Sample records for jisedai sangyo kiban

  1. JPRS Report, Science & Technology, Japan.

    DTIC Science & Technology

    1988-08-03

    SHIMBUN, 4 Feb 88] 72 Advanced Reactor Design System To Be Developed [GENSHIRYOKU SANGYO SHIMBUN, 4 Feb 88] 73 Functional Testing on " Mutsu ...new types of reactors. 13008 74 NUCLEAR ENGINEERING FUNCTIONAL TESTING ON " MUTSU " SCHEDULED 43062060c Tokyo GENSHIRYOKU SANGYO SHIMBUN in Japanese...and to rebuild the power supply rectifiers used in the instrumentation controls on the nuclear powered ship, the " Mutsu ," which was launched on 27

  2. JPRS Report, Science & Technology Japan.

    DTIC Science & Technology

    1989-07-11

    Kimura , honorary professor, Tokyo University, as the leader) to design research for the recovery of rare metals and the annihilation of radioactivity...et al.; JOURNAL OF THE JAPANESE ASSOCIATION OF CRYSTAL GROWTH, 10 Jul 88] 39 Optical Absorption of Ti:Al203 Single Crystal [Shigeyuki Kimura ...IGENSH1RY0KU SANGYO SHIMBUN, 26 Jan 89] 132 Atomic Lasers for Uranium Enrichment Tested IGENSHIRYOKU SANGYO SHIMBUN, 2 Feb 89] 133 NUCLEAR ENGINEERING

  3. JPRS Report Science & Technology Japan

    DTIC Science & Technology

    1989-10-25

    Testing Slated for New BWR Fuel Assemblies [GENSHIRYOKU SANGYO SHIMBUN, 25 May 89] .... 37 Nuclear Fuel Planning System Developed [GENSHIRYOKU... Development (Debt) 13,272 ((Debt) 3,839) 7,995 (3,610) In addition, the budget has guaranteed that the following programs will proceed according... develop a combined cycle engine that will be capable of attaining high reliability and good fuel consumption at a wide range of speeds from low speed to

  4. Mechanical design of experimental apparatus for FIREX cryo-target cooling

    NASA Astrophysics Data System (ADS)

    Iwamoto, A.; Norimatsu, T.; Nakai, M.; Sakagami, H.; Fujioka, S.; Shiraga, H.; Azechi, H.

    2016-05-01

    Mechanical design of an experimental apparatus for FIREX cryo-target cooling is described. Gaseous helium (GHe) sealing system at a cryogenic environment is an important issue for laser fusion experiments. The dedicated loading system was designed for a metal gasket. We take U-TIGHTSEAL® (Usui Kokusai Sangyo Kaisha. Ltd.) with an indium plated copper jacket as an example. According to its specification, a linear load of 110 N/m along its circumference is the optimum compression; however a lower load would still maintain helium (He) leak below the required level. Its sealing performance was investigated systematically. Our system demanded 27 N/mm of the load to keep He leak tightness in a cryogenic environment. Once leak tightness was obtained, it could be reduced to 9.5 N/mm.

  5. Tracking short-term biodistribution and long-term clearance of SPIO tracers in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Keselman, Paul; Yu, Elaine Y.; Zhou, Xinyi Y.; Goodwill, Patrick W.; Chandrasekharan, Prashant; Ferguson, R. Matthew; Khandhar, Amit P.; Kemp, Scott J.; Krishnan, Kannan M.; Zheng, Bo; Conolly, Steven M.

    2017-05-01

    Magnetic particle imaging (MPI) is an emerging tracer-based medical imaging modality that images non-radioactive, kidney-safe superparamagnetic iron oxide (SPIO) tracers. MPI offers quantitative, high-contrast and high-SNR images, so MPI has exceptional promise for applications such as cell tracking, angiography, brain perfusion, cancer detection, traumatic brain injury and pulmonary imaging. In assessing MPI’s utility for applications mentioned above, it is important to be able to assess tracer short-term biodistribution as well as long-term clearance from the body. Here, we describe the biodistribution and clearance for two commonly used tracers in MPI: Ferucarbotran (Meito Sangyo Co., Japan) and LS-oo8 (LodeSpin Labs, Seattle, WA). We successfully demonstrate that 3D MPI is able to quantitatively assess short-term biodistribution, as well as long-term tracking and clearance of these tracers in vivo.

  6. Application of τc*Pd for identifying damaging earthquakes for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Huang, P. L.; Lin, T. L.; Wu, Y. M.

    2014-12-01

    Earthquake Early Warning System (EEWS) is an effective approach to mitigate earthquake damage. In this study, we used the seismic record by the Kiban Kyoshin network (KiK-net), because it has dense station coverage and co-located borehole strong-motion seismometers along with the free-surface strong-motion seismometers. We used inland earthquakes with moment magnitude (Mw) from 5.0 to 7.3 between 1998 and 2012. We choose 135 events and 10950 strong ground accelerograms recorded by the 696 strong ground accelerographs. Both the free-surface and the borehole data are used to calculate τc and Pd, respectively. The results show that τc*Pd has a good correlation with PGV and is a robust parameter for assessing the potential of damaging earthquake. We propose the value of τc*Pd determined from seconds after the arrival of P wave could be a threshold for the on-site type of EEW.

  7. V5588 SGR = Nova Sagittarii 2011 No. 2 = Pnv J18102135-2305306

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2011-04-01

    Announces the discovery of Nova Sgr 2011 No. 2 = V5588 SGR = PNV J18102135-2305306 by Koichi Nishiyama (Kurume, Japan) and Fujio Kabashima (Miyaki, Japan) on ~ 2011 March 27.832 UT at unfiltered CCD magnitude mag 11.7. Spectra obtained by A. Arai, M. Nagashima, T. Kajikawa, and C. Naka (Koyama Astronomical Observatory, Kyoto Sangyo University) on Mar. 28.725 UT suggest that the object is a classical nova reddened by interstellar matter. The object was designated PNV J18102135-2305306 when posted on the Central Bureau's Transient Objects Confirmation Page (TOCP) webpage. E. Kazarovets, on behalf of the GCVS team, reports that the name V5588 Sgr has been assigned to this nova. It was nitially announced in CBET 2679 (Daniel W. E. Green, ed.) and AAVSO Special Notice #237 (Waagen). Additional information published in IAU Circular 9203 (Green, ed.). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.

  8. Nova Scorpii 2011 = PNV J16551100-3838120

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2011-06-01

    Announces the discovery of Nova Scorpii 2011 = PNV J16551100-3838120 by John Seach (Chatsworth Island, NSW, Australia) on 2011 June 1.40 UT at magnitude 9.5 (DSLR + orange filter). Spectra by Bernard Heathcote (South Yarra, Vic, Australia) on Jun 2.4896 UT, A. Arai, T. Kajikawa, and M. Nagashima (Kyoto Sangyo University, Japan) on 2011 June 2.68 UT, and Masayuki Yamanaka and Ryosuke Itoh (Hiroshima University, Japan) on Jun 2 UT indicate a highly-reddened classical nova. Initially reported to the AAVSO by Seach and announced in AAVSO Special Notice #240 (Arne Henden) and IAU CBET 2735 (Daniel W. E. Green, ed.). The object was designated PNV J18102135-2305306 when posted on the Central Bureau's Transient Objects Confirmation Page (TOCP) webpage. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details, observations, and links to images. [Nova Sco 2011 subsequently assigned the name V1312 Sco

  9. Impediments to predicting site response: Seismic property estimation and modeling simplifications

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.; Guzina, B.B.

    2009-01-01

    We compare estimates of the empirical transfer function (ETF) to the plane SH-wave theoretical transfer function (TTF) within a laterally constant medium for invasive and noninvasive estimates of the seismic shear-wave slownesses at 13 Kiban-Kyoshin network stations throughout Japan. The difference between the ETF and either of the TTFs is substantially larger than the difference between the two TTFs computed from different estimates of the seismic properties. We show that the plane SH-wave TTF through a laterally homogeneous medium at vertical incidence inadequately models observed amplifications at most sites for both slowness estimates, obtained via downhole measurements and the spectral analysis of surface waves. Strategies to improve the predictions can be separated into two broad categories: improving the measurement of soil properties and improving the theory that maps the 1D soil profile onto spectral amplification. Using an example site where the 1D plane SH-wave formulation poorly predicts the ETF, we find a more satisfactory fit to the ETF by modeling the full wavefield and incorporating spatially correlated variability of the seismic properties. We conclude that our ability to model the observed site response transfer function is limited largely by the assumptions of the theoretical formulation rather than the uncertainty of the soil property estimates.

  10. History of T-cain: a local anesthetic developed and manufactured in Japan.

    PubMed

    Tobe, Masaru; Saito, Shigeru

    2015-10-01

    In many anesthesia textbooks written in English, lidocaine, tetracaine, bupivacaine, ropivacaine, and chloroprocaine are listed as useful local anesthetics for spinal anesthesia. In contrast, T-cain is not included in these lists, even though it has been reported to be suitable for spinal anesthesia in Japan. T-cain was developed as a local anesthetic in the early 1940s by Teikoku Kagaku Sangyo Inc. in Itami, Japan, by replacing a methyl group on tetracaine (Pantocaine(®)) with an ethyl group. T-cain was clinically approved for topical use in Japan in November 1949, and a mixture of dibucaine and T-cain (Neo-Percamin S(®)) was approved for spinal use in May 1950. Simply because of a lack of foreign marketing strategy, T-cain has never attracted global attention as a local anesthetic. However, in Japan, T-cain has been used topically or intrathecally (as Neo-Percamin S(®)) for more than 60 years. Other than the side effects generally known for all local anesthetics, serious side effects have not been reported for T-cain. In fact, several articles have reported that T-cain decreases the neurotoxicity of dibucaine. In this historical review, the characteristics of T-cain and its rise to become a major spinal anesthetic in Japan are discussed.

  11. Magnitude Estimation for Large Earthquakes from Borehole Recordings

    NASA Astrophysics Data System (ADS)

    Eshaghi, A.; Tiampo, K. F.; Ghofrani, H.; Atkinson, G.

    2012-12-01

    We present a simple and fast method for magnitude determination technique for earthquake and tsunami early warning systems based on strong ground motion prediction equations (GMPEs) in Japan. This method incorporates borehole strong motion records provided by the Kiban Kyoshin network (KiK-net) stations. We analyzed strong ground motion data from large magnitude earthquakes (5.0 ≤ M ≤ 8.1) with focal depths < 50 km and epicentral distances of up to 400 km from 1996 to 2010. Using both peak ground acceleration (PGA) and peak ground velocity (PGV) we derived GMPEs in Japan. These GMPEs are used as the basis for regional magnitude determination. Predicted magnitudes from PGA values (Mpga) and predicted magnitudes from PGV values (Mpgv) were defined. Mpga and Mpgv strongly correlate with the moment magnitude of the event, provided sufficient records for each event are available. The results show that Mpgv has a smaller standard deviation in comparison to Mpga when compared with the estimated magnitudes and provides a more accurate early assessment of earthquake magnitude. We test this new method to estimate the magnitude of the 2011 Tohoku earthquake and we present the results of this estimation. PGA and PGV from borehole recordings allow us to estimate the magnitude of this event 156 s and 105 s after the earthquake onset, respectively. We demonstrate that the incorporation of borehole strong ground-motion records immediately available after the occurrence of large earthquakes significantly increases the accuracy of earthquake magnitude estimation and the associated improvement in earthquake and tsunami early warning systems performance. Moment magnitude versus predicted magnitude (Mpga and Mpgv).

  12. Substitution of Formal and Informal Home Care Service Use and Nursing Home Service Use: Health Outcomes, Decision-Making Preferences, and Implications for a Public Health Policy.

    PubMed

    Chen, Chia-Ching; Yamada, Tetsuji; Nakashima, Taeko; Chiu, I-Ming

    2017-01-01

    The purposes of this study are: (1) to empirically identify decision-making preferences of long-term health-care use, especially informal and formal home care (FHC) service use; (2) to evaluate outcomes vs. costs based on substitutability of informal and FHC service use; and (3) to investigate health outcome disparity based on substitutability. The methods of ordinary least squares, a logit model, and a bivariate probit model are used by controlling for socioeconomic, demographic, and physical/mental health factors to investigate outcomes and costs based substitutability of informal and formal health-care use. The data come from the 2013 Japanese Study of Aging and Retirement (JSTAR), which is designed by Keizai-Sangyo Kenkyu-jo, Hitotsubashi University, and the University of Tokyo. The JSTAR is a globally comparable data survey of the elderly. There exists a complement relationship between the informal home care (IHC) and community-based FHC services, and the elasticity's ranges from 0.18 to 0.22. These are reasonable results, which show that unobservable factors are positively related to IHC and community-based FHC, but negatively related to nursing home (NH) services based on our bivariate probit model. Regarding health-care outcome efficiency issue, the IHC is the best one among three types of elderly care: IHC, community-based FHC, and NH services. Health improvement/outcome of elderly with the IHC is heavier concentrated on IHC services than the elderly care services by community-based FHC and NH care services. Policy makers need to address a diversity of health outcomes and efficiency of services based on providing services to elderly through resource allocation to the different types of long-term care. A provision of partial or full compensation for elderly care at home is recommendable and a viable option to improve their quality of lives.

  13. Assessing the Utility of Strong Motion Data to Determine Static Ground Displacements During Great Megathrust Earthquakes: Tohoku and Iquique

    NASA Astrophysics Data System (ADS)

    Herman, M. W.; Furlong, K. P.; Hayes, G. P.; Benz, H.

    2014-12-01

    Strong motion accelerometers can record large amplitude shaking on-scale in the near-field of large earthquake ruptures; however, numerical integration of such records to determine displacement is typically unstable due to baseline changes (i.e., distortions in the zero value) that occur during strong shaking. We use datasets from the 2011 Mw 9.0 Tohoku earthquake to assess whether a relatively simple empirical correction scheme (Boore et al., 2002) can return accurate displacement waveforms useful for constraining details of the fault slip. The coseismic deformation resulting from the Tohoku earthquake was recorded by the Kiban Kyoshin network (KiK-net) of strong motion instruments as well as by a dense network of high-rate (1 Hz) GPS instruments. After baseline correcting the KiK-net records and integrating to displacement, over 85% of the KiK-net borehole instrument waveforms and over 75% of the KiK-net surface instrument waveforms match collocated 1 Hz GPS displacement time series. Most of the records that do not match the GPS-derived displacements following the baseline correction have large, systematic drifts that can be automatically identified by examining the slopes in the first 5-10 seconds of the velocity time series. We apply the same scheme to strong motion records from the 2014 Mw 8.2 Iquique earthquake. Close correspondence in both direction and amplitude between coseismic static offsets derived from the integrated strong motion time series and those predicted from a teleseismically-derived finite fault model, as well as displacement amplitudes consistent with InSAR-derived results, suggest that the correction scheme works successfully for the Iquique event. In the absence of GPS displacements, these strong motion-derived offsets provide constraints on the overall distribution of slip on the fault. In addition, the coseismic strong motion-derived displacement time series (50-100 s long) contain a near-field record of the temporal evolution of the

  14. Performance test of an automated moment tensor determination system for the future "Tokai" earthquake

    NASA Astrophysics Data System (ADS)

    Fukuyama, E.; Dreger, D. S.

    2000-06-01

    We have investigated how the automated moment tensor determination (AMTD) system using the FREESIA/KIBAN broadband network is likely to behave during a future large earthquake. Because we do not have enough experience with a large (M >8) nearby earthquake, we computed synthetic waveforms for such an event by assuming the geometrical configuration of the anticipated Tokai earthquake and several fault rupture scenarios. Using this synthetic data set, we examined the behavior of the AMTD system to learn how to prepare for such an event. For our synthetic Tokai event data we assume its focal mechanism, fault dimension, and scalar seismic moment. We also assume a circular rupture propagation with constant rupture velocity and dislocation rise time. Both uniform and heterogeneous slip models are tested. The results show that performance depends on both the hypocentral location (i.e. unilateral vs. bilateral) and the degree of heterogeneity of slip. In the tests that we have performed the rupture directivity appears to be more important than slip heterogeneity. We find that for such large earthquakes it is necessary to use stations at distances greater than 600 km and frequencies between 0.005 to 0.02 Hz to maintain a point-source assumption and to recover the full scalar seismic moment and radiation pattern. In order to confirm the result of the synthetic test, we have analyzed the 1993 Hokkaido Nansei-oki (MJ7.8) and the 1995 Kobe (MJ7.2) earthquakes by using observed broadband waveforms. For the Kobe earthquake we successfully recovered the moment tensor by using the routinely used frequency band (0.01-0.05 Hz displacements). However, we failed to estimate a correct solution for the Hokkaido Nansei-oki earthquake by using the same routine frequency band. In this case, we had to use the frequencies between 0.005 to 0.02 Hz to recover the moment tensor, confirming the validity of the synthetic test result for the Tokai earthquake.

  15. Calibration of Subsurface Amplification Factors Using Surface/Borehole Strong-motion Records from the KiK-net

    NASA Astrophysics Data System (ADS)

    Hayashida, T.; Tajima, F.

    2007-12-01

    The Real-time Earthquake Information System (REIS, Horiuchi et al., 2005) detects earthquakes and determines event parameters using the Hi-net (High-sensitivity seismograph network Japan) data in Japan. The system also predicts the arrival time and seismic intensity at a given site before ground motions arrive. Here, the seismic intensity is estimated based on the intensity magnitude which is derived from data of the Hi-net. As the Hi-net stations are located in the boreholes, intensity estimation on the ground surface is evaluated using a constant for subsurface amplification. But the estimated intensities based on the conventionally used amplification constants are not always in agreement with those observed at specific sites on the ground surface. The KiK-net (KIBAN Kyoshin network Japan) consists of strong motion instruments. Each station has two sets of accelerometers, one set is installed on the ground surface and the other one is co-located with a Hi-net station in the borehole. We use data recorded at the KiK-net stations to calibrate subsurface site amplification factors between the borehole and the ground surface. We selected data recorded for over 200 events during the period of 1997 to 2006 in Hiroshima prefecture and calculated the ratios of peak velocity amplitudes on the ground surface ( Asurf) to those in the borehole ( Abor). The subsurface amplification varies from station to station showing dependency on the propagation distance as well as on the incident direction of seismic waves. Results suggest that the site amplification factors shall be described as a function of distance and incident direction, and are not constants. Thus, we derived empirical amplification formulas between Asurf and the peak velocity amplitudes on the engineering bedrock ( Abed) as a function of distance in place of the conventionally used amplification constants. Here, the engineering bedrock is defined as the depth where the S- wave velocity is 600 m/s. The estimated

  16. Magnitude Estimation for the 2011 Tohoku-Oki Earthquake Based on Ground Motion Prediction Equations

    NASA Astrophysics Data System (ADS)

    Eshaghi, Attieh; Tiampo, Kristy F.; Ghofrani, Hadi; Atkinson, Gail M.

    2015-08-01

    This study investigates whether real-time strong ground motion data from seismic stations could have been used to provide an accurate estimate of the magnitude of the 2011 Tohoku-Oki earthquake in Japan. Ultimately, such an estimate could be used as input data for a tsunami forecast and would lead to more robust earthquake and tsunami early warning. We collected the strong motion accelerograms recorded by borehole and free-field (surface) Kiban Kyoshin network stations that registered this mega-thrust earthquake in order to perform an off-line test to estimate the magnitude based on ground motion prediction equations (GMPEs). GMPEs for peak ground acceleration and peak ground velocity (PGV) from a previous study by Eshaghi et al. in the Bulletin of the Seismological Society of America 103. (2013) derived using events with moment magnitude ( M) ≥ 5.0, 1998-2010, were used to estimate the magnitude of this event. We developed new GMPEs using a more complete database (1998-2011), which added only 1 year but approximately twice as much data to the initial catalog (including important large events), to improve the determination of attenuation parameters and magnitude scaling. These new GMPEs were used to estimate the magnitude of the Tohoku-Oki event. The estimates obtained were compared with real time magnitude estimates provided by the existing earthquake early warning system in Japan. Unlike the current operational magnitude estimation methods, our method did not saturate and can provide robust estimates of moment magnitude within ~100 s after earthquake onset for both catalogs. It was found that correcting for average shear-wave velocity in the uppermost 30 m () improved the accuracy of magnitude estimates from surface recordings, particularly for magnitude estimates of PGV (Mpgv). The new GMPEs also were used to estimate the magnitude of all earthquakes in the new catalog with at least 20 records. Results show that the magnitude estimate from PGV values using

  17. Three-dimensional site response at KiK-net downhole arrays

    USGS Publications Warehouse

    Thompson, Eric M.; Tanaka, Yasuo; Baise, Laurie G.; Kayen, Robert E.

    2010-01-01

    Ground motions at two Kiban-Kyoshin Network (KiK-net) strong motion downhole array sites in Hokkaido, Japan (TKCH08 in Taiki and TKCH05 in Honbetsu) illustrate the importance of three-dimensional (3D) site effects. These sites recorded the M8.0 2003 Tokachi-Oki earthquake, with recorded accelerations above 0.4 g at both sites as well as numerous ground motions from smaller events. Weak ground motions indicate that site TKCH08 is well modeled with the assumption of plane SH waves traveling through a 1D medium (SH1D), while TKCH05 is characteristic of a poor fit to the SH1D theoretical response. We hypothesized that the misfit at TKCH05results from the heterogeneity of the subsurface. To test this hypothesis, we measured four S-wave velocity profiles in the vicinity (< 300 m) of each site with the spectral analysis of surface waves (SASW) method. This KiK-net site pair is ideal for assessing the relative importance of 3D site effects and nonlinear site effects. The linear ground motions at TKCH05 isolate the 3D site effects, as we hypothesized from the linear ground motions and confirmed with our subsequent SASW surveys. The Tokachi-Oki time history at TKCH08 isolates the effects of nonlinearity from spatial heterogeneity because the 3D effects are negligible. The Tokachi-Oki time history at TKCH05 includes both nonlinear and 3D site effects. Comparisons of the accuracy of the SH1D model predictions of these surface time histories from the downhole time histories indicates that the 3D site effects are at least as important as nonlinear effects in this case. The errors associated with the assumption of a 1D medium and 1D wave propagation will be carried into a nonlinear analysis that relies on these same assumptions. Thus, the presence of 3D effects should be ruled out prior to a 1D nonlinear analysis. The SH1D residuals show that 3D effects can be mistaken for nonlinear effects.

  18. High sensitivity, wide coverage, and high-resolution NIR non-cryogenic spectrograph, WINERED

    NASA Astrophysics Data System (ADS)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Otsubo, Shogo; Hamano, Satoshi; Sameshima, Hiroaki; Yoshikawa, Tomoshiro; Fukue, Kei; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Kinoshita, Masaomi; Kitano, Ayaka; Asano, Akira; Takenaka, Keiichi; Watase, Ayaka; Mito, Hiroyuki; Yasui, Chikako; Minami, Atsushi; Izumu, Natsuko; Yamamoto, Ryo; Mizumoto, Misaki; Arasaki, Takayuki; Arai, Akira; Matsunaga, Noriyuki; Kawakita, Hideyo

    2016-08-01

    Near-infrared (NIR) high-resolution spectroscopy is a fundamental observational method in astronomy. It provides significant information on the kinematics, the magnetic fields, and the chemical abundances, of astronomical objects embedded in or behind the highly extinctive clouds or at the cosmological distances. Scientific requirements have accelerated the development of the technology required for NIR high resolution spectrographs using 10 m telescopes. WINERED is a near-infrared (NIR) high-resolution spectrograph that is currently mounted on the 1.3 m Araki telescope of the Koyama Astronomical Observatory in Kyoto-Sangyo University, Japan, and has been successfully operated for three years. It covers a wide wavelength range from 0.90 to 1.35 μm (the z-, Y-, and J-bands) with a spectral resolution of R = 28,000 (Wide-mode) and R = 80,000 (Hires-Y and Hires-J modes). WINERED has three distinctive features: (i) optics with no cold stop, (ii) wide spectral coverage, and (iii) high sensitivity. The first feature, originating from the Joyce proposal, was first achieved by WINERED, with a short cutoff infrared array, cold baffles, and custom-made thermal blocking filters, and resulted in reducing the time for development, alignment, and maintenance, as well as the total cost. The second feature is realized with the spectral coverage of Δλ/λ 1/6 in a single exposure. This wide coverage is realized by a combination of a decent optical design with a cross-dispersed echelle and a large format array (2k x 2k HAWAII- 2RG). The Third feature, high sensitivity, is achieved via the high-throughput optics (>60 %) and the very low noise of the system. The major factors affecting the high throughput are the echelle grating and the VPH cross-disperser with high diffraction efficiencies of 83 % and 86 %, respectively, and the high QE of HAWAII-2RG (83 % at 1.23 μm). The readout noise of the electronics and the ambient thermal background radiation at longer wavelengths could be

  19. Precise seismic velocity structure beneath the Hokkaido corner, northern Japan: Arc-arc collision and the 1970 M 6.7 Hidaka region earthquake and the 1982 M 7.1 Urakawa-oki earthquake

    NASA Astrophysics Data System (ADS)

    Kita, S.; Hasegawa, A.; Nakajima, J.; Okada, T.; Matsuzawa, T.; Katsumata, K.

    2011-12-01

    Using arrival-time data both from the nationwide Kiban seismic network and from a dense temporary seismic network covering the area of the Hokkaido corner [Katsumata et al., 2002a; 2003, JGR], we precisely determined three-dimensional seismic velocity structure beneath this area to understand the collision process between the Kuril and northeasetern Japan forearcs. Tomographic inversions were performed with smaller grid spacing [5 x 10 x 5 km] than our previous study [Kita et al., 2010b, EPSL] by using the double-difference tomography method [Zhang and Thurber, 2003; 2006]. Inhomogeneous seismic velocity structure was more precisely imaged in the Hokkaido corner at depths of 0-120 km. A broad low-velocity zone of P- and S- waves having velocities of crust materials with a total volume of 80 km x 100 km x 50 km is distributed to the west of the Hidaka metamorphic belt (the Hidaka main thrust) at depths of 30-90km. On the other hand, several small-scale high-velocity zones having velocities of mantle materials were detected at depths of 0-35 km), inclined east-northeastward at a high angle of 40-60 degrees. All of these anomaly high velocity zones are respectively located in the deeper extension of the Neogene thrust faults, striking almost N-S direction and dipping 40-50 degrees at depths of 0-10km [e.g. Ito 2000]. The largest high-velocity zone is located in the deeper extension of the Hidaka main thrust, being in contact with the eastern edge of the low-V zone. This high-V zone reaches near the surface at the Hidaka metamorphic belt and its southern edge is located just beneath the Horoman-peridotite, which is one of the most famous peridotite outcrops. Moreover, the boundary of the high-V zone with the broad low-V zone corresponds to the fault plane of the 1970 Mj 6.7 Hidaka region earthquake [Moriya 1972]. Another high-V zone is located within the broad low-V zone at depths of 20-30km and in the deeper extension of thrust, which belongs to the Ishikari Low land

  20. Detailed seismic velocity structure beneath the Hokkaido corner, NE Japan: Collision process of the forearc sliver

    NASA Astrophysics Data System (ADS)

    Kita, S.; Hasegawa, A.; Okada, T.; Nakajima, J.; Matsuzawa, T.; Katsumata, K.

    2010-12-01

    1. Introduction In south-eastern Hokkaido, the Kuril forearc sliver is colliding with the northeastern Japan arc due to the oblique subduction of the Pacific plate. This collision causes the formation of the Hidaka mountain range since the late Miocene (Kimura, 1986) and delamination of the lower-crust materials of the Kuril forearc sliver, which would be expected to descend into the mantle wedge below (e.g., Ito 2000; Ito and Iwasaki, 2002). In this study, we precisely investigated the three-dimensional seismic velocity structure beneath the Hokkaido corner to examine the collision of two forearcs in this area by using both of data from a dense temporary seismic network deployed in this area (Katsumata et al. [2006]) and those from the Kiban observation network, which covers the entire Japanese Islands with a station separation of 15-20 km. 2. Data and method The double-difference tomography method (Zhang and Thurber, 2003; 2006) was applied to a large number of arrival time data of 201,527 for P-waves and 150,963 for S-waves that were recorded at 125 stations from 10,971 earthquakes that occurred from 1999 to 2010. Grid intervals were set at 10 km in the along-arc direction, 12.5 km perpendicular to it, and 5-10 km in the vertical direction. 3. Results and discussion Inhomogeneous seismic velocity structure was clearly imaged in the Hokkaido corner at depths of 0-120 km. A high-velocity anomaly of P- and S- waves with a volume of 20 km x 90 km x 35km was detected just beneath the main zone of the Hidaka metamorphic belt at depths of 0-35 km. This high-velocity anomaly is continuously distributed from the depths of the mantle wedge to the surface. The western edge of the anomaly exactly corresponds to the Hidaka main thrust (HMT) at the surface. The highest velocity value in the anomaly corresponds to those of the uppermost mantle material (e.g. peridotite). The location of them at depths of 0-35km is also consistent with that of the Horoman-Peridotite belt, which

  1. List of Participants

    NASA Astrophysics Data System (ADS)

    2011-08-01

    GonzalezBUAP, FCFM Lorenzo Díaz CruzBUAP Facultad de Ciencias Físico Matemáticas Luis Rey Díaz BarrónDivisión de Ciencias e Ingenierías Luis UrenaUniversidad de Guanajuato Magda LolaDept. of Physics, University of Patras, Greece Mahmoud WahbaEgyptian Center for Theoretical Physics, MTI Marcus S CohenNew Mexico State University Mario A Acero OrtegaICN - UNAM Mario E GomezUniversidad de Huelva Mark PipeUniversity of Sheffield Mauro NapsucialeDCI-UG Mirco CannoniUniversidad de Huelva Mónica Felipa Ramírez PalaciosUniversidad de Guadalajara Murli Manohar VermaLucknow university, India Nassim BozorgniaUCLA Octavio Obregón Octavio ValenzuelaIA-UNAM Oleg KamaevUniversity of Minnesota Osamu SetoHokkai-Gakuen University Pedro F González DíazIFF, CSIC, Serrano 121, 28006 Madrid, Spain Qaisar ShafiBartol Research Inst. and Delaware U. Raul Hennings-YeomansLos Alamos National Laboratory René Ángeles MartínezDepartamento de Fisica, del DCI de la Universidad de Guanajuato Reyna XoxocotziBUAP, FCFM Rishi Kumar TiwariGovt. Model Science College, Rewa (MP) INDIA Roberto A SussmanICN-UNAM Selim Gómez ÁvilaDCI-UG Sugai KenichiSaitama University Susana Valdez AlvaradoDCI-UG TVladimir - 2K CollaborationColorado State University Tonatiuh MatosCINVESTAV Valeriy DvoeglazovUniversidad de Zacatecas Vannia Gonzalez MaciasDCI-UG Vladimir Avila-ReeseInstituto de Astronomia, UNAM Wolfgang BietenholzINC, UNAM (Mexico) Yamanaka MasatoKyoto Sangyo University Yann MambriniLPT Orsay Yu-Feng ZhouInstitute of Theotretical Physics, Chinese Academy of Sciences, PR China Aaron HigueraDCI-UG Azarael Yebra PérezDCI-UG César Hernández AguayoDCI-UG Jaime Chagoya AlvarezDCI-UG Jonathan Rashid Rosique CampuzanoDCI-UG José Alfredo Soto ÁlvarezDCI-UG Juan Carlos De Haro SantosDCI-UG Luis Eduardo Medina MedranoDCI-UG Maria Fatima Rubio EspinozaDCI-UG Paulo Alberto Rodriguez HerreraDCI-UG Roberto Oziel Gutierrez CotaDCI-UG Rocha Moran Maria PaulinaDCI-UG Xareni Sanchez MonroyDCI-UG