followed by at jointing and flowering stages, and achieved the minimum at filling stage; while the water saturation deficient was just in adverse. With the growth of field pea, its leaf relative water content decreased, but leaf water saturation deficient increased. The leaf water potential of both spring wheat and field pea had significant correlations with environmental factors, including soil water content, air temperature, solar radiation, relative air humidity, and air water potential. Path analysis showed that the meteorological factor which had the strongest effect on the diurnal variation of spring wheat' s and field pea' s leaf water potential was air water potential and air temperature, respectively. Compared with conventional tillage, the protective tillage patterns no-till, no-till plus straw mulching, and conventional tillage plus straw returning increased the leaf water potential and relative water content of test crops, and the effect of no-till plus straw

  8. Development and validation of breeder-friendly KASPar markers for er1, a powdery mildew resistance gene in pea (Pisum sativum L.)

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew of pea is caused by Erysiphe pisi DC and is a serious threat to pea (Pisum sativum L.) production throughout much of the world. Development and utilization of genetic resistance to powdery mildew is considered an effective and sustainable strategy to manage this disease. One gene, er1...

  9. Serum 25-Hydroxyvitamin D Levels, phosphoprotein enriched in diabetes gene product (PED/PEA-15) and leptin-to-adiponectin ratio in women with PCOS.

    PubMed

    Savastano, Silvia; Valentino, Rossella; Di Somma, Carolina; Orio, Francesco; Pivonello, Claudia; Passaretti, Federica; Brancato, Valentina; Formisano, Pietro; Colao, Annamaria; Beguinot, Francesco; Tarantino, Giovanni

    2011-11-23

    Polycystic ovary syndrome (PCOS) is frequently associated with hypovitaminosis D. Vitamin D is endowed with pleiotropic effects, including insulin resistance (IR) and apoptotic pathway. Disruption of the complex mechanism that regulated ovarian apoptosis has been reported in PCOS. Phosphoprotein enriched in diabetes gene product (PED/PEA-15), an anti-apoptotic protein involved in type 2 diabetes mellitus (T2DM), is overexpressed in PCOS women, independently of obesity. Leptin-to-adiponectin ratio (L/A) is a biomarker of IR and low-grade inflammation in PCOS. The aim of the study was to investigate the levels of 25-hydroxy vitamin D (25(OH)D), and L/A, in association with PED/PEA-15 protein abundance, in both lean and overweight/obese (o/o) women with PCOS. PED/PEA-15 protein abundance and circulating levels of 25(OH)D, L/A, sex hormone-binding globulin, and testosterone were evaluated in 90 untreated PCOS patients (25 ± 4 yrs; range 18-34) and 40 healthy controls age and BMI comparable, from the same geographical area. FAI (free androgen index) and the homeostasis model assessment of insulin resistance (HoMA-IR) index were calculated. In o/o PCOS, 25(OH)D levels were significantly lower, and L/A values were significantly higher than in lean PCOS (p < 0.001), while there were no differences in PED/PEA-15 protein abundance. An inverse correlation was observed between 25(OH)D and BMI, PED/PEA-15 protein abundance, insulin, HoMA-IR, FAI (p < 0.001), and L/A (p < 0.05). At the multivariate analysis, in o/o PCOS L/A, insulin and 25(OH)D were the major determinant of PED/PEA-15 protein abundance (β = 0.45, β = 0.41, and β = -0.25, respectively). Lower 25(OH)D and higher L/A were associated to PED/PEA-15 protein abundance in PCOS, suggesting their involvement in the ovarian imbalance between pro-and anti-apoptotic mechanisms, with high L/A and insulin and low 25(OH)D levels as the main determinants of PED/PEA-15 protein variability. Further studies, involving also

  10. Nature and origin of the calcium asymmetry-arising during gravitropic response in etiolated pea epicotyls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migliaccio, F.; Galston, A.W.

    1987-10-01

    Seven day old etiolated pea epicotyls were loaded symmetrically with /sup 3/H-indole 3-acetic acid (IAA) or /sup 45/Ca/sup 2 +/, then subjected to 1.5 hours of 1g gravistimulation. Epidermal peels taken from top and bottom surfaces after 90 minutes showed an increase in IAA on the lower side and of Ca/sup 2 +/ on the upper side. Inhibitors of IAA movement (TIBA, 9-hydroxyfluorene carboxylic acid) block the development of both IAA and Ca/sup 2 +/ asymmetries, but substances known to interfere with normal Ca/sup 2 +/ transport do not significantly alter either IAA or Ca/sup 2 +/ asymmetries. These substances,more » however, are active in modifying both Ca/sup 2 +/ uptake and efflux through oat and pea leaf protoplast membranes. The authors conclude that the /sup 45/Ca/sup 2 +/ fed to pea epicotyls occurs largely in the cell wall, and that auxin movement is primary and Ca/sup 2 +/ movement secondary in gravitropism. They hypothesize that apoplastic Ca/sup 2 +/ changes during the graviresponse because it is displaced by H/sup +/ secreted through auxin-induced proton release. This proposed mechanism is supported by localized pH experiments, in which filter paper soaked in various buffers was applied to one side of a carborundum-abraded epicotyls. Buffer at pH 3 increased calcium loss from the side to which it is applied, whereas pH 7 buffer decreases it. Moreover, 10 micromolar IAA and 1 micromolar fusicoccin, which promote H/sup +/ efflux, increase Ca/sup 2 +/ release from pea epicotyl segments, whereas cycloheximide, which inhibits H/sup +/ efflux, has the reverse effect.« less

  11. Diversity of Pea-Associated F. proliferatum and F. verticillioides Populations Revealed by FUM1 Sequence Analysis and Fumonisin Biosynthesis

    PubMed Central

    Waśkiewicz, Agnieszka; Stępień, Łukasz; Wilman, Karolina; Kachlicki, Piotr

    2013-01-01

    Fusarium proliferatum and F. verticillioides are considered as minor pathogens of pea (Pisum sativum L.). Both species can survive in seed material without visible disease symptoms, but still contaminating it with fumonisins. Two populations of pea-derived F. proliferatum and F. verticillioides strains were subjected to FUM1 sequence divergence analysis, forming a distinct group when compared to the collection strains originating from different host species. Furthermore, the mycotoxigenic abilities of those strains were evaluated on the basis of in planta and in vitro fumonisin biosynthesis. No differences were observed in fumonisin B (FB) levels measured in pea seeds (maximum level reached 1.5 μg g−1); however, in rice cultures, the majority of F. proliferatum genotypes produced higher amounts of FB1–FB3 than F. verticillioides strains. PMID:23470545

  12. Correlation between spatial (3D) structure of pea and bean thylakoid membranes and arrangement of chlorophyll-protein complexes.

    PubMed

    Rumak, Izabela; Mazur, Radosław; Gieczewska, Katarzyna; Kozioł-Lipińska, Joanna; Kierdaszuk, Borys; Michalski, Wojtek P; Shiell, Brian J; Venema, Jan Henk; Vredenberg, Wim J; Mostowska, Agnieszka; Garstka, Maciej

    2012-05-25

    The thylakoid system in plant chloroplasts is organized into two distinct domains: grana arranged in stacks of appressed membranes and non-appressed membranes consisting of stroma thylakoids and margins of granal stacks. It is argued that the reason for the development of appressed membranes in plants is that their photosynthetic apparatus need to cope with and survive ever-changing environmental conditions. It is not known however, why different plant species have different arrangements of grana within their chloroplasts. It is important to elucidate whether a different arrangement and distribution of appressed and non-appressed thylakoids in chloroplasts are linked with different qualitative and/or quantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranes and whether this arrangement influences the photosynthetic efficiency. Our results from TEM and in situ CLSM strongly indicate the existence of different arrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids are regularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, while irregular appressed thylakoid membranes within bean chloroplasts correspond to smaller and less distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show a distinct spatial separation of stacked thylakoids from stromal spaces whereas spatial division of stroma and thylakoid areas in bean chloroplasts are more complex. Structural differences influenced the PSII photochemistry, however without significant changes in photosynthetic efficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well as spectroscopic investigations indicated a similar proportion between PSI and PSII core complexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones. Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSI supercomplexes between species are suggested

  13. Correlation between spatial (3D) structure of pea and bean thylakoid membranes and arrangement of chlorophyll-protein complexes

    PubMed Central

    2012-01-01

    Background The thylakoid system in plant chloroplasts is organized into two distinct domains: grana arranged in stacks of appressed membranes and non-appressed membranes consisting of stroma thylakoids and margins of granal stacks. It is argued that the reason for the development of appressed membranes in plants is that their photosynthetic apparatus need to cope with and survive ever-changing environmental conditions. It is not known however, why different plant species have different arrangements of grana within their chloroplasts. It is important to elucidate whether a different arrangement and distribution of appressed and non-appressed thylakoids in chloroplasts are linked with different qualitative and/or quantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranes and whether this arrangement influences the photosynthetic efficiency. Results Our results from TEM and in situ CLSM strongly indicate the existence of different arrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids are regularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, while irregular appressed thylakoid membranes within bean chloroplasts correspond to smaller and less distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show a distinct spatial separation of stacked thylakoids from stromal spaces whereas spatial division of stroma and thylakoid areas in bean chloroplasts are more complex. Structural differences influenced the PSII photochemistry, however without significant changes in photosynthetic efficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well as spectroscopic investigations indicated a similar proportion between PSI and PSII core complexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones. Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSI supercomplexes between

  14. [THE EFFECT OF ACID RAIN ON ULTRASTRUCTURE AND FUNCTIONAL PARAMETERS OF PHOTOSYNTHETIC APPARATUS OF PEA LEAVES].

    PubMed

    Polishchuk, A V; Vodka, M V; Belyavskaya, N A; Khomochkin, A P; Zolotareva, E K

    2016-01-01

    The effects of simulated acid rain (SAR) on the ultrastructure and functional parameters of the photosynthetic apparatus were studied using 14-day-old pea leaves as test system. Pea plants were sprayed with an aqueous solution containing NaNO₃(0.2 mM) and Na₂SO₄(0.2 mM) (pH 5.6, a control variant), or with the same solution, which was acidified to pH 2.5 (acid variant). Functional characteristics were determined by chlorophyll fluorescence analysis. Acid rain application caused reduction in the efficiency of the photosynthetic electron transport by 25%, which was accompanied by an increase by 85% in the quantum yield of thermal dissipation of excess light quanta. Ultrastructural changes in chloroplast were registered by transmission electron microscopy (TEM) after two days of the SAR-treatment of pea leaves. In this case, the changes in the structure of grana, heterogeneity of thylakoids packaging in granum, namely, the increase of intra-thylakoid gaps and thickness of granal thylakoids compared to the control were found. The migration of protein complexes in thylakoid membranes of chloroplasts isolated from leaves treated with SAR was suppressed. It was shown also that carbonic anhydrase activity was inhibited in chloroplast preparations isolated from SAR-treated pea leaves. We proposed a hypothesis on the possible inactivation of thylakoid carbonic anhydrase under SAR and its involvement in the inhibition of photochemical activity of chloroplasts. The data obtained allows to suggest that acid rains negatively affect the photosynthetic apparatus disrupting the membrane system of chloroplast.

  15. Structure and expression of 12-oxophytodienoate reductase (subgroup I) genes in pea, and characterization of the oxidoreductase activities of their recombinant products.

    PubMed

    Matsui, H; Nakamura, G; Ishiga, Y; Toshima, H; Inagaki, Y; Toyoda, K; Shiraishi, T; Ichinose, Y

    2004-02-01

    Recently, we observed that expression of a pea gene (S64) encoding an oxophytodienoic acid reductase (OPR) was induced by a suppressor of pea defense responses, secreted by the pea pathogen Mycosphaerella pinodes. Because it is known that OPRs are usually encoded by families of homologous genes, we screened for genomic and cDNA clones encoding members of this putative OPR family in pea. We isolated five members of the OPR gene family from a pea genomic DNA library, and amplified six cDNA clones, including S64, by RT-PCR (reverse transcriptase-PCR). Sequencing analysis revealed that S64 corresponds to PsOPR2, and the amino acid sequences of the predicted products of the six OPR-like genes shared more than 80% identity with each other. Based on their sequence similarity, all these OPR-like genes code for OPRs of subgroup I, i.e., enzymes which are not required for jasmonic acid biosynthesis. However, the genes varied in their exon/intron organization and in their promoter sequences. To investigate the expression of each individual OPR-like gene, RT-PCR was performed using gene-specific primers. The results indicated that the OPR-like gene most strongly induced by the inoculation of pea plants with a compatible pathogen and by treatment with the suppressor from M. pinodes was PsOPR2. Furthermore, the ability of the six recombinant OPR-like proteins to reduce a model substrate, 2-cyclohexen-1-one (2-CyHE), was investigated. The results indicated that PsOPR1, 4 and 6 display robust activity, and PsOPR2 has a most remarkable ability to reduce 2-CyHE, whereas PsOPR3 has little and PsOPR5 does not reduce this compound. Thus, the six OPR-like proteins can be classified into four types. Interestingly, the gene structures, expression profiles, and enzymatic activities used to classify each member of the pea OPR-like gene family are clearly correlated, indicating that each member of this OPR-like family has a distinct function.

  16. Stamina pistilloida: a new mutation induced in pea.

    PubMed

    Monti, L M; Devreux, M

    1969-01-01

    After diethylsulphate treatment of seeds of the pea variety 'Parvus', a new floral mutation was isolated in the second generation. This mutation, named stamina pistilloida, is characterized by a partial fusion of the androecium with the gynoecium; the two marginal stamens of the staminal column are transformed in rudimentary carpels more or less differentiated according to ecoclimatic conditions. The genetic analysis has shown the monogenic and recessive behaviour of the mutation (gene proposed stp) and its linkage with the gene oh in the chromosome II.

  17. Studies on the Control of Ascochyta Blight in Field Peas (Pisum sativum L.) Caused by Ascochyta pinodes in Zhejiang Province, China

    PubMed Central

    Liu, Na; Xu, Shengchun; Yao, Xiefeng; Zhang, Guwen; Mao, Weihua; Hu, Qizan; Feng, Zhijuan; Gong, Yaming

    2016-01-01

    Ascochyta blight, an infection caused by a complex of Ascochyta pinodes, Ascochyta pinodella, Ascochyta pisi, and/or Phoma koolunga, is a destructive disease in many field peas (Pisum sativum L.)-growing regions, and it causes significant losses in grain yield. To understand the composition of fungi associated with this disease in Zhejiang Province, China, a total of 65 single-pycnidiospore fungal isolates were obtained from diseased pea samples collected from 5 locations in this region. These isolates were identified as Ascochyta pinodes by molecular techniques and their morphological and physiological characteristics. The mycelia of ZJ-1 could penetrate pea leaves across the stomas, and formed specific penetration structures and directly pierced leaves. The resistance level of 23 available pea cultivars was tested against their representative isolate A. pinodes ZJ-1 using the excised leaf-assay technique. The ZJ-1 mycelia could penetrate the leaves of all tested cultivars, and they developed typical symptoms, which suggested that all tested cultivars were susceptible to the fungus. Chemical fungicides and biological control agents were screened for management of this disease, and their efficacies were further determined. Most of the tested fungicides (11 out of 14) showed high activity toward ZJ-1 with EC50 < 5 μg/mL. Moreover, fungicides, including tebuconazole, boscalid, iprodione, carbendazim, and fludioxonil, displayed more than 80% disease control efficacy under the recorded conditions. Three biocontrol strains of Bacillus sp. and one of Pantoea agglomerans were isolated from pea-related niches and significantly reduced the severity of disease under greenhouse and field conditions. To our knowledge, this is the first study on ascochyta blight in field peas, and results presented here will be useful for controlling the disease in this area. PMID:27148177

  18. Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association mapping has recently emerged as a valuable approach to refine genetic basis of polygenic resistance to plant diseases, which are increasingly used in integrated strategies for durable crop protection. Aphanomyces euteiches is a soil borne pathogen of pea and other legumes wor...

  19. Purification, crystallization and preliminary X-ray analysis of urease from pigeon pea (Cajanus cajan)

    PubMed Central

    Balasubramanian, Anuradha; Ponnuraj, Karthe

    2008-01-01

    Urease is a seed protein that is common to most Leguminosae. It also occurs in many bacteria, fungi and several species of yeast. Urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, thus allowing organisms to use exogenous and internally generated urea as a nitrogen source. Urease from pigeon pea seeds has been purified to electrophoretic homogeneity using a series of steps involving ammonium sulfate fractionation, acid precipitation, ion-exchange and size-exclusion chromatography techniques. The pigeon pea urease was crystallized and the resulting crystals diffracted to 2.5 Å resolution. The crystals belong to the rhombohedral space group R32, with unit-cell parameters a = b = 176.29, c = 346.44 Å. PMID:18607103

  20. The b Gene of Pea Encodes a Defective Flavonoid 3′,5′-Hydroxylase, and Confers Pink Flower Color1[W][OA

    PubMed Central

    Moreau, Carol; Ambrose, Mike J.; Turner, Lynda; Hill, Lionel; Ellis, T.H. Noel; Hofer, Julie M.I.

    2012-01-01

    The inheritance of flower color in pea (Pisum sativum) has been studied for more than a century, but many of the genes corresponding to these classical loci remain unidentified. Anthocyanins are the main flower pigments in pea. These are generated via the flavonoid biosynthetic pathway, which has been studied in detail and is well conserved among higher plants. A previous proposal that the Clariroseus (B) gene of pea controls hydroxylation at the 5′ position of the B ring of flavonoid precursors of the anthocyanins suggested to us that the gene encoding flavonoid 3′,5′-hydroxylase (F3′5′H), the enzyme that hydroxylates the 5′ position of the B ring, was a good candidate for B. In order to test this hypothesis, we examined mutants generated by fast neutron bombardment. We found allelic pink-flowered b mutant lines that carried a variety of lesions in an F3′5′H gene, including complete gene deletions. The b mutants lacked glycosylated delphinidin and petunidin, the major pigments present in the progenitor purple-flowered wild-type pea. These results, combined with the finding that the F3′5′H gene cosegregates with b in a genetic mapping population, strongly support our hypothesis that the B gene of pea corresponds to a F3′5′H gene. The molecular characterization of genes involved in pigmentation in pea provides valuable anchor markers for comparative legume genomics and will help to identify differences in anthocyanin biosynthesis that lead to variation in pigmentation among legume species. PMID:22492867

  1. Iron and oxygen isotope signatures of the Pea Ridge and Pilot Knob magnetite-apatite deposits, southeast Missouri, USA

    USGS Publications Warehouse

    Childress, Tristan; Simon, Adam C.; Day, Warren C.; Lundstrom, Craig C.; Bindeman, Ilya N.

    2016-01-01

    New O and Fe stable isotope ratios are reported for magnetite samples from high-grade massive magnetite of the Mesoproterozoic Pea Ridge and Pilot Knob magnetite-apatite ore deposits and these results are compared with data for other iron oxide-apatite deposits to shed light on the origin of the southeast Missouri deposits. The δ18O values of magnetite from Pea Ridge (n = 12) and Pilot Knob (n = 3) range from 1.0 to 7.0 and 3.3 to 6.7‰, respectively. The δ56Fe values of magnetite from Pea Ridge (n = 10) and Pilot Knob (n = 6) are 0.03 to 0.35 and 0.06 to 0.27‰, respectively. These δ18O and the δ56Fe values suggest that magnetite crystallized from a silicate melt (typical igneous δ56Fe ranges 0.06–0.49‰) and grew in equilibrium with a magmatic-hydrothermal aqueous fluid. We propose that the δ18O and δ56Fe data for the Pea Ridge and Pilot Knob magnetite-apatite deposits are consistent with the flotation model recently proposed by Knipping et al. (2015a), which invokes flotation of a magmatic magnetite-fluid suspension and offers a plausible explanation for the igneous (i.e., up to ~15.9 wt % TiO2 in magnetite) and hydrothermal features of the deposits.

  2. Variability within a pea core collection of LEAM and HSP22, two mitochondrial seed proteins involved in stress tolerance.

    PubMed

    Avelange-Macherel, Marie-Hélène; Payet, Nicole; Lalanne, David; Neveu, Martine; Tolleter, Dimitri; Burstin, Judith; Macherel, David

    2015-07-01

    LEAM, a late embryogenesis abundant protein, and HSP22, a small heat shock protein, were shown to accumulate in the mitochondria during pea (Pisum sativum L.) seed development, where they are expected to contribute to desiccation tolerance. Here, their expression was examined in seeds of 89 pea genotypes by Western blot analysis. All genotypes expressed LEAM and HSP22 in similar amounts. In contrast with HSP22, LEAM displayed different isoforms according to apparent molecular mass. Each of the 89 genotypes harboured a single LEAM isoform. Genomic and RT-PCR analysis revealed four LEAM genes differing by a small variable indel in the coding region. These variations were consistent with the apparent molecular mass of each isoform. Indels, which occurred in repeated domains, did not alter the main properties of LEAM. Structural modelling indicated that the class A α-helix structure, which allows interactions with the mitochondrial inner membrane in the dry state, was preserved in all isoforms, suggesting functionality is maintained. The overall results point out the essential character of LEAM and HSP22 in pea seeds. LEAM variability is discussed in terms of pea breeding history as well as LEA gene evolution mechanisms. © 2014 John Wiley & Sons Ltd.

  3. Effect of micronized pea seeds (Pisum sativum L.) as a substitute of soybean meal on tissue fatty acid composition and quality of broiler chicken meat.

    PubMed

    Kiczorowska, Bożena; Samolińska, Wioletta; Andrejko, Dariusz

    2016-11-01

    This study aimed to evaluate the effect of micronized pea seeds introduced into feed mixes for broilers on the slaughter yield, blood lipid parameters, content of fatty acids in selected tissues, and meat quality. The studies involved 150 1-day-old Ross 308 chicks split into three groups (for 42 days). The feed rations differed in terms of the source of proteins: in the control group (C), it was post-extraction soybean meal (SBM) 100%; in group I, SBM 50% and micronized peas 50%; and in group II, micronized peas only, 100%. Irradiated pea seeds added to the feed ration for chicks reduced the fattening grade of carcasses (P < 0.05). Additionally, significant improvement of blood lipid indices was recorded. The share of the irradiated pea seeds in feed mixes decreased the share of saturated fatty acids in the muscles and abdominal fat and had a positive effect on the n-6/n-3 ratio, hypocholesterolemic / hypercholesterolemic ratio, as well as the atherogenic and thrombogenic indices (P < 0.05). © 2016 Japanese Society of Animal Science.

  4. Association mapping of starch chain length distribution and amylose content in pea (Pisum sativum L.) using carbohydrate metabolism candidate genes.

    PubMed

    Carpenter, Margaret A; Shaw, Martin; Cooper, Rebecca D; Frew, Tonya J; Butler, Ruth C; Murray, Sarah R; Moya, Leire; Coyne, Clarice J; Timmerman-Vaughan, Gail M

    2017-08-01

    Although starch consists of large macromolecules composed of glucose units linked by α-1,4-glycosidic linkages with α-1,6-glycosidic branchpoints, variation in starch structural and functional properties is found both within and between species. Interest in starch genetics is based on the importance of starch in food and industrial processes, with the potential of genetics to provide novel starches. The starch metabolic pathway is complex but has been characterized in diverse plant species, including pea. To understand how allelic variation in the pea starch metabolic pathway affects starch structure and percent amylose, partial sequences of 25 candidate genes were characterized for polymorphisms using a panel of 92 diverse pea lines. Variation in the percent amylose composition of extracted seed starch and (amylopectin) chain length distribution, one measure of starch structure, were characterized for these lines. Association mapping was undertaken to identify polymorphisms associated with the variation in starch chain length distribution and percent amylose, using a mixed linear model that incorporated population structure and kinship. Associations were found for polymorphisms in seven candidate genes plus Mendel's r locus (which conditions the round versus wrinkled seed phenotype). The genes with associated polymorphisms are involved in the substrate supply, chain elongation and branching stages of the pea carbohydrate and starch metabolic pathways. The association of polymorphisms in carbohydrate and starch metabolic genes with variation in amylopectin chain length distribution and percent amylose may help to guide manipulation of pea seed starch structural and functional properties through plant breeding.

  5. Hydrotropism in pea roots in a porous-tube water delivery system

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Brown, C. S.; Dreschel, T. W.; Scott, T. K.; Knott, W. M. (Principal Investigator)

    1992-01-01

    Orientation of root growth on earth and under microgravity conditions can possibly be controlled by hydrotropism--growth toward a moisture source in the absence of or reduced gravitropism. A porous-tube water delivery system being used for plant growth studies is appropriate for testing this hypothesis since roots can be grown aeroponically in this system. When the roots of the agravitropic mutant pea ageotropum (Pisum sativum L.) were placed vertically in air of 91% relative humidity and 2 to 3 mm from the water-saturated porous tube placed horizontally, the roots responded hydrotropically and grew in a continuous arch along the circular surface of the tube. By contrast, normal gravitropic roots of Alaska' pea initially showed a slight transient curvature toward the tube and then resumed vertical downward growth due to gravitropism. Thus, in microgravity, normal gravitropic roots could respond to a moisture gradient as strongly as the agravitropic roots used in this study. Hydrotropism should be considered a significant factor responsible for orientation of root growth in microgravity.

  6. Optimization of pre-sowing magnetic field doses through RSM in pea

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Ahmad, I.; Hussain, S. M.; Khera, R. A.; Bokhari, T. H.; Shehzad, M. A.

    2013-09-01

    Seed pre-sowing magnetic field treatment was reported to induce biochemical and physiological changes. In the present study, response surface methodology was used for deduction of optimal magnetic field doses. Improved growth and yield responses in the pea cultivar were achieved using a rotatable central composite design and multivariate data analysis. The growth parameters such as root and shoot fresh masses and lengths as well as yield were enhanced at a certain magnetic field level. The chlorophyll contents were also enhanced significantly vs. the control. The low magnetic field strength for longer duration of exposure/ high strength for shorter exposure were found to be optimal points for maximum responses in root fresh mass, chlorophyll `a' contents, and green pod yield/plant, respectively and a similar trend was observed for other measured parameters. The results indicate that the magnetic field pre-sowing seed treatment can be used practically to enhance the growth and yield in pea cultivar and response surface methodology was found an efficient experimental tool for optimization of the treatment level to obtain maximum response of interest.

  7. Heat-Induced Soluble Protein Aggregates from Mixed Pea Globulins and β-Lactoglobulin.

    PubMed

    Chihi, Mohamed-Lazhar; Mession, Jean-luc; Sok, Nicolas; Saurel, Rémi

    2016-04-06

    The present work investigates the formation of protein aggregates (85 °C, 60 min incubation) upon heat treatment of β-lactoglobulin (βlg)-pea globulins (Glob) mixtures at pH 7.2 and 5 mM NaCl from laboratory-prepared protein isolates. Various βlg/Glob weight ratios were applied, for a total protein concentration of 2 wt % in admixture. Different analytical methods were used to determine the aggregation behavior of "mixed" aggregates, that is, surface hydrophobicity and also sulfhydryl content, protein interactions by means of SDS-PAGE electrophoresis, and molecule size distribution by DLS and gel filtration. The production of "mixed" thermal aggregates would involve both the formation of new disulfide bonds and noncovalent interactions between the denatured βlg and Glob subunits. The majority of "mixed" soluble aggregates displayed higher molecular weight and smaller diameter than those for Glob heated in isolation. The development of pea-whey protein "mixed" aggregates may help to design new ingredients for the control of innovative food textures.

  8. Antifungal genes expressed in transgenic pea (Pisum sativum L.) do not affect root colonization of arbuscular mycorrhizae fungi.

    PubMed

    Kahlon, Jagroop Gill; Jacobsen, Hans-Jörg; Cahill, James F; Hall, Linda M

    2017-10-01

    Genetically modified crops have raised concerns about unintended consequences on non-target organisms including beneficial soil associates. Pea transformed with four antifungal genes 1-3 β glucanase, endochitinase, polygalacturonase-inhibiting proteins, and stilbene synthase is currently under field-testing for efficacy against fungal diseases in Canada. Transgenes had lower expression in the roots than leaves in greenhouse experiment. To determine the impact of disease-tolerant pea or gene products on colonization by non-target arbuscular mycorrhizae and nodulation by rhizobium, a field trial was established. Transgene insertion, as single gene or stacked genes, did not alter root colonization by arbuscular mycorrhiza fungus (AMF) or root nodulation by rhizobium inoculation in the field. We found no effect of transgenes on the plant growth and performance although, having a dual inoculant with both AMF and rhizobium yielded higher fresh weight shoot-to-root ratio in all the lines tested. This initial risk assessment of transgenic peas expressing antifungal genes showed no deleterious effect on non-target organisms.

  9. Computer simulation of protein—carbohydrate complexes: application to arabinose-binding protein and pea lectin

    NASA Astrophysics Data System (ADS)

    Rao, V. S. R.; Biswas, Margaret; Mukhopadhyay, Chaitali; Balaji, P. V.

    1989-03-01

    The CCEM method (Contact Criteria and Energy Minimisation) has been developed and applied to study protein-carbohydrate interactions. The method uses available X-ray data even on the native protein at low resolution (above 2.4 Å) to generate realistic models of a variety of proteins with various ligands. The two examples discussed in this paper are arabinose-binding protein (ABP) and pea lectin. The X-ray crystal structure data reported on ABP-β- L-arabinose complex at 2.8, 2.4 and 1.7 Å resolution differ drastically in predicting the nature of the interactions between the protein and ligand. It is shown that, using the data at 2.4 Å resolution, the CCEM method generates complexes which are as good as the higher (1.7 Å) resolution data. The CCEM method predicts some of the important hydrogen bonds between the ligand and the protein which are missing in the interpretation of the X-ray data at 2.4 Å resolution. The theoretically predicted hydrogen bonds are in good agreement with those reported at 1.7 Å resolution. Pea lectin has been solved only in the native form at 3 Å resolution. Application of the CCEM method also enables us to generate complexes of pea lectin with methyl-α- D-glucopyranoside and methyl-2,3-dimethyl-α- D-glucopyranoside which explain well the available experimental data in solution.

  10. The pea SAD short-chain dehydrogenase/reductase: quinone reduction, tissue distribution, and heterologous expression.

    PubMed

    Scherbak, Nikolai; Ala-Häivälä, Anneli; Brosché, Mikael; Böwer, Nathalie; Strid, Hilja; Gittins, John R; Grahn, Elin; Eriksson, Leif A; Strid, Åke

    2011-04-01

    The pea (Pisum sativum) tetrameric short-chain alcohol dehydrogenase-like protein (SAD) family consists of at least three highly similar members (SAD-A, -B, and -C). According to mRNA data, environmental stimuli induce SAD expression. The aim of this study was to characterize the SAD proteins by examining their catalytic function, distribution in pea, and induction in different tissues. In enzyme activity assays using a range of potential substrates, the SAD-C enzyme was shown to reduce one- or two-ring-membered quinones lacking long hydrophobic hydrocarbon tails. Immunological assays using a specific antiserum against the protein demonstrated that different tissues and cell types contain small amounts of SAD protein that was predominantly located within epidermal or subepidermal cells and around vascular tissue. Particularly high local concentrations were observed in the protoderm of the seed cotyledonary axis. Two bow-shaped rows of cells in the ovary and the placental surface facing the ovule also exhibited considerable SAD staining. Ultraviolet-B irradiation led to increased staining in epidermal and subepidermal cells of leaves and stems. The different localization patterns of SAD suggest functions both in development and in responses to environmental stimuli. Finally, the pea SAD-C promoter was shown to confer heterologous wound-induced expression in Arabidopsis (Arabidopsis thaliana), which confirmed that the inducibility of its expression is regulated at the transcriptional level.

  11. Metabolomics approach to understand mechanisms of ß-N-Oxalyl-L-a,ß-diaminopropionic Acid (ß-ODAP) biosynthesis in grass pea (Lathyrus sativus L.)

    USDA-ARS?s Scientific Manuscript database

    Grass pea (Lathyrus sativus L.) is an important food crop for human health and food security, however its seed contains high levels of the neurotoxin ß-ODAP. Previous work demonstrated that ß-ODAP content changes during early developmental stages of grass pea. Further, the regulation and mechanisms ...

  12. [Graviresponse in higher plants and its regulation in molecular bases: relevance to growth and development, and auxin polar transport in etiolated pea seedlings].

    PubMed

    Ueda, Junichi; Miyamoto, Kensuke

    2003-08-01

    We review the graviresponse under true and simulated microgravity conditions on a clinostat in higher plants, and its regulation in molecular bases, especially on the aspect of auxin polar transport in etiolated pea (Pisum sativum L. cv. Alaska) seedlings which were the plant materials subjected to STS-95 space experiments. True and simulated microgravity conditions substantially affected growth and development in etiolated pea seedlings, especially the direction of growth of stems and roots, resulting in automorphosis. In etiolated pea seedlings grown in space, epicotyls were the most oriented toward the direction far from the cotyledons, and roots grew toward the aerial space of Plant Growth Chamber. Automorphosis observed in space were well simulated by a clinorotation on a 3-dimensional clinostat and also phenocopied by the application of auxin polar transport inhibitors of 2,3,5-triiodobenzoic acid, N-(1-naphtyl)phthalamic acid and 9-hydroxyfluorene-9-carboxylic acid. Judging from the results described above together with the fact that activities of auxin polar transport in epicotyls of etiolated pea seedlings grown in space substantially were reduced, auxin polar transport seems to be closely related to automorphosis. Strenuous efforts to learn in molecular levels how gravity contributes to the auxin polar transport in etiolated pea epicotyls resulted in successful identification of PsPIN2 and PsAUX1 genes located in plasma membrane which products are considered to be putative efflux and influx carriers of auxin, respectively. Based on the results of expression of PsPIN2 and PsAUX1 genes under various gravistimulations, a possible role of PsPIN2 and PsAUX1 genes for auxin polar transport in etiolated pea seedlings will be discussed.

  13. Nucleotide sequence of a chickpea chlorotic stunt virus relative that infects pea and faba bean in China.

    PubMed

    Zhou, Cui-Ji; Xiang, Hai-Ying; Zhuo, Tao; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2012-07-01

    We determined the genome sequence of a new polerovirus that infects field pea and faba bean in China. Its entire nucleotide sequence (6021 nt) was most closely related (83.3% identity) to that of an Ethiopian isolate of chickpea chlorotic stunt virus (CpCSV-Eth). With the exception of the coat protein (encoded by ORF3), amino acid sequence identities of all gene products of this virus to those of CpCSV-Eth and other poleroviruses were <90%. This suggests that it is a new member of the genus Polerovirus, and the name pea mild chlorosis virus is proposed.

  14. Genomic diversity and macroecology of the crop wild relatives of domesticated pea

    USDA-ARS?s Scientific Manuscript database

    There is growing interest in conservation and utilization of crop wild relatives (CWR) in international food security policy and research. Pea is an emblematic plant, as it is linked to Mendel’s discovery of the laws of inheritance, belongs to the ancient set of cultivated plants of the Near East do...

  15. Light regulation of the abundance of mRNA encoding a nucleolin-like protein localized in the nucleoli of pea nuclei.

    PubMed Central

    Tong, C G; Reichler, S; Blumenthal, S; Balk, J; Hsieh, H L; Roux, S J

    1997-01-01

    A cDNA encoding a nucleolar protein was selected from a pea (Pisum sativum) plumule library, cloned, and sequenced. The translated sequence of the cDNA has significant percent identity to Xenopus laevis nucleolin (31%), the alfalfa (Medicago sativa) nucleolin homolog (66%), and the yeast (Saccharomyces cerevisiae) nucleolin homolog (NSR1) (28%). It also has sequence patterns in its primary structure that are characteristic of all nucleolins, including an N-terminal acidic motif, RNA recognition motifs, and a C-terminal Gly- and Arg-rich domain. By immunoblot analysis, the polyclonal antibodies used to select the cDNA bind selectively to a 90-kD protein in purified pea nuclei and nucleoli and to an 88-kD protein in extracts of Escherichia coli expressing the cDNA. In immunolocalization assays of pea plumule cells, the antibodies stained primarily a region surrounding the fibrillar center of nucleoli, where animal nucleolins are typically found. Southern analysis indicated that the pea nucleolin-like protein is encoded by a single gene, and northern analysis showed that the labeled cDNA binds to a single band of RNA, approximately the same size and the cDNA. After irradiation of etiolated pea seedlings by red light, the mRNA level in plumules decreased during the 1st hour and then increased to a peak of six times the 0-h level at 12 h. Far-red light reversed this effect of red light, and the mRNA accumulation from red/far-red light irradiation was equal to that found in the dark control. This indicates that phytochrome may regulate the expression of this gene. PMID:9193096

  16. On the shock response of Pisum Sativum (a.k.a the Common Pea)

    NASA Astrophysics Data System (ADS)

    Leighs, James; Hazell, Paul; Appleby-Thomas, Gareth

    2011-06-01

    The high strain-rate response of biological and organic structures is of interest to numerous fields ranging from the food industry (dynamic pasteurisation) to astrobiology (e.g. the theory of panspermia, which suggests that planets could be `seeded' with life `piggy-backing' of interplanetary bodies). Consequently, knowledge of the damage mechanisms and viability of shocked organic material is of paramount importance. In this study a single-stage gas-gun has been employed to subject samples of Pisum Sativum (the Common Pea) to semi-planar shock loading, corresponding to impact pressures of up to c.3 GPa. The experimental approach adopted is discussed along with results from Manganin gauges embedded in the target capsule which show the loading history. Further, the viability of the shock-loaded peas was investigated via attempts at germination. Finally, microscopic examination of the impacted specimens allowed a qualitative assessment of damage mechanisms to be made.

  17. Chemistry of Selected Core Samples, Concentrate, Tailings, and Tailings Pond Waters: Pea Ridge Iron (-Lanthanide-Gold) Deposit, Washington County, Missouri

    USGS Publications Warehouse

    Grauch, Richard I.; Verplanck, Philip L.; Seeger, Cheryl M.; Budahn, James R.; Van Gosen, Bradley S.

    2010-01-01

    The Minerals at Risk and for Emerging Technologies Project of the U.S. Geological Survey (USGS) Mineral Resources Program is examining potential sources of lanthanide elements (rare earth elements) as part of its objective to provide up-to-date geologic information regarding mineral commodities likely to have increased demand in the near term. As part of the examination effort, a short visit was made to the Pea Ridge iron (-lanthanide-gold) deposit, Washington County, Missouri in October 2008. The deposit, currently owned by Wings Enterprises, Inc. of St. Louis, Missouri (Wings), contains concentrations of lanthanides that may be economic as a primary product or as a byproduct of iron ore production. This report tabulates the results of chemical analyses of the Pea Ridge samples and compares rare earth elements contents for world class lanthanide deposits with those of the Pea Ridge deposit. The data presented for the Pea Ridge deposit are preliminary and include some company data that have not been verified by the USGS or by the Missouri Department of Natural Resources, Division of Geology and Land Survey (DGLS), Geological Survey Program (MGS). The inclusion of company data is for comparative purposes only and does not imply an endorsement by either the USGS or MGS.

  18. Appetite during consumption of enteral formula as a sole source of nutrition: the effect of supplementing pea-fibre and fructo-oligosaccharides.

    PubMed

    Whelan, Kevin; Efthymiou, Loukia; Judd, Patricia A; Preedy, Victor R; Taylor, Moira A

    2006-08-01

    Liquid enteral formulas are commonly used as a sole source of nutritional support of patients in hospital and community settings. Their effect on appetite has important consequences for dietary management of such patients and is likely to be affected by the formula composition. The aim of the present study was to compare appetite within healthy subjects consuming both a standard formula and one supplemented with pea-fibre (10 g/l) and fructo-oligosaccharide (FOS; 5 g/l) as a sole source of nutrition. Eleven healthy subjects consumed a standard formula or a pea-fibre/FOS formula as a sole source of nutrition for 14 d in a double-blind, cross-over trial. Appetite was recorded using standard 100 mm lines anchored at each end by a phrase denoting the most extreme appetite sensation. Consumption of the pea-fibre/FOS formula resulted in higher mean fullness (46 v. 37 mm, P=0.035), minimum fullness (13 v. 9 mm, P=0.024) and minimum satiety (12 v. 8 mm, P=0.012) compared to the standard formula. As there were no differences in macronutrient intake between formulas, these differences are likely to be due to supplementation with pea-fibre and FOS. The effect on appetite of the composition of an enteral formula, both with respect to nutrient content and functional components such as pea-fibre and FOS, may be an important aspect to consider in the dietary management of patients consuming enteral formula as a sole source of nutrition.

  19. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod.

    PubMed

    Hecht, Valérie; Laurie, Rebecca E; Vander Schoor, Jacqueline K; Ridge, Stephen; Knowles, Claire L; Liew, Lim Chee; Sussmilch, Frances C; Murfet, Ian C; Macknight, Richard C; Weller, James L

    2011-01-01

    Garden pea (Pisum sativum) was prominent in early studies investigating the genetic control of flowering and the role of mobile flowering signals. In view of recent evidence that genes in the FLOWERING LOCUS T (FT) family play an important role in generating mobile flowering signals, we isolated the FT gene family in pea and examined the regulation and function of its members. Comparison with Medicago truncatula and soybean (Glycine max) provides evidence of three ancient subclades (FTa, FTb, and FTc) likely to be common to most crop and model legumes. Pea FT genes show distinctly different expression patterns with respect to developmental timing, tissue specificity, and response to photoperiod and differ in their activity in transgenic Arabidopsis thaliana, suggesting they may have different functions. We show that the pea FTa1 gene corresponds to the GIGAS locus, which is essential for flowering under long-day conditions and promotes flowering under short-day conditions but is not required for photoperiod responsiveness. Grafting, expression, and double mutant analyses show that GIGAS/FTa1 regulates a mobile flowering stimulus but also provide clear evidence for a second mobile flowering stimulus that is correlated with expression of FTb2 in leaf tissue. These results suggest that induction of flowering by photoperiod in pea results from interactions among several members of a diversified FT family.

  20. A phytobeneficial strain Planomicrobium sp. MSSA-10 triggered oxidative stress responsive mechanisms and regulated the growth of pea plants under induced saline environment.

    PubMed

    Shahid, M; Akram, M S; Khan, M A; Zubair, M; Shah, S M; Ismail, M; Shabir, G; Basheer, S; Aslam, K; Tariq, M

    2018-06-01

    The study was planned to characterize Planomicrobium sp. MSSA-10 for plant-beneficial traits and to evaluate its inoculation impact on physiology of pea plants under different salinity levels. Strain MSSA-10 was isolated from pea rhizosphere and identified by the analysis of 16S rRNA gene sequence. The strain demonstrated phosphate solubilization and auxin production up to 2 mol l -1 NaCl and exhibited 1-aminocyclopropane-1-carboxylic acid deaminase activity up to 1·5 mol l -1 salt. In an inoculation experiment under different salinity regimes, a significant increase in growth was observed associated with decreased levels of reactive oxygen species and enhanced antioxidative enzyme activities. The strain also promoted the translocation of nutrients in plants with subsequent increase in chlorophyll and protein contents as compared to noninoculated plants. It has been observed that rifampicin-resistant derivatives of MSSA-10 were able to survive for 30 days at optimum cell density with pea rhizosphere. Growth-stimulating effect of MSSA-10 on pea plants may be attributed to its rhizosphere competence, nutrient mobilization and modulation of plant oxidative damage repair mechanisms under saline environment. Planomicrobium sp. MSSA-10 might be used as potent bioinoculant to relieve pea plants from deleterious effects of salinity. © 2018 The Society for Applied Microbiology.

  1. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

    PubMed Central

    Macas, Jiří; Neumann, Pavel; Navrátilová, Alice

    2007-01-01

    Background Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum). Results Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. Conclusion We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35–48% of the genome. These data provide a starting point for

  2. Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L.) Landraces

    PubMed Central

    Sun, Suli; Fu, Haining; Wang, Zhongyi; Duan, Canxing; Zong, Xuxiao; Zhu, Zhendong

    2016-01-01

    Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L.) landraces resistant to E. pisi, and to characterize the resistance gene(s) at the er1 locus in the resistant landraces, and to develop functional marker(s) specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%), 4 (1.24%) and 17 (5.28%) landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C) at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders. PMID:26809053

  3. Validation of the modified Parenting Strategies for Eating and Physical Activity Scale-Diet (PEAS-Diet) in Latino children.

    PubMed

    Soto, Sandra C; Arredondo, Elva M; Horton, Lucy A; Ayala, Guadalupe X

    2016-03-01

    Research shows that Latino parenting practices influence children's dietary and weight outcomes. Most studies use parent-reported data, however data from children may provide additional insight into how parents influence their children's diet and weight outcomes. The Parenting Strategies for Eating and Activity Scale (PEAS) has been validated in Latino adults, but not in children. This study evaluated the factor structure and concurrent and predictive validity of a modified version of the PEAS (PEAS-Diet) among Latino children. Data were collected from 361 children ages 7-13 from Imperial County, California, enrolled in a randomized controlled trial to promote healthy eating. The PEAS-Diet included 25 candidate items targeting six parenting practices pertaining to children's eating behaviors: (a) monitoring; (b) disciplining; (c) control; (d) permissiveness; (e) reinforcing; and (f) limit-setting. Children were on average ten years old (±2), 50% boys, 93% self-identified as Latino, 81% were US-born, and 55% completed English versus Spanish-language interviews. Using varimax rotation on baseline data with the total sample, six items were removed due to factor loadings <.40 and/or cross-loading (>.32 on more than one component). Parallel analysis and interpretability suggested a 5-factor solution explaining 59.46% of the variance. The subscale "limit-setting" was removed from the scale. The final scale consisted of 19 items and 5 subscales. Internal consistency of the subscales ranged from α = .63-.82. Confirmatory factor analyses provided additional evidence for the 5-factor scale using data collected 4 and 6 months post-baseline among the control group (n = 164, n = 161, respectively). Concurrent validity with dietary intake was established for monitoring, control, permissiveness, and reinforcing subscales in the expected directions. Predictive validity was not established. Results indicated that with the reported changes, the interview-administered PEAS

  4. Atomic force microscopy of pea starch: origins of image contrast.

    PubMed

    Ridout, Michael J; Parker, Mary L; Hedley, Cliff L; Bogracheva, Tatiana Y; Morris, Victor J

    2004-01-01

    Atomic force microscopy (AFM) has been used to image the internal structure of pea starch granules. Starch granules were encased in a nonpenetrating matrix of rapid-set Araldite. Images were obtained of the internal structure of starch exposed by cutting the face of the block and of starch in sections collected on water. These images have been obtained without staining, or either chemical or enzymatic treatment of the granule. It has been demonstrated that contrast in the AFM images is due to localized absorption of water within specific regions of the exposed fragments of the starch granules. These regions swell, becoming "softer" and higher than surrounding regions. The images obtained confirm the "blocklet model" of starch granule architecture. By using topographic, error signal and force modulation imaging modes on samples of the wild-type pea starch and the high amylose r near-isogenic mutant, it has been possible to demonstrate differing structures within granules of different origin. These architectural changes provide a basis for explaining the changed appearance and functionality of the r mutant. The growth-ring structure of the granule is suggested to arise from localized "defects" in blocklet distribution within the granule. It is proposed that these defects are partially crystalline regions devoid of amylose.

  5. Water used by grazed pigeon pea [Cajanus cajan(L) Millsp] in Oklahoma

    USDA-ARS?s Scientific Manuscript database

    Water use by the warm-season annual pulse pigeon pea must be described to effectively use this legume as forage to support late-summer grazing by stocker cattle in the southern Great Plains (SGP). This study was conducted in central Oklahoma during 2008 to 2010 to quantify water and water use effici...

  6. A novel er1 allele and the development and validation of its functional marker for breeding pea (Pisum sativum L.) resistance to powdery mildew.

    PubMed

    Sun, Suli; Deng, Dong; Wang, Zhongyi; Duan, Canxing; Wu, Xiaofei; Wang, Xiaoming; Zong, Xuxiao; Zhu, Zhendong

    2016-05-01

    A novel er1 allele, er1 -7, conferring pea powdery mildew resistance was characterized by a 10-bp deletion in PsMLO1 cDNA, and its functional marker was developed and validated in pea germplasms. Pea powdery mildew caused by Erysiphe pisi DC is a major disease worldwide. Pea cultivar 'DDR-11' is an elite germplasm resistant to E. pisi. To identify the gene conferring resistance in DDR-11, the susceptible Bawan 6 and resistant DDR-11 cultivars were crossed to produce F1, F2, and F(2:3) populations. The phenotypic segregation patterns in the F2 and F(2:3) populations fit the 3:1 (susceptible:resistant) and 1:2:1 (susceptible homozygotes:heterozygotes:resistant homozygotes) ratios, respectively, indicating that resistance was controlled by a single recessive gene. Analysis of er1-linked markers in the F2 population suggested that the recessive resistance gene in DDR-11 was an er1 allele, which was mapped between markers ScOPE16-1600 and c5DNAmet. To further characterize er1 allele, the cDNA sequences of PsMLO1 from the parents were obtained and a novel er1 allele in DDR-11 was identified and designated as er1-7, which has a 10-bp deletion in position 111-120. The er1-7 allele caused a frame-shift mutation, resulting in a premature termination of translation of PsMLO1 protein. A co-dominant functional marker specific for er1-7 was developed, InDel111-120, which co-segregated with E. pisi resistance in the mapping population. The marker was able to distinguish between pea germplasms with and without the er1-7. Of 161 pea germplasms tested by InDel111-120, seven were detected containing resistance allele er1-7, which was verified by sequencing their PsMLO1 cDNA. Here, a novel er1 allele was characterized and its an ideal functional marker was validated, providing valuable genetic information and a powerful tool for breeding pea resistance to powdery mildew.

  7. Aflatoxins, discolouration and insect damage in dried cowpea and pigeon pea in Malawi and the effectiveness of flotation/washing operation in eliminating the aflatoxins.

    PubMed

    Matumba, Limbikani; Singano, Lazarus; Pungulani, Lawrent; Mvula, Naomi; Matumba, Annie; Singano, Charles; Matita, Grey

    2017-05-01

    Aflatoxin contamination and biodeterioration were examined in 302 samples of dry cowpeas and pigeon peas that were randomly purchased from 9 districts of the Southern Region of Malawi during July and November 2015. Further, the impact of flotation/washing on aflatoxin levels on the pulses was elucidated. Aflatoxin analyses involved immunoaffinity column (IAC) clean-up and HPLC quantification with fluorescence detection (FLD) while legume biodeterioration assessments were done by visual inspection. Aflatoxins were frequently detected in cowpea (24%, max., 66 μg/kg) and pigeon pea (22%, max., 80 μg/kg) samples that were collected in the month of July. Lower aflatoxin incidence of 15% in cowpeas (max., 470 μg/kg) and 14% in pigeon peas (max., 377 μg/kg) was recorded in the November collection. Overall, aflatoxin levels were significantly higher in the pulses that were collected in November. However, there were no significant differences in the total aflatoxin (aflatoxin B 1 (AFB 1 ) + AFB 2 + AFG 1 + AFG 2 ) levels between the two types of pulses. Remarkably, in 76.2% of the aflatoxin positive cowpea and in 41.7% of the aflatoxin positive pigeon pea samples, aflatoxin G 1 concentration exceeded aflatoxin B 1. Insect damage percentage averaged at 18.1 ± 18.2% (mean ± SD) in the cowpeas and 16.1 ± 19.4% in pigeon peas. Mean discolouration percentage (number of pulses) of the cowpeas and pigeon peas was found to be at 6.7 ± 4.9 and 8.7 ± 6.2%, respectively. Washing and discarding the buoyant fraction was highly efficient in reducing aflatoxin levels; only 5.2 ± 11.1% of the initial aflatoxin level was found in the cleaned samples. In conclusion, cowpeas and pigeon peas sold on the local market in Malawi may constitute a hazard especially if floatation/washing step is skipped.

  8. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress.

    PubMed

    Ortega-Galisteo, Ana P; Rodríguez-Serrano, María; Pazmiño, Diana M; Gupta, Dharmendra K; Sandalio, Luisa M; Romero-Puertas, María C

    2012-03-01

    Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H(2)O(2) level under abiotic stress.

  9. The pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development.

    PubMed

    Zhukov, Vladimir; Radutoiu, Simona; Madsen, Lene H; Rychagova, Tamara; Ovchinnikova, Evgenia; Borisov, Alex; Tikhonovich, Igor; Stougaard, Jens

    2008-12-01

    Phenotypic characterization of pea symbiotic mutants has provided a detailed description of the symbiosis with Rhizobium leguminosarum bv. viciae strains. We show here that two allelic non-nodulating pea mutants, RisNod4 and K24, are affected in the PsSym37 gene, encoding a LysM receptor kinase similar to Lotus japonicus NFR1 and Medicago truncatula LYK3. Phenotypic analysis of RisNod4 and K24 suggests a role for the SYM37 in regulation of infection-thread initiation and nodule development from cortical-cell division foci. We show that RisNod4 plants carrying an L to F substitution in the LysM1 domain display a restrictive symbiotic phenotype comparable to the PsSym2(A) lines that distinguish 'European' and 'Middle East' Rhizobium leguminosarum bv. viciae strains. RisNod4 mutants develop nodules only in the presence of a 'Middle East' Rhizobium strain producing O-acetylated Nod factors indicating the SYM37 involvement in Nod-factor recognition. Along with the PsSym37, a homologous LysM receptor kinase gene, PsK1, was isolated and characterized. We show that PsK1 and PsSym37 are genetically linked to each other and to the PsSym2 locus. Allelic complementation analyses and sequencing of the extracellular regions of PsSym37 and PsK1 in several 'European' and 'Afghan' pea cultivars point towards PsK1 as possible candidate for the elusive PsSym2 gene.

  10. The economic impact of longer range weather information on the production of peas in Wisconsin

    NASA Technical Reports Server (NTRS)

    Smith, K. R.; Torkelson, A. W.

    1972-01-01

    The extent of benefits which will be realized in the pea industry as a result of improved long range weather forecasts are outlined. Particular attention was given to planting and harvesting operations.

  11. Gravistimulation changes expression of genes encoding putative carrier proteins of auxin polar transport in etiolated pea epicotyls

    NASA Astrophysics Data System (ADS)

    Hoshino, T.; Hitotsubashi, R.; Miyamoto, K.; Tanimoto, E.; Ueda, J.

    STS-95 space experiment has showed that auxin polar transport in etiolated epicotyls of pea (Pisum sativum L. cv. Alaska) seedlings is controlled by gravistimulation. In Arabidopsis thaliana auxin polar transport has considered to be regulated by efflux and influx carrier proteins in plasma membranes, AtPIN1 and AtAUX1, respectively. In order to know how gravistimuli control auxin polar transport in etiolated pea epicotyls at molecular levels, strenuous efforts have been made, resulting in successful isolation of full-length cDNAs of a putative auxin efflux and influx carriers, PsPIN2 and PsAUX1, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (accession no. AY222857, Chawla and DeMason, 2003) and AtPINs, and also among PsAUX1, AtAUX1 and their related genes. Phylogenetic analyses based on the deduced amino acid sequences revealed that PsPIN2 belonged to a subclade including AtPIN3, AtPIN4 relating to lateral transport of auxin, while PsPIN1 belonged to the same clade as AtPIN1 relating to auxin polar transport. In the present study, we examined the effects of gravistimuli on the expression of PsPINs and PsAUX1 in etiolated pea seedlings by northern blot analysis. Expression of PsPIN1, PsPIN2 and PsAUX1 in hook region of 3.5-d-old etiolated pea seedlings grown under simulated microgravity conditions on a 3-D clinostat increased as compared with that of the seedlings grown under 1 g conditions. On the other hand, that of PsPIN1 and PsAUX1 in the 1st internode region under simulated microgravity conditions on a 3-D clinostat also increased, while that of PsPIN2 was affected little. These results suggest that expression of PsPIN1, PsPIN2 and PsAUX1 regulating polar/lateral transport of auxin is substantially under the control of gravity. A possible role of PsPINs and PsAUX1 of auxin polar transport in etiolated pea seedlings will also be discussed.

  12. Progress of tissue culture and genetic transformation research in pigeon pea [Cajanus cajan (L.) Millsp.].

    PubMed

    Krishna, Gaurav; Reddy, P Sairam; Ramteke, P W; Bhattacharya, P S

    2010-10-01

    Pigeon pea [Cajanus cajan (L.) Millsp.] (Family: Fabaceae) is an important legume crop cultivated across 50 countries in Asia, Africa, and the Americas; and ranks fifth in area among pulses after soybean, common bean, peanut, and chickpea. It is consumed as a major source of protein (21%) to the human population in many developing countries. In India, it is the second important food legume contributing to 80% of the global production. Several biotic and abiotic stresses are posing a big threat to its production and productivity. Attempts to address these problems through conventional breeding methods have met with partial success. This paper reviews the chronological progress made in tissue culture through organogenesis and somatic embryogenesis, including the influence of factors such as genotypes, explant sources, and culture media including the supplementation of plant growth regulators. Comprehensive lists of morphogenetic pathways involved in in vitro regeneration through organogenesis and somatic embryogenesis using different explant tissues of diverse pigeon pea genotypes are presented. Similarly, the establishment of protocols for the production of transgenics via particle bombardment and Agrobacterium-mediated transformation using different explant tissues, Agrobacterium strains, Ti plasmids, and plant selectable markers, as well as their interactions on transformation efficiency have been discussed. Future research thrusts on the use of different promoters and stacking of genes for various biotic and abiotic stresses in pigeon pea are suggested.

  13. Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis.

    PubMed

    Castillejo, María Ángeles; Bani, Moustafa; Rubiales, Diego

    2015-07-01

    Fusarium oxysporum f. sp. pisi (Fop) is an important and destructive pathogen affecting pea crop (Pisum sativum) throughout the world. Control of this disease is achieved mainly by integration of different disease management procedures. However, the constant evolution of the pathogen drives the necessity to broaden the molecular basis of resistance to Fop. Our proteomic study was performed on pea with the aim of identifying proteins involved in different resistance mechanisms operating during F. oxysporum infection. For such purpose, we used a two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MALDI-TOF/TOF) analysis to study the root proteome of three pea genotypes showing different resistance response to Fop race 2. Multivariate statistical analysis identified 132 differential protein spots under the experimental conditions (genotypes/treatments). All of these protein spots were subjected to mass spectrometry analysis to deduce their possible functions. A total of 53 proteins were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. The following main functional categories were assigned to the identified proteins: carbohydrate and energy metabolism, nucleotides and aminoacid metabolism, signal transduction and cellular process, folding and degradation, redox and homeostasis, defense, biosynthetic process and transcription/translation. Results obtained in this work suggest that the most susceptible genotypes have increased levels of enzymes involved in the production of reducing power which could then be used as cofactor for enzymes of the redox reactions. This is in concordance with the fact that a ROS burst occurred in the same genotypes, as well as an increase of PR proteins. Conversely, in the resistant genotype proteins responsible to induce changes in the membrane and cell wall composition related to reinforcement were identified. Results are discussed in terms of the differential response to Fop

  14. Red light regulation of ethylene biosynthesis and gravitropism in etiolated pea stems

    NASA Technical Reports Server (NTRS)

    Steed, C. L.; Taylor, L. K.; Harrison, M. A.

    2004-01-01

    During gravitropism, the accumulation of auxin in the lower side of the stem causes increased growth and the subsequent curvature, while the gaseous hormone ethylene plays a modulating role in regulating the kinetics of growth asymmetries. Light also contributes to the control of gravitropic curvature, potentially through its interaction with ethylene biosynthesis. In this study, red-light pulse treatment of etiolated pea epicotyls was evaluated for its effect on ethylene biosynthesis during gravitropic curvature. Ethylene biosynthesis analysis included measurements of ethylene; the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC); malonyl-conjugated ACC (MACC); and expression levels of pea ACC oxidase (Ps-ACO1) and ACC synthase (Ps-ACS1, Ps-ACS2) genes by reverse transcriptase-polymerase chain reaction analysis. Red-pulsed seedlings were given a 6 min pulse of 11 micromoles m-2 s-1 red-light 15 h prior to horizontal reorientation for consistency with the timeline of red-light inhibition of ethylene production. Red-pulse treatment significantly reduced ethylene production and MACC levels in epicotyl tissue. However, there was no effect of red-pulse treatment on ACC level, or expression of ACS or ACO genes. During gravitropic curvature, ethylene production increased from 60 to 120 min after horizontal placement in both control and red-pulsed epicotyls. In red-pulsed tissues, ACC levels increased by 120 min after horizontal reorientation, accompanied by decreased MACC levels in the lower portion of the epicotyl. Overall, our results demonstrate that ethylene production in etiolated epicotyls increases after the initiation of curvature. This ethylene increase may inhibit cell growth in the lower portion of the epicotyl and contribute to tip straightening and reduced overall curvature observed after the initial 60 min of curvature in etiolated pea epicotyls.

  15. Harvesting the Pea Genome: Association Mapping of the Pisum Single Plant Plus Collection

    USDA-ARS?s Scientific Manuscript database

    Yield per se is a difficult trait to improve due to the quantitative nature and low heritability of this trait. Nevertheless, yield is the most important trait for crop improvement. Development of higher yielding pea cultivars will depend on harvesting allelic diversity harbored in ex situ germpla...

  16. Diazotroph community structure and abundance in wheat-fallow and wheat-pea crop rotations

    USDA-ARS?s Scientific Manuscript database

    Biological input of nitrogen (N) from the atmosphere either through free-living diazotrophs or legume-associated rhizobia can help alleviate fertilizer use in agricultural systems. In this study, we investigated the effect of N fertilizer and winter pea (Pisum sativum L.) crop on the diversity and a...

  17. Estimation of pea (Pisum sativum L.) microsatellite mutation rate based on pedigree and single-seed descent analyses.

    PubMed

    Cieslarová, Jaroslava; Hanáček, Pavel; Fialová, Eva; Hýbl, Miroslav; Smýkal, Petr

    2011-11-01

    Microsatellites, or simple sequence repeats (SSRs) are widespread class of repetitive DNA sequences, used in population genetics, genetic diversity and mapping studies. In spite of the SSR utility, the genetic and evolutionary mechanisms are not fully understood. We have investigated three microsatellite loci with different position in the pea (Pisum sativum L.) genome, the A9 locus residing in LTR region of abundant retrotransposon, AD270 as intergenic and AF016458 located in 5'untranslated region of expressed gene. Comparative analysis of a 35 pair samples from seven pea varieties propagated by single-seed descent for ten generations, revealed single 4 bp mutation in 10th generation sample at AD270 locus corresponding to stepwise increase in one additional ATCT repeat unit. The estimated mutation rate was 4.76 × 10(-3) per locus per generation, with a 95% confidence interval of 1.2 × 10(-4) to 2.7 × 10(-2). The comparison of cv. Bohatýr accessions retrieved from different collections, showed intra-, inter-accession variation and differences in flanking and repeat sequences. Fragment size and sequence alternations were also found in long term in vitro organogenic culture, established at 1983, indicative of somatic mutation process. The evidence of homoplasy was detected across of unrelated pea genotypes, which adversaly affects the reliability of diversity estimates not only for diverse germplasm but also highly bred material. The findings of this study have important implications for Pisum phylogeny studies, variety identification and registration process in pea breeding where mutation rate influences the genetic diversity and the effective population size estimates.

  18. Biochemical and molecular characterization of a rhizobitoxine-producing Bradyrhizobium from pigeon pea plants.

    PubMed

    Kanika; Dogra, Tripti; Lata

    2010-05-01

    Out of a total of 8 bacterial strains isolated from the root nodules of pigeon pea plants grown in arid region, five were identified as rhizobia based on biochemical test and confirmed by 16S rDNA sequencing. PCR based screening for the rtxA gene (involved in biosynthesis of rhizobitoxine) revealed that the gene was present in one strain identified biochemically and genetically as belonging to species Bradyrhizobium (BS KT-24). The strain was resistant to phosphomycin, nalidixic acid, kanamycin, gentamicin and neomycin but sensitive towards streptomycin and spectinomycin. Bioinformatic-tool-guided phylogenetic analysis of rtxA gene revealed its distinctiveness from other known rtxA genes (present in B. japonicum, B. elkanii and Xanthomonas oryzae). The rhizobitoxine producing strain BS KT-24 is considered to exhibit better survival and nodulation protection besides competitiveness for pigeon pea and other legumes grown under abiotic stress and, thus, be a candidate in practical aspect of rhizobitoxine production by rhizobium and its application as rhizobial inoculants.

  19. Accumulation of Phosphorus-Containing Compounds in Developing Seeds of Low-Phytate Pea (Pisum sativum L.) Mutants

    PubMed Central

    Shunmugam, Arun S.K.; Bock, Cheryl; Arganosa, Gene C.; Georges, Fawzy; Gray, Gordon R.; Warkentin, Thomas D.

    2014-01-01

    Low phytic acid (lpa) crops are low in phytic acid and high in inorganic phosphorus (Pi). In this study, two lpa pea genotypes, 1-150-81, 1-2347-144, and their progenitor CDC Bronco were grown in field trials for two years. The lpa genotypes were lower in IP6 and higher in Pi when compared to CDC Bronco. The total P concentration was similar in lpa genotypes and CDC Bronco throughout the seed development. The action of myo-inositol phosphate synthase (MIPS) (EC 5.5.1.4) is the first and rate-limiting step in the phytic acid biosynthesis pathway. Aiming at understanding the genetic basis of the lpa mutation in the pea, a 1530 bp open reading frame of MIPS was amplified from CDC Bronco and the lpa genotypes. Sequencing results showed no difference in coding sequence in MIPS between CDC Bronco and lpa genotypes. Transcription levels of MIPS were relatively lower at 49 days after flowering (DAF) than at 14 DAF for CDC Bronco and lpa lines. This study elucidated the rate and accumulation of phosphorus compounds in lpa genotypes. The data also demonstrated that mutation in MIPS was not responsible for the lpa trait in these pea lines. PMID:27135314

  20. Molecular basis of processing-induced changes in protein structure in relation to intestinal digestion in yellow and green type pea (Pisum sativum L.): A molecular spectroscopic analysis.

    PubMed

    Yu, Gloria Qingyu; Warkentin, Tom; Niu, Zhiyuan; Khan, Nazir A; Yu, Peiqiang

    2015-12-05

    The objectives of this study were (1) to quantify the protein inherent molecular structural features of green cotyledon (CDC Striker) and yellow cotyledon (CDC Meadow) pea (Pisum sativum L.) seeds using molecular spectroscopic technique (FT/IR-ATR); (2) measure the denaturation of protein molecular makeup in the two types of pea during dry roasting (120°C for 60 min), autoclaving (120°C for 60 min) or microwaving (for 5 min); and (3) correlate the heat-induced changes in protein molecular makeup to the corresponding changes in protein digestibility determined using modified three-step in vitro procedure. Compared with yellow-type, the green-type peas had higher (P<0.05) ratios of amide I to II peak height (1.698 vs. 1.805) and area (1.843 vs. 2.017). A significant correlation was observed between the amide I and II peak height (r=0.48) and peak area (r=-0.42) ratio with protein content. Compared with yellow-type, the green-type peas had lower (P<0.05) α-helix:β-sheet ratio (1.015 vs. 0.926), indicating varietal difference in protein secondary structure makeup. All processing applications increased α-helix:β-sheet ratio, with the largest (P<0.05) increase being observed with roasting and microwaving. The heat-induced changes in α-helix:β-sheet ratio was strongly correlated to intestinal digestibility of protein within the green (r=-0. 86) and yellow (r=0.81) pea-types. However, across the pea types the correlation was not significant. Principal component and hierarchical cluster analyses on the entire spectral data from the amide region (ca. 1727-1480 cm(-1)) were able to visualize and discriminate the structural difference between pea varieties and processing treatments. This study shows that the molecular spectroscopy can be used as a rapid tool to screen the protein value of raw and heat-treated peas. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Automorphosis-like growth in etiolated pea seedlings is induced by the application of chemicals affecting perception of gravistimulation and its signal transduction

    NASA Astrophysics Data System (ADS)

    Miyamoto, Kensuke; Hoshino, Tomoki; Hitotsubashi, Reiko; Yamashita, Masamichi; Ueda, Junichi

    Both microgravity conditions in space and simulated microgravity using a 3-dimensional clinostat resulted in: (1) automorphosis of etiolated pea seedlings, (2) epicotyls bending ca. 45° from the vertical line to the direction away from cotyledons, (3) inhibition of hook formation and (4) alternation of growth direction of roots. These facts indicate that the growth and development of etiolated pea seedlings on earth is under the influence of gravistimulation. Lanthanum and gadolinium ions, blockers of stretch-activated mechanosensitive ion channels, induced automorphosis-like epicotyl bending. Cantharidin, an inhibitor of protein phosphatase, also phenocopied automorphosis-like growth. On the other hand, cytochalasin B, cytochalasin D and brefeldin A did not induce automorphological epicotyl bending and inhibition of hook formation, although these compounds strikingly inhibited elongation of etiolated pea epicotyls. These results strongly suggest that stretch-activated mechanosensitive ion channels are involved in the perception of signals of gravistimuli in plants, and they are transduced by protein phosphorylation and dephosphorylation cascades by changing levels of calcium ions. Possible mechanisms to induce automorphosis-like growth in relation to gravity signals in etiolated pea seedlings are discussed.

  2. Observation and modeling of the evolution of an ephemeral storm-induced inlet: Pea Island Breach, North Carolina, USA

    NASA Astrophysics Data System (ADS)

    Velasquez Montoya, Liliana; Sciaudone, Elizabeth J.; Mitasova, Helena; Overton, Margery F.

    2018-03-01

    The Outer Banks of North Carolina is a wave-dominated barrier island system that has experienced the opening and closure of numerous inlets in the last four centuries. The most recent of those inlets formed after the breaching of Pea Island during Hurricane Irene in 2011. The Pea Island Breach experienced a rapid evolution including episodic curvature of the main channel, rotation of the ebb channel, shoaling, widening by Hurricane Sandy in 2012, and finally closing before the summer of 2013. Studying the life cycle of Pea Island Breach contributes to understanding the behavior of ephemeral inlets in breaching-prone regions. This topic has gained relevance due to rising sea levels, a phenomenon that increases the chances of ephemeral inlet formation during extreme events. This study explores the spatiotemporal effects of tides, waves, and storms on flow velocities and morphology of the breach by means of remotely sensed data, geospatial metrics, and a numerical model. The combined use of observations and results from modeling experiments allowed building a conceptual model to explain the life cycle of Pea Island Breach. Wave seasonality dominated the morphological evolution of the inlet by controlling the magnitude and direction of the longshore current that continuously built transient spits at both sides of the breach. Sensitivity analysis to external forcings indicates that ocean waves can modify water levels and velocities in the back barrier. Sound-side storm surge regulates overall growth rate, duration, and decay of peak water levels entering the inlet during extreme events.

  3. Pea (Pisum sativum) Seed Production as an Assay for Reproductive Effects Due to Herbicides.

    EPA Science Inventory

    Even though herbicide drift can affect plant reproduction, current plant testing protocols emphasize effects on vegetative growth. In this study, we determined whether a short–growing season plant can indicate potential effects of herbicides on seed production. Pea (Pisum sativum...

  4. Contributions of PIP(2)-specific-phospholipase C and free salicylic acid to heat acclimation-induced thermotolerance in pea leaves.

    PubMed

    Liu, Hong-Tao; Huang, Wei-Dong; Pan, Qiu-Hong; Weng, Fang-Hua; Zhan, Ji-Cheng; Liu, Yan; Wan, Si-Bao; Liu, Yan-Yan

    2006-03-01

    The relationship between the accumulation in endogenous free salicylic acid (SA) induced by heat acclimation (37 degrees C) and the activity of PIP(2)-phospholipase C (PIP(2)-PLC; EC 3.1.4.3) in the plasma membrane fraction was investigated in pea (Pisum sativum L.) leaves. We focused our attention on the hypothesis that positive SA signals induced by heat acclimation may be relayed by PIP(2)-PLC. Heat acclimation induced an abrupt elevation of free SA preceding the activation of PLC toward PIP(2). Immunoblotting indicated a molecular mass with 66.5kDa PLC plays key role in the development of thermotolerance in pea leaves. In addition, some characterizations of PLC toward PIP(2) isolated from pea leaves with two-phase purification containing calcium concentration, pH and a protein concentration were also studied. Neomycin sulfate, a well-known PIP(2)-PLC inhibitor, was employed to access the involvement of PIP(2)-PLC in the acquisition of heat acclimation induced-thermotolerance. We were able to identify a PIP(2)-PLC, which was similar to a conventional PIP(2)-PLC in higher plants, from pea leaves suggesting that PIP(2)-PLC was involved in the signal pathway that leads to the acquisition of heat acclimation induced-thermotolerance. On the basis of these results, we conclude that the involvement of free SA may function as the upstream event in the stimulation of PIP(2)-PLC in response to heat acclimation treatment.

  5. Optimum domestic processing and cooking methods for reducing the polyphenolic (antinutrient) content of pigeon peas.

    PubMed

    Duhan, A; Khetarpaul, N; Bishnoi, S

    2000-01-01

    Four high yielding and early maturing cultivars of pigeon pea (Cajanus cajan) namely UPAS-120, ICPL-87, ICPL-151 and, especially, Manak, contained significant amounts of polyphenols (1075 to 1328 mg/100g), which may limit their utilization. The effectiveness of soaking (6, 12 and 18 h, 30 degrees C), soaking and dehulling, ordinary cooking, pressure cooking and germination (24, 36, 48 h, 30 degrees C) in reducing the levels of polyphenols was investigated. A decrease in the polyphenolic contents varying from 4 to 26 percent in different pigeon pea cultivar was achieved. Pressure cooking of soaked-dehulled seeds was found to be the most effective method, followed by sprouting for 48 h, ordinary cooking of soaked-dehulled seeds, and pressure cooking of soaked whole seeds followed by sprouting for 36 h.

  6. Swee'Pea and Other Playground Legends: Tales of Drugs, Violence and Basketball.

    ERIC Educational Resources Information Center

    Valenti, John; Naclerio, Ron

    This biography chronicles the life of Lloyd "Swee'pea" Daniels, considered one of the finest basketball players ever to come out of New York City. The book also serves as a sociological expose of the dark side of collegiate and professional sports, in its description of a youngster chasing the dream of playing basketball, but finally…

  7. Cultivar preference and sensory evaluation of vegetable pigeon pea (Cajanus cajan) in Eastern Kenya

    USDA-ARS?s Scientific Manuscript database

    Preference and acceptability of twelve vegetable pigeon pea genotypes of medium maturity was evaluated in Eastern Kenya based on six seed cultivar parameters of color, appearance, taste, odor, tenderness and overall seed acceptability. The sensory characteristics were scored by consumers and farmers...

  8. Supplementation of diets containing pea meal with exogenous enzymes: effects on weight gain, feed conversion, nutrient digestibility and gross morphology of the gastrointestinal tract of growing broiler chicks.

    PubMed

    Cowieson, A J; Acamovic, T; Bedford, M R

    2003-07-01

    1. The potential for the nutritional improvement of pea-based diets by supplementation with a cocktail of exogenous carbohydrases was investigated using growing broiler chicks. 2. Pea meals (grown in the UK) were included in wheat-based diets at 300 g/kg as a partial replacement for an approximately isonitrogenous mixture of wheat and soybean meal. A wheat/soybean meal diet served as a control and each diet was supplemented with a cocktail of alpha-amylase, pectinase and cellulase. The diets were fed to 1-d-old broiler chicks for a period of 21 d. Weight gain and feed conversion were monitored weekly and excreta were collected during the final week in order to determine nutrient digestibility coefficients and metabolisable energy. On d 21, the gastrointestinal (GI) tract was excised and gross morphology measured. 3. Inclusion of pea meal reduced weight gain, feed conversion, nutrient digestibility and also increased the relative sizes of the distal sections of the GI tract. 4. Enzyme addition partially ameliorated the detrimental effects of pea meal inclusion although similar improvements were also noted for birds fed on the control diet. 5. It is concluded that the nutritive value of pea-meal-based diets can be improved by the addition of carbohydrases, and that some pea cultivars show considerable potential as vegetable protein sources for broiler chicks.

  9. Proteomic analysis of albumin and globulin fractions of pea (Pisum sativum L.) seeds.

    PubMed

    Dziuba, Jerzy; Szerszunowicz, Iwona; Nałęcz, Dorota; Dziuba, Marta

    2014-01-01

    Proteomic analysis is emerging as a highly useful tool in food research, including studies of food allergies. Two-dimensional gel electrophoresis involving isoelectric focusing and sodium dodecyl sulfate polyacrylamide gel electrophoresis is the most effective method of separating hundreds or even thousands of proteins. In this study, albumin and globulin tractions of pea seeds cv. Ramrod were subjected to proteomic analysis. Selected potentially alergenic proteins were identified based on their molecular weights and isoelectric points. Pea seeds (Pisum sativum L.) cv. Ramrod harvested over a period of two years (Plant Breeding Station in Piaski-Szelejewo) were used in the experiment. The isolated albumins, globulins and legumin and vicilin fractions of globulins were separated by two-dimensional gel electrophoresis. Proteomic images were analysed in the ImageMaster 2D Platinum program with the use of algorithms from the Melanie application. The relative content, isoelectric points and molecular weights were computed for all identified proteins. Electrophoregrams were analysed by matching spot positions from three independent replications. The proteomes of albumins, globulins and legumin and vicilin fractions of globulins produced up to several hundred spots (proteins). Spots most characteristic of a given fraction were identified by computer analysis and spot matching. The albumin proteome accumulated spots of relatively high intensity over a broad range of pi values of ~4.2-8.1 in 3 molecular weight (MW) ranges: I - high molecular-weight albumins with MW of ~50-110 kDa, II - average molecular-weight albumins with MW of ~20-35 kDa, and III - low molecular-weight albumins with MW of ~13-17 kDa. 2D gel electrophoregrams revealed the presence of 81 characteristic spots, including 24 characteristic of legumin and 14 - of vicilin. Two-dimensional gel electrophoresis proved to be a useful tool for identifying pea proteins. Patterns of spots with similar isoelectric

  10. Roots of symptom-free leguminous cover crop and living mulch species harbor diverse Fusarium communities that show highly variable aggressiveness on pea (Pisum sativum)

    PubMed Central

    Baćanović-Šišić, Jelena; Karlovsky, Petr; Wittwer, Raphaël; Walder, Florian; Campiglia, Enio; Radicetti, Emanuele; Friberg, Hanna; Baresel, Jörg Peter; Finckh, Maria R.

    2018-01-01

    Leguminous cover crop and living mulch species show not only great potential for providing multiple beneficial services to agro-ecosystems, but may also present pathological risks for other crops in rotations through shared pathogens, especially those of the genus Fusarium. Disease severity on roots of subterranean clover, white clover, winter and summer vetch grown as cover crop and living mulch species across five European sites as well as the frequency, distribution and aggressiveness to pea of Fusarium spp. recovered from the roots were assessed in 2013 and 2014. Disease symptoms were very low at all sites. Nevertheless, out of 1480 asymptomatic roots, 670 isolates of 14 Fusarium spp. were recovered. The most frequently isolated species in both years from all hosts were F. oxysporum and F. avenaceum accounting for 69% of total isolation percentage. They were common at the Swiss, Italian and German sites, whereas at the Swedish site F. oxysporum dominated and F. avenaceum occurred only rarely. The agressiveness and effect on pea biomass were tested in greenhouse assays for 72 isolates of six Fusarium species. Isolates of F. avenaceum caused severe root rot symptoms with mean severity index (DI) of 82 and 74% mean biomass reduction compared to the non-inoculated control. Fusarium oxysporum and F. solani isolates were higly variable in agressiveness and their impact on pea biomass. DI varied between 15 and 50 and biomass changes relative to the non-inoculated control -40% to +10%. Isolates of F. tricinctum, F. acuminatum and F. equiseti were non to weakly agressive often enhancing pea biomass. This study shows that some of the major pea pathogens are characterized by high ecological plasticity and have the ability to endophytically colonize the hosts studied that thus may serve as inoculum reservoir for susceptible main legume grain crops such as pea. PMID:29444142

  11. Effects of Dietary Fibre (Pectin) and/or Increased Protein (Casein or Pea) on Satiety, Body Weight, Adiposity and Caecal Fermentation in High Fat Diet-Induced Obese Rats.

    PubMed

    Adam, Clare L; Gratz, Silvia W; Peinado, Diana I; Thomson, Lynn M; Garden, Karen E; Williams, Patricia A; Richardson, Anthony J; Ross, Alexander W

    2016-01-01

    Dietary constituents that suppress appetite, such as dietary fibre and protein, may aid weight loss in obesity. The soluble fermentable dietary fibre pectin promotes satiety and decreases adiposity in diet-induced obese rats but effects of increased protein are unknown. Adult diet-induced obese rats reared on high fat diet (45% energy from fat) were given experimental diets ad libitum for 4 weeks (n = 8/group): high fat control, high fat with high protein (40% energy) as casein or pea protein, or these diets with added 10% w/w pectin. Dietary pectin, but not high protein, decreased food intake by 23% and induced 23% body fat loss, leading to 12% lower final body weight and 44% lower total body fat mass than controls. Plasma concentrations of satiety hormones PYY and total GLP-1 were increased by dietary pectin (168% and 151%, respectively) but not by high protein. Plasma leptin was decreased by 62% on pectin diets and 38% on high pea (but not casein) protein, while plasma insulin was decreased by 44% on pectin, 38% on high pea and 18% on high casein protein diets. Caecal weight and short-chain fatty acid concentrations in the caecum were increased in pectin-fed and high pea protein groups: caecal succinate was increased by pectin (900%), acetate and propionate by pectin (123% and 118%, respectively) and pea protein (147% and 144%, respectively), and butyrate only by pea protein (309%). Caecal branched-chain fatty acid concentrations were decreased by pectin (down 78%) but increased by pea protein (164%). Therefore, the soluble fermentable fibre pectin appeared more effective than high protein for increasing satiety and decreasing caloric intake and adiposity while on high fat diet, and produced a fermentation environment more likely to promote hindgut health. Altogether these data indicate that high fibre may be better than high protein for weight (fat) loss in obesity.

  12. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress

    PubMed Central

    Ortega-Galisteo, Ana P.; Rodríguez-Serrano, María; Pazmiño, Diana M.; Gupta, Dharmendra K.; Sandalio, Luisa M.; Romero-Puertas, María C.

    2012-01-01

    Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H2O2 level under abiotic stress. PMID:22213812

  13. [Effects of tillage practices on root spatial distribution and yield of spring wheat and pea in the dry land farming areas of central Gansu, China].

    PubMed

    Zhang, Ming Jun; Li, Ling Ling; Xie, Jun Hong; Peng, Zheng Kai; Ren, Jin Hu

    2017-12-01

    A field experiment was conducted to explore the mechanism of cultivation measures in affecting crop yield by investigating root distribution in spring wheat-pea rotation based on a long-term conservation tillage practices in a farming region of Gansu. The results showed that with the develo-pment of growth period, the total root length, root surface area of spring wheat and pea showed a consistent trend of increase after initial decrease and reached the maximum at flowering stage. Higher root distribution was found in the 0-10 cm soil layer at seedling and 10-30 cm soil layer at flowering and maturity stages in spring wheat, while in the field pea, higher root distribution was found in the 0-10 cm soil layer at seedling and maturity, and in the 10-30 cm soil layer at flowering stages. No tillage with straw mulching and plastic mulching increased the root length and root surface area. Compared with conventional tillage in spring wheat and field pea, root length increased by 35.9% to 92.6%, and root surface area increased by 43.2% to 162.4%, respectively. No tillage with straw mulching and plastic mulching optimized spring wheat and pea root system distribution, compared with conventional tillage, increased spring wheat and field pea root length and root surface area ratio at 0-10 cm depths at the seedling stage, the root distribution at deeper depths increased significantly at flowering and maturity stages, and no tillage with straw mulching increased root length and root surface area ratio by 3.3% and 9.7% respectively, in 30-80 cm soil layer at the flowering stage. The total root length, root surface area and yield had significantly positive correlation for spring wheat in each growth period, and the total root length and pea yield also had significant positive correlation. No tillage with straw mulching and plastic mulching boosted yield of spring wheat and pea by 23.4%-38.7% compared with the conventional tillage, and the water use efficiency was increased by 13

  14. Meatballs with 3% and 6% dietary fibre from rye bran or pea fibre - Effects on sensory quality and subjective appetite sensations.

    PubMed

    Kehlet, Ursula; Pagter, Mette; Aaslyng, Margit D; Raben, Anne

    2017-03-01

    This study investigated dose-response effects of rye bran and pea fibre added to meatballs on sensory quality and subjective appetite sensations. Pea fibre or rye bran was added to meatballs in doses ranging from 3g to 6g dietary fibre per 100g. In a sensory profile, a trained panel (n=9) evaluated the meatballs in terms of odour, appearance, texture and flavour attributes. In a cross-over appetite study, 27 healthy men were served five test meals. Subjective appetite sensations were assessed over a 4-hour period. The addition of rye bran to the meatballs increased the grainy odour, texture and flavour. Pea fibre resulted in a more crumbly, firm and gritty texture with increasing doses of fibre. The sensory changes followed a dose-response relationship. Subjective appetite sensations were not affected by the addition of fibre. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. ON THE OXYGEN AND NITROGEN CHEMICAL ABUNDANCES AND THE EVOLUTION OF THE 'GREEN PEA' GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amorin, Ricardo O.; Perez-Montero, Enrique; Vilchez, J. M., E-mail: amorin@iaa.e, E-mail: epm@iaa.e, E-mail: jvm@iaa.e

    2010-06-01

    We have investigated the oxygen and nitrogen chemical abundances in extremely compact star-forming galaxies (SFGs) with redshifts between {approx}0.11 and 0.35, popularly referred to as 'green peas'. Direct and strong-line methods sensitive to the N/O ratio applied to their Sloan Digital Sky Survey (SDSS) spectra reveal that these systems are genuine metal-poor galaxies, with mean oxygen abundances {approx}20% solar. At a given metallicity these galaxies display systematically large N/O ratios compared to normal galaxies, which can explain the strong difference between our metallicities measurements and previous ones. While their N/O ratios follow the relation with stellar mass of local SFGsmore » in the SDSS, we find that the mass-metallicity relation of the 'green peas' is offset {approx_gt}0.3 dex to lower metallicities. We argue that recent interaction-induced inflow of gas, possibly coupled with a selective metal-rich gas loss, driven by supernova winds, may explain our findings and the known galaxy properties, namely high specific star formation rates, extreme compactness, and disturbed optical morphologies. The 'green pea' galaxy properties seem to be uncommon in the nearby universe, suggesting a short and extreme stage of their evolution. Therefore, these galaxies may allow us to study in great detail many processes, such as starburst activity and chemical enrichment, under physical conditions approaching those in galaxies at higher redshifts.« less

  16. Changes in phytates and HCl extractability of calcium, phosphorus, and iron of soaked, dehulled, cooked, and sprouted pigeon pea cultivar (UPAS-120).

    PubMed

    Duhan, A; Khetarpaul, N; Bishnoi, S

    2002-01-01

    UPAS-120, a high yielding and early maturing variety of pigeon peas released by the Department of Plant Breeding, CCS Haryana Agricultural University, Hisar contained a significant amount of phytic acid, i.e. 886 mg/100 g. When it was subjected to various domestic processing and cooking methods viz. soaking (6, 12, 18 h), dehulling, ordinary as well as pressure cooking and germination (24, 36 and 48 h), a drastic decrease in level of phytic acid with a remarkable increase in the HCl-extractability of mono, divalent, and trivalent ions, like calcium, phosphorus, and iron occurred. Germination (48 h) was found to be the best method for decreasing the phytic acid content, i.e. 35 to 39 percent less than the control and significantly (p < 0.05) increasing the non-phytate phosphorus and HCl-extractable phosphorus. Pressure cooking of soaked-dehulled pigeon pea also rendered equally good results. The calcium, phosphorus, and iron contents of pigeon pea seeds were 197.3, 473.1, and 9.91 mg/100 g, respectively; some losses varying from 3 to 9 percent were noticed when the legume was subjected to soaking, cooking, and germination but the maximum losses, i.e. 23 percent, occurred when the seeds were dehulled. However, HCl-extractability of Ca, P, and Fe improved to a significant extent when the pigeon pea seeds were soaked, soaked-dehulled, cooked and sprouted which may have been due to decrease in the phytate content followed by processing and cooking. The significant negative correlations between the phytic acid and HCl-extractability of minerals of processed pigeon pea strengthens these findings.

  17. Cloning and expression of a nuclear encoded plastid specific 33 kDa ribonucleoprotein gene (33RNP) from pea that is light stimulated.

    PubMed

    Reddy, M K; Nair, S; Singh, B N; Mudgil, Y; Tewari, K K; Sopory, S K

    2001-01-24

    We report the cloning and sequencing of both cDNA and genomic DNA of a 33 kDa chloroplast ribonucleoprotein (33RNP) from pea. The analysis of the predicted amino acid sequence of the cDNA clone revealed that the encoded protein contains two RNA binding domains, including the conserved consensus ribonucleoprotein sequences CS-RNP1 and CS-RNP2, on the C-terminus half and the presence of a putative transit peptide sequence in the N-terminus region. The phylogenetic and multiple sequence alignment analysis of pea chloroplast RNP along with RNPs reported from the other plant sources revealed that the pea 33RNP is very closely related to Nicotiana sylvestris 31RNP and 28RNP and also to 31RNP and 28RNP of Arabidopsis and spinach, respectively. The pea 33RNP was expressed in Escherichia coli and purified to homogeneity. The in vitro import of precursor protein into chloroplasts confirmed that the N-terminus putative transit peptide is a bona fide transit peptide and 33RNP is localized in the chloroplast. The nucleic acid-binding properties of the recombinant protein, as revealed by South-Western analysis, showed that 33RNP has higher binding affinity for poly (U) and oligo dT than for ssDNA and dsDNA. The steady state transcript level was higher in leaves than in roots and the expression of this gene is light stimulated. Sequence analysis of the genomic clone revealed that the gene contains four exons and three introns. We have also isolated and analyzed the 5' flanking region of the pea 33RNP gene.

  18. Optimization of mold wheat bread fortified with soy flour, pea flour and whey protein concentrate.

    PubMed

    Erben, Melina; Osella, Carlos A

    2017-07-01

    The objective of this work was to study the effect of replacing a selected wheat flour for defatted soy flour, pea flour and whey protein concentrate on both dough rheological characteristics and the performance and nutritional quality of bread. A mixture design was used to analyze the combination of the ingredients. The optimization process suggested that a mixture containing 88.8% of wheat flour, 8.2% of defatted soy flour, 0.0% of pea flour and 3.0% of whey protein concentrate could be a good combination to achieve the best fortified-bread nutritional quality. The fortified bread resulted in high protein concentration, with an increase in dietary fiber content and higher calcium levels compared with those of control (wheat flour 100%). Regarding protein quality, available lysine content was significantly higher, thus contributing with the essential amino acid requirement.

  19. Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (Cajanus cajan [L.] Millsp.).

    PubMed

    Zhao, J; Li, C; Wang, W; Zhao, C; Luo, M; Mu, F; Fu, Y; Zu, Y; Yao, M

    2013-07-01

    The aim was to isolate, identify and characterize endophytes from pigeon pea (Cajanus cajan [L.] Millsp.), as novel producer of cajanol and its in vitro cytotoxicity assay. Isolation, identification and characterization of novel endophytes producing cajanol from the roots of pigeon pea were investigated. The endophytes were identified as Hypocrea lixii by morphological and molecular methods. Cajanol produced by endophytes were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). R-18 produced the highest levels of cajanol (322·4 ± 10·6 μg l(-1) or 102·8 ± 6·9 μg g(-1) dry weight of mycelium) after incubation for 7 days. The cytotoxicity towards human lung carcinoma cells (A549) of fungal cajanol was investigated in vitro. First, a novel endophyte Hypocrea lixii, producing anticancer agent cajanol, was isolated from the host pigeon pea (Cajanus cajan [L.] Millsp.). Fungal cajanol possessed stronger cytotoxicity activity towards A549 cells in time- and dose-dependent manners. This endophyte is a potential handle for scientific and commercial exploitation, and it could provide a promising alterative approach for large-scale production of cajanol to satisfy new anticancer drug development. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.

  20. Quantification of Pea enation mosaic virus 1 and 2 during infection of Pisum sativum by one step real-time RT-PCR.

    PubMed

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen

    2017-02-01

    Pea enation mosaic virus 1 (PEMV1) and Pea enation mosaic virus 2 (PEMV2) are two viruses in an obligate symbiosis that cause pea enation mosaic disease mainly in plants in the Fabaceae family. This virus system is a valuable model to investigate plant virus replication, movement and vector transmission. Thus, here we describe growth conditions, virus detection methods, and virus accumulation behavior. To measure the accumulation and movement of PEMV1 and PEMV2 in plants during the course of infection, we developed a quantitative real-time one-step reverse transcription PCR procedure using the SYBR-green ® technology. Viral primers were designed that anneal to conserved but distinct regions in the RNA-dependent RNA polymerase gene of each virus. Moreover, the normalization of viral accumulation was performed to correct for sample-to-sample variation by designing primers to two different Pisum sativum housekeeping genes: actin and β-tubulin. Transcript levels for these housekeeping genes did not change significantly in response to PEMV infection. Conditions were established for maximum PCR efficiency for each gene, and quantification using QuBit ® technology. Both viruses reached maximum accumulation around 21days post-inoculation of pea plants. These results provide valuable tools and knowledge to allow reproducible studies of this emerging model virus system virus complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Water Sorption Isotherm of Pea Starch Edible Films and Prediction Models.

    PubMed

    Saberi, Bahareh; Vuong, Quan V; Chockchaisawasdee, Suwimol; Golding, John B; Scarlett, Christopher J; Stathopoulos, Costas E

    2015-12-24

    The moisture sorption isotherm of pea starch films prepared with various glycerol contents as plasticizer was investigated at different storage relative humidities (11%-96% RH) and at 5 ± 1, 15 ± 1, 25 ± 1 and 40 ± 1 °C by using gravimetric method. The results showed that the equilibrium moisture content of all films increased substantially above a w = 0.6. Films plasticized with glycerol, under all temperatures and RH conditions (11%-96%), adsorbed more moisture resulting in higher equilibrium moisture contents. Reduction of the temperature enhanced the equilibrium moisture content and monolayer water of the films. The obtained experimental data were fitted to different models including two-parameter equations (Oswin, Henderson, Brunauer-Emmitt-Teller (BET), Flory-Huggins, and Iglesias-Chirife), three-parameter equations Guggenhiem-Anderson-deBoer (GAB), Ferro-Fontan, and Lewicki) and a four-parameter equation (Peleg). The three-parameter Lewicki model was found to be the best-fitted model for representing the experimental data within the studied temperatures and whole range of relative humidities (11%-98%). Addition of glycerol increased the net isosteric heat of moisture sorption of pea starch film. The results provide important information with estimating of stability and functional characteristics of the films in various environments.

  2. Water Sorption Isotherm of Pea Starch Edible Films and Prediction Models

    PubMed Central

    Saberi, Bahareh; Vuong, Quan V.; Chockchaisawasdee, Suwimol; Golding, John B.; Scarlett, Christopher J.; Stathopoulos, Costas E.

    2015-01-01

    The moisture sorption isotherm of pea starch films prepared with various glycerol contents as plasticizer was investigated at different storage relative humidities (11%–96% RH) and at 5 ± 1, 15 ± 1, 25 ± 1 and 40 ± 1 °C by using gravimetric method. The results showed that the equilibrium moisture content of all films increased substantially above aw = 0.6. Films plasticized with glycerol, under all temperatures and RH conditions (11%–96%), adsorbed more moisture resulting in higher equilibrium moisture contents. Reduction of the temperature enhanced the equilibrium moisture content and monolayer water of the films. The obtained experimental data were fitted to different models including two-parameter equations (Oswin, Henderson, Brunauer–Emmitt–Teller (BET), Flory–Huggins, and Iglesias–Chirife), three-parameter equations Guggenhiem–Anderson–deBoer (GAB), Ferro–Fontan, and Lewicki) and a four-parameter equation (Peleg). The three-parameter Lewicki model was found to be the best-fitted model for representing the experimental data within the studied temperatures and whole range of relative humidities (11%–98%). Addition of glycerol increased the net isosteric heat of moisture sorption of pea starch film. The results provide important information with estimating of stability and functional characteristics of the films in various environments. PMID:28231096

  3. Fluidity of pea root plasma membranes under altered gravity

    NASA Astrophysics Data System (ADS)

    Klymchuk, D. O.; Baranenko, V. V.; Vorobyova, T. V.; Dubovoy, V. D.

    This investigation aims to determine whether clinorotation 2 rev min of pea Pisum sativum L seedlings induces the alterations in the physical-chemical properties of cellular membranes including the plasma membrane fluidity The last is an important regulator of functional activity of membrane enzymes The plasma membranes were isolated by aqueous two-phase partitioning from roots of 6-day old pea seedlings The membrane fluidity was examined by fluorescence spectroscopy using pyrene probe The plasma membrane vesicles with known protein concentration were added to the incubation buffer to a final concentration of 50 mu g of protein per ml A small amount by 1 mu l of pyrene solution in 2-propanol was added to the incubation mixture to a final probe concentration 5 mu M at constant mixing Fluorescence spectra were measured using a Perkin-Elmer LS-50 spectrofluorometer Perkin-Elmer England Pyrene was excited at 337 nm and fluorescence intensity of monomers I M and excimers I E were measured at 393 and 470 nm respectively The I E I M ratios were 0 081 pm 0 003 and 0 072 pm 0 004 in preparations obtained from clinorotated and the control seedlings respectively This fact indicates that rotation on the clinostat increases the membrane fluidity Compared with controls clinorotated seedlings have also showed a reduced growth and a higher level of total unsaturated fatty acids determined by gas chromatography The factors that influence on the fluidity of membrane lipids in bilayer appear to be the

  4. Wrinkled Peas and White-Eyed Fruit Flies: The Molecular Basis of Two Classical Genetic Traits.

    ERIC Educational Resources Information Center

    Guilfoile, Patrick

    1997-01-01

    Focuses on bridging the gap between classical and molecular genetics for two traits: wrinkled seeds in garden peas and white eye color in fruit flies. Discusses the molecular details of the underlying basis of these traits. Contains 15 references. (JRH)

  5. Endophytic fungi from pigeon pea [Cajanus cajan (L.) Millsp.] produce antioxidant Cajaninstilbene acid.

    PubMed

    Zhao, JinTong; Fu, YuJie; Luo, Meng; Zu, YuanGang; Wang, Wei; Zhao, ChunJian; Gu, ChengBo

    2012-05-02

    In this study, novel endophytic fungi producing cajaninstilbene acid (CSA) from pigeon pea [ Cajanus cajan (L.) Millsp.] were investigated and screened. CSA has prominent pharmacological activities. A total of 110 endophytic fungi isolates were grouped into 8 genera on the basis of morphological characteristics, and CSA-producing fungi were screened by liquid chromatography-tandem mass spectrometry (LC-MS/MS). According to ITS-rDNA sequences analysis, the CSA-producing fungi were identified as Fusarium solani (ERP-07), Fusarium oxysporum (ERP-10), and Fusarium proliferatum (ERP-13), respectively. The amount of CSA produced by the ERP-13 reached 504.8 ± 20.1 μg/L or 100.5 ± 9.4 μg/g dry weight of mycelium. In a DPPH radical-scavenging assay, when the concentration of fungal CSA was 500 μg/mL, inhibition percentage could reach 80%, which was almost the same as that of standard CSA. This study first reported the natural antioxidant CSA from endophytic fungi F. solani and F. proliferatum isolated from pigeon pea.

  6. Protein and starch concentrates of air-classified field pea and zero-tannin faba bean for weaned pigs.

    PubMed

    Gunawardena, C K; Zijlstra, R T; Goonewardene, L A; Beltranena, E

    2010-08-01

    Air-classified pulse (non-oilseed legume) protein and starch may replace specialty protein and starch feedstuffs in diets for weaned pigs. In Exp. 1, three specialty protein sources (5% soy protein concentrate, 5% corn gluten meal, and 5% menhaden meal in the control diet) were replaced with 16% zero-tannin hulled or dehulled faba bean, or 17.5% field pea protein concentrate. In total, 192 group-housed pigs (2 gilts and 2 barrows per pen; BW = 7.5 +/- 1.4 kg) were fed wheat-based diets (3.60 Mcal/kg of DE and 3.3 g of standardized ileal digestible Lys/Mcal DE) over 28 d for 12 pen observations per each of 4 diets. Overall, protein source did not affect ADFI, ADG, or G:F. Apparent total tract digestibility (ATTD) of DM, GE, and P was greater (P < 0.05) for dehulled faba bean and field pea protein concentrate diets than the diet with 3 specialty protein sources. In Exp. 2, faba bean and field pea starch concentrates were compared with corn, wheat, tapioca, and potato starch as dietary energy sources. In total, 36 individually housed barrows (BW = 8.0 +/- 1.5 kg) were fed 1 of 6 diets for 15 d. Feces and urine were collected from d 8 to 14, and jugular blood was sampled after overnight fast and refeeding on d 15. Starch source did not affect N retention as a percentage of N intake. For d 0 to 14, ADFI of pigs fed field pea starch was greater (P < 0.05) than pigs fed corn, wheat, potato, and faba bean starch. Pigs fed tapioca, field pea, wheat, or corn starch grew faster (P < 0.05) than those fed faba bean or potato starch. For d 0 to 14, pigs fed corn or wheat starch had a 0.1 greater (P < 0.05) G:F than pigs fed faba bean, field pea, or potato starch. The ATTD of DM, GE, CP, and starch and the DE value of potato starch were much less (P < 0.05) than those of other starch diets. Postprandial plasma glucose was 4.9, 6.3, and 9 mmol/L greater (P < 0.05) for pigs fed tapioca than for pigs fed faba bean, wheat, and potato starch, respectively. However, postprandial plasma

  7. Individual mineral supplement intake by ewes swath grazing or confinement fed pea-barley forage

    USDA-ARS?s Scientific Manuscript database

    Sixty mature ewes (non-pregnant, non-lactating) were used in a completely randomized design to determine if feeding method of pea-barley forage (swath grazing or hay in confinement) had an effect on individual ewe mineral consumption. Thirty ewes were randomly allocated to 3 confinement pens and 30 ...

  8. An Inquiry-Infused Introductory Biology Laboratory That Integrates Mendel's Pea Phenotypes with Molecular Mechanisms

    ERIC Educational Resources Information Center

    Kudish, Philip; Schlag, Erin; Kaplinsky, Nicholas J.

    2015-01-01

    We developed a multi-week laboratory in which college-level introductory biology students investigate Mendel's stem length phenotype in peas. Students collect, analyze and interpret convergent evidence from molecular and physiological techniques. In weeks 1 and 2, students treat control and experimental plants with Gibberellic Acid (GA) to…

  9. The pea END1 promoter drives anther-specific gene expression in different plant species.

    PubMed

    Gómez, María D; Beltrán, José-Pío; Cañas, Luis A

    2004-10-01

    END1 was isolated by an immunosubtractive approach intended to identify specific proteins present in the different pea (Pisum sativum L.) floral organs and the genes encoding them. Following this strategy we obtained a monoclonal antibody (mAbA1) that specifically recognized a 26-kDa protein (END1) only detected in anther tissues. Northern blot assays showed that END1 is expressed specifically in the anther. In situ hybridization and immunolocalization assays corroborated the specific expression of END1 in the epidermis, connective, endothecium and middle layer cells during the different stages of anther development. END1 is the first anther-specific gene isolated from pea. The absence of a practicable pea transformation method together with the fact that no END1 homologue gene exists in Arabidopsis prevented us from carrying out END1 functional studies. However, we designed functional studies with the END1 promoter in different dicot species, as the specific spatial and temporal expression pattern of END1 suggested, among other things, the possibility of using its promoter region for biotechnological applications. Using different constructs to drive the uidA (beta-glucuronidase) gene controlled by the 2.7-kb isolated promoter sequence we have proven that the END1 promoter is fully functional in the anthers of transgenic Arabidopsis thaliana (L.) Heynh., Nicotiana tabacum L. (tobacco) and Lycopersicon esculentum Mill. (tomato) plants. The presence in the -330-bp region of the promoter sequence of three putative CArG boxes also suggests that END1 could be a target gene of MADS-box proteins and that, subsequently, it would be activated by genes controlling floral organ identity.

  10. Pea chloroplast DnaJ-J8 and Toc12 are encoded by the same gene and localized in the stroma.

    PubMed

    Chiu, Chi-Chou; Chen, Lih-Jen; Li, Hsou-min

    2010-11-01

    Toc12 is a novel J domain-containing protein identified in pea (Pisum sativum) chloroplasts. It was shown to be an integral outer membrane protein localizing in the intermembrane space of the chloroplast envelope. Furthermore, Toc12 was shown to associate with an intermembrane space Hsp70, suggesting that Toc12 is important for protein translocation across the chloroplast envelope. Toc12 shares a high degree of sequence similarity with Arabidopsis (Arabidopsis thaliana) DnaJ-J8, which has been suggested to be a soluble protein of the chloroplast stroma. Here, we isolated genes encoding DnaJ-J8 from pea and found that Toc12 is a truncated clone of one of the pea DnaJ-J8s. Protein import analyses indicate that Toc12 and DnaJ-J8s possess a cleavable transit peptide and are localized in the stroma. Arabidopsis mutants with T-DNA insertions in the DnaJ-J8 gene show no defect in chloroplast protein import. Implications of these results in the energetics and mechanisms of chloroplast protein import are discussed.

  11. Effects of Dietary Fibre (Pectin) and/or Increased Protein (Casein or Pea) on Satiety, Body Weight, Adiposity and Caecal Fermentation in High Fat Diet-Induced Obese Rats

    PubMed Central

    Adam, Clare L.; Gratz, Silvia W.; Peinado, Diana I.; Thomson, Lynn M.; Garden, Karen E.; Williams, Patricia A.; Richardson, Anthony J.; Ross, Alexander W.

    2016-01-01

    Dietary constituents that suppress appetite, such as dietary fibre and protein, may aid weight loss in obesity. The soluble fermentable dietary fibre pectin promotes satiety and decreases adiposity in diet-induced obese rats but effects of increased protein are unknown. Adult diet-induced obese rats reared on high fat diet (45% energy from fat) were given experimental diets ad libitum for 4 weeks (n = 8/group): high fat control, high fat with high protein (40% energy) as casein or pea protein, or these diets with added 10% w/w pectin. Dietary pectin, but not high protein, decreased food intake by 23% and induced 23% body fat loss, leading to 12% lower final body weight and 44% lower total body fat mass than controls. Plasma concentrations of satiety hormones PYY and total GLP-1 were increased by dietary pectin (168% and 151%, respectively) but not by high protein. Plasma leptin was decreased by 62% on pectin diets and 38% on high pea (but not casein) protein, while plasma insulin was decreased by 44% on pectin, 38% on high pea and 18% on high casein protein diets. Caecal weight and short-chain fatty acid concentrations in the caecum were increased in pectin-fed and high pea protein groups: caecal succinate was increased by pectin (900%), acetate and propionate by pectin (123% and 118%, respectively) and pea protein (147% and 144%, respectively), and butyrate only by pea protein (309%). Caecal branched-chain fatty acid concentrations were decreased by pectin (down 78%) but increased by pea protein (164%). Therefore, the soluble fermentable fibre pectin appeared more effective than high protein for increasing satiety and decreasing caloric intake and adiposity while on high fat diet, and produced a fermentation environment more likely to promote hindgut health. Altogether these data indicate that high fibre may be better than high protein for weight (fat) loss in obesity. PMID:27224646

  12. Coordinate expression of AOS genes and JA accumulation: JA is not required for initiation of closing layer in wound healing tubers

    USDA-ARS?s Scientific Manuscript database

    Wounding induces a series of coordinated physiological responses essential for protection and healing of the damaged tissue. Wound-induced formation of jasmonic acid (JA) is important in defense responses in leaves, but comparatively little is known about the induction of JA biosynthesis and its ro...

  13. Posterior localization of ApVas1 positions the preformed germ plasm in the sexual oviparous pea aphid Acyrthosiphon pisum

    PubMed Central

    2014-01-01

    Background Germline specification in some animals is driven by the maternally inherited germ plasm during early embryogenesis (inheritance mode), whereas in others it is induced by signals from neighboring cells in mid or late development (induction mode). In the Metazoa, the induction mode appears as a more prevalent and ancestral condition; the inheritance mode is therefore derived. However, regarding germline specification in organisms with asexual and sexual reproduction it has not been clear whether both strategies are used, one for each reproductive phase, or if just one strategy is used for both phases. Previously we have demonstrated that specification of germ cells in the asexual viviparous pea aphid depends on a preformed germ plasm. In this study, we extended this work to investigate how germ cells were specified in the sexual oviparous embryos, aiming to understand whether or not developmental plasticity of germline specification exists in the pea aphid. Results We employed Apvas1, a Drosophila vasa ortholog in the pea aphid, as a germline marker to examine whether germ plasm is preformed during oviparous development, as has already been seen in the viviparous embryos. During oogenesis, Apvas1 mRNA and ApVas1 protein were both evenly distributed. After fertilization, uniform expression of Apvas1 remained in the egg but posterior localization of ApVas1 occurred from the fifth nuclear cycle onward. Posterior co-localization of Apvas1/ApVas1 was first identified in the syncytial blastoderm undergoing cellularization, and later we could detect specific expression of Apvas1/ApVas1 in the morphologically identifiable germ cells of mature embryos. This suggests that Apvas1/ApVas1-positive cells are primordial germ cells and posterior localization of ApVas1 prior to cellularization positions the preformed germ plasm. Conclusions We conclude that both asexual and sexual pea aphids rely on the preformed germ plasm to specify germ cells and that developmental

  14. Seventeen years of research on genetics of resistance to Aphanomyces root rot of pea

    USDA-ARS?s Scientific Manuscript database

    Aphanomyces root rot, caused by the oomycete Aphanomyces euteiches, is a major soil borne disease of pea in many countries. Genetic resistance is considered to be a main way to control the disease. Since 2000, INRA has engaged a long-term research program to study genetic resistance to A. euteiches ...

  15. PEA and luteolin synergistically reduce mast cell-mediated toxicity and elicit neuroprotection in cell-based models of brain ischemia.

    PubMed

    Parrella, Edoardo; Porrini, Vanessa; Iorio, Rosa; Benarese, Marina; Lanzillotta, Annamaria; Mota, Mariana; Fusco, Mariella; Tonin, Paolo; Spano, PierFranco; Pizzi, Marina

    2016-10-01

    The combination of palmitoylethanolamide (PEA), an endogenous fatty acid amide belonging to the family of the N-acylethanolamines, and the flavonoid luteolin has been found to exert neuroprotective activities in a variety of mouse models of neurological disorders, including brain ischemia. Indirect findings suggest that the two molecules can reduce the activation of mastocytes in brain ischemia, thus modulating crucial cells that trigger the inflammatory cascade. Though, no evidence exists about a direct effect of PEA and luteolin on mast cells in experimental models of brain ischemia, either used separately or in combination. In order to fill this gap, we developed a novel cell-based model of severe brain ischemia consisting of primary mouse cortical neurons and cloned mast cells derived from mouse fetal liver (MC/9 cells) subjected to oxygen and glucose deprivation (OGD). OGD exposure promoted both mast cell degranulation and the release of lactate dehydrogenase (LDH) in a time-dependent fashion. MC/9 cells exacerbated neuronal damage in neuron-mast cells co-cultures exposed to OGD. Likewise, the conditioned medium derived from OGD-exposed MC/9 cells induced significant neurotoxicity in control primary neurons. PEA and luteolin pre-treatment synergistically prevented the OGD-induced degranulation of mast cells and reduced the neurotoxic potential of MC/9 cells conditioned medium. Finally, the association of the two drugs promoted a direct synergistic neuroprotection even in pure cortical neurons exposed to OGD. In summary, our results indicate that mast cells release neurotoxic factors upon OGD-induced activation. The association PEA-luteolin actively reduces mast cell-mediated neurotoxicity as well as pure neurons susceptibility to OGD. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Nuclear-Cytoplasmic Conflict in Pea (Pisum sativum L.) Is Associated with Nuclear and Plastidic Candidate Genes Encoding Acetyl-CoA Carboxylase Subunits

    PubMed Central

    Bogdanova, Vera S.; Zaytseva, Olga O.; Mglinets, Anatoliy V.; Shatskaya, Natalia V.; Kosterin, Oleg E.; Vasiliev, Gennadiy V.

    2015-01-01

    In crosses of wild and cultivated peas (Pisum sativum L.), nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plastid conflict were searched in the reconstructed plastid genomes. In the annotated Medicago truncatula genome, nuclear candidate genes were searched in the portion syntenic to the pea chromosome region known to harbor a locus involved in the conflict. In the plastid genomes, a substantial variability of the accD locus represented by nucleotide substitutions and indels was found to correspond to the pattern of cross-compatibility among the accessions analyzed. Amino acid substitutions in the polypeptides encoded by the alleles of a nuclear locus, designated as Bccp3, with a complementary function to accD, fitted the compatibility pattern. The accD locus in the plastid genome encoding beta subunit of the carboxyltransferase of acetyl-coA carboxylase and the nuclear locus Bccp3 encoding biotin carboxyl carrier protein of the same multi-subunit enzyme were nominated as candidate genes for main contribution to nuclear-cytoplasmic incompatibility in peas. Existence of another nuclear locus involved in the accD-mediated conflict is hypothesized. PMID:25789472

  17. High-Throughput Development of SSR Markers from Pea (Pisum sativum L.) Based on Next Generation Sequencing of a Purified Chinese Commercial Variety

    PubMed Central

    Zhang, Xiaoyan; Hu, Jinguo; Bao, Shiying; Hao, Junjie; Li, Ling; He, Yuhua; Jiang, Junye; Wang, Fang; Tian, Shufang; Zong, Xuxiao

    2015-01-01

    Pea (Pisum sativum L.) is an important food legume globally, and is the plant species that J.G. Mendel used to lay the foundation of modern genetics. However, genomics resources of pea are limited comparing to other crop species. Application of marker assisted selection (MAS) in pea breeding has lagged behind many other crops. Development of a large number of novel and reliable SSR (simple sequence repeat) or microsatellite markers will help both basic and applied genomics research of this crop. The Illumina HiSeq 2500 System was used to uncover 8,899 putative SSR containing sequences, and 3,275 non-redundant primers were designed to amplify these SSRs. Among the 1,644 SSRs that were randomly selected for primer validation, 841 yielded reliable amplifications of detectable polymorphisms among 24 genotypes of cultivated pea (Pisum sativum L.) and wild relatives (P. fulvum Sm.) originated from diverse geographical locations. The dataset indicated that the allele number per locus ranged from 2 to 10, and that the polymorphism information content (PIC) ranged from 0.08 to 0.82 with an average of 0.38. These 1,644 novel SSR markers were also tested for polymorphism between genotypes G0003973 and G0005527. Finally, 33 polymorphic SSR markers were anchored on the genetic linkage map of G0003973 × G0005527 F2 population. PMID:26440522

  18. Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll-protein complexes in pea and tomato: plants with a different susceptibility to non-freezing temperature.

    PubMed

    Garstka, Maciej; Venema, Jan Henk; Rumak, Izabela; Gieczewska, Katarzyna; Rosiak, Malgorzata; Koziol-Lipinska, Joanna; Kierdaszuk, Borys; Vredenberg, Wim J; Mostowska, Agnieszka

    2007-10-01

    The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll-protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements.

  19. Effect of arabinogalactan proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination.

    PubMed

    Cannesan, Marc Antoine; Durand, Caroline; Burel, Carole; Gangneux, Christophe; Lerouge, Patrice; Ishii, Tadashi; Laval, Karine; Follet-Gueye, Marie-Laure; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2012-08-01

    Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions.

  20. The Pea Photoperiod Response Gene STERILE NODES Is an Ortholog of LUX ARRHYTHMO1[W][OPEN

    PubMed Central

    Liew, Lim Chee; Hecht, Valérie; Sussmilch, Frances C.; Weller, James L.

    2014-01-01

    The STERILE NODES (SN) locus in pea (Pisum sativum) was one of the first photoperiod response genes to be described and provided early evidence for the genetic control of long-distance signaling in flowering-time regulation. Lines homozygous for recessive sn mutations are early flowering and photoperiod insensitive, with an increased ability to promote flowering across a graft union in short-day conditions. Here, we show that SN controls developmental regulation of genes in the FT family and rhythmic regulation of genes related to circadian clock function. Using a positional and functional candidate approach, we identify SN as the pea ortholog of LUX ARRHYTHMO, a GARP transcription factor from Arabidopsis (Arabidopsis thaliana) with an important role in circadian clock function. In addition to induced mutants, sequence analysis demonstrates the presence of at least three other independent, naturally occurring loss-of-function mutations among known sn cultivars. Examination of genetic and regulatory interactions between SN and two other circadian clock genes, HIGH RESPONSE TO PHOTOPERIOD (HR) and DIE NEUTRALIS (DNE), suggests a complex relationship in which HR regulates expression of SN and the role of DNE and HR in control of flowering is dependent on SN. These results extend previous work to show that pea orthologs of all three Arabidopsis evening complex genes regulate clock function and photoperiod-responsive flowering and suggest that the function of these genes may be widely conserved. PMID:24706549

  1. Effect of cationic plastoquinone SkQ1 on electron transfer reactions in chloroplasts and mitochondria from pea seedlings.

    PubMed

    Samuilov, V D; Kiselevsky, D B

    2015-04-01

    Plastoquinone bound with decyltriphenylphosphonium cation (SkQ1) penetrating through the membrane in nanomolar concentrations inhibited H2O2 generation in cells of epidermis of pea seedling leaves that was detected by the fluorescence of 2',7'-dichlorofluorescein. Photosynthetic electron transfer in chloroplasts isolated from pea leaves is suppressed by SkQ1 at micromolar concentrations: the electron transfer in chloroplasts under the action of photosystem II or I (with silicomolybdate or methyl viologen as electron acceptors, respectively) is more sensitive to SkQ1 than under the action of photosystem II + I (with ferricyanide or p-benzoquinone as electron acceptors). SkQ1 reduced by borohydride is oxidized by ferricyanide, p-benzoquinone, and, to a lesser extent, by silicomolybdate, but not by methyl viologen. SkQ1 is not effective as an electron acceptor supporting O2 evolution from water in illuminated chloroplasts. The data on suppression of photosynthetic O2 evolution or consumption show that SkQ1, similarly to phenazine methosulfate, causes conversion of the chloroplast redox-chain from non-cyclic electron transfer mode to the cyclic mode without O2 evolution. Oxidation of NADH or succinate in mitochondria isolated from pea roots is stimulated by SkQ1.

  2. Effect of canning on color, protein and phenolic profile of grains from kidney bean, field pea and chickpea.

    PubMed

    Parmar, Naincy; Singh, Narpinder; Kaur, Amritpal; Virdi, Amardeep Singh; Thakur, Sheetal

    2016-11-01

    The aim of the present study was to evaluate the effect of canning on color, protein and phenolic profile of grains of kidney bean, field pea and chickpea varieties/accession. Color of grains of different pulses was enhanced after canning. Grains L* (lightness) decreased while a* (redness to yellowness) and b* (greenness to blueness) increased after canning in all the pulses. Protein profiling of grains of different pulses after canning revealed that kidney bean and chickpea, respectively, had the least and the most thermally susceptible polypeptides. Kidney bean and chickpea showed higher Percentage washed drained weight (PWDW) than field pea. Pulse with more grain hardness and PWDW showed higher degree of grain splitting during canning. Grain splitting was also higher in dark colored accessions/varieties as compared to the light colored. Ferulic acid was the most predominant compound present in raw grains of different pulses. Raw kidney bean grains showed higher accumulation of catechin, chlorogenic, protocatechuic acid, p-coumaric acid and ferulic acid than those of chickpea and field pea. Canning caused reduction in all the phenolic compounds except gallic acid and most prominent effect of canning on protocatechuic acid, chlorogenic and ferulic acid was observed. Copyright © 2016. Published by Elsevier Ltd.

  3. The Dynamics of the Defense Strategy of Pea Induced by Exogenous Nitric Oxide in Response to Aphid Infestation.

    PubMed

    Woźniak, Agnieszka; Formela, Magda; Bilman, Piotr; Grześkiewicz, Katarzyna; Bednarski, Waldemar; Marczak, Łukasz; Narożna, Dorota; Dancewicz, Katarzyna; Mai, Van Chung; Borowiak-Sobkowiak, Beata; Floryszak-Wieczorek, Jolanta; Gabryś, Beata; Morkunas, Iwona

    2017-02-05

    The aim of this study was to investigate the effect of exogenous nitric oxide (NO), i.e., S -nitrosoglutathione (GSNO) and sodium nitroprusside (SNP), on the metabolic status of Pisum sativum L. cv. Cysterski leaves infested by Acyrthosiphon pisum Harris, population demographic parameters and A. pisum feeding activity. A reduction in the level of semiquinone radicals in pea seedling leaves pretreated with exogenous NO occurred 24 h after A. pisum infestation, which was earlier than in non-pretreated leaves. A decrease in the level of O₂ •- was observed in leaves pretreated with GSNO and infested by aphids at 48 and 72 h post-infestation (hpi). Directly after the pretreatment with GSNO, an increase in the level of metal ions was recorded. NO considerably induced the relative mRNA levels for phenylalanine ammonia-lyase in 24-h leaves pretreated with NO donors, both non-infested and infested. NO stimulated the accumulation of pisatin in leaves until 24 h. The Electrical Penetration Graph revealed a reduction in the feeding activity of the pea aphid on leaves pretreated with NO. The present study showed that foliar application of NO donors induced sequentially defense reactions of pea against A. pisum and had a deterrent effect on aphid feeding and limited the population growth rate.

  4. The Dynamics of the Defense Strategy of Pea Induced by Exogenous Nitric Oxide in Response to Aphid Infestation

    PubMed Central

    Woźniak, Agnieszka; Formela, Magda; Bilman, Piotr; Grześkiewicz, Katarzyna; Bednarski, Waldemar; Marczak, Łukasz; Narożna, Dorota; Dancewicz, Katarzyna; Mai, Van Chung; Borowiak-Sobkowiak, Beata; Floryszak-Wieczorek, Jolanta; Gabryś, Beata; Morkunas, Iwona

    2017-01-01

    The aim of this study was to investigate the effect of exogenous nitric oxide (NO), i.e., S-nitrosoglutathione (GSNO) and sodium nitroprusside (SNP), on the metabolic status of Pisum sativum L. cv. Cysterski leaves infested by Acyrthosiphon pisum Harris, population demographic parameters and A. pisum feeding activity. A reduction in the level of semiquinone radicals in pea seedling leaves pretreated with exogenous NO occurred 24 h after A. pisum infestation, which was earlier than in non-pretreated leaves. A decrease in the level of O2•− was observed in leaves pretreated with GSNO and infested by aphids at 48 and 72 h post-infestation (hpi). Directly after the pretreatment with GSNO, an increase in the level of metal ions was recorded. NO considerably induced the relative mRNA levels for phenylalanine ammonia-lyase in 24-h leaves pretreated with NO donors, both non-infested and infested. NO stimulated the accumulation of pisatin in leaves until 24 h. The Electrical Penetration Graph revealed a reduction in the feeding activity of the pea aphid on leaves pretreated with NO. The present study showed that foliar application of NO donors induced sequentially defense reactions of pea against A. pisum and had a deterrent effect on aphid feeding and limited the population growth rate. PMID:28165429

  5. Effects of extruding wheat dried distillers grains with solubles with peas or canola meal on ruminal fermentation, microbial protein synthesis, nutrient digestion, and milk production in dairy cows.

    PubMed

    Claassen, R M; Christensen, D A; Mutsvangwa, T

    2016-09-01

    Our objective was to examine the effects of feeding coextruded and nonextruded supplements consisting of wheat dried distillers grains with solubles with peas (WDDGS-peas) or canola meal (WDDGS-CM) on ruminal fermentation, omasal flow, and production performance in Holstein cows. Eight cows (4 ruminally cannulated) were used in a replicated 4×4 Latin square with 28-d periods and a 2×2 factorial arrangement of dietary treatments. Dietary treatments were coextruded or nonextruded mixtures of WDDGS-peas and WDDGS-CM that were included in total mixed rations at 15.1% [dry matter (DM) basis]. Diet had no effect on DM intake. Milk yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk fat content was greater in cows fed nonextruded diets compared with those fed coextruded diets, but milk fat yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk yield tended to be greater and milk protein yield was greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Cows fed nonextruded diets had a greater milk urea-N concentration compared with those fed coextruded diets. Cows fed coextruded diets had greater ruminal digestion of DM and tended to have greater ruminal digestion of organic matter compared with those fed nonextruded diets. Total-tract digestibilities of organic matter, crude protein, ether extract, and starch were greater, whereas that of acid detergent fiber and neutral detergent fiber tended to be greater in cows fed coextruded compared with those fed nonextruded diets. Total-tract digestibility of ether extract was lower whereas that of starch was greater and that of crude protein tended to be greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Total N excretion and milk N efficiency were unaffected by diet. Ruminal NH3-N concentration tended to be greater in cows fed WDDGS-CM compared with those fed WDDGS-peas. Ruminal propionate concentration was greater whereas

  6. The Pea SAD Short-Chain Dehydrogenase/Reductase: Quinone Reduction, Tissue Distribution, and Heterologous Expression1[W][OA

    PubMed Central

    Scherbak, Nikolai; Ala-Häivälä, Anneli; Brosché, Mikael; Böwer, Nathalie; Strid, Hilja; Gittins, John R.; Grahn, Elin; Eriksson, Leif A.; Strid, Åke

    2011-01-01

    The pea (Pisum sativum) tetrameric short-chain alcohol dehydrogenase-like protein (SAD) family consists of at least three highly similar members (SAD-A, -B, and -C). According to mRNA data, environmental stimuli induce SAD expression. The aim of this study was to characterize the SAD proteins by examining their catalytic function, distribution in pea, and induction in different tissues. In enzyme activity assays using a range of potential substrates, the SAD-C enzyme was shown to reduce one- or two-ring-membered quinones lacking long hydrophobic hydrocarbon tails. Immunological assays using a specific antiserum against the protein demonstrated that different tissues and cell types contain small amounts of SAD protein that was predominantly located within epidermal or subepidermal cells and around vascular tissue. Particularly high local concentrations were observed in the protoderm of the seed cotyledonary axis. Two bow-shaped rows of cells in the ovary and the placental surface facing the ovule also exhibited considerable SAD staining. Ultraviolet-B irradiation led to increased staining in epidermal and subepidermal cells of leaves and stems. The different localization patterns of SAD suggest functions both in development and in responses to environmental stimuli. Finally, the pea SAD-C promoter was shown to confer heterologous wound-induced expression in Arabidopsis (Arabidopsis thaliana), which confirmed that the inducibility of its expression is regulated at the transcriptional level. PMID:21343423

  7. Properties of Plasma Membrane from Pea Root Seedlings under Altered Gravity

    NASA Astrophysics Data System (ADS)

    Klymchuk, D.; Baranenko, V.; Vorobyova, T. V.; Kurylenko, I.; Chyzhykova, O.; Dubovoy, V.

    In this study, the properties of pea (Pisum sativum L.) plasma membrane were examined to determine how the membrane structure and functions are regulated in response to clinorotation (2 rev/min) conditions. Membrane preparations enriched by plasma membrane vesicles were obtained by aqueous two-phase partitioning from 6-day seedling roots. The specific characteristics of H^+-ATPase, lípid composition and peroxidation intensity as well as fluidity of lipid bilayer were analysed. ATP hydrolytic activity was inhibited by ortovanadate and was insensitive to aside and nitrate in sealed plasma membrane vesicles isolated from both clinorotated and control seedlings. Plasma membrane vesicles from clinorotated seedlings in comparison to controls were characterised by increase in the total lipid/protein ratio, ATP hydrolytic activity and intensifying of lipid peroxidation. Sitosterol and campesterol were the predominant free sterol species. Clinorotated seedlings contained a slightly higher level of unsaturated fatty acid than controls. Plasma membrane vesicles were labelled with pyrene and fluorescence originating from monomeric (I_M) molecules and excimeric (I_E) aggregates were measured. The calculated I_E/I_M values were higher in clinorotated seedlings compared with controls reflecting the reduction in membrane microviscosity. The involvement of the changes in plasma membrane lipid content and composition, fluidity and H^+-ATPase activity in response of pea seedlings to altered gravity is discussed.

  8. Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.).

    PubMed

    Ma, Yu; Coyne, Clarice J; Grusak, Michael A; Mazourek, Michael; Cheng, Peng; Main, Dorrie; McGee, Rebecca J

    2017-02-13

    Marker-assisted breeding is now routinely used in major crops to facilitate more efficient cultivar improvement. This has been significantly enabled by the use of next-generation sequencing technology to identify loci and markers associated with traits of interest. While rich in a range of nutritional components, such as protein, mineral nutrients, carbohydrates and several vitamins, pea (Pisum sativum L.), one of the oldest domesticated crops in the world, remains behind many other crops in the availability of genomic and genetic resources. To further improve mineral nutrient levels in pea seeds requires the development of genome-wide tools. The objectives of this research were to develop these tools by: identifying genome-wide single nucleotide polymorphisms (SNPs) using genotyping by sequencing (GBS); constructing a high-density linkage map and comparative maps with other legumes, and identifying quantitative trait loci (QTL) for levels of boron, calcium, iron, potassium, magnesium, manganese, molybdenum, phosphorous, sulfur, and zinc in the seed, as well as for seed weight. In this study, 1609 high quality SNPs were found to be polymorphic between 'Kiflica' and 'Aragorn', two parents of an F 6 -derived recombinant inbred line (RIL) population. Mapping 1683 markers including 75 previously published markers and 1608 SNPs developed from the present study generated a linkage map of size 1310.1 cM. Comparative mapping with other legumes demonstrated that the highest level of synteny was observed between pea and the genome of Medicago truncatula. QTL analysis of the RIL population across two locations revealed at least one QTL for each of the mineral nutrient traits. In total, 46 seed mineral concentration QTLs, 37 seed mineral content QTLs, and 6 seed weight QTLs were discovered. The QTLs explained from 2.4% to 43.3% of the phenotypic variance. The genome-wide SNPs and the genetic linkage map developed in this study permitted QTL identification for pea seed mineral

  9. On the nature and origin of the calcium asymmetry arising during gravitropic response in etiolated pea epicotyls

    NASA Technical Reports Server (NTRS)

    Migliaccio, F.; Galston, A. W.

    1987-01-01

    Seven day old etiolated pea epicotyls were loaded symmetrically with 3H-indole 3-acetic acid (IAA) or 45Ca2+, then subjected to 1.5 hours of 1g gravistimulation. Epidermal peels taken from top and bottom surfaces after 90 minutes showed an increase in IAA on the lower side and of Ca2+ on the upper side. Inhibitors of IAA movement (TIBA, 9-hydroxyfluorene carboxylic acid) block the development of both IAA and Ca2+ asymmetries, but substances known to interfere with normal Ca2+ transport (nitrendipine, nisoldipine, Bay K 8644, A 23187) do not significantly alter either IAA or Ca2+ asymmetries. These substances, however, are active in modifying both Ca2+ uptake and efflux through oat and pea leaf protoplast membranes. We conclude that the 45Ca2+ fed to pea epicotyls occurs largely in the cell wall, and that auxin movement is primary and Ca2+ movement secondary in gravitropism. We hypothesize that apoplastic Ca2+ changes during graviresponse because it is displaced by H+ secreted through auxin-induced proton release. This proposed mechanism is supported by localized pH experiments, in which filter paper soaked in various buffers was applied to one side of a carborundum-abraded epicotyls. Buffer at pH 3 increases calcium loss from the side to which it is applied, whereas pH 7 buffer decreases it. Moreover, 10 micromolar IAA and 1 micromolar fusicoccin, which promote H+ efflux, increase Ca2+ release from pea epicotyl segments, whereas cycloheximide, which inhibits H+ efflux, has the reverse effect. We suggest that Ca2+ does not redistribute actively during gravitropism: the asymmetry arises because of its release from the wall adjacent to the region of high IAA concentration, proton secretion, and growth. Thus, the asymmetric distribution of Ca2+ appears to be a consequence of growth stimulation, not a critical step in the early phase of the graviresponse.

  10. Changes in the protein patterns in pea (Pisum sativum L.) roots under the influence of long- and short-term chilling stress and post-stress recovery.

    PubMed

    Badowiec, Anna; Swigonska, Sylwia; Weidner, Stanisław

    2013-10-01

    Amongst many factors restricting geographical distribution of plants and crop productivity, low temperature is one of the most important. To gain better understanding of the molecular response of germinating pea (Pisum sativum L.) to low temperature, we investigated the influence of long and short chilling stress as well as post-stress recovery on the alterations in the root proteomes. The impact of long stress was examined on the pea seeds germinating in the continuous chilling conditions of 10 °C for 8 days (LS). To examine the impact of short stress, pea seeds germinating for 72 h in the optimal temperature of 20 °C were subjected to 24-h chilling (SS). Additionally, both stress treatments were followed by 24 h of recovery in the optimal conditions (accordingly LSR and SR). Using the 2D gel electrophoresis and MALDI-TOF MS protein identification, it was revealed, that most of the proteins undergoing regulation under the applied conditions were implicated in metabolism, protection against stress, cell cycle regulation, cell structure maintenance and hormone synthesis, which altogether may influence root growth and development in the early stages of plant life. The obtained results have shown that most of detected alterations in the proteome patterns of pea roots are dependent on stress duration. However, there are some analogical response pathways which are triggered regardless of stress length. The functions of proteins which accumulation has been changed by chilling stress and post-stress recovery are discussed here in relation to their impact on pea roots development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. The Pea light-independent photomorphogenesis1 Mutant Results from Partial Duplication of COP1 Generating an Internal Promoter and Producing Two Distinct Transcripts

    PubMed Central

    Sullivan, James A.; Gray, John C.

    2000-01-01

    The pea lip1 (light-independent photomorphogenesis1) mutant shows many of the characteristics of light-grown development when grown in continuous darkness. To investigate the identity of LIP1, cDNAs encoding the pea homolog of COP1, a repressor of photomorphogenesis identified in Arabidopsis, were isolated from wild-type and lip1 pea seedlings. lip1 seedlings contained a wild-type COP1 transcript as well as a larger COP1′ transcript that contained an internal in-frame duplication of 894 bp. The COP1′ transcript segregated with the lip1 phenotype in F2 seedlings and could be translated in vitro to produce a protein of ∼100 kD. The COP1 gene in lip1 peas contained a 7.5-kb duplication, consisting of exons 1 to 7 of the wild-type sequence, located 2.5 kb upstream of a region of genomic DNA identical to the wild-type COP1 DNA sequence. Transcription and splicing of the mutant COP1 gene was predicted to produce the COP1′ transcript, whereas transcription from an internal promoter in the 2.5-kb region of DNA located between the duplicated regions of COP1 would produce the wild-type COP1 transcript. The presence of small quantities of wild-type COP1 transcripts may reduce the severity of the phenotype produced by the mutated COP1′ protein. The genomic DNA sequences of the COP1 gene from wild-type and lip1 peas and the cDNA sequences of COP1 and COP1′ transcripts have been submitted to the EMBL database under the EMBL accession numbers AJ276591, AJ276592, AJ289773, and AJ289774, respectively. PMID:11041887

  12. Cutaneous exposure to clinically-relevant pigeon pea (Cajanus cajan) proteins promote TH2-dependent sensitization and IgE-mediated anaphylaxis in Balb/c mice.

    PubMed

    Kumar Gupta, Rinkesh; Kumar, Sandeep; Gupta, Kriti; Sharma, Akanksha; Roy, Ruchi; Kumar Verma, Alok; Chaudhari, Bhushan P; Das, Mukul; Ahmad Ansari, Irfan; Dwivedi, Premendra D

    2016-11-01

    Epicutaneous (EC) sensitization to food allergens may occur when the skin has been lightly damaged. The study here tested whether cutaneous exposure to pigeon pea protein(s) may cause allergic sensitization. BALB/c mice were either orally gavaged or epicutaneously sensitized by repeated application of pigeon pea crude protein extract (CPE) on undamaged areas of skin without any adjuvant; afterwards, both groups were orally challenged with the pigeon pea CPE. Anaphylactic symptoms along with measures of body temperature, MCPT-1, TSLP, pigeon pea-specific IgE and IgG 1 , myeloperoxidase (MPO) activity, T H 2 cytokines, T H 2 transcription factors (TFs) and filaggrin expression were determined. Mast cell staining, eosinophil levels and histopathological analysis of the skin and intestines were also performed. In the epicutaneously-sensitized mice, elevated levels of specific IgE and IgG 1 , as well as of MCPT-1, TSLP, T H 2 cytokines and TFs, higher anaphylactic scores and histological changes in the skin and intestine were indicative of sensitization ability via both routes in the pigeon pea CPE-treated hosts. Elevated levels of mast cells were observed in both the skin and intestine; increased levels of eosinophils and MPO activity were noted only in the skin. Decreased levels of filaggrin in skin may have played a key role in the skin barrier dysfunction, increasing the chances of sensitization. Therefore, the experimental data support the hypothesis that in addition to oral exposure, skin exposure to food allergens can promote T H 2-dependent sensitization, IgE-mediated anaphylaxis and intestinal changes after oral challenge. Based on this, an avoidance of cutaneous exposures to allergens might prevent development of food anaphylaxis.

  13. Isolation and Structural Studies of Mitochondria from Pea Roots.

    PubMed

    Vishwakarma, Abhaypratap; Gupta, Kapuganti Jagadis

    2017-01-01

    For structural and respiratory studies, isolation of intact and active mitochondria is essential. Here, we describe an isolation method which gave good yield and intact mitochondria from 2-week-old pea (Pisum sativum) roots grown hydroponically under standard growth conditions. We used Percoll gradient centrifugation for this isolation procedure. The yield of purified mitochondria was 50 μg/g FW. Isolated mitochondria maintained their structure which was observed by using MitoTracker green in confocal microscope and scanning electron microscopy (SEM). Intact mitochondria are clearly visible in SCM images. Taken together this isolation method can be used for physiological and microscopic studies on mitochondria.

  14. Effects of bacterial secondary symbionts on host plant use in pea aphids

    PubMed Central

    McLean, A. H. C.; van Asch, M.; Ferrari, J.; Godfray, H. C. J.

    2011-01-01

    Aphids possess several facultative bacterial symbionts that have important effects on their hosts' biology. These have been most closely studied in the pea aphid (Acyrthosiphon pisum), a species that feeds on multiple host plants. Whether secondary symbionts influence host plant utilization is unclear. We report the fitness consequences of introducing different strains of the symbiont Hamiltonella defensa into three aphid clones collected on Lathyrus pratensis that naturally lack symbionts, and of removing symbionts from 20 natural aphid–bacterial associations. Infection decreased fitness on Lathyrus but not on Vicia faba, a plant on which most pea aphids readily feed. This may explain the unusually low prevalence of symbionts in aphids collected on Lathyrus. There was no effect of presence of symbiont on performance of the aphids on the host plants of the clones from which the H. defensa strains were isolated. Removing the symbiont from natural aphid–bacterial associations led to an average approximate 20 per cent reduction in fecundity, both on the natural host plant and on V. faba, suggesting general rather than plant-species-specific effects of the symbiont. Throughout, we find significant genetic variation among aphid clones. The results provide no evidence that secondary symbionts have a major direct role in facilitating aphid utilization of particular host plant species. PMID:20843842

  15. Quantitative and Qualitative Involvement of P3N-PIPO in Overcoming Recessive Resistance against Clover Yellow Vein Virus in Pea Carrying the cyv1 Gene

    PubMed Central

    Choi, Sun Hee; Hagiwara-Komoda, Yuka; Atsumi, Go; Shimada, Ryoko; Hisa, Yusuke; Naito, Satoshi

    2013-01-01

    In pea carrying cyv1, a recessive gene for resistance to Clover yellow vein virus (ClYVV), ClYVV isolate Cl-no30 was restricted to the initially infected cells, whereas isolate 90-1 Br2 overcame this resistance. We mapped the region responsible for breaking of cyv1-mediated resistance by examining infection of cyv1 pea with chimeric viruses constructed from parts of Cl-no30 and 90-1 Br2. The breaking of resistance was attributed to the P3 cistron, which is known to produce two proteins: P3, from the main open reading frame (ORF), and P3N-PIPO, which has the N-terminal part of P3 fused to amino acids encoded by a small open reading frame (ORF) called PIPO in the +2 reading frame. We introduced point mutations that were synonymous with respect to the P3 protein but nonsynonymous with respect to the P3N-PIPO protein, and vice versa, into the chimeric viruses. Infection of plants with these mutant viruses revealed that both P3 and P3N-PIPO were involved in overcoming cyv1-mediated resistance. Moreover, P3N-PIPO quantitatively affected the virulence of Cl-no30 in cyv1 pea. Additional expression in trans of the P3N-PIPO derived from Cl-no30, using White clover mosaic virus as a vector, enabled Cl-no30 to move to systemic leaves in cyv1 pea. Susceptible pea plants infected with chimeric ClYVV possessing the P3 cistron of 90-1 Br2, and which were therefore virulent toward cyv1 pea, accumulated more P3N-PIPO than did those infected with Cl-no30, suggesting that the higher level of P3N-PIPO in infected cells contributed to the breaking of resistance by 90-1 Br2. This is the first report showing that P3N-PIPO is a virulence determinant in plants resistant to a potyvirus. PMID:23616656

  16. Effect of different levels of raw and heated grass pea seed (Lathyrus sativus) on nutrient digestibility, intestinal villus morphology and growth performance of broiler chicks.

    PubMed

    Riasi, A; Mahdavi, A H; Bayat, E

    2015-10-01

    This study aimed to investigate chemical composition and effect of different levels (0%, 10% and 20%) of raw grass pea (RGP) and heat-treated (120 °C for 30 min) grass pea seed (HGP) on nutrient digestibility, dressing percentage, relative internal organ weights, intestinal villous morphology and broiler chicks' performance. A total number of 200 day-old male chicks were raised under similar condition for 10 days. On day 11, chicks were randomly assigned to five dietary treatments and four replicates of 10 birds each. The result of chemical analysis indicated that Iranian grass pea seed has low levels of total and condensed tannin, and it may be considered as a good source of protein (36.1%) and energy (17.09 kJ GE/g). Heat treatment reduced (p < 0.05) the total and condensed tannin to 21% and 78% respectively. Grass peas seed had higher levels of nitrogen-free extract, P, Na, Mg and Zn than soya bean meal. The apparent digestibility of gross energy and lipid was affected (p < 0.01) by the treatment diets, and it was the lowest after feeding 20% of HGP (p < 0.05). The relative weight of breast and pancreas (p < 0.05) was affected by treatments. Percentage weight of breast and pancreas increased (p < 0.05) after feeding high levels (20%) of RGP and HGP. Substitution of 20% of RGP and HGP increased the duodenal crypt depth (p < 0.05); however, it had no suppressive effect on villus height as the absorptive surface of intestine. The feed conversion ratio was not affected by the treatments in the total experimental period. This study showed that, although the high level of grass pea seed caused a remarkable increase in the relative weight of pancreas and decreased the apparent digestibility of gross energy and lipid, it had beneficial effect on breast relative weight. It seems that heat processing is not effective method for improving quality of Iranian grass pea seed. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  17. Applying simulation model to uniform field space charge distribution measurements by the PEA method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Salama, M.M.A.

    1996-12-31

    Signals measured under uniform fields by the Pulsed Electroacoustic (PEA) method have been processed by the deconvolution procedure to obtain space charge distributions since 1988. To simplify data processing, a direct method has been proposed recently in which the deconvolution is eliminated. However, the surface charge cannot be represented well by the method because the surface charge has a bandwidth being from zero to infinity. The bandwidth of the charge distribution must be much narrower than the bandwidths of the PEA system transfer function in order to apply the direct method properly. When surface charges can not be distinguished frommore » space charge distributions, the accuracy and the resolution of the obtained space charge distributions decrease. To overcome this difficulty a simulation model is therefore proposed. This paper shows their attempts to apply the simulation model to obtain space charge distributions under plane-plane electrode configurations. Due to the page limitation for the paper, the charge distribution originated by the simulation model is compared to that obtained by the direct method with a set of simulated signals.« less

  18. Binding of carbonyl flavours to canola, pea and wheat proteins using GC/MS approach.

    PubMed

    Wang, Kun; Arntfield, Susan D

    2014-08-15

    Interactions of homologous aldehydes (hexanal, heptanal, and octanal) and ketones (2-hexanone, 2-heptanone, and 2-octanone) to salt and alkaline-extracted canola and pea proteins and commercial wheat gluten were studied using GC/MS. Long-chain aldehyde flavours exhibited higher binding affinity, regardless of protein type and isolation method. Salt-extracted canola protein isolates (CPIs) revealed the highest binding capacity to all aldehydes followed by wheat gluten and salt-extracted pea protein isolates (PPIs), while binding of ketone flavours decreased in the order: PPIs>wheat gluten>CPIs. Two aldolisation products, 2-butyl-2-octenal and 2-pentyl-2-nonenal, were detected from the interactions between CPIs with hexanal and heptanal, respectively. Protein thermal behaviour in the presence of these compounds was analysed by differential scanning calorimeter, where decreased ΔH inferred potential conformational changes due to partial denaturation of PPIs. Compared to ketones, aldehyde flavours possessed much higher "unfolding capacity" (lower ΔH), which accounted for their higher binding affinities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein.

    PubMed

    Babault, Nicolas; Païzis, Christos; Deley, Gaëlle; Guérin-Deremaux, Laetitia; Saniez, Marie-Hélène; Lefranc-Millot, Catherine; Allaert, François A

    2015-01-01

    The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program. One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer. Results showed a significant time effect for biceps brachii muscle thickness (P < 0.0001). Thickness increased from 24.9 ± 3.8 mm to 26.9 ± 4.1 mm and 27.3 ± 4.4 mm at D0, D42 and D84, respectively, with only a trend toward significant differences between groups (P = 0.09). Performing a sensitivity study on the weakest participants (with regards to strength at inclusion), thickness increases were significantly different between groups (+20.2 ± 12.3%, +15.6 ± 13.5% and +8.6 ± 7.3% for Pea, Whey and Placebo, respectively; P < 0.05). Increases in thickness were significantly greater in the Pea group as compared to Placebo whereas there was no difference between Whey and the two other conditions. Muscle strength also increased with time with no statistical difference between groups. In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening

  20. Taxonomic complexity of powdery mildew pathogens found on lentil and pea in the US Pacific Northwest

    USDA-ARS?s Scientific Manuscript database

    Classification of powdery mildews found on lentil and pea in greenhouse and field production conditions in the US Pacific Northwest was investigated using morphological and molecular characters. Isolates collected from lentil plants grown in the greenhouse or field displayed morphologies in substant...

  1. Cloning and characterization of a cDNA encoding topoisomerase II in pea and analysis of its expression in relation to cell proliferation.

    PubMed

    Reddy, M K; Nair, S; Tewari, K K; Mudgil, Y; Yadav, B S; Sopory, S K

    1999-09-01

    We have isolated and sequenced four overlapping cDNA clones to identify the full-length cDNA for topoisomerase II (PsTopII) from pea. Using degenerate primers, based on the conserved amino acid sequences of other eukaryotic type II topoisomerases, a 680 bp fragment was PCR-amplified with pea cDNA as template. This fragment was used as a probe to screen an oligo-dT-primed pea cDNA library. A partial cDNA clone was isolated that was truncated at the 3' end. RACE-PCR was employed to isolate the remaining portion of the gene. The total size of PsTopII is 4639 bp with an open reading frame of 4392 bp. The deduced amino acid sequence shows a strong homology to other eukaryotic topoisomerase II (topo II) at the N-terminus end. The topo II transcript was abundant in proliferative tissues. We also show that the level of topo II transcripts could be stimulated by exogenous application of growth factors that induced proliferation in vitro cultures. Light irradiation to etiolated tissue strongly stimulated the expression of topo II. These results suggest that topo II gene expression is up-regulated in response to light and hormones and correlates with cell proliferation. Besides, we have also isolated and analysed the 5'-flanking region of the pea TopII gene. This is first report on the isolation of a putative promoter for topoisomerase II from plants.

  2. A germin-like protein with superoxide dismutase activity in pea nodules with high protein sequence identity to a putative rhicadhesin receptor.

    PubMed

    Gucciardo, Sébastian; Wisniewski, Jean-Pierre; Brewin, Nicholas J; Bornemann, Stephen

    2007-01-01

    The cDNAs encoding three germin-like proteins (PsGER1, PsGER2a, and PsGER2b) were isolated from Pisum sativum. The coding sequence of PsGER1 transiently expressed in tobacco leaves gave a protein with superoxide dismutase activity but no detectable oxalate oxidase activity according to in-gel activity stains. The transient expression of wheat germin gf-2.8 oxalate oxidase showed oxalate oxidase but no superoxide dismutase activity under the same conditions. The superoxide dismutase activity of PsGER1 was resistant to high temperature, denaturation by detergent, and high concentrations of hydrogen peroxide. In salt-stressed pea roots, a heat-resistant superoxide dismutase activity was observed with an electrophoretic mobility similar to that of the PsGER1 protein, but this activity was below the detection limit in non-stressed or H(2)O(2)-stressed pea roots. Oxalate oxidase activity was not detected in either pea roots or nodules. Following in situ hybridization in developing pea nodules, PsGER1 transcript was detected in expanding cells just proximal to the meristematic zone and also in the epidermis, but to a lesser extent. PsGER1 is the first known germin-like protein with superoxide dismutase activity to be associated with nodules. It shared protein sequence identity with the N-terminal sequence of a putative plant receptor for rhicadhesin, a bacterial attachment protein. However, its primary location in nodules suggests functional roles other than as a rhicadhesin receptor required for the first stage of bacterial attachment to root hairs.

  3. Nucleotide sequence of a complementary DNA encoding pea cytosolic copper/zinc superoxide dismutase. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.A.; Zilinskas, B.A.

    1991-08-01

    The authors now report the nucleotide sequence of the cytosolic Cu/Zn SOD cloned from a {lambda}gt11 cDNA library constructed from mRNA extracted from leaves of 7- to 10-d pea seedlings (Pisum sativum L.). The clone was isolated using a 22-base synthetic oligonucleotide complementary to the amino acid sequence CGIIGLQG. This sequence, found at the protein's carboxy terminus, is highly conserved among plant cytosolic Cu/Zn SODs but not chloroplastic Cu/Zn SODs. The 738-base pair sequence contains an open reading frame specifying 152 codons and a predicted M{sub r} of 18,024 D. The deduced amino acid sequence is highly homologous (79-82% identity)more » with the sequences of other known plant cytosolic Cu/Zn SODs but less highly conserved (63-65%) when compared with several chloroplastic Cu/Zn SODs including pea (10).« less

  4. Physical, chemical, and sensory properties of biscuits prepared from flour blends of unripe cooking banana, pigeon pea, and sweet potato.

    PubMed

    Adeola, Abiodun A; Ohizua, Ehimen R

    2018-05-01

    Biscuits were produced from 14 flour blends of cooking banana (UBF), pigeon pea (PPF), and sweet potato (SPF). The physical properties, nutrient composition, and sensory characteristics of the biscuits were evaluated using standard methods. Data obtained were subjected to analysis of variance, and mean values were separated using Duncan's multiple range test. The hardness of the biscuit samples decreased as PPF increased, while the fracturability decreased with increase in UBF. Biscuits were significantly ( p  < .05) different in their nutrient composition, with the crude protein, crude fiber, ash contents, and dietary fiber content increasing as the PPF level increased. Cookies were rich in magnesium (576.54-735.06 mg/100 g) with favorable Na/K ratio (<1.0). The antinutritional factors in the biscuit samples were within permissible levels. Biscuits prepared from flour blend of 21.67% unripe cooking banana, 21.67% pigeon pea, and 56.67% sweet potato were the most preferred in terms of shape, mouthfeel, taste, crunchiness, and overall acceptability. Flour blends of unripe cooking banana, pigeon pea, and sweet potato could therefore be used as raw materials for the production of biscuits, with high protein, total dietary, and energy content.

  5. Synthesis, structural characterization and biological activity of two diastereomeric JA-Ile macrolactones.

    PubMed

    Jimenez-Aleman, Guillermo H; Machado, Ricardo A R; Görls, Helmar; Baldwin, Ian T; Boland, Wilhelm

    2015-06-07

    Jasmonates are phytohormones involved in a wide range of plant processes, including growth, development, senescence, and defense. Jasmonoyl-L-isoleucine (JA-Ile, 2), an amino acid conjugate of jasmonic acid (JA, 1), has been identified as a bioactive endogenous jasmonate. However, JA-Ile (2) analogues trigger different responses in the plant. ω-Hydroxylation of the pentenyl side chain leads to the inactive 12-OH-JA-Ile (3) acting as a “stop” signal. On the other hand, a lactone derivative of 12-OH-JA (5) (jasmine ketolactone, JKL) occurs in nature, although with no known biological function. Inspired by the chemical structure of JKL (6) and in order to further explore the potential biological activities of 12-modified JA-Ile derivatives, we synthesized two macrolactones (JA-Ile-lactones (4a) and (4b)) derived from 12-OH-JA-Ile (3). The biological activity of (4a) and (4b) was tested for their ability to elicit nicotine production, a well-known jasmonate dependent secondary metabolite. Both macrolactones showed strong biological activity, inducing nicotine accumulation to a similar extent as methyl jasmonate does in Nicotiana attenuata leaves. Surprisingly, the highest nicotine contents were found in plants treated with the JA-Ile-lactone (4b), which has (3S,7S) configuration at the cyclopentanone not known from natural jasmonates. Macrolactone (4a) is a valuable standard to explore for its occurrence in nature.

  6. Light-modulated abundance of an mRNA encoding a calmodulin-regulated, chromatin-associated NTPase in pea

    NASA Technical Reports Server (NTRS)

    Hsieh, H. L.; Tong, C. G.; Thomas, C.; Roux, S. J.

    1996-01-01

    A CDNA encoding a 47 kDa nucleoside triphosphatase (NTPase) that is associated with the chromatin of pea nuclei has been cloned and sequenced. The translated sequence of the cDNA includes several domains predicted by known biochemical properties of the enzyme, including five motifs characteristic of the ATP-binding domain of many proteins, several potential casein kinase II phosphorylation sites, a helix-turn-helix region characteristic of DNA-binding proteins, and a potential calmodulin-binding domain. The deduced primary structure also includes an N-terminal sequence that is a predicted signal peptide and an internal sequence that could serve as a bipartite-type nuclear localization signal. Both in situ immunocytochemistry of pea plumules and immunoblots of purified cell fractions indicate that most of the immunodetectable NTPase is within the nucleus, a compartment proteins typically reach through nuclear pores rather than through the endoplasmic reticulum pathway. The translated sequence has some similarity to that of human lamin C, but not high enough to account for the earlier observation that IgG against human lamin C binds to the NTPase in immunoblots. Northern blot analysis shows that the NTPase MRNA is strongly expressed in etiolated plumules, but only poorly or not at all in the leaf and stem tissues of light-grown plants. Accumulation of NTPase mRNA in etiolated seedlings is stimulated by brief treatments with both red and far-red light, as is characteristic of very low-fluence phytochrome responses. Southern blotting with pea genomic DNA indicates the NTPase is likely to be encoded by a single gene.

  7. Environmental effect on yield, composition and technological seed traits of some Italian ecotypes of grass pea (Lathyrus sativus L.).

    PubMed

    Piergiovanni, Angela R; Lupo, Francesco; Zaccardelli, Massimo

    2011-01-15

    Grass pea seeds are a good source of vegetable proteins, but the presence of toxic and antinutritional compounds represents a barrier to their large-scale use as food or animal feed. How much growing location and/or seasonal climate might affect the storage of these factors has been little investigated. Fourteen Italian ecotypes of grass pea were cultivated in two locations in southern Italy characterised by different climatic conditions. The seven ecotypes with the best yields and/or seed quality were investigated for a further two growing seasons. From a statistical point of view the physicochemical and nutritional traits among ecotypes were not the same from one year to the next. Moreover, a significant positive correlation was found between β-oxalyl-diamino-propionic acid and trypsin inhibitor contents. The lowest levels of both these compounds were associated with the highest amount of rainfall during the plant vegetative cycle. Principal component analysis of the data showed that the overall seed composition was affected by the growing location. Consequently, each grass pea genotype should also be carefully investigated in relation to different environments before being considered for release as safe for widespread human or animal consumption. Copyright © 2010 Society of Chemical Industry.

  8. Kinetic Stability of Proteins in Beans and Peas: Implications for Protein Digestibility, Seed Germination, and Plant Adaptation.

    PubMed

    Xia, Ke; Pittelli, Sandy; Church, Jennifer; Colón, Wilfredo

    2016-10-12

    Kinetically stable proteins (KSPs) are resistant to the denaturing detergent sodium dodecyl sulfate (SDS). Such resilience makes KSPs resistant to proteolytic degradation and may have arisen in nature as a mechanism for organismal adaptation and survival against harsh conditions. Legumes are well-known for possessing degradation-resistant proteins that often diminish their nutritional value. Here we applied diagonal two-dimensional (D2D) SDS-polyacrylamide gel electrophoresis (PAGE), a method that allows for the proteomics-level identification of KSPs, to a group of 12 legumes (mostly beans and peas) of agricultural and nutritional importance. Our proteomics results show beans that are more difficult to digest, such as soybean, lima beans, and various common beans, have high contents of KSPs. In contrast, mung bean, red lentil, and various peas that are highly digestible contain low amounts of KSPs. Identified proteins with high kinetic stability are associated with warm-season beans, which germinate at higher temperatures. In contrast, peas and red lentil, which are cool-season legumes, contain low levels of KSPs. Thus, our results show protein kinetic stability is an important factor in the digestibility of legume proteins and may relate to nutrition efficiency, timing of seed germination, and legume resistance to biotic stressors. Furthermore, we show D2D SDS-PAGE is a powerful method that could be applied for determining the abundance and identity of KSPs in engineered and wild legumes and for advancing basic research and associated applications.

  9. Structure of the coding region and mRNA variants of the apyrase gene from pea (Pisum sativum)

    NASA Technical Reports Server (NTRS)

    Shibata, K.; Abe, S.; Davies, E.

    2001-01-01

    Partial amino acid sequences of a 49 kDa apyrase (ATP diphosphohydrolase, EC 3.6.1.5) from the cytoskeletal fraction of etiolated pea stems were used to derive oligonucleotide DNA primers to generate a cDNA fragment of pea apyrase mRNA by RT-PCR and these primers were used to screen a pea stem cDNA library. Two almost identical cDNAs differing in just 6 nucleotides within the coding regions were found, and these cDNA sequences were used to clone genomic fragments by PCR. Two nearly identical gene fragments containing 8 exons and 7 introns were obtained. One of them (H-type) encoded the mRNA sequence described by Hsieh et al. (1996) (DDBJ/EMBL/GenBank Z32743), while the other (S-type) differed by the same 6 nucleotides as the mRNAs, suggesting that these genes may be alleles. The six nucleotide differences between these two alleles were found solely in the first exon, and these mutation sites had two types of consensus sequences. These mRNAs were found with varying lengths of 3' untranslated regions (3'-UTR). There are some similarities between the 3'-UTR of these mRNAs and those of actin and actin binding proteins in plants. The putative roles of the 3'-UTR and alternative polyadenylation sites are discussed in relation to their possible role in targeting the mRNAs to different subcellular compartments.

  10. Endogenous Bioactive Jasmonate Is Composed of a Set of (+)-7-iso-JA-Amino Acid Conjugates1

    PubMed Central

    Li, Suhua; Li, Yuwen; Chen, Juan; Yang, Mai; Tong, Jianhua; Xiao, Langtao; Nan, Fajun; Xie, Daoxin

    2016-01-01

    Jasmonates (JAs) regulate a wide range of plant defense and development processes. The bioactive JA is perceived by its receptor COI1 to trigger the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins and subsequently derepress the JAZ-repressed transcription factors for activation of expression of JA-responsive genes. So far, (+)-7-iso-JA-l-Ile has been the only identified endogenous bioactive JA molecule. Here, we designed coronafacic acid (CFA) conjugates with all the amino acids (CFA-AA) to mimic the JA amino acid conjugates, and revealed that (+)-7-iso-JA-Leu, (+)-7-iso-JA-Val, (+)-7-iso-JA-Met, and (+)-7-iso-JA-Ala are new endogenous bioactive JA molecules. Furthermore, our studies uncover the general characteristics for all the bioactive JA molecules, and provide a new strategy to synthetically generate novel active JA molecules. PMID:27756820

  11. Effect of Replacing Soybean Meal by Raw or Extruded Pea Seeds on Growth Performance and Selected Physiological Parameters of the Ileum and Distal Colon of Pigs

    PubMed Central

    Taciak, Marcin; Barszcz, Marcin; Święch, Ewa; Bachanek, Ilona; Skomiał, Jacek

    2017-01-01

    The use of pea seeds is limited due to the content of antinutritional factors that may affect gut physiology. Heat treatment such as extrusion may reduce heat-labile antinutritional factors and improve the nutritional value of pea seeds. This study determined the effect of partial replacement of soybean meal in pig diets by raw or extruded pea seeds on growth performance, nitrogen balance and physiology of the ileum and distal colon. The experiment was carried out in 18 castrated male piglets of initial body weight of 11 kg, divided into three groups. The animals were fed cereal-based diets with soybean meal (C), which was partly replaced by raw (PR) or extruded pea (PE) seeds. Nitrogen balance was measured at about 15 kg body weight. After 26 days of feeding, tissue samples were taken from the ileum and distal colon for histological measurements, and colonic digesta samples for analyses of microbial activity indices. The animals fed the PE diet had a significantly greater average daily gain than those fed the C diet and better apparent protein digestibility than those on the PR diet. Pigs fed the PR diet had a significantly greater butyric acid concentration and lower pH in the colon than pigs fed PE and C diets. There was no significant effect of the diet on other indices of microbial activity or morphological parameters. In conclusion, feeding a diet with extruded pea seeds improved growth performance of pigs, did not affect intestinal morphology and had a negligible effect on microbial activity in the distal colon. PMID:28060879

  12. Greenhouse Studies of Thiamethoxam Effects on Pea Leaf Weevil, Sitona lineatus

    PubMed Central

    Cárcamo, Héctor; Herle, Carolyn; Hervet, Vincent

    2012-01-01

    The pea leaf weevil, Sitona lineatus L. (Coleoptera: Curculionidae), has recently emerged as an important pest of field peas in the Canadian prairies. Systemic seed-coated insecticides may provide a tool for the integrated pest management of this pest. Therefore, several controlled assays were performed in order to determine effects of a recently registered neonicotinoid, (thiamethoxam) on S. lineatus damage to foliage, weevil mortality, fertility, egg viability, larval mortality, and root nodule damage. Foliage damage was reduced by thiamethoxam relative to untreated controls during the seedling stage (2nd–5th nodes), but weevil adult mortality was only 15–30%. Fertility was reduced substantially through an extra seven-day delay in the preoviposition period and reduced egg-laying rate during the first 20 days of the study (92% lower than controls). Overall egg viability was lower in females fed foliage grown from thiamethoxamtreated seeds. Larval survivorship and nodule damage were also lower, but only when eggs were added to treated plants at the 2nd node stage. When eggs were added late, at the 5th node stage, thiamethoxam had no effect on larval survivorship or nodule damage. The results of this study led to the conclusion that seed treatments such as thiamethoxam have potential to be used as tools that will aid in the integrated pest management of S. lineatus, especially in combination with other methods such as biocontrol and trap crops. PMID:23461362

  13. Mixed cation FA x PEA 1- x PbI 3 with enhanced phase and ambient stability toward high-performance perovskite solar cells

    DOE PAGES

    Li, Nan; Zhu, Zonglong; Chueh, Chu -Chen; ...

    2016-09-26

    In this study, different from the commonly explored strategy of incorporating a smaller cation, MA + and Cs + into FAPbI 3 lattice to improve efficiency and stability, it is revealed that the introduction of phenylethylammonium iodide (PEAI) into FAPbI 3 perovksite to form mixed cation FA xPEA 1–xPbI 3 can effectively enhance both phase and ambient stability of FAPbI 3 as well as the resulting performance of the derived devices. From our experimental and theoretical calculation results, it is proposed that the larger PEA cation is capable of assembling on both the lattice surface and grain boundaries to formmore » quais-3D perovskite structures. The surrounding of PEA + ions at the crystal grain boundaries not only can serve as molecular locks to tighten FAPbI 3 domains but also passivate the surface defects to improve both phase and moisture stablity. Consequently, a high-performance (PCE:17.7%) and ambient stable FAPbI 3 solar cell could be developed« less

  14. An antifungal protein from the pea Pisum sativum var. arvense Poir.

    PubMed

    Wang, H X; Ng, T B

    2006-07-01

    An antifungal protein with a molecular mass of 11 kDa and a lysine-rich N-terminal sequence was isolated from the seeds of the pea Pisum sativum var. arvense Poir. The antifungal protein was unadsorbed on DEAE-cellulose but adsorbed on Affi-gel blue gel and CM-cellulose. It exerted antifungal activity against Physalospora piricola with an IC50 of 0.62 microM, and also antifungal activity against Fusarium oxysporum and Mycosphaerella arachidicola. It inhibited human immunodeficiency virus type 1 reverse transcriptase with an IC50 of 4.7 microM.

  15. PsPMEP, a pollen-specific pectin methylesterase of pea (Pisum sativum L.).

    PubMed

    Gómez, María Dolores; Renau-Morata, Begoña; Roque, Edelín; Polaina, Julio; Beltrán, José Pío; Cañas, Luis A

    2013-09-01

    Pectin methylesterases (PMEs) are a family of enzymes involved in plant reproductive processes such as pollen development and pollen tube growth. We have isolated and characterized PsPMEP, a pea (Pisum sativum L.) pollen-specific gene that encodes a protein with homology to PMEs. Sequence analysis showed that PsPMEP belongs to group 2 PMEs, which are characterized by the presence of a processable amino-terminal PME inhibitor domain followed by the catalytic PME domain. Moreover, PsPMEP contains several motifs highly conserved among PMEs with the essential amino acid residues involved in enzyme substrate binding and catalysis. Northern blot and in situ hybridization analyses showed that PsPMEP is expressed in pollen grains from 4 days before anthesis till anther dehiscence and in pollinated carpels. In the PsPMEP promoter region, we have identified several conserved cis-regulatory elements that have been associated with gene pollen-specific expression. Expression analysis of PsPMEP promoter fused to the uidA reporter gene in Arabidopsis thaliana plants showed a similar expression pattern when compared with pea, indicating that this promoter is also functional in a non-leguminous plant. GUS expression was detected in mature pollen grains, during pollen germination, during pollen tube elongation along the transmitting tract, and when the pollen tube reaches the embryo sac in the ovule.

  16. Solid-state NMR spin-echo investigation of the metalloproteins parvalbumin, concanavalin A, and pea and lentil lectins, substituted with cadmium-113

    NASA Astrophysics Data System (ADS)

    Marchetti, Paul S.; Bhattacharyya, Lokesh; Ellis, Paul D.; Brewer, C. Fred

    Solid-state 113Cd NMR spectroscopy of static powder samples of 113Cd-substituted metalloproteins, parvalbumin, concanavalin A, and pea and lentil lectins, was carried out. Cross polarization followed by application of a train of uniformly spaced π pulses was employed to investigate the origin of residual cadmium NMR linewidths observed previously in these proteins. Fourier transformation of the resulting spin-echo train yielded spectra consisting of uniformly spaced lines having linewidths of the order of 1-2 ppm. The observed linewidths were not influenced by temperature as low as -50°C or by extent of protein hydration. Since the echo-train pulse sequence is able to eliminate inhomogeneous but not homogeneous contributions to the linewidths, there is a predominant inhomogeneous contribution to cadmium linewidths in the protein CP/MAS spectra. However, significant changes in spectral intensities were observed with change in temperature and extent of protein hydration. These intensity changes are attributed for parvalbumin and concanavalin A to changes in cross-polarization efficiency with temperature and hydration. For pea and lentil lectins, this effect is attributed to the elimination of static disorder at the pea and lentil S2 metal-ion sites due to sugar binding.

  17. Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum.

    PubMed

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Singh, Vinay; Singh, Harikesh Bahadur

    2015-06-15

    Microbial consortia may provide protection against pathogenic ingress via enhancing plant defense responses. Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27 and Bacillus subtilis BHHU100 were used either singly or in consortia in the pea rhizosphere to observe proteome level changes upon Sclerotinia sclerotiorum challenge. Thirty proteins were found to increase or decrease differentially in 2-DE gels of pea leaves, out of which 25 were identified by MALDI-TOF MS or MS/MS. These proteins were classified into several functional categories including photosynthesis, respiration, phenylpropanoid metabolism, protein synthesis, stress regulation, carbohydrate and nitrogen metabolism and disease/defense-related processes. The respective homologue of each protein identified was trapped in Pisum sativum and a phylogenetic tree was constructed to check the ancestry. The proteomic view of the defense response to S. sclerotiorum in pea, in the presence of beneficial microbes, highlights the enhanced protection that can be provided by these microbes in challenged plants. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Recognition of RNA Editing Sites Is Directed by Unique Proteins in Chloroplasts: Biochemical Identification of cis-Acting Elements and trans-Acting Factors Involved in RNA Editing in Tobacco and Pea Chloroplasts

    PubMed Central

    Miyamoto, Tetsuya; Obokata, Junichi; Sugiura, Masahiro

    2002-01-01

    RNA editing in higher-plant chloroplasts involves C-to-U conversions at specific sites. Although in vivo analyses have been performed, little is known about the biochemical aspects of chloroplast editing reactions. Here we improved our original in vitro system and devised a procedure for preparing active chloroplast extracts not only from tobacco plants but also from pea plants. Using our tobacco in vitro system, cis-acting elements were defined for psbE and petB mRNAs. Distinct proteins were found to bind specifically to each cis-element, a 56-kDa protein to the psbE site and a 70-kDa species to the petB site. Pea chloroplasts lack the corresponding editing site in psbE since T is already present in the DNA. Parallel in vitro analyses with tobacco and pea extracts revealed that the pea plant has no editing activity for psbE mRNAs and lacks the 56-kDa protein, whereas petB mRNAs are edited and the 70-kDa protein is also present. Therefore, coevolution of an editing site and its cognate trans-factor was demonstrated biochemically in psbE mRNA editing between tobacco and pea plants. PMID:12215530

  19. Analysis of genetic diversity in pigeon pea germplasm using retrotransposon-based molecular markers.

    PubMed

    Maneesha; Upadhyaya, Kailash C

    2017-09-01

    Pigeon pea (Cajanus cajan), an important legume crop is predominantly cultivated in tropical and subtropical regions of Asia and Africa. It is normally considered to have a low degree of genetic diversity, an impediment in undertaking crop improvement programmes.We have analysed genetic polymorphism of domesticated pigeon pea germplasm (47 accessions) across the world using earlier characterized panzee retrotransposon-based molecularmarkers. Itwas conjectured that since retrotransposons are interspersed throughout the genome, retroelements-based markers would be able to uncover polymorphism possibly inherent in the diversity of retroelement sequences. Two PCR-based techniques, sequence-specific amplified polymorphism (SSAP) and retrotransposon microsatellite amplified polymorphism (REMAP) were utilized for the analyses.We show that a considerable degree of polymorphism could be detected using these techniques. Three primer combinations in SSAP generated 297 amplified products across 47 accessions with an average of 99 amplicons per assay. Degree of polymorphism varied from 84-95%. In the REMAP assays, the number of amplicons was much less but up to 73% polymorphism could be detected. On the basis of similarity coefficients, dendrograms were constructed. The results demonstrate that the retrotransposon-based markers could serve as a better alternative for the assessment of genetic diversity in crops with apparent low genetic base.

  20. Further identification of endogenous gibberellins in the shoots of pea, line G2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halinska, A.; Davies, P.J.; Lee, J.W.

    1989-12-01

    To interpret the metabolism of radiolabeled gibberellins A{sub 12}-aldehyde and A{sub 12} in shoots of pea (Pisum sativum L.), the identity of the radiolabeled peaks has to be determined and the endogenous presence of the gibberellins demonstrated. High specific activity ({sup 14}C)GA{sub 12} and ({sup 14}C)GA{sub 12}-aldehyde were synthesized using a pumpkin endosperm enzyme preparation, and purified by high performance liquid chromatography (HPLC). ({sup 14}C)GA{sub 12} was supplied to upper shoots of pea, line G2, to produce radiolabeled metabolites on the 13-OH pathway. Endogenous compounds copurifying with the ({sup 14}C)GAs on HPLC were analyzed by gas chromatography-mass spectrometry. The endogenousmore » presence of GA{sub 53}, GA{sub 44}, GA{sub 19} and GA{sub 20} was demonstrated and their HPLC peak identity ascertained. The {sup 14}C was progressively diluted in GAs further down the pathway, proportional to the levels found in the tissue and inversely proportional to the speed of metabolism, ranging from 63% in GA{sub 53} to 4% in GA{sub 20}. Calculated levels of GA{sub 20}, GA{sub 19}, GA{sub 44}, and GA{sub 53} were 42, 8, 10, and 0.5 nanograms/gram, respectively.« less

  1. Green Peas emit X-rays: Extreme Star Formation in Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip

    2017-01-01

    Luminous compact galaxies (LCGs), Lyman Alpha Emitters (LAEs), and Lyman Break Analog galaxies (LBAs) are all used as proxies for star-forming galaxies in the early Universe (z ≥ 6). The X-ray emission from such galaxies has been found to be elevated compared to other star-forming galaxies in our local Universe. It has been suggested that this may be due to the lower metallicity seen in these proxies to high-redshift galaxies and the elevated X-ray emission may affect the heating and Reionization evolution of the early Universe. Our previous studies have suggested the existence of an LX-SFR-metallicity plane for all star-forming galaxies. We present these results in the context of our newest Joint Chandra/HST study containing the first X-ray detection of the Green Pea galaxies, a population of compact starburst galaxies discovered by volunteers in the Galaxy Zoo Project (Cardamone+2009). The galaxies were given the name Green Peas due to their compact size and green appearance in the gri composite images from SDSS. The green color is caused by a strong [OIII]λ5007Å emission line, an indicator of recent star formation. We observed a few of the most promising candidates with joint Chandra/HST observation and discuss our findings here.

  2. Integrated effect of microbial antagonist, organic amendment and fungicide in controlling seedling mortality (Rhizoctonia solani) and improving yield in pea (Pisum sativum L.).

    PubMed

    Akhter, Wasira; Bhuiyan, Mohamed Khurshed Alam; Sultana, Farjana; Hossain, Mohamed Motaher

    2015-01-01

    The study evaluated the comparative performance of a few microbial antagonists, organic amendments and fungicides and their integration for the management of seedling mortality (Rhizoctonia solani Kühn) and yield improvement in pea (Pisum sativum L.). Before setting the experiment in field microplots, a series of in vitro and in vivo experiments were conducted to select a virulent isolate of R. solani, an effective antagonistic isolate of Trichoderma harzianum, a fungitoxic organic amendment and an appropriate fungicide. A greenhouse pathogenicity test compared differences in seedling mortality in pea inoculated by four isolates of R. solani and identified the isolate RS10 as the most virulent one. Among the 20 isolates screened in dual culture assay on PDA, T. harzianum isolate T-3 was found to show the highest (77.22%) inhibition of the radial growth of R. solani. A complete inhibition (100.00%) of colony growth of R. solani was observed when fungicide Bavistin 50 WP and Provax-200 at the rate of 100 and 250 ppm, respectively, were used, while Provax-200 was found to be highly compatible with T. harzianum. Mustard oilcake gave maximum inhibition (60.28%) of the radial growth of R. solani at all ratios, followed by sesame oilcake and tea waste. Integration of soil treatment with T. harzianum isolate T-3 and mustard oilcake and seed treatment with Provax-200 appeared to be significantly superior in reducing seedling mortality and improving seed yield in pea in comparison to any single or dual application of them in the experimental field. The research results will help growers develop integrated disease management strategies for the control of Rhizoctonia disease in pea. The research results show the need for an integrating selective microbial antagonist, organic amendment and fungicide to achieve appropriate management of seedling mortality (R. solani) and increase of seed yield in pea. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All

  3. Overview of regulation of dietary supplements in the USA and issues of adulteration with phenethylamines (PEAs).

    PubMed

    Pawar, Rahul S; Grundel, Erich

    2017-03-01

    The multi-billion dollar dietary supplement industry is global in reach. The industry has been criticized for problems related to poor quality control, safety, misbranding, and adulteration. In this review, we describe how the US Food and Drug Administration (FDA) regulates dietary supplements within the framework of the Federal Food, Drug, and Cosmetic Act (FD&C Act). The Dietary Supplement Health and Education Act of 1994 (DSHEA), which amended the FD&C Act, gave the FDA the authority to promulgate Good Manufacturing Practices for dietary supplements and required that manufacturers provide the FDA information supporting a conclusion that the ingredients are reasonably expected to be safe if the dietary ingredients were not marketed in the USA before 15 October 1994. Recent amendments to the FD&C Act require that serious dietary-supplement-related adverse events be reported to the FDA and provide the agency with mandatory recall authority. We discuss the presence of naturally occurring (e.g. Ephedra, Citrus aurantium, Acacia) and synthetic (e.g. β-methylphenethylamines, methylsynephrine, α-ethyl-phenethylamine) biologically active phenethylamines (PEAs) in dietary supplements and of PEA drugs (e.g. clenbuterol, fenfluramine, sibutramine, lorcaserin) in weight-loss products. Regulatory actions against manufacturers of products labelled as dietary supplements that contain the aliphatic amines 1,3-dimethylamine and 1,3-dimethylbutylamine, and PEAs such as β-methylphenethylamine, aegeline, and Dendrobium illustrate the FDA's use of its authority under the FD&C Act to promote dietary supplement safety. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  4. High-Temperature Tolerance of Photosynthesis Can Be Linked to Local Electrical Responses in Leaves of Pea

    PubMed Central

    Sukhov, Vladimir; Gaspirovich, Vladimir; Mysyagin, Sergey; Vodeneev, Vladimir

    2017-01-01

    It is known that numerous stimuli induce electrical signals which can increase a plant's tolerance to stressors, including high temperature. However, the physiological role of local electrical responses (LERs), i.e., responses in the zone of stimulus action, in the plant's tolerance has not been sufficiently investigated. The aim of a current work is to analyze the connection between parameters of LERs with the thermal tolerance of photosynthetic processes in pea. Electrical activity and photosynthetic parameters in pea leaves were registered during transitions of air temperature in a measurement head (from 23 to 30°C, from 30 to 40°C, from 40 to 45°C, and from 45 to 23°C). This stepped heating decreased a photosynthetic assimilation of CO2 and induced generation of LERs in the heated leaf. Amplitudes of LERs, quantity of responses during the heating and the number of temperature transition, which induced the first generation of LERs, varied among different pea plants. Parameters of LERs were weakly connected with the photosynthetic assimilation of CO2 during the heating; however, a residual photosynthetic activity after a treatment by high temperatures increased with the growth of amplitudes and quantity of LERs and with lowering of the number of the heating transition, inducing the first electrical response. The effect was not connected with a photosynthetic activity before heating; similar dependences were also observed for effective and maximal quantum yields of photosystem II after heating. We believe that the observed effect can reflect a positive influence of LERs on the thermal tolerance of photosynthesis. It is possible that the process can participate in a plant's adaptation to stressors. PMID:29033854

  5. Genetic diversity of pigeon pea (Cajanus cajan (l.) Millsp.) based on molecular characterization using randomly amplified polymorphic DNA (RAPD) markers

    NASA Astrophysics Data System (ADS)

    Khoiriyah, N.; Yuniastuti, E.; Purnomo, D.

    2018-03-01

    Pigeon pea (Cajanus cajan (L.) Millsp.) is an annual leguminous crop (perennial) which has advantages over other local leguminous crops as drought resistant, hold collapsed and strong pods. The research on drought resistance plant is very important to adapt to climate change adverse impact to support food security. The potential of pigeon pie has not been supported by accurate data. To explore the potential of pigeon pea, it is necessary to record the important properties by characterization, one of which is molecular. Increasing genetic diversity can be done through mutation which widely used gamma ray for the induction. The purpose of this study was to identify the genetic diversity of pigeon pea of black, white and brown seeds type resulted by gamma-ray irradiation with a wavelength of 100, 200 and 300 grays by using RAPD method. The experiment resulted 14 bands, 12 of them are polymorphic bands and 2 of them are monomorphic with size varied from 300 bp to 1.3 kbp. The dendrogram showed from 30 accessions are divided into two main clusters, B shows clear genetical divergence from other clusters and some others split randomly. The range of similarity coefficient is from 0.43 to 1.00

  6. Efficient production of human acidic fibroblast growth factor in pea (Pisum sativum L.) plants by agroinfection of germinated seeds

    PubMed Central

    2011-01-01

    Background For efficient and large scale production of recombinant proteins in plants transient expression by agroinfection has a number of advantages over stable transformation. Simple manipulation, rapid analysis and high expression efficiency are possible. In pea, Pisum sativum, a Virus Induced Gene Silencing System using the pea early browning virus has been converted into an efficient agroinfection system by converting the two RNA genomes of the virus into binary expression vectors for Agrobacterium transformation. Results By vacuum infiltration (0.08 Mpa, 1 min) of germinating pea seeds with 2-3 cm roots with Agrobacteria carrying the binary vectors, expression of the gene for Green Fluorescent Protein as marker and the gene for the human acidic fibroblast growth factor (aFGF) was obtained in 80% of the infiltrated developing seedlings. Maximal production of the recombinant proteins was achieved 12-15 days after infiltration. Conclusions Compared to the leaf injection method vacuum infiltration of germinated seeds is highly efficient allowing large scale production of plants transiently expressing recombinant proteins. The production cycle of plants for harvesting the recombinant protein was shortened from 30 days for leaf injection to 15 days by applying vacuum infiltration. The synthesized aFGF was purified by heparin-affinity chromatography and its mitogenic activity on NIH 3T3 cells confirmed to be similar to a commercial product. PMID:21548923

  7. Interactive Effects of CO2 and O2 in Soil on Root and Top Growth of Barley and Peas

    PubMed Central

    Geisler, G.

    1967-01-01

    Barley and pea plants were grown under several regimens of different compositions of soil atmosphere, the O2 concentration varying from 0 to 21% and the CO2 concentration from 0 to 8%. In absence of CO2, the effect of O2 on root length in barley was characterized by equal root lengths within the range of 21 to 7% O2 and a steep decline between 7 and 0%. In peas, while showing the same general response, the decline occurred between 14 and 7% O2. Root numbers of the seminal roots of barley decreased already with reduction in O2 concentration from 21 to 14%. Dry matter production was affected somewhat differently by O2 and CO2 concentration. Dry matter production in barley was reduced at 14% O2 while root length decreased between 7 and 0%. In peas, dry matter production was favored by low CO2 concentrations except where there was no oxygen. At 21% O2, increasing CO2 concentrations did not seem to affect root length up to concentrations of 2% CO2. At 8% CO2, root length was decreased. The inter-active effects of CO2 and O2 are characterized by a reduced susceptibility to CO2 at O2 values below 7%, and a very deleterious effect of 8% CO2 at 7% O2. PMID:16656508

  8. Protein import into isolated pea root leucoplasts.

    PubMed

    Chu, Chiung-Chih; Li, Hsou-Min

    2015-01-01

    Leucoplasts are important organelles for the synthesis and storage of starch, lipids and proteins. However, molecular mechanism of protein import into leucoplasts and how it differs from that of import into chloroplasts remain unknown. We used pea seedlings for both chloroplast and leucoplast isolations to compare within the same species. We further optimized the isolation and import conditions to improve import efficiency and to permit a quantitative comparison between the two plastid types. The authenticity of the import was verified using a mitochondrial precursor protein. Our results show that, when normalized to Toc75, most translocon proteins are less abundant in leucoplasts than in chloroplasts. A precursor shown to prefer the receptor Toc132 indeed had relatively more similar import efficiencies between chloroplasts and leucoplasts compared to precursors that prefer Toc159. Furthermore we found two precursors that exhibited very high import efficiency into leucoplasts. Their transit peptides may be candidates for delivering transgenic proteins into leucoplasts and for analyzing motifs important for leucoplast import.

  9. Spiroplasma Symbiont of the Pea Aphid, Acyrthosiphon pisum (Insecta: Homoptera)

    PubMed Central

    Fukatsu, Takema; Tsuchida, Tsutomu; Nikoh, Naruo; Koga, Ryuichi

    2001-01-01

    From a laboratory strain of the pea aphid, Acyrthosiphon pisum, we discovered a previously unknown facultative endosymbiotic bacterium. Molecular phylogenetic analysis based on 16S ribosomal DNA revealed that the bacterium is a member of the genus Spiroplasma. The Spiroplasma organism showed stable vertical transmission through successive generations of the host. Injection of hemolymph from infected insects into uninfected insects established a stable infection in the recipients. The Spiroplasma symbiont exhibited negative effects on growth, reproduction, and longevity of the host, particularly in older adults. Of 58 clonal strains of A. pisum established from natural populations in central Japan, 4 strains possessed the Spiroplasma organism. PMID:11229923

  10. Environments of z~0.2 Star Forming Galaxies: Building on the Citizen Science Discovery of the Green Peas

    NASA Astrophysics Data System (ADS)

    Cardamone, Carolin; Cappelluti, Nico; Powell, Meredith; Urry, Meg; Galaxy Zoo Science Team

    2018-01-01

    ‘Green Pea’ galaxies, discovered in the Galaxy Zoo citizen science project, are rare low-mass (M < 1 x 1010 M⊙) galaxies, experiencing an episode of compact, relatively low-metalicity (z ≈ 1/5 z⊙), intense starformation (3-60 M⊙/yr). While their spectra have been investigated in a wide-array of follow-up studies, a detailed study of their environments is missing. Two-point correlation functions have been used to show the environmental dependence of an array of galaxy properties (eg., mass, luminosity, color, star formation, and morphology). In this study, we present a cross-correlation analysis between the Green Peas and the Luminous Red Galaxies throughout the SDSS footprint, and we find that the population of Green Peas at 0.11

  11. Development of pea protein-based bioplastics with antimicrobial properties.

    PubMed

    Perez-Puyana, Víctor; Felix, Manuel; Romero, Alberto; Guerrero, Antonio

    2017-06-01

    In the present work, bioplastics from renewable polymers were studied in order to reduce the huge generation of plastic wastes, causing an environmental problem that continues owing to the increasing demand for plastic products. Bioplastics with much better antimicrobial properties, in particular against Gram-positive bacteria, were obtained with the addition of nisin to the initial protein/plasticizer mixture. However, the addition of nisin produces more rigid but less deformable bioplastics (higher Young's modulus but lower strain at break). The results obtained are useful to demonstrate the antimicrobial properties of pea protein-based bioplastics by adding nisin and make them suitable as potential candidates to replace conventional plastics in food packaging. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Effects of Simulated Microgravity on Thermotolerance of Pea Seedlings

    NASA Astrophysics Data System (ADS)

    Kozeko, L.

    2008-06-01

    A coordinated plant response to simulated microgravity (clinorotation) and heat stress was analyzed. 5-d pea seedlings grown on a horizontal clinostat or in the stationary conditions were exposed to different heat treatments (mild, severe and severe after pretreatment). Temperature-dependent quantitative changes in the heat stress response were revealed in the clinorotated seedlings comparatively to the stationary grown ones: less growth activity, an increase in the production of high levels of heat shock proteins Hsp70 and Hsp90, a higher extent of the membrane damage. Thus, clinorotated seedlings were more sensitive to heat stress. The data suggest that clinorotation may influence distinct functions, including Hsps synthesis and protection of membrane integrity, that affect plant growth activity and thermotolerance as a result.

  13. Effect of Arabinogalactan Proteins from the Root Caps of Pea and Brassica napus on Aphanomyces euteiches Zoospore Chemotaxis and Germination12[C][W

    PubMed Central

    Cannesan, Marc Antoine; Durand, Caroline; Burel, Carole; Gangneux, Christophe; Lerouge, Patrice; Ishii, Tadashi; Laval, Karine; Follet-Gueye, Marie-Laure; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2012-01-01

    Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions. PMID:22645070

  14. Graviresponse and its regulation from the aspect of molecular levels in higher plants: growth and development, and auxin polar transport in etiolated pea seedlings under microgravity.

    PubMed

    Miyamoto, Kensuke; Hoshino, Tomoki; Hitotsubashi, Reiko; Tanimoto, Eiichi; Ueda, Junichi

    2003-10-01

    In STS-95 space experiments we have demonstrated that microgravity conditions resulted in automorphosis in etiolated pea (Pisum sativum L. cv. Alaska) seedlings (Ueda et al. 1999). Automorphosis-like growth and development in etiolated pea seedlings were also induced under simulated microgravity conditions on a 3-dimensional (3-D) clinostat, epicotyls being the most oriented toward the direction far from the cotyledons. Detail analysis of epicotyl bending revealed that within 36 h after watering, no significant difference in growth direction of epicotyls was observed in between seedlings grown on the 3-D clinostat and under 1 g conditions, differential growth near the cotyledonary node resulting in epicotyl bending of ca. 45 degrees toward the direction far from the cotyledons. Thereafter epicotyls continued to grow almost straightly keeping this orientation on the 3-D clinostat. On the other hand, the growth direction in etiolated seedlings changed to antigravity direction by negative gravitropic response under 1 g conditions. Automorphological epicotyl bending was also phenocopied by the application of auxin polar transport inhibitors such as 9-hydroxyfluorene-9-carboxylic acid, N-(1-naphtyl)phthalamic acid and 2,3,5-triiodobenzoic acid. These results together with the fact that auxin polar transport activity in etiolated pea epicotyls was substantially reduced in space suggested that reduced auxin polar transport is closely related to automorphosis. Strenuous efforts to learn how gravity contributes to the auxin polar transport in etiolated pea epicotyls in molecular bases resulted in successful identification of PsPIN2 and PsAUX1 encoding putative auxin-efflux and influx carrier proteins, respectively. Based on the results of these gene expression under simulated microgravity conditions, a possible role of PsPIN2 and PsAUX1 genes for auxin polar transport in etiolated pea seedlings will be discussed.

  15. Effects of dietary inclusion of pea and faba bean as a replacement for soybean meal on grower and finisher pig performance and carcass quality.

    PubMed

    Smith, L A; Houdijk, J G M; Homer, D; Kyriazakis, I

    2013-08-01

    To reduce reliance on imported soybean meal (SBM) in temperate environments, pea and faba bean may be alternative protein sources for pig diets. We assessed the effects of dietary pea and faba bean inclusion on grower and finisher pig performance and carcass quality. There were 9 dietary treatments tested on both grower (30 to 60 kg) and finisher (60 to 100 kg) pigs in a dose response feeding trial. The control diet included SBM at 14 and 12% for grower and finisher pigs, respectively, whereas in the test diets, pea or faba bean were included at 7.5, 15, 22.5, and 30%, gradually and completely replacing SBM. Diets were formulated to be isoenergetic for NE and with the same standard ileal digestible Lys content. After a 1-wk adaptation period, each diet was available on an ad libitum basis to 4 pens of pigs with 4 pigs per pen (2 entire males and 2 females) for 4 wk. Weekly BW for individual pigs, and pen intakes were recorded to assess ADG, ADFI, and G:F. Finisher pigs were then slaughtered at a commercial slaughter house to record carcass quality and assess skatole and indole concentration in the backfat. There were no effects (P > 0.10) on grower ADG, ADFI, and G:F, but pulse inclusion reduced finisher ADG (P = 0.04), with a quadratic effect of pulse inclusion (P = 0.03), as ADG tended to be reduced over initial inclusion levels only. There were no associated effects (P > 0.10) on ADFI or G:F, and pea and faba bean diets resulted in similar finisher performance. Increasing pulse inclusion linearly increased fecal DM content both in grower pigs (P = 0.02) and finisher pigs (P < 0.01). There were no effects on carcass quality or backfat skatole concentrations, but indole concentration was linearly reduced with increasing pulse inclusion (P = 0.05). It is concluded that pea and faba bean may be a viable alternative to SBM in grower and finisher pig diets.

  16. In planta transformation of pigeon pea: a method to overcome recalcitrancy of the crop to regeneration in vitro.

    PubMed

    Sankara Rao, K; Sreevathsa, Rohini; Sharma, Pinakee D; Keshamma, E; Udaya Kumar, M

    2008-10-01

    Development of transgenics in pigeon pea remains dogged by poor plant regeneration in vitro from transformed tissues and low frequency transformation protocols. This article presents a non-tissue culture-based method of generating transgenic pigeon pea (Cajanus cajan (L.) Millisp.) plants using Agrobacterium-Ti plasmid-mediated transformation system. The protocol involves raising of whole plant transformants (T0 plants) directly from Agrobacterium-infected young seedlings. The plumular and intercotyledonary meristems of the seedling axes are targeted for transformation. The transformation conditions optimized were, pricking of the apical and intercotyledonary region of the seedling axes of two-day old germinating seedlings with a sewing needle, infection with Agrobacterium (LBA4404/pKIWI105 carrying uid A and npt II genes) in Winans' AB medium that was added with wounded tobacco leaf extract, co-cultivation in the same medium for 1h and transfer of seedlings to soilrite for further growth and hardening and subsequent transfer of seedlings to soil in pots in the greenhouse. Out of the 22-25 primary transformants that survived infection-hardening treatments from each of the three experiments, 15 plants on the average established on the soil under greenhouse conditions, showed slow growth initially, nevertheless grew as normal plants, and flowered and set seed eventually. Of the several seeds harvested from all the T0 plants, six hundred were sown to obtain progeny (T1) plants and 350 of these were randomly analysed to determine their transgenic nature. PCR was performed for both gus (uid A) and npt II genes. Forty eight of the 350 T1 plants amplified both transgenes. Southern blot analysis substantiated the integration and transmission of these genes. The protocol ensured generation of pigeon pea transgenic plants with considerable ease in a short time and is applicable across different genotypes/cultivars of the crop and offers immense potential as a supplemental or

  17. Determination and quantification of active phenolic compounds in pigeon pea leaves and its medicinal product using liquid chromatography–tandem mass spectrometry.

    PubMed

    Liu, Wei; Kong, Yu; Zu, Yuangang; Fu, Yujie; Luo, Meng; Zhang, Lin; Li, Ji

    2010-07-09

    A novel method using liquid chromatography coupled to electrospray ionization mass spectrometry (LC-ESI-MS) has been optimized and established for the qualitative and quantitative analysis of ten active phenolic compounds originating from the pigeon pea leaves and a medicinal product thereof (Tongluo Shenggu capsules). In the present study, the chromatographic separation was achieved by means of a HiQ Sil C18V reversed-phase column with a mobile phase consisting of methanol and 0.1% formic acid aqueous solution. Low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) using the selected reaction monitoring (SRM) analysis was employed for the detection of ten analytes which included six flavonoids, two isoflavonoids and two stilbenes. All calibration curves showed excellent coefficients of determination (r(2) ≥ 0.9937) within the range of tested concentrations. The intra- and inter-day variations were below 5.36% in terms of relative standard deviation (RSD). The recoveries were 95.08-104.98% with RSDs of 2.06-4.26% for spiked samples of pigeon pea leaves. The method developed was a rapid, efficient and accurate LC-MS/MS method for the detection of phenolic compounds, which can be applied for quality control of pigeon pea leaves and related medicinal products.

  18. Comparative study of the functional properties of lupin, green pea, fava bean, hemp, and buckwheat flours as affected by pH

    PubMed Central

    Raikos, Vassilios; Neacsu, Madalina; Russell, Wendy; Duthie, Garry

    2014-01-01

    The demand for products of high nutritional value from sustainable sources is growing rapidly in the global food market. In this study, the effect of pH on the functional properties of lupin, green pea, fava bean, hemp, and buckwheat flours was investigated and compared with wheat flour. Functional properties included solubility, emulsifying and foaming properties, gelling ability, and water holding capacity (WHC). All flours had minimal solubility at pH 4 and their corresponding values increased with increasing pH. Emulsifying properties were improved at pH 10 for all samples and emulsion stability showed a similar trend. Increasing pH in the range 4–10 enhanced the foaming properties of the flours, particularly buckwheat and hemp. Wheat, green pea, buckwheat, and fava bean were more capable of forming firm gels compared with lupin and hemp, as indicated by least gelling concentrations (LGCs). The ranking of the water binding properties of the different types of flours were lupin>hemp>fava bean>buckwheat>green pea>wheat. Results indicate that underutilized flours from sustainable plant sources could be exploited by the food industry as functional food ingredients or as replacements of wheat flour for various food applications. Depending on the application, flour functionality may be effectively tailored by pH adjustment. PMID:25493199

  19. The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching.

    PubMed

    Braun, Nils; de Saint Germain, Alexandre; Pillot, Jean-Paul; Boutet-Mercey, Stéphanie; Dalmais, Marion; Antoniadi, Ioanna; Li, Xin; Maia-Grondard, Alessandra; Le Signor, Christine; Bouteiller, Nathalie; Luo, Da; Bendahmane, Abdelhafid; Turnbull, Colin; Rameau, Catherine

    2012-01-01

    The function of PsBRC1, the pea (Pisum sativum) homolog of the maize (Zea mays) TEOSINTE BRANCHED1 and the Arabidopsis (Arabidopsis thaliana) BRANCHED1 (AtBRC1) genes, was investigated. The pea Psbrc1 mutant displays an increased shoot-branching phenotype, is able to synthesize strigolactone (SL), and does not respond to SL application. The level of pleiotropy of the SL-deficient ramosus1 (rms1) mutant is higher than in the Psbrc1 mutant, rms1 exhibiting a relatively dwarf phenotype and more extensive branching at upper nodes. The PsBRC1 gene is mostly expressed in the axillary bud and is transcriptionally up-regulated by direct application of the synthetic SL GR24 and down-regulated by the cytokinin (CK) 6-benzylaminopurine. The results suggest that PsBRC1 may have a role in integrating SL and CK signals and that SLs act directly within the bud to regulate its outgrowth. However, the Psbrc1 mutant responds to 6-benzylaminopurine application and decapitation by increasing axillary bud length, implicating a PsBRC1-independent component of the CK response in sustained bud growth. In contrast to other SL-related mutants, the Psbrc1 mutation does not cause a decrease in the CK zeatin riboside in the xylem sap or a strong increase in RMS1 transcript levels, suggesting that the RMS2-dependent feedback is not activated in this mutant. Surprisingly, the double rms1 Psbrc1 mutant displays a strong increase in numbers of branches at cotyledonary nodes, whereas branching at upper nodes is not significantly higher than the branching in rms1. This phenotype indicates a localized regulation of branching at these nodes specific to pea.

  20. Stimulation of nodulation in field peas (Pisum sativum) by low concentrations of ammonium in hydroponic culture

    NASA Technical Reports Server (NTRS)

    Waterer, J. G.; Vessey, J. K.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1992-01-01

    Although the inhibitory effects of high concentrations of mineral N (> 1.0 mM) on nodule development and function have often been studied, the effects of low, static concentrations of NH4+ (< 1.0 mM) on nodulation are unknown. In the present experiments we examine the effects of static concentrations of NH4+ at 0, 0.1 and 0.5 mM in flowing, hydroponic culture on nodule establishment and nitrogenase activity in field peas [Pisum sativum L. cv. Express (Svalof AB)] for the initial 28 days after planting (DAP). Peas grown in the presence of low concentrations of NH4+ had significantly greater nodule numbers (up to 4-fold) than plants grown without NH4+. Nodule dry weight per plant was significantly higher at 14, 21 and 28 DAP in plants grown in the presence of NH4+, but individual nodule mass was lower than in plants grown without NH4+. The nodulation pattern of the plants supplied with NH4+ was similar to that often reported for supernodulating mutants, however the plants did not express other growth habits associated with supernodulation. Estimates of N2 fixation indicate that the plus-NH4+ peas fixed as much or more N2 than the plants supplied with minus-NH4+ nutrient solution. There were no significant differences in nodule numbers, nodule mass or NH4+ uptake between the plants grown at the two concentrations of NH4+. Nodulation appeared to autoregulate by 14 DAP in the minus-NH4+ treatment. Plant growth and N accumulation in the minus-NH4+ plants lagged behind those of the plus-NH4+ treatments prior to N2 fixation becoming well established in the final week of the experiment. The plus-NH4+ treatments appeared not to elicit autoregulation and plants continued to initiate nodules throughout the experiment.

  1. A rapid method to increase the number of F₁ plants in pea (Pisum sativum) breeding programs.

    PubMed

    Espósito, M A; Almirón, P; Gatti, I; Cravero, V P; Anido, F S L; Cointry, E L

    2012-08-16

    In breeding programs, a large number of F₂ individuals are required to perform the selection process properly, but often few such plants are available. In order to obtain more F₂ seeds, it is necessary to multiply the F₁ plants. We developed a rapid, efficient and reproducible protocol for in vitro shoot regeneration and rooting of seeds using 6-benzylaminopurine. To optimize shoot regeneration, basic medium contained Murashige and Skoog (MS) salts with or without B5 Gamborg vitamins and different concentrations of 6-benzylaminopurine (25, 50 and 75 μM) using five genotypes. We found that modified MS (B5 vitamins + 25 μM 6-benzylaminopurine) is suitable for in vitro shoot regeneration of pea. Thirty-eight hybrid combinations were transferred onto selected medium to produce shoots that were used for root induction on MS medium supplemented with α-naphthalene-acetic acid. Elongated shoots were developed from all hybrid genotypes. This procedure can be used in pea breeding programs and will allow working with a large number of plants even when the F₁ plants produce few seeds.

  2. Data fusion for food authentication. Combining rare earth elements and trace metals to discriminate "Fava Santorinis" from other yellow split peas using chemometric tools.

    PubMed

    Drivelos, Spiros A; Higgins, Kevin; Kalivas, John H; Haroutounian, Serkos A; Georgiou, Constantinos A

    2014-12-15

    "Fava Santorinis", is a protected designation of origin (PDO) yellow split pea species growing only in the island of Santorini in Greece. Due to its nutritional quality and taste, it has gained a high monetary value. Thus, it is prone to adulteration with other yellow split peas. In order to discriminate "Fava Santorinis" from other yellow split peas, four classification methods utilising rare earth elements (REEs) measured through inductively coupled plasma-mass spectrometry (ICP-MS) are studied. The four classification processes are orthogonal projection analysis (OPA), Mahalanobis distance (MD), partial least squares discriminant analysis (PLS-DA) and k nearest neighbours (KNN). Since it is known that trace elements are often useful to determine geographical origin of food products, we further quantitated for trace elements using ICP-MS. Presented in this paper are results using the four classification processes based on the fusion of the REEs data with the trace element data. Overall, the OPA method was found to perform best with up to 100% accuracy using the fused data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Variation in contents of main active components and antioxidant activity in leaves of different pigeon pea cultivars during growth.

    PubMed

    Wei, Zuo-Fu; Jin, Shuang; Luo, Meng; Pan, You-Zhi; Li, Ting-Ting; Qi, Xiao-Lin; Efferth, Thomas; Fu, Yu-Jie; Zu, Yuan-Gang

    2013-10-23

    Pigeon pea is an important and multiuse grain legume crop, and its leaves are a very valuable natural resource. To obtain a high-quality biological resource, it is necessary to choose the excellent cultivar and determine the appropriate harvest time. In this study, the variation in contents of main active components and antioxidant activity in leaves of six pigeon pea cultivars during growth were investigated. The level of each individual active component significantly varied during growth, but with a different pattern, and this variation was different among cultivars. Flavonoid glycosides orientin, vitexin, and apigenin-6,8-di-C-α-L-arabinopyranoside showed two peak values at mid-late and final stages of growth in most cases. Pinostrobin chalcone, longistyline C, and cajaninstilbene acid showed remarkablely higher values at the mid-late stage of growth than at other stages. Pinostrobin had an extremely different variation pattern compared to other active components. Its content was the highest at the earlier stage of growth. Principal component analysis (PCA) revealed that vitexin and apigenin-6,8-di-C-α-L-arabinopyranoside were mainly responsible for distinguishing cultivars analyzed. In a comprehensive consideration, the leaves should preferentially be harvested at the 135th day after sowing when the level of active components and antioxidant activity reached higher values. Cultivars ICP 13092, ICPL 87091, and ICPL 96053 were considered to be excellent cultivars with high antioxidant activity. Our findings can provide valuable information for producing a high-quality pigeon pea resource.

  4. Negative-pressure cavitation extraction for the determination of flavonoids in pigeon pea leaves by liquid chromatography-tandem mass spectrometry.

    PubMed

    Liu, Wei; Fu, Yujie; Zu, Yuangang; Kong, Yu; Zhang, Lin; Zu, Baishi; Efferth, Thomas

    2009-05-01

    A new method, namely negative-pressure cavitation extraction (NPCE), followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) is presented for the extraction and quantification of flavonoids in pigeon pea leaves. This method combines the high efficiency of NPCE and the sensitivity and accuracy of MS/MS. The influential parameters of the NPCE procedure including liquid/solid ratio, extraction time, nitrogen flow and number of extraction cycles were optimized. Under optimized conditions, the efficiency of NPCE for extracting five flavonoids was compared to microwave-assisted extraction (MAE), ultrasonic extraction (USE) and heating reflux extraction (HRE). Additionally, structural disruption to pigeon pea leaves samples with different extraction methods was investigated by scanning electron microscopy. The relative recovery with NPCE was equivalent to or higher than that with USE and obviously higher than those with MAE and HRE which are usually conducted in higher temperatures. Furthermore, because NPCE was performed with nitrogen at room temperature, the degradation and oxidation of analytes were avoided. In addition, the NPCE method was validated in terms of repeatability and reproducibility, relative standard deviation for relative recovery was lower than 5.84 and 8.83%, respectively. The method was also successfully applied for the quantification of five flavonoids in pigeon pea leaves. All these results suggest that the developed NPCE-LC-MS/MS method represents an excellent alternative for the extraction and quantification of flavonoids in other plant materials.

  5. Molecular dynamics simulations of pea (Pisum sativum) lectin structure with octyl glucoside detergents: the ligand interactions and dynamics.

    PubMed

    Konidala, Praveen; Niemeyer, Bernd

    2007-07-01

    The mitogenic pea (Pisum sativum) lectin is a legume protein of non-immunoglobulin nature capable of specific recognition of glucose derivatives without altering its structure. Molecular dynamics simulations were performed in a realistic environment to investigate the structure and interaction properties of pea lectin with various concentrations of n-octyl-beta-d-glucopyranoside (OG) detergent monomers distributed inside explicit solvent cell. In addition, the diffusion coefficients of the ligands (OG, Ca2+, Mn2+, and Cl-) and the water molecules were also reported. The structural flexibility of the lectin was conserved in all simulations. The self-assembly of OG monomers into a small micelle at the hydrophobic site of the lectin was noticed in the simulation with 20 OG monomers. The interaction energy analysis concludes that the lectin was appropriately termed an adaptive structure. One or rarely two binding sites were observed at an instant in each simulation that were electrostatically favoured for the OG to interact with the surface amino acid residues. Enhanced binding of OG to the pea lectin was quantified in the system containing only Ca2+ divalent ions. Interestingly, no binding was observed in the simulation without divalent ions. Furthermore, the lectin-ligand complex was stabilized by multiple hydrogen bonds and at least one water bridge. Finally, the work was also in accordance with the published work elsewhere that the simulations performed with different initial conditions and using higher nonbonded cutoffs for the van der Waals and electrostatic interactions provide more accurate information and clues than the single large simulation of the biomolecular system of interest.

  6. Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil.

    PubMed

    Wani, Parvaze Ahmad; Khan, Md Saghir; Zaidi, Almas

    2008-07-01

    The nickel- and zinc-tolerant plant growth-promoting (PGP) Rhizobium sp. RP5 was isolated from nodules of pea, grown in metal-contaminated Indian soils. The PGP potentials of strain RP5 was assessed under in vitro conditions. Strain RP5 displayed a high level of tolerance to nickel (350 microg ml(-1)) and zinc (1500 microg ml(-1)) and showed PGP activity under in vitro conditions. The PGP activity of this strain was further assessed with increasing concentrations of nickel and zinc, using pea as a test crop. The bio-inoculant enhanced the dry matter, nodule numbers, root N, shoot N, leghemoglobin, seed yield, and grain protein (GP) by 19%, 23%, 26%, 47%, 112%, 26%, and 8%, respectively, at 290 mg Ni kg(-1) while at 4890 mg Zn kg(-1) soil, it increased the dry matter, nodule numbers, leghemoglobin, seed yield, GP, and root and shoot N by 18%, 23%, 78%, 26%, 7%, 25%, and 42%, respectively, compared to plants grown in soil amended with metal only. The bio-inoculant increased the glutathione reductase activity of roots and nodules by 46% and 65% at 580 mg Ni kg(-1) and 47% and 54% at 9780 mg Zn kg(-1) soil, respectively, compared to uninoculated plants. The inoculated strain decreased the concentration of nickel and zinc in plant organs. The intrinsic abilities of nitrogen fixation, growth promotion, and the ability to reduce the toxicity of nickel and zinc of the tested strain could be of practical importance in augmenting the growth and yield of pea, in nickel- and zinc-polluted soils.

  7. Beta-ketoacyl-acyl carrier protein synthase III from pea (Pisum sativum L.): properties, inhibition by a novel thiolactomycin analogue and isolation of a cDNA clone encoding the enzyme.

    PubMed

    Jones, A Lesley; Gane, Andy M; Herbert, Derek; Willey, David L; Rutter, Andrew J; Kille, Peter; Dancer, Jane E; Harwood, John L

    2003-03-01

    A beta-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III; short-chain condensing enzyme) has been partly purified from pea leaves. The enzyme, which had acetyl-CoA:ACP acyltransferase (ACAT) activity, was resolved from a second, specific, ACAT protein. The KAS III enzyme had a derived molecular mass of 42 kDa (from its cDNA sequence) and operated as a dimer. Its enzymological characteristics were similar to those of two other plant KAS III enzymes except for its inhibition by thiolactomycin. A derivative of thiolactomycin containing a longer (C8 saturated) hydrophobic side-chain (compound 332) was a more effective inhibitor of pea KAS III and showed competitive inhibition towards malonyl-ACP whereas thiolactomycin showed uncompetitive characteristics at high concentrations. This difference may be due to the better fit of compound 332 into a hydrophobic pocket at the active site. A full-length cDNA for the pea KAS III was isolated. This was expressed in Escherichia coli as a fusion protein with glutathione S-transferase in order to facilitate subsequent purification. Demonstrated activity in preparations from E. coli confirmed that the cDNA encoded a KAS III enzyme. Furthermore, the expressed KAS III had ACAT activity, showing that the latter was inherent. The derived amino acid sequence of the pea cDNA showed 81-87% similarity to that for other plant dicotyledon KAS IIIs, somewhat less for Allium porrum (leek, 71%) and for Porphyra spp. (62%), Synechocystis spp. (65%) and various bacteria (42-65%). The pea KAS III exhibited four areas of homology, three of which were around the active-site Cys(123), His(323) and Asn(353). In addition, a stretch of 23 amino acids (residues 207-229 in the pea KAS III) was almost completely conserved in the plant KAS IIIs. Modelling this stretch showed they belonged to a peptide fragment that fitted over the active site and contained segments suggested to be involved in substrate binding and in conformational changes during

  8. Molecular characterization of pea enation mosaic virus and bean leafroll virus from the Pacific Northwest, USA.

    PubMed

    Vemulapati, B; Druffel, K L; Eigenbrode, S D; Karasev, A; Pappu, H R

    2010-10-01

    The family Luteoviridae consists of eight viruses assigned to three different genera, Luteovirus, Polerovirus and Enamovirus. The complete genomic sequences of pea enation mosaic virus (genus Enamovirus) and bean leafroll virus (genus Luteovirus) from the Pacific Northwest, USA, were determined. Annotation, sequence comparisons, and phylogenetic analysis of selected genes together with those of known polero- and enamoviruses were conducted.

  9. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions.

    PubMed

    Yin, Baoru; Zhang, Rujing; Yao, Ping

    2015-03-20

    The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI) with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS), and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  10. Effect of pig bodyweight on ileal amino acid endogenous losses after ingestion of a protein-free diet enriched in pea inner fibre isolates.

    PubMed

    Leterme, Pascal; Théwis, André

    2004-01-01

    The present study was conducted to evaluate whether bodyweight and the micronisation of dietary fibre affect the endogenous nitrogen and amino acid losses (ENL and EAAL) in pigs. The effect of the micronising process was tested by providing pigs with 90 g DM x kg(-1) BW0.75 of a N-free diet supplemented with isolated pea inner fibres, presented in native or micronised form and with a water-holding capacity of 12 and 4 g water g(-1) DM, respectively. ENL and EAAL were measured on pigs weighing 24, 62 and 105 kg. In all cases, daily ENL increased linearly (P < 0.05) with BW, for the majority of the AA and total N. As BW increased, daily ENL, total EAAL and the majority of EAAL increased linearly independently of micronisation (P < 0.05). When expressed per kg DMI, total EAAL and the majority of each EAA decreased curvilinearly and reached nadir at around 100 kg BW. For ENL expressed per kg DMI, micronisation resulted in a curvilinear decrease with increasing BW, as compared to a linear decrease for pigs fed the native pea fibre diet (non-micronised). Micronisation of pea inner fibres did not decrease ENL or EAAL daily, except for proline. When the losses were expressed as g x k(-1)g DMI, micronisation did not decrease ENL but decreased (P < 0.05) endogenous losses for a majority of AA as well as for total AA. The results suggest that small pigs excrete more endogenous N per kg DMI than large pigs and that pea fibre micronisation reduces EAAL but not ENL when expressed per kg DMI.

  11. Effect of field pea-based creep feed on intake, digestibility, ruminal fermentation, and performance by nursing calves grazing native range in western North Dakota.

    PubMed

    Gelvin, A A; Lardy, G P; Soto-Navarro, S A; Landblom, D G; Caton, J S

    2004-12-01

    Two experiments evaluated digestive and performance effects of field pea-based creep feed in nursing calf diets. In Exp.1, eight nursing steer calves (145 +/- 27 kg initial BW) with ruminal cannulas were used to evaluate effects of supplementation and advancing season on dietary composition, intake, digestion, and ruminal fermentation characteristics. Treatments were unsupplemented control (CON) and field pea-based creep (SUP; 19.1% CP, DM basis) fed at 0.45% BW (DM basis) daily. Calves grazed native range with their dams from early July through early November. Periods were 24 d long and occurred in July (JUL), August (AUG), September (SEP), and October (OCT). Experiment 2 used 80 crossbred nursing calves, 48 calves in yr 1 and 32 calves in yr 2 (yr 1 = 144 +/- 24 kg; yr 2 = 121 +/- 20 kg initial BW), to evaluate effects of field pea-based creep on calf performance. Treatments included unsupplemented control (CON); field pea-based creep feeds containing either 8% (LS); or 16% (HS) salt; and soybean meal/field pea-based creep containing (as-fed basis) 16% salt (HIPRO). Masticate samples from SUP calves in Exp.1 had greater CP (P = 0.05) than those from CON calves. Forage CP and ADIN decreased linearly with advancing season (P = 0.01 and 0.03, respectively). In vitro OM digestibility of diet masticate decreased from JUL to OCT (P < 0.01; 58.5 to 41.3%). Forage intake did not differ (P = 0.33) between treatments but increased linearly with advancing season (1.67, 1.90, 3.12, 3.38 kg/d for JUL, AUG, SEP, and OCT, respectively; P < 0.01). Milk intake (percentage of BW) did not differ (P = 0.56) between CON and SUP calves but decreased linearly (P < 0.01) with advancing season. Supplemented calves had greater (P = 0.03) total intake (g/kg of BW; forage + milk + creep) compared with CON calves. Treatment did not affect (P < 0.30) rate of in situ disappearance of forage or creep. Forage DM, CP, and creep DM disappearance rate decreased linearly (P < or = 0.02) with

  12. Expression of Cry2Aa, a Bacillus thuringiensis insecticidal protein in transgenic pigeon pea confers resistance to gram pod borer, Helicoverpa armigera.

    PubMed

    Singh, Shweta; Kumar, Nikhil Ram; Maniraj, R; Lakshmikanth, R; Rao, K Y S; Muralimohan, N; Arulprakash, T; Karthik, K; Shashibhushan, N B; Vinutha, T; Pattanayak, Debasis; Dash, Prasanta K; Kumar, P Ananda; Sreevathsa, Rohini

    2018-06-11

    Pigeon pea is an important legume infested by a plethora of insect pests amongst which gram pod borer Helicoverpa armigera is very prominent. Imparting resistance to this insect herbivore is of global importance in attaining food security. Expression of insecticidal crystal proteins (ICP) in diverse crops has led to increased resistance to several pests. We report in this paper, expression of Cry2Aa in transgenic pigeon pea and its effectiveness towards H. armigera by employing Agrobacterium-mediated in planta transformation approach. Approximately 0.8% of T 1 generation plants were identified as putative transformants based on screening in the presence of 70 ppm kanamycin as the selection agent. Promising events were further recognized in advanced generations based on integration, expression and bioefficacy of the transgenes. Seven T 3 lines (11.8% of the selected T1 events) were categorized as superior as these events demonstrated 80-100% mortality of the challenged larvae and improved ability to prevent damage caused by the larvae. The selected transgenic plants accumulated Cry2Aa in the range of 25-80 µg/g FW. The transgenic events developed in the study can be used in pigeon pea improvement programmes for pod borer resistance.

  13. Development of a potential functional food prepared with pigeon pea (Cajanus cajan), oats and Lactobacillus reuteri ATCC 55730.

    PubMed

    Barboza, Yasmina; Márquez, Enrique; Parra, Katynna; Piñero, M Patricia; Medina, Luis M

    2012-11-01

    The purpose of this study was to investigate the survival of Lactobacillus reuteri ATCC 55730 in creams, prepared with pigeon peas and oat. Products were analysed to determine their content of protein, fibre, fat, carbohydrates and degree of likeness. Viable numbers of L. reuteri and pH were determined after 1, 7, 14, 21 and 28 days of storage at 4°C. Results showed significant differences (P < 0.05) in protein, fat, fibre and carbohydrate content between creams. No significant differences (P > 0.05) were found on sensory quality between control and creams with L. reuteri. After 28 days, the cell viability was above 7 log cfu/g in all creams. L. reuteri ATCC 55730 had the highest viability in cream with 40% pigeon pea and 20% oat (8.16 log cfu/g). In conclusion, due to its acceptability and highly nutritious value, the product could be used so as to support the growth of L. reuteri.

  14. To feed or not to feed: plant factors located in the epidermis, mesophyll, and sieve elements influence pea aphid's ability to feed on legume species.

    PubMed

    Schwarzkopf, Alexander; Rosenberger, Daniel; Niebergall, Martin; Gershenzon, Jonathan; Kunert, Grit

    2013-01-01

    The pea aphid (Acyrthosiphon pisum Harris), a legume specialist, encompasses at least 11 genetically distinct sympatric host races. Each host race shows a preference for a certain legume species. Six pea aphid clones from three host races were used to localize plant factors influencing aphid probing and feeding behavior on four legume species. Aphid performance was tested by measuring survival and growth. The location of plant factors influencing aphid probing and feeding was determined using the electrical penetration graph (EPG) technique. Every aphid clone performed best on the plant species from which it was originally collected, as well as on Vicia faba. On other plant species, clones showed intermediate or poor performance. The most important plant factors influencing aphid probing and feeding behavior were localized in the epidermis and sieve elements. Repetitive puncturing of sieve elements might be relevant for establishing phloem feeding, since feeding periods appear nearly exclusively after these repetitive sieve element punctures. A combination of plant factors influences the behavior of pea aphid host races on different legume species and likely contributes to the maintenance of these races.

  15. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.

    PubMed

    Bogdanov, Ivan V; Shenkarev, Zakhar O; Finkina, Ekaterina I; Melnikova, Daria N; Rumynskiy, Eugene I; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2016-04-30

    Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps

  16. Dynamics of Copy Number Variation in Host Races of the Pea Aphid

    PubMed Central

    Duvaux, Ludovic; Geissmann, Quentin; Gharbi, Karim; Zhou, Jing-Jiang; Ferrari, Julia; Smadja, Carole M.; Butlin, Roger K.

    2015-01-01

    Copy number variation (CNV) makes a major contribution to overall genetic variation and is suspected to play an important role in adaptation. However, aside from a few model species, the extent of CNV in natural populations has seldom been investigated. Here, we report on CNV in the pea aphid Acyrthosiphon pisum, a powerful system for studying the genetic architecture of host-plant adaptation and speciation thanks to multiple host races forming a continuum of genetic divergence. Recent studies have highlighted the potential importance of chemosensory genes, including the gustatory and olfactory receptor gene families (Gr and Or, respectively), in the process of host race formation. We used targeted resequencing to achieve a very high depth of coverage, and thereby revealed the extent of CNV of 434 genes, including 150 chemosensory genes, in 104 individuals distributed across eight host races of the pea aphid. We found that CNV was widespread in our global sample, with a significantly higher occurrence in multigene families, especially in Ors. We also observed a decrease in the gene probability of being completely duplicated or deleted (CDD) with increase in coding sequence length. Genes with CDD variants were usually more polymorphic for copy number, especially in the P450 gene family where toxin resistance may be related to gene dosage. We found that Gr were overrepresented among genes discriminating host races, as were CDD genes and pseudogenes. Our observations shed new light on CNV dynamics and are consistent with CNV playing a role in both local adaptation and speciation. PMID:25234705

  17. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour.

    PubMed

    Nette, Antonia; Wolf, Patricia; Schlüter, Oliver; Meyer-Aurich, Andreas

    2016-03-04

    Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG) and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein-based pasta products proved to cause 0.57 kg CO₂ equivalents (CO₂eq) (31%) per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta.

  18. Proteolysis in tempeh-type products obtained with Rhizopus and Aspergillus strains from grass pea (Lathyrus sativus) seeds.

    PubMed

    Starzyńska-Janiszewska, Anna; Stodolak, Bożena; Wikiera, Agnieszka

    2015-01-01

    Tempeh is a food product obtained from legumes by means of solid-state fermentation with Rhizopus sp. Our previous research proved that mixed-culture inoculum may also be successfully applied. The objective of present research was to study the proteolytic activity of R. microsporus var. chinensis and A. oryzae during tempeh-type fermentation of grass pea seeds, and the effect of inoculum composition on the protein level and in vitro protein bioavailability in products. Fermentation substrate were soaked and cooked grass pea seeds. Material was mixed with single- or mixed-culture inoculum, and incubated in perforated plastic bags at 30°C for 32 hrs. In the products, the proteolytic activity (pH 3, 5 and 7), glucosamine, total protein and free amino acids levels, as well as protein in vitro bioavailability and degree of protein hydrolysis were obtained. The significant correlation was found between glucosamine content and proteolytic activity in grass pea seeds fermented with Rhizopus or Aspergillus. The activities of Rhizopus proteases were higher than Aspergillus ones, which corresponded with the degree of seed protein hydrolysis. Both strains showed the highest activity of protease at pH 3. Tempeh made with pure culture of Rhizopus had 37% protein of 69% in-vitro bioavailability. Mixed-culture fermentation improved nutritional parameters of products only when the dose of Aspergillus spores in the inoculum was equal and lower than that of Rhizopus. This process resulted in higher in-vitro bioavailability of protein, slightly more efficient protein hydrolysis and higher level of free amino acids, as compared to standard tempeh. The activity of A. oryzae in tempeh-type fermentation is beneficial as long as it does not dominate the activity and/or growth of Rhizopus strain.

  19. Preliminary enrichment and separation of genistein and apigenin from extracts of pigeon pea roots by macroporous resins.

    PubMed

    Liu, Wei; Zhang, Su; Zu, Yuan-Gang; Fu, Yu-Jie; Ma, Wei; Zhang, Dong-Yang; Kong, Yu; Li, Xiao-Juan

    2010-06-01

    Enrichment and separation of genistein and apigenin from extracts of pigeon pea roots were studied using eleven macroporous resins with different physical and chemical properties. ADS-5 resin showed the maximum effectiveness among the tested resins. The solute affinity towards ADS-5 resin at different temperatures was described in terms of Langmuir and Freundlich isotherms, and the equilibrium experimental data were well-fitted to the two isotherms. In order to optimize the operating parameters for separating genistein and apigenin, dynamic adsorption and desorption tests were carried out. After one run treatment with ADS-5 resin, the contents of genistein and apigenin in the product were 9.36-fold and 11.09-fold increased with recovery yields of 89.78% and 93.41%, respectively. The process achieved easy and effective enrichment and separation of genistein and apigenin by using ADS-5 resin, and it is a promising basis for large-scale preparation of genistein and apigenin from pigeon pea or other plants extracts. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Pea Compound Leaf Architecture Is Regulated by Interactions among the Genes UNIFOLIATA, COCHLEATA, AFILA, and TENDRIL-LESS

    PubMed Central

    Gourlay, Campbell W.; Hofer, Julie M. I.; Ellis, T. H. Noel

    2000-01-01

    The compound leaf primordium of pea represents a marginal blastozone that initiates organ primordia, in an acropetal manner, from its growing distal region. The UNIFOLIATA (UNI) gene is important in marginal blastozone maintenance because loss or reduction of its function results in uni mutant leaves of reduced complexity. In this study, we show that UNI is expressed in the leaf blastozone over the period in which organ primordia are initiated and is downregulated at the time of leaf primordium determination. Prolonged UNI expression was associated with increased blastozone activity in the complex leaves of afila (af), cochleata (coch), and afila tendril-less (af tl) mutant plants. Our analysis suggests that UNI expression is negatively regulated by COCH in stipule primordia, by AF in proximal leaflet primordia, and by AF and TL in distal and terminal tendril primordia. We propose that the control of UNI expression by AF, TL, and COCH is important in the regulation of blastozone activity and pattern formation in the compound leaf primordium of the pea. PMID:10948249