Sample records for jiweiling freeze-dried powder

  1. Studies on target tissue distribution of ginsenosides and epimedium flavonoids in rats after intravenous administration of Jiweiling freeze-dried powder.

    PubMed

    Liu, Minyan; Wang, Hongtao; Zhao, Shaohua; Shi, Xiaowei; Zhang, Yongfeng; Xu, Honghui; Wang, Yufeng; Li, Xiangjun; Zhang, Lantong

    2011-11-01

    A simple and rapid liquid chromatography-mass spectrometry (LC-MS) method was developed and validated for analysis of ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, icariin and epimedin A, B, C in rat target tissues (spinal cord, brain, muscle and sciatic nerve) after intravenous administration of Jiweiling freeze-dried powder using genistein as an internal standard (IS). The tissue samples were treated by protein precipitation with methanol prior to HPLC and chromatographic separation was performed on a C18 column utilizing a gradient elution program with acetonitrile and 0.1% formic acid aqueous. Electrospray ionization (ESI) source was employed and the 11 analytes and IS were detected by multiple reaction monitoring (MRM) scanning under the negative ionization mode. Higher sensitivity was achieved and the optimized mass transition ion-pairs (m/z) for quantitation were selected. The calibration curves were linear over the investigated concentration ranges with correlation coefficients higher than 0.995. The intra- and inter-day RSDs were all less than 10% with the relative error (RE) within ± 9.3%. The mean extraction recoveries for all compounds were between 93.3 and 106%. The proposed method was successfully applied to investigate the target tissue distribution of the 11 compounds in rat after intravenous administration of Jiweiling freeze-dried powder. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Toward intradermal vaccination: preparation of powder formulations by collapse freeze-drying.

    PubMed

    Etzl, Elsa E; Winter, Gerhard; Engert, Julia

    2014-03-01

    Intradermal powder immunization is an emerging technique in vaccine delivery. The purpose of this study was to generate powder particles for intradermal injection by freeze-drying and subsequent cryo-milling. Two different freeze-drying protocols were compared, a moderate freeze-drying cycle and an aggressive freeze-drying cycle, which induced a controlled collapse of the sugar matrix. Ovalbumin served as model antigen. The influence of collapse drying and cryo-milling on particle morphology and protein stability was investigated. Cryo-milling generated irregularly shaped particles of size 20-70 µm. The recovery of soluble monomer of ovalbumin was not changed during freeze-drying and after cryo-milling, or after 12 months of storage at 2-8 °C. A slight increase in higher molecular weight aggregates was found in formulations containing the polymer dextran after 12 months of storage at 50 °C. Light obscuration measurements showed an increase in cumulative particle counts after cryo-milling that did not further increase during storage at 2-8 °C for 12 months. The applicability of the cryo-milling process to other therapeutic proteins was shown using recombinant human granulocyte-colony stimulating factor. Collapse freeze-drying and subsequent cryo-milling allows the generation of particles suitable for intradermal powder injection.

  3. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOEpatents

    Balachandran, Uthamalingam

    1996-01-01

    A process for the preparation of amorphous precursor powders for Pb-doped Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains.

  4. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOEpatents

    Balachandran, U.

    1996-06-04

    A process for the preparation of amorphous precursor powders for Pb-doped Bi{sub 2}Sr{sub 2} Ca{sub 2}Cu{sub 3}O{sub x} (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains. 11 figs.

  5. Development of Biodegradable Polycation-Based Inhalable Dry Gene Powders by Spray Freeze Drying

    PubMed Central

    Okuda, Tomoyuki; Suzuki, Yumiko; Kobayashi, Yuko; Ishii, Takehiko; Uchida, Satoshi; Itaka, Keiji; Kataoka, Kazunori; Okamoto, Hirokazu

    2015-01-01

    In this study, two types of biodegradable polycation (PAsp(DET) homopolymer and PEG-PAsp(DET) copolymer) were applied as vectors for inhalable dry gene powders prepared by spray freeze drying (SFD). The prepared dry gene powders had spherical and porous structures with a 5~10-μm diameter, and the integrity of plasmid DNA could be maintained during powder production. Furthermore, it was clarified that PEG-PAsp(DET)-based dry gene powder could more sufficiently maintain both the physicochemical properties and in vitro gene transfection efficiencies of polyplexes reconstituted after powder production than PAsp(DET)-based dry gene powder. From an in vitro inhalation study using an Andersen cascade impactor, it was demonstrated that the addition of l-leucine could markedly improve the inhalation performance of dry powders prepared by SFD. Following pulmonary delivery to mice, both PAsp(DET)- and PEG-PAsp(DET)-based dry gene powders could achieve higher gene transfection efficiencies in the lungs compared with a chitosan-based dry gene powder previously reported by us. PMID:26343708

  6. Freeze drying vs microwave drying-methods for synthesis of sinteractive thoria powders

    NASA Astrophysics Data System (ADS)

    Annie, D.; Chandramouli, V.; Anthonysamy, S.; Ghosh, Chanchal; Divakar, R.

    2017-02-01

    Thoria powders were synthesized by oxalate precipitation from an aqueous solution of the nitrate. The filtered precipitates were freeze dried or microwave dried before being calcined at 1073 K. The thoria powders obtained were characterized for crystallite size, specific surface area, bulk density, particle size distribution and residual carbon. Microstructure of the product was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Sinterability of the synthesized powders was studied by measuring the density of the sintered compacts. Powders that can be consolidated and sintered to densities ∼96% theoretical density (TD) at 1773 K were obtained.

  7. [Preparation of freeze-dried powder of recombinate hirudin-2 nanoparticle for nasal delivery and permeability through nasal membrane in vitro].

    PubMed

    Chen, Ming-Xia; Zhang, Jian-Bao; Yu, Ji-Ping; Ye, Jing; Wei, Bao-Hong; Zhang, Yu-Jie

    2013-06-01

    To optimize the freeze-dried powder preparation technology of recombinate hirudin-2 (rHV2) nanoparticle which has bio-adhesive characteristic for nasal delivery, also to investigate its stability and permeability through nasal membrane in vitro. Taking the appearance, rediffusion of nanoparticle and rHV2 encapsulation efficiency as the evaluation indexes. Cryoprotector, the preparative technique and the effect of illumination and high temperature factors on its stability for rHV2 freeze-dried powder were investigated. Using Fraze diffusion cell technique, the permeability of rHV2 across rabbit nasal mucous membrane in chitosan solution, chitosan nanoparticle, and nanoparticle frozen-dried powder were compared with that in normal saline solution. The optimized preparation of rHV2 nanoparticle freeze-dried powder was as follows: 5% trehalose and glucose (1:1) was used as cryoprotector, nanoparticle solution was freezed for 24 h in vacuum frozen-dryer after being pre-freezed for 24 h. The content of rHV2 in the freeze-dried powder was 1.1 ug/mg. Illumination had little effect on the appearance, rediffusion and encapsulation efficiency of the rHV2 freeze-dried powder. High temperature could obviously influence the appearance of nanoparticle freeze-dried powder. The permeability coefficient (P) of nanoparticle was 5 times more than that in chictonson solution. It was indicated that chitosan nanoparticle has effect on increasing the permeability of rHV2. The freeze-dried powder of chitosan nanoparticle can be a good nasal preparation of rHV2.

  8. Development of a Soluplus budesonide freeze-dried powder for nasal drug delivery.

    PubMed

    Pozzoli, Michele; Traini, Daniela; Young, Paul M; Sukkar, Maria B; Sonvico, Fabio

    2017-09-01

    The aim of this work was to develop an amorphous solid dispersions/solutions (ASD) of a poorly soluble drug, budesonide (BUD) with a novel polymer Soluplus ® (BASF, Germany) using a freeze-drying technique, in order to improve dissolution and absorption through the nasal route. The small volume of fluid present in the nasal cavity limits the absorption of a poorly soluble drug. Budesonide is a corticosteroid, practically insoluble and normally administered as a suspension-based nasal spray. The formulation was prepared through freeze-drying of polymer-drug solution. The formulation was assessed for its physicochemical (specific surface area, calorimetric analysis and X-ray powder diffraction), release properties and aerodynamic properties as well as transport in vitro using RPMI 2650 nasal cells, in order to elucidate the efficacy of the Soluplus-BUD formulation. The freeze-dried Soluplus-BUD formulation (LYO) showed a porous structure with a specific surface area of 1.4334 ± 0.0178 m 2 /g. The calorimetric analysis confirmed an interaction between BUD and Soluplus and X-ray powder diffraction the amorphous status of the drug. The freeze-dried formulation (LYO) showed faster release compared to both water-based suspension and dry powder commercial products. Furthermore, a LYO formulation, bulked with calcium carbonate (LYO-Ca), showed suitable aerodynamic characteristics for nasal drug delivery. The permeation across RPMI 2650 nasal cell model was higher compared to a commercial water-based BUD suspension. Soluplus has been shown to be a promising polymer for the formulation of BUD amorphous solid suspension/solution. This opens up opportunities to develop new formulations of poorly soluble drug for nasal delivery.

  9. The Production of a Stable Infliximab Powder: The Evaluation of Spray and Freeze-Drying for Production.

    PubMed

    Kanojia, Gaurav; Have, Rimko Ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W; Kersten, Gideon F A; Amorij, Jean-Pierre

    2016-01-01

    In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn's disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab.

  10. Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: evaluation of foam and powder properties.

    PubMed

    Darniadi, Sandi; Ho, Peter; Murray, Brent S

    2018-03-01

    Blueberry juice powder was developed via foam-mat freeze-drying (FMFD) and spray-drying (SD) via addition of maltodextrin (MD) and whey protein isolate (WPI) at weight ratios of MD/WPI = 0.4 to 3.2 (with a fixed solids content of 5 wt% for FMFD and 10 wt% for SD). Feed rates of 180 and 360 mL h -1 were tested in SD. The objective was to evaluate the effect of the drying methods and carrier agents on the physical properties of the corresponding blueberry powders and reconstituted products. Ratios of MD/WPI = 0.4, 1.0 and 1.6 produced highly stable foams most suitable for FMFD. FMFD gave high yields and low bulk density powders with flake-like particles of large size that were also dark purple with high red values. SD gave low powder recoveries. The powders had higher bulk density and faster rehydration times, consisting of smooth, spherical and smaller particles than in FMFD powders. The SD powders were bright purple but less red than FMFD powders. Solubility was greater than 95% for both FMFD and SD powders. The FMFD method is a feasible method of producing blueberry juice powder and gives products retaining more characteristics of the original juice than SD. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. The Production of a Stable Infliximab Powder: The Evaluation of Spray and Freeze-Drying for Production

    PubMed Central

    Kanojia, Gaurav; Have, Rimko ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W.; Kersten, Gideon F. A.; Amorij, Jean-Pierre

    2016-01-01

    In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn’s disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab. PMID:27706175

  12. Production of inhalation phage powders using spray freeze drying and spray drying techniques for treatment of respiratory infections

    PubMed Central

    Leung, Sharon S.Y.; Parumasivam, Thaigarajan; Gao, Fiona G.; Carrigy, Nicholas B.; Vehring, Reinhard; Finlay, Warren H.; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim

    2016-01-01

    Purpose The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders. Method A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1 = 60:20:20 and F2 = 40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed. Results A significant titer loss (~ 2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1 = 13.1 ± 1.7 × 104 pfu and SD-F2 = 11.0 ± 1.4 × 104 pfu) than from their counterpart SFD formulations (SFD-F1 = 8.3 ± 1.8 × 104 pfu and SFD-F2 = 2.1 ± 0.3 × 104 pfu). Conclusion Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2. PMID:26928668

  13. Role of precursors on greening in crushed garlic (Allium sativum) bulbs, and its control with freeze-dried onion powder.

    PubMed

    Cho, Jungeun; Lee, Eun Jin; Yoo, Kil Sun; Lee, Seung Koo

    2012-01-30

    Lachrymatory factor (LF) synthase in onion bulbs reacts with S-1-propenyl-L-cysteine sulfoxide (1-PeCSO), a key compound in garlic greening. In this study, freeze-dried onion powder containing LF synthase was used in treatments to control garlic greening. Prior to the use of freeze-dried onion powder to treat greening garlic bulbs, model reactions were conducted to confirm the reactivity of 1-PeCSO in onion bulbs to garlic greening. While pink pigments were generated from 1-PeCSO, green pigments were produced from the combination of 1-PeCSO and S-2-propenyl-L-cysteine sulfoxide (2-PeCSO). However, pigments were formed in the systems containing 1-PeCSO, amino acid and alliinase. Even non-greening garlic bulbs stored at 20 °C turned green with the reaction of 200 g L(-1) 1-PeCSO; therefore 1-PeCSO isolated from onion bulbs had the same role as 1-PeCSO in garlic bulbs in terms of greening. Onion bulbs turned green after the addition of 600 g L(-1) 2-PeCSO. The addition of freeze-dried onion powder inhibited garlic greening, and treatment with 15 g kg(-1) onion powder gave the best storage stability of crushed garlic bulbs. The addition of freeze-dried onion powder inhibited the greening in crushed garlic bulbs, and treatment with 15 g kg(-1) onion powder gave the best storage stability of crushed garlic bulbs. Copyright © 2011 Society of Chemical Industry.

  14. Optimized pulmonary gene transfection in mice by spray-freeze dried powder inhalation.

    PubMed

    Mohri, Kohta; Okuda, Tomoyuki; Mori, Asami; Danjo, Kazumi; Okamoto, Hirokazu

    2010-06-01

    Spray-freeze drying (SFD) is an attractive technique to prepare highly porous dry powders for inhalation. However, there have been few reports of its application to dry powder inhalers (DPIs). Therefore, in this study, we prepared dry plasmid DNA (pDNA) powders with different molecular ratios of chitosan to pDNA (N/P ratios) by SFD. All the pDNA powders were spherical and highly porous, with particles approximately 20-40microm in geometric diameter. The morphology changed little with the alteration of the N/P ratio. On electrophoresis, a band of linear pDNA was detected in the preparation without chitosan, suggesting the destabilization of pDNA through SFD. However, the addition of chitosan protected pDNA from destabilization. Moreover, the pDNA powders were evaluated for pulmonary gene transfection efficiency using an in vivo dual imaging technique for gene DPIs developed previously. Maximum gene expression was observed at 9-12h following pulmonary administration of the powders into mice. The powder with the N/P ratio of 10 had the highest gene transfection efficiency. A higher affinity of chitosan for pDNA and a smaller (approximately 100nm) pDNA/chitosan complex (N/Pf10) were found at pH 6.5 (in lung) than at pH 7.4 (in physiological conditions), suggesting that the effective compaction of pDNA by chitosan at the N/P ratio of 10 at pH 6.5 contributes to the gene transfection efficiency in the lung. These results suggest inhalable dry pDNA powders with chitosan prepared by SFD to be a suitable formulation for pulmonary gene therapy. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Production of Inhalation Phage Powders Using Spray Freeze Drying and Spray Drying Techniques for Treatment of Respiratory Infections.

    PubMed

    Leung, Sharon S Y; Parumasivam, Thaigarajan; Gao, Fiona G; Carrigy, Nicholas B; Vehring, Reinhard; Finlay, Warren H; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim

    2016-06-01

    The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders. A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1 = 60:20:20 and F2 = 40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed. A significant titer loss (~2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1 = 13.1 ± 1.7 × 10(4) pfu and SD-F2 = 11.0 ± 1.4 × 10(4) pfu) than from their counterpart SFD formulations (SFD-F1 = 8.3 ± 1.8 × 10(4) pfu and SFD-F2 = 2.1 ± 0.3 × 10(4) pfu). Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2.

  16. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor

    PubMed Central

    Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin

    2014-01-01

    In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin. PMID:24729702

  17. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor.

    PubMed

    Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin

    2014-01-01

    In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin.

  18. The effect of excipients on the stability and aerosol performance of salmon calcitonin dry powder inhalers prepared via the spray freeze drying process.

    PubMed

    Poursina, Narges; Vatanara, Alireza; Rouini, Mohammad Reza; Gilani, Kambiz; Najafabadi, Abdolhossein Rouholamini

    2016-06-01

    Spray freeze drying was developed to produce dry powders suitable for applications such as inhalation delivery. In the current study, the spray freeze drying technique was employed to produce inhalable salmon calcitonin microparticles. Effects of the carrier type, concentration of hydroxyl propyl-β-cyclodextrin and the presence of Tween 80 on the chemical and structural stability, as well as on the aerosol performance of the particles were investigated. The results indicated that hydroxyl propyl-β-cyclodextrin had the most important effect on the chemical stability of the powder and strongly increased its stability by increasing its concentration in the formulation. Chemically stable formulations (over 90 % recovery) were selected for further examinations. Fluorescence spectroscopy and circular dichroism suggested that the formulations were structurally stable. Aerosol performance showed that the Tween-free powders produced higher fine particle fraction values than the formulations containing Tween (53.7 vs. 41.92 % for trehalose content and 52.85 vs. 43.06 % for maltose content).

  19. Dry powder inhalers: physicochemical and aerosolization properties of several size-fractions of a promising alterative carrier, freeze-dried mannitol.

    PubMed

    Kaialy, Waseem; Nokhodchi, Ali

    2015-02-20

    The purpose of this work was to evaluate the physicochemical and inhalation characteristics of different size fractions of a promising carrier, i.e., freeze-dried mannitol (FDM). FDM was prepared and sieved into four size fractions. FDMs were then characterized in terms of micromeritic, solid-state and bulk properties. Dry powder inhaler (DPI) formulations were prepared using salbutamol sulphate (SS) and then evaluated in terms of drug content homogeneity and in vitro aerosolization performance. The results showed that the crystalline state of mannitol was maintained following freeze-drying for all size fractions of FDM. All FDM particles showed elongated morphology and contained mixtures of α-, β- and δ-mannitol. In comparison to small FDM particles, FDMs with larger particle sizes demonstrated narrower size distributions, higher bulk and tap densities, lower porosities and better flowability. Regardless of particle size, all FDMs generated a significantly higher (2.2-2.9-fold increase) fine particle fraction (FPF, 37.5 ± 0.9%-48.6 ± 2.8%) of SS in comparison to commercial mannitol. The FPFs of SS were related to the shape descriptors of FDM particles; however, FPFs did not prove quantitative apparent relationships with either particle size or powder bulk descriptors. Large FDM particles were more favourable than smaller particles because they produced DPI formulations with better flowability, better drug content homogeneity, lower amounts of the drug depositing on the throat and contained lower fine-particle-mannitol. Optimized stable DPI formulations with superior physicochemical and pharmaceutical properties can be achieved using larger particles of freeze-dried mannitol (FDM). Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Development of a Freeze-Dried Fungal Wettable Powder Preparation Able to Biodegrade Chlorpyrifos on Vegetables

    PubMed Central

    Chen, Shaohua; Xiao, Ying; Hu, Meiying; Zhong, Guohua

    2014-01-01

    Continuous use of the pesticide chlorpyrifos has resulted in harmful contaminations in environment and species. Based on a chlorpyrifos-degrading fungus Cladosporium cladosporioides strain Hu-01 (collection number: CCTCC M 20711), a fungal wettable powder preparation was developed aiming to efficiently remove chlorpyrifos residues from vegetables. The formula was determined to be 11.0% of carboxymethyl cellulose-Na, 9.0% of polyethylene glycol 6000, 5.0% of primary alcohol ethoxylate, 2.5% of glycine, 5.0% of fucose, 27.5% of kaolin and 40% of freeze dried fungi by response surface methodology (RSM). The results of quality inspection indicated that the fungal preparation could reach manufacturing standards. Finally, the degradation of chlorpyrifos by this fungal preparation was determined on pre-harvest cabbage. Compared to the controls without fungal preparation, the degradation of chlorpyrifos on cabbages, which was sprayed with the fungal preparation, was up to 91% after 7 d. These results suggested this freeze-dried fungal wettable powder may possess potential for biodegradation of chlorpyrifos residues on vegetables and provide a potential strategy for food and environment safety against pesticide residues. PMID:25061758

  1. Development of a freeze-dried fungal wettable powder preparation able to biodegrade chlorpyrifos on vegetables.

    PubMed

    Liu, Jie; He, Yue; Chen, Shaohua; Xiao, Ying; Hu, Meiying; Zhong, Guohua

    2014-01-01

    Continuous use of the pesticide chlorpyrifos has resulted in harmful contaminations in environment and species. Based on a chlorpyrifos-degrading fungus Cladosporium cladosporioides strain Hu-01 (collection number: CCTCC M 20711), a fungal wettable powder preparation was developed aiming to efficiently remove chlorpyrifos residues from vegetables. The formula was determined to be 11.0% of carboxymethyl cellulose-Na, 9.0% of polyethylene glycol 6000, 5.0% of primary alcohol ethoxylate, 2.5% of glycine, 5.0% of fucose, 27.5% of kaolin and 40% of freeze dried fungi by response surface methodology (RSM). The results of quality inspection indicated that the fungal preparation could reach manufacturing standards. Finally, the degradation of chlorpyrifos by this fungal preparation was determined on pre-harvest cabbage. Compared to the controls without fungal preparation, the degradation of chlorpyrifos on cabbages, which was sprayed with the fungal preparation, was up to 91% after 7 d. These results suggested this freeze-dried fungal wettable powder may possess potential for biodegradation of chlorpyrifos residues on vegetables and provide a potential strategy for food and environment safety against pesticide residues.

  2. Gravimetric measurement of momentary drying rate of spray freeze-dried powders in vials.

    PubMed

    Gieseler, Henning; Lee, Geoffrey

    2009-09-01

    The profile of drying rate versus primary drying time for a spray freeze-dried trehalose aqueous solution is much different from that determined for regular freeze-drying. Drying rate declines very rapidly, attributed to rate-limiting heat transfer through the packed bed of frozen microparticles contained in a vial. The inter-particulate spaces appear to be the cause of this rate limitation. Use of either liquid nitrogen or liquid propane as a cryogenic produced strong differences in both SFD particle morphology and drying rate using trehalose, sucrose, or mannitol. The lack of any evident correlation supports the argument that the inter-particulate voids determine drying behavior.

  3. Novel Budesonide Particles for Dry Powder Inhalation Prepared Using a Microfluidic Reactor Coupled With Ultrasonic Spray Freeze Drying.

    PubMed

    Saboti, Denis; Maver, Uroš; Chan, Hak-Kim; Planinšek, Odon

    2017-07-01

    Budesonide (BDS) is a potent active pharmaceutical ingredient, often administered using respiratory devices such as metered dose inhalers, nebulizers, and dry powder inhalers. Inhalable drug particles are conventionally produced by crystallization followed by milling. This approach tends to generate partially amorphous materials that require post-processing to improve the formulations' stability. Other methods involve homogenization or precipitation and often require the use of stabilizers, mostly surfactants. The purpose of this study was therefore to develop a novel method for preparation of fine BDS particles using a microfluidic reactor coupled with ultrasonic spray freeze drying, and hence avoiding the need of additional homogenization or stabilizer use. A T-junction microfluidic reactor was employed to produce particle suspension (using an ethanol-water, methanol-water, and an acetone-water system), which was directly fed into an ultrasonic atomization probe, followed by direct feeding to liquid nitrogen. Freeze drying was the final preparation step. The result was fine crystalline BDS powders which, when blended with lactose and dispersed in an Aerolizer at 100 L/min, generated fine particle fraction in the range 47.6% ± 2.8% to 54.9% ± 1.8%, thus exhibiting a good aerosol performance. Subsequent sample analysis confirmed the suitability of the developed method to produce inhalable drug particles without additional homogenization or stabilizers. The developed method provides a viable solution for particle isolation in microfluidics in general. Copyright © 2017 American Pharmacists Association®. All rights reserved.

  4. Physicochemical interaction mechanism between nanoparticles and tetrasaccharides (stachyose) during freeze-drying.

    PubMed

    Kamiya, Seitaro; Nakashima, Kenichiro

    2017-12-01

    Nanoparticle suspensions are thermodynamically unstable and subject to aggregation. Freeze-drying on addition of saccharides is a useful method for preventing aggregation. In the present study, tetrasaccharides (stachyose) was employed as an additive. In addition, we hypothesize the interactive mechanism between stachyose and the nanoparticles during freeze-drying for the first time. The mean particle size of the rehydrated freeze-dried stachyose-containing nanoparticles (104.7 nm) was similar to the initial particle size before freeze-drying (76.8 nm), indicating that the particle size had been maintained. The mean particle size of the rehydrated normal-dried stachyose-containing nanoparticles was 222.2 nm. The powder X-ray diffraction of the freeze-dried stachyose-containing nanoparticles revealed a halo pattern. The powder X-ray diffraction of the normally dried stachyose-containing nanoparticles produced mainly a halo pattern and a partial peak. These results suggest an interaction between the nanoparticles and stachyose, and that this relationship depends on whether the mixture is freeze-dried or dried normally. In the case of normal drying, although most molecules cannot move rapidly thereby settling irregularly, some stachyose molecules can arrange regularly leading to some degree of crystallization and potentially some aggregation. In contrast, during freeze-drying, the moisture sublimed, while the stachyose molecules and nanoparticles were immobilized in the ice. After sublimation, stachyose remained in the space occupied by water and played the role of a buffer material, thus preventing aggregation.

  5. Inhibition of Listeria monocytogenes in Hot Dogs by Surface Application of Freeze-Dried Bacteriocin-Containing Powders from Lactic Acid Bacteria.

    PubMed

    Ünlü, Gülhan; Nielsen, Barbara; Ionita, Claudia

    2016-06-01

    Six lactic acid bacteria (LAB) strains, Lactococcus lactis BFE 920, L. lactis subsp. lactis ATCC 11454, L. lactis subsp. cremoris ATCC 14365, Lactobacillus curvatus L442, Lact. curvatus LTH 1174, and Lact. bavaricus MN, were grown in cheddar cheese whey supplemented with complex nutrient sources. Cell-free culture supernatants were freeze-dried, and the resulting bacteriocin-containing powders were applied on the surface of hot dogs that were inoculated (~4 log cfu/hot dog) with a five-strain Listeria monocytogenes cocktail. Hot dogs were vacuum-sealed and stored at 4 °C for 4 weeks. L. monocytogenes was enumerated, using both tryptic soy agar (TSA) and oxford listeria agar (OXA), on day 0 and at 1, 2, 3, and 4 weeks of the refrigerated storage. In hot dogs containing only the L. monocytogenes inoculum, L. monocytogenes counts increased from 4 up to 7 log cfu/hot dog. All samples containing freeze-dried bacteriocin-containing powders exhibited significantly lowered (P < 0.05) L. monocytogenes populations on the surface of hot dogs throughout the 4-week study except for bavaricin MN powder. Bacterial counts on hot dogs packed without any powder were statistically equal on day 0 when enumerated on OXA. Freeze-dried bacteriocin-containing powders from Lact. curvatus L442 and L. lactis subsp. cremoris ATCC 14365 decreased L. monocytogenes populations on the surface of hot dogs by greater than 2 log cfu/hot dog throughout the 4-week study. For the powdered bacteriocin preparations from L. lactis BFE 920, L. lactis subsp. lactis ATCC 11454, and Lact. curvatus LTH 1174, L. monocytogenes populations were determined to be approximately 3-log cfu/hot dog after 4 weeks of storage.

  6. Non-Caking Freeze Dried Applesauce

    DTIC Science & Technology

    A study was initiated to develop an applesauce which resists caking when subjected to elevated temperatures such as 37.7C. for two weeks and/or 57C...following results were obtained: (1) The degree of caking of the freeze dried applesauce powder was correlated with the amount of juice extracted. (2... applesauce powders. (3) Reducing sugars appear to be the factor contributing most significantly to the caking with the higher reducing sugar levels producing the higher degrees of caking.

  7. Synthesis of high-performance Li2FeSiO4/C composite powder by spray-freezing/freeze-drying a solution with two carbon sources

    NASA Astrophysics Data System (ADS)

    Fujita, Yukiko; Iwase, Hiroaki; Shida, Kenji; Liao, Jinsun; Fukui, Takehisa; Matsuda, Motohide

    2017-09-01

    Li2FeSiO4 is a promising cathode active material for lithium-ion batteries due to its high theoretical capacity. Spray-freezing/freeze-drying, a practical process reported for the synthesis of various ceramic powders, is applied to the synthesis of Li2FeSiO4/C composite powders and high-performance Li2FeSiO4/C composite powders are successfully synthesized by using starting solutions containing both Indian ink and glucose as carbon sources followed by heating. The synthesized composite powders have a unique structure, composed of Li2FeSiO4 nanoparticles coated with a thin carbon layer formed by the carbonization of glucose and carbon nanoparticles from Indian ink. The carbon layer enhances the electrochemical reactivity of the Li2FeSiO4, and the carbon nanoparticles play a role in the formation of electron-conducting paths in the cathode. The composite powders deliver an initial discharge capacity of 195 and 137 mAh g-1 at 0.1 C and 1 C, respectively, without further addition of conductive additive. The discharge capacity at 1 C is 72 mAh g-1 after the 100th cycle, corresponding to approximately 75% of the capacity at the 2nd cycle.

  8. Evaluation of Genotoxicity and 28-day Oral Dose Toxicity on Freeze-dried Powder of Tenebrio molitor Larvae (Yellow Mealworm).

    PubMed

    Han, So-Ri; Yun, Eun-Young; Kim, Ji-Young; Hwang, Jae Sam; Jeong, Eun Ju; Moon, Kyoung-Sik

    2014-06-01

    The larval form of Tenebrio molitor (T. molitor) has been eaten in many countries and provides benefits as a new food source of protein for humans. However, no information exists regarding its safety for humans. The objective of the present study was to evaluate the genotoxicity and repeated dose oral toxicity of the freeze-dried powder of T. molitor larvae. The genotoxic potential was evaluated by a standard battery testing: bacterial reverse mutation test, in vitro chromosome aberration test, and in vivo micronucleus test. To assess the repeated dose toxicity, the powder was administered once daily by oral gavage to Sprague-Dawley (SD) rats at dose levels of 0, 300, 1000 and 3000 mg/kg/day for 28 days. The parameters which were applied to the study were mortality, clinical signs, body and organ weights, food consumption, ophthalmology, urinalysis, hematology, serum chemistry, gross findings and histopathologic examination. The freezedried powder of T. molitor larvae was not mutagenic or clastogenic based on results of in vitro and in vivo genotoxicity assays. Furthermore, no treatment-related changes or findings were observed in any parameters in rats after 28 days oral administration. In conclusion, the freeze-dried powder of T. molitor larvae was considered to be non-genotoxic and the NOAEL (No Observed Adverse Effect Level) was determined to be 3000 mg/kg/day in both sexes of SD rats under our experimental conditions.

  9. Freeze-drying of silica nanoparticles: redispersibility toward nanomedicine applications.

    PubMed

    Picco, Agustin S; Ferreira, Larissa F; Liberato, Michelle S; Mondo, Gabriela B; Cardoso, Mateus B

    2018-01-01

    To study freeze-drying of silica nanoparticles (SiO 2 NPs) in order to find suitable conditions to produce lyophilized powders with no aggregation after resuspension and storage. SiO 2 NPs were synthesized using a Stöber-based procedure, and characterized by scanning electron microscopy, dynamic light scattering and nitrogen adsorption/desorption isotherms. SiO 2 NPs hydrodynamic diameters were compared prior and after freeze-drying in the presence/absence of carbohydrate protectants. Glucose was found to be the most suitable protectant against the detrimental effects of lyophilization. The minimum concentration of carbohydrate required to effectively protect SiO 2 NPs from aggregation during freeze-drying is influenced by the nanoparticle's size and texture. Negligible aggregation was observed during storage. Carbohydrates can be used during SiO 2 NPs freeze-drying process to obtain redispersable solids that maintain original sizes without residual aggregation.

  10. [Freeze drying process optimization of ginger juice-adjuvant for Chinese materia medica processing and stability of freeze-dried ginger juice powder].

    PubMed

    Yang, Chun-Yu; Guo, Feng-Qian; Zang, Chen; Cao, Hui; Zhang, Bao-Xian

    2018-02-01

    Ginger juice, a commonly used adjuvant for Chinese materia medica, is applied in processing of multiple Chinese herbal decoction pieces. Because of the raw materials and preparation process of ginger juice, it is difficult to be preserved for a long time, and the dosage of ginger juice in the processing can not be determined base on its content of main compositions. Ginger juice from different sources is hard to achieve consistent effect during the processing of traditional Chinese herbal decoction pieces. Based on the previous studies, the freeze drying of ginger juice under different shelf temperatures and vacuum degrees were studied, and the optimized freeze drying condition of ginger juice was determined. The content determination method for 6-gingerol, 8-gingerol, 10-gingerol and 6-shagaol in ginger juice and redissolved ginger juice was established. The content changes of 6-gingerol, 8-gingerol, 10-gingerol, 6-gingerol, 6-shagaol, volatile oil and total phenol were studied through the drying process and 30 days preservation period. The results showed that the freeze drying time of ginger juice was shortened after process optimization; the compositions basically remained unchanged after freeze drying, and there was no significant changes in the total phenol content and gingerol content, but the volatile oil content was significantly decreased( P <0.05). Within 30 days, the contents of gingerol, total phenol, and volatile oil were on the decline as a whole. This study has preliminarily proved the feasibility of freeze-drying process of ginger juice as an adjuvant for Chinese medicine processing. Copyright© by the Chinese Pharmaceutical Association.

  11. Freeze-dried powdered yacon: effects of FOS on serum glucose, lipids and intestinal transit in the elderly.

    PubMed

    Scheid, M M A; Genaro, P S; Moreno, Y M F; Pastore, G M

    2014-10-01

    Freeze-dried powdered yacon (FDY) can be considered a prebiotic product due to its fructooligosaccharides (FOS) content. The effect of 9 weeks of daily intake of FDY containing 7.4 g of FOS on glucose, lipid metabolism and intestinal transit in a group of elderly people was investigated. Seventy-two elderly (mean age 67.11 ± 6.11) men and women were studied for 9 weeks in a double-blind, placebo-controlled experiment. They were randomly assigned to the supplement group (which received 7.4 g of FOS as FDY) or the control group. At the beginning and end of the study, anthropometric measurements, blood sampling, clinical analyses and dietary intake were assessed. A daily intake of FDY containing 7.4 g of FOS for 9 weeks was associated with a mean decrease in serum glucose (p = 0.013), but supplementation did not reduce serum lipids in the study group. The administered dose did not adversely affect intestinal transit. It did not cause bloating, flatulence or intestinal discomfort. Freeze-dried powdered yacon is a good source of FOS, and daily consumption can have a favourable effect on serum glucose in the elderly. It is also practical, easy and safe to use and store.

  12. Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method.

    PubMed

    Sramek, Martin; Schweiggert, Ralf Martin; van Kampen, Andreas; Carle, Reinhold; Kohlus, Reinhard

    2015-08-01

    We present a rapid and gentle drying method for the production of high-grade tomato powders from double concentrated tomato paste, comparing results with powders obtained by foam mat air drying and freeze dried powders. The principle of this method consists of drying tomato paste in foamed state at low temperatures in vacuum. The formulations were dried at temperatures of 50, 60, and 70 °C and vacuum of 200 mbar. Foam stability was affected by low serum viscosity and the presence of solid particles in tomato paste. Consequently, serum viscosity was increased by maltodextrin addition, yielding optimum stability at tomato paste:maltodextrin ratio of 2.4:1 (w/w) in dry matter. Material foamability was improved by addition of 0.5% (w/w, fresh weight) egg white. Because of solid particles in tomato paste, foam air filling had to be limited to critical air volume fraction of Φ = 0.7. The paste was first pre-foamed to Φ = 0.2 and subsequently expanded in vacuo. After drying to a moisture content of 5.6% to 7.5% wet base (w.b.), the materials obtained were in glassy state. Qualities of the resulting powders were compared with those produced by freeze and air drying. Total color changes were the least after vacuum drying, whereas air drying resulted in noticeable color changes. Vacuum foam drying at 50 °C led to insignificant carotenoid losses, being equivalent to the time-consuming freeze drying method. In contrast, air drying caused lycopene and β-carotene losses of 18% to 33% and 14% to 19% respectively. Thus, vacuum foam drying enables production of high-grade tomato powders being qualitatively similar to powders obtained by freeze drying. © 2015 Institute of Food Technologists®

  13. Evaluation of Genotoxicity and 28-day Oral Dose Toxicity on Freeze-dried Powder of Tenebrio molitor Larvae (Yellow Mealworm)

    PubMed Central

    Han, So-Ri; Yun, Eun-Young; Kim, Ji-Young; Hwang, Jae Sam; Jeong, Eun Ju

    2014-01-01

    The larval form of Tenebrio molitor (T. molitor) has been eaten in many countries and provides benefits as a new food source of protein for humans. However, no information exists regarding its safety for humans. The objective of the present study was to evaluate the genotoxicity and repeated dose oral toxicity of the freeze-dried powder of T. molitor larvae. The genotoxic potential was evaluated by a standard battery testing: bacterial reverse mutation test, in vitro chromosome aberration test, and in vivo micronucleus test. To assess the repeated dose toxicity, the powder was administered once daily by oral gavage to Sprague-Dawley (SD) rats at dose levels of 0, 300, 1000 and 3000 mg/kg/day for 28 days. The parameters which were applied to the study were mortality, clinical signs, body and organ weights, food consumption, ophthalmology, urinalysis, hematology, serum chemistry, gross findings and histopathologic examination. The freezedried powder of T. molitor larvae was not mutagenic or clastogenic based on results of in vitro and in vivo genotoxicity assays. Furthermore, no treatment-related changes or findings were observed in any parameters in rats after 28 days oral administration. In conclusion, the freeze-dried powder of T. molitor larvae was considered to be non-genotoxic and the NOAEL (No Observed Adverse Effect Level) was determined to be 3000 mg/kg/day in both sexes of SD rats under our experimental conditions. PMID:25071922

  14. Freeze drying apparatus

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  15. Freeze drying method

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  16. Drying a tuberculosis vaccine without freezing.

    PubMed

    Wong, Yun-Ling; Sampson, Samantha; Germishuizen, Willem Andreas; Goonesekera, Sunali; Caponetti, Giovanni; Sadoff, Jerry; Bloom, Barry R; Edwards, David

    2007-02-20

    With the increasing incidence of tuberculosis and drug resistant disease in developing countries due to HIV/AIDS, there is a need for vaccines that are more effective than the present bacillus Calmette-Guérin (BCG) vaccine. We demonstrate that BCG vaccine can be dried without traditional freezing and maintained with remarkable refrigerated and room-temperature stability for months through spray drying. Studies with a model Mycobacterium (Mycobacterium smegmatis) revealed that by removing salts and cryoprotectant (e.g., glycerol) from bacterial suspensions, the significant osmotic pressures that are normally produced on bacterial membranes through droplet drying can be reduced sufficiently to minimize loss of viability on drying by up to 2 orders of magnitude. By placing the bacteria in a matrix of leucine, high-yield, free-flowing, "vial-fillable" powders of bacteria (including M. smegmatis and M. bovis BCG) can be produced. These powders show relatively minor losses of activity after maintenance at 4 degrees C and 25 degrees C up to and beyond 4 months. Comparisons with lyophilized material prepared both with the same formulation and with a commercial formulation reveal that the spray-dried BCG has better overall viability on drying.

  17. Fundamentals of freeze-drying.

    PubMed

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    Given the increasing importance of reducing development time for new pharmaceutical products, formulation and process development scientists must continually look for ways to "work smarter, not harder." Within the product development arena, this means reducing the amount of trial and error empiricism in arriving at a formulation and identification of processing conditions which will result in a quality final dosage form. Characterization of the freezing behavior of the intended formulation is necessary for developing processing conditions which will result in the shortest drying time while maintaining all critical quality attributes of the freeze-dried product. Analysis of frozen systems was discussed in detail, particularly with respect to the glass transition as the physical event underlying collapse during freeze-drying, eutectic mixture formation, and crystallization events upon warming of frozen systems. Experiments to determine how freezing and freeze-drying behavior is affected by changes in the composition of the formulation are often useful in establishing the "robustness" of a formulation. It is not uncommon for seemingly subtle changes in composition of the formulation, such as a change in formulation pH, buffer salt, drug concentration, or an additional excipient, to result in striking differences in freezing and freeze-drying behavior. With regard to selecting a formulation, it is wise to keep the formulation as simple as possible. If a buffer is needed, a minimum concentration should be used. The same principle applies to added salts: If used at all, the concentration should be kept to a minimum. For many proteins a combination of an amorphous excipient, such as a disaccharide, and a crystallizing excipient, such as glycine, will result in a suitable combination of chemical stability and physical stability of the freeze-dried solid. Concepts of heat and mass transfer are valuable in rational design of processing conditions. Heat transfer by conduction

  18. Total phenolics content, anthocyanins, and dietary fiber content of apple pomace powders produced by vacuum-belt drying.

    PubMed

    Yan, Huitong; Kerr, William L

    2013-04-01

    Apple pomace is a waste material from apple juice processing, and contains significant amounts of dietary fiber and phytochemicals. Many of these compounds may be degraded post-pressing and during drying operations. Continuous vacuum-belt drying (VBD) was studied as a means of drying and maintaining quality of apple pomace. The color and chemical properties of samples dried by vacuum-belt drying at different temperatures were evaluated including total phenolics content (TPC), monomeric anthocyanins (TMA) and dietary fiber content (TDF). VBD powders were pale golden yellow, and those dried at 80°C did not differ in L*, a* and b* values from freeze-dried powders. VBD pomace had 44.9 to 51.9 g gallic acid equivalents kg(-1) TPC, with greatest retention for pomace dried at 80 and 95°C. TPC for pomace dried at 80 or 95°C was not significantly different from that for freeze-dried pomace. TMA levels (74.0 mg C3G kg(-1), where C3G is cyanidine 3-O-glucoside equivalents) were highest in pomace vacuum dried at 80°C. TDF ranged from 442 to 495 g kg(-1) in vacuum-dried pomace and was not significantly different from TDF of freeze-dried poamce (480 g kg(-1)). In all cases, TPC, TMA and TDF were higher in VBD pomace than in freeze-dried whole apple, while VBD pomace prepared at 80 or 95°C had fiber and phytochemical levels similar to freeze-dried powders. © 2012 Society of Chemical Industry.

  19. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process.

    PubMed

    Grohganz, Holger; Lee, Yan-Ying; Rantanen, Jukka; Yang, Mingshi

    2013-04-15

    Freeze-drying and spray-drying are often applied drying techniques for biopharmaceutical formulations. The formation of different solid forms upon drying is often dependent on the complex interplay between excipient selection and process parameters. The purpose of this study was to investigate the influence of the chosen drying method on the solid state form. Mannitol-lysozyme solutions of 20mg/mL, with the amount of lysozyme varying between 2.5% and 50% (w/w) of total solid content, were freeze-dried and spray-dried, respectively. The resulting solid state of mannitol was analysed by near-infrared spectroscopy in combination with multivariate analysis and further, results were verified with X-ray powder diffraction. It was seen that the prevalence of the mannitol polymorphic form shifted from β-mannitol to δ-mannitol with increasing protein concentration in freeze-dried formulations. In spray-dried formulations an increase in protein concentration resulted in a shift from β-mannitol to α-mannitol. An increase in final drying temperature of the freeze-drying process towards the temperature of the spray-drying process did not lead to significant changes. It can thus be concluded that it is the drying process in itself, rather than the temperature, that leads to the observed solid state changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The immunogenicity of thin-film freeze-dried, aluminum salt-adjuvanted vaccine when exposed to different temperatures.

    PubMed

    Thakkar, Sachin G; Ruwona, Tinashe B; Williams, Robert O; Cui, Zhengrong

    2017-04-03

    Insoluble aluminum salts such as aluminum oxyhydroxide have been used for decades as adjuvants in human vaccines, and many vaccines contain aluminum salts as adjuvants. Aluminum salt-adjuvanted vaccines must be managed in cold-chain (2-8° C) during transport and storage, as vaccine antigens in general are too fragile to be stable in ambient temperatures, and unintentional slowing freezing causes irreversible aggregation and permanent damage to the vaccines. Previously, we reported that thin-film freeze-drying can be used to convert vaccines adjuvanted with an aluminum salt from liquid suspension into dry powder without causing particle aggregation or decreasing in immunogenicity following reconstitution. In the present study, using ovalbumin (OVA)-adsorbed Alhydrogel® (i.e. aluminum oxyhydroxide, 2% w/v) as a model vaccine, we showed that the immunogenicity of thin-film freeze-dried OVA-adsorbed Alhydrogel® vaccine powder was not significantly changed after it was exposed for an extended period of time in temperatures as high as 40° C or subjected to repeated slow freezing-and-thawing. It is expected that immunization programs can potentially benefit by integrating thin-film freeze-drying into vaccine preparations.

  1. The immunogenicity of thin-film freeze-dried, aluminum salt-adjuvanted vaccine when exposed to different temperatures

    PubMed Central

    Thakkar, Sachin G.; Ruwona, Tinashe B.; Williams, Robert O.; Cui, Zhengrong

    2017-01-01

    ABSTRACT Insoluble aluminum salts such as aluminum oxyhydroxide have been used for decades as adjuvants in human vaccines, and many vaccines contain aluminum salts as adjuvants. Aluminum salt-adjuvanted vaccines must be managed in cold-chain (2–8° C) during transport and storage, as vaccine antigens in general are too fragile to be stable in ambient temperatures, and unintentional slowing freezing causes irreversible aggregation and permanent damage to the vaccines. Previously, we reported that thin-film freeze-drying can be used to convert vaccines adjuvanted with an aluminum salt from liquid suspension into dry powder without causing particle aggregation or decreasing in immunogenicity following reconstitution. In the present study, using ovalbumin (OVA)-adsorbed Alhydrogel® (i.e. aluminum oxyhydroxide, 2% w/v) as a model vaccine, we showed that the immunogenicity of thin-film freeze-dried OVA-adsorbed Alhydrogel® vaccine powder was not significantly changed after it was exposed for an extended period of time in temperatures as high as 40° C or subjected to repeated slow freezing-and-thawing. It is expected that immunization programs can potentially benefit by integrating thin-film freeze-drying into vaccine preparations. PMID:28051903

  2. Solid Lipid Nanoparticle assemblies (SLNas) for an anti-TB inhalation treatment-A Design of Experiments approach to investigate the influence of pre-freezing conditions on the powder respirability.

    PubMed

    Maretti, Eleonora; Rustichelli, Cecilia; Romagnoli, Marcello; Balducci, Anna Giulia; Buttini, Francesca; Sacchetti, Francesca; Leo, Eliana; Iannuccelli, Valentina

    2016-09-10

    For direct intramacrophagic antitubercular therapy, pulmonary administration through Dry Powder Inhaler (DPI) devices is a reasonable option. For the achievement of efficacious aerosolisation, rifampicin-loaded Solid Lipid Nanoparticle assemblies (SLNas) were developed using the melt emulsifying technique followed by freeze-drying. Indeed, this drying method can cause freezing or drying stresses compromising powder respirability. It is the aim of this research to offer novel information regarding pre-freezing variables. These included type and concentration of cryoprotectants, pre-freezing temperature, and nanoparticle concentration in the suspension. In particular, the effects of such variables were observed at two main levels. First of all, on SLNas characteristics - i.e., size, polydispersity index, zeta-potential, circularity, density, and drug loading. Secondly, on powder respirability, taking into account aerodynamic diameter, emitted dose, and respirable fraction. Considering the complexity of the factors involved in a successful respirable powder, a Design of Experiments (DoE) approach was adopted as a statistical tool for evaluating the effect of pre-freezing conditions. Interestingly, the most favourable impact on powder respirability was exerted by quick-freezing combined with a certain grade of sample dilution before the pre-freezing step without the use of cryoprotectants. In such conditions, a very high SLNas respirable fraction (>50%) was achieved, along with acceptable yields in the final dry powder as well as a reduction of powder mass to be introduced into DPI capsules with benefits in terms of administered drug dose feasibility. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of Freeze-Dried Vegetable Products on the Technological Process and the Quality of Dry Fermented Sausages.

    PubMed

    Eisinaite, Viktorija; Vinauskiene, Rimante; Viskelis, Pranas; Leskauskaite, Daiva

    2016-09-01

    The aim of this study was to compare the chemical composition of freeze-dried vegetable powders: celery, celery juice, parsnip and leek. The effect of different freeze-dried vegetables onto the ripening process and the properties of dry fermented sausages was also evaluated. Vegetable products significantly (p < 0.05) differed in their chemical composition: celery products contained higher amounts of nitrates, total phenolic compounds and lower amounts of sucrose, parsnip had higher concentration of proteins, leek was rich in fat. The analysis of pH, water activity, lactic acid bacteria, coagulase-positive staphylococci and coliforms content showed that the incorporation of freeze-dried vegetables had no negative effect on the fermentation and ripening process of dry fermented sausages. In addition, the color parameters for sausages with the added lyophilised celery products were considerable (p < 0.05) more stable during these processes. At the end of the ripening process the sausages made with lyophilised celery juice were characterised by higher lightness and lower hardness than those made with the addition of other vegetable products and control. Freeze-dried celery, celery juice, parsnip and leek have some potential for the usage as a functional ingredient or as a source for indirect addition of nitrate in the production of fermented sausages. © 2016 Institute of Food Technologists®

  4. Characterisation of Aronia powders obtained by different drying processes.

    PubMed

    Horszwald, Anna; Julien, Heritier; Andlauer, Wilfried

    2013-12-01

    Nowadays, food industry is facing challenges connected with the preservation of the highest possible quality of fruit products obtained after processing. Attention has been drawn to Aronia fruits due to numerous health promoting properties of their products. However, processing of Aronia, like other berries, leads to difficulties that stem from the preparation process, as well as changes in the composition of bioactive compounds. Consequently, in this study, Aronia commercial juice was subjected to different drying techniques: spray drying, freeze drying and vacuum drying with the temperature range of 40-80 °C. All powders obtained had a high content of total polyphenols. Powders gained by spray drying had the highest values which corresponded to a high content of total flavonoids, total monomeric anthocyanins, cyaniding-3-glucoside and total proanthocyanidins. Analysis of the results exhibited a correlation between selected bioactive compounds and their antioxidant capacity. In conclusion, drying techniques have an impact on selected quality parameters, and different drying techniques cause changes in the content of bioactives analysed. Spray drying can be recommended for preservation of bioactives in Aronia products. Powder quality depends mainly on the process applied and parameters chosen. Therefore, Aronia powders production should be adapted to the requirements and design of the final product. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Microencapsulation of Natural Anthocyanin from Purple Rosella Calyces by Freeze Drying

    NASA Astrophysics Data System (ADS)

    Nafiunisa, A.; Aryanti, N.; Wardhani, D. H.; Kumoro, A. C.

    2017-11-01

    Anthocyanin extract in powder form will improve its use since the powder is easier to store and more applicable. Microencapsulation method is introduced as an efficient way for protecting pigment such as anthocyanin. This research was aimed to characterise anthocyanin encapsulated products prepared from purple Roselle calyces by freeze drying. The liquid anthocyanin extracts from ultrasound-assisted extraction were freeze-dried with and without the addition of 10% w/w maltodextrins as a carrier and coating agents. The quality attributes of the powders were characterised by their colour intensity, water content, and solubility. Analysis of encapsulated material was performed for the powder added by maltodextrin. The stability of the microencapsulated pigment in solution form was determined for 11 days. Total anthocyanin content was observed through pH differential method. The results of the colour intensity analysis confirm that the product with maltodextrin addition has more intense colour with L* value of 29.69 a* value of 54.29 and b* value of 8.39. The result with the addition of maltodextrin has less moisture content and more soluble in water. It is verified that better results were obtained for powder with maltodextrin addition. Anthocyanin in the powder form with maltodextrin addition exhibits higher stability even after 11 days. In conclusion, the microencapsulation of anthocyanin with maltodextrin as a carrier and coating agent presented a potential method to produce anthocyanin powder from purple Roselle.

  6. Stability Studies of a Freeze-Dried Recombinant Human Epidermal Growth Factor Formulation for Wound Healing.

    PubMed

    Santana, Héctor; García, Gerardo; Vega, Maribel; Beldarraín, Alejandro; Páez, Rolando

    2015-01-01

    We report on the stability assessment of a recombinant human epidermal growth factor (rhEGF) freeze-dried formulation for wound healing by intra-lesional injections. The suitability of packaging material for the light protection of finished dried powder was evaluated after stressed exposure conditions. Degradation kinetics of powder for injection was investigated at concentrations of 25-250 μg/vial and temperatures of 45, 60, and 70 °C. The long-term stability was evaluated after storage at 25 ± 2 °C/60 ± 5% relative humidity (6 months) and 2-8 °C (24 months) in the dark and analyzed at several time points. The stability after reconstitution with various diluents was also assessed after 24 h storage at 2-8 °C. The rhEGF samples were analyzed for structural integrity by reversed-phase high-performance liquid chromatography (RP-HPLC), size-exclusion HPLC, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Biological activity was investigated by measuring the cell proliferation in a murine fibroblast cell line. Results show that freeze-dried rhEGF in primary packaging only was photosensitive, as degradation by RP-HPLC that was completely suppressed by the secondary carton package was revealed. An increase in freeze-dried rhEGF stability was observed with the increase in protein concentration from 25 to 250 μg/vial. The long-term stability study showed no significant rhEGF degradation or physical change within the freeze-dried formulations containing 25 or 250 μg/vial of rhEGF. No physical, chemical or biological changes were observed for rhEGF after reconstitution in water for injection or 0.9% sodium chloride during the storage conditions studied. The stability of a recombinant human epidermal growth factor (rhEGF) freeze-dried formulation for wound healing by intra-lesional injections was assessed. The suitability of packaging material for the light protection of finished dried powder was evaluated after stressed exposure conditions

  7. Freeze-dried spermatozoa: A future tool?

    PubMed

    Olaciregui, M; Gil, L

    2017-04-01

    Cryopreservation has been routinely used to preserve sperm of human and different animal species. However, frozen sperm storage for a long time brings many inconveniences because of liquid nitrogen. Many attempts have been made to overcome the disadvantages of the current cryopreservation method. Freeze-drying has been proposed as alternative method for sperm preservation to achieve the ability to store sperm doses indefinitely at ambient temperature or in ordinary refrigerators. At present, it has been reported successfully sperm freeze-drying on many animal species including canine and feline. It is well known that during freeze-drying process, sperm DNA could be damaged, but if suitable protection is provided, the sperm nucleus could preserve the ability to activate the oocyte and embryos could be generated by intracytoplasmic sperm injection (ICSI). Many factors influence the freeze-drying efficacy, so current researches have been conducted to find strategies to control these factors to maintain the sperm DNA integrity. This review describes the latest method of sperm freeze-drying for practical application in preserving and transporting genetic resources. In addition, the approaches to improve the efficiency of the technique were studied. We demonstrated that the DNA integrity of freeze-dried dog sperm is affected by the composition of the freeze-drying solution as well as the temperature and period of storage. Further studies are necessary to refine freeze-drying protocol in order to protect the DNA and maintain the sperm functionality and obtain offspring from freeze-dried sperm. © 2016 Blackwell Verlag GmbH.

  8. Pharmaceutical patent applications in freeze-drying.

    PubMed

    Ekenlebie, Edmond; Einfalt, Tomaž; Karytinos, Arianna Irò; Ingham, Andrew

    2016-09-01

    Injectable products are often the formulation of choice for new therapeutics; however, formulation in liquids often enhances degradation through hydrolysis. Thus, freeze-drying (lyophilization) is regularly used in pharmaceutical manufacture to reduce water activity. Here we examine its contribution to 'state of the art' and look at its future potential uses. A comprehensive search of patent databases was conducted to characterize the international patent landscape and trends in the use of freeze-drying. A total of 914 disclosures related to freeze-drying, lyophilization or drying of solid systems in pressures and temperatures equivalent to those of freeze-drying were considered over the period of 1992-2014. Current applications of sublimation technology were contrasted across two periods those with patents due to expire (1992-1993) and those currently filed. The number of freeze-drying technology patents has stabilized after initial activity across the biotechnology sector in 2011 and 2012. Alongside an increasing trend for patent submissions, freeze-drying submissions have slowed since 2002 and is indicative of a level of maturity.

  9. Atmospheric Spray Freeze-Drying: Numerical Modeling and Comparison With Experimental Measurements.

    PubMed

    Borges Sebastião, Israel; Robinson, Thomas D; Alexeenko, Alina

    2017-01-01

    Atmospheric spray freeze-drying (ASFD) represents a novel approach to dry thermosensitive solutions via sublimation. Tests conducted with a second-generation ASFD equipment, developed for pharmaceutical applications, have focused initially on producing a light, fine, high-grade powder consistently and reliably. To better understand the heat and mass transfer physics and drying dynamics taking place within the ASFD chamber, 3 analytical models describing the key processes are developed and validated. First, by coupling the dynamics and heat transfer of single droplets sprayed into the chamber, the velocity, temperature, and phase change evolutions of these droplets are estimated for actual operational conditions. This model reveals that, under typical operational conditions, the sprayed droplets require less than 100 ms to freeze. Second, because understanding the heat transfer throughout the entire freeze-drying process is so important, a theoretical model is proposed to predict the time evolution of the chamber gas temperature. Finally, a drying model, calibrated with hygrometer measurements, is used to estimate the total time required to achieve a predefined final moisture content. Results from these models are compared with experimental data. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray-freeze drying method.

    PubMed

    Hundre, Swetank Y; Karthik, P; Anandharamakrishnan, C

    2015-05-01

    Vanillin flavour is highly volatile in nature and due to that application in food incorporation is limited; hence microencapsulation of vanillin is an ideal technique to increase its stability and functionality. In this study, vanillin was microencapsulated for the first time by non-thermal spray-freeze-drying (SFD) technique and its stability was compared with other conventional techniques such as spray drying (SD) and freeze-drying (FD). Different wall materials like β-cyclodextrin (β-cyd), whey protein isolate (WPI) and combinations of these wall materials (β-cyd + WPI) were used to encapsulate vanillin. SFD microencapsulated vanillin with WPI showed spherical shape with numerous fine pores on the surface, which in turn exhibited good rehydration ability. On the other hand, SD powder depicted spherical shape without pores and FD encapsulated powder yielded larger particle sizes with flaky structure. FTIR analysis confirmed that there was no interaction between vanillin and wall materials. Moreover, spray-freeze-dried vanillin + WPI sample exhibited better thermal stability than spray dried and freeze-dried microencapsulated samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A Method of Lyophilizing Vaccines Containing Aluminum Salts into a Dry Powder Without Causing Particle Aggregation or Decreasing the Immunogenicity Following Reconstitution

    PubMed Central

    Li, Xinran; Thakkar, Sachin G.; Ruwona, Tinashe B.; Williams, Robert O.; Cui, Zhengrong

    2015-01-01

    Many currently licensed and commercially available human vaccines contain aluminum salts as vaccine adjuvants. A major limitation with these vaccines is that they must not be exposed to freezing temperatures during transport or storage such that the liquid vaccine freezes, because freezing causes irreversible coagulation that damages the vaccines (e.g., loss of efficacy). Therefore, vaccines that contain aluminum salts as adjuvants are formulated as liquid suspensions and are required to be kept in cold chain (2–8°C) during transport and storage. Formulating vaccines adjuvanted with aluminum salts into dry powder that can be readily reconstituted before injection may address the limitation. Spray freeze-drying of vaccines with low concentrations of aluminum salts and high concentrations of trehalose alone, or a mixture of sugars and amino acids, as excipients can convert vaccines containing aluminum salts into dry powder, but fails to preserve the particle size and/or immunogenicity of the vaccines. In the present study, using ovalbumin as a model antigen adsorbed onto aluminum hydroxide or aluminum phosphate, a commercially available tetanus toxoid vaccine adjuvanted with potassium alum, a human hepatitis B vaccine adjuvanted with aluminum hydroxide, and a human papillomavirus vaccine adjuvanted with aluminum hydroxyphosphate sulfate, it was shown that vaccines containing a relatively high concentration of aluminum salts (i.e., up to ~1%, w/v, of aluminum hydroxide) can be converted into a dry powder by thin-film freezing followed by removal of the frozen solvent by lyophilization while using low levels of trehalose (i.e., as low as 2% w/v) as an excipient. Importantly, the thin-film freeze-drying process did not cause particle aggregation, nor decreased the immunogenicity of the vaccines. Moreover, repeated freezing-and-thawing of the dry vaccine powder did not cause aggregation. Thin-film freeze-drying is a viable platform technology to produce dry powders of

  12. Characteristics of sugar surfactants in stabilizing proteins during freeze-thawing and freeze-drying.

    PubMed

    Imamura, Koreyoshi; Murai, Katsuyuki; Korehisa, Tamayo; Shimizu, Noriyuki; Yamahira, Ryo; Matsuura, Tsutashi; Tada, Hiroko; Imanaka, Hiroyuki; Ishida, Naoyuki; Nakanishi, Kazuhiro

    2014-06-01

    Sugar surfactants with different alkyl chain lengths and sugar head groups were compared for their protein-stabilizing effect during freeze-thawing and freeze-drying. Six enzymes, different in terms of tolerance against inactivation because of freeze-thawing and freeze-drying, were used as model proteins. The enzyme activities that remained after freeze-thawing and freeze-drying in the presence of a sugar surfactant were measured for different types and concentrations of sugar surfactants. Sugar surfactants stabilized all of the tested enzymes both during freeze-thawing and freeze-drying, and a one or two order higher amount of added sugar surfactant was required for achieving protein stabilization during freeze-drying than for the cryoprotection. The comprehensive comparison showed that the C10-C12 esters of sucrose or trehalose were the most effective through the freeze-drying process: the remaining enzyme activities after freeze-thawing and freeze-drying increased at the sugar ester concentrations of 1-10 and 10-100 μM, respectively, and increased to a greater extent than for the other surfactants at higher concentrations. Results also indicate that, when a decent amount of sugar was also added, the protein-stabilizing effect of a small amount of sugar ester through the freeze-drying process could be enhanced. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Physicochemical properties of whole fruit plum powders obtained using different drying technologies.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Lech, Krzysztof; Łysiak, Grzegorz P; Figiel, Adam

    2016-09-15

    Physicochemical quality parameters of plum powders obtained by applying conventional drying methods and their combination devised to process plums were evaluated. The effect of freeze-drying (FD), vacuum drying (VD), convective drying (CD), microwave-vacuum drying (MVD) and combination of convective pre-drying and microwave finish-drying (CPD-MVFD) affected physical (bulk density, porosity, colour, solubility) and chemical (polyphenolic compounds determined by UPLC and antioxidant capacity by TEAC ABTS and FRAP methods) properties of plum powders. The MVD at 1.2 W g(-1) and a novel combination for plum powders production - CPD-MVFD at 70 °C/1.2 W g(-1) allowed the best preservation of phenolic compounds and increased the efficiency of production. Results obtained support the use of MVD and its combination for better quality of dried plum products. The study proved that the determination of the browning index and HMF level (formed via Maillard reaction) might be good tool for monitoring the thermal processing of plum powders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Freeze-drying of lactic acid bacteria.

    PubMed

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery.

  15. Freeze-Drying of Plant Tissue Containing HBV Surface Antigen for the Oral Vaccine against Hepatitis B

    PubMed Central

    Milczarek, Magdalena; Pajtasz-Piasecka, Elżbieta; Wietrzyk, Joanna

    2014-01-01

    The aim of this study was to develop a freeze-drying protocol facilitating successful processing of plant material containing the small surface antigen of hepatitis B virus (S-HBsAg) while preserving its VLP structure and immunogenicity. Freeze-drying of the antigen in lettuce leaf tissue, without any isolation or purification step, was investigated. Each process step was consecutively evaluated and the best parameters were applied. Several drying profiles and excipients were tested. The profile of 20°C for 20 h for primary and 22°C for 2 h for secondary drying as well as sucrose expressed efficient stabilisation of S-HBsAg during freeze-drying. Freezing rate and postprocess residual moisture were also analysed as important factors affecting S-HBsAg preservation. The process was reproducible and provided a product with VLP content up to 200 µg/g DW. Assays for VLPs and total antigen together with animal immunisation trials confirmed preservation of antigenicity and immunogenicity of S-HBsAg in freeze-dried powder. Long-term stability tests revealed that the stored freeze-dried product was stable at 4°C for one year, but degraded at elevated temperatures. As a result, a basis for an efficient freeze-drying process has been established and a suitable semiproduct for oral plant-derived vaccine against HBV was obtained. PMID:25371900

  16. Characteristics and functionality of appetite-reducing thylakoid powders produced by three different drying processes.

    PubMed

    Östbring, Karolina; Sjöholm, Ingegerd; Sörenson, Henrietta; Ekholm, Andrej; Erlanson-Albertsson, Charlotte; Rayner, Marilyn

    2018-03-01

    Thylakoids, a chloroplast membrane extracted from green leaves, are a promising functional ingredient with appetite-reducing properties via their lipase-inhibiting effect. Thylakoids in powder form have been evaluated in animal and human models, but no comprehensive study has been conducted on powder characteristics. The aim was to investigate the effects of different isolation methods and drying techniques (drum-drying, spray-drying, freeze-drying) on thylakoids' physicochemical and functional properties. Freeze-drying yielded thylakoid powders with the highest lipase-inhibiting capacity. We hypothesize that the specific macromolecular structures involved in lipase inhibition were degraded to different degrees by exposure to heat during spray-drying and drum-drying. We identified lightness (Hunter's L-value), greenness (Hunter's a-value), chlorophyll content and emulsifying capacity to be correlated to lipase-inhibiting capacity. Thus, to optimize the thylakoids functional properties, the internal membrane structure indicated by retained green colour should be preserved. This opens possibilities to use chlorophyll content as a marker for thylakoid functionality in screening processes during process optimization. Thylakoids are heat sensitive, and a mild drying technique should be used in industrial production. Strong links between physicochemical parameters and lipase inhibition capacity were found that can be used to predict functionality. The approach from this study can be applied towards production of standardized high-quality functional food ingredients. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Mechanisms of deterioration of nutrients. [of freeze dried foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1976-01-01

    Methods which produce freeze dried foods of improved quality were examined with emphasis on storage stability. Specific topics discussed include: microstructure of freeze dried systems, investigation of structural changes in freeze dried systems, artificial food matrices, osmotic preconcentration to yield improved quality freeze dried fruits, and storage stability of osmotically preconcentrated freeze dried fruits.

  18. Production of freeze-dried yeast culture for the brewing of traditional sorghum beer, tchapalo.

    PubMed

    N'Guessan, Florent K; Coulibaly, Hermann W; Alloue-Boraud, Mireille W A; Cot, Marlène; Djè, Koffi Marcellin

    2016-01-01

    Freeze-drying is a well-known dehydration method widely used to preserve microorganisms. In order to produce freeze-dried yeast starter culture for the brewing purpose of African sorghum beer, we tested protective agents (sucrose, glucose, glycerol) in combination with support materials (millet, maize, sorghum, and cassava flours) at 1:1 ratio (v/v). The yeast strains Saccharomyces cerevisiae F 12-7 and Candida tropicalis C 0-7 previously isolated from sorghum beer were used in a mixed culture at a ratio of 2:1 (C. tropicalis/S. cerevisiae). After the freeze-drying, the residual water contents were between 0.78 -2.27%, 0.55 -4.09%, and 0.40-2.61%, respectively, with sucrose, glucose and glycerol. The dried yeasts viabilities were between 4.0% and 10.6%. Among the protective agents used, sucrose was found to be the best protectant giving cell viabilities of 8.4-10.6%. Considering the support materials, millet flour was the best support after drying. When the freeze-dried yeast powders were stored at 4°C and room temperature (25-28°C) for up to 3 months, the survival rates were the highest with cassava flour as the support material.

  19. Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, A.; Villanueva, R.; Vie, D.

    2013-01-15

    Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and themore » nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures. - Graphical abstract: Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders by thermal decomposition of precursors obtained by freeze-drying, and this synthetic procedure has been scaled up to the 100 g scale. Highlights: Black-Right-Pointing-Pointer Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders. Black-Right-Pointing-Pointer The synthetic method involves the thermal decomposition of precursors obtained by freeze-drying. Black-Right-Pointing-Pointer The temperature of the thermal treatment controls particle sizes. Black-Right-Pointing-Pointer The preparation procedure has been scaled up to the 100 g scale. Black-Right-Pointing-Pointer This method is appropriate for the large-scale industrial preparation of multimetallic systems.« less

  20. Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying.

    PubMed

    Jiang, Hao; Zhang, Min; Mujumdar, Arun S; Lim, Rui-Xin

    2014-07-01

    To overcome the flaws of high energy consumption of freeze drying (FD) and the non-uniform drying of microwave freeze drying (MFD), pulse-spouted microwave vacuum drying (PSMVD) was developed. The results showed that the drying time can be dramatically shortened if microwave was used as the heating source. In this experiment, both MFD and PSMVD could shorten drying time by 50% as compared to the FD process. Depending on the heating method, MFD and PSMVD dried banana cubes showed trends of expansion while FD dried samples demonstrated trends of shrinkage. Shrinkage also brought intensive structure and highest fracturability of all three samples dried by different methods. The residual ascorbic acid content of PSMVD dried samples can be as high as in FD dried samples, which were superior to MFD dried samples. The tests confirmed that PSMVD could bring about better drying uniformity than MFD. Besides, compared with traditional MFD, PSMVD can provide better extrinsic feature, and can bring about improved nutritional features because of the higher residual ascorbic acid content. © 2013 Society of Chemical Industry.

  1. Application of Freeze-Dried Powders of Genetically Engineered Microbial Strains as Adsorbents for Rare Earth Metal Ions.

    PubMed

    Moriwaki, Hiroshi; Masuda, Reiko; Yamazaki, Yuki; Horiuchi, Kaoru; Miyashita, Mari; Kasahara, Jun; Tanaka, Tatsuhito; Yamamoto, Hiroki

    2016-10-12

    The adsorption behaviors of the rare earth metal ions onto freeze-dried powders of genetically engineered microbial strains were compared. Cell powders obtained from four kinds of strains, Bacillus subtilis 168 wild type (WT), lipoteichoic acid-defective (ΔLTA), wall teichoic acid-defective (ΔWTA), and cell wall hydrolases-defective (EFKYOJLp) strains, were used as an adsorbent of the rare earth metal ions at pH 3. The adsorption ability of the rare earth metal ions was in the order of EFKYOJLp > WT > ΔLTA > ΔWTA. The order was the same as the order of the phosphorus quantity of the strains. This result indicates that the main adsorption sites for the ions are the phosphate groups and the teichoic acids, LTA and WTA, that contribute to the adsorption of the rare earth metal ions onto the cell walls. The contribution of WTA was clearly greater than that of LTA. Each microbial powder was added to a solution containing 16 kinds of rare earth metal ions, and the removals (%) of each rare earth metal ion were obtained. The scandium ion showed the highest removal (%), while that of the lanthanum ion was the lowest for all the microbial powders. Differences in the distribution coefficients between the kinds of lanthanide ions by the EFKYOJLp and ΔWTA powders were greater than those of the other strains. Therefore, the EFKYOJLp and ΔWTA powders could be applicable for the selective extraction of the lanthanide ions. The ΔLTA powder coagulated by mixing with a rare earth metal ion, although no sedimentation of the WT or ΔWTA powder with a rare earth metal ion was observed under the same conditions. The EFKYOJLp powder was also coagulated, but its flocculating activity was lower than that of ΔLTA. The ΔLTA and EFKYOJLp powders have a long shape compared to those of the WT or ΔWTA strain. The shapes of the cells will play an important role in the sedimentation of the microbial powders with rare earth metal ions. As the results, three kinds of the genetically

  2. Antioxidant and anti-inflammatory activities of freeze-dried grapefruit phenolics as affected by gum arabic and bamboo fibre addition and microwave pretreatment.

    PubMed

    García-Martínez, Eva; Andújar, Isabel; Yuste Del Carmen, Alberto; Prohens, Jaime; Martínez-Navarrete, Nuria

    2018-06-01

    Recent epidemiological studies have suggested that phenolic compounds present in grapefruit play an important role in the bioactive properties of this fruit. However, the consumption of fresh grapefruit is low. Freeze-dried powdered grapefruit can be an alternative to promote this fruit consumption. To improve the quality and stability of the powdered fruit, encapsulating and anticaking agents can be added. In the present study, different grapefruit powders obtained by freeze-drying with the addition of gum arabic (1.27 g per 100 g) and bamboo fibre (0.76 g per 100 g) with and without a pre-drying microwave treatment were compared with the fresh and freeze-dried fruit with no carriers added, aiming to evaluate the effect of these preservation processes on phenolics content and on its antioxidant [1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and ferric reducing ability of plasma (FRAP)] and anti-inflamatory (evaluated in RAW 264.7 macrophages) capacities. Freeze-drying and gum arabic and bamboo fibre addition significantly increased total phenolics, as well as the antioxidant and anti-inflammatory activities (by inhibiting nitric oxide production of lipopolysaccharide activated RAW 264.7 macrophages), of grapefruit. An additional increase in these parameters was obtained with microwave pretreatment before freeze-drying. The combined addition of gum arabic and bamboo fibre to grapefruit puree and the application of a microwave pretreatment improve the functional properties of the fruit without showing cytotoxicity in vitro. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Protective effect of sugars on storage stability of microwave freeze-dried and freeze-dried Lactobacillus paracasei F19.

    PubMed

    Ambros, S; Hofer, F; Kulozik, U

    2018-05-31

    Microwave freeze drying in comparison to conventional freeze drying allows for intensification of the preservation process of lactic acid bacteria without imposing additional processing stress. Viability as a function of storage time of microwave freeze-dried Lactobacillus paracasei ssp. paracasei F19 was investigated in comparison to conventionally lyophilized bacteria of the same strain. Further, the impact of the protectants, sorbitol, trehalose and maltodextrin, on shelf life was analyzed. The highest inactivation rates of 0.035 and 0.045 d -1 , respectively, were found for cultures without protectants. Thus, all additives were found to exhibit a protective effect during storage with inactivation rates between 0.015 and 0.040 d -1 . Although trehalose and maltodextrin samples were in the glassy state during storage, in contrast to samples containing sorbitol as protectant, the best protective effect could be found for sorbitol with the lowest inactivation rate of 0.015 d -1 . Due to its low molecular weight, it might protect cells owing to better adsorption to the cytoplasma membrane. Sorbitol additionally shows antioxidative properties. Storage behavior of microwave freeze-dried cultures follows the typical behavior of a product dried by conventional lyophilization. No significant influence of the drying technique on storage behavior was detected. General findings concerning storage behavior in freeze drying are likely to be applicable in microwave freeze drying with only slight adjustments. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer.

    PubMed

    Tang, Xiaolin Charlie; Nail, Steven L; Pikal, Michael J

    2005-04-01

    To develop a procedure based on manometric temperature measurement (MTM) and an expert system for good practices in freeze drying that will allow development of an optimized freeze-drying process during a single laboratory freeze-drying experiment. Freeze drying was performed with a FTS Dura-Stop/Dura-Top freeze dryer with the manometric temperature measurement software installed. Five percent solutions of glycine, sucrose, or mannitol with 2 ml to 4 ml fill in 5 ml vials were used, with all vials loaded on one shelf. Details of freezing, optimization of chamber pressure, target product temperature, and some aspects of secondary drying are determined by the expert system algorithms. MTM measurements were used to select the optimum shelf temperature, to determine drying end points, and to evaluate residual moisture content in real-time. MTM measurements were made at 1 hour or half-hour intervals during primary drying and secondary drying, with a data collection frequency of 4 points per second. The improved MTM equations were fit to pressure-time data generated by the MTM procedure using Microcal Origin software to obtain product temperature and dry layer resistance. Using heat and mass transfer theory, the MTM results were used to evaluate mass and heat transfer rates and to estimate the shelf temperature required to maintain the target product temperature. MTM product dry layer resistance is accurate until about two-thirds of total primary drying time is over, and the MTM product temperature is normally accurate almost to the end of primary drying provided that effective thermal shielding is used in the freeze-drying process. The primary drying times can be accurately estimated from mass transfer rates calculated very early in the run, and we find the target product temperature can be achieved and maintained with only a few adjustments of shelf temperature. The freeze-dryer overload conditions can be estimated by calculation of heat/mass flow at the target product

  5. Spray-Freeze Drying: a Suitable Method for Aerosol Delivery of Antibodies in the Presence of Trehalose and Cyclodextrins.

    PubMed

    Pouya, Maryam Amini; Daneshmand, Behnaz; Aghababaie, Shabnam; Faghihi, Homa; Vatanara, Alireza

    2018-05-08

    We aimed to prepare spray-freeze-dried powder of IgG considering physicochemical stability and aerodynamic aspects. Spray-freeze drying (SFD) exposes proteins to various stresses which should be compensated by suitable stabilizers. The competence of cyclodextrins (CDs), namely beta-cyclodextrin (βCD) and hydroxypropyl βCD (HPβCD), at very low concentrations, was investigated in the presence of separate mannitol- and trehalose-based formulations. Spray-freeze-dried preparations were quantified in terms of monomer recovery and conformation by size exclusion chromatography (SEC-HPLC) and Fourier transform infrared (FTIR) spectroscopy, respectively. Differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) were employed to identify the thermal characteristics of powders. Particle morphology was visualized by scanning electron microscopy (SEM). Aerodynamic behavior of powders was checked through an Anderson cascade impactor (ACI). Although all formulations protected antibody from aggregation during the SFD process (aggregation < 1%), mannitol-containing ones failed upon the storage (19.54% in the worst case). Trehalose-HPβCD incomparably preserved the formulation with fine particle fraction (FPF) of 51.29%. Crystallization of mannitol resulted in IgG destabilization upon storage. Although employed concentration of CDs is too low (less than 50:1 molar ratio to protein), they successfully served as stabilizing agents in SFD with perfect improvement in aerosol functionality. Graphical Abstract ᅟ.

  6. Combination Chemotherapeutic Dry Powder Aerosols via Controlled Nanoparticle Agglomeration

    PubMed Central

    El-Gendy, Nashwa; Berkland, Cory

    2014-01-01

    Purpose To develop an aerosol system for efficient local lung delivery of chemotherapeutics where nanotechnology holds tremendous potential for developing more valuable cancer therapies. Concurrently, aerosolized chemotherapy is generating interest as a means to treat certain types of lung cancer more effectively with less systemic exposure to the compound. Methods Nanoparticles of the potent anticancer drug, paclitaxel, were controllably assembled to form low density microparticles directly after preparation of the nanoparticle suspension. The amino acid, L-leucine, was used as a colloid destabilizer to drive the assembly of paclitaxel nanoparticles. A combination chemotherapy aerosol was formed by assembling the paclitaxel nanoparticles in the presence of cisplatin in solution. Results Freeze-dried powders of the combination chemotherapy possessed desirable aerodynamic properties for inhalation. In addition, the dissolution rates of dried nanoparticle agglomerate formulations (~60% to 66% after 8 h) were significantly faster than that of micronized paclitaxel powder as received (~18% after 8 h). Interestingly, the presence of the water soluble cisplatin accelerated the dissolution of paclitaxel. Conclusions Nanoparticle agglomerates of paclitaxel alone or in combination with cisplatin may serve as effective chemotherapeutic dry powder aerosols to enable regional treatment of certain lung cancers. PMID:19415471

  7. References on Compression of Freeze-Dried Foods

    DTIC Science & Technology

    1978-08-01

    ready-to-eat, freeze-dried scrambled egg . Swift and Co., Contract No. DA 19- 129-AMC-121. 67-49-FD (FD-54). January 1967 (AD 650637). In the design...significantly poorer in organoleptic properties than from grades A and B eggs. Freeze- dried scrambled egg packed in cans kept better in storage than when...scrambled, cooked, freeze-dried whole egg product was developed which possessed the appearance, aroma, flavor and texture similar to pan- fried scrambled

  8. Freeze-drying of yeast cultures.

    PubMed

    Bond, Chris

    2007-01-01

    A method is described that allows yeast species to be stored using a variation on the standard freeze-drying method, which employs evaporative cooling in a two-stage process. Yeast cultures are placed in glass ampoules after having been mixed with a lyoprotectant. Primary drying is carried out using a centrifuge head connected to a standard freeze-dryer. Once the centrifuge head is running, air is removed and evaporated liquid is captured in the freeze-dryer. Centrifugation continues for 15 min and primary drying for a further 3 h. The ampoules are constricted using a glass blowing torch. They are then placed on the freeze-dryer manifold for secondary drying under vacuum overnight, using phosphorus pentoxide as a desiccant. The ampoules are sealed and removed from the manifold by melting the constricted section. Although the process causes an initial large drop in viability, further losses after storage are minimal. Yeast strains have remained viable for more than 30 yr when stored using this method and sufficient cells are recovered to produce new working stocks. Although survival rates are strain specific, nearly all National Collection of Yeast Cultures strains covering most yeast genera, have been successfully stored with little or no detectable change in strain characteristics.

  9. Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses.

    PubMed

    De Meyer, L; Van Bockstal, P-J; Corver, J; Vervaet, C; Remon, J P; De Beer, T

    2015-12-30

    Spin-freezing as alternative freezing approach was evaluated as part of an innovative continuous pharmaceutical freeze-drying concept for unit doses. The aim of this paper was to compare the sublimation rate of spin-frozen vials versus traditionally frozen vials in a batch freeze-dryer, and its impact on total drying time. Five different formulations, each having a different dry cake resistance, were tested. After freezing, the traditionally frozen vials were placed on the shelves while the spin-frozen vials were placed in aluminum vial holders providing radial energy supply during drying. Different primary drying conditions and chamber pressures were evaluated. After 2h of primary drying, the amount of sublimed ice was determined in each vial. Each formulation was monitored in-line using NIR spectroscopy during drying to determine the sublimation endpoint and the influence of drying conditions upon total drying time. For all tested formulations and applied freeze-drying conditions, there was a significant higher sublimation rate in the spin-frozen vials. This can be explained by the larger product surface and the lower importance of product resistance because of the much thinner product layers in the spin frozen vials. The in-line NIR measurements allowed evaluating the influence of applied drying conditions on the drying trajectories. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Optimum Parameters for Freeze-Drying Decellularized Arterial Scaffolds

    PubMed Central

    Sheridan, William S.; Duffy, Garry P.

    2013-01-01

    Decellularized arterial scaffolds have achieved success in advancing toward clinical use as vascular grafts. However, concerns remain regarding long-term preservation and sterilization of these scaffolds. Freeze drying offers a means of overcoming these concerns. In this study, we investigated the effects of various freeze-drying protocols on decellularized porcine carotid arteries and consequently, determined the optimum parameters to fabricate a stable, preserved scaffold with unaltered mechanical properties. Freeze drying by constant slow cooling to two final temperatures ((Tf), −10°C and −40°C) versus instant freezing was investigated by histological examination and mechanical testing. Slow cooling to Tf= −10°C produced a stiffer and less distensible response than the non freeze-dried scaffolds and resulted in disruption to the collagen fibers. The mechanical response of Tf= −40°C scaffolds demonstrated disruption to the elastin network, which was confirmed with histology. Snap freezing scaffolds in liquid nitrogen and freeze drying to Tf= −40°C with a precooled shelf at −60°C produced scaffolds with unaltered mechanical properties and a histology resembling non-freeze-dried scaffolds. The results of this study demonstrate the importance of optimizing the nucleation and ice crystal growth/size to ensure homogenous drying, preventing extracellular matrix disruption and subsequent inferior mechanical properties. This new manufacturing protocol creates the means for the preservation and sterilization of decellularized arterial scaffolds while simultaneously maintaining the mechanical properties of the tissue. PMID:23614758

  11. Improvement of a dry formulation of Pseudomonas fluorescens EPS62e for fire blight disease biocontrol by combination of culture osmoadaptation with a freeze-drying lyoprotectant.

    PubMed

    Cabrefiga, J; Francés, J; Montesinos, E; Bonaterra, A

    2014-10-01

    To study the effect of lyoprotectants and osmoadaptation on viability of Pseudomonas fluorescens EPS62e during freeze-drying and storage and to evaluate the formulation in terms of efficacy in biocontrol and fitness on pear flowers. A wettable powder formulation of a biocontrol agent of fire blight was optimized by means of lyoprotectants and culture osmoadaptation. Freeze-drying was used to obtain dehydrated cells, and the best viability (70% of survival) was obtained using lactose as lyoprotectant. Survival during lyophilization was additionally improved using physiological adaptation of cells during cultivation under salt-amended medium (osmoadaptation). The procedure increased the survival of cells after freeze-drying attaining viability values close to a 100% in the lactose-formulated product (3 × 10(11) CFU g(-1) ), and through the storage period of 1 year at 4°C. The dry formulation showed also an improved biocontrol efficacy and survival of EPS62e on pear flowers under low relative humidity conditions. Cell viability after freeze-drying was improved using lactose as lyoprotectant combined with a procedure of osmoadaptation during cultivation. The powder-formulated product remained active for 12 months and retained biocontrol levels similar to that of fresh cells. The formulation showed an improved survival of EPS62e on flowers and an increase of the efficacy of biocontrol of fire blight at low relative humidity. The results have a potential value for commercial application in biocontrol agents not only of fire blight but also of other plant diseases. © 2014 The Society for Applied Microbiology.

  12. Application of freeze-drying technology in manufacturing orally disintegrating films.

    PubMed

    Liew, Kai Bin; Odeniyi, Michael Ayodele; Peh, Kok-Khiang

    2016-01-01

    Freeze drying technology has not been maximized and reported in manufacturing orally disintegrating films. The aim of this study was to explore the freeze drying technology in the formulation of sildenafil orally disintegrating films and compare the physical properties with heat-dried orally disintegrating film. Central composite design was used to investigate the effects of three factors, namely concentration of carbopol, wheat starch and polyethylene glycol 400 on the tensile strength and disintegration time of the film. Heat-dried films had higher tensile strength than films prepared using freeze-dried method. For folding endurance, freeze-dried films showed improved endurance than heat-dried films. Moreover, films prepared using freeze-dried methods were thicker and had faster disintegration time. Formulations with higher amount of carbopol and starch showed higher tensile strength and thickness whereas formulations with higher PEG 400 content showed better flexibility. Scanning electron microscopy showed that the freeze-dried films had more porous structure compared to the heat-dried film as a result of the release of water molecule from the frozen structure when it was subjected to freeze drying process. The sildenafil film was palatable. The dissolution profiles of freeze-dried and heat-dried films were similar to Viagra® with f2 of 51.04 and 65.98, respectively.

  13. Freeze-dried dog sperm: Dynamics of DNA integrity.

    PubMed

    Olaciregui, M; Luño, V; Gonzalez, N; De Blas, I; Gil, L

    2015-10-01

    Freeze-drying (FD) has been proposed as an alternative method to preserve spermatozoa. During the FD procedure, sperm DNA might become damaged by both freezing and drying stresses caused by the endonucleases, the oxidative stress and the storage conditions. We examined the DNA integrity of dog sperm freeze-dried with two kinds of chelating agents in FD buffers and storage at two different temperatures. Ejaculated sperm from four dogs were suspended in basic medium (10 mM Tris-HCl buffer+50 mM NaCl) supplemented with 50 mM EGTA or with 50 mM EDTA and then freeze-dried. Sperm samples were stored at 4°C as room temperature, and the analysis of DNA damage was performed after a month and 5 months of storage using a Sperm Chromatin Dispersion test. We found four different sperm populations according to the size of the halos around the sperm head: (1) absent halo, (2) <6 μm, (3) 6-10 μm, (4) >10 μm. All of them coexisted in each freeze-dried dog semen samples and differed significantly among different treatments. The highest percentage of spermatozoa with halo >10 μm was obtained when the semen samples were freeze-dried in EDTA medium and stored at room temperature for five months. Results suggested that both, the kind of chelating agent as well as storage temperature and period, influenced DNA integrity of freeze-dried dog sperm. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Short communication: Effects of vacuum freeze-drying on inactivation of Cronobacter sakazakii ATCC29544 in liquid media with different initial inoculum levels.

    PubMed

    Jiao, Rui; Gao, Jina; Zhang, Xiyan; Zhang, Maofeng; Chen, Jiren; Wu, Qingping; Zhang, Jumei; Ye, Yingwang

    2017-03-01

    Vacuum freeze-drying is an important food-processing technology for valid retention of nutrients and bioactive compounds. Cronobacter sakazakii has been reported to be associated with severe infections in neonates through consumption of contaminated powdered infant formula. In this study, effects of vacuum freeze-drying treatment for 12, 24, and 36 h on inactivation of C. sakazakii with different initial inoculum levels in sterile water, tryptic soy broth (TSB), skim milk, and whole milk were determined. Results indicated that the lethality rate of C. sakazakii in each sample increased with the extension of vacuum freeze-drying time. With initial inoculum levels of 10 2 and 10 3 cfu/mL, the survival of C. sakazakii in different liquid media was significantly affected by vacuum freeze-drying for 12, 24, and 36 h. In addition, the lethality rates of C. sakazakii in whole milk, skim milk, and TSB was significantly reduced compared with those in sterile water. Furthermore, whole milk showed the strongest protective role for C. sakazakii cells, followed by skim milk and TSB medium. Using the scanning electron microscope, the intracellular damage and obvious distortion of C. sakazakii cells were observed after vacuum freeze-drying for 24 and 36 h compared with the untreated sample, and the injured cells increased with the extension of vacuum-drying time. We concluded that inactivation of vacuum freeze-drying on C. sakazakii cells is related to the food matrix, and a combination with other methods for inactivating C. sakazakii is required for ensuring microbial safety of powdered infant formula. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Mechanisms of deterioration of nutrients. [improved quality of freeze-dried foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1978-01-01

    Methods for improving the quality of freeze-dried foods were investigated. Areas discussed include: (1) microstructure of freeze-dried systems, (2) structural changes in freeze-dried systems, (3) artificial food matrices, and (4) osmotic preconcentration to yield improved freeze-dried products.

  16. Spray-freeze-drying of nanosuspensions: the manufacture of insulin particles for needle-free ballistic powder delivery

    PubMed Central

    Schiffter, Heiko; Condliffe, Jamie; Vonhoff, Sebastian

    2010-01-01

    The feasibility of preparing microparticles with high insulin loading suitable for needle-free ballistic drug delivery by spray-freeze-drying (SFD) was examined in this study. The aim was to manufacture dense, robust particles with a diameter of around 50 µm, a narrow size distribution and a high content of insulin. Atomization using ultrasound atomizers showed improved handling of small liquid quantities as well as narrower droplet size distributions over conventional two-fluid nozzle atomization. Insulin nanoparticles were produced by SFD from solutions with a low solid content (<10 mg ml−1) and subsequent ultra-turrax homogenization. To prepare particles for needle-free ballistic injection, the insulin nanoparticles were suspended in matrix formulations with a high excipient content (>300 mg ml−1) consisting of trehalose, mannitol, dextran (10 kDa) and dextran (150 kDa) (abbreviated to TMDD) in order to maximize particle robustness and density after SFD. With the increase in insulin content, the viscosity of the nanosuspensions increased. Liquid atomization was possible up to a maximum of 250 mg of nano-insulin suspended in a 1.0 g matrix. However, if a narrow size distribution with a good correlation between theoretical and measurable insulin content was desired, no more than 150 mg nano-insulin could be suspended per gram of matrix formulation. Particles were examined by laser light diffraction, scanning electron microscopy and tap density testing. Insulin stability was assessed using size exclusion chromatography (SEC), reverse phase chromatography and Fourier transform infrared (FTIR) spectroscopy. Densification of the particles could be achieved during primary drying if the product temperature (Tprod) exceeded the glass transition temperature of the freeze concentrate (Tg′) of −29.4°C for TMDD (3∶3∶3∶1) formulations. Particles showed a collapsed and wrinkled morphology owing to viscous flow of the freeze concentrate. With increasing insulin

  17. New Processes for Freeze-Drying in Dual-Chamber Systems.

    PubMed

    Werk, T; Ludwig, I S; Luemkemann, J; Huwyler, J; Mahler, H-C; Haeuser, C R; Hafner, M

    2016-01-01

    Dual-chamber systems can offer self-administration and home care use for lyophilized biologics. Only a few products have been launched in dual-chamber systems so far-presumably due to dual-chamber systems' complex and costly drug product manufacturing process. Within this paper, two improved processes (both based on tray filling technology) for freeze-drying pharmaceuticals in dual-chamber systems are described. Challenges with regards to heat transfer were tackled by (1) performing the freeze-drying step in a needle-down orientation in combination with an aluminum block, or (2) freeze-drying the drug product "externally" in a metal cartridge with subsequent filling of the lyophilized cake into the dual-chamber system. Metal-mediated heat transfer was shown to be efficient in both cases and batch (unit-to-unit) homogeneity with regards to sublimation rate was increased. It was difficult to influence ice crystal size using different methods when in use with an aluminum block due to its heat capacity. Using such a metal carrier implies a large heat capacity leading to relatively small ice crystals. Compared to the established process, drying times were reduced by half using the new processes. The drying time was, however, longer for syringes compared to vials due to the syringe design (long and slim). The differences in drying times were less pronounced for aggressive drying cycles. The proposed processes may help to considerably decrease investment costs into dual-chamber system fill-finish equipment. Dual-chamber syringes offer self-administration and home care use for freeze-dried pharmaceuticals. Only a few products have been launched in dual-chamber syringes so far-presumably due to their complex and costly drug product manufacturing process. In this paper two improved processes for freeze-drying pharmaceuticals in dual-chamber syringes are described. The major challenge of freeze-drying is to transfer heat through a vacuum. The proposed processes cope with this

  18. Design of freeze-drying processes for pharmaceuticals: practical advice.

    PubMed

    Tang, Xiaolin; Pikal, Michael J

    2004-02-01

    Design of freeze-drying processes is often approached with a "trial and error" experimental plan or, worse yet, the protocol used in the first laboratory run is adopted without further attempts at optimization. Consequently, commercial freeze-drying processes are often neither robust nor efficient. It is our thesis that design of an "optimized" freeze-drying process is not particularly difficult for most products, as long as some simple rules based on well-accepted scientific principles are followed. It is the purpose of this review to discuss the scientific foundations of the freeze-drying process design and then to consolidate these principles into a set of guidelines for rational process design and optimization. General advice is given concerning common stability issues with proteins, but unusual and difficult stability issues are beyond the scope of this review. Control of ice nucleation and crystallization during the freezing step is discussed, and the impact of freezing on the rest of the process and final product quality is reviewed. Representative freezing protocols are presented. The significance of the collapse temperature and the thermal transition, denoted Tg', are discussed, and procedures for the selection of the "target product temperature" for primary drying are presented. Furthermore, guidelines are given for selection of the optimal shelf temperature and chamber pressure settings required to achieve the target product temperature without thermal and/or mass transfer overload of the freeze dryer. Finally, guidelines and "rules" for optimization of secondary drying and representative secondary drying protocols are presented.

  19. Preservation of flavor in freeze dried green beans

    NASA Technical Reports Server (NTRS)

    Huber, C. S.; Heidelbaugh, N. D.; Davis, D.

    1973-01-01

    Before freeze drying, green beans are heated to point at which their cell structure is altered. Beans freeze dried with altered cell structure have improved rehydration properties and retain color, flavor, and texture.

  20. Implementation of a process analytical technology system in a freeze-drying process using Raman spectroscopy for in-line process monitoring.

    PubMed

    De Beer, T R M; Allesø, M; Goethals, F; Coppens, A; Heyden, Y Vander; De Diego, H Lopez; Rantanen, J; Verpoort, F; Vervaet, C; Remon, J P; Baeyens, W R G

    2007-11-01

    The aim of the present study was to propose a strategy for the implementation of a Process Analytical Technology system in freeze-drying processes. Mannitol solutions, some of them supplied with NaCl, were used as models to freeze-dry. Noninvasive and in-line Raman measurements were continuously performed during lyophilization of the solutions to monitor real time the mannitol solid state, the end points of the different process steps (freezing, primary drying, secondary drying), and physical phenomena occurring during the process. At-line near-infrared (NIR) and X-ray powder diffractometry (XRPD) measurements were done to confirm the Raman conclusions and to find out additional information. The collected spectra during the processes were analyzed using principal component analysis and multivariate curve resolution. A two-level full factorial design was used to study the significant influence of process (freezing rate) and formulation variables (concentration of mannitol, concentration of NaCl, volume of freeze-dried sample) upon freeze-drying. Raman spectroscopy was able to monitor (i) the mannitol solid state (amorphous, alpha, beta, delta, and hemihydrate), (ii) several process step end points (end of mannitol crystallization during freezing, primary drying), and (iii) physical phenomena occurring during freeze-drying (onset of ice nucleation, onset of mannitol crystallization during the freezing step, onset of ice sublimation). NIR proved to be a more sensitive tool to monitor sublimation than Raman spectroscopy, while XRPD helped to unravel the mannitol hemihydrate in the samples. The experimental design results showed that several process and formulation variables significantly influence different aspects of lyophilization and that both are interrelated. Raman spectroscopy (in-line) and NIR spectroscopy and XRPD (at-line) not only allowed the real-time monitoring of mannitol freeze-drying processes but also helped (in combination with experimental design) us

  1. Development of freeze dried vegetables

    NASA Technical Reports Server (NTRS)

    Larson, R. W.

    1970-01-01

    The development of freeze dried vegetables to be used in the Apollo food system is discussed. After the initial selection and screening of vegetables, several types of freeze dried vegetables were prepared in small batches. From these small batches, two vegetables were judged satisfactory for further testing and evaluation. These vegetables, mashed potatoes and asparagus, were subjected to storage at 100 deg plus or minus 5 F. for two weeks and then taste tested. The vegetables were also tested to determine if they complied with the microbiological requirements for Apollo food. The space food prototype production guide for the vegetables is submitted.

  2. Shrinkage of spray-freeze-dried microparticles of pure protein for ballistic injection by manipulation of freeze-drying cycle.

    PubMed

    Straller, Georg; Lee, Geoffrey

    2017-10-30

    Spray-freeze-drying was used to produce shrivelled, partially-collapsed microparticles of pure proteins that may be suitable for use in a ballistic injector. Various modifications of the freeze drying cycle were examined for their effects on collapse of the pure protein microparticles. The use of annealing at a shelf temperature of up to +10°C resulted in no visible particle shrinkage. This was because of the high T g ' of the pure protein. Inclusion of trehalose or sucrose led to particle shrinkage because of the plasticizing effects of the disaccharides on the protein. Only by extending the duration of primary drying from 240 to 2745min at shelf temperatures in the range -12 to -8°C were shrivelled, wrinkled particles of bSA and bCA of reduced porosity obtained. Manipulation of the freeze-drying cycle used for SFD can therefore be used to modify particle morphology and increase particle density. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Protein crowding in solution, frozen and freeze-dried states: small-angle neutron and X-ray scattering study of lysozyme/sorbitol/water systems

    NASA Astrophysics Data System (ADS)

    Krueger, Susan; Khodadadi, Sheila; Clark, Nicholas; McAuley, Arnold; Cristiglio, Viviana; Theyencheri, Narayanan; Curtis, Joseph; Shalaev, Evgenyi

    2015-03-01

    For effective preservation, proteins are often stored as frozen solutions or in glassy states using a freeze-drying process. However, aggregation is often observed after freeze-thaw or reconstitution of freeze-dried powder and the stability of the protein is no longer assured. In this study, small-angle neutron and X-ray scattering (SANS and SAXS) have been used to investigate changes in protein-protein interaction distances of a model protein/cryoprotectant system of lysozyme/sorbitol/water, under representative pharmaceutical processing conditions. The results demonstrate the utility of SAXS and SANS methods to monitor protein crowding at different stages of freezing and drying. The SANS measurements of solution samples showed at least one protein interaction peak corresponding to an interaction distance of ~ 90 Å. In the frozen state, two protein interaction peaks were observed by SANS with corresponding interaction distances at 40 Å as well as 90 Å. On the other hand, both SAXS and SANS data for freeze-dried samples showed three peaks, suggesting interaction distances ranging from ~ 15 Å to 170 Å. Possible interpretations of these interaction peaks will be discussed, as well as the role of sorbitol as a cryoprotectant during the freezing and drying process.

  4. Physicochemical characterization of commercial freeze-dried snake antivenoms.

    PubMed

    Herrera, María; Solano, Daniela; Gómez, Aarón; Villalta, Mauren; Vargas, Mariángela; Sánchez, Andrés; Gutiérrez, José María; León, Guillermo

    2017-02-01

    Freeze-drying is a process used to improve the stability of pharmaceutical proteins, including snake antivenoms. This additional step confers these with a higher stability in comparison to liquid formulations, especially in tropical regions where high temperatures could affect the activity of immunoglobulins. Currently, the knowledge about freeze-drying process conditions for snake antivenoms is very limited. Some of the scarce scientific works on this subject reported reconstitution times up to 90 min for these preparations, which could imply a delay in the beginning of the antivenom therapy at the clinical setting. Therefore there is a reasonable concern about whether freeze-dried antivenoms exhibit the desired attributes for solid pharmaceutical proteins. In this work, a physicochemical characterization of seven commercial freeze-dried snake antivenoms was performed based on tests recommended by the World Health Organization (WHO). No significant differences were observed between the products regarding macroscopic appearance of the solid cakes, reconstitution times, residual humidity and monomers content. On the other hand, total protein concentration, turbidity and electrophoretic profile were different among samples. Microscopic analysis by scanning electron microscopy showed no collapsed structure and, instead, most of the samples showed a characteristic protein morphology composed of smooth plates and channels. All the parameters tested in this study were according to literature recommendations and evidenced that, in spite of slight variations found for some products, formulation and freeze-drying conditions chosen by manufacturers are adequate to prevent aggregation and generate, in physicochemical terms, freeze-dried antivenoms of acceptable quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Emerging freeze-drying process development and scale-up issues.

    PubMed

    Patel, Sajal Manubhai; Pikal, Michael J

    2011-03-01

    Although several guidelines do exist for freeze-drying process development and scale-up, there are still a number of issues that require additional attention. The objective of this review article is to discuss some emerging process development and scale-up issue with emphasis on effect of load condition and freeze-drying in novel container systems such as syringes, Lyoguard trays, ampoules, and 96-well plates. Understanding the heat and mass transfer under different load conditions and for freeze-drying in these novel container systems will help in developing a robust freeze-drying process which is also easier to scale-up. Further research and development needs in these emerging areas have also been addressed. © 2011 American Association of Pharmaceutical Scientists

  6. Freeze-drying process monitoring using a cold plasma ionization device.

    PubMed

    Mayeresse, Y; Veillon, R; Sibille, P H; Nomine, C

    2007-01-01

    A cold plasma ionization device has been designed to monitor freeze-drying processes in situ by monitoring lyophilization chamber moisture content. This plasma device, which consists of a probe that can be mounted directly on the lyophilization chamber, depends upon the ionization of nitrogen and water molecules using a radiofrequency generator and spectrometric signal collection. The study performed on this probe shows that it is steam sterilizable, simple to integrate, reproducible, and sensitive. The limitations include suitable positioning in the lyophilization chamber, calibration, and signal integration. Sensitivity was evaluated in relation to the quantity of vials and the probe positioning, and correlation with existing methods, such as microbalance, was established. These tests verified signal reproducibility through three freeze-drying cycles. Scaling-up studies demonstrated a similar product signature for the same product using pilot-scale and larger-scale equipment. On an industrial scale, the method efficiently monitored the freeze-drying cycle, but in a larger industrial freeze-dryer the signal was slightly modified. This was mainly due to the positioning of the plasma device, in relation to the vapor flow pathway, which is not necessarily homogeneous within the freeze-drying chamber. The plasma tool is a relevant method for monitoring freeze-drying processes and may in the future allow the verification of current thermodynamic freeze-drying models. This plasma technique may ultimately represent a process analytical technology (PAT) approach for the freeze-drying process.

  7. Comparison of different drying methods on the physical properties, bioactive compounds and antioxidant activity of raspberry powders.

    PubMed

    Si, Xu; Chen, Qinqin; Bi, Jinfeng; Wu, Xinye; Yi, Jianyong; Zhou, Linyan; Li, Zhaolu

    2016-04-01

    Dehydration has been considered as one of the traditional but most effective techniques for perishable fruits. Raspberry powders obtained after dehydration can be added as ingredients into food formulations such as bakery and dairy products. In this study, raspberry powders obtained by hot air drying (HAD), infrared radiation drying (IRD), hot air and explosion puffing drying (HA-EPD), infrared radiation and microwave vacuum drying (IR-MVD) and freeze drying (FD) were compared on physical properties, bioactive compounds and antioxidant activity. Drying techniques affected the physical properties, bioactive compounds and antioxidant activity of raspberry powders greatly. FD led to significantly higher (P < 0.05) values of water solubility (45.26%), soluble solid (63.46%), hygroscopicity (18.06%), color parameters and anthocyanin retention (60.70%) of raspberry powder compared with other drying methods. However, thermal drying techniques, especially combined drying methods, were superior to FD in final total polyphenol content, total flavonoid content and antioxidant activity. The combined drying methods, especially IR-MVD, showed the highest total polyphenol content (123.22 g GAE kg(-1) dw) and total flavonoid content (0.30 g CAE kg(-1) dw). Additionally, IR-MVD performed better in antioxidant activity retention. Overall, combined drying methods, especially IR-MVD, were found to result in better quality of raspberry powders among the thermal drying techniques. IR-MVD could be recommended for use in the drying industry because of its advantages in time saving and nutrient retention. © 2015 Society of Chemical Industry.

  8. [Development of Inhalable Dry Powder Formulations Loaded with Nanoparticles Maintaining Their Original Physical Properties and Functions].

    PubMed

    Okuda, Tomoyuki

    2017-01-01

     Functional nanoparticles, such as liposomes and polymeric micelles, are attractive drug delivery systems for solubilization, stabilization, sustained release, prolonged tissue retention, and tissue targeting of various encapsulated drugs. For their clinical application in therapy for pulmonary diseases, the development of dry powder inhalation (DPI) formulations is considered practical due to such advantages as: (1) it is noninvasive and can be directly delivered into the lungs; (2) there are few biocomponents in the lungs that interact with nanoparticles; and (3) it shows high storage stability in the solid state against aggregation or precipitation of nanoparticles in water. However, in order to produce effective nanoparticle-loaded dry powders for inhalation, it is essential to pursue an innovative and comprehensive formulation strategy in relation to composition and powderization which can achieve (1) the particle design of dry powders with physical properties suitable for pulmonary delivery through inhalation, and (2) the effective reconstitution of nanoparticles that will maintain their original physical properties and functions after dissolution of the powders. Spray-freeze drying (SFD) is a relatively new powderization technique combining atomization and lyophilization, which can easily produce highly porous dry powders from an aqueous sample solution. Previously, we advanced the optimization of components and process conditions for the production of SFD powders suitable to DPI application. This review describes our recent results in the development of novel DPI formulations effectively loaded with various nanoparticles (electrostatic nanocomplexes for gene therapy, liposomes, and self-assembled lipid nanoparticles), based on SFD.

  9. Influence of deposition and spray pattern of nasal powders on insulin bioavailability.

    PubMed

    Pringels, E; Callens, C; Vervaet, C; Dumont, F; Slegers, G; Foreman, P; Remon, J P

    2006-03-09

    The influence of the deposition pattern and spray characteristics of nasal powder formulations on the insulin bioavailability was investigated in rabbits. The formulations were prepared by freeze drying a dispersion containing a physical mixture of drum dried waxy maize starch (DDWM)/Carbopol 974P (90/10, w/w) or a spray-dried mixture of Amioca starch/Carbopol 974P (25/75, w/w). The deposition in the nasal cavity of rabbits and in a silicone human nose model after actuation of three nasal delivery devices (Monopowder, Pfeiffer and experimental system) was compared and related to the insulin bioavailability. Posterior deposition of the powder formulation in the nasal cavity lowered the insulin bioavailability. To study the spray pattern, the shape and cross-section of the emitted powder cloud were analysed. It was concluded that the powder bulk density of the formulation influenced the spray pattern. Consequently, powders of different bulk density were prepared by changing the solid fraction of the freeze dried dispersion and by changing the freezing rate during freeze drying. After nasal delivery of these powder formulations no influence of the powder bulk density and of the spray pattern on the insulin bioavailability was observed.

  10. Accurate prediction of collapse temperature using optical coherence tomography-based freeze-drying microscopy.

    PubMed

    Greco, Kristyn; Mujat, Mircea; Galbally-Kinney, Kristin L; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Mulhall, Phillip; Sharma, Puneet; Kessler, William J; Pikal, Michael J

    2013-06-01

    The objective of this study was to assess the feasibility of developing and applying a laboratory tool that can provide three-dimensional product structural information during freeze-drying and which can accurately characterize the collapse temperature (Tc ) of pharmaceutical formulations designed for freeze-drying. A single-vial freeze dryer coupled with optical coherence tomography freeze-drying microscopy (OCT-FDM) was developed to investigate the structure and Tc of formulations in pharmaceutically relevant products containers (i.e., freeze-drying in vials). OCT-FDM was used to measure the Tc and eutectic melt of three formulations in freeze-drying vials. The Tc as measured by OCT-FDM was found to be predictive of freeze-drying with a batch of vials in a conventional laboratory freeze dryer. The freeze-drying cycles developed using OCT-FDM data, as compared with traditional light transmission freeze-drying microscopy (LT-FDM), resulted in a significant reduction in primary drying time, which could result in a substantial reduction of manufacturing costs while maintaining product quality. OCT-FDM provides quantitative data to justify freeze-drying at temperatures higher than the Tc measured by LT-FDM and provides a reliable upper limit to setting a product temperature in primary drying. Copyright © 2013 Wiley Periodicals, Inc.

  11. The influence of additives and drying methods on quality attributes of fish protein powder made from saithe (Pollachius virens).

    PubMed

    Shaviklo, Gholam Reza; Thorkelsson, Gudjon; Arason, Sigurjon; Kristinsson, Hordur G; Sveinsdottir, Kolbrun

    2010-09-01

    Fish protein powder (FPP) is used in the food industry for developing formulated food products. This study investigates the feasibility of increasing the value of saithe (Pollachius virens) by producing a functional FPP. Quality attributes of spray and freeze-dried saithe surimi containing lyoprotectants were studied. A freeze-dried saithe surimi without lyoprotectants was also prepared as a control sample. The amount of protein, moisture, fat and carbohydrate in the FPPs were 745-928, 39-58, 21-32 and 10-151 g kg(-1). Quality attributes of FPPs were influenced by the two drying methods and lyoprotectants. The highest level of lipid oxidation was found in the control and the second highest in the spray-dried FPP. The spray-dried fish protein had the lowest viscosity among all FPPs. Gel-forming ability of samples with lyoprotectants was higher than that of the control. Water-binding capacity, emulsion properties and solubility of the freeze-dried fish protein containing lyoprotectants were significantly higher than spray-dried and control samples. However, functional properties of spray-dried FPP were higher than the control sample. It is feasible to develop value-added FPP from saithe surimi using spray- and freeze-drying processes, but freeze-dried FPP containing lyoprotectant had superior functional properties and stability compared with spray-dried sample. Both products might be used as functional protein ingredients in various food systems. Copyright 2010 Society of Chemical Industry.

  12. Microencapsulation of ethanol extract propolis by maltodextrin and freeze-dried preparation

    NASA Astrophysics Data System (ADS)

    Mangiring, Getta Austin; Pratami, Diah Kartika; Hermansyah, Heri; Wijanarko, Anondho; Rohmatin, Etin; Sahlan, Muhamad

    2018-02-01

    Propolis has been known to have many benefits for human health, such as anti-cancer, anti-tumor, anti-oxidant, anti-bacterial, and anti-inflammatory. Currently in Indonesia there are quite a lot of propolis-based products, such as soap, toothpaste, skin cream, or health products in liquid form. However, there is still no propolis product in powder form. In this research, microencapsulation of propolis using maltodextrin coating with freeze drying method will be done. Propolis powder has been tested for polyphenols and it was found that crude propolis (175 ml : 75 gr) had the highest polyphenols content in powder form, 434,438 µg /mL. Soft propolis (125 ml : 125 gr) has 4.533% of moisture content, which was the lowest result in these study. And also, the soft propolis (125 ml : 125 gr) has the highest solubility in water with 69% as the result. Propolis powder that has the highest solubility can be seen morphology using Scanning Electron Mocroscope (SEM). The result of the SEM test showed that the propolised powder form did not alter the morphology of maltodextrin. This indicates the success of microencapsulation, because the form of the coating agent maltodextrin was also not uniform.

  13. Effect of freeze-dried leek powder (FDLP) and nitrite level on processing and quality characteristics of fermented sausages.

    PubMed

    Tsoukalas, D S; Katsanidis, E; Marantidou, S; Bloukas, J G

    2011-02-01

    Fermented sausages were produced with 0.84% and 1.68% freeze-dried leek powder (FDLP), providing 75 and 150 mg/kg NaNO(3), respectively, and three levels of added nitrite (0, 75, and 150 mg/kg NaNO(2). A control treatment was also produced with 150 mg/kg NaNO(2). Sausages with FDLP were darker and yellower (p<0.05) than the control. Higher FDLP levels produced less red, yellower and darker sausages (p<0.05). Lower FDLP levels resulted in higher (p<0.05) sensory scores for external appearance, flavour and overall acceptability. No differences were found among the treatments with FDLP plus 75 or 150 ppm NaNO(2) in TBA value, lightness, redness (cross section), redness stability, yellowness, texture parameters and sensory firmness, flavour and overall acceptability. The use of 0.84% FDLP and 75 ppm NaNO₂ is considered more appropriate for the production of fermented sausages, as it results in a 50% reduction in added nitrite. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Preparation and characterization of solid dispersion freeze-dried efavirenz - polyvinylpyrrolidone K-30.

    PubMed

    Fitriani, Lili; Haqi, Alianshar; Zaini, Erizal

    2016-01-01

    The aim of this research is to prepare and characterize solid dispersion of efavirenz - polyvinylpyrrolidone (PVP) K-30 by freeze drying to increase its solubility. Solid dispersion of efavirenz - PVP K-30 was prepared by solvent evaporation method with ratio 2:1, 1:1, and 1:2 and dried using a freeze dryer. Characterizations were done by scanning electron microscopy (SEM), powder X-ray diffraction analysis, differential thermal analysis (DTA), and Fourier transform infrared (FT-IR) spectroscopy. Solubility test was carried out in CO2-free distilled water, and efavirenz assay was conducted using high-performance liquid chromatography with acetonitrile:acetic acid (80:20) as the mobile phases. Powder X-ray diffractogram showed a decrease in the peak intensity, which indicated the crystalline altered to amorphous phase. DTA thermal analysis showed a decrease in the melting point of the solid dispersion compared to intact efavirenz. SEM results indicated the changes in the morphology of the crystal into an amorphous form compared to pure components. FT-IR spectroscopy analysis showed a shift wavenumber of the spectrum efavirenz and PVP K-30. The solubility of solid dispersion at ratio 2:1, 1:1, and 1:2 was 6.777 μg/mL, 6.936 μg/mL, and 14,672 μg/mL, respectively, whereas the solubility of intact efavirenz was 0.250 μg/mL. In conclusion, the solubility of solid dispersion increased significantly (P < 0.05).

  15. Model for heat and mass transfer in freeze-drying of pellets.

    PubMed

    Trelea, Ioan Cristian; Passot, Stéphanie; Marin, Michèle; Fonseca, Fernanda

    2009-07-01

    Lyophilizing frozen pellets, and especially spray freeze-drying, have been receiving growing interest. To design efficient and safe freeze-drying cycles, local temperature and moisture content in the product bed have to be known, but both are difficult to measure in the industry. Mathematical modeling of heat and mass transfer helps to determine local freeze-drying conditions and predict effects of operation policy, and equipment and recipe changes on drying time and product quality. Representative pellets situated at different positions in the product slab were considered. One-dimensional transfer in the slab and radial transfer in the pellets were assumed. Coupled heat and vapor transfer equations between the temperature-controlled shelf, the product bulk, the sublimation front inside the pellets, and the chamber were established and solved numerically. The model was validated based on bulk temperature measurement performed at two different locations in the product slab and on partial vapor pressure measurement in the freeze-drying chamber. Fair agreement between measured and calculated values was found. In contrast, a previously developed model for compact product layer was found inadequate in describing freeze-drying of pellets. The developed model represents a good starting basis for studying freeze-drying of pellets. It has to be further improved and validated for a variety of product types and freeze-drying conditions (shelf temperature, total chamber pressure, pellet size, slab thickness, etc.). It could be used to develop freeze-drying cycles based on product quality criteria such as local moisture content and glass transition temperature.

  16. Optimization of the secondary drying step in freeze drying using TDLAS technology.

    PubMed

    Schneid, Stefan C; Gieseler, Henning; Kessler, William J; Luthra, Suman A; Pikal, Michael J

    2011-03-01

    The secondary drying phase in freeze drying is mostly developed on a trial-and-error basis due to the lack of appropriate noninvasive process analyzers. This study describes for the first time the application of Tunable Diode Laser Absorption Spectroscopy, a spectroscopic and noninvasive sensor for monitoring secondary drying in laboratory-scale freeze drying with the overall purpose of targeting intermediate moisture contents in the product. Bovine serum albumin/sucrose mixtures were used as a model system to imitate high concentrated antibody formulations. First, the rate of water desorption during secondary drying at constant product temperatures (-22 °C, -10 °C, and 0 °C) was investigated for three different shelf temperatures. Residual moisture contents of sampled vials were determined by Karl Fischer titration. An equilibration step was implemented to ensure homogeneous distribution of moisture (within 1%) in all vials. The residual moisture revealed a linear relationship to the water desorption rate for different temperatures, allowing the evaluation of an anchor point from noninvasive flow rate measurements without removal of samples from the freeze dryer. The accuracy of mass flow integration from this anchor point was found to be about 0.5%. In a second step, the concept was successfully tested in a confirmation experiment. Here, good agreement was found for the initial moisture content (anchor point) and the subsequent monitoring and targeting of intermediate moisture contents. The present approach for monitoring secondary drying indicated great potential to find wider application in sterile operations on production scale in pharmaceutical freeze drying. © 2011 American Association of Pharmaceutical Scientists

  17. Survival differences among freeze-dried genetically engineered and wild-type bacteria.

    PubMed Central

    Israeli, E; Shaffer, B T; Hoyt, J A; Lighthart, B; Ganio, L M

    1993-01-01

    Because the death mechanisms of freeze-dried and air-dried bacteria are thought to be similar, freeze-drying was used to investigate the survival differences between potentially airborne genetically engineered microorganisms and their wild types. To this end, engineered strains of Escherichia coli and Pseudomonas syringae were freeze-dried and exposed to air, visible light, or both. The death rates of all engineered strains were significantly higher than those of their parental strains. Light and air exposure were found to increase the death rates of all strains. Application of death rate models to freeze-dried engineered bacteria to be released into the environment is discussed. PMID:8434925

  18. The physico-chemical basis for the freeze-drying process.

    PubMed

    MacKenzie, A P

    1976-10-01

    To the extent that the final form and quality of a freeze-dried product depends on the way the freeze-drying is conducted, an understanding of the many factors involved is most important. The numerous effects of the design and mode of operation of the freeze-drying equipment on the course of the process need to be known, as do the properties intrinsic to the material to be freeze-dried. Much can be learned and predicted from the study of the "supplemented phase diagram", a series of experimental plots describing the equilibrium and the non-equilibrium phase behavior of the system in question. Such diagrams map and distinguish eutectic and amorphous phase behavior. Further information is available from gravimetric studies allowing the construction of "desorption isotherms", the plots describing the loss of sorbed water accompanying the sublimation of ice, frequently termed "secondary drying". These plots relate the water retained by the product to the "water activity", or relative humidity at different temperatures. Observations in the freeze-drying microscope contribute additional information, in that they reveal the actual course of the process at the microscopic level. These and other laboratory findings facilitate the analysis and comparison of pilot-plant and commercical scale processing experiences. Where scientific and engineering factors appear to interrelate, the nature and extent of the interdependence can often be determined.

  19. Demonstrating Functional Equivalence of Pilot and Production Scale Freeze-Drying of BCG.

    PubMed

    Ten Have, R; Reubsaet, K; van Herpen, P; Kersten, G; Amorij, J-P

    2016-01-01

    Process analytical technology (PAT)-tools were used to monitor freeze-drying of Bacille Calmette-Guérin (BCG) at pilot and production scale. Among the evaluated PAT-tools, there is the novel use of the vacuum valve open/close frequency for determining the endpoint of primary drying at production scale. The duration of primary drying, the BCG survival rate, and the residual moisture content (RMC) were evaluated using two different freeze-drying protocols and were found to be independent of the freeze-dryer scale evidencing functional equivalence. The absence of an effect of the freeze-dryer scale on the process underlines the feasibility of the pilot scale freeze-dryer for further BCG freeze-drying process optimization which may be carried out using a medium without BCG.

  20. Rehydration of freeze-dried and convective dried boletus edulis mushrooms: effect on some quality parameters.

    PubMed

    Hernando, I; Sanjuán, N; Pérez-Munuera, I; Mulet, A

    2008-10-01

    Quality of rehydrated products is a key aspect linked to rehydration conditions. To assess the effect of rehydration temperature on some quality parameters, experiments at 20 and 70 degrees C were performed with convective dried and freeze-dried Boletus edulis mushrooms. Rehydration characteristics (through Peleg's parameter, k(1), and equilibrium moisture, W(e)), texture (Kramer), and microstructure (Cryo-Scanning Electron Microscopy) were evaluated. Freeze-dried samples absorbed water more quickly and attained higher W(e) values than convective dried ones. Convective dehydrated samples rehydrated at 20 degrees C showed significantly lower textural values (11.9 +/- 3.3 N/g) than those rehydrated at 70 degrees C (15.7 +/- 1.2 N/g). For the freeze-dried Boletus edulis, the textural values also exhibited significant differences, being 8.2 +/- 1.3 and 10.5 +/- 2.3 N/g for 20 and 70 degrees C, respectively. Freeze-dried samples showed a porous structure that allows rehydration to take place mainly at the extracellular level. This explains the fact that, regardless of temperature, freeze-dried mushrooms absorbed water more quickly and reached higher W(e) values than convective dried ones. Whatever the dehydration technique used, rehydration at 70 degrees C produced a structural damage that hindered water absorption; consequently lower W(e) values and higher textural values were attained than when rehydrating at 20 degrees C.

  1. Key composition optimization of meat processed protein source by vacuum freeze-drying technology.

    PubMed

    Ma, Yan; Wu, Xingzhuang; Zhang, Qi; Giovanni, Vigna; Meng, Xianjun

    2018-05-01

    Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined.

  2. Folic acid content in thermostabilized and freeze-dried space shuttle foods

    NASA Technical Reports Server (NTRS)

    Lane, H. W.; Nillen, J. L.; Kloeris, V. L.

    1995-01-01

    This study was designed to determine whether freeze-dried and thermostabilized foods on a space shuttle contain adequate folate and to investigate any effects of freeze-drying on folacin. Frozen vegetables were analyzed after three states of processing: thawed; cooked; and rehydrated. Thermostabilized items were analyzed as supplied with no further processing. Measurable folate decreased in some freeze-dried vegetables and increased in others. Folacin content of thermostabilized food items was comparable with published values. We concluded that although the folacin content of some freeze-dried foods was low, adequate folate is available from the shuttle menu to meet RDA guidelines.

  3. Demonstrating Functional Equivalence of Pilot and Production Scale Freeze-Drying of BCG

    PubMed Central

    ten Have, R.; Reubsaet, K.; van Herpen, P.; Kersten, G.; Amorij, J.-P.

    2016-01-01

    Process analytical technology (PAT)-tools were used to monitor freeze-drying of Bacille Calmette-Guérin (BCG) at pilot and production scale. Among the evaluated PAT-tools, there is the novel use of the vacuum valve open/close frequency for determining the endpoint of primary drying at production scale. The duration of primary drying, the BCG survival rate, and the residual moisture content (RMC) were evaluated using two different freeze-drying protocols and were found to be independent of the freeze-dryer scale evidencing functional equivalence. The absence of an effect of the freeze-dryer scale on the process underlines the feasibility of the pilot scale freeze-dryer for further BCG freeze-drying process optimization which may be carried out using a medium without BCG. PMID:26981867

  4. Determination of end point of primary drying in freeze-drying process control.

    PubMed

    Patel, Sajal M; Doen, Takayuki; Pikal, Michael J

    2010-03-01

    Freeze-drying is a relatively expensive process requiring long processing time, and hence one of the key objectives during freeze-drying process development is to minimize the primary drying time, which is the longest of the three steps in freeze-drying. However, increasing the shelf temperature into secondary drying before all of the ice is removed from the product will likely cause collapse or eutectic melt. Thus, from product quality as well as process economics standpoint, it is very critical to detect the end of primary drying. Experiments were conducted with 5% mannitol and 5% sucrose as model systems. The apparent end point of primary drying was determined by comparative pressure measurement (i.e., Pirani vs. MKS Baratron), dew point, Lyotrack (gas plasma spectroscopy), water concentration from tunable diode laser absorption spectroscopy, condenser pressure, pressure rise test (manometric temperature measurement or variations of this method), and product thermocouples. Vials were pulled out from the drying chamber using a sample thief during late primary and early secondary drying to determine percent residual moisture either gravimetrically or by Karl Fischer, and the cake structure was determined visually for melt-back, collapse, and retention of cake structure at the apparent end point of primary drying (i.e., onset, midpoint, and offset). By far, the Pirani is the best choice of the methods tested for evaluation of the end point of primary drying. Also, it is a batch technique, which is cheap, steam sterilizable, and easy to install without requiring any modification to the existing dryer.

  5. Effects of freezing, freeze drying and convective drying on in vitro gastric digestion of apples.

    PubMed

    Dalmau, Maria Esperanza; Bornhorst, Gail M; Eim, Valeria; Rosselló, Carmen; Simal, Susana

    2017-01-15

    The influence of processing (freezing at -196°C in liquid N2, FN sample; freeze-drying at -50°C and 30Pa, FD sample; and convective drying at 60°C and 2m/s, CD sample) on apple (var. Granny Smith) behavior during in vitro gastric digestion was investigated. Dried apples (FD and CD samples) were rehydrated prior to digestion. Changes in carbohydrate composition, moisture, soluble solids, acidity, total polyphenol content (TPC), and antioxidant activity (AA) of apple samples were measured at different times during digestion. Processing resulted in disruption of the cellular structure during digestion, as observed by scanning electron microscopy, light microscopy, and changes in carbohydrate composition. Moisture content increased (6-11% dmo), while soluble solids (55-78% dmo), acidity (44-72% dmo), total polyphenol content (30-61% dmo), and antioxidant activity (41-87%) decreased in all samples after digestion. Mathematical models (Weibull and exponential models) were used to better evaluate the influence of processing on apple behavior during gastric digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Protein spheres prepared by drop jet freeze drying.

    PubMed

    Eggerstedt, Sören N; Dietzel, Mathias; Sommerfeld, Martin; Süverkrüp, Richard; Lamprecht, Alf

    2012-11-15

    In spray freeze drying (SFD) solutions are frozen by spraying into a very cold environment and subsequently dried by sublimation. In contrast to conventional freeze drying, spray freeze drying has the possibility to produce flowable lyophilizates which offers a variety of new pharmaceutical applications. Here, a drop jet nozzle is proposed as liquid dispenser that is able to produce droplets with a very narrow size distribution compared to standard methods. The drop jet nozzle is mounted in a spray tower designed to prevent direct contact of the product with the freezing medium. Various formulations have been tested containing lysozyme as model protein and stabilizers such as bovine serum albumin, polyvinylpyrrolidone or dextran in various concentrations and mannitol. Excellent free flowing and nearly monodispersed, porous particles are produced where particle properties can be controlled by formulation and process conditions. The particle diameter varied between 231 ± 3 μm and 310 ± 10 μm depending on the formulation composition. The lysozyme activity was >94 ± 5% for all formulations exhibiting a full preservation of enzyme activity. This new method is very promising for the production of nearly monodisperse particulate lyophilizates in various therapeutic applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Development of a compact freeze vacuum drying for jelly fish (Schypomedusae)

    NASA Astrophysics Data System (ADS)

    Alhamid, M. Idrus; Yulianto, M.; Nasruddin

    2012-06-01

    A new design of a freeze vacuum drying with internal cooling and heater from condenser's heat loss was built and tested. The dryer was used to dry jelly fish (schypomedusae), to study the effect of drying parameters such as the temperature within the drying chamber on mass losses (evaporation) during the freezing stage and the moisture ratio at the end of the drying process. The midili thin layer mathematical drying model was used to estimate and predict the moisture ratio curve based on different drying chamber temperatures. This experiment shows that decreasing the drying chamber temperature with constant pressure results in less mass loss during the freezing stage Drying time was reduced with an increase in drying temperature. Decreasing the drying chamber temperature results in lower pressure saturation of the material has no effect of drying chamber pressure on mass transfer.

  8. Protective Effect of Boiled and Freeze-dried Mature Silkworm Larval Powder Against Diethylnitrosamine-induced Hepatotoxicity in Mice.

    PubMed

    Cho, Jae-Min; Kim, Kee-Young; Ji, Sang-Deok; Kim, Eun-Hee

    2016-09-01

    Hepatocellular carcinoma (HCC) is a representative inflammation-associated cancer and known to be the most frequent tumors. HCC may also induce important pro- and anti-tumor immune reactions. However, the underlying mechanisms are unsatisfactorily identified. We investigated the protective effect of boiled and freeze-dried mature silkworm larval powder (BMSP) on diethylnitrosamine (DEN)-induced hepatotoxicity in mice. Mice were fed with diet containing BMSP (0.1, 1, and 10 g/kg) for two weeks and DEN (100 mg/kg, intraperitoneally) was injected 18 hours before the end of this experiment. Liver toxicity was determined in serum and histopathological examination was assessed in the liver tissues. Infiltration of immune cells and expressions of inflammatory cytokines and chemokines were also examined. Pretreatment with BMSP reduced necrotic and histopathological changes induced by DEN in the liver. Measurement of serum biochemical indicators, the levels of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase, showed that pretreatment with BMSP also decreased DEN-induced hepatotoxicity. In addition, BMSP inhibited the macrophage and CD31 infiltration in a dose-dependent manner. The expressions of interleukin-1β, IFN-γ and chemokines for T cell activation were decreased in BMSP pretreatment groups. BMSP may have a protective effect against acute liver injury by inhibiting necrosis and inflammatory response in DEN-treated mice.

  9. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    PubMed

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  10. A comparative study of spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions.

    PubMed

    Dontireddy, Rakesh; Crean, Abina M

    2011-10-01

    Poor water solubility of new chemical entities (NCEs) is one of the major challenges the pharmaceutical industry currently faces. The purpose of this study was to investigate the feasibility of freeze-drying as an alternative technique to spray-drying to produce solid dispersions of poorly water-soluble drugs. Also investigated was the use of aqueous solvent mixtures in place of pure solvent for the production of solid dispersions. Aqueous solvent systems would reduce the environmental impact of pure organic solvent systems. Spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions exhibited differences in dissolution behavior. Freeze-dried dispersions exhibited faster dissolution rates than the corresponding spray-dried dispersions. Spray-dried systems prepared using both solvent systems (20% v/v and 96% v/v ethanol) displayed similar dissolution performance despite displaying differences in glass transition temperatures (T(g)) and surface areas. All dispersions showed drug/polymer interactions indicated by positive deviations in T(g) from the predicted values calculated using the Couchman-Karasz equation. Fourier transform infrared (FTIR) spectroscopic results confirmed the conversion of crystalline drug to the amorphous in the dispersions. Stability studies were preformed at 40°C and 75% relative humidity to investigate the physical stability of prepared dispersions. Recrystallization was observed after a month and the resultant dispersions were tested for their dissolution performance to compare with the dissolution performance of the dispersions prior to the stability study. The dissolution rate of the freeze-dried dispersions remained higher than both spray-dried dispersions after storage.

  11. Robustness testing in pharmaceutical freeze-drying: inter-relation of process conditions and product quality attributes studied for a vaccine formulation.

    PubMed

    Schneid, Stefan C; Stärtzel, Peter M; Lettner, Patrick; Gieseler, Henning

    2011-01-01

    The recent US Food and Drug Administration (FDA) legislation has introduced the evaluation of the Design Space of critical process parameters in manufacturing processes. In freeze-drying, a "formulation" is expected to be robust when minor deviations of the product temperature do not negatively affect the final product quality attributes. To evaluate "formulation" robustness by investigating the effect of elevated product temperature on product quality using a bacterial vaccine solution. The vaccine solution was characterized by freeze-dry microscopy to determine the critical formulation temperature. A conservative cycle was developed using the SMART™ mode of a Lyostar II freeze dryer. Product temperature was elevated to imitate intermediate and aggressive cycle conditions. The final product was analyzed using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), Karl Fischer, and modulated differential scanning calorimetry (MDSC), and the life cell count (LCC) during accelerated stability testing. The cakes processed at intermediate and aggressive conditions displayed larger pores with microcollapse of walls and stronger loss in LCC than the conservatively processed product, especially during stability testing. For all process conditions, a loss of the majority of cells was observed during storage. For freeze-drying of life bacterial vaccine solutions, the product temperature profile during primary drying appeared to be inter-related to product quality attributes.

  12. The human milk oligosaccharides are not affected by pasteurization and freeze-drying.

    PubMed

    Hahn, Won-Ho; Kim, Jaehan; Song, Seunghyun; Park, Suyeon; Kang, Nam Mi

    2017-11-06

    Human milk oligosaccharides (HMOs) are known as important factors in neurologic and immunologic development of neonates. Moreover, freeze-drying seems to be a promising storage method to improve the processes of human milk banks. However, the effects of pasteurization and freeze-drying on HMOs were not evaluated yet. The purpose of this study is to analyze and compare the HMOs profiles of human milk collected before and after the pasteurization and freeze-drying. Totally nine fresh human milk samples were collected from three healthy mothers at the first, second, and third week after delivery. The samples were treated with Holder pasteurization and freeze-drying. HMOs profiles were analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight (TOF/TOF) mass spectrometry and compared between samples collected before and after the treatments. Human milk samples showed significantly different HMO patterns between mothers. However, HMOs were not affected by lactation periods within 3 weeks after delivery (r 2  = 0.972-0.999, p < .001). Moreover, both of pasteurization and freeze-drying were found not to affect HMO patterns in a correlation analysis (r 2  = 0.989-0.999, p < .001). HMO patterns were found not to be affected by pasteurization and freeze-drying of donor milks. We hope that introducing freeze-drying to the human milk banks would be encouraged by the present study. However, the storage length without composition changes of HMOs after freeze-drying needs to be evaluated in the further studies.

  13. Freeze-Dried Carbon Nanotube Aerogels for High-Frequency Absorber Applications.

    PubMed

    Anoshkin, Ilya V; Campion, James; Lioubtchenko, Dmitri V; Oberhammer, Joachim

    2018-06-13

    A novel technique for millimeter wave absorber material embedded in a metal waveguide is proposed. The absorber material is a highly porous carbon nanotube (CNT) aerogel prepared by a freeze-drying technique. CNT aerogel structures are shown to be good absorbers with a low reflection coefficient, less than -12 dB at 95 GHz. The reflection coefficient of the novel absorber is 3-4 times lower than that of commercial absorbers with identical geometry. Samples prepared by freeze-drying at -25 °C demonstrate resonance behavior, while those prepared at liquid nitrogen temperature (-196 °C) exhibit a significant decrease in reflection coefficient, with no resonant behavior. CNT absorbers of identical volume based on wet-phase drying preparation show significantly worse performance than the CNT aerogel absorbers prepared by freeze-drying. Treatment of the freeze-dried CNT aerogel with n- and p-dopants (monoethanolamine and iodine vapors, respectively) shows remarkable improvement in the performance of the waveguide embedded absorbers, reducing the reflection coefficient by 2 dB across the band.

  14. Microplate freeze-dried cyanobacterial bioassay for fresh-waters environmental monitoring.

    PubMed

    Martín-Betancor, Keila; Durand, Marie-José; Thouand, Gérald; Leganés, Francisco; Fernández-Piñas, Francisca; Rodea-Palomares, Ismael

    2017-12-01

    Microorganisms have been very useful in environmental monitoring due to their constant sensing of the surrounding environment, their easy maintenance and low cost. Some freeze-dried toxicity kits based on naturally bioluminescent bacteria are commercially available and commonly used to assess the toxicity of environmental samples such as Microtox (Aliivibrio fischeri) or ToxScreen (Photobacterium leiognathi), however, due to the marine origin of these bacteria, they could not be the most appropriate for fresh-waters monitoring. Cyanobacteria are one of the most representative microorganisms of aquatic environments, and are well suited for detecting contaminants in aqueous samples. This study presents the development and application of the first freeze-dried cyanobacterial bioassay for fresh-water contaminants detection. The effects of different cell growth phases, cryoprotectant solutions, freezing protocols, rehydration solutions and incubation conditions methods were evaluated and the best combination of these parameters for freeze-drying was selected. The study includes detailed characterization of sensitivity towards reference pollutants, as well as, comparison with the standard assays. Moreover, long-term viability and sensitivity were evaluated after 3 years of storage. Freeze-dried cyanobacteria showed, in general, higher sensitivity than the standard assays and viability of the cells remained after 3 years of storage. Finally, the validation of the bioassay using a wastewater sample was also evaluated. Freeze-drying of cyanobacteria in 96-well plates presents a simple, fast and multi-assay method for environmental monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Freezing and drying effects on potential plant contributions to phosphorus in runoff.

    PubMed

    Roberson, Tiffany; Bundy, Larry G; Andraski, Todd W

    2007-01-01

    Phosphorus (P) in runoff from landscapes can promote eutrophication of natural waters. Soluble P released from plant material can contribute significant amounts of P to runoff particularly after plant freezing or drying. This study was conducted to evaluate P losses from alfalfa or grass after freezing or drying as potential contributors to runoff P. Alfalfa (Medicago sativa L.) and grass (principally, Agropyron repens L.) plant samples were subjected to freezing and drying treatments to determine P release. Simulated rainfall runoff and natural runoff from established alfalfa fields and a grass waterway were collected to study P contributions from plant tissue to runoff. The effects of freezing and drying on P released from plant tissue were simulated by a herbicide treatment in selected experiments. Soluble reactive P (SP) extracted from alfalfa and grass samples was markedly increased by freezing or drying. In general, SP extracted from plant samples increased in the order fresh < frozen < frozen/thawed < dried, and averaged 1, 8, 14, and 26% of total P in alfalfa, respectively. Soluble reactive P extracted from alfalfa after freezing or drying increased with increasing soil test P (r(2) = 0.64 to 0.68), suggesting that excessive soil P levels increased the risk of plant P contributions to runoff losses. In simulated rainfall studies, paraquat (1,1'-dimethyl-4, 4''-bipyridinium ion) treatment of alfalfa increased P losses in runoff, and results suggested that this treatment simulated the effects of drying on plant P loss. In contrast to the simulated rainfall results, natural runoff studies over 2 yr did not show higher runoff P losses that could be attributed to P from alfalfa. Actual P losses likely depend on the timing and extent of plant freezing and drying and of precipitation events after freezing.

  16. Characterization of biomasses, concentrates, and permeates of dried powder of Kombucha fermentation of spinach (Amaranthus sp.) and broccoli (Brassica oleracea) with membrane microfiltration and freeze drying techniques for natural sources of folic acid

    NASA Astrophysics Data System (ADS)

    Nugraha, Tutun; Susilowati, Agustine; Aspiyanto, Lotulung, Puspa Dewi; Maryati, Yati

    2017-11-01

    Fermentation of spinach (Amaranthus sp) and Broccoli (Brassica oleracea) using Kombucha Culture has been shown to produce biomass that has the potential to become natural sources of folic acid. To produce the materials, following the fermentation, the biomass was filtered using membrane microfiltration (0.15 µm) at a pressure of 40 psia, at room temperature, yielding the concentrate and the permeate fractions. Following this step, freeze drying process was done on the biomass feeds, as well as on the concentrate and permeate fractions. For the freeze drying stage, the samples were frozen, and the condenser was kept at -50°C for 40 hours, while the pressure in the chamber was set at 200 Pa. Freeze drying results showed that the final products, have differences in compositions, as well as differences in the dominat monomers of folates. After water content was driven out, freeze drying increased the concentrations of folic acid in the dried products, and was found to be the highest in the concentrate fractions. Freeze drying has been shown to be capable of protecting the folates from heat and oxidative damages that typicaly occur with other types of drying. The final freeze dried concentrates of fermentation of spinach and broccoli were found to contain folic acid at 2531.88 µg/mL and 1626.94 µg/mL, total solids at 87.23% and 88.65 %, total sugar at 22.66 µg/mL and 25.13 µg/mL, total reducing sugar at 34.46 mg/mL and 15.22 mg/mL, as well as disolved protein concentrations at 0.93 mg/mL and 1.45 mg/mL. Liquid Chromatography Mass Spectometry (LC-MS) identification of the folates in the freeze dried concentrates of fermented spinach and broccoli was done using folic acid and glutamic acid standard solutions as the reference materials. The results showed the presence of folic acid and showed that the dominant monomers of molecules of folates with molecular weights of 441.44 Da. and 441.54 Da. for spinach and broccoli respectively. Moreover, the monomers of glutamic

  17. Sperm Preservation by Freeze-Drying for the Conservation of Wild Animals

    PubMed Central

    Kaneko, Takehito; Ito, Hideyuki; Sakamoto, Hidefusa; Onuma, Manabu; Inoue-Murayama, Miho

    2014-01-01

    Sperm preservation is a useful technique for the maintenance of biological resources in experimental and domestic animals, and in wild animals. A new preservation method has been developed that enables sperm to be stored for a long time in a refrigerator at 4°C. Sperm are freeze-dried in a solution containing 10 mM Tris and 1 mM EDTA. Using this method, liquid nitrogen is not required for the storage and transportation of sperm. We demonstrate that chimpanzee, giraffe, jaguar, weasel and the long-haired rat sperm remain viable after freeze-drying. In all species, pronuclei were formed after the injection of freeze-dried sperm into the mouse oocytes. Although preliminary, these results may be useful for the future establishment of “freeze-drying zoo” to conserve wild animals. PMID:25409172

  18. Sperm preservation by freeze-drying for the conservation of wild animals.

    PubMed

    Kaneko, Takehito; Ito, Hideyuki; Sakamoto, Hidefusa; Onuma, Manabu; Inoue-Murayama, Miho

    2014-01-01

    Sperm preservation is a useful technique for the maintenance of biological resources in experimental and domestic animals, and in wild animals. A new preservation method has been developed that enables sperm to be stored for a long time in a refrigerator at 4 °C. Sperm are freeze-dried in a solution containing 10 mM Tris and 1 mM EDTA. Using this method, liquid nitrogen is not required for the storage and transportation of sperm. We demonstrate that chimpanzee, giraffe, jaguar, weasel and the long-haired rat sperm remain viable after freeze-drying. In all species, pronuclei were formed after the injection of freeze-dried sperm into the mouse oocytes. Although preliminary, these results may be useful for the future establishment of "freeze-drying zoo" to conserve wild animals.

  19. Improved respirable fraction of budesonide powder for dry powder inhaler formulations produced by advanced supercritical CO2 processing and use of a novel additive.

    PubMed

    Miyazaki, Yuta; Aruga, Naoki; Kadota, Kazunori; Tozuka, Yuichi; Takeuchi, Hirofumi

    2017-08-07

    A budesonide (BDS) suspension was obtained via advanced supercritical carbon dioxide (scCO 2 ) processing. Thereafter, the suspension was freeze-dried (FD) to produce BDS particles for dry powder inhaler formulations (scCO 2 /FD processing). The scCO 2 /FD processed BDS powder showed low crystallinity by powder X-ray diffraction and a rough surface by scanning electron microscopy. The respirable fraction of BDS was assessed using a twin impinger and revealed that the amount of the scCO 2 /FD processed sample that reached stage 2 was 4-fold higher than that of the supplied powder. To extend the utility of scCO 2 processing, BDS particles for dry powder inhalers were fabricated by combining the scCO 2 system with various additives. When BDS was processed via scCO 2 /FD in the presence of the novel additive, namely, monoglyceride stearate (MGS), the residual BDS/MGS particles remaining in the capsule and devices decreased, followed by an increase in the respirable fraction of BDS 6-fold higher than with the supplied powder. The scCO 2 /FD processed BDS/MGS particles had a smooth surface, in contrast to the scCO 2 /FD processed BDS particles. A combination of BDS and an appropriate additive in scCO 2 treatment may induce changes in particle surface morphology, leading to an improvement in the inhalation properties of BDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. High post-thaw survival of ram sperm after partial freeze-drying.

    PubMed

    Arav, Amir; Idda, Antonella; Nieddu, Stefano Mario; Natan, Yehudit; Ledda, Sergio

    2018-03-14

    Recrystallization damages occur when a frozen sample is held at high subzero temperatures and when the warming process is too slow. In this work, ram semen diluted in two different concentrations of sugar solutions (Lyo A consisted of 0.4 M sorbitol and 0.25 M trehalose, and the second, Lyo B composed of 0.26 M sorbitol and 0.165 M trehalose) in egg yolk and Tris medium were compared after freezing 10 μL samples to: (1) - 10, - 25, and - 35 °C and thawing. (2) Freezing to - 10 and - 25 °C, holding for 1 h and then thawing, and (3) freezing to - 10 and - 25 °C and drying for 1 h at these temperatures at a vacuum of 80 mTorr, prior thawing. For drying, we used a new freeze-drying apparatus (Darya, FertileSafe, Israel) having a condensation temperature below - 110 °C and a vacuum pressure of 10-100 mTorr that is reached in less than 10s. Results showed that samples in Lyo B solution frozen at - 25 °C had significantly higher sperm motility in partially freeze-dried samples than frozen samples (46.6 ± 2.8% vs 1.2 ± 2.5%, P < 0.001). Moreover, partially dried samples in Lyo B showed higher motility than Lyo A at - 25 °C (46.6 ± 2.8% vs 35 ± 4%). Cryomicroscopy and low-temperature/low-pressure environmental scanning electronic microscope demonstrated that the amount of the ice crystals present in partially dried samples was lower than in the frozen samples. Holding the sperm at high subzero temperatures is necessary for the primary drying of cells during the freeze-drying process. Rapid freeze-drying can be achieved using this new device, which enables to reduce recrystallization damages.

  1. Application of the Quality by Design Approach to the Freezing Step of Freeze-Drying: Building the Design Space.

    PubMed

    Arsiccio, Andrea; Pisano, Roberto

    2018-06-01

    The present work shows a rational method for the development of the freezing step of a freeze-drying cycle. The current approach to the selection of freezing conditions is still empirical and nonsystematic, thus resulting in poor robustness of control strategy. The final aim of this work is to fill this gap, describing a rational procedure, based on mathematical modeling, for properly choosing the freezing conditions. Mechanistic models are used for the prediction of temperature profiles during freezing and dimension of ice crystals being formed. Mathematical description of the drying phase of freeze-drying is also coupled with the results obtained by freezing models, thus providing a comprehensive characterization of the lyophilization process. In this framework, deep understanding of the phenomena involved is required, and according to the Quality by Design approach, this knowledge can be used to build the design space. The step-by-step procedure for building the design space for freezing is thus described, and examples of applications are provided. The calculated design space is validated upon experimental data, and we show that it allows easy control of the freezing process and fast selection of appropriate operating conditions. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Correlation of laboratory and production freeze drying cycles.

    PubMed

    Kuu, Wei Y; Hardwick, Lisa M; Akers, Michael J

    2005-09-30

    The purpose of this study was to develop the correlation of cycle parameters between a laboratory and a production freeze-dryer. With the established correlation, key cycle parameters obtained using a laboratory dryer may be converted to those for a production dryer with minimal experimental efforts. In order to develop the correlation, it was important to consider the contributions from the following freeze-drying components: (1) the dryer, (2) the vial, and (3) the formulation. The critical parameters for the dryer are the shelf heat transfer coefficient and shelf surface radiation emissivity. The critical parameters for the vial are the vial bottom heat transfer coefficients (the contact parameter Kcs and separation distance lv), and vial top heat transfer coefficient. The critical parameter of the formulation is the dry layer mass transfer coefficient. The above heat and mass transfer coefficients were determined by freeze-drying experiments in conjunction with mathematical modeling. With the obtained heat and mass transfer coefficients, the maximum product temperature, Tbmax, during primary drying was simulated using a primary drying subroutine as a function of the shelf temperature and chamber pressure. The required shelf temperature and chamber pressure, in order to perform a successful cycle run without product collapse, were then simulated based on the resulting values of Tbmax. The established correlation approach was demonstrated by the primary drying of the model formulation 5% mannitol solution. The cycle runs were performed using a LyoStar dryer as the laboratory dryer and a BOC Edwards dryer as the production dryer. The determined normalized dried layer mass transfer resistance for 5% mannitol is expressed as RpN=0.7313+17.19l, where l is the receding dry layer thickness. After demonstrating the correlation approach using the model formulation 5% mannitol, a practical comparison study was performed for the actual product, the lactate dehydrogenase

  3. Detecting phase separation of freeze-dried binary amorphous systems using pair-wise distribution function and multivariate data analysis.

    PubMed

    Chieng, Norman; Trnka, Hjalte; Boetker, Johan; Pikal, Michael; Rantanen, Jukka; Grohganz, Holger

    2013-09-15

    The purpose of this study is to investigate the use of multivariate data analysis for powder X-ray diffraction-pair-wise distribution function (PXRD-PDF) data to detect phase separation in freeze-dried binary amorphous systems. Polymer-polymer and polymer-sugar binary systems at various ratios were freeze-dried. All samples were analyzed by PXRD, transformed to PDF and analyzed by principal component analysis (PCA). These results were validated by differential scanning calorimetry (DSC) through characterization of glass transition of the maximally freeze-concentrate solute (Tg'). Analysis of PXRD-PDF data using PCA provides a more clear 'miscible' or 'phase separated' interpretation through the distribution pattern of samples on a score plot presentation compared to residual plot method. In a phase separated system, samples were found to be evenly distributed around the theoretical PDF profile. For systems that were miscible, a clear deviation of samples away from the theoretical PDF profile was observed. Moreover, PCA analysis allows simultaneous analysis of replicate samples. Comparatively, the phase behavior analysis from PXRD-PDF-PCA method was in agreement with the DSC results. Overall, the combined PXRD-PDF-PCA approach improves the clarity of the PXRD-PDF results and can be used as an alternative explorative data analytical tool in detecting phase separation in freeze-dried binary amorphous systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Protective Immunity in Mice Achieved with Dry Powder Formulation and Alternative Delivery of Plague F1-V Vaccine▿

    PubMed Central

    Huang, Joanne; D'Souza, Ajit J.; Alarcon, Jason B.; Mikszta, John A.; Ford, Brandi M.; Ferriter, Matthew S.; Evans, Michelle; Stewart, Todd; Amemiya, Kei; Ulrich, Robert G.; Sullivan, Vincent J.

    2009-01-01

    The potential use of Yersinia pestis as a bioterror agent is a great concern. Development of a stable powder vaccine against Y. pestis and administration of the vaccine by minimally invasive methods could provide an alternative to the traditional liquid formulation and intramuscular injection. We evaluated a spray-freeze-dried powder vaccine containing a recombinant F1-V fusion protein of Y. pestis for vaccination against plaque in a mouse model. Mice were immunized with reconstituted spray-freeze-dried F1-V powder via intramuscular injection, microneedle-based intradermal delivery, or noninvasive intranasal administration. By intramuscular injection, the reconstituted powder induced serum antibody responses and provided protection against lethal subcutaneous challenge with 1,000 50% lethal doses of Y. pestis at levels equivalent to those elicited by unprocessed liquid formulations (70 to 90% protection). The feasibility of intradermal and intranasal delivery of reconstituted powder F1-V vaccine was also demonstrated. Overall, microneedle-based intradermal delivery was shown to be similar in efficacy to intramuscular injection, while intranasal administration required an extra dose of vaccine to achieve similar protection. In addition, the results suggest that seroconversion against F1 may be a better predictor of protection against Y. pestis challenge than seroconversion against either F1-V or V. In summary, we demonstrate the preclinical feasibility of using a reconstituted powder F1-V formulation and microneedle-based intradermal delivery to provide protective immunity against plague in a mouse model. Intranasal delivery, while feasible, was less effective than injection in this study. The potential use of these alternative delivery methods and a powder vaccine formulation may result in substantial health and economic benefits. PMID:19261773

  5. Protective immunity in mice achieved with dry powder formulation and alternative delivery of plague F1-V vaccine.

    PubMed

    Huang, Joanne; D'Souza, Ajit J; Alarcon, Jason B; Mikszta, John A; Ford, Brandi M; Ferriter, Matthew S; Evans, Michelle; Stewart, Todd; Amemiya, Kei; Ulrich, Robert G; Sullivan, Vincent J

    2009-05-01

    The potential use of Yersinia pestis as a bioterror agent is a great concern. Development of a stable powder vaccine against Y. pestis and administration of the vaccine by minimally invasive methods could provide an alternative to the traditional liquid formulation and intramuscular injection. We evaluated a spray-freeze-dried powder vaccine containing a recombinant F1-V fusion protein of Y. pestis for vaccination against plaque in a mouse model. Mice were immunized with reconstituted spray-freeze-dried F1-V powder via intramuscular injection, microneedle-based intradermal delivery, or noninvasive intranasal administration. By intramuscular injection, the reconstituted powder induced serum antibody responses and provided protection against lethal subcutaneous challenge with 1,000 50% lethal doses of Y. pestis at levels equivalent to those elicited by unprocessed liquid formulations (70 to 90% protection). The feasibility of intradermal and intranasal delivery of reconstituted powder F1-V vaccine was also demonstrated. Overall, microneedle-based intradermal delivery was shown to be similar in efficacy to intramuscular injection, while intranasal administration required an extra dose of vaccine to achieve similar protection. In addition, the results suggest that seroconversion against F1 may be a better predictor of protection against Y. pestis challenge than seroconversion against either F1-V or V. In summary, we demonstrate the preclinical feasibility of using a reconstituted powder F1-V formulation and microneedle-based intradermal delivery to provide protective immunity against plague in a mouse model. Intranasal delivery, while feasible, was less effective than injection in this study. The potential use of these alternative delivery methods and a powder vaccine formulation may result in substantial health and economic benefits.

  6. Freeze-dried strawberry powder improves lipid profile and lipid peroxidation in women with metabolic syndrome: baseline and post intervention effects

    PubMed Central

    Basu, Arpita; Wilkinson, Marci; Penugonda, Kavitha; Simmons, Brandi; Betts, Nancy M; Lyons, Timothy J

    2009-01-01

    Background Strawberry flavonoids are potent antioxidants and anti-inflammatory agents that have been shown to reduce cardiovascular disease risk factors in prospective cohort studies. Effects of strawberry supplementation on metabolic risk factors have not been studied in obese populations. We tested the hypothesis that freeze-dried strawberry powder (FSP) will lower fasting lipids and biomarkers of oxidative stress and inflammation at four weeks compared to baseline. We also tested the tolerability and safety of FSP in subjects with metabolic syndrome. FSP is a concentrated source of polyphenolic flavonoids, fiber and phytosterols. Methods Females (n = 16) with 3 features of metabolic syndrome (waist circumference >35 inches, triglycerides > 150 mg/dL, fasting glucose > 100 mg/dL and < 126 mg/dL, HDL <50 mg/dL, or blood pressure >130/85 mm Hg) were enrolled in the study. Subjects consumed two cups of the strawberry drink daily for four weeks. Each cup had 25 g FSP blended in water. Fasting blood draws, anthropometrics, dietary analyses, and blood pressure measurements were done at baseline and 4 weeks. Biomarkers of oxidative stress and inflammation were measured using ELISA techniques. Plasma ellagic acid was measured using HPLC-UV techniques. Results Total cholesterol and LDL-cholesterol levels were significantly lower at 4 weeks versus baseline (-5% and -6%, respectively, p < 0.05), as was lipid peroxidation in the form of malondialdehyde and hydroxynonenal (-14%, p < 0.01). Oxidized-LDL showed a decreasing trend at 4 weeks (p = 0.123). No effects were noted on markers of inflammation including C-reactive protein and adiponectin. A significant number of subjects (13/16) showed an increase in plasma ellagic acid at four weeks versus baseline, while no significant differences were noted in dietary intakes at four weeks versus baseline. Thus, short-term supplementation of freeze-dried strawberries appeared to exert hypocholesterolemic effects and decrease lipid

  7. Optimization of protectant, salinity and freezing condition for freeze-drying preservation of Edwardsiella tarda

    NASA Astrophysics Data System (ADS)

    Yu, Yongxiang; Zhang, Zheng; Wang, Yingeng; Liao, Meijie; Li, Bin; Xue, Liangyi

    2017-10-01

    Novel preservation condition without ultra-low temperature is needed for the study of pathogen in marine fishes. Freeze-drying is such a method usually used for preservation of terrigenous bacteria. However, studies using freeze-drying method to preserving marine microorganisms remain very limited. In this study, we optimized the composition of protectants during the freeze-drying of Edwardsiella tarda, a fish pathogen that causes systemic infection in marine fishes. We found that the optimal composition of protectant mixture contained trehalose (8.0%), skim milk (12.0%), sodium citrate (2.0%), serum (12.0%) and PVP (2.0%). Orthogonal and interaction analyses demonstrated the interaction between serum and skim milk or sodium citrate. The highest survival rate of E. tarda was observed when the concentration of NaCl was 10.0, 30.0 and between 5.0 and 10.0 g L-1 for preparing TSB medium, E. tarda suspension and protectant mixture, respectively. When E. tarda was frozen at -80°C or -40°C for 6 h, its survival rate was higher than that under other tested conditions. Under the optimized conditions, when the protectant mixture was used during freeze-drying process, the survival rate (79.63%-82.30%) of E. tarda was significantly higher than that obtained using single protectant. Scanning electron microscopy (SEM) image indicated that E. tarda was embedded in thick matrix with detectable aggregation. In sum, the protectant mixture may be used as a novel cryoprotective additive for E. tarda.

  8. Computational analysis of fluid dynamics in pharmaceutical freeze-drying.

    PubMed

    Alexeenko, Alina A; Ganguly, Arnab; Nail, Steven L

    2009-09-01

    Analysis of water vapor flows encountered in pharmaceutical freeze-drying systems, laboratory-scale and industrial, is presented based on the computational fluid dynamics (CFD) techniques. The flows under continuum gas conditions are analyzed using the solution of the Navier-Stokes equations whereas the rarefied flow solutions are obtained by the direct simulation Monte Carlo (DSMC) method for the Boltzmann equation. Examples of application of CFD techniques to laboratory-scale and industrial scale freeze-drying processes are discussed with an emphasis on the utility of CFD for improvement of design and experimental characterization of pharmaceutical freeze-drying hardware and processes. The current article presents a two-dimensional simulation of a laboratory scale dryer with an emphasis on the importance of drying conditions and hardware design on process control and a three-dimensional simulation of an industrial dryer containing a comparison of the obtained results with analytical viscous flow solutions. It was found that the presence of clean in place (CIP)/sterilize in place (SIP) piping in the duct lead to significant changes in the flow field characteristics. The simulation results for vapor flow rates in an industrial freeze-dryer have been compared to tunable diode laser absorption spectroscopy (TDLAS) and gravimetric measurements.

  9. Effect of moisture content on the invertase activity of freeze-dried S. cerevisiae.

    PubMed

    Pitombo, R N; Spring, C; Passos, R F; Tonato, M; Vitolo, M

    1994-08-01

    The invertase activity of intact Saccharomyces cerevisiae submitted to freezing-thawing was affected by pH, the chemical nature of the buffer, and the freezing cooling rate (CR), leading in some cases to a complete invertase inactivation (acetate buffer, pH 4.0, CR = 0.5 degree C/min). Once established under adequate freezing conditions the invertase activity remained unchanged after freeze-drying. Nevertheless, in some cases the cell-growing capability after freeze-drying diminished around 70%, mainly if the frozen cell suspension was attained through freezing carried out at CR = 0.5 degree C/min. Water sorption isotherms of freeze-dried samples (freeze-dryer Edwards L-4KR; 30 degrees C and 0.1 mB) were determined at 10 and 25 degrees C. The monolayer moisture content (MMC) at each temperature (12.7 and 3.71 for 10 and 25 degrees C, respectively) was calculated from isotherms by applying BET and GAB models. Freeze-dried yeast with water activity (Aw) between 0 and 0.33 (about the MMC value) maintained at 25 degrees C for 235 days and at 89 degrees C for 15 min retained at least 85% of its original invertase activity (IA), whereas samples with Aw > MMC lost at least 60% of its IA. X ray diffraction showed that the freeze-dried cake before and after storage presented an amorphous structure.

  10. Freeze-dried spermatozoa: An alternative biobanking option for endangered species.

    PubMed

    Anzalone, Debora Agata; Palazzese, Luca; Iuso, Domenico; Martino, Giuseppe; Loi, Pasqualino

    2018-03-01

    In addition to the iconic wild species, such as the pandas and Siberian tigers, an ever-increasing number of domestic species are also threatened with extinction. Biobanking of spermatozoa could preserve genetic heritages of extinct species, and maintain biodiversity of existing species. Because lyophilized spermatozoa retain fertilizing capacity, the aim was to assess whether freeze-dried spermatozoa are an alternative option to save endangered sheep breeds. To achieve this objective, semen was collected from an Italian endangered sheep breed (Pagliarola), and a biobank of cryopreserved and freeze-dried spermatozoa was established, and evaluated using IVF (for frozen spermatozoa) and ICSI procedures (for frozen and freeze-dried spermatozoa). As expected, the fertilizing capacity of cryopreserved Pagliarola's spermatozoa was comparable to commercial semen stocks. To evaluate the activating capability of freeze-dried spermatozoa, 108 MII sheep oocytes were subjected to ICSI, and allocated to two groups: 56 oocytes were activated by incubation with ionomycin (ICSI-FDSa) and 52 were not activated (ICSI-FDSna). Pronuclear formation (2PN) was investigated at 14-16 h after ICSI in fixed presumptive zygotes. Only artificially activated oocytes developed into blastocysts after ICSI. In the present study, freeze-dried ram spermatozoa induced blastocyst development following ICSI at a relatively high proportion, providing evidence that sperm lyophilization is an alternative, low cost storage option for biodiversity preservation of domestic species. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Drying characteristics of pumpkin ( Cucurbita moschata) slices in convective and freeze dryer

    NASA Astrophysics Data System (ADS)

    Caliskan, Gulsah; Dirim, Safiye Nur

    2017-06-01

    This study was intended to determine the drying and rehydration kinetics of convective and freeze dried pumpkin slices (0.5 × 3.5 × 0.5 cm). A pilot scale tray drier (at 80 ± 2 °C inlet temperature, 1 m s-1 air velocity) and freeze drier (13.33 kPa absolute pressure, condenser temperature of -48 ± 2 °C) were used for the drying experiments. Drying curves were fitted to six well-known thin layer drying models. Nonlinear regression analysis was used to evaluate the parameters of the selected models by using statistical software SPSS 16.0 (SPSS Inc., USA). For the convective and freeze drying processes of pumpkin slices, the highest R2 values, and the lowest RMSE as well as χ2 values were obtained from Page model. The effective moisture diffusivity (Deff) of the convective and freeze dried pumpkin slices were obtained from the Fick's diffusion model, and they were found to be 2.233 × 10-7 and 3.040 × 10-9 m2s-1, respectively. Specific moisture extraction rate, moisture extraction rate, and specific energy consumption values were almost twice in freeze drying process. Depending on the results, moisture contents and water activity values of pumpkin slices were in acceptable limits for safe storage of products. The rehydration behaviour of [at 18 ± 2 and 100 ± 2 °C for 1:25, 1:50, 1:75, 1:100, and 1:125 solid:liquid ratios (w:w)] dried pumpkin slices was determined by Peleg's model with the highest R2. The highest total soluble solid loss of pumpkin slices was observed for the rehydration experiment which performed at 1:25 solid: liquid ratio (w:w). Rehydration ratio of freeze dried slices was found 2-3 times higher than convective dried slices.

  12. Stable Dry Powder Formulation for Nasal Delivery of Anthrax Vaccine

    PubMed Central

    Wang, Sheena H.; Kirwan, Shaun M.; Abraham, Soman N.; Staats, Herman F.; Hickey, Anthony J.

    2013-01-01

    There is a current biodefense interest in protection against Anthrax. Here we developed a new generation of stable and effective anthrax vaccine. We studied the immune response elicited by rPA delivered intranasally with a novel mucosal adjuvant, a mast cell activator Compound 48/80. The vaccine formulation was prepared in a powder form by spray-freeze-drying (SFD) under optimized conditions to produce particles with a target size of D50=25μm, suitable for delivery to the rabbit nasal cavity. Physicochemical properties of the powder vaccines were characterized to assess their delivery and storage potential. Structural stability of rPA was confirmed by CD and ATR-FTIR, while functional stability of rPA and C48/80 was monitored by cell-based assays. Animal study was performed using a unitdose powder device for direct nasal application. Results showed that C48/80 provided effective mucosal adjuvant activity in rabbits. Freshly prepared SFD powder vaccine formulations or powders stored for over two years at room temperature elicited significantly elevated serum PA-specific and lethal toxin neutralization antibody titers that were comparable to that induced by IM immunization with rPA. Nasal delivery of this vaccine formulation may be a viable alternative to the currently licensed vaccine, or an attractive vaccine platform for other mucosally transmitted diseases. PMID:21905034

  13. Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin.

    PubMed

    de Torres, C; Díaz-Maroto, M C; Hermosín-Gutiérrez, I; Pérez-Coello, M S

    2010-02-15

    Grape skins are the part of the fruit with the highest amount of volatile and polyphenolic compounds. Volatile compounds give the fruit and other grape derivatives their flavour. Polyphenolic compounds are responsible for the colour of the fruit, juice and wine, and also act as very important natural antioxidant compounds. Dehydration is a method used to prevent the damage of these compounds over time. Nevertheless, in the case of volatile compounds, removing water can cause compound degradation or the evaporation of such compounds. This work studied two drying methods, freeze-drying and oven-drying, at 60 degrees C, as skin preservation methods. The skins from two grape varieties, Carménère and Cabernet Sauvignon, were dried. Many volatile compounds, which are of interest in the aroma profile, were identified in both varieties as terpenes (linalool, etc.), sesquiterpenes (farnesol), norisoprenoids (vitispirane, etc.), C(6) alcohols (1-hexanol, etc.), etc., and their amount decreased significantly with the oven-drying method, in contrast to the freeze-drying method. Both phenolic compounds, anthocyanins and flavonols, were identified in fresh and dehydrated samples, thus resulting in the freeze-drying method being less aggressive than oven-drying methods. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Effects of annealing on the physical properties of therapeutic proteins during freeze drying process.

    PubMed

    Lim, Jun Yeul; Lim, Dae Gon; Kim, Ki Hyun; Park, Sang-Koo; Jeong, Seong Hoon

    2018-02-01

    Effects of annealing steps during the freeze drying process on etanercept, model protein, were evaluated using various analytical methods. The annealing was introduced in three different ways depending on time and temperature. Residual water contents of dried cakes varied from 2.91% to 6.39% and decreased when the annealing step was adopted, suggesting that they are directly affected by the freeze drying methods Moreover, the samples were more homogenous when annealing was adopted. Transition temperatures of the excipients (sucrose, mannitol, and glycine) were dependent on the freeze drying steps. Size exclusion chromatography showed that monomer contents were high when annealing was adopted and also they decreased less after thermal storage at 60°C. Dynamic light scattering results exhibited that annealing can be helpful in inhibiting aggregation and that thermal storage of freeze-dried samples preferably induced fragmentation over aggregation. Shift of circular dichroism spectrum and of the contents of etanercept secondary structure was observed with different freeze drying steps and thermal storage conditions. All analytical results suggest that the physicochemical properties of etanercept formulation can differ in response to different freeze drying steps and that annealing is beneficial for maintaining stability of protein and reducing the time of freeze drying process. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Development of a dry, stable and inhalable acyl-homoserine-lactone-acylase powder formulation for the treatment of pulmonary Pseudomonas aeruginosa infections.

    PubMed

    Wahjudi, Mariana; Murugappan, Senthil; van Merkerk, Ronald; Eissens, Anko C; Visser, Marinella R; Hinrichs, Wouter L J; Quax, Wim J

    2013-03-12

    In the lungs of cystic fibrosis (CF) patients, Pseudomonas aeruginosa commonly causes chronic infections. It has been shown that the P. aeruginosa quorum sensing (QS) system controls the expression of virulence factors during invasion and infection to host cells. PvdQ is an acyl-homoserine lactone (AHL) acylase able to degrade the signal molecule of P. aeruginosa QS. The role of PvdQ in inhibiting the QS and its successive virulence determinants has been established in in vitro as well as in in vivo, the latter in a Caenorabdhitis elegans model. For the treatment of pulmonary P. aeruginosa infections, we propose that PvdQ can be best administered directly to the lungs of the patients as a dry powder because this is expected to give specific advantages in delivery as compared to nebulizing. Therefore in this study we investigated the production of a PvdQ powder by spray-freeze drying using mannitol, trehalose and inulin as excipient. The activity of PvdQ in the powder was determined immediately after production and after subsequent storage during 4 weeks at 20°C and 55°C. We found that the enzymatic activity of PvdQ is fully maintained during spray-freeze drying using mannitol, trehalose or inulin as excipient. However, mannitol was not able to stabilize the protein during storage, while PvdQ incorporated in trehalose or inulin was fully stabilized even during storage at 55°C for at least 4 weeks. The poor stabilizing capacities of mannitol during storage could be related to its crystalline nature while the excellent stabilizing capacities of trehalose and inulin during storage could be related to their amorphous nature. The trehalose and inulin-based particles consisted of porous spheres with a volume average aerodynamical diameter of ∼1.8 μm implying that they are suitable for pulmonary delivery. This is the first study in which an AHL-degrading enzyme is processed into spray-freeze-dried powder suitable for inhalation. Copyright © 2013 Elsevier B.V. All

  16. Assessing storage of stability and mercury reduction of freeze-dried Pseudomonas putida within different types of lyoprotectant

    NASA Astrophysics Data System (ADS)

    Azoddein, Abdul Aziz Mohd; Nuratri, Yana; Azli, Faten Ahada Mohd; Bustary, Ahmad Bazli

    2017-12-01

    Pseudomonas putida is a potential strain in biological treatment to remove mercury contained in the effluent of petrochemical industry due to its mercury reductase enzyme that able to reduce ionic mercury to elementary mercury. Freeze-dried P. putida allows easy, inexpensive shipping, handling and high stability of the product. This study was aimed to freeze dry P. putida cells with addition of lyoprotectant. Lyoprotectant was added into the cells suspension prior to freezing. Dried P. putida obtained was then mixed with synthetic mercury. Viability of recovery P. putida after freeze dry was significantly influenced by the type of lyoprotectant. Among the lyoprotectants, tween 80/ sucrose was found to be the best lyoprotectant. Sucrose was able to recover more than 78% (6.2E+09 CFU/ml) of the original cells (7.90E+09CFU/ml) after freeze dry and able to retain 5.40E+05 viable cells after 4 weeks storage at 4 °C without vacuum. Polyethylene glycol (PEG) pre-treated freeze dried cells and broth pre-treated freeze dried cells after the freeze-dry process recovered more than 64% (5.0 E+09CFU/ml) and >0.1% (5.60E+07CFU/ml). Freeze-dried P. putida cells in PEG and broth cannot survive after 4 weeks storage. Freeze dry also does not really change the pattern of growth P. putida but extension of lag time was found 1 hour after 3 weeks of storage. Additional time was required for freeze-dried P. putida cells to recover before introducing freeze-dried cells to more complicated condition such as mercury solution. The maximum mercury reduction of PEG pre-treated freeze-dried cells after freeze dry and after storage of 3 weeks was 17.91 %. The maximum of mercury reduction of tween 80/sucrose pre-treated freeze-dried cells after freeze dry and after storage 3 weeks was 25.03%. Freeze dried P. putida was found to have lower mercury reduction compare to the fresh P. putida that has been grown in agar. Result from this study may be beneficial and useful as initial reference before

  17. The effect of variety and maturity on the quality of freeze-dried carrots. The effect of microwave blanching on the nutritional and textural quality of freeze-dried spinach

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Using carrots, the quality of freeze-dried products was studied to determine the optimum varieties and maturation stages for quality attributes such as appearance, flavor, texture, and nutritive value. The quality of freeze-dried carrots is discussed in terms of Gardner color, alcohol insoluble solids, viscosity, and core/cortex ratio. Also, microwave blanching of freeze-dried spinach was studied to determine vitamin interrelationships, anatomical changes, and oxidative deteriorations in terms of preprocessing microwave treatments. Statistical methods were employed in the gathering of data and interpretation of results in both studies.

  18. The effect of dryer load on freeze drying process design.

    PubMed

    Patel, Sajal M; Jameel, Feroz; Pikal, Michael J

    2010-10-01

    Freeze-drying using a partial load is a common occurrence during the early manufacturing stages when insufficient amounts of active pharmaceutical ingredient (API) are available. In such cases, the immediate production needs are met by performing lyophilization with less than a full freeze dryer load. However, it is not obvious at what fractional load significant deviations from full load behavior begin. The objective of this research was to systematically study the effects of variation in product load on freeze drying behavior in laboratory, pilot and clinical scale freeze-dryers. Experiments were conducted with 5% mannitol (high heat and mass flux) and 5% sucrose (low heat and mass flux) at different product loads (100%, 50%, 10%, and 2%). Product temperature was measured in edge as well as center vials with thermocouples. Specific surface area (SSA) was measured by BET gas adsorption analysis and residual moisture was measured by Karl Fischer. In the lab scale freeze-dryer, the molar flux of inert gas was determined by direct flow measurement using a flowmeter and the molar flux of water vapor was determined by manometric temperature measurement (MTM) and tunable diode laser absorption spectroscopy (TDLAS) techniques. Comparative pressure measurement (capacitance manometer vs. Pirani) was used to determine primary drying time. For both 5% mannitol and 5% sucrose, primary drying time decreases and product temperature increases as the load on the shelves decreases. No systematic variation was observed in residual moisture and vapor composition as load decreased. Further, SSA data suggests that there are no significant freezing differences under different load conditions. Independent of dryer scale, among all the effects, variation in radiation heat transfer from the chamber walls to the product seems to be the dominant effect resulting in shorter primary drying time as the load on the shelf decreases (i.e., the fraction of edge vials increases).

  19. Stability of prothrombin and factor VII in freeze-dried plasma

    PubMed Central

    Brozović, M.; Gurd, L. J.; Robertson, I.; Bangham, D. R.

    1971-01-01

    The stability of prothrombin and factor VII was studied using accelerated degradation tests in three preparations of freeze-dried pooled normal plasmas. In a previous report (Brozović, Gurd, Robertson, and Bangham, 1971) factor X was shown to be relatively unstable in these preparations of freeze-dried plasma: it was calculated that up to 8% of the original factor X activity would be lost after 10 years at −20°C, up to 54% at 4°C, and up to 90% at room temperature. The losses of factor VII activity were estimated to be negligible at −20°C, between 2 and 18% at 4°C, and between 20 and 70% of the original activity at 20°C, after 10 years of storage. Prothrombin was found to be less stable than factor VII: the expected loss in 10 years at −20°C may be up to 4%, at 4°C up to 30%, and at 20°C up to 83% of the initial activity. These findings indicate that in freeze-dried plasma prothrombin as well as factor X may be insufficiently stable for plasma to serve as long-term reference material for the standardization of the one-stage prothrombin time. Moreover, the loss of prothrombin and factor X in freeze-dried plasma stored at 4°C may be so high that when it is required to preserve these factors it may be necessary to store freeze-dried plasma at lower temperatures. PMID:5130534

  20. Characterization of critical physical and mechanical properties of freeze-dried grape powder for development of a clinical patient delivery system.

    PubMed

    Hu, Daniel; Haware, Rahul V; Hamad, Mazen L; Morris, Kenneth R

    2013-02-01

    Grapes are hypothesized to be a "food medicine." Freeze-dried grape powder (FDGP) is being used to test clinical activity for a variety of applications and a reproducible and reliable delivery system was required. The FDGP was characterized using traditional physico-chemical methods to generate the data needed to identify its primary liability, i.e. moisture sorption. Above a threshold level of moisture content (~25% w/w, at RT), the material becomes both difficult to handle and exhibits significant degradation of several potentially clinically important chemical components (catechin, epicatechin, resveratrol). A moisture sorption isotherm was then used to tie the threshold to the exposure relative humidity above which this occurs. Kinetic uptake studies were used to estimate the maximum safe exposure time at a given humidity (a square root time dependence of moisture uptake was observed). Armed with this knowledge, a FDGP compact coated with a compression coat [100% bees wax or combinations of carnauba wax (70%) with HPC (30%) or Avicel(®) PH 102 (30%) or lactose monohydrate (30%)] was developed that will insure the shelf life of the material without the need for special handling for approximately more than 3 months.

  1. Freeze-drying of nanosuspensions, 1: freezing rate versus formulation design as critical factors to preserve the original particle size distribution.

    PubMed

    Beirowski, Jakob; Inghelbrecht, Sabine; Arien, Albertina; Gieseler, Henning

    2011-05-01

    It has been recently reported in the literature that using a fast freezing rate during freeze-drying of drug nanosuspensions is beneficial to preserve the original particle size distribution. All freezing rates studied were obtained by utilizing a custom-made apparatus and were then indirectly related to conventional vial freeze-drying. However, a standard freeze-dryer is only capable of achieving moderate freezing rates in the shelf fluid circulation system. Therefore, it was the purpose of the present study to evaluate the possibility to establish a typical freezing protocol applicable to a standard freeze-drying unit in combination with an adequate choice of cryoprotective excipients and steric stabilizers to preserve the original particle size distribution. Six different drug nanosuspensions containing itraconazole as a drug model were studied using freeze-thaw experiments and a full factorial design to reveal major factors for the stabilization of drug nanosuspensions and the corresponding interactions. In contrast to previous reports, the freezing regime showed no significant influence on preserving the original particle size distribution, suggesting that the concentrations of both the steric stabilizer and the cryoprotective agent are optimized. Moreover, it could be pinpointed that the combined effect of steric stabilizer and cryoprotectant clearly contribute to nanoparticle stability. Copyright © 2010 Wiley-Liss, Inc.

  2. Freeze-drying in novel container system: Characterization of heat and mass transfer in glass syringes.

    PubMed

    Patel, Sajal M; Pikal, Michael J

    2010-07-01

    This study is aimed at characterizing and understanding different modes of heat and mass transfer in glass syringes to develop a robust freeze-drying process. Two different holder systems were used to freeze-dry in syringes: an aluminum (Al) block and a plexiglass holder. The syringe heat transfer coefficient was characterized by a sublimation test using pure water. Mannitol and sucrose (5% w/v) were also freeze-dried, as model systems, in both the assemblies. Dry layer resistance was determined from manometric temperature measurement (MTM) and product temperature was measured using thermocouples, and was also determined from MTM. Further, freeze-drying process was also designed using Smart freeze-dryer to assess its application for freeze-drying in novel container systems. Heat and mass transfer in syringes were compared against the traditional container system (i.e., glass tubing vial). In the Al block, the heat transfer was via three modes: contact conduction, gas conduction, and radiation with gas conduction being the dominant mode of heat transfer. In the plexiglass holder, the heat transfer was mostly via radiation; convection was not involved. Also, MTM/Smart freeze-drying did work reasonably well for freeze-drying in syringes. When compared to tubing vials, product temperature decreases and hence drying time increases in syringes. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  3. Effect of process technology on the nutritional, functional, and physical quality of grapefruit powder.

    PubMed

    Agudelo, C; Igual, M; Camacho, M M; Martínez-Navarrete, N

    2017-01-01

    The health properties of fruit are widely known. Powdered fruit may be a practical format to be offered to the consumer. Nevertheless, the process used to obtain the powder must ensure the maximum retention of the bioactive compounds and the functional value of the fruit while retaining adequate physical properties. The aim of this study was to compare freeze-drying and spray drying as the drying technologies to obtain grapefruit powder. The obtained results allow freeze-drying to be proposed as a better technology than spray drying in order to obtain a product with a higher content of vitamin C and total carotenoids. Moreover, all of the edible part of the fruit is used in this case, so a greater quantity of healthy compounds is preserved and by-product generation is avoided. Adding about 6 g water, 4 g Arabic gum and 0.6 g bamboo fibre/100 g grapefruit pulp is recommended before freeze-drying. © The Author(s) 2016.

  4. Moisture sorption characteristics of freeze-dried human platelets*

    PubMed Central

    Xu, Meng-jie; Chen, Guang-ming; Fan, Ju-li; Liu, Jin-hui; Xu, Xian-guo; Zhang, Shao-zhi

    2011-01-01

    Freeze-drying is a promising method for a long-term storage of human platelets. The moisture sorption characteristics of freeze-dried human platelets (FDHPs) were studied in this paper. The moisture sorption isotherms of FDHPs and freeze-dried lyophilization buffer (FDLB) were measured at 4, 25, and 37 °C. The experimental data were fitted to Brunauer-Emmett-Teller (BET) and Guggenheim-Anderson-de Boer (GAB) equations. There were no significant statistical differences (P>0.05) between the sorption characteristics of FDHPs and FDLB at 4 and 25 °C, while FDHPs absorbed more water at 37 °C. The net isosteric heat of sorption was derived. The heat for FDHPs showed an abnormal negative value at low moisture contents when 25 and 37 °C data were used. Dynamic sorption experiments were carried out at 25 °C with environmental water activity controlled at 0.75, 0.85, and 0.90. The moisture diffusion coefficient was fitted to be 8.24×10−12 m2/s when experimental data at initial time were used. These results would be helpful in choosing prehydration and storage condition for FDHPs. PMID:21370506

  5. Mechanisms of deterioration of nutrients. [freeze drying methods for space flight food

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1974-01-01

    Methods are reported by which freeze dried foods of improved quality will be produced. The applicability of theories of flavor retention has been demonstrated for a number of food polymers, both proteins and polysacchardies. Studies on the formation of structures during freeze drying have been continued for emulsified systems. Deterioration of organoleptic quality of freeze dried foods due to high temperature heating has been evaluated and improved procedures developed. The influence of water activity and high temperature on retention of model flavor materials and browning deterioration has been evaluated for model systems and food materials.

  6. Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freeze drying: Impact on nutritional quality and colour.

    PubMed

    Lenaerts, S; Van Der Borght, M; Callens, A; Van Campenhout, L

    2018-07-15

    Freeze drying represents the current practice to stabilize mealworms, even though it is an energy demanding technique. Therefore, it was examined in the present study whether microwave drying could be a proper alternative. To this end, the impact of both drying techniques on the proximate composition, vitamin B 12 content, fatty acid profile, oxidation status and colour parameters of mealworms was investigated. Furthermore, the influence of the application of vacuum during microwave drying was studied. The different drying technologies resulted in small differences in the proximate composition, while the vitamin B 12 content was only reduced by microwave drying. The fat fraction of freeze dried mealworms showed a higher oxidation status than the fat of microwave dried mealworms. Application of a vacuum during the microwave drying process did not appear to offer advantages. This research shows that for mealworms microwave drying can be a proper alternative to freeze drying. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effects of stepwise dry/wet-aging and freezing on meat quality of beef loins.

    PubMed

    Kim, Yuan H Brad; Meyers, Brandon; Kim, Hyun-Wook; Liceaga, Andrea M; Lemenager, Ronald P

    2017-01-01

    The objective of this study was to evaluate the effects of stepwise dry/wet-aging and freezing method on quality attributes of beef loins. Paired loins (M. Longissimus lumborum) from eight carcasses were assigned to either stepwise dry/wet-aging (carcass dry-aging for 10days then further wet-aging for 7days in vacuum bags) or carcass dry-aging only for 17days. Then, each loin was divided into three sections for freezing (never-frozen, blast or cryogenic freezing). Stepwise dry/wet-aged loin had lower purge/drip loss and shear force than conventionally dry-aged loin (P<0.05), but similar color and sensory characteristics (P>0.05). The cryogenic freezing resulted in a significant decrease in shear force values and a significant improvement in water-holding capacity (WHC). These findings indicate that the stepwise dry/wet-aging coupled with cryogenic freezing could provide beneficial impacts to the local meat industry by providing equivalent quality attributes as conventional dry-aging and improving WHC of frozen/thawed meat, while reducing the time needed for dry-aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Stable dry powder formulation for nasal delivery of anthrax vaccine.

    PubMed

    Wang, Sheena H; Kirwan, Shaun M; Abraham, Soman N; Staats, Herman F; Hickey, Anthony J

    2012-01-01

    There is a current biodefense interest in protection against anthrax. Here, we developed a new generation of stable and effective anthrax vaccine. We studied the immune response elicited by recombinant protective antigen (rPA) delivered intranasally with a novel mucosal adjuvant, a mast cell activator compound 48/80 (C48/80). The vaccine formulation was prepared in a powder form by spray-freeze-drying (SFD) under optimized conditions to produce particles with a target size of D(50) = 25 μm, suitable for delivery to the rabbit nasal cavity. Physicochemical properties of the powder vaccines were characterized to assess their delivery and storage potential. Structural stability of rPA was confirmed by circular dichroism and attenuated total reflectance-Fourier transform infrared spectroscopy, whereas functional stability of rPA and C48/80 was monitored by cell-based assays. Animal study was performed using a unit-dose powder device for direct nasal application. Results showed that C48/80 provided effective mucosal adjuvant activity in rabbits. Freshly prepared SFD powder vaccine formulations or powders stored for over 2 years at room temperature elicited significantly elevated serum PA-specific and lethal toxin neutralization antibody titers that were comparable to that induced by intramuscular immunization with rPA. Nasal delivery of this vaccine formulation may be a viable alternative to the currently licensed vaccine or an attractive vaccine platform for other mucosally transmitted diseases. Copyright © 2011 Wiley-Liss, Inc.

  9. Infrared thermography for monitoring of freeze-drying processes: instrumental developments and preliminary results.

    PubMed

    Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina

    2014-07-01

    Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from -40 °C to 25 °C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5 °C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8 °C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13 °C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10 °C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union.

  10. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall...

  11. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall...

  12. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall...

  13. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall...

  14. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall...

  15. A New Freezing Method Using Pre-Dehydration by Microwave-Vacuum Drying

    NASA Astrophysics Data System (ADS)

    Tsuruta, Takaharu; Hamidi, Nurkholis

    Partial dehydration by microwave-vacuum drying has been applied to tuna and strawberry in order to reduce cell-damages caused by the formation of large ice-crystals during freezing. The samples were subjected to microwave vacuum drying at pressure of 5 kPa and temperature less than 27°C to remove small amount of water prior to freezing. The tuna were cooled by using the freezing chamber at temperature -50°C or -150°C, while the strawberries were frozen at temperature -30°C or -80°C, respectively. The temperature transients in tuna showed that removing some water before freezing made the freezing time shorter. The observations of ice crystal clearly indicated that rapid cooling and pre-dehydration prior to freezing were effective in minimizing the size of ice crystal. It is also understood that the formation of large ice crystals has a close relation to the cell damages. After thawing, the observation of microstructure was done on the tuna and strawberry halves. The pre-dehydrated samples showed a better structure than the un-dehydrated one. It is concluded that the pre-dehydration by microwave-vacuum drying is one promising method for the cryo-preservation of foods.

  16. 30 CFR 75.1101-22 - Inspection of dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of dry powder chemical systems. 75...-22 Inspection of dry powder chemical systems. (a) Each dry powder chemical system shall be examined... the dry powder chemical system has been actuated, all components of the system shall be cleaned...

  17. 30 CFR 75.1101-22 - Inspection of dry powder chemical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection of dry powder chemical systems. 75...-22 Inspection of dry powder chemical systems. (a) Each dry powder chemical system shall be examined... the dry powder chemical system has been actuated, all components of the system shall be cleaned...

  18. 30 CFR 75.1101-22 - Inspection of dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection of dry powder chemical systems. 75...-22 Inspection of dry powder chemical systems. (a) Each dry powder chemical system shall be examined... the dry powder chemical system has been actuated, all components of the system shall be cleaned...

  19. 30 CFR 75.1101-22 - Inspection of dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection of dry powder chemical systems. 75...-22 Inspection of dry powder chemical systems. (a) Each dry powder chemical system shall be examined... the dry powder chemical system has been actuated, all components of the system shall be cleaned...

  20. Okara: A Nutritionally Valuable By-product Able to Stabilize Lactobacillus plantarum during Freeze-drying, Spray-drying, and Storage.

    PubMed

    Quintana, Gabriel; Gerbino, Esteban; Gómez-Zavaglia, Andrea

    2017-01-01

    Okara is a nutritionally valuable by-product produced in large quantities as result of soymilk elaboration. This work proposes its use as both culture and dehydration medium during freeze-drying, spray-drying, and storage of Lactobacillus plantarum CIDCA 83114. Whole and defatted okara were employed as culture media for L. plantarum CIDCA 83114. The growth kinetics were followed by plate counting and compared with those of bacteria grown in MRS broth (control). No significant differences in plate counting were observed in the three media. The fatty acid composition of bacteria grown in whole and defatted okara showed a noticeable increase in the unsaturated/saturated (U/S) fatty acid ratio, with regard to bacteria grown in MRS. This change was mainly due to the increase in polyunsaturated fatty acids, namely C18:2. For dehydration assays, cultures in the stationary phase were neutralized and freeze-dried (with or without the addition of 250 mM sucrose) or spray-dried. Bacteria were plate counted immediately after freeze-drying or spray-drying and during storage at 4°C for 90 days. Freeze-drying in whole okara conducted to the highest bacterial recovery. Regarding storage, spray-dried bacteria previously grown in whole and defatted okara showed higher plate counts than those grown in MRS. On the contrary, freeze-dried bacteria previously grown in all the three culture media were those with the lowest plate counts. The addition of sucrose to the dehydration media improved their recovery. The higher recovery of microorganisms grown in okara after freeze-drying and spray-drying processes and during storage was ascribed to both the presence of fiber and proteins in the dehydration media, and the increase in U/S fatty acids ratio in bacterial membranes. The obtained results support for the first time the use of okara as an innovative matrix to deliver L. plantarum . Considering that okara is an agro-waste obtained in large quantities, these results represent an

  1. Okara: A Nutritionally Valuable By-product Able to Stabilize Lactobacillus plantarum during Freeze-drying, Spray-drying, and Storage

    PubMed Central

    Quintana, Gabriel; Gerbino, Esteban; Gómez-Zavaglia, Andrea

    2017-01-01

    Okara is a nutritionally valuable by-product produced in large quantities as result of soymilk elaboration. This work proposes its use as both culture and dehydration medium during freeze-drying, spray-drying, and storage of Lactobacillus plantarum CIDCA 83114. Whole and defatted okara were employed as culture media for L. plantarum CIDCA 83114. The growth kinetics were followed by plate counting and compared with those of bacteria grown in MRS broth (control). No significant differences in plate counting were observed in the three media. The fatty acid composition of bacteria grown in whole and defatted okara showed a noticeable increase in the unsaturated/saturated (U/S) fatty acid ratio, with regard to bacteria grown in MRS. This change was mainly due to the increase in polyunsaturated fatty acids, namely C18:2. For dehydration assays, cultures in the stationary phase were neutralized and freeze-dried (with or without the addition of 250 mM sucrose) or spray-dried. Bacteria were plate counted immediately after freeze-drying or spray-drying and during storage at 4°C for 90 days. Freeze-drying in whole okara conducted to the highest bacterial recovery. Regarding storage, spray-dried bacteria previously grown in whole and defatted okara showed higher plate counts than those grown in MRS. On the contrary, freeze-dried bacteria previously grown in all the three culture media were those with the lowest plate counts. The addition of sucrose to the dehydration media improved their recovery. The higher recovery of microorganisms grown in okara after freeze-drying and spray-drying processes and during storage was ascribed to both the presence of fiber and proteins in the dehydration media, and the increase in U/S fatty acids ratio in bacterial membranes. The obtained results support for the first time the use of okara as an innovative matrix to deliver L. plantarum. Considering that okara is an agro-waste obtained in large quantities, these results represent an

  2. Freeze Drying of Fruits and Vegetables: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Noble, Richard D.

    1979-01-01

    Describes a laboratory experiment for freeze-drying fruits and vegetables which aims to expose college students to the principles of drying and simultaneous heat and mass transfer. The experimental apparatus, procedure of the experiment, and data analysis are also included. (HM)

  3. Microbial analysis and survey test of gamma-irradiated freeze-dried fruits for patient's food

    NASA Astrophysics Data System (ADS)

    Park, Jae-Nam; Sung, Nak-Yun; Byun, Eui-Hong; Byun, Eui-Baek; Song, Beom-Seok; Kim, Jae-Hun; Lee, Kyung-A.; Son, Eun-Joo; Lyu, Eun-Soon

    2015-06-01

    This study examined the microbiological and organoleptic qualities of gamma-irradiated freeze-dried apples, pears, strawberries, pineapples, and grapes, and evaluated the organoleptic acceptability of the sterilized freeze-dried fruits for hospitalized patients. The freeze-dried fruits were gamma-irradiated at 0, 1, 2, 3, 4, 5, 10, 12, and 15 kGy, and their quality was evaluated. Microorganisms were not detected in apples after 1 kGy, in strawberries and pears after 4 kGy, in pineapples after 5 kGy, and in grapes after 12 kGy of gamma irradiation. The overall acceptance score, of the irradiated freeze-dried fruits on a 7-point scale at the sterilization doses was 5.5, 4.2, 4.0, 4.1, and 5.1 points for apples, strawberries, pears, pineapples, and grapes, respectively. The sensory survey of the hospitalized cancer patients (N=102) resulted in scores of 3.8, 3.7, 3.9, 3.9, and 3.7 on a 5-point scale for the gamma-irradiated freeze-dried apples, strawberries, pears, pineapples, and grapes, respectively. The results suggest that freeze-dried fruits can be sterilized with a dose of 5 kGy, except for grapes, which require a dose of 12 kGy, and that the organoleptic quality of the fruits is acceptable to immuno-compromised patients. However, to clarify the microbiological quality and safety of freeze-dried fruits should be verified by plating for both aerobic and anaerobic microorganisms.

  4. Development of freeze-dried miyeokguk, Korean seaweed soup, as space food sterilized by irradiation

    NASA Astrophysics Data System (ADS)

    Song, Beom-Seok; Park, Jin-Gyu; Kim, Jae-Hun; Choi, Jong-Il; Ahn, Dong-Hyun; Hao, Chen; Lee, Ju-Woon

    2012-08-01

    The purpose of this study was to evaluate microbial populations, Hunter's color values (L*, a*, b*) and the sensory quality of freeze-dried miyeokguk, Korean seaweed soup, in order to use it as space food. Microorganisms were not detected in non-irradiated freeze-dried miyeokguk within the detection limit of 1.00 log CFU/g. However, the microbial population in rehydrated miyeokguk was 7.01 log CFU/g after incubation at 35 °C for 48 h, indicating that freeze-dried miyeokguk was not sterilized by heat treatment during the preparation process. Bacteria in the freeze-dried miyeokguk were tentatively identified as Bacillus cereus, B. subtilis, Enterobacter hormaechei, and Ancinetobacter genomosp. using the 16S rDNA sequencing. In samples that were gamma-irradiated above 10 kGy, it was confirmed that all microorganisms were inactivated. Hunter's color values of the samples irradiated at doses less than 10 kGy were not significantly altered from their baseline appearance (p>0.05). Sensory evaluation showed that preference scores in all sensory properties decreased when freeze-dried miyeokguk was irradiated at doses greater than 10 kGy. Therefore, the results of this study suggest that gamma irradiation at 10 kGy is sufficient to sterilize freeze-dried miyeokguk without significant deterioration in the sensory quality, and thus, the freeze-dried and irradiated miyeokguk at 10 kGy fulfills the microbiological requirements as space food.

  5. Simulation of the process kinetics and analysis of physicochemical properties in the freeze drying of kale

    NASA Astrophysics Data System (ADS)

    Dziki, Dariusz; Polak, Renata; Rudy, Stanisław; Krzykowski, Andrzej; Gawlik-Dziki, Urszula; Różyło, Renata; Miś, Antoni; Combrzyński, Maciej

    2018-01-01

    Investigations were performed to study the freeze-drying process of kale (Brassica oleracea L. var acephala). The process of freeze-drying was performed at temperatures of 20, 40, and 60°C for whole pieces of leaves and for pulped leaves. The kinetics of the freeze-drying of both kale leaves and kale pulp were best described by the Page model. The increasing freeze-drying temperature from 20 to 60°C induced an approximately two-fold decrease in the drying time. Freeze-drying significantly increased the value of the lightness, delta Chroma, and browning index of kale, and had little influence on the hue angle. The highest increase in the lightness and delta Chroma was observed for whole leaves freeze-dried at 20°C. An increase in the drying temperature brought about a slight decrease in the lightness, delta Chroma and the total colour difference. Pulping decreased the lightness and hue angle, and increased browning index. Freeze-drying engendered a slight decrease in the total phenolics content and antioxidant activity, in comparison to fresh leaves. The temperature of the process and pulping had little influence on the total phenolics content and antioxidant activity of dried kale, but significantly decreased the contents of chlorophyll a and chlorophyll b.

  6. Continuous measurement of drying rate of crystalline and amorphous systems during freeze-drying using an in situ microbalance technique.

    PubMed

    Roth, C; Winter, G; Lee, G

    2001-09-01

    The use of a novel microbalance (Christ) technique to monitor continuously the weight loss of a vial standing on a shelf of a freeze-dryer has been investigated. The drying rates of the following aqueous solutions were measured during the primary drying phase of a complete freeze-drying cycle: sucrose (75 mg/mL, 2.5-mL fill volume), sucrose and phenylalanine (1:0.2 by weight, 75 mg/mL, 2.5-mL fill volume), and mannitol (75mg/mL, 2.5-mL fill volume). The microbalance yields the cumulative water loss, m(cu) in grams, and the momentary drying rate, Deltam(cu)/Deltat in mg/10 min, of the frozen cake. The momentary drying rate curves were especially useful for examining how Deltam(cu)/Deltat changes with time during primary drying. Initially, Deltam(cu)/Deltat rises to a sharp maximum and then decreases in a fashion depending on shelf temperature, chamber pressure, and the nature of the substance being dried. Different drying behavior was observed for the sucrose and sucrose/phenylalanine systems, which was attributed to the presence of crystalline phenylalanine in the amorphous sucrose. At low shelf-temperature (-24 degrees C) the crystalline mannitol showed lower Deltam(cu)/Deltat than with either sucrose or sucrose/phenylalanine. The balance could also detect differences in Deltam(cu)/Deltat when using different freezing protocols. "Slow" and "moderate" freezing protocols gave similar drying behavior, but "rapid" freezing in liquid nitrogen produced greatly altered drying rate and internal cake morphology. The balance also could be used to detect the endpoint of primary drying. Different endpoint criteria and their influence on final dried cake properties were examined. Copyright 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association

  7. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.

    PubMed

    Sarciaux, J M; Mansour, S; Hageman, M J; Nail, S L

    1999-12-01

    The objective of this study was to identify critical formulation and processing variables affecting aggregation of bovine IgG during freeze-drying when no lyoprotective solute is used. Parameters examined were phosphate buffer concentration and counterion (Na versus K phosphate), added salts, cooling rate, IgG concentration, residual moisture level, and presence of a surfactant. No soluble aggregates were detected in any formulation after either freezing/thawing or freeze-drying. No insoluble aggregates were detected in any formulation after freezing, but insoluble aggregate levels were always detectable after freeze-drying. The data are consistent with a mechanism of aggregate formation involving denaturation of IgG at the ice/freeze-concentrate interface which is reversible upon freeze-thawing, but becomes irreversible after freeze-drying and reconstitution. Rapid cooling (by quenching in liquid nitrogen) results in more and larger aggregates than slow cooling on the shelf of the freeze-dryer. This observation is consistent with surface area measurements and environmental electron microscopic data showing a higher surface area of freeze-dried solids after fast cooling. Annealing of rapidly cooled solutions results in significantly less aggregation in reconstituted freeze-dried solids than in nonannealed controls, with a corresponding decrease in specific surface area of the freeze-dried, annealed system. Increasing the concentration of IgG significantly improves the stability of IgG against freeze-drying-induced aggregation, which may be explained by a smaller percentage of the protein residing at the ice/freeze-concentrate interface as IgG concentration is increased. A sodium phosphate buffer system consistently results in more turbid reconstituted solids than a potassium phosphate buffer system at the same concentration, but this effect is not attributable to a pH shift during freezing. Added salts such as NaCl or KCl contribute markedly to insoluble aggregate

  8. Optimization of a pharmaceutical freeze-dried product and its process using an experimental design approach and innovative process analyzers.

    PubMed

    De Beer, T R M; Wiggenhorn, M; Hawe, A; Kasper, J C; Almeida, A; Quinten, T; Friess, W; Winter, G; Vervaet, C; Remon, J P

    2011-02-15

    The aim of the present study was to examine the possibilities/advantages of using recently introduced in-line spectroscopic process analyzers (Raman, NIR and plasma emission spectroscopy), within well-designed experiments, for the optimization of a pharmaceutical formulation and its freeze-drying process. The formulation under investigation was a mannitol (crystalline bulking agent)-sucrose (lyo- and cryoprotector) excipient system. The effects of two formulation variables (mannitol/sucrose ratio and amount of NaCl) and three process variables (freezing rate, annealing temperature and secondary drying temperature) upon several critical process and product responses (onset and duration of ice crystallization, onset and duration of mannitol crystallization, duration of primary drying, residual moisture content and amount of mannitol hemi-hydrate in end product) were examined using a design of experiments (DOE) methodology. A 2-level fractional factorial design (2(5-1)=16 experiments+3 center points=19 experiments) was employed. All experiments were monitored in-line using Raman, NIR and plasma emission spectroscopy, which supply continuous process and product information during freeze-drying. Off-line X-ray powder diffraction analysis and Karl-Fisher titration were performed to determine the morphology and residual moisture content of the end product, respectively. In first instance, the results showed that - besides the previous described findings in De Beer et al., Anal. Chem. 81 (2009) 7639-7649 - Raman and NIR spectroscopy are able to monitor the product behavior throughout the complete annealing step during freeze-drying. The DOE approach allowed predicting the optimum combination of process and formulation parameters leading to the desired responses. Applying a mannitol/sucrose ratio of 4, without adding NaCl and processing the formulation without an annealing step, using a freezing rate of 0.9°C/min and a secondary drying temperature of 40°C resulted in

  9. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying.

    PubMed

    Scutellà, Bernadette; Trelea, Ioan Cristian; Bourlès, Erwan; Fonseca, Fernanda; Passot, Stephanie

    2018-07-01

    During the primary drying step of the freeze-drying process, mass transfer resistance strongly affects the product temperature, and consequently the final product quality. The main objective of this study was to evaluate the variability of the mass transfer resistance resulting from the dried product layer (R p ) in a manufacturing batch of vials, and its potential effect on the product temperature, from data obtained in a pilot scale freeze-dryer. Sublimation experiments were run at -25 °C and 10 Pa using two different freezing protocols: with spontaneous or controlled ice nucleation. Five repetitions of each condition were performed. Global (pressure rise test) and local (gravimetric) methods were applied as complementary approaches to estimate R p . The global method allowed to assess variability of the evolution of R p with the dried layer thickness between different experiments whereas the local method informed about R p variability at a fixed time within the vial batch. A product temperature variability of approximately ±4.4 °C was defined for a product dried layer thickness of 5 mm. The present approach can be used to estimate the risk of failure of the process due to mass transfer variability when designing freeze-drying cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Infrared Thermography for Monitoring of Freeze-Drying Processes: Instrumental Developments and Preliminary Results

    PubMed Central

    Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina

    2014-01-01

    Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from −40°C to 25°C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5°C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8°C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13°C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10°C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union 103:2088–2097, 2014 PMID:24902839

  11. 30 CFR 75.1101-13 - Dry powder chemical systems; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dry powder chemical systems; general. 75.1101-13 Section 75.1101-13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-13 Dry powder chemical systems; general. Self-contained dry powder chemical systems may be installed...

  12. 30 CFR 75.1101-13 - Dry powder chemical systems; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Dry powder chemical systems; general. 75.1101-13 Section 75.1101-13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-13 Dry powder chemical systems; general. Self-contained dry powder chemical systems may be installed...

  13. 30 CFR 75.1101-13 - Dry powder chemical systems; general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Dry powder chemical systems; general. 75.1101-13 Section 75.1101-13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-13 Dry powder chemical systems; general. Self-contained dry powder chemical systems may be installed...

  14. 30 CFR 75.1101-13 - Dry powder chemical systems; general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Dry powder chemical systems; general. 75.1101-13 Section 75.1101-13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-13 Dry powder chemical systems; general. Self-contained dry powder chemical systems may be installed...

  15. 30 CFR 75.1101-13 - Dry powder chemical systems; general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Dry powder chemical systems; general. 75.1101-13 Section 75.1101-13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-13 Dry powder chemical systems; general. Self-contained dry powder chemical systems may be installed...

  16. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?

    PubMed

    Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik

    2017-09-15

    The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Mineralization of carbon and nitrogen from freeze- and over-dried plant material added to soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorhead, K.K.; Graetz, D.A.; Reddy, K.R.

    Drying organic material before soil incorporation is a common procedure used in mineralization or decomposition studies. A laboratory study was conducted to determine the effect of drying methods on plant C and N and associated mineralization patterns in soil. Freeze- and oven-dried water hyacinth (Eichhornia crassipes (Mart) Solms) was added to a Kendrick soil (loamy, siliceous, hyperthermic Arenic Paleudults) at a rate of 5 g kg{sup {minus}1} and incubated in the dark at 27{degree}C for 90 d. Oven drying in paper bags significantly increased the lignin content and decreased the mineral content of the plant material compared to freeze drying.more » The total C and N was not significantly different for the two materials. The mineralization of C from freeze-dried plant material was more rapid during the initial stage of decomposition and remained significantly higher throughout the incubation. At 90 d, 50, and 41% of the plant C had evolved as CO{sub 2} for the freeze- and oven-dried plant material, respectively. Mineralization of {sup 15}N from the plant material accounted for 33% of the applied N of the freeze-dried material and 23% of the applied N of the oven-dried material. Nitrogen mineralization and CO{sub 2} evolution were linearly correlated (r=0.998) for the oven-dried plant material, but less correlated (r=0.770) for the freeze-dried material.« less

  18. Characterisation of spray dried soy sauce powders made by adding crystalline carbohydrates to drying carrier.

    PubMed

    Wang, Wei; Zhou, Weibiao

    2015-02-01

    This study aimed to reduce stickiness and caking of spray dried soy sauce powders by introducing a new crystalline structure into powder particles. To perform this task, soy sauce powders were formulated by using mixtures of cellulose and maltodextrin or mixtures of waxy starch and maltodextrin as drying carriers, with a fixed carrier addition rate of 30% (w/v) in the feed solution. The microstructure, crystallinity, solubility as well as stickiness and caking strength of all the different powders were analysed and compared. Incorporating crystalline carbohydrates in the drying carrier could significantly reduce the stickiness and caking strength of the powders when the ratio of crystalline carbohydrates to maltodextrin was above 1:5 and 1:2, respectively. X-ray Diffraction (XRD) results showed that adding cellulose or waxy starch could induce the crystallinity of powders. Differential Scanning Calorimetry (DSC) results demonstrated that the native starch added to the soy sauce powders did not fully gelatinize during spray drying. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Design, characterization, and aerosol dispersion performance modeling of advanced spray-dried microparticulate/nanoparticulate mannitol powders for targeted pulmonary delivery as dry powder inhalers.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-04-01

    The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns.

  20. Design, Characterization, and Aerosol Dispersion Performance Modeling of Advanced Spray-Dried Microparticulate/Nanoparticulate Mannitol Powders for Targeted Pulmonary Delivery as Dry Powder Inhalers

    PubMed Central

    Li, Xiaojian; Vogt, Frederick G.; Hayes, Don

    2014-01-01

    Abstract Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Methods: Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. Results: The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. Conclusion: The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns. PMID:24502451

  1. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine T(g)' in pharmaceutical lyophilization.

    PubMed

    Searles, J A; Carpenter, J F; Randolph, T W

    2001-07-01

    In a companion paper we show that the freezing of samples in vials by shelf-ramp freezing results in significant primary drying rate heterogeneity because of a dependence of the ice crystal size on the nucleation temperature during freezing.1 The purpose of this study was to test the hypothesis that post-freezing annealing, in which the product is held at a predetermined temperature for a specified duration, can reduce freezing-induced heterogeneity in sublimation rates. In addition, we test the impact of annealing on primary drying rates. Finally, we use the kinetics of relaxations during annealing to provide a simple measurement of T(g)', the glass transition temperature of the maximally freeze-concentrated amorphous phase, under conditions and time scales most appropriate for industrial lyophilization cycles. Aqueous solutions of hydroxyethyl starch (HES), sucrose, and HES:sucrose were either frozen by placement on a shelf while the temperature was reduced ("shelf-ramp frozen") or by immersion into liquid nitrogen. Samples were then annealed for various durations over a range of temperatures and partially lyophilized to determine the primary drying rate. The morphology of fully dried liquid nitrogen-frozen samples was examined using scanning electron microscopy. Annealing reduced primary drying rate heterogeneity for shelf-ramp frozen samples, and resulted in up to 3.5-fold increases in the primary drying rate. These effects were due to increased ice crystal sizes, simplified amorphous structures, and larger and more numerous holes on the cake surface of annealed samples. Annealed HES samples dissolved slightly faster than their unannealed counterparts. Annealing below T(g)' did not result in increased drying rates. We present a simple new annealing-lyophilization method of T(g)' determination that exploits this phenomenon. It can be carried out with a balance and a freeze-dryer, and has the additional advantage that a large number of candidate formulations can

  2. Encapsulation of black carrot juice using spray and freeze drying.

    PubMed

    Murali, S; Kar, Abhijit; Mohapatra, Debabandya; Kalia, Pritam

    2015-12-01

    Black carrot juice extracted using pectinase enzyme was encapsulated in three different carrier materials (maltodextrin 20DE, gum arabic and tapioca starch) using spray drying at four inlet temperatures (150, 175, 200 and 225 ℃) and freeze drying at a constant temperature of - 53 ℃ and vacuum of 0.22-0.11 mbar with the constant feed mixture. The products were analyzed for total anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and total colour change. For both the drying methods followed in this study, maltodextrin 20DE as the carrier material has proven to be better in retaining maximum anthocyanin and antioxidant activity compared to gum arabic and tapioca starch. The best spray dried product, was obtained at 150 ℃. The most acceptable was the freeze dried product with maximum anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and colour change. © The Author(s) 2014.

  3. Improving survival and storage stability of bacteria recalcitrant to freeze-drying: a coordinated study by European culture collections.

    PubMed

    Peiren, Jindrich; Buyse, Joke; De Vos, Paul; Lang, Elke; Clermont, Dominique; Hamon, Sylviane; Bégaud, Evelyne; Bizet, Chantal; Pascual, Javier; Ruvira, María A; Macián, M Carmen; Arahal, David R

    2015-04-01

    The objective of this study is to improve the viability after freeze-drying and during storage of delicate or recalcitrant strains safeguarded at biological resource centers. To achieve this objective, a joint experimental strategy was established among the different involved partner collections of the EMbaRC project ( www.embarc.eu ). Five bacterial strains considered as recalcitrant to freeze-drying were subjected to a standardized freeze-drying protocol and to seven agreed protocol variants. Viability of these strains was determined before and after freeze-drying (within 1 week, after 6 and 12 months, and after accelerated storage) for each of the protocols. Furthermore, strains were exchanged between partners to perform experiments with different freeze-dryer-dependent parameters. Of all tested variables, choice of the lyoprotectant had the biggest impact on viability after freeze-drying and during storage. For nearly all tested strains, skim milk as lyoprotectant resulted in lowest viability after freeze-drying and storage. On the other hand, best freeze-drying and storage conditions were strain and device dependent. For Aeromonas salmonicida CECT 894(T), best survival was obtained when horse serum supplemented with trehalose was used as lyoprotectant, while Aliivibrio fischeri LMG 4414(T) should be freeze-dried in skim milk supplemented with marine broth in a 1:1 ratio. Freeze-drying Campylobacter fetus CIP 53.96(T) using skim milk supplemented with trehalose as lyoprotectant resulted in best recovery. Xanthomonas fragariae DSM 3587(T) expressed high viability after freeze-drying and storage for all tested lyoprotectants and could not be considered as recalcitrant. In contrary, Flavobacterium columnare LMG 10406(T) did not survive the freeze-drying process under all tested conditions.

  4. Stability of pseudorabies virus during freeze-drying and storage: effect of suspending media.

    PubMed Central

    Scott, E M; Woodside, W

    1976-01-01

    The effect of suspending media on the stability of pseudorabies virus upon freeze-drying and subsequent storage was studied. A variety of media was tested, including: sodium glutamate; sucrose; lactose; lactalbumin hydrolysate; peptone; a combination of sucrose, dextran, and glutamate; and various combinations of sucrose, glutamate, and potassium phosphates. Suspending media containing glutamate, either alone or in combination with sucrose and either dextran or phosphates, afforded the greatest degree of protection during the freeze-drying process and upon storage. Some possible functions of these additives in preventing injury to the virus during freezing and drying have been suggested. PMID:182713

  5. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers.

    PubMed

    Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V

    2013-03-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.

  6. Freeze drying of orally disintegrating tablets containing taste masked naproxen sodium granules in blisters.

    PubMed

    Stange, Ulrike; Führling, Christian; Gieseler, Henning

    2014-09-15

    Abstract Orally disintegrating tablets (ODTs) were freeze dried in blisters using the Lyostar® II SMART™ Freeze Dryer Technology. ODT formulations either without non-water soluble particles (placebo) or containing large fractions (717 mg) of taste-masked naproxen sodium (NaS) granules were freeze dried. The process data revealed differences between ODTs with and without embedded granules in the pressure rise curves as well as in the shelf (inlet) temperature adjustments during freeze-drying. Pressure rise curves of the placebo ODTs from eight hours process time showed no distinct temperature-dominated part, and the last optimization step of the shelf temperature to achieve -24.4 °C might be prone to errors. The final shelf temperature of ODTs containing granules was -23.3 °C. The detection of primary drying endpoints using SMART™ Technology or comparative pressure measurements was reliable for both ODT formulations, whereas the application of thermocouples resulted in premature endpoint indication. Product resistance of ODTs containing granules was generally elevated in comparison to ODTs without granules, but increased only slightly over the course of the drying process. In summary, the developed freeze-drying cycle was found applicable for production of elegant ODTs with incorporated taste masked NaS granules.

  7. Effects of six substances on the growth and freeze-drying of Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Chen, He; Huang, Jie; Shi, Xiaoyu; Li, Yichao; Liu, Yu

    2017-01-01

    The efficacy of Lactobacillus delbrueckii subsp. bulgaricus as starter cultures for the dairy industry depends largely on the number of viable and active cells. Freeze-drying is the most convenient and successful method to preserve the bacterial cells. However, not all strains survived during freeze-drying. The effects of six substances including NaCl, sorbitol, mannitol, mannose, sodium glutamate, betaine added to the MRS medium on the growth and freeze-drying survival rate and viable counts of Lb. delbrueckii subsp. bulgaricus were studied through a single-factor test and Plackett-Burman design. Subsequently, the optimum freeze-drying conditions of Lb. delbrueckii subsp. bulgaricus were determined. Lb. delbrueckii subsp. bulgaricus survival rates were up to the maximum of 42.7%, 45.4%, 23.6%, while the concentrations of NaCl, sorbitol, sodium glutamate were 0.6%, 0.15%, 0.09%, respectively. In the optimum concentration, the viable counts in broth is 6.1, 6.9, 5.13 (×108 CFU/mL), respectively; the viable counts in freeze-drying power are 3.09, 5.2, 2.7 (×1010 CFU/g), respectively. Three antifreeze factors including NaCl, sorbitol, sodium glutamate have a positive effect on the growth and freeze-drying of Lb. delbrueckii subsp. bulgaricus. The results are beneficial for developing Lb. delbrueckii subsp. bulgaricus.

  8. Development of freeze-dried albumin-free formulation of recombinant factor VIII SQ.

    PubMed

    Osterberg, T; Fatouros, A; Mikaelsson, M

    1997-07-01

    To develop a stable freeze-dried formulation of recombinant factor VIII-SQ (r-VIII SQ) without the addition of albumin. Different formulations were evaluated for their protective effect during sterile filtration, freeze-thawing, freeze-drying, reconstitution and long term storage. Factor VIII activity (VIII:C), visual inspection, clarity, solubility, moisture content and soluble aggregates and/ or fragments were assayed. A combination of non-crystallising excipients (L-histidine and sucrose), a non-ionic surfactant (polysorbate 80) and a crystalline bulking agent (sodium chloride) was found to preserve the factor VIII activity during formulation, freeze-drying and storage. Calcium chloride was included to prevent dissociation of the heavy and light chains of r-VIII SQ. Sodium chloride was chosen as the primary bulking agent since the concentration of sodium chloride necessary for dissolution of r-VIII SQ in the buffer will inhibit the crystallization of many potential cake formers. It was found that L-histidine, besides functioning as a buffer, also protected r-VIII SQ during freeze-drying and storage. A pH close to 7 was found to be optimal. Some potential macromolecular stabilisers, PEG 4000, Haes-steril and Haemaccel, were evaluated but they did not improve the recovery of VIII:C. The freeze-dried formulation was stable for at least two years at 7 degrees C and for at least one year at 25 degrees C. The reconstituted solution was stable for at least 100 hours at 25 degrees C. The albumin-free formulation resulted in consistently high recovery of VIII:C, very low aggregate formation and good storage stability. The stability of the reconstituted solution makes the formulation suitable for continuous administration via infusion pump. The formulation strategy described here may also be useful for other proteins which require a high ionic strength.

  9. Care during freeze-drying of bovine pericardium tissue to be used as a biomaterial: a comparative study.

    PubMed

    Polak, Roberta; Pitombo, Ronaldo N M

    2011-10-01

    Bovine pericardium (BP) tissue is widely used in the manufacture of bioprosthetics. The effects of freeze-drying on the BP tissue have been studied by some researchers in order to decrease their cytotoxicity due to preservation in formaldehyde solution, and to increase the lifetime of the product in storage. This study was undertaken in order to study the effect of freeze-drying in the structure of BP. To perform this study BP samples were freeze-dried in two different types of freeze-dryers available in our laboratory: a laboratory freeze-dryer, in which it was not possible to control parameters and a pilot freeze-dryer, wherein all parameters during freezing and drying were controlled. After freeze-drying processes, samples were analyzed by SEM, Raman spectroscopy, tensile strength, water uptake tests and TEM. In summary, it has been demonstrated that damages occur in collagen fibers by the loss of bulk water of collagen structure implicating in a drastic decreasing of BP mechanical properties due to its structural alterations. Moreover, it was proven that the collagen fibrils suffered breakage at some points, which can be attributed to the uncontrolled parameters during drying. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Combined control of morphology and polymorph in spray drying of mannitol for dry powder inhalation

    NASA Astrophysics Data System (ADS)

    Lyu, Feng; Liu, Jing J.; Zhang, Yang; Wang, Xue Z.

    2017-06-01

    The morphology and polymorphism of mannitol particles were controlled during spray drying with the aim of improving the aerosolization properties of inhalable dry powders. The obtained microparticles were characterized using scanning electron microscopy, infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction and inhaler testing with a next generation impactor. Mannitol particles of varied α-mannitol content and surface roughness were prepared via spray drying by manipulating the concentration of NH4HCO3 in the feed solution. The bubbles produced by NH4HCO3 led to the formation of spheroid particles with a rough surface. Further, the fine particle fraction was increased by the rough surface of carriers and the high α-mannitol content. Inhalable dry powders with a 29.1 ± 2.4% fine particle fraction were obtained by spray-drying using 5% mannitol (w/v)/2% NH4HCO3 (w/v) as the feed solution, proving that this technique is an effective method to engineer particles for dry powder inhalation.

  11. Development of a Method to Produce Freeze-Dried Cubes from 3 Pacific Salmon Species

    USDA-ARS?s Scientific Manuscript database

    Freeze-dried boneless skinless cubes of pink (Oncorhynchus gorbuscha), sockeye (Oncorhynchus nerka), and chum (Oncorhynchus keta) salmon were prepared and physical properties evaluated. To minimize freeze-drying time, the kinetics of dehydration and processing yields were investigated. The physical ...

  12. Cancer prevention with freeze-dried berries and berry components.

    PubMed

    Stoner, Gary D; Wang, Li-Shu; Zikri, Nancy; Chen, Tong; Hecht, Stephen S; Huang, Chuanshu; Sardo, Christine; Lechner, John F

    2007-10-01

    Our laboratory is developing a food-based approach to the prevention of esophageal and colon cancer utilizing freeze-dried berries and berry extracts. Dietary freeze-dried berries were shown to inhibit chemically induced cancer of the rodent esophagus by 30-60% and of the colon by up to 80%. The berries are effective at both the initiation and promotion/progression stages of tumor development. Berries inhibit tumor initiation events by influencing carcinogen metabolism, resulting in reduced levels of carcinogen-induced DNA damage. They inhibit promotion/progression events by reducing the growth rate of pre-malignant cells, promoting apoptosis, reducing parameters of tissue inflammation and inhibiting angiogenesis. On a molecular level, berries modulate the expression of genes involved with proliferation, apoptosis, inflammation and angiogenesis. We have recently initiated clinical trials; results from a toxicity study indicated that freeze-dried black raspberries are well tolerated in humans when administered orally for 7 days at a dose of 45 g per day. Several Phase IIa clinical trials are underway in patients at high risk for esophagus and colon cancer; i.e., Barrett's esophagus, esophageal dysplasia and colonic polyps, to determine if berries will modulate various histological and molecular biomarkers of development of these diseases.

  13. Cancer Prevention with Freeze-dried Berries and Berry Components

    PubMed Central

    Stoner, Gary D.; Wang, Li-Shu; Zikri, Nancy; Chen, Tong; S. Hecht, Stephen; Huang, Chuanshu; Sardo, Christine; Lechner, John F.

    2007-01-01

    Our laboratory is developing a food-based approach to the prevention of esophageal and colon cancer utilizing freeze-dried berries and berry extracts. Dietary freeze-dried berries were shown to inhibit chemically-induced cancer of the rodent esophagus by 30-60% and of the colon by up- to 80%. The berries are effective at both the initiation and promotion/progression stages of tumor development. Berries inhibit tumor initiation events by influencing carcinogen metabolism, resulting in reduced levels of carcinogen-induced DNA damage. They inhibit promotion/progression events by reducing the growth rate of premalignant cells, promoting apoptosis, reducing parameters of tissue inflammation and inhibiting angiogenesis. On a molecular level, berries modulate the expression of genes involved with proliferation, apoptosis, inflammation and angiogenesis. We have recently initiated clinical trials; results from a toxicity study indicated that freeze-dried black raspberries are well tolerated in humans when administered orally for 7 days at a dose of 45 grams per day. Several Phase IIa clinical trials are underway in patients at high risk for esophagus and colon cancer; i.e., Barrett’s esophagus, esophageal dysplasia and colonic polyps, to determine if berries will modulate various histological and molecular biomarkers of development of these diseases. PMID:17574861

  14. Modelling and simulation of a moving interface problem: freeze drying of black tea extract

    NASA Astrophysics Data System (ADS)

    Aydin, Ebubekir Sıddık; Yucel, Ozgun; Sadikoglu, Hasan

    2017-06-01

    The moving interface separates the material that is subjected to the freeze drying process as dried and frozen. Therefore, the accurate modeling the moving interface reduces the process time and energy consumption by improving the heat and mass transfer predictions during the process. To describe the dynamic behavior of the drying stages of the freeze-drying, a case study of brewed black tea extract in storage trays including moving interface was modeled that the heat and mass transfer equations were solved using orthogonal collocation method based on Jacobian polynomial approximation. Transport parameters and physical properties describing the freeze drying of black tea extract were evaluated by fitting the experimental data using Levenberg-Marquardt algorithm. Experimental results showed good agreement with the theoretical predictions.

  15. Ice nucleation temperature influences recovery of activity of a model protein after freeze drying.

    PubMed

    Cochran, Teresa; Nail, Steven L

    2009-09-01

    The objective of this study was to determine whether a relationship exists between ice nucleation temperature and recovery of activity of a model protein, lactate dehydrogenase, after freeze drying. Aqueous buffer systems containing 50 microg/mL of protein were frozen in vials with externally mounted thermocouples on the shelf of a freeze dryer, then freeze dried. Various methods were used to establish a wide range of ice nucleation temperatures. An inverse relationship was found between the extent of supercooling during freezing and recovery of activity in the reconstituted solution. The data are consistent with a mechanism of inactivation resulting from adsorption of protein at the ice/freeze-concentrate interface during the freezing process.

  16. Freeze drying for morphological control of inter-penetrating polymer networks

    NASA Technical Reports Server (NTRS)

    Hansen, Marion G.; Pater, Ruth H.

    1990-01-01

    The intrinsic brittleness of BMI resins can be reduced through the creation of an interpenetrating network (IPN) of BMI with a reactive-encapped thermoplastic, such as the presently considered polyimidesulfone, PISO2. The PISO2 and BMI were dissolved in a common solvent, which was then removed from the constituents by freeze drying; in an alternative method, an IPN was formed through dissolution of the constituent in a common solvent with either high or low melting point, followed by evaporative removal of the solvent. The effectiveness of the freeze-drying approach for morphological control is evaluated.

  17. Antioxidant Activity, Total Phenolics Content, Anthocyanin, and Color Stability of Isotonic Model Beverages Colored with Andes Berry (Rubus glaucus Benth) Anthocyanin Powder

    PubMed Central

    Estupiñan, D.C.; Schwartz, S.J.; Garzón, G.A.

    2013-01-01

    The stability of anthocyanin (ACN) freeze-dried powders from Andes berry (Rubus glaucus Benth) as affected by storage, addition of maltodextrin as a carrier agent, and illumination was evaluated in isotonic model beverages. The ethanolic ACN extract was freeze dried with and without maltodextrin DE 20. Isotonic model beverages were colored with freeze-dried ACN powder (FDA), freeze-dried ACN powder with maltodextrin (MFDA), and red nr 40. Beverages were stored in the dark and under the effect of illumination. Half life of the ACNs, changes in color, total phenolics content (TPC), and antioxidant activity were analyzed for 71 d. Addition of maltodextrin and absence of light stabilized the color of beverages and improved ACN and TPC stability during storage. The antioxidant activity of the beverages was higher when they were colored with MFDA and highly correlated with ACN content. There was no correlation between antioxidant activity and TPC. It is concluded that addition of maltodextrin DE 20 as a carrier agent during freeze-drying improves the color and stability of nutraceutical antioxidants present in Andes berry extract. This suggests a protective enclosing of ACNs within a maltodextrin matrix with a resulting powder that could serve as a supplement or additive to naturally color and to enhance the antioxidant capacity of isotonic beverages. PMID:21535712

  18. Antioxidant activity, total phenolics content, anthocyanin, and color stability of isotonic model beverages colored with Andes berry (Rubus glaucus Benth) anthocyanin powder.

    PubMed

    Estupiñan, D C; Schwartz, S J; Garzón, G A

    2011-01-01

    The stability of anthocyanin (ACN) freeze-dried powders from Andes berry (Rubus glaucus Benth) as affected by storage, addition of maltodextrin as a carrier agent, and illumination was evaluated in isotonic model beverages. The ethanolic ACN extract was freeze dried with and without maltodextrin DE 20. Isotonic model beverages were colored with freeze-dried ACN powder (FDA), freeze-dried ACN powder with maltodextrin (MFDA), and red nr 40. Beverages were stored in the dark and under the effect of illumination. Half life of the ACNs, changes in color, total phenolics content (TPC), and antioxidant activity were analyzed for 71 d. Addition of maltodextrin and absence of light stabilized the color of beverages and improved ACN and TPC stability during storage. The antioxidant activity of the beverages was higher when they were colored with MFDA and highly correlated with ACN content. There was no correlation between antioxidant activity and TPC. It is concluded that addition of maltodextrin DE 20 as a carrier agent during freeze-drying improves the color and stability of nutraceutical antioxidants present in Andes berry extract. This suggests a protective enclosing of ACNs within a maltodextrin matrix with a resulting powder that could serve as a supplement or additive to naturally color and to enhance the antioxidant capacity of isotonic beverages.

  19. Mannitol/l-Arginine-Based Formulation Systems for Freeze Drying of Protein Pharmaceuticals: Effect of the l-Arginine Counter Ion and Formulation Composition on the Formulation Properties and the Physical State of Mannitol.

    PubMed

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2016-10-01

    Previous studies have shown that protein storage stability in freeze-dried l-arginine-based systems improved in the presence of chloride ions. However, chloride ions reduced the glass transition temperature of the freeze concentrate (Tg') and made freeze drying more challenging. In this study, l-arginine was freeze dried with mannitol to obtain partially crystalline solids that can be freeze dried in a fast process and result in elegant cakes. We characterized the effect of different l-arginine counter ions on physicochemical properties of mannitol compared with mannitol/sucrose systems. Thermal properties of formulations with different compositions were correlated to thermal history during freeze drying and to physicochemical properties (cake appearance, residual moisture, reconstitution time, crystallinity). Partially crystalline solids were obtained even at the highest l-arginine level (mannitol:l-arginine of 2:1) used in this study. All l-arginine-containing formulations yielded elegant cakes. Only cakes containing l-arginine chloride and succinate showed a surface "crust" formed by phase separation. X-ray powder diffraction showed that inhibition of mannitol crystallization was stronger for l-arginine compared with sucrose and varied with the type of l-arginine counter ion. The counter ion affected mannitol polymorphism and higher levels of mannitol hemi-hydrate were obtained at high levels of l-arginine chloride. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. 30 CFR 75.1101-17 - Sealing of dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Sealing of dry powder chemical systems. 75.1101-17 Section 75.1101-17 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-17 Sealing of dry powder chemical systems. Each dry powder chemical system shall be adequately sealed...

  1. 30 CFR 75.1101-17 - Sealing of dry powder chemical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Sealing of dry powder chemical systems. 75.1101-17 Section 75.1101-17 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-17 Sealing of dry powder chemical systems. Each dry powder chemical system shall be adequately sealed...

  2. 30 CFR 75.1101-20 - Safeguards for dry powder chemical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Safeguards for dry powder chemical systems. 75...-20 Safeguards for dry powder chemical systems. Adequate guards shall be provided along all belt conveyors in the vicinity of each dry powder chemical system to protect persons whose vision is restricted...

  3. 30 CFR 75.1101-20 - Safeguards for dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Safeguards for dry powder chemical systems. 75...-20 Safeguards for dry powder chemical systems. Adequate guards shall be provided along all belt conveyors in the vicinity of each dry powder chemical system to protect persons whose vision is restricted...

  4. 30 CFR 75.1101-17 - Sealing of dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Sealing of dry powder chemical systems. 75.1101-17 Section 75.1101-17 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-17 Sealing of dry powder chemical systems. Each dry powder chemical system shall be adequately sealed...

  5. 30 CFR 75.1101-20 - Safeguards for dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Safeguards for dry powder chemical systems. 75...-20 Safeguards for dry powder chemical systems. Adequate guards shall be provided along all belt conveyors in the vicinity of each dry powder chemical system to protect persons whose vision is restricted...

  6. 30 CFR 75.1101-20 - Safeguards for dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Safeguards for dry powder chemical systems. 75...-20 Safeguards for dry powder chemical systems. Adequate guards shall be provided along all belt conveyors in the vicinity of each dry powder chemical system to protect persons whose vision is restricted...

  7. 30 CFR 75.1101-17 - Sealing of dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Sealing of dry powder chemical systems. 75.1101-17 Section 75.1101-17 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-17 Sealing of dry powder chemical systems. Each dry powder chemical system shall be adequately sealed...

  8. Physical characterization of whole and skim dried milk powders.

    PubMed

    Pugliese, Alessandro; Cabassi, Giovanni; Chiavaro, Emma; Paciulli, Maria; Carini, Eleonora; Mucchetti, Germano

    2017-10-01

    The lack of updated knowledge about the physical properties of milk powders aimed us to evaluate selected physical properties (water activity, particle size, density, flowability, solubility and colour) of eleven skim and whole milk powders produced in Europe. These physical properties are crucial both for the management of milk powder during the final steps of the drying process, and for their use as food ingredients. In general, except for the values of water activity, the physical properties of skim and whole milk powders are very different. Particle sizes of the spray-dried skim milk powders, measured as volume and surface mean diameter were significantly lower than that of the whole milk powders, while the roller dried sample showed the largest particle size. For all the samples the size distribution was quite narrow, with a span value less than 2. The loose density of skim milk powders was significantly higher than whole milk powders (541.36 vs 449.75 kg/m 3 ). Flowability, measured by Hausner ratio and Carr's index indicators, ranged from passable to poor when evaluated according to pharmaceutical criteria. The insolubility index of the spray-dried skim and whole milk powders, measured as weight of the sediment (from 0.5 to 34.8 mg), allowed a good discrimination of the samples. Colour analysis underlined the relevant contribution of fat content and particle size, resulted in higher lightness ( L *) for skim milk powder than whole milk powder, which, on the other hand, showed higher yellowness ( b *) and lower greenness (- a *). In conclusion a detailed knowledge of functional properties of milk powders may allow the dairy to tailor the products to the user and help the food processor to perform a targeted choice according to the intended use.

  9. Effects of drying process on the physicochemical properties of nopal cladodes at different maturity stages.

    PubMed

    Contreras-Padilla, Margarita; Gutiérrez-Cortez, Elsa; Valderrama-Bravo, María Del Carmen; Rojas-Molina, Isela; Espinosa-Arbeláez, Diego Germán; Suárez-Vargas, Raúl; Rodríguez-García, Mario Enrique

    2012-03-01

    Chemical proximate analysis was done in order to determine the changes of nutritional characteristics of nopal powders from three different maturity stages 50, 100, and 150 days and obtained by three different drying processes: freeze dried, forced air oven, and tunnel. Results indicate that nopal powder obtained by the process of freeze dried retains higher contents of protein, soluble fiber, and fat than the other two processes. Also, freeze dried process had less effect on color hue variable. No changes were observed in insoluble fiber content, chroma and lightness with the three different drying processes. Furthermore, the soluble fibers decreased with the age of nopal while insoluble fibers and ash content shows an opposite trend. In addition, the luminosity and hue values did not show differences among the maturity stages studied. The high content of dietary fibers of nopal pad powder could to be an interesting source of these important components for human diets and also could be used in food, cosmetics and pharmaceutical industry.

  10. Effect of freeze-drying and self-ignition process on the microstructural and electrochemical properties of Li{sub 4}Ti{sub 5}O{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamin, Claire; Traina, Karl; APTIS, Department of Physics, B5a, University of Liège, Sart-Tilman, 4000 Liège

    2013-11-15

    Graphical abstract: - Highlights: • Li{sub 4}Ti{sub 5}O{sub 12} is prepared by a method involving self-ignition of a freeze-dried gel. • Addition of NH{sub 4}NO{sub 3} modifies the self-ignition propagation mode. • Well-crystallized Li{sub 4}Ti{sub 5}O{sub 12} phase is obtained after only 2 h at 800 °C. • Li{sub 4}Ti{sub 5}O{sub 12} powder has 161 mAh g{sup −1} capacity and good retention at C/4 rate. - Abstract: Crystalline Li{sub 4}Ti{sub 5}O{sub 12} is synthesized by a method involving the freeze-drying and self-ignition of a gel prepared from titanium isopropoxide, lithium nitrate and hydroxypropylmethylcellulose (HPMC). This synthesis route yields crystalline Li{submore » 4}Ti{sub 5}O{sub 12} particles after calcination at 800 °C for 2 h. In an alternative route, addition of ammonium nitrate shifts the self-ignition mode from wave-like propagation to simultaneous. Powders with different microstructures are thereby obtained. Electrochemical characterization shows that the best results for Li{sup +} intercalation/desintercalation are obtained for the powder prepared without ammonium nitrate addition. These results highlight the necessity for a control of the self-ignition mode to obtain adequate properties.« less

  11. Pre-cure freezing affects proteolysis in dry-cured hams.

    PubMed

    Bañón, S; Cayuela, J M; Granados, M V; Garrido, M D

    1999-01-01

    Several parameters (sodium chloride, moisture, intramuscular fat, total nitrogen, non-protein nitrogen, white precipitates, free tyrosine, L* a* b* values and acceptability) related with proteolysis during the curing were compared in dry-cured hams manufactured from refrigerated and frozen/thawed raw material. Pre-cure freezing increased the proteolysis levels significantly (p<0.05) in the zones of the ham where water losses and absorption of salt is slowest. Frozen hams present a high incidence of white precipitates, formed mainly by tyrosine crystals. The colour and acceptability scores are similar in frozen and refrigerated hams. The previous freezing and thawing process accentuates the water losses, salt absorption and proteolysis of the cured meat, although it does not significantly affect the sensory quality of the dry-cured ham.

  12. Experimental and numerical investigations on freeze-drying of porous media with prebuilt porosity

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yang, Jing; Hu, Dapeng; Pan, Yanqiu; Wang, Shihao; Chen, Guohua

    2018-05-01

    Freeze-drying of initially porous frozen material was investigated aimed at improving the process economics by reducing drying time and raising productivity. Experimental results showed that freeze-drying can be significantly enhanced by the frozen material with prebuilt porosity, and about 31% of drying time can be saved compared with the conventionally solid frozen material under the tested operating conditions. A multiphase transport model was formulated based on the local mass non-equilibrium assumption. Numerical results showed excellent agreements between measured and predicted drying curves. Analyses of saturation and temperature profiles displayed that volumetric sublimation-desorption can occur for the initially porous frozen material.

  13. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kai; Li, Ruixin; Jiang, Wenxue, E-mail: jiangortholivea@sina.cn

    In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young’s modulus of the material obtained via 3D printing were significantly higher thanmore » those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. - Highlights: • Silk fibroin/collagen was fabricated using 3D printing. • Physical characterization and Cell compatibility were compared. • 3D printed scaffold exhibited better overall performance.« less

  14. Free radical interactions between raw materials in dry soup powder.

    PubMed

    Raitio, Riikka; Orlien, Vibeke; Skibsted, Leif H

    2011-12-01

    Interactions at the free radical level were observed between dry ingredients in cauliflower soup powder, prepared by dry mixing of ingredients and rapeseed oil, which may be of importance for quality deterioration of such dry food products. The free radical concentrations of cauliflower soup powder, obtained by electron spin resonance (ESR) spectroscopy, rapidly become smaller during storage (40°C and relative humidity of 75%) than the calculated concentrations of free radicals based on the free radical concentrations of the powder ingredients used to make the soup powder and stored separately under similar conditions. Similarly, free radical concentrations decreased faster when any combination of two powder ingredients (of the three major ingredients of the soup powder) were mixed together and stored at 50°C for 1week than when each powder component was stored separately. Furthermore, yeast extract powder was found to play a key role when free radical interactions between powder ingredients occurred. The incubation of rapeseed oil with powder ingredients at 45°C for 24h, indicated the ability of cauliflower powder to increase the concentration of hydroperoxides in rapeseed oil, while yeast extract powder was found to prevent this hydroperoxide formation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Effects of drying-wetting and freezing-thawing cycle on leachability of metallic elements in mine soils

    NASA Astrophysics Data System (ADS)

    Bang, H.; Kim, J.; Hyun, S.

    2016-12-01

    Mine leachate derived from contaminated mine sites with metallic elements can pose serious risks on human society and environment. Only labile fraction of metallic elements in mine soils is subject to leaching and movement by rainfall. Lability of metallic element in soil is a function of bond strengths between metal and soil surfaces, which is influenced by environmental condition (e.g., rainfall intensity, duration, temperature, etc.) The purpose of this study was to elucidate the effects of various climate conditions on the leaching patterns and lability of metallic elements in mine soils. To do this, two mine soils were sampled from two abandoned mine sites located in Korea. Leaching test were conducted using batch decant-refill method. Various climatic conditions were employed in leaching test such as (1) oven drying (40oC) - wetting cycles, (2) air drying (20oC) - wetting cycle, and (3) freezing (-40oC) - thawing cycles. Duration of drying and freezing were varied from 4 days to 2 weeks. Concentration of metallic elements, pH, Eh and concentration of dissolved iron and sulfate in leachate from each leaching process was measured. To identify the changes of labile fraction in mine soils after each of drying or freezing period, sequential extraction procedure (five fraction) was used to compare labile fraction (i.e., F1 + F2) of metallic elements. The concentration of metallic elements in mine leachate was increased after drying and freezing procedure. The amounts of released metallic element from mine soils was changed depending on their drying or freezing period. In addition, labile fraction of metallic elements in soil was also changed after drying and freezing. The changes in labile fraction after drying and freezing might be due to the increased soil surface area by pore water volume expansion. Further study is therefore needed to evaluate the impact of altered physical properties of soils such as hydration of soil surface area and shrinking by drying and

  16. Heat transfer characteristics of current primary packaging systems for pharmaceutical freeze-drying.

    PubMed

    Hibler, Susanne; Gieseler, Henning

    2012-11-01

    In the field of freeze-drying, the primary packaging material plays an essential role. Here, the packaging system not only contains and protects the drug product during storage and shipping, but it is also directly involved in the freeze-drying process itself. The heat transfer characteristics of the actual container system influence product temperature and therefore product homogeneity and quality as well as process performance. Consequently, knowledge of the container heat transfer characteristics is of vital importance for process optimization. It is the objective of this review article to provide a summary of research focused on heat transfer characteristics of different container systems for pharmaceutical freeze-drying. Besides the common tubing and molded glass vials and metal trays, more recent packaging solutions like polymer vials, LYOGUARD® trays, syringes, and blister packs are discussed. Recent developments in vial manufacturing are also taken into account. Copyright © 2012 Wiley Periodicals, Inc.

  17. Use of manometric temperature measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations.

    PubMed

    Johnson, Robert E; Oldroyd, Megan E; Ahmed, Saleem S; Gieseler, Henning; Lewis, Lavinia M

    2010-06-01

    The freeze-drying behavior and cake morphology of a model protein in an amorphous formulation were studied at varying protein concentrations using conservative (-25 degrees C) and aggressive (+25 degrees C) shelf temperatures at constant chamber pressure during primary drying. The two cycles were characterized by manometric temperature measurements (MTM) in a SMART freeze dryer that estimates the sublimation rate (dm/dt), product temperature at the freeze-drying front (T(p-MTM)) and product resistance (R(p)) during a run. The calculated sublimation rates (dm/dt) were 3-4 times faster in the aggressive cycle compared to the conservative cycle. For conservatively dried cakes R(p) increased with both dry layer thickness and protein concentration. For aggressively dried cakes (where freeze-drying occurs at the edge of microcollapse), R(p) also increased with protein concentration but was independent of the dry layer thickness. The sublimation rate was influenced by R(p), dry layer thickness and T(p-MTM) in the conservative cycle, but was governed mainly by T(p-MTM) in the aggressive cycle, where R(p) is independent of the dry layer thickness. The aggressively dried cakes had a more open and porous structure compared to their conservatively dried counterparts. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  18. Freeze-drying of tert-butyl alcohol/water cosolvent systems: effects of formulation and process variables on residual solvents.

    PubMed

    Wittaya-Areekul, S; Nail, S L

    1998-04-01

    The objective of this study was to identify significant formulation and processing variables affecting levels of tert-butyl alcohol (TBA) and isopropyl alcohol (IPA) in freeze-dried solids prepared from TBA/water cosolvent systems. The variables examined were the physical state of the solute (crystalline vs amorphous), initial TBA concentration, freezing rate, cake thickness, and the temperature and duration of secondary drying. Sucrose and glycine were used as models for noncrystallizing and crystallizing solutes, respectively. The TBA concentration above which eutectic crystallization takes place was determined by differential scanning calorimetry. Model formulations were subjected to extremes of freezing rate by either dipping in liquid nitrogen or by slowly freezing on the shelf of a freeze-dryer. Dynamics of solvent loss during secondary drying was determined by withdrawing samples as a function of time at different shelf temperatures using a thief system. On the basis of these studies, the most important determinant of residual TBA level is the physical state of the solute. Freeze-dried glycine contained very low levels of residual TBA (0.01-0.03%) regardless of freezing rate or initial TBA concentration. For freeze-dried sucrose, residual TBA levels were approximately 2 orders of magnitude higher and were significantly affected by initial TBA concentration and freezing rate. For the sucrose/TBA/water system, relatively low residual TBA levels were obtained when the initial TBA level was above the threshold concentration for eutectic crystallization of TBA, whereas samples freeze-dried from solutions containing TBA concentrations below this threshold contained significantly higher levels of TBA. Residual IPA levels increased continuously with initial concentration of TBA in the sucrose/TBA/water system. Formulations of sucrose/TBA/water which were frozen rapidly contained residual TBA levels which were approximately twice those measured in the same

  19. Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors

    NASA Astrophysics Data System (ADS)

    Gómez, A.; Villanueva, R.; Vie, D.; Murcia-Mascaros, S.; Martínez, E.; Beltrán, A.; Sapiña, F.; Vicent, M.; Sánchez, E.

    2013-01-01

    Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and the nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures.

  20. A freeze-dried injectable form of ibuprofen: development and optimisation using response surface methodology.

    PubMed

    Kagkadis, K A; Rekkas, D M; Dallas, P P; Choulis, N H

    1996-01-01

    In this study a complex of Ibuprofen and b-Hydroxypropylcyclodextrin was prepared employing a freeze drying method. The production parameters and the final specifications of this product were optimized by using response surface methodology. The results show that the freeze dried complex meets the requirements for solubility to be considered as a possible injectable form.

  1. Effect of the aerated structure on selected properties of freeze-dried hydrocolloid gels

    NASA Astrophysics Data System (ADS)

    Ciurzyńska, Agnieszka; Lenart, Andrzej

    2016-01-01

    The ability to create diverse structures and studies on the effect of the aerated structure on selected properties with the use of freeze-dried gels may provide knowledge about the properties of dried foods. Such gels can be a basis for obtaining innovative food products. For the gel preparation, 3 types of hydrocolloids were used: low-methoxyl pectin, a mixture of xanthan gum and locust-bean gum, and a mixture of xanthan gum and guar gum. Gels were aerated for 3 and 7 min, frozen at a temperature of -45°C 2 h-1, and freeze-dried at a temperature of 30°C. For the samples obtained, structure, porosity, shrinkage, rehydration, and colour were investigated. It was shown that the type of the hydrocolloid and aeration time influence the structure of freeze-dried gels, which determines such properties of samples as porosity, shrinkage, density, rehydration, and colour. The bigger pores of low-methoxyl pectin gels undergo rehydration in the highest degree. The delicate and aerated structure of gels with the mixture of xanthan gum and locust-bean gum was damaged during freeze-drying and shrinkage exhibited the highest value. Small pores of samples with the mixture of xanthan gum and guar gum were responsible for the lower rehydration properties, but the highest porosity value contributed to the highest lightness value.

  2. Heat-Stable Dry Powder Oxytocin Formulations for Delivery by Oral Inhalation.

    PubMed

    Fabio, Karine; Curley, Kieran; Guarneri, Joseph; Adamo, Benoit; Laurenzi, Brendan; Grant, Marshall; Offord, Robin; Kraft, Kelly; Leone-Bay, Andrea

    2015-12-01

    In this work, heat stable dry powders of oxytocin (OT) suitable for delivery by oral inhalation were prepared. The OT dry powders were prepared by spray drying using excipients chosen to promote OT stability including trehalose, isoleucine, polyvinylpyrrolidone, citrate (sodium citrate and citric acid), and zinc salts (zinc chloride and zinc citrate). Characterization by laser diffraction indicated that the OT dry powders had a median particle size of 2 μm, making them suitable for delivery by inhalation. Aerodynamic performance upon discharge from proprietary dry powder inhalers was evaluated by Andersen cascade impaction (ACI) and in an anatomically correct airway (ACA) model, and confirmed that the powders had excellent aerodynamic performance, with respirable fractions up to 77% (ACI, 30 L/min). Physicochemical characterization demonstrated that the powders were amorphous (X-ray diffraction) with high glass transition temperature (modulated differential scanning calorimetry, MDSC), suggesting the potential for stabilization of the OT in a glassy amorphous matrix. OT assay and impurity profile were conducted by reverse phase HPLC and liquid chromatography-mass spectrometry (LC-MS) after storage up to 32 weeks at 40°C/75%RH. Analysis demonstrated that OT dry powders containing a mixture of citrate and zinc salts retained more than 90% of initial assay after 32 weeks storage and showed significant reduction in dimers and trisulfide formation (up to threefold reduction compared to control).

  3. Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits

    PubMed Central

    Shofian, Norshahida Mohamad; Hamid, Azizah Abdul; Osman, Azizah; Saari, Nazamid; Anwar, Farooq; Dek, Mohd Sabri Pak; Hairuddin, Muhammad Redzuan

    2011-01-01

    The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), papaya (Carica papaya L.), muskmelon (Cucumis melo L.), and watermelon Citruluss lanatus (Thunb.) were investigated. Significant (p < 0.05) differences, for the amounts of total phenolic compounds (TPC), were found between the fresh and freeze-dried fruit samples, except muskmelon. There was no significant (p > 0.05) change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p < 0.05) higher levels were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging and reducing power assays revealed that fresh samples of starfruit and mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation inhibition measurement, a significant (p < 0.05) but random variation was recorded between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested. PMID:21845104

  4. Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits.

    PubMed

    Shofian, Norshahida Mohamad; Hamid, Azizah Abdul; Osman, Azizah; Saari, Nazamid; Anwar, Farooq; Dek, Mohd Sabri Pak; Hairuddin, Muhammad Redzuan

    2011-01-01

    The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), papaya (Carica papaya L.), muskmelon (Cucumis melo L.), and watermelon Citruluss lanatus (Thunb.) were investigated. Significant (p < 0.05) differences, for the amounts of total phenolic compounds (TPC), were found between the fresh and freeze-dried fruit samples, except muskmelon. There was no significant (p > 0.05) change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p < 0.05) higher levels were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging and reducing power assays revealed that fresh samples of starfruit and mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation inhibition measurement, a significant (p < 0.05) but random variation was recorded between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested.

  5. Particulate contamination from siliconized rubber closures for freeze drying.

    PubMed

    Gebhardt, U; Grumbridge, N A; Knoch, A

    1996-01-01

    It can be shown that siliconized closures for freeze drying may cause the opalescence and turbidity observed in freeze-dried products after reconstitution. Closures of different rubber composition show different intensities of turbidity when treated identically with the same quantity and type of silicone oil. Clear solutions are obtained after reconstitution if ETFE-coated closures are used instead of siliconized closures. Samples stored at 4 degrees C for up to 6 months show no change in the intensity of turbidity, while the turbidity of samples manufactured with siliconized closures and stored at higher temperatures increase with time. Samples with ETFE-coated closures show clear solutions when stored at 25 degrees C and 37 degrees C for up to 6 months and at 45 degrees C for 3 months. After 6 months only a very weak opalescence could be observed in these samples.

  6. In-line multipoint near-infrared spectroscopy for moisture content quantification during freeze-drying.

    PubMed

    Kauppinen, Ari; Toiviainen, Maunu; Korhonen, Ossi; Aaltonen, Jaakko; Järvinen, Kristiina; Paaso, Janne; Juuti, Mikko; Ketolainen, Jarkko

    2013-02-19

    During the past decade, near-infrared (NIR) spectroscopy has been applied for in-line moisture content quantification during a freeze-drying process. However, NIR has been used as a single-vial technique and thus is not representative of the entire batch. This has been considered as one of the main barriers for NIR spectroscopy becoming widely used in process analytical technology (PAT) for freeze-drying. Clearly it would be essential to monitor samples that reliably represent the whole batch. The present study evaluated multipoint NIR spectroscopy for in-line moisture content quantification during a freeze-drying process. Aqueous sucrose solutions were used as model formulations. NIR data was calibrated to predict the moisture content using partial least-squares (PLS) regression with Karl Fischer titration being used as a reference method. PLS calibrations resulted in root-mean-square error of prediction (RMSEP) values lower than 0.13%. Three noncontact, diffuse reflectance NIR probe heads were positioned on the freeze-dryer shelf to measure the moisture content in a noninvasive manner, through the side of the glass vials. The results showed that the detection of unequal sublimation rates within a freeze-dryer shelf was possible with the multipoint NIR system in use. Furthermore, in-line moisture content quantification was reliable especially toward the end of the process. These findings indicate that the use of multipoint NIR spectroscopy can achieve representative quantification of moisture content and hence a drying end point determination to a desired residual moisture level.

  7. Safety assessment of freeze-dried powdered Tenebrio molitor larvae (yellow mealworm) as novel food source: Evaluation of 90-day toxicity in Sprague-Dawley rats.

    PubMed

    Han, So-Ri; Lee, Byoung-Seok; Jung, Kyung-Jin; Yu, Hee-Jin; Yun, Eun-Young; Hwang, Jae Sam; Moon, Kyoung-Sik

    2016-06-01

    Worldwide demand for novel food source has grown and edible insects are a promising food sources for humans. Tenebrio molitor, as known as yellow mealworm, has advantages of being rich in protein, and easy to raise as a novel food source. The objective of this study was to evaluate subchronic toxicity, including potential hypersensitivity, of freeze-dried powdered T. molitor larvae (fdTML) in male and female Sprague-Dawley rats. The fdTML was administered orally once daily at dose levels of 0, 300, 1000 and 3000 mg/kg/day for 90 days. A toxicological assessment was performed, which included mortality, clinical signs, body and organ weights, food consumption, ophthalmology, urinalysis, hematology, serum chemistry, gross findings, histopathologic examination and allergic reaction. There were no fdTML- related findings in clinical signs, urinalysis, hematology and serum chemistry, gross examination, histopathologic examination or allergic reaction. In conclusion, the No Observed Adverse Effect Level (NOAEL) for fdTML was determined to be in excess of 3000 mg/kg/day in both sexes of rats under the experimental conditions of this study. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. State transitions and physicochemical aspects of cryoprotection and stabilization in freeze-drying of Lactobacillus rhamnosus GG (LGG).

    PubMed

    Pehkonen, K S; Roos, Y H; Miao, S; Ross, R P; Stanton, C

    2008-06-01

    The frozen and dehydrated state transitions of lactose and trehalose were determined and studied as factors affecting the stability of probiotic bacteria to understand physicochemical aspects of protection against freezing and dehydration of probiotic cultures. Lactobacillus rhamnosus GG was frozen (-22 or -43 degrees C), freeze-dried and stored under controlled water vapour pressure (0%, 11%, 23% and 33% relative vapour pressure) conditions. Lactose, trehalose and their mixture (1 : 1) were used as protective media. These systems were confirmed to exhibit relatively similar state transition and water plasticization behaviour in freeze-concentrated and dehydrated states as determined by differential scanning calorimetry. Ice formation and dehydrated materials were studied using cold-stage microscopy and scanning electron microscopy. Trehalose and lactose-trehalose gave the most effective protection of cell viability as observed from colony forming units after freezing, dehydration and storage. Enhanced cell viability was observed when the freezing temperature was -43 degrees C. State transitions of protective media affect ice formation and cell viability in freeze-drying and storage. Formation of a maximally freeze-concentrated matrix with entrapped microbial cells is essential in freezing prior to freeze-drying. Freeze-drying must retain a solid amorphous state of protectant matrices. Freeze-dried matrices contain cells entrapped in the protective matrices in the freezing process. The retention of viability during storage seems to be controlled by water plasticization of the protectant matrix and possibly interactions of water with the dehydrated cells. Highest cell viability was obtained in glassy protective media. This study shows that physicochemical properties of protective media affect the stability of dehydrated cultures. Trehalose and lactose may be used in combination, which is particularly important for the stabilization of probiotic bacteria in dairy

  9. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.

    PubMed

    Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard

    2017-05-01

    This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Use of manometric temperature measurement (MTM) and SMART freeze dryer technology for development of an optimized freeze-drying cycle.

    PubMed

    Gieseler, Henning; Kramer, Tony; Pikal, Michael J

    2007-12-01

    This report provides, for the first time, a summary of experiments using SMART Freeze Dryer technology during a 9 month testing period. A minimum ice sublimation area of about 300 cm(2) for the laboratory freeze dryer, with a chamber volume 107.5 L, was found consistent with data obtained during previous experiments with a smaller freeze dryer (52 L). Good reproducibility was found for cycle design with different type of excipients, formulations, and vials used. SMART primary drying end point estimates were accurate in the majority of the experiments, but showed an over prediction of primary cycle time when the product did not fully achieve steady state conditions before the first MTM measurement was performed. Product resistance data for 5% sucrose mixtures at varying fill depths were very reproducible. Product temperature determined by SMART was typically in good agreement with thermocouple data through about 50% of primary drying time, with significant deviations occurring near the end of primary drying, as expected, but showing a bias much earlier in primary drying for high solid content formulations (16.6% Pfizer product) and polyvinylpyrrolidone (40 kDa) likely due to water "re-adsorption" by the amorphous product during the MTM test. (c) 2007 Wiley-Liss, Inc.

  11. [Optimization of lyophilization procedures for freeze-drying of human red blood cells].

    PubMed

    Chen, Lin-feng; Liu, Jing-han; Wang, De-qing; Ouyang, Xi-lin; Zhuang, Yuan; Che, Ji; Yu, Yang; Li, Hui

    2010-09-01

    To investigate the different parameters of the lyophilization procedures that affect the recovery of the rehydrated red blood cells (RBCs). Human RBCs loaded in tubes were cooled with 4 different modes and subjected to water bath at 25 degrees celsius;. The morphological changes of the RBCs were observed to assess the degree of vitrification, and the specimens were placed in the freeze-dryer with the temperature set up at 40, -50, -60, -70 and -80 degrees celsius;. The rates of temperature rise of the main and secondary drying in the lyophilization procedures were compared, and the water residue in the specimens was determined. The protectant did not show ice crystal in the course of freezing and thawing. No significant difference was found in the recovery rate of the rehydrated RBCs freeze-dried at the minimum temperature of -70 degrees celsius; and -80 degrees celsius; (P > 0.05). The E procedure resulted in the maximum recovery of the RBCs (83.14% ± 9.55%) and Hb (85.33% ± 11.42%), showing significant differences from the other groups(P < 0.01 or 0.05). The recovery of the RBCs showed a positive correlation to the water residue in the samples. Fast cooling in liquid nitrogen and shelf precooling at -70 degrees celsius; with a moderate rate of temperature rise in lyophylization and a start dry temperature close to the shelf equilibrium temperature produce optimal freeze-drying result of human RBCs.

  12. Preservation of pathological tissue specimens by freeze-drying for immunohistochemical staining and various molecular biological analyses.

    PubMed

    Matsuo, S; Sugiyama, T; Okuyama, T; Yoshikawa, K; Honda, K; Takahashi, R; Maeda, S

    1999-05-01

    Conditions of preserving DNA, RNA and protein in pathological specimens are of great importance as degradation of such macromolecules would critically affect results of molecular biological analysis. The feasibility of freeze-drying as a means of preserving pathological tissue samples for molecular analysis has previously been shown. In the present study, further tests on long-term storage conditions and analyses of freeze-dried samples by polymerase chain reaction (PCR), reverse transcriptase (RT)-PCR, western blotting and immunohistochemistry are reported. Rat chromosomal DNA of freeze-dried samples stored for 4 years showed slight degradation while RNA degradation was more prominently seen at an earlier stage of storage. However, these 4 year DNA and RNA samples were still able to serve as a template for some PCR and RT-PCR analyses, respectively. Overexpression of c-erbB-2 and p53 protein was demonstrated by western blotting and immunohistochemical staining using freeze-dried human breast cancer tissues. Although macromolecules in freeze-dried samples degrade to some extent during the preservation period, they should still be of value for certain molecular biological analyses and morphological examination; hence, providing more convenient and inexpensive ways of pathological tissue storage.

  13. Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review.

    PubMed

    Geidobler, R; Winter, G

    2013-10-01

    In the scientific community as well as in commercial freeze-drying, controlled ice nucleation has received a lot of attention because increasing the ice nucleation temperature can significantly reduce primary drying duration. Furthermore, controlled ice nucleation enables to reduce the randomness of the ice nucleation temperature, which can be a serious scale-up issue during process development. In this review, fundamentals of ice nucleation in the field of freeze-drying are presented. Furthermore, the impact of controlled ice nucleation on product qualities is discussed, and methods to achieve controlled ice nucleation are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Inulin rich carbohydrates extraction from Jerusalem artichoke (Helianthus tuberosus L.) tubers and application of different drying methods.

    PubMed

    Rubel, Irene A; Iraporda, Carolina; Novosad, Rocio; Cabrera, Fernanda A; Genovese, Diego B; Manrique, Guillermo D

    2018-01-01

    In this study the operational extraction variables to obtain higher yields of inulin from Jerusalem artichoke tubers (JAT), as well as the optimal conditions to obtain a stable and dispersible powdered product by either spray or freeze drying, were studied. With this purpose, the powder yield, moisture content, water activity and flowability or products obtained by different experimental conditions were analyzed. Inulin rich carbohydrates (IRC) extraction was performed from lyophilized and ground tubers employing distilled hot water as solvent. It was proved that the solid:solvent ratio (S:S) was the critical variable in the extraction process, followed by temperature. Thus, the IRC extraction was optimal without ultrasound assistance, at 76°C, employing a S:S of 1:16, during 90min. In addition, the powder obtained by freeze-drying of the IRC extract showed advantages respect to powders obtained by spray-drying regarding the yield and considering that maltodextrin was not necessary as encapsulation agent. In another hand, spray drying process provided IRC powered materials with appropriate flow properties, and taking into account cost and time of production, this method should be considered as an alternative of freeze-drying. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Application of a dye-binding method for the determination of available lysine in skim milk powders.

    PubMed

    Aalaei, Kataneh; Rayner, Marilyn; Tareke, Eden; Sjöholm, Ingegerd

    2016-04-01

    A dye-binding method using Acid Orange 12 was investigated regarding its suitability for the quantification of available lysine, as a means of monitoring the Maillard reaction in skim milk powders. The method was evaluated by analyzing a wide range of milk powders produced by three different drying methods and stored under various conditions. A pilot-scale freeze-dryer, spray-dryer and drum-dryer were used to produce skim milk powders and the samples were stored at two temperatures (20 °C and 30 °C) and two relative humidities (33% and 52%) under strictly controlled conditions. Moreover to validate the method, two protein isolates; bovine serum albumin and casein were investigated for their available lysine content. The results demonstrate the suitability of this method for measuring the available lysine in skim milk powders with good precision and high reproducibility. The relative standard deviations obtained from the 125 freeze-dried powders were 1.8%, and those from the 100 drum-dried samples were all 1.9%. The highest variation was found for the spray-dried powders, which showed relative standard deviations between 0.9% and 6.7%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Controlling the physical form of mannitol in freeze-dried systems.

    PubMed

    Mehta, Mehak; Bhardwaj, Sunny P; Suryanarayanan, Raj

    2013-10-01

    A potential drawback with the use of mannitol as a bulking agent is its existence as mannitol hemihydrate (MHH; C₆H₁₄O₆·0.5H₂O) in the lyophile. Once formed during freeze-drying, MHH dehydration may require secondary drying under aggressive conditions which can be detrimental to the stability of thermolabile components. If MHH is retained in the lyophile, the water released by MHH dehydration during storage has the potential to cause product instability. We systematically identified the conditions under which anhydrous mannitol and MHH crystallized in frozen systems with the goal of preventing MHH formation during freeze-drying. When mannitol solutions were cooled, the temperature of solute crystallization was the determinant of the physical form of mannitol. Based on low temperature X-ray diffractometry (using both laboratory and synchrotron sources), MHH formation was observed when solute crystallization occurred at temperatures ≤ -20 °C, while anhydrous mannitol crystallized at temperatures ≤ -10 °C. The transition temperature (anhydrate - MHH) appears to be ∼-15 °C. The use of a freeze-dryer with controlled ice nucleation technology enabled anhydrous mannitol crystallization at ∼-5 °C. Thus, ice crystallization followed by annealing at temperatures ≤ -10 °C can be an effective strategy to prevent MHH formation. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Naproxen Microparticulate Systems Prepared Using In Situ Crystallisation and Freeze-Drying Techniques.

    PubMed

    Solaiman, Amanda; Tatari, Adam Keenan; Elkordy, Amal Ali

    2017-07-01

    Poor drug solubility and dissolution rate remain to be one of the major problems facing pharmaceutical scientists, with approximately 40% of drugs in the industry categorised as practically insoluble or poorly water soluble. This in turn can lead to serious delivery challenges and poor bioavailability. The aim of this research was to investigate the effects of the surfactants, poloxamer 407 (P407) and caprol® PGE 860 (CAP), at various concentrations (0.1, 0.5, 1 and 3% w/v) on the enhancement of the dissolution properties of poorly water-soluble drug, naproxen, using in situ micronisation by solvent change method and freeze-drying. The extent at which freeze-drying influences the dissolution rate of naproxen microcrystals is investigated in this study by comparison with desiccant-drying. All formulations were evaluated and characterised using particle size analysis and morphology, in vitro dissolution studies, differential scanning calorimetry (DSC), and Fourier transform infra-red (FT-IR) spectroscopy. An increase in poloxamer 407 concentration in freeze-dried formulations led to enhancement of drug dissolution compared to desiccator-dried formulations, naproxen/caprol® PGE 860 formulations and untreated drug. DSC and FT-IR results show no significant chemical interactions between drug and poloxamer 407, with only very small changes to drug crystallinity. On the other hand, caprol® PGE 860 showed some interactions with drug components, alterations to the crystal lattice of naproxen, and poor dissolution profiles using both drying methods, making it a poor choice of excipient.

  18. Apoptosis-like death was involved in freeze-drying-preserved fungus Mucor rouxii and can be inhibited by L-proline.

    PubMed

    Wang, Xiaoyun; Wang, Youzhi

    2016-02-01

    Freeze-drying is one of the most effective methods to preserve fungi for an extended period. However, it is associated with a loss of viability and shortened storage time in some fungi. This study evaluated the stresses that led to the death of freeze-dried Mucor rouxii by using cell apoptotic methods. The results showed there were apoptosis-inducing stresses, such as the generation of obvious intracellular reactive oxygen species (ROS) and metacaspase activation. Moreover, nuclear condensation and a delayed cell death peak were determined after rehydration and 24 h incubation in freeze-dried M. rouxii via a propidium iodide (PI) assay, which is similar to the phenomenon of cryopreservation-induced delayed-onset cell death (CIDOCD). Then, several protective agents were tested to decrease the apoptosis-inducing stresses and to improve the viability. Finally, it was found that 1.6 mM L-proline can effectively decrease the nuclear condensation rate and increase the survival rate in freeze-dried M. rouxii. (1) apoptosis-inducing factors occur in freeze-dried M. rouxii. (2) ROS and activated metacaspases lead to death in freeze-dried M. rouxii. (3)L-proline increases the survival rate of freeze-dried M. rouxii. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Technological Development of Brewing in Domestic Refrigerator Using Freeze-Dried Raw Materials.

    PubMed

    Gialleli, Angelika-Ioanna; Ganatsios, Vassilios; Terpou, Antonia; Kanellaki, Maria; Bekatorou, Argyro; Koutinas, Athanasios A; Dimitrellou, Dimitra

    2017-09-01

    Development of a novel directly marketable beer brewed at low temperature in a domestic refrigerator combined with yeast immobilization technology is presented in this study. Separately, freeze-dried wort and immobilized cells of the cryotolerant yeast strain Saccharomyces cerevisiae AXAZ-1 on tubular cellulose were used in low-temperature fermentation (2, 5 and 7 °C). The positive effect of tubular cellulose during low-temperature brewing was examined, revealing that freeze-dried immobilized yeast cells on tubular cellulose significantly reduced the fermentation rates in contrast to freeze-dried free cells, although they are recommended for home-made beer production. Immobilization also enhanced the yeast resistance at low-temperature fermentation, reducing the minimum brewing temperature value from 5 to 2 °C. In the case of high-quality beer production, the effect of temperature and initial sugar concentration on the fermentation kinetics were assessed. Sensory enrichment of the produced beer was confirmed by the analysis of the final products, revealing a low diacetyl concentration, together with improved polyphenol content, aroma profile and clarity. The proposed process for beer production in a domestic refrigerator can easily be commercialized and applied by dissolving the content of two separate packages in tap water; one package containing dried wort and the other dried immobilized cells on tubular cellulose suspended in tap water.

  20. Technological Development of Brewing in Domestic Refrigerator Using Freeze-Dried Raw Materials

    PubMed Central

    2017-01-01

    Summary Development of a novel directly marketable beer brewed at low temperature in a domestic refrigerator combined with yeast immobilization technology is presented in this study. Separately, freeze-dried wort and immobilized cells of the cryotolerant yeast strain Saccharomyces cerevisiae AXAZ-1 on tubular cellulose were used in low-temperature fermentation (2, 5 and 7 °C). The positive effect of tubular cellulose during low-temperature brewing was examined, revealing that freeze-dried immobilized yeast cells on tubular cellulose significantly reduced the fermentation rates in contrast to freeze-dried free cells, although they are recommended for home-made beer production. Immobilization also enhanced the yeast resistance at low-temperature fermentation, reducing the minimum brewing temperature value from 5 to 2 °C. In the case of high-quality beer production, the effect of temperature and initial sugar concentration on the fermentation kinetics were assessed. Sensory enrichment of the produced beer was confirmed by the analysis of the final products, revealing a low diacetyl concentration, together with improved polyphenol content, aroma profile and clarity. The proposed process for beer production in a domestic refrigerator can easily be commercialized and applied by dissolving the content of two separate packages in tap water; one package containing dried wort and the other dried immobilized cells on tubular cellulose suspended in tap water. PMID:29089847

  1. Temozolomide-based dry powder formulations for lung tumor-related inhalation treatment.

    PubMed

    Wauthoz, Nathalie; Deleuze, Philippe; Saumet, Amandine; Duret, Christophe; Kiss, Robert; Amighi, Karim

    2011-04-01

    Temozolomide dry powder formulations for inhalation, performed with no excipient or with a lipid or lactose coating, have been evaluated. The particle size of raw temozolomide in suspension was reduced by a high-pressure homogenizing technique, and the solvent was evaporated by spray-drying to obtain a dry powder. The physicochemical properties of this powder were evaluated and included its crystalline state, thermal properties, morphology, particle size and moisture and drug content, and these properties were determined by X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, laser light scattering, thermogravimetric analysis and high-performance liquid chromatography, respectively. The aerodynamic properties and release profiles were also evaluated using a multistage liquid impinger and a modified USP type 2 dissolution apparatus adapted for inhaler products, respectively. The dry powder inhalation formulations had a high temozolomide content that ranged from 70% to 100% in the crystalline state and low moisture content. Aerodynamic evaluations showed high fine-particle fractions of up to 51% related to the metered dose. The dissolution profile revealed a similarly fast temozolomide release from the formulations. Dry temozolomide powder formulations, based on the use of acceptable excipients for inhalation and showing good dispersion properties, represent an attractive alternative for use in local lung cancer therapy.

  2. Effect of cryoprotectants on the porosity and stability of insulin-loaded PLGA nanoparticles after freeze-drying

    PubMed Central

    Fonte, Pedro; Soares, Sandra; Costa, Ana; Andrade, José Carlos; Seabra, Vítor; Reis, Salette; Sarmento, Bruno

    2012-01-01

    PLGA nanoparticles are useful to protect and deliver proteins in a localized or targeted manner, with a long-term systemic delivery pattern intended to last for a period of time, depending on polymer bioerosion and biodegradability. However, the principal concern regarding these carriers is the hydrolytic instability of polymer in aqueous suspension. Freeze-drying is a commonly used method to stabilize nanoparticles, and cryoprotectants may be also used, to even increase its physical stability. The aim of the present work was to analyze the influence of cryoprotectants on nanoparticle stability and porosity after freeze-drying, which may influence protein release and stability. It was verified that freeze-drying significantly increased the number of pores on PLGA-NP surface, being more evident when cryoprotectants are added. The presence of pores is important in a lyophilizate to facilitate its reconstitution in water, although this may have consequences to protein release and stability. The release profile of insulin encapsulated into PLGA-NP showed an initial burst in the first 2 h and a sustained release up to 48 h. After nanoparticles freeze-drying the insulin release increased about 18% in the first 2 h due to the formation of pores, maintaining a sustained release during time. After freeze-drying with cryoprotectants, the amount of insulin released was higher for trehalose and lower for sucrose, glucose, fructose and sorbitol comparatively to freeze-dried PLGA-NP with no cryoprotectant added. Besides the porosity, the ability of cryoprotectants to be adsorbed on the nanoparticles surface may also play an important role on insulin release and stability. PMID:23507897

  3. Porosity and water activity effects on stability of crystalline β-carotene in freeze-dried solids.

    PubMed

    Harnkarnsujarit, Nathdanai; Charoenrein, Sanguansri; Roos, Yrjö H

    2012-11-01

    Stability of entrapped crystalline β-carotene as affected by water activity, solids microstructure, and composition of freeze-dried systems was investigated. Aliquots (1000 mm(3) , 20% w/w solids) of solutions of maltodextrins of various dextrose equivalents (M040:DE6, M100:DE11, and M250:DE25.5), M100-sugars (1:1 glucose, fructose and sucrose), and agar for gelation with dispersed β-carotene were frozen at -20, -40, or -80 °C and freeze-dried. Glass transition and α-relaxation temperatures were determined with differential scanning calorimetry and dynamic mechanical analysis, respectively. β-Carotene contents were monitored spectrophotometrically. In the glassy solids, pore microstructure had a major effect on β-carotene stability. Small pores with thin walls and large surface area allowed β-carotene exposure to oxygen which led to a higher loss, whereas structural collapse enhanced stability of β-carotene by decreasing exposure to oxygen. As water plasticized matrices, an increase in molecular mobility in the matrix enhanced β-carotene degradation. Stability of dispersed β-carotene was highest at around 0.2 a(w) , but decreasing structural relaxation times above the glass transition correlated well with the rate of β-carotene degradation at higher a(w) . Microstructure, a(w) , and component mobility are important factors in the control of stability of β-carotene in freeze-dried solids. β-Carotene expresses various nutritional benefits; however, it is sensitive to oxygen and the degradation contributes to loss of nutritional values as well as product color. To increase stability of β-carotene in freeze-dried foods, the amount of oxygen penetration need to be limited. The modification of freeze-dried food structures, for example, porosity and structural collapse, components, and humidity effectively enhance the stability of dispersed β-carotene in freeze-dried solids. © 2012 Institute of Food Technologists®

  4. Influence of the Ultrasonic Power Applied on Freeze Drying Kinetics

    NASA Astrophysics Data System (ADS)

    Brines, C.; Mulet, A.; García-Pérez, J. V.; Riera, E.; Cárcel, J. A.

    The atmospheric freeze drying (AFD) constitutes an interesting alternative to vacuum freeze drying providing products with similar quality at lowest cost. However, the long process time needed represent an important drawback. In this sense, the application of high intensity ultrasound can enhance heat and mass transfer and intensify the operation. In hot air drying operation, the ultrasonic effects are dependent on the process variables such as air velocity, internal sample structure or ultrasonic power applied. However, in AFD processes, the internal structure of material or the air velocity has not significant influence on the magnitude of ultrasonic effects. The aim of this work was to determine the influence on drying kinetics of the ultrasonic power applied during the AFD of apple. For that purpose, AFD experiments (-10 °C, 2 m/s and 15% relative humidity) of apple slabs (cv. Granny Smith, 30 x 30 x 10 mm) were carried out with ultrasound application (21 kHz) at different power levels (0, 10.3, 20.5 and 30.8 kW/m3). The drying kinetics was obtained from the initial moisture content and the weight evolution of samples during drying. Experimental results showed a significant (p<0.05) influence of the ultrasound application on drying. Thus, drying time was shorter as higher the ultrasonic power applied. From modeling, it was observed that the effective diffusion coefficient identified was 4.8 times higher when ultrasound was applied at the lowest power tested (10.3 kW/m3) that illustrated the high intensification potential of ultrasound application in the AFD.

  5. Controlled crystallization of the lipophilic drug fenofibrate during freeze-drying: elucidation of the mechanism by in-line Raman spectroscopy.

    PubMed

    de Waard, Hans; De Beer, Thomas; Hinrichs, Wouter L J; Vervaet, Chris; Remon, Jean-Paul; Frijlink, Henderik W

    2010-12-01

    We developed a novel process, "controlled crystallization during freeze-drying" to produce drug nanocrystals of poorly water-soluble drugs. This process involves freeze-drying at a relatively high temperature of a drug and a matrix material from a mixture of tertiary butyl alcohol and water, resulting in drug nanocrystals incorporated in a matrix. The aim of this study was to elucidate the mechanisms that determine the size of the drug crystals. Fenofibrate was used as a model lipophilic drug. To monitor the crystallization during freeze-drying, a Raman probe was placed just above the sample in the freeze-dryer. These in-line Raman spectroscopy measurements clearly revealed when the different components crystallized during freeze-drying. The solvents crystallized only during the freezing step, while the solutes only crystallized after the temperature was increased, but before drying started. Although the solutes crystallized only after the freezing step, both the freezing rate and the shelf temperature were critical parameters that determined the final crystal size. At a higher freezing rate, smaller interstitial spaces containing the freeze-concentrated fraction were formed, resulting in smaller drug crystals (based on dissolution data). On the other hand, when the solutes crystallized at a lower shelf temperature, the degree of supersaturation is higher, resulting in a higher nucleation rate and consequently more and therefore smaller crystals. In conclusion, for the model drug fenofibrate, a high freezing rate and a relatively low crystallization temperature resulted in the smallest crystals and therefore the highest dissolution rate.

  6. Heat and Mass Transfer Model in Freeze-Dried Medium

    NASA Astrophysics Data System (ADS)

    Alfat, Sayahdin; Purqon, Acep

    2017-07-01

    There are big problems in agriculture sector every year. One of the major problems is abundance of agricultural product during the peak of harvest season that is not matched by an increase in demand of agricultural product by consumers, this causes a wasted agricultural products. Alternative way was food preservation by freeze dried method. This method was already using heat transfer through conduction and convection to reduce water quality in the food. The main objective of this research was to design a model heat and mass transfer in freeze-dried medium. We had two steps in this research, the first step was design of medium as the heat injection site and the second was simulate heat and mass transfer of the product. During simulation process, we use physical property of some agriculture product. The result will show how temperature and moisture distribution every second. The method of research use finite element method (FEM) and will be illustrated in three dimensional.

  7. Effect of drying parameters on physiochemical and sensory properties of fruit powders processed by PGSS-, Vacuum- and Spray-drying.

    PubMed

    Feguš, Urban; Žigon, Uroš; Petermann, Marcus; Knez, Željko

    2015-01-01

    Aim of this experimental work was to investigate the possibility of producing fruit powders without employing drying aid and to investigate the effect of drying temperatures on the final powder characteristics. Raw fruit materials (banana puree, strawberry puree and blueberry concentrate) were processed using three different drying techniques each operating at a different temperature conditions: vacuum-drying (-27-17 °C), Spray-drying (130-160 °C) and PGSS-drying (112-152 °C). Moisture content, total colour difference, antioxidant activity and sensory characteristics of the processed fruit powders were analysed. The results obtained from the experimental work indicate that investigated fruit powders without or with minimal addition of maltodextrin can be produced. Additionally, it was observed that an increase in process temperature results in a higher loss of colour, antioxidant activity and intensity of the flavour profile.

  8. Development of a Freeze-Dried, Heat-Stable Influenza Subunit Vaccine Formulation

    PubMed Central

    Flood, Alexander; Chen, Dexiang

    2016-01-01

    An influenza pandemic remains a major public health concern. A key strategy to prevent a pandemic is to stockpile and pre-position stable influenza vaccine to allow rapid deployment in response to an outbreak. However, most influenza vaccines today are formulated as liquids that are stable only within a temperature range of 2°C to 8°C and require use of a cold chain, making vaccine transportation, distribution, and storage complicated and expensive, particularly for developing countries. To support the National Strategy for Pandemic Influenza preparedness in the United States and internationally, we developed two lead dry formulations of stable H1N1 influenza subunit vaccines using freeze-drying technology. The stable formulations contain an excipient combination of a disaccharide, such as sucrose or trehalose, and glycine, in addition to a surfactant and phosphate buffer. The freeze-dried vaccines were shown to be safe and remained immunogenic in an in vivo study in mice. Moreover, the lead formulations demonstrated no significant loss of activity after 40 months at storage temperatures of 25°C and 37°C. This stability can be particularly attractive as it could eliminate the need to use a cold chain for vaccine deployment and facilitate integration of vaccine distribution with general drug distribution where appropriate. These freeze-dried thermostable influenza subunit vaccines could also reduce the frequency of vaccine stockpile turnover, offering a cost-effective option for pandemic preparedness. PMID:27851765

  9. Development of a Freeze-Dried, Heat-Stable Influenza Subunit Vaccine Formulation.

    PubMed

    Flood, Alexander; Estrada, Marcus; McAdams, David; Ji, Yuhua; Chen, Dexiang

    2016-01-01

    An influenza pandemic remains a major public health concern. A key strategy to prevent a pandemic is to stockpile and pre-position stable influenza vaccine to allow rapid deployment in response to an outbreak. However, most influenza vaccines today are formulated as liquids that are stable only within a temperature range of 2°C to 8°C and require use of a cold chain, making vaccine transportation, distribution, and storage complicated and expensive, particularly for developing countries. To support the National Strategy for Pandemic Influenza preparedness in the United States and internationally, we developed two lead dry formulations of stable H1N1 influenza subunit vaccines using freeze-drying technology. The stable formulations contain an excipient combination of a disaccharide, such as sucrose or trehalose, and glycine, in addition to a surfactant and phosphate buffer. The freeze-dried vaccines were shown to be safe and remained immunogenic in an in vivo study in mice. Moreover, the lead formulations demonstrated no significant loss of activity after 40 months at storage temperatures of 25°C and 37°C. This stability can be particularly attractive as it could eliminate the need to use a cold chain for vaccine deployment and facilitate integration of vaccine distribution with general drug distribution where appropriate. These freeze-dried thermostable influenza subunit vaccines could also reduce the frequency of vaccine stockpile turnover, offering a cost-effective option for pandemic preparedness.

  10. Effect of Carboxylmethyl Cellulose Coating and Osmotic Dehydration on Freeze Drying Kinetics of Apple Slices

    PubMed Central

    Rahimi, Jamshid; Singh, Ashutosh; Adewale, Peter Olusola; Adedeji, Akinbode A.; Ngadi, Michael O.; Raghavan, Vijaya

    2013-01-01

    The effect of different concentrations of sugar solution (hypertonic) (30%, 45% and 60% w/v) and carboxyl methyl cellulose (CMC) (0%, 1% and 2% w/v) coating on freeze drying of apple slices was studied. In total, nine treatments with respect to concentrations of hypertonic solution and coating layer were prepared to analyze their influence on the physical and chemical properties of freeze dried apple slices. It was observed that increase in the sugar solution concentration, decreased the moisture content of the apple slices significantly impacting its water activity, texture and sugar gain. Application of different concentrations of CMC coating had no significant effect on the properties of dried apple slices. A significant change was observed for color of CMC coated freeze dried apple slices pretreated with 60% sugar solution. Drying kinetics of pretreated apple slices were fitted by using two drying models, Newton’s and Page’s. Page’s model showed higher R-square and lower root mean square error (RSME) compared to Newton’s model. PMID:28239107

  11. The Freeze-Drying of Wet and Waterlogged Materials from Archaeological Excavations

    ERIC Educational Resources Information Center

    Watson, Jacqui

    2004-01-01

    Large quantities of wood and leather have been found in the waterlogged layers on archaeological excavations. Centuries of burial, however, have left these materials in a very degraded and vulnerable state such that if they dry out they will fall apart. This paper discusses the physics behind the freeze-drying techniques that allow the…

  12. Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying.

    PubMed

    Goshima, Hiroshika; Do, Gabsoo; Nakagawa, Kyuya

    2016-06-01

    It has been known that the sublimation kinetics of a freeze-drying product is affected by its internal ice crystal microstructures. This article demonstrates the impact of the ice morphologies of a frozen formulation in a vial on the design space for the primary drying of a pharmaceutical freeze-drying process. Cross-sectional images of frozen sucrose-bovine serum albumin aqueous solutions were optically observed and digital pictures were acquired. Binary images were obtained from the optical data to extract the geometrical parameters (i.e., ice crystal size and tortuosity) that relate to the mass-transfer resistance of water vapor during the primary drying step. A mathematical model was used to simulate the primary drying kinetics and provided the design space for the process. The simulation results predicted that the geometrical parameters of frozen solutions significantly affect the design space, with large and less tortuous ice morphologies resulting in wide design spaces and vice versa. The optimal applicable drying conditions are influenced by the ice morphologies. Therefore, owing to the spatial distributions of the geometrical parameters of a product, the boundary curves of the design space are variable and could be tuned by controlling the ice morphologies. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Use of a soft sensor for the fast estimation of dried cake resistance during a freeze-drying cycle.

    PubMed

    Bosca, Serena; Barresi, Antonello A; Fissore, Davide

    2013-07-15

    This paper deals with the determination of dried cake resistance in a freeze-drying process using the Smart Soft Sensor, a process analytical technology recently proposed by the authors to monitor the primary drying stage of a freeze-drying process. This sensor uses the measurement of product temperature, a mathematical model of the process, and the Kalman filter algorithm to estimate the residual amount of ice in the vial as a function of time, as well as the coefficient of heat transfer between the shelf and the product and the resistance of the dried cake to vapor flow. It does not require expensive (additional) hardware in a freeze-dryer, provided that thermocouples are available. At first, the effect of the insertion of the thermocouple in a vial on the structure of the product is investigated by means of experimental tests, comparing both sublimation rate and cake structure in vials with and without thermocouple. This is required to assess that the temperature measured by the thermocouple is the same of the product in the non-monitored vials, at least in a non-GMP environment, or when controlled nucleation methods are used. Then, results about cake resistance obtained in an extended experimental campaign with aqueous solutions containing different excipients (sucrose, mannitol and polyvinylpyrrolidone), processed in various operating conditions, are presented, with the goal to point out the accuracy of the proposed methodology. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Optimized aqueous extraction of saponins from bitter melon for production of a saponin-enriched bitter melon powder.

    PubMed

    Tan, Sing P; Vuong, Quan V; Stathopoulos, Costas E; Parks, Sophie E; Roach, Paul D

    2014-07-01

    Bitter melon, Momordica charantia L. (Cucurbitaceae), aqueous extracts are proposed to have health-promoting properties due to their content of saponins and their antioxidant activity. However, the optimal conditions for the aqueous extraction of saponins from bitter melon and the effects of spray drying have not been established. Therefore, this study aimed to optimize the aqueous extraction of the saponins from bitter melon, using response surface methodology, prepare a powder using spray drying, and compare the powder's physical properties, components, and antioxidant capacity with aqueous and ethanol freeze-dried bitter melon powders and a commercial powder. The optimal aqueous extraction conditions were determined to be 40 °C for 15 min and the water-to-sample ratio was chosen to be 20:1 mL/g. For many of its physical properties, components, and antioxidant capacity, the aqueous spray-dried powder was comparable to the aqueous and ethanol freeze-dried bitter melon powders and the commercial powder. The optimal conditions for the aqueous extraction of saponins from bitter melon followed by spray drying gave a high quality powder in terms of saponins and antioxidant activity. This study highlights that bitter melon is a rich source of saponin compounds and their associated antioxidant activities, which may provide health benefits. The findings of the current study will help with the development of extraction and drying technologies for the preparation of a saponin-enriched powdered extract from bitter melon. The powdered extract may have potential as a nutraceutical supplement or as a value-added ingredient for incorporation into functional foods. © 2014 Institute of Food Technologists®

  15. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons

    PubMed Central

    1980-01-01

    This report presents the appearance of rapidly frozen, freeze-dried cytoskeletons that have been rotary replicated with platinum and viewed in the transmission electron microscope. The resolution of this method is sufficient to visualize individual filaments in the cytoskeleton and to discriminate among actin, microtubules, and intermediate filaments solely by their surface substructure. This identification has been confirmed by specific decoration with antibodies and selective extraction of individual filament types, and correlated with light microscope immunocytochemistry and gel electrophoresis patterns. The freeze-drying preserves a remarkable degree of three-dimensionality in the organization of these cytoskeletons. They look strikingly similar to the meshwork of strands or "microtrabeculae" seen in the cytoplasm of whole cells by high voltage electron microscopy, in that the filaments form a lattice of the same configutation and with the same proportions of open area as the microtrabeculae seen in whole cells. The major differences between these two views of the structural elements of the cytoplasmic matrix can be attributed to the effects of aldehyde fixation and dehydration. Freeze-dried cytoskeletons thus provide an opportunity to study--at high resolution and in the absence of problems caused by chemical fixation--the detailed organization of filaments in different regions of the cytoplasm and at different stages of cell development. In this report the pattern of actin and intermediate filament organization in various regions of fully spread mouse fibroblasts is described. PMID:6893451

  16. NASA. Langley Research Center dry powder towpreg system

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Marchello, Joseph M.

    1990-01-01

    Dry powder polymer impregnated carbon fiber tows were produced for preform weaving and composite materials molding applications. In the process, fluidized powder is deposited on spread tow bundles and melted on the fibers by radiant heating to adhere the polymer to the fiber. Unit design theory and operating correlations were developed to provide the basis for scale up of the process to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed, resin feeder, and quality control system. Bench scale experiments, at tow speeds up to 50 cm/sec, demonstrated that process variables can be controlled to produce weavable LARC-TPI carbon fiber towpreg. The towpreg made by the dry powder process was formed into unidirectional fiber moldings and was woven and molded into preform material of good quality.

  17. Freeze-Drying as Sample Preparation for Micellar Electrokinetic Capillary Chromatography – Electrochemical Separations of Neurochemicals in Drosophila Brains

    PubMed Central

    Berglund, E. Carina; Kuklinski, Nicholas J.; Karagündüz, Ekin; Ucar, Kubra; Hanrieder, Jörg; Ewing, Andrew G.

    2013-01-01

    Micellar electrokinetic capillary chromatography with electrochemical detection has been used to quantify biogenic amines in freeze-dried Drosophila melanogaster brains. Freeze drying samples offers a way to preserve the biological sample while making dissection of these tiny samples easier and faster. Fly samples were extracted in cold acetone and dried in a rotary evaporator. Extraction and drying times were optimized in order to avoid contamination by red-pigment from the fly eyes and still have intact brain structures. Single freeze-dried fly-brain samples were found to produce representative electropherograms as a single hand-dissected brain sample. Utilizing the faster dissection time that freeze drying affords, the number of brains in a fixed homogenate volume can be increased to concentrate the sample. Thus, concentrated brain samples containing five or fifteen preserved brains were analyzed for their neurotransmitter content, and five analytes; dopamine N-acetyloctopamine, Nacetylserotonin, N-acetyltyramine, N-acetyldopamine were found to correspond well with previously reported values. PMID:23387977

  18. Freeze concentration of dairy products: Phase 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, D.E.; Vasavada, K.C.; Woolf, H.

    1995-10-01

    Conventional dairy industry evaporators convert an estimated 60 billion pounds of milk and whey products annually into dairy powders. However, many evaporators currently used by dairy processors are old and inefficient and damage the dairy powders through heat abuse. This results in lost organoleptic and functional qualities in the finished dairy products. EPRI report EM-5232 indicated that substitution of freeze concentration for evaporation and distillation in all feasible industry applications could save customers $5.5 billion annually, while increasing electric power consumption by 20 billion kWt/yr. EPRI CU-6292 reported on Phase I work, concluding that freeze concentration of dairy products wasmore » technically feasible based on pilot plant studies. The semicommercial-scale Process development units was successfully installed and brought up to 3-A processing standards. This unit achieved continuous runs of up to 510 hours. An expert safety panel affirmed the generally recognized as safe (GRAS) status of freeze-concentrated milk ingredients, which were used in formulating ice cream, cream cheese, milk chocolate, and other products for consumer evaluation. Consumer evaluations documented that the functional and organoleptic properties of reconstituted freeze-concentrated skim milk are equal or superior to those of fresh skim milk, skim milk concentrates, or nonfat dry milk powders.« less

  19. NaCl stress impact on the key enzymes in glycolysis from Lactobacillus bulgaricus during freeze-drying.

    PubMed

    Li, Chun; Sun, Jinwei; Qi, Xiaoxi; Liu, Libo

    2015-01-01

    The viability of Lactobacillus bulgaricus in freeze-drying is of significant commercial interest to dairy industries. In the study, L.bulgaricus demonstrated a significantly improved (p < 0.05) survival rate during freeze-drying when subjected to a pre-stressed period under the conditions of 2% (w/v) NaCl for 2 h in the late growth phase. The main energy source for the life activity of lactic acid bacteria is related to the glycolytic pathway. To investigate the phenomenon of this stress-related viability improvement in L. bulgaricus, the activities and corresponding genes of key enzymes in glycolysis during 2% NaCl stress were studied. NaCl stress significantly enhanced (p < 0.05) glucose utilization. The activities of glycolytic enzymes (phosphofructokinase, pyruvate kinase, and lactate dehydrogenase) decreased during freeze-drying, and NaCl stress were found to improve activities of these enzymes before and after freeze-drying. However, a transcriptional analysis of the corresponding genes suggested that the effect of NaCl stress on the expression of the pfk2 gene was not obvious. The increased survival of freeze-dried cells of L. bulgaricus under NaCl stress might be due to changes in only the activity or translation level of these enzymes in different environmental conditions but have no relation to their mRNA transcription level.

  20. Standardization of spray-dried powder of Piper betle hot water extract

    PubMed Central

    Arawwawala, Liyanage Dona Ashanthi Menuka; Hewageegana, Horadugoda Gamage Sujatha Pushpakanthi; Arambewela, Lakshmi Sriyani Rajapaksha; Ariyawansa, Hettiarachchige Sami

    2011-01-01

    The leaves of Piper betle Linn. (Family: Piperaceae) possess several bioactivities and are used in the Traditional Medical systems of Sri Lanka. The present investigation was carried out to standardize the spray-dried powder of P. betle by (a) determination of physicochemical parameters, presence or absence of heavy metals, and microbial contamination; (b) screening for phytochemicals; and (c) development of High Pressure Liquid Chromatography (HPLC) fingerprint and densitogram. The percentages of moisture content, total ash, acid insoluble ash, water-soluble ash, and ethanol extractable matter of spray-dried powder of P. betle were 2.2-2.5, 6.8-7.0, 0.003-0.005, 4.1-4.3, and 15.8-16.2, respectively. The concentrations of all the tested heavy metals were below the WHO acceptable limits and bacterial species, such as Escherichia coli, Salmonella spp, Staphylococcus aureus, and Pseudomonas aeroginosa were not present in the P. betle spray-dried powder. Phenolic compounds, tannins, flavonoids steroids, and alkaloids were found to be present in the spray-dried powder of P. betle and HPLC fingerprint and densitogram clearly demonstrated the proportional differences of these chemical constituents. In conclusion, the results obtained from this study can be used to standardize the spray-dried powder of P. betle. PMID:21716924

  1. Standardization of spray-dried powder of Piper betle hot water extract.

    PubMed

    Arawwawala, Liyanage Dona Ashanthi Menuka; Hewageegana, Horadugoda Gamage Sujatha Pushpakanthi; Arambewela, Lakshmi Sriyani Rajapaksha; Ariyawansa, Hettiarachchige Sami

    2011-04-01

    The leaves of Piper betle Linn. (Family: Piperaceae) possess several bioactivities and are used in the Traditional Medical systems of Sri Lanka. The present investigation was carried out to standardize the spray-dried powder of P. betle by (a) determination of physicochemical parameters, presence or absence of heavy metals, and microbial contamination; (b) screening for phytochemicals; and (c) development of High Pressure Liquid Chromatography (HPLC) fingerprint and densitogram. The percentages of moisture content, total ash, acid insoluble ash, water-soluble ash, and ethanol extractable matter of spray-dried powder of P. betle were 2.2-2.5, 6.8-7.0, 0.003-0.005, 4.1-4.3, and 15.8-16.2, respectively. The concentrations of all the tested heavy metals were below the WHO acceptable limits and bacterial species, such as Escherichia coli, Salmonella spp, Staphylococcus aureus, and Pseudomonas aeroginosa were not present in the P. betle spray-dried powder. Phenolic compounds, tannins, flavonoids steroids, and alkaloids were found to be present in the spray-dried powder of P. betle and HPLC fingerprint and densitogram clearly demonstrated the proportional differences of these chemical constituents. In conclusion, the results obtained from this study can be used to standardize the spray-dried powder of P. betle.

  2. Freeze-dried, mucoadhesive system for vaginal delivery of the HIV microbicide, dapivirine: optimisation by an artificial neural network.

    PubMed

    Woolfson, A David; Umrethia, Manish L; Kett, Victoria L; Malcolm, R Karl

    2010-03-30

    Dapivirine mucoadhesive gels and freeze-dried tablets were prepared using a 3x3x2 factorial design. An artificial neural network (ANN) with multi-layer perception was used to investigate the effect of hydroxypropyl-methylcellulose (HPMC): polyvinylpyrrolidone (PVP) ratio (X1), mucoadhesive concentration (X2) and delivery system (gel or freeze-dried mucoadhesive tablet, X3) on response variables; cumulative release of dapivirine at 24h (Q(24)), mucoadhesive force (F(max)) and zero-rate viscosity. Optimisation was performed by minimising the error between the experimental and predicted values of responses by ANN. The method was validated using check point analysis by preparing six formulations of gels and their corresponding freeze-dried tablets randomly selected from within the design space of contour plots. Experimental and predicted values of response variables were not significantly different (p>0.05, two-sided paired t-test). For gels, Q(24) values were higher than their corresponding freeze-dried tablets. F(max) values for freeze-dried tablets were significantly different (2-4 times greater, p>0.05, two-sided paired t-test) compared to equivalent gels. Freeze-dried tablets having lower values for X1 and higher values for X2 components offered the best compromise between effective dapivirine release, mucoadhesion and viscosity such that increased vaginal residence time was likely to be achieved. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  3. Optimization of Freeze Drying Conditions for Purified Pectinase from Mango (Mangifera indica cv. Chokanan) Peel

    PubMed Central

    Mehrnoush, Amid; Mustafa, Shuhaimi; Yazid, Abdul Manap Mohd

    2012-01-01

    Response surface methodology (RSM) along with central composite design (CCD) was applied to optimize the freeze drying conditions for purified pectinase from mango (Mangifera indica cv. Chokanan) peel. The effect of pectinase content (−2.66, 62.66 mg/mL), Arabic gum (−1.21, 10.21%, w/v), and maltodextrin (0.73, 7.26%, w/v) as independent variables on activity, yield, and storage stability of freeze-dried enzyme was evaluated. Storage stability of pectinase was investigated after one week at 4 °C and yield percentage of the enzyme after encapsulation was also determined. The independent variables had the most significant (p < 0.05) effect on pectinase activity and yield of the enzyme. It was observed that the interaction effect of Arabic gum and maltodextrin improved the enzymatic properties of freeze-dried pectinase. The optimal conditions for freeze-dried pectinase from mango peel were obtained using 30 mg/mL of pectinase content, 4.5 (%, w/v) of Arabic gum, and 4 (%, w/v) of maltodextrin. Under these conditions, the maximum activity (11.12 U/mL), yield (86.4%) and storage stability (84.2%) of encapsulated pectinase were achieved. PMID:22489134

  4. Optimization of freeze drying conditions for purified pectinase from mango (Mangifera indica cv. Chokanan) peel.

    PubMed

    Mehrnoush, Amid; Mustafa, Shuhaimi; Yazid, Abdul Manap Mohd

    2012-01-01

    Response surface methodology (RSM) along with central composite design (CCD) was applied to optimize the freeze drying conditions for purified pectinase from mango (Mangifera indica cv. Chokanan) peel. The effect of pectinase content (-2.66, 62.66 mg/mL), Arabic gum (-1.21, 10.21%, w/v), and maltodextrin (0.73, 7.26%, w/v) as independent variables on activity, yield, and storage stability of freeze-dried enzyme was evaluated. Storage stability of pectinase was investigated after one week at 4 °C and yield percentage of the enzyme after encapsulation was also determined. The independent variables had the most significant (p < 0.05) effect on pectinase activity and yield of the enzyme. It was observed that the interaction effect of Arabic gum and maltodextrin improved the enzymatic properties of freeze-dried pectinase. The optimal conditions for freeze-dried pectinase from mango peel were obtained using 30 mg/mL of pectinase content, 4.5 (%, w/v) of Arabic gum, and 4 (%, w/v) of maltodextrin. Under these conditions, the maximum activity (11.12 U/mL), yield (86.4%) and storage stability (84.2%) of encapsulated pectinase were achieved.

  5. Phase formation of V{sub 2}O{sub 5}.xNb{sub 2}O{sub 5} compounds via gels and freeze-dried precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langbein, Hubert; Mayer-Uhma, Tobias

    2009-03-05

    An X-ray powder diffraction study of the phase formation in the system V{sub 2}O{sub 5}/Nb{sub 2}O{sub 5} is performed. Freeze-dried ammonium vanadate and ammonium oxalato niobate, alkoxide-derived xerogels and a mixture of active oxides are used as precursors to compare the resulting phase composition. Thermal decomposition of the freeze-dried precursor is monitored with DTA/TG and mass spectrometry. In the quasi-binary system V{sub 2}O{sub 5}-Nb{sub 2}O{sub 5} metastable VNbO{sub 5}, V{sub 4}Nb{sub 18}O{sub 55}, VNb{sub 9}O{sub 25} and solid solutions of V{sub 2}O{sub 5} in TT-Nb{sub 2}O{sub 5} as also thermodynamically stable VNb{sub 9}O{sub 25} exist. The thermal decomposition of freeze-driedmore » vanadate-oxalatoniobate solution allows the synthesis of all these phases in a relative simple manner. Structural relationships between an intermediate phase and the product, or, in the case of solid-state reactions, between one of the starting oxide and the product, favour the desired reaction. Therefore, the structure of a former phase influences or directs the structure of the product similar to a topotactic reaction.« less

  6. Quality by design: optimization of a freeze-drying cycle via design space in case of heterogeneous drying behavior and influence of the freezing protocol.

    PubMed

    Pisano, Roberto; Fissore, Davide; Barresi, Antonello A; Brayard, Philippe; Chouvenc, Pierre; Woinet, Bertrand

    2013-02-01

    This paper shows how to optimize the primary drying phase, for both product quality and drying time, of a parenteral formulation via design space. A non-steady state model, parameterized with experimentally determined heat and mass transfer coefficients, is used to define the design space when the heat transfer coefficient varies with the position of the vial in the array. The calculations recognize both equipment and product constraints, and also take into account model parameter uncertainty. Examples are given of cycles designed for the same formulation, but varying the freezing conditions and the freeze-dryer scale. These are then compared in terms of drying time. Furthermore, the impact of inter-vial variability on design space, and therefore on the optimized cycle, is addressed. With this regard, a simplified method is presented for the cycle design, which reduces the experimental effort required for the system qualification. The use of mathematical modeling is demonstrated to be very effective not only for cycle development, but also for solving problem of process transfer. This study showed that inter-vial variability remains significant when vials are loaded on plastic trays, and how inter-vial variability can be taken into account during process design.

  7. Effect of mixing time, freeze-drying and baking on phenolics, anthocyanins and antioxidant capacity of raspberry juice during processing of muffins.

    PubMed

    Rosales-Soto, Maria U; Powers, Joseph R; Alldredge, J Richard

    2012-05-01

    Consumption of baked products constitutes an important part of a daily breakfast considering that people are continually grabbing meals on the go. Among baked products, muffins rank third in breakfast products and attract a broad range of consumers. Incorporation of red raspberry juice into muffins can add value to the product while preserving health benefits to the consumer. The purpose of this study was to evaluate the effect of mixing time, freeze-drying and baking on the phenolic and anthocyanin contents and antioxidant capacity of raspberry juice during the preparation of muffins. Freeze-drying of raspberry batters reduced their phenolic content and antioxidant capacity regardless of mixing time. Non-freeze-dried raspberry batter mixed for 5 min had the highest phenolic content (0.88 mg gallic acid equivalent g(-1) dry matter (DM)). Non-freeze-dried raspberry muffins had the highest antioxidant capacity (0.041 µmol Trolox equivalent g(-1) DM). Freeze-dried raspberry batters mixed for 5 and 10 min had the highest anthocyanin content (0.065 mg cyanidin-3-glucoside g(-1) DM). Baking reduced the anthocyanin content of both non-freeze-dried and freeze-dried raspberry muffins. Despite the reduction in valuable compounds, muffin is a vehicle for the delivery of these compounds. Copyright © 2012 Society of Chemical Industry.

  8. Reduced pressure ice fog technique for controlled ice nucleation during freeze-drying.

    PubMed

    Patel, Sajal M; Bhugra, Chandan; Pikal, Michael J

    2009-01-01

    A method to achieve controlled ice nucleation during the freeze-drying process using an ice fog technique was demonstrated in an earlier report. However, the time required for nucleation was about 5 min, even though only one shelf was used, which resulted in Ostwald ripening (annealing) in some of the vials that nucleated earlier than the others. As a result, the ice structure was not optimally uniform in all the vials. The objective of the present study is to introduce a simple variation of the ice fog method whereby a reduced pressure in the chamber is utilized to allow more rapid and uniform freezing which is also potentially easier to scale up. Experiments were conducted on a lab scale freeze dryer with sucrose as model compound at different concentration, product load, and fill volume. Product resistance during primary drying was measured using manometric temperature measurement. Specific surface area of the freeze-dried cake was also determined. No difference was observed either in average product resistance or specific surface area for the different experimental conditions studied, indicating that with use of the reduced pressure ice fog technique, the solutions nucleated at very nearly the same temperature (-10 degrees C). The striking feature of the "Reduced Pressure Ice Fog Technique" is the rapid ice nucleation (less than a minute) under conditions where the earlier procedure required about 5 min; hence, effects of variable Ostwald ripening were not an issue.

  9. Physical characteristics and aerosolization performance of insulin dry powders for inhalation prepared by a spray drying method.

    PubMed

    You, Yu; Zhao, Min; Liu, Guangli; Tang, Xing

    2007-07-01

    The objective of this study was to investigate the influence of formulation excipients on the physical characteristics and aerosolization performance of insulin dry powders for inhalation. Insulin dry powders were prepared by a spray drying technique using excipients such as sugars (trehalose, lactose and dextran), mannitol and amino acids (L-leucine, glycine and threonine). High performance liquid chromatography and the mouse blood glucose method were used for determination of the insulin content. The powder properties were determined and compared by scanning electron microscopy, thermo-gravimetric analysis and size distribution analysis by a time-of-flight technique. The in-vitro aerosolization behaviour of the powders was assessed with an Aerolizer inhaler using a twin-stage impinger. Powder yield and moisture absorption were also determined. Results showed that there was no noticeable change in insulin content in any of the formulations by both assay methods. All powders were highly wrinkled, with median aerodynamic diameters of 2-4 microm, and consequently suitable for pulmonary administration. The tapped density was reduced dramatically when glycine was added. The powders containing mannitol, with or without L-leucine, were less sensitive to moisture. The highest respirable fraction of 67.3 +/- 1.3% was obtained with the formulation containing L-leucine, in contrast to formulations containing glycine and threonine, which had a respirable fraction of 11.2 +/- 3.9% and 23.5 +/- 2.5%, respectively. In addition, powders with good physical properties were achieved by the combination of insulin and trehalose. This study suggests that L-leucine could be used to enhance the aerosolization behaviour of the insulin dry powders for inhalation, and trehalose could potentially be used as an excipient in the formulations.

  10. Aerosolization properties, surface composition and physical state of spray-dried protein powders.

    PubMed

    Bosquillon, Cynthia; Rouxhet, Paul G; Ahimou, François; Simon, Denis; Culot, Christine; Préat, Véronique; Vanbever, Rita

    2004-10-19

    Powder aerosols made of albumin, dipalmitoylphosphatidylcholine (DPPC) and a protein stabilizer (lactose, trehalose or mannitol) were prepared by spray-drying and analyzed for aerodynamic behavior, surface composition and physical state. The powders exited a Spinhaler inhaler as particle aggregates, the size of which depending on composition, spray-drying parameters and airflow rate. However, due to low bulk powder tap density (<0.15 g/cm3), the aerodynamic size of a large fraction of aggregates remained respirable (<5 microm). Fine particle fractions ranged between 21% and 41% in an Andersen cascade impactor operated at 28.3 l/min, with mannitol and lactose providing the most cohesive and free-flowing powders, respectively. Particle surface analysis by X-ray photoelectron spectroscopy (XPS) revealed a surface enrichment with DPPC relative to albumin for powders prepared under certain spray-drying conditions. DPPC self-organized in a gel phase in the particle and no sugar or mannitol crystals were detected by X-ray diffraction. Water sorption isotherms showed that albumin protected lactose from moisture-induced crystallization. In conclusion, a proper combination of composition and spray-drying parameters allowed to obtain dry powders with elevated fine particle fractions (FPFs) and a physical environment favorable to protein stability.

  11. Feasibility of spray drying bacteriophages into respirable powders to combat pulmonary bacterial infections.

    PubMed

    Vandenheuvel, Dieter; Singh, Abhishek; Vandersteegen, Katrien; Klumpp, Jochen; Lavigne, Rob; Van den Mooter, Guy

    2013-08-01

    The use of bacterial viruses for antibacterial treatment (bacteriophage therapy) is currently being reevaluated. In this study, we analyze the potential of processing bacteriophages in a dry powder formulation, using a laboratory spray dryer. The phages were dried in the presence of lactose, trehalose or dextran 35, serving as an excipient to give the resulting powder the necessary bulk mass and offer protection to the delicate phage structure. Out of the three excipients tested, trehalose was found to be the most efficient in protecting the phages from temperature and shear stress throughout the spray drying process. A low inlet air temperature and atomizing force appeared to be the best parameter conditions for phage survival. Pseudomonas podovirus LUZ19 was remarkably stable, suffering less than 1 logarithmic unit reduction in phage titer. The phage titer of Staphyloccus phage Romulus-containing powders, a member of the Myoviridae family, showed more than 2.5 logarithmic units reduction. On the other hand, Romulus-containing powders showed more favorable characteristics for pulmonary delivery, with a high percentage of dry powder particles in the pulmonary deposition fraction (1-5 μm particle diameter). Even though the parameters were not optimized for spray drying all phages, it was demonstrated that spray drying phages with this industrial relevant and scalable set up was possible. The resulting powders had desirable size ranges for pulmonary delivery of phages with dry powder inhalers (DPIs). Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review.

    PubMed

    Fan, Kai; Zhang, Min; Mujumdar, Arun S

    2018-01-10

    Microwave heating has been applied in the drying of high-value solids as it affords a number of advantages, including shorter drying time and better product quality. Freeze-drying at cryogenic temperature and extremely low pressure provides the advantage of high product quality, but at very high capital and operating costs due partly to very long drying time. Freeze-drying coupled with a microwave heat source speeds up the drying rate and yields good quality products provided the operating unit is designed and operated to achieve the potential for an absence of hot spot developments. This review is a survey of recent developments in the modeling and experimental results on microwave-assisted freeze-drying (MFD) over the past decade. Owing to the high costs involved, so far all applications are limited to small-scale operations for the drying of high-value foods such as fruits and vegetables. In order to promote industrial-scale applications for a broader range of products further research and development efforts are needed to offset the current limitations of the process. The needs and opportunities for future research and developments are outlined.

  13. Solubility enhancement of BCS Class II drug by solid phospholipid dispersions: Spray drying versus freeze-drying.

    PubMed

    Fong, Sophia Yui Kau; Ibisogly, Asiye; Bauer-Brandl, Annette

    2015-12-30

    The poor aqueous solubility of BCS Class II drugs represents a major challenge for oral dosage form development. Using celecoxib (CXB) as model drug, the current study adopted a novel solid phospholipid nanoparticle (SPLN) approach and compared the effect of two commonly used industrial manufacturing methods, spray- and freeze-drying, on the solubility and dissolution enhancement of CXB. CXB was formulated with Phospholipoid E80 (PL) and trehalose at different CXB:PL:trehalose ratios, of which 1:10:16 was the optimal formulation. Spherical amorphous SPLNs with average diameters <1μm were produced by spray-drying; while amorphous 'matrix'-like structures of solid PL dispersion with larger particle sizes were prepared by freeze-drying. Formulations from both methods significantly enhanced the dissolution rates, apparent solubility, and molecularly dissolved concentration of CXB in phosphate buffer (PBS, pH 6.5) and in biorelevant fasted state simulated intestinal fluid (FaSSIF, pH 6.5) (p<0.05). While similar dissolution rates were found, the spray-dried SPLNs had a larger enhancement in apparent solubility (29- to 132-fold) as well as molecular solubility (18-fold) of CXB at equilibrium (p<0.05). The strong capability of the spray-dried SPLNs to attain 'true' supersaturation state makes them a promising approach for bioavailability enhancement of poorly soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Liposomal andrographolide dry powder inhalers for treatment of bacterial pneumonia via anti-inflammatory pathway.

    PubMed

    Li, Miao; Zhang, Tongtong; Zhu, Lifei; Wang, Rui; Jin, Yiguang

    2017-08-07

    Andrographolide (AG) is a chemical entity from traditional Chinese herbs and its oral pills have been applied to the treatment of respiratory inflammation. Here we report pulmonary delivery of liposomal AG dry powder inhalers (LADPIs) for treatment of Staphylococcus aureus-induced pneumonia. AG liposomes were prepared with the injection method and then freeze-dried for preparation of LADPIs. AG liposomes were small and stable with a mean size of 77.91nm and a zeta potential of -56.13mV. Liposomes were well recovered after re-hydration of LADPIs that were suitable for pulmonary delivery with a mass mean aerodynamic diameter (MMAD) of 4.87μm and a fine particle fraction (FPF) of 23.03%. However, the MMAD and FPF of AG powders were 10.14μm and 8.37%, respectively. The in vitro anti-S. aureus effects of AG powders and LADPIs were investigated, but were not found. They were intratracheally sprayed into the rat lungs for treatment of S. aureus pneumonia. Surprisingly, LADPIs showed a stronger anti-S. aureus pneumonic effect in vivo, than AG at a ten-fold dose or than an antibiotic, penicillin. LADPIs significantly decreased many pro-inflammatory cytokines including TNF-α, IL-1. Furthermore, the phosphorylation of IκB-α in the nuclear factor-κB (NF-κB) pathway was also remarkably inhibited. AG regulated the immune reaction to maintain the antibacterial effect while downregulating inflammatory response so that AG showed a strong effect on bacterial pneumonia. LADPIs are a promising pulmonary delivery medicine for the treatment of bacterial pneumonia. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The impact of freeze-drying infant fecal samples on measures of their bacterial community profiles and milk-derived oligosaccharide content.

    PubMed

    Lewis, Zachery T; Davis, Jasmine C C; Smilowitz, Jennifer T; German, J Bruce; Lebrilla, Carlito B; Mills, David A

    2016-01-01

    Infant fecal samples are commonly studied to investigate the impacts of breastfeeding on the development of the microbiota and subsequent health effects. Comparisons of infants living in different geographic regions and environmental contexts are needed to aid our understanding of evolutionarily-selected milk adaptations. However, the preservation of fecal samples from individuals in remote locales until they can be processed can be a challenge. Freeze-drying (lyophilization) offers a cost-effective way to preserve some biological samples for transport and analysis at a later date. Currently, it is unknown what, if any, biases are introduced into various analyses by the freeze-drying process. Here, we investigated how freeze-drying affected analysis of two relevant and intertwined aspects of infant fecal samples, marker gene amplicon sequencing of the bacterial community and the fecal oligosaccharide profile (undigested human milk oligosaccharides). No differences were discovered between the fecal oligosaccharide profiles of wet and freeze-dried samples. The marker gene sequencing data showed an increase in proportional representation of Bacteriodes and a decrease in detection of bifidobacteria and members of class Bacilli after freeze-drying. This sample treatment bias may possibly be related to the cell morphology of these different taxa (Gram status). However, these effects did not overwhelm the natural variation among individuals, as the community data still strongly grouped by subject and not by freeze-drying status. We also found that compensating for sample concentration during freeze-drying, while not necessary, was also not detrimental. Freeze-drying may therefore be an acceptable method of sample preservation and mass reduction for some studies of microbial ecology and milk glycan analysis.

  16. The effects of excipients and particle engineering on the biophysical stability and aerosol performance of parathyroid hormone (1-34) prepared as a dry powder for inhalation.

    PubMed

    Shoyele, Sunday A; Sivadas, Neeraj; Cryan, Sally-Ann

    2011-03-01

    Pulmonary delivery of therapeutic peptides and proteins has many advantages including high relative bioavailability, rapid systemic absorption and onset of action and a non-invasive mode of administration which improves patient compliance. In this study, we investigated the effect of spray-drying (SD) and spray freeze-drying processes on the stability and aerosol performance of parathyroid hormone (PTH) (1-34) microparticles. In this study, the stabilisation effect of trehalose (a non-reducing sugar) and Brij 97 (a non-ionic surfactant) on spray-dried PTH particles was assessed using analytical techniques including circular dichroism (CD), fluorescence spectroscopy, modulated differential scanning calorimetry and an in vitro bioactivity assay. Physical characterisation also included electron microscopy, tap density measurement and laser light diffraction. The aerosol aerodynamic performance of the formulations was assessed using the Andersen cascade impactor. Based on these studies, a formulation for spray freeze-drying was selected and the effects of the two particle engineering techniques on the biophysical stability and aerosol performance of the resulting powders was determined. CD, fluorescence spectroscopy and bioactivity data suggest that trehalose when used alone as a stabilising excipient produces a superior stabilising effect than when used in combination with a non-ionic surfactant. This highlights the utility of CD and fluorescence spectroscopy studies for the prediction of protein bioactivity post-processing. Therefore, a method and formulation suitable for the preparation of PTH as a dry powder was developed based on spray-drying PTH with trehalose as a stabiliser with the bioactivity of SD PTH containing trehalose being equivalent to that of unprocessed PTH. © 2011 American Association of Pharmaceutical Scientists

  17. Cryoprotectant choice and analyses of freeze-drying drug suspension of nanoparticles with functional stabilisers.

    PubMed

    Wang, Lulu; Ma, Yingying; Gu, Yu; Liu, Yangyang; Zhao, Juan; Yan, Beibei; Wang, Yancai

    2018-04-19

    Freeze-drying is an effective way to improve long-term physical stability of nanosuspension in drug delivery applications. Nanosuspension also known as suspension of nanoparticles. In this study, the effect of freeze-drying with different cryoprotectants on the physicochemical characteristics of resveratrol (RSV) nanosuspension and quercetin (QUE) nanosuspension was evaluated. D-α-tocopheryl polyethylene glycol succinate (TPGS) and folate-modified distearoylphosphatidyl ethanolamine-polyethylene glycol (DSPE-PEG-FA) were selected as functional stabilisers formulated nanosuspension which were prepared by anti-solvent precipitation method. RSV nanoparticle size and QUE nanoparticle size were about 210 and 110 nm, respectively. The AFM and TEM results of nanosuspension showed uniform and irregular shape particles. After freeze-drying, the optimal concentration of four cryoprotectants was determined by the particle size of re-dispersed nanoparticles. The dissolution profile of drug nanoparticle significantly showed approximately at a 6-8-fold increase dissolution rate. Moreover, TPGS and DSPE-PEG-FA stabilised RSV nanosuspension and QUE nanosuspension samples showed better effect on long-term physical stability.

  18. Water-Hydrogel Binding Affinity Modulates Freeze-Drying-Induced Micropore Architecture and Skeletal Myotube Formation.

    PubMed

    Rich, Max H; Lee, Min Kyung; Marshall, Nicholas; Clay, Nicholas; Chen, Jinrong; Mahmassani, Ziad; Boppart, Marni; Kong, Hyunjoon

    2015-08-10

    Freeze-dried hydrogels are increasingly used to create 3D interconnected micropores that facilitate biomolecular and cellular transports. However, freeze-drying is often plagued by variance in micropore architecture based on polymer choice. We hypothesized that water-polymer binding affinity plays a significant role in sizes and numbers of micropores formed through freeze-drying, influencing cell-derived tissue quality. Poly(ethylene glycol)diacrylate (PEGDA) hydrogels with alginate methacrylate (AM) were used due to AM's higher binding affinity for water than PEGDA. PEGDA-AM hydrogels with larger AM concentrations resulted in larger sizes and numbers of micropores than pure PEGDA hydrogels, attributed to the increased mass of water binding to the PEGDA-AM gel. Skeletal myoblasts loaded in microporous PEGDA-AM hydrogels were active to produce 3D muscle-like tissue, while those loaded in pure PEGDA gels were localized on the gel surface. We propose that this study will be broadly useful in designing and improving the performance of various microporous gels.

  19. Role of mono- and oligosaccharides from FOS as stabilizing agents during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Romano, Nelson; Schebor, Carolina; Mobili, Pablo; Gómez-Zavaglia, Andrea

    2016-12-01

    The aim of this work was to assess the role of mono- and oligosaccharides present in fructo-oligosaccharides (FOS) mixtures as protective agents during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333. Different FOS mixtures were enzymatically obtained from sucrose and further purified by removing the monosaccharides produced as secondary products. Their glass transition temperatures (T g ) were determined at 11, 22 and 33% relative humidity (RH). Bacterial cultures were freeze-dried in the presence of 20% w/v solutions of the studied FOS. Their protective effect during freeze-drying was assessed by bacterial plate counting, and by determining the lag time from growth kinetics and the uptake of propidium iodide (PI). Plate counting during bacterial storage at 4°C, and 11, 22 and 33% RH for 80days completed this rational analysis of the protective effect of FOS. Purification of FOS led to an increase of T g in all the conditions assayed. Microorganisms freeze-dried in the presence of non-purified FOS were those with the shortest lag times. Bacteria freeze-dried with pure or commercial FOS (92% of total FOS) showed larger lag times (8.9-12.6h). The cultivability of microorganisms freeze-dried with non-purified FOS and with sucrose was not significantly different from that of bacteria before freeze-drying (8.74±0.14logCFU/mL). Pure or commercial FOS were less efficient in protecting bacteria during freeze-drying. All the protectants prevented membrane damage. The cultivability of bacteria freeze-dried with FOS decayed <1logarithmicunit after 80days of storage at 11% RH. When storing at 22 and 33% RH, pure and commercial FOS were those that best protected bacteria, and FOS containing monosaccharides were less efficient. The effect of FOS on bacterial protection is the result of a balance between monosaccharides, sucrose and larger FOS in the mixtures: the smallest sugars are more efficient in protecting lipid membranes, and the

  20. Effects of vial packing density on drying rate during freeze-drying of carbohydrates or a model protein measured using a vial-weighing technique.

    PubMed

    Gieseler, Henning; Lee, Geoffrey

    2008-02-01

    To determine the effects of vial packing density in a laboratory freeze dryer on drying rate profiles of crystalline and amorphous formulations. The Christ freeze-drying balance measured cumulative water loss, m(t), and instantaneous drying rate, m(t), of water, mannitol, sucrose and sucrose/BSA formulations in commercial vials. Crystalline mannitol shows drying rate behaviour indicative of a largely homogeneous dried-product layer. The drying rate behaviour of amorphous sucrose indicates structural heterogeneity, postulated to come from shrinkage or microcollapse. Trehalose dries more slowly than sucrose. Addition of BSA to either disaccharide decreases primary drying time. Higher vial packing density greatly reduces drying rate because of effects of radiation heat transfer from chamber walls to test vial. Plots of m(t) versus radical t and m(t) versus layer thickness (either ice or dried-product) allow interpretation of changes in internal cake morphology during drying. Vial packing density greatly influences these profiles.

  1. Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01.

    PubMed

    Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Christensen, Dennis; Larsen, Niels Bent; Hinrichs, Wouter Leonardus Joseph; Andersen, Peter; Rantanen, Jukka; Nielsen, Hanne Mørck; Yang, Mingshi; Foged, Camilla

    2013-05-10

    Dry powder vaccine formulations are highly attractive due to improved storage stability and the possibility for particle engineering, as compared to liquid formulations. However, a prerequisite for formulating vaccines into dry formulations is that their physicochemical and adjuvant properties remain unchanged upon rehydration. Thus, we have identified and optimized the parameters of importance for the design of a spray dried powder formulation of the cationic liposomal adjuvant formulation 01 (CAF01) composed of dimethyldioctadecylammonium (DDA) bromide and trehalose 6,6'-dibehenate (TDB) via spray drying. The optimal excipient to stabilize CAF01 during spray drying and for the design of nanocomposite microparticles was identified among mannitol, lactose and trehalose. Trehalose and lactose were promising stabilizers with respect to preserving liposome size, as compared to mannitol. Trehalose and lactose were in the glassy state upon co-spray drying with the liposomes, whereas mannitol appeared crystalline, suggesting that the ability of the stabilizer to form a glassy matrix around the liposomes is one of the prerequisites for stabilization. Systematic studies on the effect of process parameters suggested that a fast drying rate is essential to avoid phase separation and lipid accumulation at the surface of the microparticles during spray drying. Finally, immunization studies in mice with CAF01 in combination with the tuberculosis antigen Ag85B-ESAT6-Rv2660c (H56) demonstrated that spray drying of CAF01 with trehalose under optimal processing conditions resulted in the preservation of the adjuvant activity in vivo. These data demonstrate the importance of liposome stabilization via optimization of formulation and processing conditions in the engineering of dry powder liposome formulations. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Mechanistic modelling of infrared mediated energy transfer during the primary drying step of a continuous freeze-drying process.

    PubMed

    Van Bockstal, Pieter-Jan; Mortier, Séverine Thérèse F C; De Meyer, Laurens; Corver, Jos; Vervaet, Chris; Nopens, Ingmar; De Beer, Thomas

    2017-05-01

    Conventional pharmaceutical freeze-drying is an inefficient and expensive batch-wise process, associated with several disadvantages leading to an uncontrolled end product variability. The proposed continuous alternative, based on spinning the vials during freezing and on optimal energy supply during drying, strongly increases process efficiency and improves product quality (uniformity). The heat transfer during continuous drying of the spin frozen vials is provided via non-contact infrared (IR) radiation. The energy transfer to the spin frozen vials should be optimised to maximise the drying efficiency while avoiding cake collapse. Therefore, a mechanistic model was developed which allows computing the optimal, dynamic IR heater temperature in function of the primary drying progress and which, hence, also allows predicting the primary drying endpoint based on the applied dynamic IR heater temperature. The model was validated by drying spin frozen vials containing the model formulation (3.9mL in 10R vials) according to the computed IR heater temperature profile. In total, 6 validation experiments were conducted. The primary drying endpoint was experimentally determined via in-line near-infrared (NIR) spectroscopy and compared with the endpoint predicted by the model (50min). The mean ratio of the experimental drying time to the predicted value was 0.91, indicating a good agreement between the model predictions and the experimental data. The end product had an elegant product appearance (visual inspection) and an acceptable residual moisture content (Karl Fischer). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Optimization of a protective medium for freeze-dried Pichia membranifaciens and application of this biocontrol agent on citrus fruit.

    PubMed

    Niu, X; Deng, L; Zhou, Y; Wang, W; Yao, S; Zeng, K

    2016-07-01

    To optimize a protective medium for freeze-dried Pichia membranifaciens and to evaluate biocontrol efficacies of agents against blue and green mould and anthracnose in citrus fruit. Based on the screening assays of saccharides and antioxidants, response surface methodology was used to optimize sucrose, sodium glutamate and skim milk to improve viability of freeze-dried Pi. membranifaciens. Biocontrol assays were conducted between fresh and freeze-dried Pi. membranifaciens against Penicillium italicum, Penicillium digitatum and Colletotrichum gloeosporioides in citrus fruit. Solving the regression equation indicated that the optimal protective medium was 6·06% (w/v) sucrose combined with 3·40% (w/v) sodium glutamate and 5·43% (w/v) skim milk. Pi. membranifaciens freeze-dried in the optimal protective medium showed 76·80% viability, and retained biocontrol efficacy against Pe. italicum, Pe. digitatum and Co. gloeosporioides in citrus fruit. The optimal protective medium showed more effective protective properties than each of the three protectants used alone. The viability of freeze-dried Pi. membranifaciens finally reached 76·80%. Meanwhile, the biocontrol efficacies showed no significant difference between fresh and freeze-dried yeast against Pe. italicum, Pe. digitatum and Co. gloeosporioides in citrus fruit. The results showed the potential value of Pi. membranifaciens CICC 32259 for commercialization. © 2016 The Society for Applied Microbiology.

  4. Potential of Near-Infrared Chemical Imaging as Process Analytical Technology Tool for Continuous Freeze-Drying.

    PubMed

    Brouckaert, Davinia; De Meyer, Laurens; Vanbillemont, Brecht; Van Bockstal, Pieter-Jan; Lammens, Joris; Mortier, Séverine; Corver, Jos; Vervaet, Chris; Nopens, Ingmar; De Beer, Thomas

    2018-04-03

    Near-infrared chemical imaging (NIR-CI) is an emerging tool for process monitoring because it combines the chemical selectivity of vibrational spectroscopy with spatial information. Whereas traditional near-infrared spectroscopy is an attractive technique for water content determination and solid-state investigation of lyophilized products, chemical imaging opens up possibilities for assessing the homogeneity of these critical quality attributes (CQAs) throughout the entire product. In this contribution, we aim to evaluate NIR-CI as a process analytical technology (PAT) tool for at-line inspection of continuously freeze-dried pharmaceutical unit doses based on spin freezing. The chemical images of freeze-dried mannitol samples were resolved via multivariate curve resolution, allowing us to visualize the distribution of mannitol solid forms throughout the entire cake. Second, a mannitol-sucrose formulation was lyophilized with variable drying times for inducing changes in water content. Analyzing the corresponding chemical images via principal component analysis, vial-to-vial variations as well as within-vial inhomogeneity in water content could be detected. Furthermore, a partial least-squares regression model was constructed for quantifying the water content in each pixel of the chemical images. It was hence concluded that NIR-CI is inherently a most promising PAT tool for continuously monitoring freeze-dried samples. Although some practicalities are still to be solved, this analytical technique could be applied in-line for CQA evaluation and for detecting the drying end point.

  5. Noncontact Infrared-Mediated Heat Transfer During Continuous Freeze-Drying of Unit Doses.

    PubMed

    Van Bockstal, Pieter-Jan; De Meyer, Laurens; Corver, Jos; Vervaet, Chris; De Beer, Thomas

    2017-01-01

    Recently, an innovative continuous freeze-drying concept for unit doses was proposed, based on spinning the vials during freezing. An efficient heat transfer during drying is essential to continuously process these spin frozen vials. Therefore, the applicability of noncontact infrared (IR) radiation was examined. The impact of several process and formulation variables on the mass of sublimed ice after 15 min of primary drying (i.e., sublimation rate) and the total drying time was examined. Two experimental designs were performed in which electrical power to the IR heaters, distance between the IR heaters and the spin frozen vial, chamber pressure, product layer thickness, and 5 model formulations were included as factors. A near-infrared spectroscopy method was developed to determine the end point of primary and secondary drying. The sublimation rate was mainly influenced by the electrical power to the IR heaters and the distance between the IR heaters and the vial. The layer thickness had the largest effect on total drying time. The chamber pressure and the 5 model formulations had no significant impact on sublimation rate and total drying time, respectively. This study shows that IR radiation is suitable to provide the energy during the continuous processing of spin frozen vials. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Powder compression mechanics of spray-dried lactose nanocomposites.

    PubMed

    Hellrup, Joel; Nordström, Josefina; Mahlin, Denny

    2017-02-25

    The aim of this study was to investigate the structural impact of the nanofiller incorporation on the powder compression mechanics of spray-dried lactose. The lactose was co-spray-dried with three different nanofillers, that is, cellulose nanocrystals, sodium montmorillonite and fumed silica, which led to lower micron-sized nanocomposite particles with varying structure and morphology. The powder compression mechanics of the nanocomposites and physical mixtures of the neat spray-dried components were evaluated by a rational evaluation method with compression analysis as a tool, using the Kawakita equation and the Shapiro-Konopicky-Heckel equation. Particle rearrangement dominated the initial compression profiles due to the small particle size of the materials. The strong contribution of particle rearrangement in the materials with fumed silica continued throughout the whole compression profile, which prohibited an in-depth material characterization. However, the lactose/cellulose nanocrystals and the lactose/sodium montmorillonite nanocomposites demonstrated high yield pressure compared with the physical mixtures indicating increased particle hardness upon composite formation. This increase has likely to do with a reinforcement of the nanocomposite particles by skeleton formation of the nanoparticles. In summary, the rational evaluation of mechanical properties done by applying powder compression analysis proved to be a valuable tool for mechanical evaluation for this type of spray-dried composite materials, unless they demonstrate particle rearrangement throughout the whole compression profile. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Changes in non-volatile taste components of button mushroom (Agaricus bisporus) during different stages of freeze drying and freeze drying combined with microwave vacuum drying.

    PubMed

    Pei, Fei; Shi, Ying; Gao, Xingyang; Wu, Fangning; Mariga, Alfred Mugambi; Yang, Wenjian; Zhao, Liyan; An, Xinxin; Xin, Zhihong; Yang, Fangmei; Hu, Qiuhui

    2014-12-15

    Button mushroom slices were dehydrated using freeze drying (FD) or FD combined with microwave vacuum drying (FMVD), and the non-volatile component profiles were studied. The results showed that the level of non-volatile components in button mushroom firstly increased during sublimation of FD/FMVD process and then fell during desorption in FD process and MVD in FMVD process. Compared to FD products, the contents of soluble sugars and polyols in FMVD products were relatively low, whereas the contents of total free amino acids were significantly higher, close to the level of fresh mushroom. However, there was no significant difference in the contents of 5'-nucleotides and organic acids between FD and FMVD products. The equivalent umami concentration (EUC) values for FD and FMVD products did not differ from fresh, indicating that both drying methods could effectively preserve MSG (monosodium glutamate)-like components in button mushroom. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: part II measurement of dry-layer resistance.

    PubMed

    Tang, Xiaolin Charlie; Nail, Steven L; Pikal, Michael J

    2006-01-01

    The purpose of this work was to study the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to determine product dry-layer resistance to vapor flow. Product temperature and dry-layer resistance were obtained using MTM software installed on a laboratory freeze-dryer. The MTM resistance values were compared with the resistance values obtained using the "vial method." The product dry-layer resistances obtained by MTM, assuming fixed temperature difference (DeltaT; 2 degrees C), were lower than the actual values, especially when the product temperatures and sublimation rates were low, but with DeltaT determined from the pressure rise data, more accurate results were obtained. MTM resistance values were generally lower than the values obtained with the vial method, particularly whenever freeze-drying was conducted under conditions that produced large variations in product temperature (ie, low shelf temperature, low chamber pressure, and without thermal shields). In an experiment designed to magnify temperature heterogeneity, MTM resistance values were much lower than the simple average of the product resistances. However, in experiments where product temperatures were homogenous, good agreement between MTM and "vial-method" resistances was obtained. The reason for the low MTM resistance problem is the fast vapor pressure rise from a few "warm" edge vials or vials with low resistance. With proper use of thermal shields, and the evaluation of DeltaT from the data, MTM resistance data are accurate. Thus, the MTM method for determining dry-layer resistance is a useful tool for freeze-drying process analytical technology.

  9. Effect of freeze-drying on viability and in vitro probiotic properties of a mixture of lactic acid bacteria and yeasts isolated from kefir.

    PubMed

    Bolla, Patricia A; Serradell, María de los Angeles; de Urraza, Patricio J; De Antoni, Graciela L

    2011-02-01

    The effect of freeze-drying on viability and probiotic properties of a microbial mixture containing selected bacterial and yeast strains isolated from kefir grains (Lactobacillus kefir, Lactobacillus plantarum, Lactococcus lactis, Saccharomyces cerevisiae and Kluyveromyces marxianus) was studied. The microorganisms were selected according to their potentially probiotic properties in vitro already reported. Two types of formulations were performed, a microbial mixture (MM) suspended in milk and a milk product fermented with MM (FMM). To test the effect of storage on viability of microorganisms, MM and FMM were freeze-dried and maintained at 4°C for six months. After 180 days of storage at 4°C, freeze-dried MM showed better survival rates for each strain than freeze-dried FMM. The addition of sugars (trehalose or sucrose) did not improve the survival rates of any of the microorganisms after freeze-drying. Freeze-drying did not affect the capacity of MM to inhibit growth of Shigella sonnei in vitro, since the co-incubation of this pathogen with freeze-dried MM produced a decrease of 2 log in Shigella viability. The safety of freeze-dried MM was tested in mice and non-translocation of microorganisms to liver or spleen was observed in BALB/c mice feed ad libitum during 7 or 20 days. To our knowledge, this is the first report about the effect of freeze-drying on viability, in vitro probiotic properties and microbial translocation of a mixture containing different strains of both bacteria and yeasts isolated from kefir.

  10. Electronic Nose Characterization of the Quality Parameters of Freeze-Dried Bacteria

    NASA Astrophysics Data System (ADS)

    Capuano, R.; Santonico, M.; Martinelli, E.; Paolesse, R.; Passot, S.; Fonseca, F.; Cenard, S.; Trelea, C.; Di Natale, C.

    2011-09-01

    Freeze-drying is the method of choice for preserving heat sensitive biological products such as microorganisms. The development of a fast analytical method for evaluating the properties of the dehydrated bacteria is then necessary for a proper utilization of the product in several food processes. In this paper, dried bacteria headspace is analyzed by a GC-MS and an electronic nose. Results indicate that headspace contains enough information to assess the products quality.

  11. A comparison of freeze-drying and oven-drying preparation methods for bulk and compound-specific carbon stable isotope analyses: examples using the benthic macroinvertebrates Stenopsyche marmorata and Epeorus latifolium.

    PubMed

    Akamatsu, Fumikazu; Suzuki, Yaeko; Kato, Yoshikazu; Yoshimizu, Chikage; Tayasu, Ichiro

    2016-01-15

    Carbon stable isotope analysis of bulk samples and fatty acids is an established method for tracing carbon flow pathways and reconstructing trophic interactions, but there is no consensus on which sample drying method should be used for sample preparation. The aim of this study was to determine if freeze-drying and oven-drying treatments used to prepare samples of the benthic macroinvertebrates Stenopsyche marmorata and Epeorus latifolium for bulk and fatty-acid-specific carbon stable isotope analysis yield different isotopic ratio values. Five individuals each from two species were split in half; one half was freeze-dried and the other half was oven-dried. The samples were ground and the δ(13)C values of the bulk samples and eight fatty acids were measured following combustion using an isotope ratio mass spectrometer coupled to an elemental analyzer or gas chromatography system. The mean difference in the bulk and fatty acid δ(13)C values between freeze-dried and oven-dried samples was small (≤0.1‰ in both cases), although relatively large variations were observed in individual fatty-acid-specific δ(13)C values (maximum of ≤0.9 ‰). There were no significant differences in either bulk sample or fatty-acid-specific δ(13)C values between freeze-dried or oven-dried samples of the same species. Freeze-drying and oven-drying are equally acceptable methods for preparing freshly caught S. marmorata and E. latifolium samples for bulk and fatty-acid-specific carbon stable isotope analyses. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.

    PubMed

    Hottot, A; Vessot, S; Andrieu, J

    2005-01-01

    The principal aim of this study was to evaluate the water vapour mass transfer resistance of the dried layer and the vial heat transfer coefficient values of a pharmaceutical product during the primary drying period. First, overall vial heat transfer coefficient values, Kv, were determined by a gravimetric method based on pure ice sublimation experiments. Thus, it was possible to set up a map of the total heat flux received by each vial throughout the plate surface of our pilot scale freeze-dryer. Important heterogeneities were observed for the vials placed at the plate edges and for the vials placed at the center of the plate. As well, the same gravimetric method was also used to precisely determine the influence of main lyophilization operating parameters (shelf temperature and gas total pressure) or the vial types and sizes on these overall heat transfer coefficient values. A semi-empirical relationship as a function of total gas pressure was proposed. The transient method by pressure rise analysis (PRA method) after interrupting the water vapour flow between the sublimation chamber and the condenser, previously set up and validated in our laboratory, was then extensively used with an amorphous BSA-based formulation to identify the dried layer mass transfer resistance values, Rp, the ice front temperature, and the total heat transfer coefficient values, Kv, with or without annealing treatment. It was proved that this method gave accurate and coherent data only during the first half of the sublimation period when the totality of the vials of the set was still sublimating. Thus, this rapid method allowed estimation of, on line and in situ, the sublimation front temperature and the characterization of the morphology and structure of the freeze-dried layer, all along the first part of the sublimation period. The estimated sublimation temperatures shown by the PRA model were about 2 degrees C lower than the experimental values obtained using thermocouples inserted

  13. Development of an Inhaled Dry-Powder Formulation of Tobramycin Using PulmoSphere™ Technology

    PubMed Central

    Weers, Jeffry; Heuerding, Silvia

    2011-01-01

    Abstract At present, the only approved inhaled antipseudomonal antibiotics for chronic pulmonary infections in patients with cystic fibrosis (CF) are nebulized solutions. However, prolonged administration and cleaning times, high administration frequency, and cumbersome delivery technologies with nebulizers add to the high treatment burden in this patient population. PulmoSphere™ technology is an emulsion-based spray-drying process that enables the production of light porous particle, dry-powder formulations, which exhibit improved flow and dispersion from passive dry powder inhalers. This review explores the fundamental characteristics of PulmoSphere technology, focusing on the development of a dry powder formulation of tobramycin for the treatment of chronic pulmonary Pseudomonas aeruginosa (Pa) infection in CF patients. This dry powder formulation provides substantially improved intrapulmonary deposition efficiency, faster delivery, and more convenient administration over nebulized formulations. The availability of more efficient and convenient treatment options may improve treatment compliance, and thereby therapeutic outcomes in CF. PMID:21395432

  14. Spray-dried respirable powders containing bacteriophages for the treatment of pulmonary infections.

    PubMed

    Matinkhoo, Sadaf; Lynch, Karlene H; Dennis, Jonathan J; Finlay, Warren H; Vehring, Reinhard

    2011-12-01

    Myoviridae bacteriophages were processed into a dry powder inhalable dosage form using a low-temperature spray-drying process. The phages were incorporated into microparticles consisting of trehalose, leucine, and optionally a third excipient (either a surfactant or casein sodium salt). The particles were designed to have high dispersibility and a respirable particle size, and to preserve the phages during processing. Bacteriophages KS4- M, KS14, and cocktails of phages ΦKZ/D3 and ΦKZ/D3/KS4-M were spray-dried with a processing loss ranging from 0.4 to 0.8 log pfu. The aerosol performance of the resulting dry powders as delivered from an Aerolizer® dry powder inhaler (DPI) exceeded the performance of commercially available DPIs; the emitted mass and the in vitro total lung mass of the lead formulation were 82.7% and 69.7% of filled capsule mass, respectively. The total lung mass had a mass median aerodynamic diameter of 2.5-2.8 µm. The total in vitro lung doses of the phages, delivered from a single actuation of the inhaler, ranged from 10(7) to 10(8) pfu, levels that are expected to be efficacious in vivo. Spray drying of bacteriophages into a respirable dry powder was found to be feasible. Copyright © 2011 Wiley-Liss, Inc.

  15. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.

    PubMed

    Fang, Rui; Tanaka, Kazunari; Mudhivarthi, Vamsi; Bogner, Robin H; Pikal, Michael J

    2018-03-01

    Several controlled ice nucleation techniques have been developed to increase the efficiency of the freeze-drying process as well as to improve the quality of pharmaceutical products. Owing to the reduction in ice surface area, these techniques have the potential to reduce the degradation of proteins labile during freezing. The objective of this study was to evaluate the effect of ice nucleation temperature on the in-process stability of lactate dehydrogenase (LDH). LDH in potassium phosphate buffer was nucleated at -4°C, -8°C, and -12°C using ControLyo™ or allowed to nucleate spontaneously. Both the enzymatic activity and tetramer recovery after freeze-thawing linearly correlated with product ice nucleation temperature (n = 24). Controlled nucleation also significantly improved batch homogeneity as reflected by reduced inter-vial variation in activity and tetramer recovery. With the correlation established in the laboratory, the degradation of protein in manufacturing arising from ice nucleation temperature differences can be quantitatively predicted. The results show that controlled nucleation reduced the degradation of LDH during the freezing process, but this does not necessarily translate to vastly superior stability during the entire freeze-drying process. The capability of improving batch homogeneity provides potential advantages in scaling-up from lab to manufacturing scale. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. In Vitro Impact of Conditioned Medium From Demineralized Freeze-Dried Bone on Human Umbilical Endothelial Cells.

    PubMed

    Harnik, Branko; Miron, Richard J; Buser, Daniel; Gruber, Reinhard

    2017-03-01

    Angiogenesis is essential for the consolidation of bone allografts. The underlying molecular mechanism, however, remains unclear. Soluble factors released from demineralized freeze-dried bone target mesenchymal cells; however, their effect on endothelial cells has not been investigated so far. The aim of the present study was therefore to examine the effect of conditioned medium from demineralized freeze-dried bone on human umbilical endothelial cells in vitro. Conditioned medium was first prepared from demineralized freeze-dried bone following 24 hours incubation at room temperature to produce demineralized bone conditioned media. Thereafter, conditioned medium was used to stimulate human umbilical vein endothelial cells in vitro by determining the cell response based on viability, proliferation, expression of apoptotic genes, a Boyden chamber to determine cell migration, and the formation of branches. The authors report here that conditioned medium decreased viability and proliferation of endothelial cells. Neither of the apoptotic marker genes was significantly altered when endothelial cells were exposed to conditioned medium. The Boyden chamber revealed that endothelial cells migrate toward conditioned medium. Moreover, conditioned medium moderately stimulated the formation of branches. These findings support the concept that conditioned medium from demineralized freeze-dried bone targets endothelial cells by decreasing their proliferation and enhancing their motility under these in vitro conditions.

  17. SOS gene induction and possible mutagenic effects of freeze-drying in Escherichia coli and Salmonella typhimurium.

    PubMed

    Rosen, Rachel; Buchinger, Sebastian; Pfänder, Ramona; Pedhazur, Rami; Reifferscheid, Georg; Belkin, Shimshon

    2016-11-01

    We report the results of a study of the potential negative effects of the freeze-drying process, normally considered a benign means for long-term conservation of living cells and the golden standard in bacterial preservation. By monitoring gene induction using a whole-cell Escherichia coli bioreporter panel, in which diverse stress-responsive gene promoters are fused to luminescent or fluorescent reporting systems, we have demonstrated that DNA repair genes belonging to the SOS operon (recA, sulA, uvrA, umuD, and lexA) were induced upon resuscitation from the freeze-dried state, whereas other stress-responsive promoters such as grpE, katG, phoA, soxS, and sodA were not affected. This observation was confirmed by the UMU-chromotest (activation of the umuD gene promoter) in Salmonella typhimurium, as well as by real-time PCR analyses of selected E. coli SOS genes. We further show that a functional SOS operon is important in viability maintenance following resuscitation, but that at the same time, this repair system may introduce significantly higher mutation rates, comparable to those induced by high concentrations of a known mutagen. Our results also indicate that the entire freeze-drying process, rather than either freezing or drying separately, is instrumental in the induction of DNA damage.

  18. Freeze-dried snake antivenoms formulated with sorbitol, sucrose or mannitol: comparison of their stability in an accelerated test.

    PubMed

    Herrera, María; Tattini, Virgilio; Pitombo, Ronaldo N M; Gutiérrez, José María; Borgognoni, Camila; Vega-Baudrit, José; Solera, Federico; Cerdas, Maykel; Segura, Alvaro; Villalta, Mauren; Vargas, Mariángela; León, Guillermo

    2014-11-01

    Freeze-drying is used to improve the long term stability of pharmaceutical proteins. Sugars and polyols have been successfully used in the stabilization of proteins. However, their use in the development of freeze-dried antivenoms has not been documented. In this work, whole IgG snake antivenom, purified from equine plasma, was formulated with different concentrations of sorbitol, sucrose or mannitol. The glass transition temperatures of frozen formulations, determined by Differential Scanning Calorimetry (DSC), ranged between -13.5 °C and -41 °C. In order to evaluate the effectiveness of the different stabilizers, the freeze-dried samples were subjected to an accelerated stability test at 40 ± 2 °C and 75 ± 5% relative humidity. After six months of storage at 40 °C, all the formulations presented the same residual humidity, but significant differences were observed in turbidity, reconstitution time and electrophoretic pattern. Moreover, all formulations, except antivenoms freeze-dried with mannitol, exhibited the same potency for the neutralization of lethal effect of Bothrops asper venom. The 5% (w:v) sucrose formulation exhibited the best stability among the samples tested, while mannitol and sorbitol formulations turned brown. These results suggest that sucrose is a better stabilizer than mannitol and sorbitol in the formulation of freeze-dried antivenoms under the studied conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The performance of five fruit-derived and freeze-dried potentially probiotic Lactobacillus strains in apple, orange and grape juices.

    PubMed

    Garcia, Estefânia Fernandes; de Oliveira Araújo, Amanda; Luciano, Winnie Alencar; de Albuquerque, Thatyane Mariano Rodrigues; de Oliveira Arcanjo, Narciza Maria; Madruga, Marta Suely; Dos Santos Lima, Marcos; Magnani, Marciane; Saarela, Maria; de Souza, Evandro Leite

    2018-03-30

    This study assessed the survival of the fruit-derived and freeze-dried L. plantarum 49, L. brevis 59, L. paracasei 108, L. fermentum 111 and L. pentosus 129 strains during frozen storage and when incorporated into apple, orange and grape juice stored under refrigeration. Physicochemical parameters of juices containing the freeze-dried Lactobacillus strains and the survival of the test strains in the fruit juices during in vitro digestion were also evaluated. No decreases in survival rates (log N/log N0) of the freeze-dried cells were observed up to 1 month of storage. The survival rates of the freeze-dried strains L. plantarum 49 and L. paracasei 108 were >0.75 up to 4 months of storage. All freeze-dried strains exhibited survival rates of >0.75 up to 2 weeks of storage in apple juice; only L. plantarum 49 and L. paracasei 108 showed similar survival rates in orange and grape juices up to 2 weeks of storage. The contents of the monitored organic acids or sugars during storage varied depending on the added strain and the type of fruit juice. At the end of the in vitro digestion, L. brevis 59, L. paracasei 108 and L. fermentum 111 showed survival rates of >0.80 in apple juice. Apple juice was as the best substrate to the survival of the tested freeze-dried Lactobacillus strains over time. L. paracasei 108 and L. plantarum 49 as the strains presenting the best performance for incorporation in potentially probiotic fruit juices. This article is protected by copyright. All rights reserved.

  20. Analysis of the moisture evaporation process during vacuum freeze-drying of koumiss and shubat

    NASA Astrophysics Data System (ADS)

    Shingisov, Azret Utebaevich; Alibekov, Ravshanbek Sultanbekovich

    2017-05-01

    The equation for the calculating of a moisture evaporation rate in the vacuum freeze-drying, wherein as a driving force instead of the generally accepted in the drying theory of Δt temperature difference, Δp pressure difference, Δc concentration difference, a difference of water activity in the product and the relative air humidity (a_{{w}} - \\varphi) is suggested. By using the proposed equation, the processes of vacuum freeze-drying of koumiss and shubat were analyzed, and it was found two drying periods: constant and falling. On the first drying period, a moisture evaporation rate of koumiss is j = 2.75 × 10-3 kg/(m2 h) and of shubat is j = 2.37 × 10-3 kg/(m2 h). On the second period, values decrease for koumiss from j = 2.65 × 10-3 kg/(m2 h) to j = 1.60 × 10-3 kg/(m2 h), and for shubat from j = 2.25 × 10-3 kg/(m2 h) to j = 1.62 × 10-3 kg/(m2 h). Specific humidity for koumiss is ueq = 0.61 kg/kg and for shubat is ueq = 0.58 kg/kg. The comparative analyze of the experimental data of the moisture evaporation rate versus the theoretical calculation shows that the approximation reliability is R2 = 0.99. Consequently, the proposed equation is useful for the analyzing a moisture evaporation rate during a vacuum freeze-drying of dairy products, including cultured milk foods.

  1. The impact of using chickpea flour and dried carp fish powder on pizza quality.

    PubMed

    El-Beltagi, Hossam S; El-Senousi, Naglaa A; Ali, Zeinab A; Omran, Azza A

    2017-01-01

    Pizza being the most popular food worldwide, quality and sensory appeal are important considerations during its modification effort. This study was aimed to evaluate the quality of pizza made using two different sources of proteins, chickpea (Cicer arietinum) flour and dried carp fish powder (Cyprinus carpio). Analysis indicated nutrients richness specificity of chickpea flour (higher fiber, energy, iron, zinc, linoleic acid and total nonessential amino acids) and dried carp fish powder (higher contents of protein, fats, ash, oleic acid and total essential amino acids) complementing wheat flour to enhance nutritional value of pizza. Total plate count and thiobarbituric acid were increased (P<0.05) in dried carp fish powder after 45 days of storage, but no Coliform were detected. Wheat flour was substituted with 5, 7.5 and 10% chickpea flour or dried carp fish powder and chemical, textural, sensory and storage evaluation parameters of in pizza were investigated. Dried carp fish powder increased (P<0.05) contents of protein, ash, fats, zinc and protein digestibility of pizza. Chickpea flour increased iron and zinc contents of the pizza. Water activity (aw) was decreased in fish powder and chickpea pizza. Pizza firmness and gumminess were significantly (p<0.05) increased at every level of protein source, but cohesiveness was decreased with 10% chickpea flour. Pizza chewiness was the same (P>0.05) across the levels of two protein sources. Springiness was decreased (P<0.05) with high level (10%) dried fish powder and low/intermediate level of chickpea flour. Chickpea and dried carp fish incorporation up to 7.50% in pizza at the expense of wheat flour had no effect (P>0.05) on all sensorial parameters except for odor values. The results could be useful in utilization of chickpea flour and carp fish powder in designing nutritious pizza for consumers.

  2. The impact of using chickpea flour and dried carp fish powder on pizza quality

    PubMed Central

    El-Senousi, Naglaa A.; Ali, Zeinab A.; Omran, Azza A.

    2017-01-01

    Pizza being the most popular food worldwide, quality and sensory appeal are important considerations during its modification effort. This study was aimed to evaluate the quality of pizza made using two different sources of proteins, chickpea (Cicer arietinum) flour and dried carp fish powder (Cyprinus carpio). Analysis indicated nutrients richness specificity of chickpea flour (higher fiber, energy, iron, zinc, linoleic acid and total nonessential amino acids) and dried carp fish powder (higher contents of protein, fats, ash, oleic acid and total essential amino acids) complementing wheat flour to enhance nutritional value of pizza. Total plate count and thiobarbituric acid were increased (P<0.05) in dried carp fish powder after 45 days of storage, but no Coliform were detected. Wheat flour was substituted with 5, 7.5 and 10% chickpea flour or dried carp fish powder and chemical, textural, sensory and storage evaluation parameters of in pizza were investigated. Dried carp fish powder increased (P<0.05) contents of protein, ash, fats, zinc and protein digestibility of pizza. Chickpea flour increased iron and zinc contents of the pizza. Water activity (aw) was decreased in fish powder and chickpea pizza. Pizza firmness and gumminess were significantly (p<0.05) increased at every level of protein source, but cohesiveness was decreased with 10% chickpea flour. Pizza chewiness was the same (P>0.05) across the levels of two protein sources. Springiness was decreased (P<0.05) with high level (10%) dried fish powder and low/intermediate level of chickpea flour. Chickpea and dried carp fish incorporation up to 7.50% in pizza at the expense of wheat flour had no effect (P>0.05) on all sensorial parameters except for odor values. The results could be useful in utilization of chickpea flour and carp fish powder in designing nutritious pizza for consumers. PMID:28873098

  3. Vitamin A Activity of Rice-based Weaning Foods Enriched with Germinated Cowpea Flour, Banana, Pumpkin and Milk Powder.

    PubMed

    Hashim, N; Pongjata, J

    2000-03-01

    The objective of this study was to identify the effect of different drying methods on vitamin A activity of formulated weaning food. Weaned foods on vitamin A activity of formulated using treated cowpea flour, locally available rice flour, banana-pumpkin, skim milk powder and sugar in the ratio 35:35:15:15:5. Treated cowpea flour consisted of original cowpea flour, 24 h germinated cowpea flour. Each treated flour was mixed separately with the other ingredients and cooked into a slurry. Each mixture was either oven-dried or freeze-dried to produce a dry flaky mixture. The carotenoid composition of the product was determined by HPLC. Vitamin A activity of oven-dried weaning food was significantly reduced (p<0.05) compared to freeze-dried weaning food. The freeze-dried weaning foods showed a higher retinol equivalent than oven-dried weaning foods for all treatments. The results of the study found that an intake of 100 g of freeze-dried weaning foods enriched with banana-pumpkin and cowpea flour provided an adequate amount of the recommended daily allowance (RDA) of vitamin A for infants.

  4. Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests.

    PubMed

    Rambhatla, S; Tchessalov, S; Pikal, Michael J

    2006-04-21

    The objective of this research was to estimate differences in heat and mass transfer between freeze dryers due to inherent design characteristics using data obtained from sublimation tests. This study also aimed to provide guidelines for convenient scale-up of the freeze-drying process. Data obtained from sublimation tests performed on laboratory-scale, pilot, and production freeze dryers were used to evaluate various heat and mass transfer parameters: nonuniformity in shelf surface temperatures, resistance of pipe, refrigeration system, and condenser. Emissivity measurements of relevant surfaces such as the chamber wall and the freeze dryer door were taken to evaluate the impact of atypical radiation heat transfer during scale-up. "Hot" and "cold" spots were identified on the shelf surface of different freeze dryers, and the impact of variation in shelf surface temperatures on the primary drying time and the product temperature during primary drying was studied. Calculations performed using emissivity measurements on different freeze dryers suggest that a front vial in the laboratory lyophilizer received 1.8 times more heat than a front vial in a manufacturing freeze dryer operating at a shelf temperature of -25 degrees C and a chamber pressure of 150 mTorr during primary drying. Therefore, front vials in the laboratory are much more atypical than front vials in manufacturing. Steady-state heat and mass transfer equations were used to study a combination of different scale-up issues pertinent during lyophilization cycles commonly used for the freeze-drying of pharmaceuticals.

  5. Suitability of differently formulated dry powder Newcastle disease vaccines for mass vaccination of poultry.

    PubMed

    Huyge, Katrien; Van Reeth, Kristien; De Beer, Thomas; Landman, Wil J M; van Eck, Jo H H; Remon, Jean Paul; Vervaet, Chris

    2012-04-01

    Dry powders containing a live-attenuated Newcastle disease vaccine (LZ58 strain) and intended for mass vaccination of poultry were prepared by spray drying using mannitol in combination with trehalose or inositol, polyvinylpyrrolidone (PVP) and/or bovine serum albumin (BSA) as stabilizers. These powders were evaluated for vaccine stabilizing capacity during production and storage (at 6 °C and 25 °C), moisture content, hygroscopicity and dry powder dispersibility. A mixture design, varying the ratio of mannitol, inositol and BSA, was used to select the stabilizer combination which resulted in the desired powder properties (i.e. good vaccine stability during production and storage, low moisture content and hygroscopicity and good dry dispersibility). Inositol-containing powders had the same vaccine stabilizing capacity as trehalose powders, but were less hygroscopic. Incorporation of BSA enhanced the vaccine stability in the powders compared to PVP-containing formulations. However, increasing the BSA concentration increased the hygroscopicity and reduced the dry dispersibility of the powder. No valid mathematical model could be calculated for vaccine stability during production or storage, but the individual experiments indicated that a formulation combining mannitol, inositol and BSA in a ratio of 73.3:13.3:13.3 (wt/wt) resulted in the lowest vaccine titre loss during production (1.6-2.0 log(10) 50% egg infectious dose (EID(50)) and storage at 6 °C (max. 0.8 log(10) EID(50) after 6 months) in combination with a low moisture content (1.1-1.4%), low hygroscopicity (1.9-2.1% water uptake at 60% relative humidity) and good dry dispersibility properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Impacts of compression on crystallization behavior of freeze-dried amorphous sucrose.

    PubMed

    Imamura, Koreyoshi; Nomura, Mayo; Tanaka, Kazuhiro; Kataoka, Nobuhide; Oshitani, Jun; Imanaka, Hiroyuki; Nakanishi, Kazuhiro

    2010-03-01

    An amorphous matrix comprised of sugar molecules is used as excipient and stabilizing agent for labile ingredients in the pharmaceutical industry. The amorphous sugar matrix is often compressed into a tablet form to reduce the volume and improve handling. Herein, the effect of compression on the crystallization behavior of an amorphous sucrose matrix was investigated. Amorphous sucrose samples were prepared by freeze-drying and compressed under different conditions, followed by analyses by differential scanning calorimetry, isothermal crystallization tests, X-ray powder diffractometry, Fourier transform infrared spectroscopy (FTIR), and gas pycnometry. The compressed sample had a lower crystallization temperature and a shorter induction period for isothermal crystallization, indicating that compression facilitates the formation of the critical nucleus of a sucrose crystal. Based on FTIR and molecular dynamics simulation results, the conformational distortion of sucrose molecules due to the compression appears to contribute to the increase in the free energy of the system, which leads to the facilitation of critical nucleus formation. An isothermal crystallization test indicated an increase in the growth rate of sucrose crystals by the compression. This can be attributed to the transformation of the microstructure from porous to nonporous, as the result of compression. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  7. Engineered sodium hyaluronate respirable dry powders for pulmonary drug delivery.

    PubMed

    Martinelli, Francesco; Balducci, Anna Giulia; Kumar, Abhinav; Sonvico, Fabio; Forbes, Ben; Bettini, Ruggero; Buttini, Francesca

    2017-01-30

    Sodium hyaluronate (HYA) warrants attention as a material for inhalation due to its (i) therapeutic potential, (ii) utility as a formulation excipient or drug carrier, and (iii) ability to target lung inflammation and cancer. This study aimed to overcome formulation and manufacturing impediments to engineer biocompatible spray-dried HYA powders for inhalation. Novel methodology was developed to produce HYA microparticles by spray drying. Different types of surfactant were included in the formulation to improve powder respirability, which was evaluated in vitro using cascade impactors. The individual formulation components and formulated products were evaluated for their biocompatibility with A549 respiratory epithelial cells. The inclusion of stearyl surfactants, 5% w/v, produced the most respirable HYA-powders; FPF 59.0-66.3%. A trend to marginally higher respirability was observed for powders containing stearylamine>stearyl alcohol>cetostearyl alcohol. Pure HYA was biocompatible with A549 cells at all concentrations measured, but the biocompatibility of the stearyl surfactants (based on lethal concentration 50%; LC 50 ) in the MTT assay ranked stearyl alcohol>cetostearyl alcohol>stearylamine with LC 50 of 24.7, 13.2 and 1.8μg/mL, respectively. We report the first respirable HYA powders produced by spray-drying. A lead formulation containing 5% stearyl alcohol was identified for further studies aimed at translating the proposed benefits of inhaled HYA into safe and clinically effective HYA products. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  8. Wetter for fine dry powder

    DOEpatents

    Hall, James E.; Williams, Everett H.

    1977-01-01

    A system for wetting fine dry powders such as bentonite clay with water or other liquids is described. The system includes a wetting tank for receiving water and a continuous flow of fine powder feed. The wetting tank has a generally square horizontal cross section with a bottom end closure in the shape of an inverted pyramid. Positioned centrally within the wetting tank is a flow control cylinder which is supported from the walls of the wetting tank by means of radially extending inclined baffles. A variable speed motor drives a first larger propeller positioned immediately below the flow control cylinder in a direction which forces liquid filling the tank to flow downward through the flow control cylinder and a second smaller propeller positioned below the larger propeller having a reverse pitch to oppose the flow of liquid being driven downward by the larger propeller.

  9. Drying-induced physico-chemical changes in cranberry products.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Honke, Joanna; Ciska, Ewa; Andlauer, Wilfried

    2018-02-01

    Sugar-free cranberry juice (XAD) and juice with 15% of maltodextrin were dried by freeze-, vacuum and spray drying methods. Total phenolics (589-6435mg/kg dry matter) including 5 flavonols, 3 phenolic acids, 2 procyanidins and 5 anthocyanins were stronger affected by juice formulation than by drying methods. Spray drying of juice, regardless of its formulation, was competitive to freeze drying in terms of polyphenols' retention. Increase in temperature up to 100°C during vacuum drying of XAD extracts resulted in degradation of polyphenolics (down to 4%), except chlorogenic acid. Its content increased with rise in temperature and accelerated hydroxymethylfurfural formation. The stronger the impact of drying, the more chlorogenic acid is present in cranberry products. In all powders analysed, formation of furoylmethyl amino acids was noted. Antioxidant capacity of cranberry products was influenced by juice formulation and was linked to content of polyphenols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ) Powder

    PubMed Central

    Barad, Chen; Shekel, Gal; Shandalov, Michael; Hayun, Hagay; Kimmel, Giora; Shamir, Dror; Gelbstein, Yaniv

    2017-01-01

    Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives. PMID:29258227

  11. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ) Powder.

    PubMed

    Barad, Chen; Shekel, Gal; Shandalov, Michael; Hayun, Hagay; Kimmel, Giora; Shamir, Dror; Gelbstein, Yaniv

    2017-12-18

    Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives.

  12. Applications of Headspace Moisture Analysis for Investigating the Water Dynamics within a Sealed Vial Containing Freeze-dried Material.

    PubMed

    Cook, Isobel Ann; Ward, Kevin Richard

    2011-01-01

    We compare frequency modulation spectroscopy (FMS) as a method of headspace water analysis with the method of Karl Fischer coulometric titration (KF), which is widely used in the analysis of residual water in a freeze-dried material. Parameters relating to the type of formulation (amorphous, crystalline) and the freeze-drying cycle (temperature, pressure, time) were investigated in relation to the resulting headspace moisture (HSM) and total water. We describe the effect of stopper treatment and storage conditions on the HSM levels observed using FMS as a non-destructive method, which also allowed individual vials to be reanalyzed at a series of time points as part of a long-term monitoring exercise. The results of this study enabled a better understanding of the effect of stopper type and pre-lyophilization treatment on the HSM levels both immediately after freeze-drying and upon subsequent storage of the sealed vials of lyophilized material at different temperatures. A clear, linear relationship was observed between HSM and KF values for vials containing freeze-dried sucrose, implying a relatively straightforward interaction between water and the lyophilized cake for this material. Moisture mapping of all vials on one shelf of the freeze-dryer enabled further information to be obtained on the relationship of the formulation, vial, process conditions, equipment geometry, and performance on the intra-batch variability in HSM level and dynamics. It is believed that this could therefore represent a potentially useful technique for quality assurance and in the validation of lyophilization cycles, equipment, and scale-up. Lyophilization, also known as "freeze-drying," is a relatively old technique that has been used in its most basic form for thousands of years (e.g., preservation of fish and meat products). In its more advanced form it is used to preserve many medical products, for example, many vaccines are not stable in solution and therefore need to be dried to

  13. On the use of tert-butanol/water cosolvent systems in production and freeze-drying of poly-ε-caprolactone nanoparticles.

    PubMed

    Zelenková, Tereza; Barresi, Antonello A; Fissore, Davide

    2015-01-01

    This work deals with the use of a water/tert-butyl alcohol (TBA) system in the manufacturing process of poly-ε-caprolactone (PCL) nanoparticles, namely in the synthesis stage, using the solvent displacement method in a confined impinging jet mixer (CIJM), and in the following freeze-drying stage. The experimental investigation evidenced that the nanoparticles size is significantly reduced with respect to the case where acetone is the solvent. Besides, the solvent evaporation step is not required before freeze-drying as TBA is fully compatible with the freeze-drying process. The effect of initial polymer concentration, flow rate, water to TBA flow rate ratio, and quench volumetric ratio on the mean nanoparticles size was investigated, and a simple equation was proposed to relate the mean nanoparticles size to these operating parameters. Then, freeze-drying of the nanoparticles suspensions was studied. Lyoprotectants (sucrose and mannitol) and steric stabilizers (Cremophor EL and Poloxamer 388) have to be used to avoid nanoparticles aggregation, thus preserving particle size distribution and mean nanoparticles size. Their effect, as well as that of the heating shelf temperature, has been investigated by means of statistical techniques, with the goal to identify which of these factors, or combination of factors, plays the key role in the nanoparticles size preservation at the end of the freeze-drying process. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Physicochemical and Antioxidant Activities of Spray-dried Pitaya Fruit Powder

    NASA Astrophysics Data System (ADS)

    Li, Guopeng; Liu, Yangyang; Lin, Lijing; Li, Jihua

    2018-01-01

    Pitaya commonly known as dragon fruit is very popular in China due to its intense color, constituent minerals, vitamins, and antioxidant properties. In the present study, physiochemical properties and antioxidant activities of fruit powder from two pitaya cultivars (namely red flesh and white flesh) and fruit peel were observed. Compared with the fruit powder of fruit flesh, the fruit powder made from fruit peel showed a higher antioxidant activity. The current study provides insights to produce spray-dried pitaya fruit powders that could potentially be used as functional food ingredients in various food fields.

  15. Vacuum Freeze-Drying, a Method Used To Salvage Water-Damaged Archival and Library Materials: A RAMP Study with Guidelines.

    ERIC Educational Resources Information Center

    McCleary, John M.

    This Records and Archives Management Programme (RAMP) study covers the conservation of archival documents and the application of freeze-drying to the salvage of documents damaged by flood. Following an introductory discussion of the hazards of water, the study presents a broad summary of data on freeze-drying, including the behavior of…

  16. Changes of hydrogen peroxide and radical-scavenging activity of raspberry during osmotic, convective, and freeze-drying.

    PubMed

    Novaković, Miroslav M; Stevanović, Snežana M; Gorjanović, Stanislava Ž; Jovanovic, Predrag M; Tešević, Vele V; Janković, Miodrag A; Sužnjević, Desanka Ž

    2011-05-01

    This study was conducted to investigate the influence of different drying treatments on antioxidant (AO) activity and phenolic content of raspberry (Rubus idaeus), cultivar Willamette. Whole raspberry fruits were dried convectively (air-drying), osmotically, and freeze-dried. Acetone-water extracts of fresh and dried raspberries were assessed for total phenolic content by standard Folin-Ciocalteau method. Two AO assays were applied, a recently developed direct current (DC) polarographic assay based on decrease of anodic oxidation current of hydrogen peroxide and widely used radical scavenge against the 1,1-diphenyl-2-picrylhydrazyl (DPPH). Strong correlation has been obtained between both AO assays and total phenolic content. In addition, some individual phenolic compounds present in raspberry have been assessed using DPPH and DC polarographic assay. Comparison and evaluation of drying methods has been based on preservation of AO activity and total phenolic content. Obtained results confirmed superiority of freeze-drying; convective drying caused slight changes while osmotic dehydration showed a significant decrease of phenolic compounds and AO activity. © 2011 Institute of Food Technologists®

  17. Freeze-drying of “pearl milk tea”: A general strategy for controllable synthesis of porous materials

    PubMed Central

    Zhou, Yingke; Tian, Xiaohui; Wang, Pengcheng; Hu, Min; Du, Guodong

    2016-01-01

    Porous materials have been widely used in many fields, but the large-scale synthesis of materials with controlled pore sizes, pore volumes, and wall thicknesses remains a considerable challenge. Thus, the controllable synthesis of porous materials is of key general importance. Herein, we demonstrate the “pearl milk tea” freeze-drying method to form porous materials with controllable pore characteristics, which is realized by rapidly freezing the uniformly distributed template-containing precursor solution, followed by freeze-drying and suitable calcination. This general and convenient method has been successfully applied to synthesize various porous phosphate and oxide materials using different templates. The method is promising for the development of tunable porous materials for numerous applications of energy, environment, and catalysis, etc. PMID:27193866

  18. Dry powder segregation and flowability: Experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Ely, David R.

    Dry powder blending is a very important industrial and physical process used in the production of numerous pharmaceutical dosage forms such as tablets, capsules, and dry powder aerosols. Key aspects of this unit operation are process monitoring and control. Process control is particularly difficult due to the complexity of particle-particle interactions, which arise from the adhesion/cohesion characteristics of interfaces and morphological characteristics such as particle size, shape, and dispersity. The effects of such characteristics need to be understood in detail in order to correlate individual particle properties to bulk powder properties. The present dissertation numerically and experimentally quantifies the mixing process to rationalize particle-particle interactions. In particular, near infrared spectroscopy (NIRS) was used to non-invasively characterize in real-time the blending processes and thus investigate the dynamics of blending under different operating conditions. A novel image analysis technique was developed to quantify the scale of segregation from images obtained non-destructively via near infrared chemical imaging (NIR-CI). Although NIR-CI data acquisition times are too long for real-time data collection, NIR-CI has an advantage, in that it provides the spatial distribution of the drug. Therefore, NIRS and NIR-CI are complementary techniques for investigating the complex process of blending dry powders and assessing end-product quality. Additionally, the discrete element method was used to investigate the effect of powder cohesion on the packing fraction. Simulations indicated an exponential relationship between the random loose packing fraction and cohesive forces. Specifically, the packing fraction decreased asymptotically with increased ratio of cohesive force to particle weight. Thus, increasing this force ratio above a critical value has negligible impact on the packing fraction. Such result directly impacts the Hausner ratio flowability

  19. Mechanisms of deterioration of nutrients. [retention of flavor during freeze drying

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1975-01-01

    The retention of flavor during freeze drying was studied with model systems. Mechanisms by which flavor retention phenomena is explained were developed and process conditions specified so that flavor retention is optimized. The literature is reviewed and results of studies of the flavor retention behavior of a number of real food products, including both liquid and solid foods are evaluated. Process parameters predicted by the mechanisms to be of greatest significance are freezing rate, initial solids content, and conditions which result in maintenance of sample structure. Flavor quality for the real food showed the same behavior relative to process conditions as predicted by the mechanisms based on model system studies.

  20. Optical extinction of highly porous aerosol following atmospheric freeze drying

    NASA Astrophysics Data System (ADS)

    Adler, Gabriela; Haspel, Carynelisa; Moise, Tamar; Rudich, Yinon

    2014-06-01

    Porous glassy particles are a potentially significant but unexplored component of atmospheric aerosol that can form by aerosol processing through the ice phase of high convective clouds. The optical properties of porous glassy aerosols formed from a freeze-dry cycle simulating freezing and sublimation of ice particles were measured using a cavity ring down aerosol spectrometer (CRD-AS) at 532 nm and 355 nm wavelength. The measured extinction efficiency was significantly reduced for porous organic and mixed organic-ammonium sulfate particles as compared to the extinction efficiency of the homogeneous aerosol of the same composition prior to the freeze-drying process. A number of theoretical approaches for modeling the optical extinction of porous aerosols were explored. These include effective medium approximations, extended effective medium approximations, multilayer concentric sphere models, Rayleigh-Debye-Gans theory, and the discrete dipole approximation. Though such approaches are commonly used to describe porous particles in astrophysical and atmospheric contexts, in the current study, these approaches predicted an even lower extinction than the measured one. Rather, the best representation of the measured extinction was obtained with an effective refractive index retrieved from a fit to Mie scattering theory assuming spherical particles with a fixed void content. The single-scattering albedo of the porous glassy aerosols was derived using this effective refractive index and was found to be lower than that of the corresponding homogeneous aerosol, indicating stronger relative absorption at the wavelengths measured. The reduced extinction and increased absorption may be of significance in assessing direct, indirect, and semidirect forcing in regions where porous aerosols are expected to be prevalent.

  1. Development of a nanosuspension for iv administration: From miniscale screening to a freeze dried formulation.

    PubMed

    Frank, Kerstin J; Boeck, Georg

    2016-05-25

    The aim was to develop a nanosuspension of the poorly soluble BI XX. The nanosuspension is intended for intravenous (iv) administration in preclinical studies and should not cause any unwanted side effects. Thus, only stabilizers that are accepted for iv application should be used and isotonicity, euhydria and the absence of living microorganisms were targeted. Suspensions were prepared in a ball-mill (mixing mill MM 400 from Retsch). There were various vials used as containers; HPLC-vials were used for the small scale screening of stabilizers and injection vials for preparation of larger quantities of the nanosuspensions. Particle size distribution was analyzed by laser diffraction measurement (Mastersizer 2000). Lyophilization was used for processing of the suspensions (Christ freeze dryer). Stable nanosuspensions (d90 remained <1μm up to 7days) were prepared with several FDA-accepted stabilizers. Freeze drying was evaluated for one formulation containing 2% of the API, 0.5% of arginine and 4% of mannitol. The particle size distribution before freeze drying and after re-dispersion was comparable. After milling for 2h, no living microorganisms were detected in the nanosuspension. Various FDA accepted excipients were identified which resulted in stable nanosuspensions of BI XX. The most stable formulation was successfully freeze dried. It was proven that milling in the ball-mill decreases the presence of living microorganisms. Copyright © 2016. Published by Elsevier B.V.

  2. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials.

    PubMed

    Ballesteros, Lina F; Ramirez, Monica J; Orrego, Carlos E; Teixeira, José A; Mussatto, Solange I

    2017-12-15

    Freeze-drying and spray-drying techniques were evaluated for encapsulation of phenolic compounds (PC) extracted from spent coffee grounds. Additionally, the use of maltodextrin, gum arabic and a mixture of these components (ratio 1:1) as wall material to retain the PC and preserve their antioxidant activity was also assessed. The contents of PC and flavonoids (FLA), as well as the antioxidant activity of the encapsulated samples were determined in order to verify the efficiency of each studied condition. Additional analyses for characterization of the samples were also performed. Both the technique and the coating material greatly influenced the encapsulation of antioxidant PC. The best results were achieved when PC were encapsulated by freeze-drying using maltodextrin as wall material. Under these conditions, the amount of PC and FLA retained in the encapsulated sample corresponded to 62% and 73%, respectively, and 73-86% of the antioxidant activity present in the original extract was preserved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Headspace Moisture Mapping and the Information That Can Be Gained about Freeze-Dried Materials and Processes.

    PubMed

    Cook, Isobel A; Ward, Kevin R

    2011-01-01

    Regulatory authorities require proof that lyophilization (freeze drying) cycles have been developed logically and demonstrate uniformity. One measure of uniformity can be consistency of residual water content throughout a batch. In primary drying, heat transfer is effected by gaseous convection and conduction as well as the degree of shelf contact and evenness of heat applied; therefore residual water can be affected by container location, degree of container/tray/shelf contact, radiative heating, packing density, product formulation, and the cycle conditions themselves. In this study we have used frequency modulation spectroscopy (FMS) to create a map of headspace moisture (HSM) for 100% of vials within a number of freeze-dried batches. Karl Fischer (KF)/HSM correlations were investigated in parallel with the moisture mapping studies. A clear, linear relationship was observed between HSM and KF values for vials containing freeze-dried sucrose, implying a relatively straightforward interaction between water and the lyophilized cake for this material. Mannitol demonstrated a more complex correlation, with the interaction of different crystalline forms giving important information on the uniformity of the material produced. It was observed that annealing had a significant impact on the importance of heat transfer by conduction for vials in direct and non-direct contact with the shelf. Moisture mapping of all vials within the freeze dryer enabled further information to be obtained on the relationship of the formulation, process conditions, and equipment geometry on the intra-batch variability in HSM level. The ability of FMS to allow 100% inspection could mean that this method could play an important part in process validation and quality assurance. Lyophilization, also known as freeze drying, is a relatively old technique that has been used in its most basic form for thousands of years (e.g., preservation of fish and meat products). In its more advanced form it is

  4. Development of Biomimetic Hybrid Porous Scaffold of Chitosan/Polyvinyl Alcohol/Carboxymethyl Cellulose by Freeze-Dried and Salt Leached Technique.

    PubMed

    Kanimozhi, K; Basha, S Khaleel; Kumari, V Sugantha; Kaviyarasu, K

    2018-07-01

    Freeze drying and salt leaching methods were applied to fabricate Chitosan/Poly(vinyl alcohol)/Carboxymethyl cellulose (CPCMC) biomimetic porous scaffolds for soft tissue engineering. The properties of these scaffolds were investigated and compared to those by freeze drying and salt leaching methods respectively. The salt-leached CS/PVA/CMC scaffolds were easily formed into desired shapes with a uniformly distributed and interconnected pore structure with an average pore size. The mechanical strength of the scaffolds increased with the porosity, and were easily modulated by the addition of carboxymethyl cellulose. The morphology of the porous scaffolds observed using a SEM exhibited good porosity and interconnectivity of pores. MTT assay using L929 fibroblast cells demonstrated that the cell viability of the porous scaffold was good. Scaffolds prepared by salt leached method show larger swelling capacity, and mechanical strength, potent antibacterial activity and more cell viability than freeze dried method. It is found that salt leaching method has distinguished characteristics of simple, efficient, feasible and less economic than freeze dried scaffolds.

  5. Uncertainty analysis as essential step in the establishment of the dynamic Design Space of primary drying during freeze-drying.

    PubMed

    Mortier, Séverine Thérèse F C; Van Bockstal, Pieter-Jan; Corver, Jos; Nopens, Ingmar; Gernaey, Krist V; De Beer, Thomas

    2016-06-01

    Large molecules, such as biopharmaceuticals, are considered the key driver of growth for the pharmaceutical industry. Freeze-drying is the preferred way to stabilise these products when needed. However, it is an expensive, inefficient, time- and energy-consuming process. During freeze-drying, there are only two main process variables to be set, i.e. the shelf temperature and the chamber pressure, however preferably in a dynamic way. This manuscript focuses on the essential use of uncertainty analysis for the determination and experimental verification of the dynamic primary drying Design Space for pharmaceutical freeze-drying. Traditionally, the chamber pressure and shelf temperature are kept constant during primary drying, leading to less optimal process conditions. In this paper it is demonstrated how a mechanistic model of the primary drying step gives the opportunity to determine the optimal dynamic values for both process variables during processing, resulting in a dynamic Design Space with a well-known risk of failure. This allows running the primary drying process step as time efficient as possible, hereby guaranteeing that the temperature at the sublimation front does not exceed the collapse temperature. The Design Space is the multidimensional combination and interaction of input variables and process parameters leading to the expected product specifications with a controlled (i.e., high) probability. Therefore, inclusion of parameter uncertainty is an essential part in the definition of the Design Space, although it is often neglected. To quantitatively assess the inherent uncertainty on the parameters of the mechanistic model, an uncertainty analysis was performed to establish the borders of the dynamic Design Space, i.e. a time-varying shelf temperature and chamber pressure, associated with a specific risk of failure. A risk of failure acceptance level of 0.01%, i.e. a 'zero-failure' situation, results in an increased primary drying process time

  6. Investigation of PEG crystallization in frozen and freeze-dried PEGylated recombinant human growth hormone-sucrose systems: implications on storage stability.

    PubMed

    Bhatnagar, Bakul S; Martin, Susan W H; Hodge, Tamara S; Das, Tapan K; Joseph, Liji; Teagarden, Dirk L; Shalaev, Evgenyi Y; Suryanarayanan, Raj

    2011-08-01

    The objectives of the current study were to investigate (i) the phase behavior of a PEGylated recombinant human growth hormone (PEG-rhGH, ∼60 kDa) during freeze-drying and (ii) its storage stability. The phase transitions during freeze-thawing of an aqueous solution containing PEG-rhGH and sucrose were characterized by differential scanning calorimetry. Finally, PEG-rhGH and sucrose formulations containing low, medium, and high polyethylene glycol (PEG) to sucrose ratios were freeze-dried in dual-chamber syringes and stored at 4°C and 25°C. Chemical decomposition (methionine oxidation and deamidation) and irreversible aggregation were characterized by size-exclusion and ion-exchange chromatography, and tryptic mapping. PEG crystallization was facilitated when it was covalently linked with rhGH. When the solutions were frozen, phase separation into PEG-rich and sucrose-rich phases facilitated PEG crystallization and the freeze-dried cake contained crystalline PEG. Annealing caused PEG crystallization and when coupled with higher drying temperatures, the primary drying time decreased by up to 51%. When the freeze-dried cakes were stored at 4°C, while there was no change in the purity of the PEG-rhGH monomer, deamidation was highest in the formulations with the lowest PEG to sucrose ratio. When stored at 25°C, this composition also showed the most pronounced decrease in monomer purity, the highest level of aggregation, and deamidation. Furthermore, an increase in PEG crystallinity during storage was accompanied by a decrease in PEG-rhGH stability. Interestingly, during storage, there was no change in PEG crystallinity in formulations with medium and high PEG to sucrose ratios. Although PEG crystallization during freeze-drying did not cause protein degradation, crystallization during storage might have influenced protein stability. Copyright © 2011 Wiley-Liss, Inc.

  7. Quality properties and adsorption behavior of freeze-dried beef meat from the Biceps femoris and Semimembranosus muscles.

    PubMed

    Aykın, Elif; Erbaş, Mustafa

    2016-11-01

    The aim of this research was to determine the quality properties and adsorption behavior of freeze-dried beef meat from the Biceps femoris and Semimembranosus muscles. Most quality properties of both muscles were similar apart from total fat content. Freeze-dried meat pieces were kept in ten different equilibrium levels of relative humidity (2.0-97.3%) at 5, 15, 25 and 30°C. The experimental data were evaluated using BET (Brunauer-Emmett-Teller) and GAB (Guggenheim, Anderson and deBoer) models. The equilibrium moisture contents of freeze-dried Biceps femoris were lower than those of Semimembranosus at all water activities and temperature. The constants m0 and C of BET and GAB equations were determined to be between 6.27 and 8.07g/100g dry matter and 9.32-13.73, respectively. Constant k was about 0.90 at all temperatures, and the GAB equation exhibited a better fit to the experimental data of both muscles as a result of all %E values being approximately equal to 10%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Fuzzy Logic-based expert system for evaluating cake quality of freeze-dried formulations.

    PubMed

    Trnka, Hjalte; Wu, Jian X; Van De Weert, Marco; Grohganz, Holger; Rantanen, Jukka

    2013-12-01

    Freeze-drying of peptide and protein-based pharmaceuticals is an increasingly important field of research. The diverse nature of these compounds, limited understanding of excipient functionality, and difficult-to-analyze quality attributes together with the increasing importance of the biosimilarity concept complicate the development phase of safe and cost-effective drug products. To streamline the development phase and to make high-throughput formulation screening possible, efficient solutions for analyzing critical quality attributes such as cake quality with minimal material consumption are needed. The aim of this study was to develop a fuzzy logic system based on image analysis (IA) for analyzing cake quality. Freeze-dried samples with different visual quality attributes were prepared in well plates. Imaging solutions together with image analytical routines were developed for extracting critical visual features such as the degree of cake collapse, glassiness, and color uniformity. On the basis of the IA outputs, a fuzzy logic system for analysis of these freeze-dried cakes was constructed. After this development phase, the system was tested with a new screening well plate. The developed fuzzy logic-based system was found to give comparable quality scores with visual evaluation, making high-throughput classification of cake quality possible. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Experimental determination of the key heat transfer mechanisms in pharmaceutical freeze-drying.

    PubMed

    Ganguly, Arnab; Nail, Steven L; Alexeenko, Alina

    2013-05-01

    The study is aimed at quantifying the relative contribution of key heat transfer modes in lyophilization. Measurements of vial heat transfer rates in a laboratory-scale freeze-dryer were performed using pure water, which was partially sublimed under various conditions. The separation distance between the shelf and the vial was systematically varied, and sublimation rates were determined gravimetrically. The heat transfer rates were observed to be independent of separation distance between the vial and the shelf and linearly dependent on pressure in the free molecular flow limit, realized at low pressures (<50 mTorr). However, under higher pressures (>120 mTorr), heat transfer rates were independent of pressure and inversely proportional to separation distance. Previous heat transfer studies in conventional freeze-drying cycles have attributed a dominant portion of the total heat transfer to radiation, the rest to conduction, whereas convection has been found to be insignificant. Although the measurements reported here confirm the significance of the radiative and gas conduction components, the convective component has been found to be comparable to the gas conduction contribution at pressures greater than 100 mTorr. The current investigation supports the conclusion that the convective component of the heat transfer cannot be ignored in typical laboratory-scale freeze-drying conditions. Copyright © 2013 Wiley Periodicals, Inc.

  10. Uptake of erythromycin by first-feeding sockeye salmon, Oncorhynchus nerka (Walbaum), fed live or freeze-dried enriched adult Artemia or medicated pellets.

    PubMed

    Cook, M A; Rust, M B; Massee, K; Majack, T; Peterson, M E

    2003-05-01

    The potential to use adult Artemia to deliver erythromycin to first-feeding sockeye salmon, Oncorhynchus nerka (Walbaum), was investigated in three trials. In the first trial, first-feeding sockeye were fed live erythromycin enriched adult Artemia or pellets containing equal amounts of erythromycin for 35 days. At the end of the trial, tissue erythromycin concentration of the fish fed the live Artemia was significantly greater (P < 0.05, 25.52 +/- 1.29 microg mL(-1); mean +/- SEM), than the tissue concentration of the fish fed the pellets (0.72 +/- 0.01 microg mL(-1)). In the second trial, first-feeding sockeye were fed either live or freeze-dried bioencapsulated erythromycin (adult Artemia) or pellets containing erythromycin daily for 21 days. Mean daily erythromycin concentration in fish fed the freeze-dried Artemia, live Artemia, or pellets did not differ significantly. In the third trial, apparent erythromycin digestibility was determined. Significantly more (P < 0.05) erythromycin was retained by juvenile sockeye fed freeze-dried bioencapsulated erythromycin (98.3 +/- 1.0%) compared with medicated pellets (89.2 +/- 1.7%). Uptake of bioencapsulated erythromycin from adult Artemia (live or freeze-dried) appears to be greater than uptake from pellets. Freeze-dried and live Artemia were equally effective at delivery suggesting enriched freeze-dried adult Artemia could be produced into a highly palatable, consistent, off-the-shelf product.

  11. Investigation of drying stresses on proteins during lyophilization: differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer.

    PubMed

    Luthra, Sumit; Obert, Jean-Philippe; Kalonia, Devendra S; Pikal, Michael J

    2007-01-01

    This article describes the design, performance testing, and application of a controlled humidity mini-freeze-dryer in studying the physical stability of lactate dehydrogenase during lyophilization. Performance evaluation of the mini-freeze-dryer was conducted with tests, namely water sublimation, radiation heat exchange, lowest achievable temperature, and leak testing. Protein stability studies were conducted by comparing protein activity at various stages of lyophilization with the initial activity. The shelf and condenser temperature were stable at <-40 degrees C, wall temperature was within 2 degrees C of the shelf temperature, and the leak rate was small. The chamber pressure was controlled by the ice on the condenser and the product temperature during sublimation was equal to the shelf temperature. Addition of Tween 80 prevented activity loss in solution and after freeze-thaw. No activity loss was observed after primary-drying even in absence of lyoprotectants and with collapse of cake structure. Five percent (w/w) sucrose concentration was required to achieve full stabilization. In conclusion, performance testing established that the mini-freeze-dryer was suitable for mechanistic freeze-drying studies. Secondary-drying was the critical step for protein stability. The concentration of sucrose required to stabilize the protein completely was several orders of magnitude higher than that required to satisfy the direct interaction requirement of the protein. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association.

  12. Design and development of dry powder sulfobutylether-β-cyclodextrin complex for pulmonary delivery of fisetin.

    PubMed

    Mohtar, Noratiqah; Taylor, Kevin M G; Sheikh, Khalid; Somavarapu, Satyanarayana

    2017-04-01

    This study has investigated complexation of fisetin, a natural flavonoid, with three types of cyclodextrins to improve its solubility. Sulfobutylether-β-cyclodextrin (SBE-β-CD) showed the highest complexation efficiency while maintaining the in vitro antioxidant activity of fisetin. Addition of 20%v/v ethanol in water improved the amount of solubilized fisetin in the complex 5.9-fold compared to the system containing water alone. Spray drying of fisetin-SBE-β-CD complex solution in the presence of ethanol produced a dry powder with improved aerosolization properties when delivered from a dry powder inhaler, indicated by a 2-fold increase in the fine particle fraction (FPF) compared to the powder produced from the complex solution containing water alone. The pitted morphological surface of these particles suggested a more hollow internal structure, indicating a lighter and less dense powder. Incorporation of 20%w/w leucine improved the particle size distribution of the powder and further increased the FPF by 2.3-fold. This formulation also showed an EC 50 value equivalent to fisetin alone in the A549 cell line. In conclusion, an inhalable dry powder containing fisetin-SBE-β-CD complex was successfully engineered with an improved aqueous solubility of fisetin. The dry powder may be useful to deliver high amounts of fisetin to the deep lung region for therapeutic purposes. Copyright © 2016. Published by Elsevier B.V.

  13. Evaluation of 3D-Printed Polycaprolactone Scaffolds Coated with Freeze-Dried Platelet-Rich Plasma for Bone Regeneration.

    PubMed

    Li, Junda; Chen, Meilin; Wei, Xiaoying; Hao, Yishan; Wang, Jinming

    2017-07-19

    Three-dimensional printing is one of the most promising techniques for the manufacturing of scaffolds for bone tissue engineering. However, a pure scaffold is limited by its biological properties. Platelet-rich plasma (PRP) has been shown to have the potential to improve the osteogenic effect. In this study, we improved the biological properties of scaffolds by coating 3D-printed polycaprolactone (PCL) scaffolds with freeze-dried and traditionally prepared PRP, and we evaluated these scaffolds through in vitro and in vivo experiments. In vitro, we evaluated the interaction between dental pulp stem cells (DPSCs) and the scaffolds by measuring cell proliferation, alkaline phosphatase (ALP) activity, and osteogenic differentiation. The results showed that freeze-dried PRP significantly enhanced ALP activity and the mRNA expression levels of osteogenic genes (ALP, RUNX2 (runt-related gene-2), OCN (osteocalcin), OPN (osteopontin)) of DPSCs ( p < 0.05). In vivo, 5 mm calvarial defects were created, and the PRP-PCL scaffolds were implanted. The data showed that compared with traditional PRP-PCL scaffolds or bare PCL scaffolds, the freeze-dried PRP-PCL scaffolds induced significantly greater bone formation ( p < 0.05). All these data suggest that coating 3D-printed PCL scaffolds with freeze-dried PRP can promote greater osteogenic differentiation of DPSCs and induce more bone formation, which may have great potential in future clinical applications.

  14. Structure influence on mechanical and acoustic properties of freeze-dried gels obtained with the use of hydrocolloids.

    PubMed

    Ciurzyńska, Agnieszka; Marzec, Agata; Mieszkowska, Arleta; Lenart, Andrzej

    2017-04-01

    The influence of the structure formed by the type of hydrocolloids (low-methoxyl pectin, the mixture of xanthan gum, and locust bean gum, and mixture of xanthan gum, and guar gum) and the aeration time (3, 5, 7, and 9 min) on textural properties of freeze-dried gels were investigated. The hardest texture generating the strongest acoustic emission was obtained by freeze-dried pectin gel, characterised by the lowest porosity and the largest pore diameter. Aeration time significantly affected mechanical and acoustic properties of the pectin gel lyophilisate. No effect of gel aeration time on tested characteristics of samples with mixture of hydrocolloids was observed. Strong positive correlations between acoustic energy as well as the maximum force and work and negative ones between porosity and pore diameter indicate that greater resilience and stronger acoustic emission of freeze-dried gels was caused by the reduction of porosity and the increase in the pore size of the material. The research is expected to show the phenomenon of structure formation when preparing and freeze-drying gels and explain the influence of the process parameters (time of aeration, the type of hydrocolloids) on the formation of the internal structure and physical properties of a dried product, especially mechanical and acoustic properties. This achievement will contribute to the development of the science of food and human nutrition, especially within the context of the popular research on aerated diet products. The expected result will be the ability to develop a new technology for producing food with a delicate texture, using the phenomenon of sublimation. As a result, designing changes in the structure of freeze-dried fruit gels with a delicate structure will be possible due to the choice of ingredients and aeration parameters in order to develop innovative food characterised by favorable nutritional, health and functional properties, which will be attractive for the consumers. © 2016

  15. Optimum carrageenan concentration improved the physical properties of cabinet-dried yoghurt powder

    NASA Astrophysics Data System (ADS)

    Pratama, Y.; Abduh, S. B. M.; Legowo, A. M.; Pramono, Y. B.; Albaarri, AN

    2018-01-01

    Carrageenan is a hydrocolloid which able to improve the characteristic of dried powder. The purpose of this study was to produce and evaluate the characteristics of yoghurt powder which incorporated carrageenan as stabilizer and dried in a cabinet dryer. Carrageenan of 1 %, 2 % and 3 % (w/v) concentration were added to yoghurt prior to cabinet drying process. Physical properties of the yoghurt powder and the reconstituted one were evaluated. The best result was shown in carrageenan concentration of 2 % where it showed the highest bulk density (0.62 g/ml), and best particle size distribution (65.49 % in the range of 250-500 μm). Moisture and water activity (aw) were 8.02% and 0.37, respectively. The value is lower than what spoilage microorganisms require to grow (aw > 0.6) thus ensuring its long shelf life when combined with proper packaging. Reconstitution at 50°C showed that 2 % carrageenan resulted in a stable yoghurt product with no visible syneresis even after 3 hours. The proposed method shows promising application in the production of long shelf-life yoghurt powder production.

  16. Crystal coating via spray drying to improve powder tabletability.

    PubMed

    Vanhoorne, V; Peeters, E; Van Snick, B; Remon, J P; Vervaet, C

    2014-11-01

    A continuous crystal coating method was developed to improve both flowability and tabletability of powders. The method includes the introduction of solid, dry particles into an atomized spray during spray drying in order to coat and agglomerate individual particles. Paracetamol was used as a model drug as it exhibits poor flowability and high capping tendency upon compaction. The particle size enlargement and flowability were evaluated by the mean median particle size and flow index of the resulting powders. The crystal coating coprocessing method was successful for the production of powders containing 75% paracetamol with excellent tableting properties. However, the extent of agglomeration achieved during coprocessing was limited. Tablets compressed on a rotary tablet press in manual mode showed excellent compression properties without capping tendency. A formulation with 75% paracetamol, 5% PVP and 20% amorphous lactose yielded a tensile strength of 1.9 MPa at a compression pressure of 288 MPa. The friability of tablets compressed at 188 MPa was only 0.6%. The excellent tabletability of this formulation was attributed to the coating of paracetamol crystals with amorphous lactose and PVP through coprocessing and the presence of brittle and plastic components in the formulation. The coprocessing method was also successfully applied for the production of directly compressible lactose showing improved tensile strength and friability in comparison to a spray dried direct compression lactose grade.

  17. Calorimetric analysis of cryopreservation and freeze-drying formulations.

    PubMed

    Sun, Wendell Q

    2015-01-01

    Differential scanning calorimetry (DSC) is a commonly used thermal analysis technique in cryopreservation and freeze-drying research. It has been used to investigate crystallization, eutectic formation, glass transition, devitrification, recrystallization, melting, polymorphism, molecular relaxation, phase separation, water transport, thermochemistry, and kinetics of complex reactions (e.g., protein denaturation). Such information can be used for the optimization of protective formulations and process protocols. This chapter gives an introduction to beginners who are less familiar with this technique. It covers the instrument and its basic principles, followed by a discussion of the methods as well as examples of specific applications.

  18. The Effect of Freeze-Drying on the Nutrient, Polyphenol, and Oxidant Levels of Breast Milk.

    PubMed

    Cortez, Mariela Valentina; Soria, Elio Andrés

    2016-12-01

    Human milk banks need to extend the suitability of milk for breastfeeding, and for this technological advances are required. Our aim was to establish the capacity of freeze-drying to conserve milk properties without further oxidative deterioration. One hundred sixteen healthy women participated from the city of Cordoba (Argentina). Proteins, glucose, triglycerides, polyphenols, and markers (nitrites, superoxide anion, hydroperoxides, lipoperoxides, and γ-glutamyl transpeptidase) were measured in their fresh milk. Samples were then separated for three treatments as follows: freezing and conservation for 6 months at -80°C (F: positive control); freeze-drying for 24 hours at ≤-70°C and ≤1.33 Pa and conservation for 6 months at 4°C (FD: treatment of interest); and freeze-drying for 24 hours at ≤-70°C and ≤1.33 Pa and conservation for 6 months at -80°C (FD+F). Next, analyses were repeated and compared by ANOVA and Tukey tests. Fresh milk showed these values per L as follows: proteins: 12.62 ± 2.51 g, glucose: 4.44 ± 0.25 g, triglycerides: 34.26 ± 0.59 g, polyphenols: 53.27 ± 8.67 mg, nitrites: 62.40 ± 19.09 mg, superoxide: 3,721.02 ± 198.80 OD, hydroperoxides: 7,343.76 ± 294.53 OD, lipoperoxides: 7,349.72 ± 398.72 OD, and γ-glutamyl transpeptidase: 4.66 ± 0.55 IU. Glucose was decreased after F treatment (p < 0.05), all variables were conserved by FD and were not improved by the FD + F combination. Freeze-drying achieved suitable conservation and may improve bank functioning, by protecting nutritional properties, polyphenol-related functionality, and oxidative integrity of human milk through a 1-day treatment with easy maintenance.

  19. PD-PK evaluation of freeze-dried atorvastatin calcium-loaded poly-ε-caprolactone nanoparticles.

    PubMed

    Ahmed, Iman S; El-Hosary, Rania; Shalaby, Samia; Abd-Rabo, Marwa M; Elkhateeb, Dalia G; Nour, Samia

    2016-05-17

    In this work lyophilized poly-ε-caprolactone nanoparticles (NPs) loaded with atorvastatin calcium (AC) were developed in an attempt to improve the in-vivo performance of AC following oral administration. The individual and combined effects of several formulation variables were previously investigated using step-wise full factorial designs in order to produce optimized AC-NPs with predetermined characteristics including particle size, drug loading capacity, drug release profile and physical stability. Four optimized formulations were further subjected in this work to lyophilization to promote their long-term physical stability and were fully characterized. The pharmacodynamics (PD)/pharmacokinetics (PK) properties of two optimized freeze-dried AC-NPs formulations showing acceptable long-term stability were determined and compared to a marketed AC immediate release tablet (Lipitor(®)) in albino rats. PD results revealed that the two tested formulations were equally effective in reducing low density lipoproteins (LDL) and triglycerides (TG) levels when given in reduced doses compared to Lipitor(®) and showed no adverse effects. PK results, on the other hand, revealed that the two freeze-dried AC-NPs formulations were of significantly lower bioavailability compared to Lipitor(®). Taken together the PD and PK results demonstrate that the improved efficacy obtained at reduced doses from the freeze-dried AC-NPs could be due to increased concentration of AC in the liver rather than in the plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. [A case of orchitis following vaccination with freeze-dried live attenuated mumps vaccine].

    PubMed

    Suzuki, Masayasu; Takizawa, Akitoshi; Furuta, Akira; Yanada, Shuichi; Iwamuro, Shinya; Tashiro, Kazuya

    2002-05-01

    In Japan, freeze-dried live attenuated mumps vaccine has been used optionally since 1981. The effectiveness of mumps vaccination has been established by worldwide research since 1971. On the other hand, because of it's live activity several untoward effects have been reported. Vaccination-related mumps orchitis is a rare adverse effect of mumps vaccine. Only 9 cases of vaccination-related mumps orchitis have been reported in Japan. We describe a case of orchitis following mumps vaccination in adolescence. A 16 years-old male has admitted because of acute orchitis with high fever and painful swelling of right testis. The patient had received vaccination with freeze-dried live attenuated mumps vaccine 16 days before admission. After admission, the bed-rest had completely relieved the symptoms on 6th hospital day. The impaired testis has maintained normal size and consistency 6 months after discharge.

  1. Effect of drying environment on grain size of titanium dioxide nano-powder synthesized via sol-gel method

    NASA Astrophysics Data System (ADS)

    Zandi, Pegah; Hosseini, Elham; Rashchi, Fereshteh

    2018-01-01

    Titanium dioxide Nano powder has been synthesized from titanium isopropoxide (TTIP) in chloride media by sol-gel method. In this research, the effect of the drying environment, from air to oven drying at 100 °C, calcination time and temperature on nano TiO2 grain size was investigated. The synthesized powder was analyzed by x-ray diffraction and scanning electron microscope. Based on the results, the powder has been crystallized in anatase and rutile phases, due to different calcination temperatures. At temperatures above 600 °C, the Titanium dioxide nano powder has been crystallized as rutile. The crystalline structure of titanium dioxide nano powder changed because of the different calcination temperatures and time applied. The average particle size of the powder dried in air was larger than the powder dried in oven. The minimum particle size of the powder dried in air was 50 nm and in the oven was 9 nm, observed and calculated Williamson-Hall equation. All in all, with overall increasing of calcination time and temperature the grain size increased. Moreover, in the case of temperature, after a certain temperature, the grain size became constant and didn't change significantly.

  2. Improvement of fish freshness determination method by the application of amorphous freeze-dried enzymes.

    PubMed

    Srirangsan, Paveena; Hamada-Sato, Naoko; Kawai, Kiyoshi; Watanabe, Manabu; Suzuki, Toru

    2010-12-08

    Alkaline phosphatase (ALP), nucleoside phosphorylase (NP), and xanthine oxidase (XOD) were used in a colorimetric method for evaluation of fish freshness based on the Ki value. Two enzyme mixtures, NP-XOD and ALP-NP-XOD, were prepared with a color developing agent, and stabilities of the enzymes were improved by freeze-drying with glass-forming additives, i.e., sucrose and sucrose-gelatin. As a result, a linear relationship was obtained between the Ki values determined by the developed colorimetric method and a conventional high-performance liquid chromatography with a high correlation coefficient of 0.997. All enzyme samples containing the additive(s) were amorphous, and higher enzymes activities were maintained compared to those freeze-dried without an additive. Sucrose-gelatin/enzyme mixtures showed higher glass transition temperature; consequently, the enzymes were better stabilized than the sucrose/enzyme formulations. Using the sucrose-gelatin/enzyme mixture, Ki values of fish meat could be accurately determined even after 6-month storage of the dried enzymes at 40 °C.

  3. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery

    PubMed Central

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters. PMID:23569375

  4. Weavability of dry polymer powder towpreg

    NASA Technical Reports Server (NTRS)

    Hugh, Maylene K.; Marchello, Joseph M.; Maiden, Janice R.; Johnston, Norman J.

    1993-01-01

    Carbon fiber yarns (3k, 6k, 12k) were impregnated with LARC (tm) thermoplastic polyimide dry powder. Parameters for weaving these yarns were established. Eight-harness satin fabrics were successfully woven from each of the three classes of yarns and consolidated into test specimens to determine mechanical properties. It was observed that for optimum results warp yarns should have flexural rigidities between 10,000 and 100,000 mg-cm. Tow handling minimization, low tensioning, and tow bundle twisting were used to reduce fiber breakage, the separation of filaments, and tow-to-tow abrasion. No apparent effect of tow size or twist was observed on either tension or compression modulus. However, fiber damage and processing costs favor the use of 12k yarn bundles versus 3k or 6k yarn bundles in the weaving of powder-coated towpreg.

  5. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery

    PubMed Central

    Sinsuebpol, Chutima; Chatchawalsaisin, Jittima; Kulvanich, Poj

    2013-01-01

    Purpose The aim of the present study was to prepare inhalable co-spray dried powders of salmon calcitonin loaded chitosan nanoparticles (sCT-CS-NPs) with mannitol and investigate pulmonary absorption in rats. Methods The sCT-CS-NPs were prepared by the ionic gelation method using sodium tripolyphosphate (TPP) as a cross-linking polyion. Inhalable dry powders were obtained by co-spray drying aqueous dispersion of sCT-CS-NPs and mannitol. sCT-CS-NPs co-spray dried powders were characterized with respect to morphology, particle size, powder density, aerodynamic diameter, protein integrity, in vitro release of sCT, and aerosolization. The plasmatic sCT levels following intratracheal administration of sCT-CS-NPs spray dried powders to the rats was also determined. Results sCT-CS-NPs were able to be incorporated into mannitol forming inhalable microparticles by the spray drying process. The sCT-CS-NPs/mannitol ratios and spray drying process affected the properties of the microparticles obtained. The conformation of the secondary structures of sCTs was affected by both mannitol content and spray dry inlet temperature. The sCT-CS-NPs were recovered after reconstitution of spray dried powders in an aqueous medium. The sCT release profile from spray dried powders was similar to that from sCT-CS-NPs. In vitro inhalation parameters measured by the Andersen cascade impactor indicated sCT-CS-NPs spray dried powders having promising aerodynamic properties for deposition in the deep lung. Determination of the plasmatic sCT levels following intratracheal administration to rats revealed that the inhalable sCT-CS NPs spray dried powders provided higher protein absorption compared to native sCT powders. Conclusion The sCT-CS-NPs with mannitol based spray dried powders were prepared to have appropriate aerodynamic properties for pulmonary delivery. The developed system was able to deliver sCT via a pulmonary route into the systemic circulation. PMID:24039397

  6. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery.

    PubMed

    Sinsuebpol, Chutima; Chatchawalsaisin, Jittima; Kulvanich, Poj

    2013-01-01

    The aim of the present study was to prepare inhalable co-spray dried powders of salmon calcitonin loaded chitosan nanoparticles (sCT-CS-NPs) with mannitol and investigate pulmonary absorption in rats. The sCT-CS-NPs were prepared by the ionic gelation method using sodium tripolyphosphate (TPP) as a cross-linking polyion. Inhalable dry powders were obtained by co-spray drying aqueous dispersion of sCT-CS-NPs and mannitol. sCT-CS-NPs co-spray dried powders were characterized with respect to morphology, particle size, powder density, aerodynamic diameter, protein integrity, in vitro release of sCT, and aerosolization. The plasmatic sCT levels following intratracheal administration of sCT-CS-NPs spray dried powders to the rats was also determined. sCT-CS-NPs were able to be incorporated into mannitol forming inhalable microparticles by the spray drying process. The sCT-CS-NPs/mannitol ratios and spray drying process affected the properties of the microparticles obtained. The conformation of the secondary structures of sCTs was affected by both mannitol content and spray dry inlet temperature. The sCT-CS-NPs were recovered after reconstitution of spray dried powders in an aqueous medium. The sCT release profile from spray dried powders was similar to that from sCT-CS-NPs. In vitro inhalation parameters measured by the Andersen cascade impactor indicated sCT-CS-NPs spray dried powders having promising aerodynamic properties for deposition in the deep lung. Determination of the plasmatic sCT levels following intratracheal administration to rats revealed that the inhalable sCT-CS NPs spray dried powders provided higher protein absorption compared to native sCT powders. The sCT-CS-NPs with mannitol based spray dried powders were prepared to have appropriate aerodynamic properties for pulmonary delivery. The developed system was able to deliver sCT via a pulmonary route into the systemic circulation.

  7. Effect of drying, storage temperature and air exposure on astaxanthin stability from Haematococcus pluvialis.

    PubMed

    Ahmed, Faruq; Li, Yan; Fanning, Kent; Netzel, Michael; Schenk, Peer M

    2015-08-01

    Astaxanthin is a powerful antioxidant with various health benefits such as prevention of age-related macular degeneration and improvement of the immune system, liver and heart function. To improve the post-harvesting stability of astaxanthin used in food, feed and nutraceutical industries, the biomass of the high astaxanthin producing alga Haematococcus pluvialis was dried by spray- or freeze-drying and under vacuum or air at -20°C to 37°C for 20weeks. Freeze-drying led to 41% higher astaxanthin recovery compared to commonly-used spray-drying. Low storage temperature (-20°C, 4°C) and vacuum-packing also showed higher astaxanthin stability with as little as 12.3±3.1% degradation during 20weeks of storage. Cost-benefit analysis showed that freeze-drying followed by vacuum-packed storage at -20°C can generate AUD$600 higher profit compared to spray-drying from 100kgH. pluvialis powder. Therefore, freeze-drying can be suggested as a mild and more profitable method for ensuring longer shelf life of astaxanthin from H. pluvialis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. [Research about effect of spray drying conditions on hygroscopicity of spray dry powder of gubi compound's water extract and its mechanism].

    PubMed

    Zong, Jie; Shao, Qi; Zhang, Hong-Qing; Pan, Yong-Lan; Zhu, Hua-Xu; Guo, Li-Wei

    2014-02-01

    To investigate moisture content and hygroscopicity of spray dry powder of Gubi compound's water extract obtained at different spray drying conditions and laying a foundation for spray drying process of Chinese herbal compound preparation. In the paper, on the basis of single-factor experiments, the author choose inlet temperature, liquid density, feed rate, air flow rate as investigated factors. The experimental absorption rate-time curve and scanning electron microscopy results showed that under different spray drying conditions the spray-dried powders have different morphology and different adsorption process. At different spray-dried conditions, the morphology and water content of the powder is different, these differences lead to differences in the adsorption process, at the appropriate inlet temperature and feed rate with a higher sample density and lower air flow rate, in the experimental system the optimum conditions is inlet temperature of 150 degrees C, feed density of 1.05 g x mL(-1), feed rate of 20 mL x min(-1) air flow rate of 30 m3 x h(-1).

  9. Stability of buffer-free freeze-dried formulations: A feasibility study of a monoclonal antibody at high protein concentrations.

    PubMed

    Garidel, Patrick; Pevestorf, Benjamin; Bahrenburg, Sven

    2015-11-01

    We studied the stability of freeze-dried therapeutic protein formulations over a range of initial concentrations (from 40 to 160 mg/mL) and employed a variety of formulation strategies (including buffer-free freeze dried formulations, or BF-FDF). Highly concentrated, buffer-free liquid formulations of therapeutic monoclonal antibodies (mAbs) have been shown to be a viable alternative to conventionally buffered preparations. We considered whether it is feasible to use the buffer-free strategy in freeze-dried formulations, as an answer to some of the known drawbacks of conventional buffers. We therefore conducted an accelerated stability study (24 weeks at 40 °C) to assess the feasibility of stabilizing freeze-dried formulations without "classical" buffer components. Factors monitored included pH stability, protein integrity, and protein aggregation. Because the protein solutions are inherently self-buffering, and the system's buffer capacity scales with protein concentration, we included highly concentrated buffer-free freeze-dried formulations in the study. The tested formulations ranged from "fully formulated" (containing both conventional buffer and disaccharide stabilizers) to "buffer-free" (including formulations with only disaccharide lyoprotectant stabilizers) to "excipient-free" (with neither added buffers nor stabilizers). We evaluated the impacts of varying concentrations, buffering schemes, pHs, and lyoprotectant additives. At the end of 24 weeks, no change in pH was observed in any of the buffer-free formulations. Unbuffered formulations were found to have shorter reconstitution times and lower opalescence than buffered formulations. Protein stability was assessed by visual inspection, sub-visible particle analysis, protein monomer content, charge variants analysis, and hydrophobic interaction chromatography. All of these measures found the stability of buffer-free formulations that included a disaccharide stabilizer comparable to buffer

  10. Chemical Composition and Antioxidant Properties of Powders Obtained from Different Plum Juice Formulations.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Łysiak, Grzegorz P; Figiel, Adam

    2017-01-17

    Among popular crops, plum ( Prunus domestica L.) has received special attention due to its health-promoting properties. The seasonality of this fruit makes it impossible to consume it throughout the year, so new products in a powder form may offer an alternative to fresh consumption and may be used as high-quality natural food ingredients. A 100% plum (cultivar "Valor") juice was mixed with three different concentrations of maltodextrin or subjected to sugars removal by amberlite-XAD column, and dried using the freeze, spray, and vacuum (40, 60, and 80 °C) drying techniques. The identification and quantification of phenolic acids, flavonols, and anthocyanins in plum powders was performed by LC-MS QTof and UPLC-PDA, respectively. l-ascorbic acid, hydroxymethylfurfural, and antioxidant capacity were measured by the Trolox equivalent antioxidant capacity (TEAC) ABTS and ferric reducing antioxidant potential (FRAP) methods in order to compare the influence of the drying methods on product quality. The results indicated that the profile of polyphenolic compounds in the plum juice powders significantly differed from the whole plum powders. The drying of a sugar free plum extract resulted in higher content of polyphenolic compounds, l-ascorbic acid and antioxidant capacity, but lower content of hydroxymethylfurfural, regardless of drying method applied. Thus, the formulation of plum juice before drying and the drying method should be carefully selected in order to obtain high-quality powders.

  11. Stabilization of IgG1 in spray-dried powders for inhalation.

    PubMed

    Schüle, S; Schulz-Fademrecht, T; Garidel, P; Bechtold-Peters, K; Frieb, W

    2008-08-01

    The protein stabilizing capabilities of spray-dried IgG1/mannitol formulations were evaluated. The storage stability was tested at different residual moisture levels prepared by vacuum-drying or equilibration prior to storage. Vacuum-drying at 32 degrees C/0.1mbar for 24h reduced the moisture level below 1%, constituting an optimal basis for improved storage stability. The crystalline IgG1/mannitol powders with a weight ratio of 20/80 up to 40/60 failed to prevent the antibody aggregation as assessed by size exclusion chromatography during storage. Ratios of 60/40 up to 80/20 IgG1/mannitol provided superior stability of the antibody and the powders could be produced with high yields. The lower the residual moisture, the better was the stabilizing capability. An amount of 20% mannitol provided the best stabilization. Storage stability of 60/40, 70/30, and 80/20 IgG1/mannitol formulations over one year was adequate at 2-8 degrees C and 25 degrees C. Closed storage (sealed in vials) at 40 degrees C/75% RH and open storage at 25 degrees C/60% RH revealed that the stability still required optimization. The lower the protein content, the better was the powder flowability. The aerodynamic properties of powders spray-dried with 10% solids content were inadequate, as the particle size ranged between 5.1 and 7.2 microm and the fine particle fraction accounted for only 4-11%. Reduction of the solids content to 2.5% did improve the aerodynamic properties as the mass mean aerodynamic diameter was reduced to 3.6 microm and the fine particle fraction was increased to about 14%. The reduction of the solids content did not influence the storage stability significantly. Also spray-drying at higher temperatures had no significant impact on the storage stability, despite a higher tendency to form amorphous systems. In order to improve the storage stability and to maintain the good flowability of 70/30 IgG1/mannitol powder or to keep the storage stability but to improve the flowability

  12. A dry powder stump applicator for a feller-buncher.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karsky, Richard, J.; Cram Michelle; Thistle, Harold

    1998-07-11

    Karsky, D., M. Cram, and H. Thistle. 1998. A dry powder borax stump applicator for a feller-buncher. Presented at the 1998 ASAE Annual International Meeting at Colorado Springs Resort, Orlando, Florida, July 11-16, 1998. Paper No. 987023. ASAE, 2950 Niles Road, St. Joseph, MI 49085-9659. Annosum root rot affects conifers throughout the Northern Hemisphere, infecting the roots and eventually killing the trees. An applicator attachment has been developed that mounts to the back of a feller-buncher saw head, that can reduce mortality from Heterobasidion annosum. The attachment applies a borax powder to a stump immediately after the tree has beenmore » cut. This document provides information on the design, development and testing of an applicator for applying dry borax on tree stumps at the time of harvesting to reduce future losses due to root rot.« less

  13. Rapidly dissolving repaglinide powders produced by the ultra-rapid freezing process.

    PubMed

    Purvis, Troy; Mattucci, Michal E; Crisp, M Todd; Johnston, Keith P; Williams, Robert O

    2007-07-20

    The objective of the study was to produce rapidly dissolving formulations of the poorly water-soluble drug repaglinide using an innovative new technology, ultra-rapid freezing (URF), and to investigate the influence of excipient type on repaglinide stability. Repaglinide compositions containing different types and levels of excipients and different drug potencies (50%-86%) were produced by the URF technology. Repaglinide/excipient solutions were frozen on a cryogenic substrate, collected, and lyophilized to form a dry powder. Surfactants, including sodium dodecyl sulfate, and alkalizing agents such as diethanolamine (DEA) and tromethamine (TRIS) were incorporated into the compositions. Forced degradation of repaglinide was conducted under stressed conditions (eg, elevated temperature, exposure to peroxide) to determine the stability of the drug in such environments. The solubility of repaglinide increased as a function of increasing pH; therefore, incorporation of an alkalizing agent into the URF formulations increased the drug's solubility. Drug instability resulted when the drug was exposed to pH values above 9.0. URF formulations containing alkalizing agents showed no degradation or spontaneous recrystallization in the formulation, indicating that increased stability was afforded by processing. URF processing created nanostructured drug/excipient particles with higher dissolution rates than were achieved for unprocessed drug. Alkalizing agents such as TRIS and DEA, present at levels of 25% to 33% wt/wt in the formulations, did not cause degradation of the drug when processed using URF. URF processing, therefore, yielded fast-dissolving formulations that were physically and chemically stable, resistant to alkali degradation or spontaneous recrystallization in the formulation.

  14. Towards the optimisation and adaptation of dry powder inhalers.

    PubMed

    Cui, Y; Schmalfuß, S; Zellnitz, S; Sommerfeld, M; Urbanetz, N

    2014-08-15

    Pulmonary drug delivery by dry powder inhalers is becoming more and more popular. Such an inhalation device must insure that during the inhalation process the drug powder is detached from the carrier due to fluid flow stresses. The goal of the project is the development of a drug powder detachment model to be used in numerical computations (CFD, computational fluid dynamics) of fluid flow and carrier particle motion through the inhaler and the resulting efficiency of drug delivery. This programme will be the basis for the optimisation of inhaler geometry and dry powder inhaler formulation. For this purpose a multi-scale approach is adopted. First the flow field through the inhaler is numerically calculated with OpenFOAM(®) and the flow stresses experienced by the carrier particles are recorded. This information is used for micro-scale simulations using the Lattice-Boltzmann method where only one carrier particle covered with drug powder is placed in cubic flow domain and exposed to the relevant flow situations, e.g. plug and shear flow with different Reynolds numbers. Therefrom the fluid forces on the drug particles are obtained. In order to allow the determination of the drug particle detachment possibility by lift-off, sliding or rolling, also measurements by AFM (atomic force microscope) were conducted for different carrier particle surface structures. The contact properties, such as van der Waals force, friction coefficient and adhesion surface energy were used to determine, from a force or moment balance (fluid forces versus contact forces), the detachment probability by the three mechanisms as a function of carrier particle Reynolds number. These results will be used for deriving the drug powder detachment model. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Raman microscopy of freeze-dried mouse eyeball-slice in conjunction with the "in vivo cryotechnique".

    PubMed

    Terada, Nobuo; Ohno, Nobuhiko; Saitoh, Sei; Fujii, Yasuhisa; Ohguro, Hiroshi; Ohno, Shinichi

    2007-07-01

    The wavelength of Raman-scattered light depends on the molecular composition of the substance. This is the first attempt to acquire Raman spectra of a mouse eyeball removed from a living mouse, in which the eyeball was preserved using the "in vivo cryotechnique" followed by freeze-drying. Eyeballs were cryofixed using a rapid freezing cryotechnique, and then sliced in the cryostat machine. The slices were sandwiched between glass slides, freeze-dried, and analyzed with confocal Raman microscopy. Important areas including various eyeball tissue layers were selected using bright-field microscopy, and then the Raman spectra were obtained at 240 locations. Four typical patterns of Raman spectra were electronically mapped on the specimen images obtained by the bright-field microscopy. Tissue organization was confirmed by embedding the same eyeball slice used for Raman spectra into epoxy resin and the thick sections were prepared with the inverted capsule method. Each Raman spectral pattern represents a different histological layer in the eyeball which was mapped by comparing the images of toluidine blue staining and Raman mapping with different colors. In the choroid and pigment cell layer, the Raman spectrum had two peaks, corresponding to melanin. Some of the peaks of the Raman spectra obtained from the blood vessels in sclera and the photoreceptor layer were similar to those obtained from the purified hemoglobin and rhodopsin proteins, respectively. Our experimental protocol can distinguish different tissue components with Raman microscopy; therefore, this method can be very useful for examining the distribution of a biological structures and/or chemical components in rapidly frozen freeze-dried tissue.

  16. Effect of Drying Methods on Protein and DNA Conformation Changes in Lactobacillus rhamnosus GG Cells by Fourier Transform Infrared Spectroscopy.

    PubMed

    Hlaing, Mya M; Wood, Bayden R; McNaughton, Don; Ying, DanYang; Dumsday, Geoff; Augustin, Mary Ann

    2017-03-01

    Microencapsulation protects cells against environmental stress encountered during the production of probiotics, which are used as live microbial food ingredients. Freeze-drying and spray-drying are used in the preparation of powdered microencapsulated probiotics. This study examines the ability of Fourier transform infrared (FTIR) spectroscopy to detect differences in cells exposed to freeze-drying and spray-drying of encapsulated Lactobacillus rhamnosus GG cells. The FTIR analysis clearly demonstrated there were more significant molecular changes in lipid, fatty acid content, protein, and DNA conformation of nonencapsulated compared to encapsulated bacterial cells. The technique was also able to differentiate between spray-dried and freeze-dried cells. The results also revealed the extent of protection from a protein-carbohydrate-based encapsulant matrix on the cells depending on the type drying process. The extent of this protection to the dehydration stress was shown to be less in spray-dried cells than in freeze-dried cells. This suggests that FTIR could be used as a rapid, noninvasive, and real-time measurement technique to detect detrimental drying effects on cells.

  17. Physical stability of micronized powders produced by spray-freezing into liquid (SFL) to enhance the dissolution of an insoluble drug.

    PubMed

    Rogers, True L; Johnston, Keith P; Williams, Robert O

    2003-01-01

    The objective of this study was to investigate the physical stability of micronized powders produced by the spray-freezing into liquid (SFL) particle engineeringtechnology. Danazol was formulated with polyvinyl alcohol (MW 22,000), poloxamer 407, and polyvinylpyrrolidone K-15 to form a cosolvent solution that was SFL processed. The dried micronized SFL powders were sealed in glass vials with desiccant and exposed to 25 degrees C/60% RH for 3 and 6 mo, 40 degrees C/75% RH for 1, 2, 3, and 6 mo, and conditions where the temperature was cycled between -5 and +40 degrees C (6 cycles/24 hr) with constant 75% RH for 1, 2, 3 and 4 wk. The samples were characterized by using Karl-Fisher titration, differential scanning calorimetry, x-ray diffraction, specific surface area, scanning electron microscopy, and dissolution testing. Micronized SFL powders consisting of porous aggregates with small-particle domains were characterized as having high surface areas and consisted of amorphous danazol embedded within a hydrophilic excipient matrix. Karl-Fischer titration revealed no moisture absorption over the duration of the stability studies. Differential scanning calorimetry studies demonstrated high degrees of molecular interactions between danazol, PVA, poloxamer, and PVP. Scanning electron microscopy studies confirmed these interactions, especially those between danazol and poloxamer. These interactions facilitated API dissolution in the aqueous media. Powder surface area remained constant during storage at the various stability conditions, and danazol recrystallization did not occur during the entirety of the stability studies. Micronized SFL powders containing danazol dissolved rapidly and completely within 5 min in aqueous media. No differences were observed in the enhanced dissolution profiles of danazol after exposure to the storage conditions investigated. Physically stable micronized powders produced by the SFL particle engineering technology were produced for the

  18. Development of a novel dry powder inhalation formulation for the delivery of rivastigmine hydrogen tartrate.

    PubMed

    Simon, Alice; Amaro, Maria Inês; Cabral, Lucio Mendes; Healy, Anne Marie; de Sousa, Valeria Pereira

    2016-03-30

    The purpose of this study was to prepare engineered particles of rivastigmine hydrogen tartrate (RHT) and to characterize the physicochemical and aerodynamic properties, in comparison to a lactose carrier formulation (LCF). Microparticles were prepared from ethanol/water solutions containing RHT with and without the incorporation of L-leucine (Leu), using a spray dryer. Dry powder inhaler formulations prepared were characterized by scanning electron microscopy, powder X-ray diffraction, laser diffraction particle sizing, ATR-FTIR, differential scanning calorimetry, bulk and tapped density, dynamic vapour sorption and in vitro aerosol deposition behaviour using a next generation impactor. The smooth-surfaced spherical morphology of the spray dried microparticles was altered by adding Leu, resulting in particles becoming increasingly wrinkled with increasing Leu. Powders presented low densities. The glass transition temperature was sufficiently high (>90 °C) to suggest good stability at room temperature. As Leu content increased, spray dried powders presented lower residual solvent content, lower particle size, higher fine particle fraction (FPF<5 μm), and lower mass median aerodynamic diameter (MMAD). The LCF showed a lower FPF and higher MMAD, relative to the spray dried formulations containing more than 10% Leu. Spray dried RHT powders presented better aerodynamic properties, constituting a potential drug delivery system for oral inhalation. Copyright © 2016. Published by Elsevier B.V.

  19. Reversed phase HPLC analysis of stability and microstructural effects on degradation kinetics of β-carotene encapsulated in freeze-dried maltodextrin-emulsion systems.

    PubMed

    Harnkarnsujarit, Nathdanai; Charoenrein, Sanguansri; Roos, Yrjö H

    2012-09-26

    Degradation of dispersed lipophilic compounds in hydrophilic solids depends upon matrix stability and lipid physicochemical properties. This study investigated effects of solid microstructure and size of lipid droplets on the stability of dispersed β-carotene in freeze-dried systems. Emulsions of β-carotene in sunflower oil were dispersed in maltodextrin systems (M040/DE6, M100/DE11, and M250/DE25.5) (8% w/w oil) and prefrozen at various freezing conditions prior to freeze-drying to control nucleation and subsequent pore size and structural collapse of freeze-dried solids. The particle size, physical state, and β-carotene contents of freeze-dried emulsions were measured during storage at various water activity (a(w)) using a laser particle size analyzer, differential scanning calorimeter, and high performance liquid chromatography (HPLC), respectively. The results showed that M040 stabilized emulsions in low temperature freezing exhibited lipid crystallization. Collapse of solids in storage at a(w) which plasticized systems to the rubbery state led to flow and increased the size of oil droplets. Degradation of β-carotene analyzed using a reversed-phase C(30) column followed first-order kinetics. Porosity of solids had a major effect on β-carotene stability; however, the highest stability was found in fully plasticized and collapsed solids.

  20. The effect of freezing and drying on leaching of DOM from above ground vascular plant material from the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Khosh, M. S.; McClelland, J. W.

    2014-12-01

    Our understanding of the seasonal dynamics of fluvial dissolved organic matter (DOM) concentrations and fluxes in Arctic catchments has increased substantially during recent years, especially during the spring, which historically has been an under-sampled time period. While a number of studies have observed peaks in both DOM concentrations and fluxes during the spring snowmelt, our knowledge of the mechanisms that control these observations are still lacking. During the initial snowmelt period, frozen ground and the snow matrix act to constrain melt-water to the soil surface. We hypothesize that restriction of flow during this time facilitates leaching of DOM from senescent above ground vegetation and detritus contributing to the high DOM concentrations observed during the spring melt. This study focuses on the effect of freezing and drying on the leaching of dissolved organic carbon and nitrogen (DOC and DON) from above ground vascular plant material. Specifically, we examined the treatment effects of freezing, drying, and freeze-drying on three genera of common Alaskan Arctic vascular plants; Eriophorum (spp.), Carex (spp.), and Salix (spp.). Frozen and freeze-dried plant material released more DOC over the experimental 96 hour leaching period compared to plant material that was only dried. Qualitatively, these patterns were similar among the different plant types, while quantitatively Salix leached more DOC than either Eriophorum or Carex in all treatments. Similar patterns were also seen for DON between the different treatments and among the different plant types. Compositionally, DOM that was leached from frozen and freeze-dried material had higher C:N ratios than material that was only dried. Comparatively, DOM leached from Salix had much higher C:N ratios than either Eriophorum or Carex. During the first 24 hours of leaching, C:N ratios tended to increase followed by a subsequent leveling or decrease, suggesting that the composition of leached DOM varied

  1. Impact behaviour of freeze-dried and fresh pomelo (Citrus maxima) peel: influence of the hydration state

    PubMed Central

    Thielen, Marc; Speck, Thomas; Seidel, Robin

    2015-01-01

    Pomelos (Citrus maxima) are known for their thick peel which—inter alia—serves as energy dissipator when fruits impact on the ground after being shed. It protects the fruit from splitting open and thus enables the contained seeds to stay germinable and to potentially be dispersed by animal vectors. The main part of the peel consists of a parenchymatous tissue that can be interpreted from a materials point of view as open pored foam whose struts are pressurized and filled with liquid. In order to investigate the influence of the water content on the energy dissipation capacity, drop weight tests were conducted with fresh and with freeze-dried peel samples. Based on the coefficient of restitution it was found that freeze-drying markedly reduces the relative energy dissipation capacity of the peel. Measuring the transmitted force during impact furthermore indicated a transition from a uniform collapse of the foam-like tissue to a progressive collapse due to water extraction. Representing the peel by a Maxwell model illustrates that freeze-drying not only drastically reduces the damping function of the dashpots but also stiffens the springs of the model. PMID:26543566

  2. Physicochemical characterization and water vapor sorption of organic solution advanced spray-dried inhalable trehalose microparticles and nanoparticles for targeted dry powder pulmonary inhalation delivery.

    PubMed

    Li, Xiaojian; Mansour, Heidi M

    2011-12-01

    Novel advanced spray-dried inhalable trehalose microparticulate/nanoparticulate powders with low water content were successfully produced by organic solution advanced spray drying from dilute solution under various spray-drying conditions. Laser diffraction was used to determine the volumetric particle size and size distribution. Particle morphology and surface morphology was imaged and examined by scanning electron microscopy. Hot-stage microscopy was used to visualize the presence/absence of birefringency before and following particle engineering design pharmaceutical processing, as well as phase transition behavior upon heating. Water content in the solid state was quantified by Karl Fisher (KF) coulometric titration. Solid-state phase transitions and degree of molecular order were examined by differential scanning calorimetry (DSC) and powder X-ray diffraction, respectively. Scanning electron microscopy showed a correlation between particle morphology, surface morphology, and spray drying pump rate. All advanced spray-dried microparticulate/nanoparticulate trehalose powders were in the respirable size range and exhibited a unimodal distribution. All spray-dried powders had very low water content, as quantified by KF. The absence of crystallinity in spray-dried particles was reflected in the powder X-ray diffractograms and confirmed by thermal analysis. DSC thermal analysis indicated that the novel advanced spray-dried inhalable trehalose microparticles and nanoparticles exhibited a clear glass transition (T(g)). This is consistent with the formation of the amorphous glassy state. Spray-dried amorphous glassy trehalose inhalable microparticles and nanoparticles exhibited vapor-induced (lyotropic) phase transitions with varying levels of relative humidity as measured by gravimetric vapor sorption at 25°C and 37°C.

  3. Influence of Freeze-Drying and Oven-Drying Post Blanching on the Nutrient Composition of the Edible Insect Ruspolia differens.

    PubMed

    Fombong, Forkwa Tengweh; Van Der Borght, Mik; Vanden Broeck, Jozef

    2017-09-16

    The longhorn grasshopper, Ruspolia differens (Serville), plays an important role as a food source across Sub-Saharan Africa, where it is consumed as a delicacy in both rural and urban areas. The effect of two drying methods (freeze-drying and oven-drying), employed after blanching, on the proximate, fatty acid and mineral composition of the two most common morphs was determined. Ruspolia differens grasshoppers were harvested in Uganda and Kenya from wild swarms during the rainy periods of November-December 2016. Based on cuticular coloration, we identified three morphs, green, brown and purple, which occurred at a ratio of 65:33:2, respectively. Results indicated that these insects have a high lipid content of 36%, as well as significant protein levels ranging between 33% and 46% dry matter. Oleic acid (44%) and palmitic acid (28%) were the two most abundant fatty acids; while the presence of arachidonic acid (0.6%) and docosahexaenoic acid (0.21%) suggests that Ruspolia differens is also a source of polyunsaturated fatty acids. The observed amino acid profile showed similar trends in all morphs, and all essential amino acids were present. Calcium (896-1035 mg/100 g), potassium (779-816 mg/100 g) and phosphorus (652-685 mg/100 g) were quite high among the minerals. The presence of the trace elements iron (217-220 mg/100 g), zinc (14.2-14.6 mg/100 g), manganese (7.4-8.3 mg/100 g) and copper (1.66 mg/100 g) suggests that inclusion of these grasshoppers in human diets may aid in combatting micronutrient deficiencies. Oven-drying Ruspolia differens delivered the same nutritional quality as freeze-drying. Hence, both drying approaches can be adequately used to formulate insect-based food products without noticeable nutritional changes.

  4. Influence of Freeze-Drying and Oven-Drying Post Blanching on the Nutrient Composition of the Edible Insect Ruspolia differens

    PubMed Central

    Fombong, Forkwa Tengweh; Van Der Borght, Mik; Vanden Broeck, Jozef

    2017-01-01

    The longhorn grasshopper, Ruspolia differens (Serville), plays an important role as a food source across Sub-Saharan Africa, where it is consumed as a delicacy in both rural and urban areas. The effect of two drying methods (freeze-drying and oven-drying), employed after blanching, on the proximate, fatty acid and mineral composition of the two most common morphs was determined. Ruspolia differens grasshoppers were harvested in Uganda and Kenya from wild swarms during the rainy periods of November–December 2016. Based on cuticular coloration, we identified three morphs, green, brown and purple, which occurred at a ratio of 65:33:2, respectively. Results indicated that these insects have a high lipid content of 36%, as well as significant protein levels ranging between 33% and 46% dry matter. Oleic acid (44%) and palmitic acid (28%) were the two most abundant fatty acids; while the presence of arachidonic acid (0.6%) and docosahexaenoic acid (0.21%) suggests that Ruspolia differens is also a source of polyunsaturated fatty acids. The observed amino acid profile showed similar trends in all morphs, and all essential amino acids were present. Calcium (896–1035 mg/100 g), potassium (779–816 mg/100 g) and phosphorus (652–685 mg/100 g) were quite high among the minerals. The presence of the trace elements iron (217–220 mg/100 g), zinc (14.2–14.6 mg/100 g), manganese (7.4–8.3 mg/100 g) and copper (1.66 mg/100 g) suggests that inclusion of these grasshoppers in human diets may aid in combatting micronutrient deficiencies. Oven-drying Ruspolia differens delivered the same nutritional quality as freeze-drying. Hence, both drying approaches can be adequately used to formulate insect-based food products without noticeable nutritional changes. PMID:28926949

  5. Quality by design: scale-up of freeze-drying cycles in pharmaceutical industry.

    PubMed

    Pisano, Roberto; Fissore, Davide; Barresi, Antonello A; Rastelli, Massimo

    2013-09-01

    This paper shows the application of mathematical modeling to scale-up a cycle developed with lab-scale equipment on two different production units. The above method is based on a simplified model of the process parameterized with experimentally determined heat and mass transfer coefficients. In this study, the overall heat transfer coefficient between product and shelf was determined by using the gravimetric procedure, while the dried product resistance to vapor flow was determined through the pressure rise test technique. Once model parameters were determined, the freeze-drying cycle of a parenteral product was developed via dynamic design space for a lab-scale unit. Then, mathematical modeling was used to scale-up the above cycle in the production equipment. In this way, appropriate values were determined for processing conditions, which allow the replication, in the industrial unit, of the product dynamics observed in the small scale freeze-dryer. This study also showed how inter-vial variability, as well as model parameter uncertainty, can be taken into account during scale-up calculations.

  6. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  7. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  8. Optimization of the aerosolization properties of an inhalation dry powder based on selection of excipients.

    PubMed

    Minne, Antoine; Boireau, Hélène; Horta, Maria Joao; Vanbever, Rita

    2008-11-01

    The aim of this study was to investigate the influence of formulation excipients on physical characteristics of inhalation dry powders prepared by spray-drying. The excipients used were a series of amino acids (glycine, alanine, leucine, isoleucine), trehalose and dipalmitoylphosphatidylcholine (DPPC). The particle diameter and the powder density were assessed by laser diffraction and tap density measurements, respectively. The aerosol behaviour of the powders was studied in a Multi-Stage Liquid Impinger. The nature and the relative proportion of the excipients affected the aerosol performance of the powders, mainly by altering powder tap density and degree of particle aggregation. The alanine/trehalose/DPPC (30/10/60 w/w/w) formulation showed optimal aerodynamic behaviour with a mass median aerodynamic diameter of 4.7 microm, an emitted dose of 94% and a fine particle fraction of 54% at an airflow rate of 100 L/min using a Spinhaler inhaler device. The powder had a tap density of 0.10 g/cm(3). The particles were spherical with a granular surface and had a 4 microm volume median diameter. In conclusion, optimization of the aerosolization properties of inhalation dry powders could be achieved by appropriately selecting the composition of the particles.

  9. Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies.

    PubMed

    Hu, Qiaobin; Gerhard, Hannah; Upadhyaya, Indu; Venkitanarayanan, Kumar; Luo, Yangchao

    2016-06-01

    The purpose of present work was to develop eugenol oil nanoemulsions using gum arabic and lecithin as food grade natural emulsifiers, and study their antimicrobial activity. In addition, our study also evaluated different drying techniques (spray drying and freeze drying) on the morphology and redispersibility of nanoemulsion powders. The optimal fabrication method, physicochemical and structural characterization, stability, and antimicrobial activity were investigated. Results showed that nanoemusions with a particle size of 103.6±7.5nm were obtained by mixing aqueous phase (0.5% gum arabic, 0.5% lecithin, w/v) and eugenol oil (1.25%, w/v), which was premixed with ethanol (as a co-surfactant), followed by high speed homogenization process. The molecular interactions among emulsifiers and eugenol were evidenced by Fourier transform infrared spectroscopy. Buchi B-90 Nano Spray Dryer was evaluated as a powerful tool to obtain ultrafine spherical powders with a size of less than 500nm, compared to flake-like aggregation obtained by freeze-drying. The dried powders exhibited excellent re-dispersibility in water and maintained their physicochemical properties after re-hydration. The nanoemulsions did not adversely affect the antimicrobial activity of eugenol against Listeria monocytogenes and Salmonella Enteritidis. Therefore, the nanoemulsions have the potential to be applied in the food industry as a food preservative or sanitizer. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance.

    PubMed

    Bosquillon, C; Lombry, C; Préat, V; Vanbever, R

    2001-02-23

    The objective of this study was to determine the effects of formulation excipients and physical characteristics of inhalation particles on their in vitro aerosolization performance, and thereby to maximize their respirable fraction. Dry powders were produced by spray-drying using excipients that are FDA-approved for inhalation as lactose, materials that are endogenous to the lungs as albumin and dipalmitoylphosphatidylcholine (DPPC); and/or protein stabilizers as trehalose or mannitol. Dry powders suitable for deep lung deposition, i.e. with an aerodynamic diameter of individual particles <3 microm, were prepared. They presented 0.04--0.25 g/cm(3) bulk tap densities, 3--5 microm geometric particle sizes, up to 90% emitted doses and 50% respirable fractions in the Andersen cascade impactor using a Spinhaler inhaler device. The incorporation of lactose, albumin and DPPC in the formulation all improved the aerosolization properties, in contrast to trehalose and the mannitol which decreased powder flowability. The relative proportion of the excipients affected aerosol performance as well. The lower the bulk powder tap density, the higher the respirable fraction. Optimization of in vitro aerosolization properties of inhalation dry powders can be achieved by appropriately selecting composition and physical characteristics of the particles.

  11. Aseptic Freeze-Dried versus Sterile Wet-Packaged Human Cadaveric Acellular Dermal Matrix in Immediate Tissue Expander Breast Reconstruction: A Propensity Score Analysis.

    PubMed

    Hanson, Summer E; Meaike, Jesse D; Selber, Jesse C; Liu, Jun; Li, Liang; Hassid, Victor J; Baumann, Donald P; Butler, Charles E; Garvey, Patrick B

    2018-05-01

    Although multiple acellular dermal matrix sources exist, it is unclear how its processing impacts complication rates. The authors compared complications between two preparations of human cadaveric acellular dermal matrix (freeze dried and ready-to-use) in immediate tissue expander breast reconstruction to analyze the effect of processing on complications. The authors retrospectively reviewed all alloplastic breast reconstructions with freeze-dried or ready-to-use human acellular dermal matrices between 2006 and 2016. The primary outcome measure was surgical-site occurrence defined as seroma, skin dehiscence, surgical-site infection, or reconstruction failure. The two groups were compared before and after propensity score matching. The authors included 988 reconstructions (freeze-dried, 53.8 percent; ready-to-use, 46.2 percent). Analysis of 384 propensity score-matched pairs demonstrated a slightly higher rate of surgical-site occurrence (21.4 percent versus 16.7 percent; p = 0.10) and surgical-site infection (9.6 percent versus 7.8 percent; p = 0.13) in the freeze-dried group than in the ready-to-use group, but the difference was not significant. However, failure was significantly higher for the freeze-dried versus ready-to-use group (7.8 percent versus 4.4 percent; p = 0.050). This is the largest study comparing the outcomes of alloplastic breast reconstruction using human acellular dermal matrix materials prepared by different methods. The authors demonstrated higher early complications with aseptic, freeze-dried matrix than with sterile ready-to-use matrix; reconstructive failure was the only outcome to achieve statistical significance. The authors conclude that acellular dermal matrix preparation has an independent impact on patient outcomes in their comparison of one company's product. Therapeutic, III.

  12. Effects of storage conditions on the stability of spray dried, inhalable bacteriophage powders.

    PubMed

    Leung, Sharon S Y; Parumasivam, Thaigarajan; Gao, Fiona G; Carter, Elizabeth A; Carrigy, Nicholas B; Vehring, Reinhard; Finlay, Warren H; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim

    2017-04-15

    This study aimed to develop inhalable powders containing phages active against antibiotic-resistant Pseudomonas aeruginosa for pulmonary delivery. A Pseudomonas phage, PEV2, was spray dried into powder matrices comprising of trehalose (0-80%), mannitol (0-80%) and l-leucine (20%). The resulting powders were stored at various relative humidity (RH) conditions (0, 22 and 60% RH) at 4°C. The phage stability and in vitro aerosol performance of the phage powders were examined at the time of production and after 1, 3 and 12 months storage. After spray drying, a total of 1.3 log titer reduction in phage was observed in the formulations containing 40%, 60% and 80% trehalose, whereas 2.4 and 5.1 log reductions were noted in the formulations containing 20% and no trehalose, respectively. No further reduction in titer occurred for powders stored at 0 and 22% RH even after 12 months, except the formulation containing no trehalose. The 60% RH storage condition had a destructive effect such that no viable phages were detected after 3 and 12 months. When aerosolised, the total lung doses for formulations containing 40%, 60% and 80% trehalose were similar (in the order of 10 5 pfu). The results demonstrated that spray drying is a suitable method to produce stable phage powders for pulmonary delivery. A powder matrix containing ≥40% trehalose provided good phage preservation and aerosol performances after storage at 0 and 22% RH at 4°C for 12 months. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Intranasal delivery of Norwalk virus-like particles formulated in an in-situ gelling, dry powder vaccine

    PubMed Central

    Velasquez, Lissette S.; Shira, Samantha; Berta, Alice N.; Kilbourne, Jacquelyn; Medi, Babu M.; Tizard, Ian; Ni, Yawei; Arntzen, Charles J.; Herbst-Kralovetz, Melissa M.

    2011-01-01

    The development of a vaccine to prevent norovirus infections has been focused on immunization at a mucosal surface, but has been limited by the low immunogenicity of self-assembling Norwalk virus-like particles (NV VLPs) delivered enterically or at nasal surfaces. Nasal immunization, which offers the advantage of ease of immunization, faces obstacles imposed by the normal process of mucociliary clearance, which limits residence time of applied antigens. Herein, we describe the use of a dry powder formulation (GelVac) of an inert in-situ gelling polysaccharide (GelSite) extracted from Aloe vera for nasal delivery of NV VLP antigen. Powder formulations, with or without NV VLP antigen, were similar in structure in dry form or when rehydrated in simulated nasal fluids. Immunogenicity of the dry powder VLP formulation was compared to equivalent antigen/adjuvant liquid formulations in animals. For the GelVac powder, we observed superior NV-specific serum and mucosal (aerodigestive and reproductive tracts) antibody responses relative to liquid formulations. Incorporation of TLR7 agonist gardiquimod in dry powder formulations did not enhance antibody responses, although its inclusion in liquid formulations did enhance VLP immunogenicity irrespective of the presence or absence of GelSite. We interpret these data as showing that GelSite-based dry powder formulations 1.) stabilize the immunogenic structural properties of VLPs and 2.) induce systemic and mucosal antibody titers which are equal or greater than those achieved by VLPs plus adjuvant in a liquid formulation. We conclude that in-situ gelation of the GelVac dry powder formulation at nasal mucosal surfaces delays mucociliary clearance and thereby prolongs VLP antigen exposure to immune effector sites. PMID:21640778

  14. Freeze-dried stallion spermatozoa: evaluation of two chelating agents and comparative analysis of three sperm DNA damage assays.

    PubMed

    Olaciregui, M; Luño, V; Martí, J I; Aramayona, J; Gil, L

    2016-11-01

    During the freeze-drying procedure, sperm DNA might become damaged by both freezing and drying stresses. Sperm DNA status can be detected using well-established assays; however, most techniques are expensive and involve elaborate protocols and equipment. Indirect assessments can provide alternative strategies. The objective of this study was to compare a simple test of DNA status using Diff-Quik (DQ) with two established procedures: acridine orange test (AOT) and sperm chromatin dispersion (SCD) on freeze-dried (FD) stallion spermatozoa. Ejaculated spermatozoa from three stallions were freeze-dried in basic medium supplemented with two different chelating agents: EGTA or EDTA. After rehydration, the spermatozoa were subjected to DNA damage detection using a SCDt, AOT and DQ stain simultaneously. The results showed that the DNA damage levels in the EGTA group were significantly lower than those in the EDTA group. AOT detected a significantly higher proportion of spermatozoa with fragmented DNA than DQ and SCD. The results of the SCD test and DQ stain exhibited a significant positive correlation for DNA fragmentation (r = 0.528), whereas a negative correlation was observed between SCD, DQ and AOT (r = -0.134 and r = -0.332 respectively). The present study shows that both the SCD test and DQ assay are effective methods for detecting FD stallion sperm DNA fragmentation, whereas using of AOT is questionable. © 2016 Blackwell Verlag GmbH.

  15. Development of Stable Influenza Vaccine Powder Formulations: Challenges and Possibilities

    PubMed Central

    Amorij, J-P.; Huckriede, A.; Wilschut, J.; Frijlink, H. W.

    2008-01-01

    Influenza vaccination represents the cornerstone of influenza prevention. However, today all influenza vaccines are formulated as liquids that are unstable at ambient temperatures and have to be stored and distributed under refrigeration. In order to stabilize influenza vaccines, they can be brought into the dry state using suitable excipients, stabilizers and drying processes. The resulting stable influenza vaccine powder is independent of cold-chain facilities. This can be attractive for the integration of the vaccine logistics with general drug distribution in Western as well as developing countries. In addition, a stockpile of stable vaccine formulations of potential vaccines against pandemic viruses can provide an immediate availability and simple distribution of vaccine in a pandemic outbreak. Finally, in the development of new needle-free dosage forms, dry and stable influenza vaccine powder formulations can facilitate new or improved targeting strategies for the vaccine compound. This review represents the current status of dry stable inactivated influenza vaccine development. Attention is given to the different influenza vaccine types (i.e. whole inactivated virus, split, subunit or virosomal vaccine), the rationale and need for stabilized influenza vaccines, drying methods by which influenza vaccines can be stabilized (i.e. lyophilization, spray drying, spray-freeze drying, vacuum drying or supercritical fluid drying), the current status of dry influenza vaccine development and the challenges for ultimate market introduction of a stable and effective dry-powder influenza vaccine. PMID:18338241

  16. A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid.

    PubMed

    Rogers, True L; Nelsen, Andrew C; Hu, Jiahui; Brown, Judith N; Sarkari, Marazban; Young, Timothy J; Johnston, Keith P; Williams, Robert O

    2002-11-01

    A novel cryogenic spray-freezing into liquid (SFL) process was developed to produce microparticulate powders consisting of an active pharmaceutical ingredient (API) molecularly embedded within a pharmaceutical excipient matrix. In the SFL process, a feed solution containing the API was atomized beneath the surface of a cryogenic liquid such that the liquid-liquid impingement between the feed and cryogenic liquids resulted in intense atomization into microdroplets, which were frozen instantaneously into microparticles. The SFL micronized powder was obtained following lyophilization of the frozen microparticles. The objective of this study was to develop a particle engineering technology to produce micronized powders of the hydrophobic drug, danazol, complexed with hydroxypropyl-beta-cyclodextrin (HPbetaCD) and to compare these SFL micronized powders to inclusion complex powders produced from other techniques, such as co-grinding of dry powder mixtures and lyophilization of bulk solutions. Danazol and HPbetaCD were dissolved in a water/tetrahydrofuran cosolvent mixture prior to SFL processing or slow freezing. Identical quantities of the API and HPbetaCD used in the solutions were co-ground in a mortar and pestle and blended to produce a co-ground physical mixture for comparison. The powder samples were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy, surface area analysis, and dissolution testing. The results provided by DSC, XRD, and FTIR suggested the formation of inclusion complexes by both slow-freezing and SFL. However, the specific surface area was significantly higher for the latter. Dissolution results suggested that equilibration of the danazol/HPbetaCD solution prior to SFL processing was required to produce the most soluble conformation of the resulting inclusion complex following SFL. SFL micronized powders exhibited better dissolution

  17. In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools.

    PubMed

    De Beer, T R M; Vercruysse, P; Burggraeve, A; Quinten, T; Ouyang, J; Zhang, X; Vervaet, C; Remon, J P; Baeyens, W R G

    2009-09-01

    The aim of the present study was to examine the complementary properties of Raman and near infrared (NIR) spectroscopy as PAT tools for the fast, noninvasive, nondestructive and in-line process monitoring of a freeze drying process. Therefore, Raman and NIR probes were built in the freeze dryer chamber, allowing simultaneous process monitoring. A 5% (w/v) mannitol solution was used as model for freeze drying. Raman and NIR spectra were continuously collected during freeze drying (one Raman and NIR spectrum/min) and the spectra were analyzed using principal component analysis (PCA) and multivariate curve resolution (MCR). Raman spectroscopy was able to supply information about (i) the mannitol solid state throughout the entire process, (ii) the endpoint of freezing (endpoint of mannitol crystallization), and (iii) several physical and chemical phenomena occurring during the process (onset of ice nucleation, onset of mannitol crystallization). NIR spectroscopy proved to be a more sensitive tool to monitor the critical aspects during drying: (i) endpoint of ice sublimation and (ii) monitoring the release of hydrate water during storage. Furthermore, via NIR spectroscopy some Raman observations were confirmed: start of ice nucleation, end of mannitol crystallization and solid state characteristics of the end product. When Raman and NIR monitoring were performed on the same vial, the Raman signal was saturated during the freezing step caused by reflected NIR light reaching the Raman detector. Therefore, NIR and Raman measurements were done on a different vial. Also the importance of the position of the probes (Raman probe above the vial and NIR probe at the bottom of the sidewall of the vial) in order to obtain all required critical information is outlined. Combining Raman and NIR spectroscopy for the simultaneous monitoring of freeze drying allows monitoring almost all critical freeze drying process aspects. Both techniques do not only complement each other, they also

  18. Chemical Composition and Antioxidant Properties of Powders Obtained from Different Plum Juice Formulations

    PubMed Central

    Michalska, Anna; Wojdyło, Aneta; Łysiak, Grzegorz P.; Figiel, Adam

    2017-01-01

    Among popular crops, plum (Prunus domestica L.) has received special attention due to its health-promoting properties. The seasonality of this fruit makes it impossible to consume it throughout the year, so new products in a powder form may offer an alternative to fresh consumption and may be used as high-quality natural food ingredients. A 100% plum (cultivar “Valor”) juice was mixed with three different concentrations of maltodextrin or subjected to sugars removal by amberlite-XAD column, and dried using the freeze, spray, and vacuum (40, 60, and 80 °C) drying techniques. The identification and quantification of phenolic acids, flavonols, and anthocyanins in plum powders was performed by LC-MS QTof and UPLC-PDA, respectively. l-ascorbic acid, hydroxymethylfurfural, and antioxidant capacity were measured by the Trolox equivalent antioxidant capacity (TEAC) ABTS and ferric reducing antioxidant potential (FRAP) methods in order to compare the influence of the drying methods on product quality. The results indicated that the profile of polyphenolic compounds in the plum juice powders significantly differed from the whole plum powders. The drying of a sugar free plum extract resulted in higher content of polyphenolic compounds, l-ascorbic acid and antioxidant capacity, but lower content of hydroxymethylfurfural, regardless of drying method applied. Thus, the formulation of plum juice before drying and the drying method should be carefully selected in order to obtain high-quality powders. PMID:28106740

  19. Whey-cheese production using freeze-dried kefir culture as a starter.

    PubMed

    Dimitrellou, D; Kourkoutas, Y; Banat, I M; Marchant, R; Koutinas, A A

    2007-10-01

    The aim of the present study was to evaluate the use of a freeze-dried kefir culture in the production of a novel type of whey-cheese similar to traditional Greek Myzithra-cheese, to achieve improvement of the quality characteristics of the final product and the extension of shelf-life. The use of kefir culture as a starter led to increased lactic acid concentrations and decreased pH values in the final product compared with whey-cheese without starter culture. The effect of the starter culture on production of aroma-related compounds responsible for cheese flavour was also studied using the solid phase microextraction gas chromatography/mass spectrometry technique. Spoilage in unsalted kefir-whey-cheese was observed on the thirteenth and the twentieth day of preservation at 10 and 5 degrees C, respectively, while the corresponding times for unsalted whey-cheese preservation were 11 and 14 days. The cheeses produced were characterized as high-quality products during the preliminary sensory evaluation. An indication of increased preservation time was attributed to the freeze-dried kefir culture, which also seemed to suppress growth of pathogens. The results suggested the use of kefir culture as a means to extend the shelf-life of dairy products with reduced or no salt content.

  20. Developments in the formulation and delivery of spray dried vaccines.

    PubMed

    Kanojia, Gaurav; Have, Rimko Ten; Soema, Peter C; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-10-03

    Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery.

  1. Developments in the formulation and delivery of spray dried vaccines

    PubMed Central

    Kanojia, Gaurav; Have, Rimko ten; Soema, Peter C.; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-01-01

    ABSTRACT Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery. PMID:28925794

  2. Retention of antioxidant capacity of vacuum microwave dried cranberry.

    PubMed

    Leusink, Gwen J; Kitts, David D; Yaghmaee, Parastoo; Durance, Tim

    2010-04-01

    In this study, cranberries were dried by vacuum-microwave drying (VMD), freeze-drying (FD), or hot air-drying (AD), to compare the effects of different drying processes on both physical changes as well as the retention of bioactive components in dried samples. Total porosity (%) and average pore radius of dehydrated cranberries were greater using VMD compared to FD and AD (P < 0.05). Crude methanol cranberry powdered extracts were fractionated by solid phase extraction (SPE) into organic acid-, total phenolics-, anthocyanin-, or proanthocyanidin-enriched extracts, respectively. The chemical composition of the 60% acidified methanol fractions contained cyanidin-3-galactoside, cyanidin-3-arabinoside, peonidin-3-galactoside, and peonidin-3-arabinoside, as assessed by HPLC. Antioxidant activities of cranberry fractions were measured using chemical ORAC and ABTS methods. The 60% acidified methanol fraction had a significantly higher (P < 0.05) antioxidant potential than the other chemical fractions, which was largely attributed to the relatively higher anthocyanin content. In general, vacuum-microwave drying and freeze-drying resulted in similar retention of anthocyanins and antioxidant activity, which were both relatively higher (P < 0.05) than that recovered from cranberries dried by hot air drying.

  3. Structural determinants of hydration, mechanics and fluid flow in freeze-dried collagen scaffolds.

    PubMed

    Offeddu, G S; Ashworth, J C; Cameron, R E; Oyen, M L

    2016-09-01

    Freeze-dried scaffolds provide regeneration templates for a wide range of tissues, due to their flexibility in physical and biological properties. Control of structure is crucial for tuning such properties, and therefore scaffold functionality. However, the common approach of modeling these scaffolds as open-cell foams does not fully account for their structural complexity. Here, the validity of the open-cell model is examined across a range of physical characteristics, rigorously linking morphology to hydration and mechanical properties. Collagen scaffolds with systematic changes in relative density were characterized using Scanning Electron Microscopy, X-ray Micro-Computed Tomography and spherical indentation analyzed in a time-dependent poroelastic framework. Morphologically, all scaffolds were mid-way between the open- and closed-cell models, approaching the closed-cell model as relative density increased. Although pore size remained constant, transport pathway diameter decreased. Larger collagen fractions also produced greater volume swelling on hydration, although the change in pore diameter was constant, and relatively small at ∼6%. Mechanically, the dry and hydrated scaffold moduli varied quadratically with relative density, as expected of open-cell materials. However, the increasing pore wall closure was found to determine the time-dependent nature of the hydrated scaffold response, with a decrease in permeability producing increasingly elastic rather than viscoelastic behavior. These results demonstrate that characterizing the deviation from the open-cell model is vital to gain a full understanding of scaffold biophysical properties, and provide a template for structural studies of other freeze-dried biomaterials. Freeze-dried collagen sponges are three-dimensional microporous scaffolds that have been used for a number of exploratory tissue engineering applications. The characterization of the structure-properties relationships of these scaffolds is

  4. Depositing nanoparticles on a silicon substrate using a freeze drying technique.

    PubMed

    Sigehuzi, Tomoo

    2017-08-28

    For the microscopic observation of nanoparticles, an adequate sample preparation is an essential part of this task. Much research has been performed for usable preparation methods that will yield aggregate-free samples. A freeze drying technique, which only requires a -80  ° C freezer and a freeze dryer, is shown to provide an on-substrate dispersion of mostly isolated nanoparticles. The particle density could be made sufficiently high for efficient observations using atomic force microscopy. Since this sandwich method is purely physical, it could be applied to deposit various nanoparticles independent of their surface chemical properties. Suspension film thickness, or the dimensionality of the suspension film, was shown to be crucial for the isolation of the particles. Silica nanoparticles were dispersed on a silicon substrate using this method and the sample properties were examined using atomic force microscopy.

  5. Powder treatment process

    DOEpatents

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  6. Powder treatment process

    DOEpatents

    Weyand, John D.

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  7. THE INTRARENAL DISTRIBUTION OF TRITIATED PARA-AMINOHIPPURIC ACID DETERMINED BY A MODIFIED TECHNIQUE OF SECTION FREEZE-DRY RADIOAUTOGRAPHY

    PubMed Central

    Bordier, Betrand; Ornstein, Leonard; Wedeen, Richard P.

    1970-01-01

    Section freeze-dry radioautography has been used to examine the intrarenal distribution of a water-soluble organic acid (para-aminohippuric acid (PAH-3H)) under constant-infusion, steady-state conditions in mouse and rat kidney in vivo. The technique described here has the following advantages: (a) Sectioning and freeze-drying are accomplished in a closed cryostat at temperatures below -40°C; (b) Handling of the section is facilitated by mounting of the section-to-be on adhesive-coated Saran Wrap prior to cutting; (c) Unembedded freeze-dried sections are attached to photographic film at ambient temperature in the dark room; (d) Fixation follows completion of radioautographic exposure and precedes photographic development; (e) Permanent close contact is maintained between tissue and film. Morphologic preservation compared favorably with that obtained by optimal fixation techniques, which, however, permit diffusion. Cellular accumulation of PAH-3H during secretion was demonstrated in the proximal tubule under steady-state conditions in vivo. The cellular concentration of PAH-3H was uniform throughout the length of the proximal tubule in mouse and rat kidney. PMID:4349130

  8. Effect of freezing, hot tumble drying and washing with eucalyptus oil on house dust mites in soft toys.

    PubMed

    Chang, Chin-Fu; Wu, Francis Fu-Sheng; Chen, Chi-Ying; Crane, Julian; Siebers, Rob

    2011-09-01

    Soft toys are a major source of house dust mites (HDM) and HDM allergens, and sleeping with soft toys is a significant risk factor for HDM sensitization. We studied three techniques to eliminate HDM from soft toys, namely freezing, hot tumble drying and washing with eucalyptus oil. Thirty-six toys (12 in each treatment group) were enumerated for live HDM by the heat escape method before and after freezing overnight, hot tumble drying for 1 h and washing in 0.2% to 0.4% eucalyptus oil. Freezing, hot tumble drying and washing with eucalyptus oil resulted in significant reductions in live HDM, an average reduction of 95.1%, 89.1% and 95.1%, respectively. Additionally, washing with eucalyptus oil resulted in a significant reduction in HDM allergens as well from a geometric mean of 9.12 μg/g to 0.37 μg/g (p = 0.033). These three HDM elimination techniques give parents of infants effective and acceptable methods of limiting HDM exposure. © 2011 John Wiley & Sons A/S.

  9. Solidification of liposomes by freeze-drying: the importance of incorporating gelatin as interior support on enhanced physical stability.

    PubMed

    Guan, Peipei; Lu, Yi; Qi, Jianping; Niu, Mengmeng; Lian, Ruyue; Wu, Wei

    2015-01-30

    The main purpose of this study was to investigate the effect of gelatin as interior support on the physical stability of freeze-dried liposomes. Anticancer agent paclitaxel (PTX) was selected as a model drug. Freeze-dried liposomes containing interior gelatin support (GLs) were prepared by thin-film dispersion/freeze-drying method. Several properties of the GLs, including entrapment efficiency, particle size and gelation temperature, were extensively characterized. Encapsulation efficiency of conventional liposomes (CLs) and liposomes containing lyoprotectants as interior support dropped to lower than 20% after reconstitution, while GLs still maintained an entrapment efficiency of over 84%. Scanning electron microscopy revealed well preserved liposomal structure of GLs after reconstitution. Meanwhile, the particle size and entrapment efficiency of GLs were also well preserved after reconstitution. In contrary, deformation of CLs and recrystallization of PTX were observed, as well as significant changes in particle size and entrapment efficiency. Taken together, interior gelatin support obviously enhanced the physical stability of liposomes against the lyophilization stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Quality characteristic of spray-drying egg white powders.

    PubMed

    Ma, Shuang; Zhao, Songning; Zhang, Yan; Yu, Yiding; Liu, Jingbo; Xu, Menglei

    2013-10-01

    Spray drying is a useful method for developing egg process and utilization. The objective of this study was to evaluate effects on spray drying condition of egg white. The optimized conditions were spraying flow 22 mL/min, feeding temperature 39.8 °C and inlet-air temperature 178.2 °C. Results of sulfydryl (SH) groups measurement indicated conformation structure have changed resulting in protein molecule occur S-S crosslinking phenomenon when heating. It led to free SH content decreased during spray drying process. There was almost no change of differential scanning calorimetry between fresh egg white and spray-drying egg white powder (EWP). For a given protein, the apparent SH reactivity is in turn influenced by the physico-chemical characteristics of the reactant. The phenomenon illustrated the thermal denaturation of these proteins was unrelated to their free SH contents. Color measurement was used to study browning level. EWP in optimized conditions revealed insignificant brown stain. Swelling capacity and scanning electron micrograph both proved well quality characteristic of spray-drying EWP. Results suggested spray drying under the optimized conditions present suitable and alternative method for egg processing industrial implementation. Egg food industrialization needs new drying method to extend shelf-life. The purpose of the study was to provide optimal process of healthy and nutritional instant spray-drying EWP and study quality characteristic of spray-drying EWP.

  11. Freeze-dried strawberry and blueberry attenuates diet-induced obesity and insulin resistance in rats by inhibiting adipogenesis and lipogenesis.

    PubMed

    Aranaz, Paula; Romo-Hualde, Ana; Zabala, María; Navarro-Herrera, David; Ruiz de Galarreta, Marina; Gil, Ana Gloria; Martinez, J Alfredo; Milagro, Fermín I; González-Navarro, Carlos J

    2017-11-15

    Obesity and type 2-diabetes are becoming a worldwide health problem, reiterating the importance of alternative therapies to tackle their progression. Here, we hypothesized that supplementation of diet with 6% w/w of a freeze-dried strawberry-blueberry (5 : 1) powder (FDSB) could exert beneficial metabolic effects on Wistar rats. FDSB-supplemented animals experienced significantly reduced body weight gain, food efficiency and visceral adiposity accumulation in two independent experiments. FDSB supplementation also contributed to lower area under the curve after an intraperitoneal GTT and reduced serum insulin levels and an insulin resistance index (IR-HOMA) in HFS diet-fed animals, together with reduced plasma MCP-1 inflammation marker concentrations. Gene expression analysis in retroperitoneal adipocytes from experiment 1 and 3T3-L1 cells showed that FDSB inhibited adipogenesis and lipogenesis through down-regulation of Pparg, Cebpa, Lep, Fasn, Scd-1 and Lpl gene expression. Untargeted metabolomics identified the cis isomer of resveratrol-3-glucoside-sulphate as a metabolite differentially increased in FDSB-treated serum samples, which corresponds to a strawberry metabolite that could be considered a serum biomarker of FDSB-intake. Our results suggest that FDSB powder might be useful for treatment/prevention of obesity-related diseases.

  12. Effect of freeze-dryer design on drying rate of an amorphous protein-formulation determined with a gravimetric technique.

    PubMed

    Gieseler, Henning; Lee, Geoffrey

    2008-01-01

    A freeze-drying balance was used to determine momentary drying-rate, m(t), of a sucrose/BSA formulation contained in a vial with varying shelf packing density, Ø2. A comparison between two different laboratory-scale freeze-dryers was made. The effects of Ø2 on m(t) differed between the two units, attributed to drying chamber design and its effects on heat transfer. At high Ø2 the differences are annulled because of the shielding effects of surrounding vials. Parallel effects of Ø2 were also found on product temperature, Tb, measured in the balance vial. Tb was used to calculate vial heat transfer coefficient, Kv. Kv was strongly reduced with increasing Ø2, but reached a plateau value at high Ø2.

  13. Aerosolization Characteristics of Dry Powder Inhaler Formulations for the Excipient Enhanced Growth (EEG) Application: Effect of Spray Drying Process Conditions on Aerosol Performance

    PubMed Central

    Son, Yoen-Ju; Longest, P. Worth; Hindle, Michael

    2013-01-01

    The aim of this study was to develop a spray dried submicrometer powder formulation suitable for the excipient enhanced growth (EEG) application. Combination particles were prepared using the Buchi Nano spray dryer B-90. A number of spray drying and formulation variables were investigated with the aims of producing dry powder formulations that were readily dispersed upon aerosolization and maximizing the fraction of submicrometer particles. Albuterol sulfate, mannitol, L-leucine, and poloxamer 188 were selected as a model drug, hygroscopic excipient, dispersibility enhancer and surfactant, respectively. Formulations were assessed by scanning electron microscopy and aerosol performance following aerosolization using an Aerolizer® dry powder inhaler (DPI). In vitro drug deposition was studied using a realistic mouth-throat (MT) model. Based on the in vitro aerosolization results, the best performing submicrometer powder formulation consisted of albuterol sulfate, mannitol, L-leucine and poloxamer 188 in a ratio of 30:48:20:2, containing 0.5% solids in a water:ethanol (80:20% v/v) solution which was spray dried at 70 °C. The submicrometer particle fraction (FPF1μm/ED) of this final formulation was 28.3% with more than 80% of the capsule contents being emitted during aerosolization. This formulation also showed 4.1% MT deposition. The developed combination formulation delivered a powder aerosol developed for the EEG application with high dispersion efficiency and low MT deposition from a convenient DPI device platform. PMID:23313343

  14. Optimization of the freeze-drying cycle: adaptation of the pressure rise analysis model to non-instantaneous isolation valves.

    PubMed

    Chouvenc, P; Vessot, S; Andrieu, J; Vacus, P

    2005-01-01

    The principal aim of this study is to extend to a pilot freeze-dryer equipped with a non-instantaneous isolation valve the previously presented pressure rise analysis (PRA) model for monitoring the product temperature and the resistance to mass transfer of the dried layer during primary drying. This method, derived from the original MTM method previously published, consists of interrupting rapidly (a few seconds) the water vapour flow from the sublimation chamber to the condenser and analysing the resulting dynamics of the total chamber pressure increase. The valve effect on the pressure rise profile observed during the isolation valve closing period was corrected by introducing in the initial PRA model a valve characteristic function factor which turned out to be independent of the operating conditions. This new extended PRA model was validated by implementing successively the two types of valves and by analysing the pressure rise kinetics data with the corresponding PRA models in the same operating conditions. The coherence and consistency shown on the identified parameter values (sublimation front temperature, dried layer mass transfer resistance) allowed validation of this extended PRA model with a non-instantaneous isolation valve. These results confirm that the PRA method, with or without an instantaneous isolation valve, is appropriate for on-line monitoring of product characteristics during freeze-drying. The advantages of PRA are that the method is rapid, non-invasive, and global. Consequently, PRA might become a powerful and promising tool not only for the control of pilot freeze-dryers but also for industrial freeze-dryers equipped with external condensers.

  15. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters.

    PubMed

    Nemoto, Junji; Saito, Tsuguyuki; Isogai, Akira

    2015-09-09

    Simple freeze-drying of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibril (TOCN) dispersions in water/tert-butyl alcohol (TBA) mixtures was conducted to prepare TOCN aerogels as high-performance air filter components. The dispersibility of the TOCNs in the water/TBA mixtures, and the specific surface area (SSA) of the resulting TOCN aerogels, was investigated as a function of the TBA concentration in the mixtures. The TOCNs were homogeneously dispersed in the water/TBA mixtures at TBA concentrations up to 40% w/w. The SSAs of the TOCN aerogels exceeded 300 m2/g when the TBA concentration in the aqueous mixtures was in the range from 20% to 50% w/w. When a commercially available, high-efficiency particulate air (HEPA) filter was combined with TOCN/water/TBA dispersions prepared using 30% TBA, and the product was freeze-dried, the resulting TOCN aerogel-containing filters showed superior filtration properties. This was because nanoscale, spider-web-like networks of the TOCNs with large SSAs were formed within the filter.

  16. Anthrax Vaccine Powder Formulations for Nasal Mucosal Delivery

    DTIC Science & Technology

    2005-08-04

    inhalational anthrax can be achieved in a rabbit model, by intranasal delivery of a powder rPA formulation. Here we describe the preformulation and...fluorescence. Based on these stability profiles, spray freeze-dried (SFD) formulations were prepared at pH 7–8 using trehalose as stabilizer and a CpG...gas- trointestinal, and pulmonary routes. The inhaled form is of particular concern considering its de- monstrated use as a bioweapon.1–4 Inhalational

  17. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating.

    PubMed

    Huang, Zhonghui; Scicolone, James V; Han, Xi; Davé, Rajesh N

    2015-01-30

    The improvements in the flow and packing of fine pharmaceutical powder blends due to dry coating of micronized acetaminophen (mAPAP, ∼11μm), a model poorly flowing drug, are quantified. Poor flow and packing density of fine excipients (∼20μm) allowed testing the hypothesis that dry coating of cohesive API may counteract poor flow and packing of fine pharmaceutical powder blends. Further, fine excipients could improve compaction and reduce segregation tendency. It was found that flow function coefficient (FFC) and bulk density enhancements for 10%, 30%, and 60% (w/w), API loading blends with dry coated API are significantly higher than those without coated silica. At the highest API loading, for which coarser excipients were also used as reference, the flow and packing of dry coated mAPAP blends were significantly increased regardless of the excipient particle size, exceeding those of a well compacting excipient, Avicel 102. In addition, tensile strength of tablets with fine excipients was significantly higher, indicating improved compactibility. These results show for the first time that dry coating of fine, cohesive API powder leads to significantly improved flow and packing of high API loading blends consisting of fine excipients, while achieving improved tablet compactibility, suggesting suitability for direct compaction. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Influence of coating material on the flowability and dissolution of dry-coated fine ibuprofen powders.

    PubMed

    Qu, Li; Zhou, Qi Tony; Denman, John A; Stewart, Peter J; Hapgood, Karen P; Morton, David A V

    2015-10-12

    This study investigates the effects of a variety of coating materials on the flowability and dissolution of dry-coated cohesive ibuprofen powders, with the ultimate aim to use these in oral dosage forms. A mechanofusion approach was employed to apply a 1% (w/w) dry coating onto ibuprofen powder with coating materials including magnesium stearate (MgSt), L-leucine, sodium stearyl fumarate (SSF) and silica-R972. No significant difference in particle size or shape was measured following mechanofusion with any material. Powder flow behaviours characterised by the Freeman FT4 system indicated coatings of MgSt, L-leucine and silica-R972 produced a notable surface modification and substantially improved flow compared to the unprocessed and SSF-mechanofused powders. ToF-SIMS provided a qualitative measure of coating extent, and indicated a near-complete layer on the drug particle surface after dry coating with MgSt or silica-R972. Of particular note, the dissolution rates of all mechanofused powders were enhanced even with a coating of a highly hydrophobic material such as magnesium stearate. This surprising increase in dissolution rate of the mechanofused powders was attributed to the lower cohesion and the reduced agglomeration after mechanical coating. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Synthesis of ITO Powder by Dry Process and Lifetime Characteristics of the ITO Target Fabricated with its Powder

    NASA Astrophysics Data System (ADS)

    Takahashi, Seiichiro; Itoh, Hironori; Komatsu, Ryuichi

    Lifetime of an indium tin oxide (ITO) target is an important characteristic in the production of liquid crystal displays (LCDs). Increasing the sintering density of the ITO target is assumed to lead to an increased lifetime. So far, it has been clarified that the carbon concentration in In2O3 powder, the raw material of ITO targets, influences remarkably the target lifetime. In this study, with the aim of reducing the concentration of carbon in In2O3 powder, the synthesis of In2O3 powder containing dissolved Sn by a dry process was performed.

  20. Effects of protectant and rehydration conditions on the survival rate and malolactic fermentation efficiency of freeze-dried Lactobacillus plantarum JH287.

    PubMed

    Lee, Sae-Byuk; Kim, Dong-Hwan; Park, Heui-Dong

    2016-09-01

    In this study, Lactobacillus plantarum JH287 was used as a malolactic fermentation starter in Campbell Early wine production. L. plantarum JH287 was first lyophilized, and the malolactic fermentation potential of freeze-dried L. plantarum JH287 was investigated. Different protective media and rehydration conditions were tested to improve the survival rate of freeze-dried L. plantarum JH287. Optimal protective medium contained 10 % sorbitol and 10 % skim milk. The optimal rehydration condition was a 1-h rehydration time conducted in the same protective media, and the combination of these two methods produced a survival rate of 86.37 %. In addition, a 77.71 % survival rate was achieved using freeze-dried samples that were stored at 4 °C for 2 months. Freeze-dried L. plantarum JH287 and Saccharomyces cerevisiae Fermivin were used to inoculate the Campbell Early grape must to decrease its malic acid content. Using this mixed-fermentation method, wine showed a decrease in malic acid content after 9 days of fermentation. GC-MS analysis detected 15 volatile ester compounds in the wine. A sensory evaluation showed that the taste and aroma of mix-fermented wine were better than those of the control that had not been inoculated with L. plantarum JH287.

  1. Effects of ultrasonic pretreatments on quality, energy consumption and sterilization of barley grass in freeze drying.

    PubMed

    Cao, Xiaohuang; Zhang, Min; Mujumdar, Arun S; Zhong, Qifeng; Wang, Zhushang

    2018-01-01

    Barley grass is a plant resource for rehabilitation therapy. Its processing requires retaining nutrition well for rehabilitation cure of consumers. To meet the aim as well as low energy consumption and microbiological safety of products, ultrasonic treatments (UT) were applied to bathing materials at different power levels (10, 30, 45, 60W/L) for 10mins. After treatments, the bathed barley grass (100g) was freeze-dried under vacuum -0.09MPa with fixed power of 2W/g. Parameters of color, microbial colony, energy consumption, glass transition temperature, moisture content, water activity, taste substances, contents of flavonoid and chlorophyll were determined after drying. In contrast with no treatment case, UT (45W/L) decreased drying time by 14% and decreased energy consumption by 19%; UT (60W/L) decreased total microbial colonies by 33%. Also, UT (30W/L) yielded contents of flavonoid (9.2/kg) and chlorophyll (10.5g/kg) of dried sample; UT power (10W/L) yielded the highest L ∗ (51.5) and the lowest a ∗ (-9.3) value. Simultaneously, UT leads to a higher glass transition temperature (Tg), lower water activity and produces less sourness and bitterness of dried products. Ultra-sonication is an alternative to improve quality, flavor and energy consumption of barley grass in freeze drying. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effects of cryoprotectants on the viability and activity of freeze dried recombinant yeasts as novel oral drug delivery systems assessed by an artificial digestive system.

    PubMed

    Blanquet, Stéphanie; Garrait, Ghislain; Beyssac, Erick; Perrier, Céline; Denis, Sylvain; Hébrard, Géraldine; Alric, Monique

    2005-09-01

    The aim of this study was to investigate, in a gastric-small intestinal system TIM-1, the effect of cryoprotectants on the survival of freeze-dried Saccharomyces cerevisiae expressing the heterologous P450 73A1 and their ability to convert trans-cinnamic acid into p-coumaric acid. Yeasts were lyophilized in suspensions of trehalose, maltose, lactose, or a milk proteins/trehalose mix. Freeze-dried or native yeasts and trans-cinnamic acid were introduced simultaneously into TIM-1 at the beginning of digestion. Yeast survival rate was evaluated by cell counting in the ileal effluents. P450 73A1 activity was followed by HPLC assay of p-coumaric acid. Freeze-dried yeasts showed high tolerance to digestive conditions. Nevertheless, their survival rate was lower than that of non-dried cells (around 80% whatever the protective agent vs. 96%). The ability of recombinant freeze-dried S. cerevisiae to perform a bioconversion reaction in the digestive tract was shown with all the protectants. The highest trans-cinnamic acid conversion rate (24 vs. 41% for native yeasts) was obtained with the milk proteins/trehalose mix. These results show that freeze-drying might be considered for the pharmaceutical formulation of new drug delivery systems based on orally administered recombinant yeasts and that TIM-1 could be a helpful tool for the pre-screening of oral dosage forms.

  3. Postharvest Ultrasound-Assisted Freeze-Thaw Pretreatment Improves the Drying Efficiency, Physicochemical Properties, and Macamide Biosynthesis of Maca (Lepidium meyenii).

    PubMed

    Chen, Jin-Jin; Gong, Peng-Fei; Liu, Yi-Lan; Liu, Bo-Yan; Eggert, Dawn; Guo, Yuan-Heng; Zhao, Ming-Xia; Zhao, Qing-Sheng; Zhao, Bing

    2018-04-01

    A novel technique of ultrasound-assisted freeze-thaw pretreatment (UFP) was developed to improve the drying efficiency of maca and bioactive amide synthesis in maca. The optimal UFP conditions are ultrasonic processing 90 min at 30 °C with 6 freeze-thaw cycles. Samples with freeze-thaw pretreatment (FP), ultrasound pretreatment (UP), and UFP were prepared for further comparative study. A no pretreatment (NP) sample was included as a control. The results showed that UFP improved the drying efficiency of maca slices, showing the highest effective moisture diffusivity (1.75 × 10 -9 m 2 /s). This result was further supported by low-field nuclear magnetic resonance (LF-NMR) analysis and scanning electron microscopy (SEM). The rehydration capacity and protein content of maca slices were improved by UFP. More importantly, contents of bioactive macamides and their biosynthetic precursors were increased in 2.5- and 10-fold, respectively. In conclusion, UFP is an efficient technique to improve drying efficiency, physicochemical properties, and bioactive macamides of maca, which can be applied in the industrial manufacture of maca products. © 2018 Institute of Food Technologists®.

  4. Solidification drug nanosuspensions into nanocrystals by freeze-drying: a case study with ursodeoxycholic acid.

    PubMed

    Ma, Yue-Qin; Zhang, Zeng-Zhu; Li, Gang; Zhang, Jing; Xiao, Han-Yang; Li, Xian-Fei

    2016-03-01

    To elucidate the effect of solidification processes on the redispersibility of drug nanocrystals (NC) during freeze-drying, ursodeoxycholic acid (UDCA) nanosuspensions were transformed into UDCA-NC via different solidification process included freezing and lyophilization. The effect of different concentrations of stabilizers and cryoprotectants on redispersibility of UDCA-NC was investigated, respectively. The results showed that the redispersibility of UDCA-NC was RDI-20 °C < RDI-80 °C < RDI-196 °C during freezing, which indicated the redispersibility of UDCA-NC at the conventional temperature was better more than those at moderate and rigorous condition. Compared to the drying strengthen, the employed amount and type of stabilizers more dramatically affected the redispersibility of UDCA-NC during lyophilization. The hydroxypropylmethylcellulose and PVPK30 were effective to protect UDCA-NC from damage during lyophilization, which could homogeneously adsorb into the surface of NC to prevent from agglomerates. The sucrose and glucose achieved excellent performance that protected UDCA-NC from crystal growth during lyophilization, respectively. It was concluded that UDCA-NC was subjected to agglomeration during solidification transformation, and the degree of agglomeration suffered varied with the type and the amounts of stabilizers used, as well as different solidification conditions. The PVPK30-sucrose system was more effective to protect UDCA-NC from the damage during solidification process.

  5. Hazardous Waste Water Remediation by Ecoresin-Dry Cow Dung Powder

    NASA Astrophysics Data System (ADS)

    Bagla, Hemlata; Barot, Nisha

    2013-04-01

    Water, the matter, matrix, medium and the mother of our life, is indeed one of the drivers of Nature. Through water cycle only the intra and inter equilibrium is maintained constantly between entire 'green' and 'blue'. Unfortunately, with each successive epoch of industrialization and urbanization, human societies have produced non-biodegradable waste hulk with far beyond handling capacities of mankind. At this juncture the very need is to appreciate and move towards the cost as well as time effective scientific alternatives for the removal of aqueous heavy metal pollutants. Green chemistry advocates the utilization of naturally available bio-resins which are environmentally benign alternative to current synthetic materials and technologies employed for waste water treatment. This explicit investigation aims to explore Dry Cow dung powder, DCP, a natural biosorbent as a green and clean alternative for the aqueous waste water treatment. It is naturally available bio-organic, complex, polymorphic humified fecal matter of cow and is enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic - aromatic species such as 'Humic acid'(HA). The HA has been successfully extracted by authors from DCP and this piece of work has been published in the International Journal [1]. We have developed simple, efficient and eco-friendly method for the removal of aqueous heavy metal pollutant such as Cr(VI) [2], Cd(II), Cr(III) [3] and Hg(II) as well radiotoxic 90Sr(II) [4], employing DCP. DCP is employed without any pre or post treatment. Being freely and easily available DCP has an edge over processed natural adsorbent considering their cost, time and energy efficiency. In nutshell we have to remember that prevention is better than the cure. If we fail to meet this, the situation will surely augment which will drain our water, our life, to slaughters knife..! Reference: 1. H.K.Bagla, N.S.Barot, Soil Amendement by Green Supplement: Dry Cowdung powder, EGUGA - 11

  6. Improved tretinoin photostability in a topical nanomedicine replacing original liquid suspension with spray-dried powder with no loss of effectiveness.

    PubMed

    Marchiori, M C L; Rascovetzki, R H; Ourique, A F; Rigo, L A; Silva, C B; Beck, R C R

    2013-04-01

    The use of spray-dried powders containing tretinoin-loaded nanocapsules instead of the original liquid suspension, aimed at the preparation of dermatological nanomedicines with improved photostability, was investigated. Powders were prepared using lactose as a drying adjuvant. Hydrogels were prepared using two approaches: dispersing Carbopol Ultrez 10 in an aqueous redispersion of the powder or incorporating the powder in previously formed hydrogels. The photodegradation of tretinoin in hydrogels prepared with the powders showed similar half-life times (around 19.5 h) compared to preparations with the original liquid nanocapsules (20.7 ± 1.4 h), regardless of the preparation approach. In addition, the topical nanomedicines prepared with the spray-dried powders presented a significant improvement in tretinoin photostability compared to the formulation containing the non-encapsulated drug. This study verified that the addition of the spray-dried powders containing tretinoin-loaded lipid-core nanocapsules to hydrogels did not influence the photoprotection of the drug compared with the preparation procedure using the original liquid suspension.

  7. Synergistic combination dry powders for inhaled antimicrobial therapy

    NASA Astrophysics Data System (ADS)

    Heng, Desmond; Lee, Sie Huey; Teo, Jeanette; Ng, Wai Kiong; Chan, Hak-Kim; Tan, Reginald B. H.

    2013-06-01

    Combination products play an important role in medicine as they offer improved clinical effectiveness, enhanced patient adherence, and reduced administrative costs. In combination antimicrobial therapy, the desired outcome is to extend the antimicrobial spectrum and to achieve a possible synergistic effect. However, adverse antagonistic species may sometimes emerge from such combinations, leading to treatment failure. Therefore, it is crucial to screen the drug candidates for compatibility and possible antagonistic interactions. This work aims to develop a novel synergistic dry powder inhaler (DPI) formulation for antimicrobial combination therapy via the pulmonary route. Binary and ternary combinations were prepared via spray drying on a BUCHI® Nano Spray Dryer B-90. All powders were within the respirable size range, and were consisted of spherical particles that were slightly corrugated. The powers yielded fine particle fractions (of the loaded dose) of over 40% when dispersed using an Aerolizer® DPI at 60 L/min. Time-kill studies carried out against common respiratory tract pathogenic bacteria Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumonia and Acinetobacter baumannii at 1x the minimum inhibitory concentration (MIC) over 24 hours revealed no antagonistic behavior for both combinations. While the interactions were generally found to be indifferent, a favorable synergistic effect was detected in the binary combination when it was tested against Pseudomonas aeruginosa bacteria.

  8. Process analytical technologies (PAT) in freeze-drying of parenteral products.

    PubMed

    Patel, Sajal Manubhai; Pikal, Michael

    2009-01-01

    Quality by Design (QbD), aims at assuring quality by proper design and control, utilizing appropriate Process Analytical Technologies (PAT) to monitor critical process parameters during processing to ensure that the product meets the desired quality attributes. This review provides a comprehensive list of process monitoring devices that can be used to monitor critical process parameters and will focus on a critical review of the viability of the PAT schemes proposed. R&D needs in PAT for freeze-drying have also been addressed with particular emphasis on batch techniques that can be used on all the dryers independent of the dryer scale.

  9. Limonene encapsulation in freeze dried gellan systems.

    PubMed

    Evageliou, Vasiliki; Saliari, Dimitra

    2017-05-15

    The encapsulation of limonene in freeze-dried gellan systems was investigated. Surface and encapsulated limonene content was determined by measurement of the absorbance at 252nm. Gellan matrices were both gels and solutions. For a standard gellan concentration (0.5wt%) gelation was induced by potassium or calcium chloride. Furthermore, gellan solutions of varying concentrations (0.25-1wt%) were also studied. Limonene was added at two different concentrations (1 and 2mL/100g sample). Gellan gels encapsulated greater amounts of limonene than solutions. Among all gellan gels, the KCl gels had the greater encapsulated limonene content. However, when the concentration of limonene was doubled in these KCl gels, the encapsulated limonene decreased. The surface limonene content was significant, especially for gellan solutions. The experimental conditions and not the mechanical properties of the matrices were the dominant factor in the interpretation of the observed results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of Freeze-dried Mulberry on Antioxidant Activities and Fermented Characteristics of Yogurt during Refrigerated Storage.

    PubMed

    Sung, Jung-Min; Kim, Young-Boong; Kum, Jun-Seok; Choi, Yun-Sang; Seo, Dong-Ho; Choi, Hyun-Wook; Park, Jong-Dae

    2015-01-01

    This study investigated the effect of added freeze-dried mulberry fruit juice (FDMJ) (1, 3 and 5%) on the antioxidant activity and fermented characteristic of yogurt during refrigerated storage. A decrease in pH of yogurt and increase in acidity was observed during fermentation. The yogurts with FDMJ exhibited faster rate of pH reduction than control. Initial lactic acid bacteria count of yogurt was 6.49-6.94 Log CFU/g and increased above 9 Log CFU/g in control and 1% in FDMJ yogurt for 24 h. The total polyphenol and anthocyanin content of FDMJ yogurt was higher than that of control due to the presence of phytochemical contents in mulberry. Moreover, antioxidant activity such as DPPH and reducing power was highest 5% FDMJ yogurt. During cold storage, pH decreased or remained constant in all yogurts with values ranging from 4.08 to 4.78 units. In sensory evaluation, the score of 1% FDMJ yogurt was ranked higher when compared with other yogurts. It is proposed that mulberry fruit juice powder can be used to improve sensory evaluation and enhance functionality of yogurt.

  11. Effects of Freeze-dried Mulberry on Antioxidant Activities and Fermented Characteristics of Yogurt during Refrigerated Storage

    PubMed Central

    2015-01-01

    This study investigated the effect of added freeze-dried mulberry fruit juice (FDMJ) (1, 3 and 5%) on the antioxidant activity and fermented characteristic of yogurt during refrigerated storage. A decrease in pH of yogurt and increase in acidity was observed during fermentation. The yogurts with FDMJ exhibited faster rate of pH reduction than control. Initial lactic acid bacteria count of yogurt was 6.49-6.94 Log CFU/g and increased above 9 Log CFU/g in control and 1% in FDMJ yogurt for 24 h. The total polyphenol and anthocyanin content of FDMJ yogurt was higher than that of control due to the presence of phytochemical contents in mulberry. Moreover, antioxidant activity such as DPPH and reducing power was highest 5% FDMJ yogurt. During cold storage, pH decreased or remained constant in all yogurts with values ranging from 4.08 to 4.78 units. In sensory evaluation, the score of 1% FDMJ yogurt was ranked higher when compared with other yogurts. It is proposed that mulberry fruit juice powder can be used to improve sensory evaluation and enhance functionality of yogurt. PMID:26877641

  12. Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading.

    PubMed

    Han, Xi; Ghoroi, Chinmay; Davé, Rajesh

    2013-02-14

    Motivated by our recent study showing improved flow and dissolution rate of the active pharmaceutical ingredient (API) powders (20 μm) produced via simultaneous micronization and surface modification through continuous fluid energy milling (FEM) process, the performance of blends and direct compacted tablets with high drug loading is examined. Performance of 50 μm API powders dry coated without micronization is also considered for comparison. Blends of micronized, non-micronized, dry coated or uncoated API powders at 30, 60 and 70% drug loading, are examined. The results show that the blends containing dry coated API powders, even micronized ones, have excellent flowability and high bulk density compared to the blends containing uncoated API, which are required for direct compaction. As the drug loading increases, the difference between dry coated and uncoated blends is more pronounced, as seen in the proposed bulk density-FFC phase map. Dry coating led to improved tablet compactibility profiles, corresponding with the improvements in blend compressibility. The most significant advantage is in tablet dissolution where for all drug loadings, the t(80) for the tablets with dry coated APIs was well under 5 min, indicating that this approach can produce nearly instant release direct compacted tablets at high drug loadings. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Physical quality characteristics of the microwave-dried breadfruit powders due to different processing conditions

    NASA Astrophysics Data System (ADS)

    Taruna, I.; Hakim, A. L.; Sutarsi

    2018-03-01

    Production of breadfruit powder has been an option to make easy its uses in various food processing. Accordingly, there is a need recently to apply advanced drying method, i.e. microwave drying, for improving quality since conventional methods produced highly variable product quality and required longer process. The present work was aimed to study the effect of microwave power and grinding time on physical quality of breadfruit powders. The experiment was done initially by drying breadfruit slices in a microwave dryer at power level of 420, 540, and 720 W and then grinding for 3, 5, and 7 min to get powdery product of less than 80 mesh. The physical quality of breadfruit powders were measured in terms of fineness modulus (FM), average particle size (D), whiteness (WI), total color difference (ΔE), water absorption (Wa), oil absorption (La), bulk density (ρb) and consistency gel (Gc). The results showed that physical quality of powders and its ranged-values included the FM (2.08-2.62), D (0.44-0.68 mm), WI (75.2-77.9), ΔE (7.4-10.5), Wa (5.5-6.2 ml/g), La (0.7-0.9 ml/g), ρb (0.62-0.70 g/cm3) and Gc (41.3-46.8 mm). The experiment revealed that variation of microwave power and grinding time affected significantly the quality of the breadfruit powders. However, microwave power was more dominant factor to affect quality of breadfruit powder in comparison to the grinding time.

  14. Dielectric properties of dried vegetable powders and their temperature profile during radio frequency heating

    USDA-ARS?s Scientific Manuscript database

    Recently, Salmonella contamination was identified in low-moisture foods including dried vegetable powder. Radio Frequency (RF) dielectric heating is a potential alternative pasteurization method with short heating time. Dielectric properties of broccoli powder with 6.9, 9.1, 12.2, and 14.9%, w. b....

  15. Characterization and in vitro evaluation of freeze-dried microparticles composed of granisetron-cyclodextrin complex and carboxymethylcellulose for intranasal delivery.

    PubMed

    Cho, Hyun-Jong; Balakrishnan, Prabagar; Shim, Won-Sik; Chung, Suk-Jae; Shim, Chang-Koo; Kim, Dae-Duk

    2010-11-15

    The aim of this study was to prepare microparticles (MPs) of granisetron (GRN) in combination with hydroxypropyl-β-cyclodextrin (HP-β-CD) and sodium carboxymethylcellulose (CMC-Na) by the simple freeze-drying method for intranasal delivery. The composition of MPs was determined from the phase-solubility study of GRN in various CDs. Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD) analysis and differential scanning calorimetry (DSC) studies were performed to evaluate possible interactions between GRN and excipients. The results indicated the formation of inclusion complex between GRN and CD, and the conversion of drug into amorphous state. The in vitro release of GRN from MPs was determined in phosphate buffered saline (pH 6.4) at 37°C. Cytotoxicity of the MPs and in vitro permeation study were conducted by using primary human nasal epithelial (HNE) cells and their monolayer system cultured by air-liquid interface (ALI) method, respectively. The MPs showed significantly higher GRN release profile compared to pure GRN. Moreover, the prepared MPs showed significantly lower cytotoxicity and higher permeation profile than that of GRN powder (p<0.05). These results suggested that the MPs composed of GRN, HP-β-CD and CMC-Na represent a simple and new GRN intranasal delivery system as an alternative to the oral and intravenous administration of GRN. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Recent advances in drying and dehydration of fruits and vegetables: a review.

    PubMed

    Sagar, V R; Suresh Kumar, P

    2010-01-01

    Fruits and vegetables are dried to enhance storage stability, minimize packaging requirement and reduce transport weight. Preservation of fruits and vegetables through drying based on sun and solar drying techniques which cause poor quality and product contamination. Energy consumption and quality of dried products are critical parameters in the selection of drying process. An optimum drying system for the preparation of quality dehydrated products is cost effective as it shortens the drying time and cause minimum damage to the product. To reduce the energy utilization and operational cost new dimensions came up in drying techniques. Among the technologies osmotic dehydration, vacuum drying, freeze drying, superheated steam drying, heat pump drying and spray drying have great scope for the production of quality dried products and powders.

  17. Removal of polycyclic aromatic hydrocarbons from soil using a composite material containing iron and activated carbon in the freeze-dried calcium alginate matrix: Novel soil cleanup technique.

    PubMed

    Funada, Mako; Nakano, Takeshi; Moriwaki, Hiroshi

    2018-06-05

    A novel clean-up technology to remove polycyclic aromatic hydrocarbons (PAHs) from solid samples by magnetic separation using a composite containing iron powder as a magnetic material and activated carbon as an adsorbent in the freeze-dried calcium alginate matrix (Fe-AC-alg) has been developed. The Fe-AC-alg powder (50 mg), mixed with 1.0 g of glass beads having 12 kinds of adsorbed PAHs, was shaken without adding solvents at 300 rpm. After shaking, the Fe-AC-alg powder was separated using a permanent magnet. The quantity of the PAHs extracted from the glass beads treated by this method was determined. The removal (%) of the PAHs was over 96%. A roadside soil sample (10 g) was mixed with the Fe-AC-alg (1.0 g) for 2 weeks. The removal (%) of benzo[a]pyrene from the sample by the presented technique was 78%. The toxic equivalent concentration (Σ BaP eq ) for the sample decreased from 0.27 to 0.10 mg kg -1 by this method. The presented method is very simple, economical, and environment-friendly. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. The effect of inhaling a dry powder of sodium chloride on the airways of asthmatic subjects.

    PubMed

    Anderson, S D; Spring, J; Moore, B; Rodwell, L T; Spalding, N; Gonda, I; Chan, K; Walsh, A; Clark, A R

    1997-11-01

    Wet aerosols of 4.5% sodium chloride (NaCl) are often used to assess the bronchial responsiveness associated with asthma. We questioned whether dry NaCl could be used as an alternative. Dry powder NaCl was inhaled from capsules containing either 5, 10, 20 or 40 mg to a cumulative dose of 635 mg. The powder was delivered via an Inhalator or Halermatic. The airway sensitivity to the dry and wet NaCl was compared in 24 patients with asthma aged 19-39 yrs. All subjects responded to both preparations and the geometric mean (95% confidence intervals) for the provocative dose of NaCl causing forced expiratory volume in one second (FEV1) to fall 20% from baseline (PD[20,NaCl]) for dry NaCl was 103 mg (68-157) versus 172 mg (102-292), p<0.03 for the wet NaCl. The response to dry NaCl was reproducible and on repeat challenge the PD20 was 108 mg (75-153). The mean maximum fall in FEV1 was approximately 25% on each of the two test days. Spontaneous recovery occurred within 60 min after challenge with dry NaCl and within 5 min after bronchodilator. There were no serious side-effects requiring medical attention, however some patients coughed on inhalation of the 40 mg dose and three gagged. Arterial oxygen saturation remained within normal limits. We conclude that a suitably prepared dry powder of sodium chloride could potentially replace wet sodium chloride to assess bronchial responsiveness in patients with asthma, but further studies are required to establish the long-term stability of the dry powder preparation.

  19. Controlled nucleation in freeze-drying: effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate.

    PubMed

    Konstantinidis, Alex K; Kuu, Wei; Otten, Lori; Nail, Steven L; Sever, Robert R

    2011-08-01

    A novel and scalable method has been developed to enable control of the ice nucleation step for the freezing process during lyophilization. This method manipulates the chamber pressure of the freeze dryer to simultaneously induce nucleation in all product vials at a desired temperature. The effects of controlled nucleation on the drying rate of various formulations including 5% (w/w) mannitol, 5% (w/w) sucrose, and a mixture of 3% (w/w) mannitol and 2% (w/w) sucrose were studied. For a 5% (w/w) mannitol, uncontrolled ice nucleation occurred randomly at product temperatures between -8.0°C and -15.9°C as the vials were cooled to -40°C. Controlled ice nucleation was achieved at product temperatures between -2.3°C and -3.7°C. The effect of nucleation control on the effective pore radius (r(e) ) of the cake was determined from the product temperature profiles using a pore diffusion model in combination with a nonlinear parameter estimation approach reported earlier. Results show that the value of r(e) for 5% (w/w) mannitol was enlarged from 13 to 27 μm by uniformly inducing nucleation at higher temperatures. Applying the resistance parameters obtained from the pore diffusion model for 5% (w/w) mannitol, optimized cycles were theoretically generated and experimentally tested, resulting in a 41% reduction in primary drying time. Copyright © 2011 Wiley-Liss, Inc.

  20. Production of spray-dried honey jackfruit (Artocarpus heterophyllus) powder from enzymatic liquefied puree.

    PubMed

    Wong, Chen Wai; Tan, Hong Hock

    2017-02-01

    This paper presents the enzymatic liquefaction process for honey jackfruit optimized with Pectinex ® Ultra SP-L and Celluclast ® 1.5 L individually or in combinations at different concentrations (0-2.5% v/w) and incubation time (0-2.5 h). Treatment with combinations of enzymes showed a greater effect in the reduction of viscosity (83.9-98.8%) as compared to single enzyme treatment (64.8-87.3%). The best parameter for enzymatic liquefaction was obtained with 1.0% (v/w) Pectinex ® Ultra SP-L and 0.5% (v/w) Celluclast ® 1.5 L for 1.5 h. Spray drying process was carried out using different inlet temperatures (140-180 °C) and maltodextrin concentrations (10-30% w/w). Results indicated that the spray-dried honey jackfruit powder produced at 160 °C with 30% w/w maltodextrin gave the highest product yield (66.90%) with good powder qualities in terms of water activity, solubility, moisture content, hygroscopicity, color and bulk density. The spray-dried honey jackfruit powder could potentially be incorporated into various food products.

  1. Formulation of a dry powder influenza vaccine for nasal delivery.

    PubMed

    Garmise, Robert J; Mar, Kevin; Crowder, Timothy M; Hwang, C Robin; Ferriter, Matthew; Huang, Juan; Mikszta, John A; Sullivan, Vincent J; Hickey, Anthony J

    2006-03-10

    The purpose of this research was to prepare a dry powder vaccine formulation containing whole inactivated influenza virus (WIIV) and a mucoadhesive compound suitable for nasal delivery. Powders containing WIIV and either lactose or trehalose were produced by lyophilization. A micro-ball mill was used to reduce the lyophilized cake to sizes suitable for nasal delivery. Chitosan flakes were reduced in size using a cryo-milling technique. Milled powders were sieved between 45 and 125 microm aggregate sizes and characterized for particle size and distribution, morphology, and flow properties. Powders were blended in the micro-ball mill without the ball. Lyophilization followed by milling produced irregularly shaped, polydisperse particles with a median primary particle diameter of approximately 21 microm and a yield of approximately 37% of particles in the 45 to 125 microm particle size range. Flow properties of lactose and trehalose powders after lyophilization followed by milling and sieving were similar. Cryo-milling produced a small yield of particles in the desired size range (<10%). Lyophilization followed by milling and sieving produced particles suitable for nasal delivery with different physicochemical properties as a function of processing conditions and components of the formulation. Further optimization of particle size and morphology is required for these powders to be suitable for clinical evaluation.

  2. Antibacterial Loaded Spray Dried Chitosan Polyelectrolyte Complexes as Dry Powder Aerosol for the Treatment of Lung Infections

    PubMed Central

    Mishra, Brahmeshwar; Mishra, Madhusmita; Yadav, Sarita Kumari

    2017-01-01

    Inhalation delivery of aerosolized antibacterials is preferred over conventional methods of delivery for targeting lung infection. The present study is concerned with the development and characterization of a novel, spray dried, aerosolized, chitosan polyelectrolyte complex (PEC) based microparticles containing antibacterials for the treatment of lung infections. Chitosan polyelectrolyte complex microparticles were formulated by spray drying process. Prepared spray dried chitosan PEC microparticles were studied for surface morphology, drug encapsulation efficiency, moisture content, Carr’s index, solid state interaction by XRD, aerosolization behaviour and in-vitro drug release. In-vitro cytotoxicity studies of microparticles were carried out on H1299 alveolar cell lines. Antibacterial efficacy of microparticles was assessed on the basis of determination of pharmacokinetic parameters in bronchial alveolar lavage (BAL) of rats using PK/PD analysis. The PEC microparticles were mostly spherical and exhibited high drug encapsulation efficiency. Release profiles showed an initial burst phase followed by a secondary sustained release phase. Good aerosolization behaviour as dry powder inhaler was demonstrated by microparticles with high values of recovered dose, emitted dose, and fine particle fraction. No overt cytotoxicity of microparticles was detected against H1299 alveolar cell line. More than 8 to 9 folds higher Cmax values were obtained in BAL fluid with microparticles as compared to intravenously administered antibacterial solution. The findings of the study suggest that chitosan polyelectrolyte complex based microparticles as dry powder inhaler can be an efficient antibacterial delivery system for sustained and effective management of lung infection. PMID:28496463

  3. A pilot study using a novel pyrotechnically driven prototype applicator for epidermal powder immunization in piglets.

    PubMed

    Engert, Julia; Anamur, Cihad; Engelke, Laura; Fellner, Christian; Lell, Peter; Henke, Stefan; Stadler, Julia; Zöls, Susanne; Ritzmann, Mathias; Winter, Gerhard

    2018-04-20

    Epidermal powder immunization (EPI) is an alternative technique to the classical immunization route using needle and syringe. In this work, we present the results of an in vivo pilot study in piglets using a dried influenza model vaccine which was applied by EPI using a novel pyrotechnically driven applicator. A liquid influenza vaccine (Pandemrix ® ) was first concentrated by tangential flow filtration and hemagglutinin content was determined by RP-HPLC. The liquid formulation was then transformed into a dry powder by collapse freeze-drying and subsequent cryo-milling. The vaccine powder was attached to a membrane of a novel pyrotechnical applicator using oily adjuvant components. Upon actuation of the applicator, particles were accelerated to high speed as determined by a high-speed camera setup. Piglets were immunized twice using either the novel pyrotechnical applicator or classical intramuscular injection. Blood samples of the animals were collected at various time points and analyzed by enzyme-linked immunosorbent assay. Our pilot study shows that acceleration of a dried vaccine powder to supersonic speed using the pyrotechnical applicator is possible and that the speed and impact of the particles is sufficient to breach the stratum corneum of piglet skin. Importantly, the administration of the dry vaccine powder resulted in measurable anti-H1N1 antibody titres in vivo. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: part I, product temperature measurement.

    PubMed

    Tang, Xiaolin; Nail, Steven L; Pikal, Michael J

    2006-02-10

    This study examines the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to evaluate product temperature during primary drying. MTM was conducted during primary drying using different vial loads, and the MTM product temperatures were compared with temperatures directly measured by thermocouples. To clarify the impact of freeze-drying load on MTM product temperature, simulation of the MTM vapor pressure rise was performed, and the results were compared with the experimental results. The effect of product temperature heterogeneity in MTM product temperature determination was investigated by comparing the MTM product temperatures with directly measured thermocouple product temperatures in systems differing in temperature heterogeneity. Both the simulated and experimental results showed that at least 50 vials (5 mL) were needed to give sufficiently rapid pressure rise during the MTM data collection period (25 seconds) in the freeze dryer, to allow accurate determination of the product temperature. The product temperature is location dependent, with higher temperature for vials on the edge of the array and lower temperature for the vials in the center of the array. The product temperature heterogeneity is also dependent upon the freeze-drying conditions. In product temperature heterogeneous systems, MTM measures a temperature close to the coldest product temperature, even if only a small fraction of the samples have the coldest product temperature. The MTM method is valid even at very low product temperature (-45 degrees C).

  5. Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: Part I, product temperature measurement.

    PubMed

    Tang, Xiaolin; Nail, Steven L; Pikal, Michael J

    2006-03-01

    This study examines the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to evaluate product temperature during primary drying. MTM was conducted during primary drying using different vial loads, and the MTM product temperatures were compared with temperatures directly measured by thermocouples. To clarify the impact of freeze-drying load on MTM product temperatures, simulation of the MTM vapor pressure rise was performed, and the results were compared with the experimental results. The effect of product temperature heterogeneity in MTM product temperature determination was investigated by comparing the MTM product temperatures with directly measured thermocouple product temperatures in systems differing in temperature heterogeneity. Both the simulated and experimental results showed that at least 50 vials (5 mL) were needed to give sufficiently rapid pressure rise during the MTM data collection period (25 seconds) in the freeze dryer, to allow accurate determination of the product temperature. The product temperature is location dependent, with higher temperature for vials on the edge of the array and lower temperature for the vials in the center of the array. The product temperature heterogeneity is also dependent upon the freeze-drying conditions. In product temperature heterogeneous systems, MTM measures a temperature close to the coldest product temperature, even, if only a small fraction of the samples have the coldest product temperature. The MTM method is valid even at very low product temperature (-45°C).

  6. Dietary feeding of freeze-dried whole cranberry inhibits intestinal tumor development in Apcmin/+ mice

    PubMed Central

    Dong, Wenxiao; Zhang, Yujie; Wang, Sinan; Xie, Runxiang; Wang, Bangmao; Cao, Hailong

    2017-01-01

    It is increasingly perceived that dietary components have been linked with the prevention of intestinal cancer. Cranberry is a rich source of phenolic constituents and non-digestible fermentable dietary fiber, which shows anti-proliferation effect in colorectal cancer cells. Herein, we investigated the efficacy of long-term cranberry diet on intestinal adenoma formation in Apcmin/+ mice. Apcmin/+ mice were fed a basal diet or a diet containing 20% (w/w) freeze-dried whole cranberry powder for 12 weeks, and the number and size of tumors were recorded after sacrifice. Our results showed that cranberry strongly prevented the growth of intestinal tumors by 33.1%. Decreased cell proliferation and increased apoptosis were observed in tumors of cranberry-fed mice. Cranberry diet reduced the expression profile of colonic inflammatory cytokines (IFN-γ, IL-1β and TNF-α) accompanied with increased levels of anti-inflammatory cytokines (IL-4 and IL-10). Moreover, the number of colonic goblet cells and MUC2 production were increased, and the intestinal barrier function was also improved. In addition, cranberry diet increased caecal short chain fatty acids concentrations, and down-regulated epidermal growth factor receptor signaling pathway. These data firstly show the efficacy and associated mechanisms of cranberry diet on intestinal tumor growth in Apcmin/+ mice, suggesting its chemopreventive potential against intestinal cancer. PMID:29228651

  7. Investigation of the potential for direct compaction of a fine ibuprofen powder dry-coated with magnesium stearate.

    PubMed

    Qu, Li; Zhou, Qi Tony; Gengenbach, Thomas; Denman, John A; Stewart, Peter J; Hapgood, Karen P; Gamlen, Michael; Morton, David A V

    2015-05-01

    Intensive dry powder coating (mechanofusion) with tablet lubricants has previously been shown to give substantial powder flow improvement. This study explores whether the mechanofusion of magnesium stearate (MgSt), on a fine drug powder can substantially improve flow, without preventing the powder from being directly compacted into tablets. A fine ibuprofen powder, which is both cohesive and possesses a low-melting point, was dry coated via mechanofusion with between 0.1% and 5% (w/w) MgSt. Traditional low-shear blending was also employed as a comparison. No significant difference in particle size or shape was measured following mechanofusion. For the low-shear blended powders, only marginal improvement in flowability was obtained. However, after mechanofusion, substantial improvements in the flow properties were demonstrated. Both XPS and ToF-SIMS demonstrated high degrees of a nano-scale coating coverage of MgSt on the particle surfaces from optimized mechanofusion. The study showed that robust tablets were produced from the selected mechanofused powders, at high-dose concentration and tablet tensile strength was further optimized via addition of a Polyvinylpyrrolidone (PVP) binder (10% w/w). The tablets with the mechanofused powder (with or without PVP) also exhibited significantly lower ejection stress than those made of the raw powder, demonstrating good lubrication. Surprisingly, the release rate of drug from the tablets made with the mechanofused powder was not retarded. This is the first study to demonstrate such a single-step dry coating of model drug with MgSt, with promising flow improvement, flow-aid and lubrication effects, tabletability and also non-inhibited dissolution rate.

  8. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure.

    PubMed

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5-15 μm were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery.

  9. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying.

    PubMed

    Gieseler, Henning; Kessler, William J; Finson, Michael; Davis, Steven J; Mulhall, Phillip A; Bons, Vincent; Debo, David J; Pikal, Michael J

    2007-07-01

    The goal of this work was to demonstrate the use of Tunable Diode Laser Absorption Spectroscopy (TDLAS) as a noninvasive method to continuously measure the water vapor concentration and the vapor flow velocity in the spool connecting a freeze-dryer chamber and condenser. The instantaneous measurements were used to determine the water vapor mass flow rate (g/s). The mass flow determinations provided a continuous measurement of the total amount of water removed. Full load runs of pure water at different pressure and shelf temperature settings and a 5% (w/w) mannitol product run were performed in both laboratory and pilot scale freeze dryers. The ratio of "gravimetric/TDLAS" measurements of water removed was 1.02 +/- 0.06. A theoretical heat transfer model was used to predict the mass flow rate and the model results were compared to both the gravimetric and TDLAS data. Good agreement was also observed in the "gravimetric/TDLAS" ratio for the 5% mannitol runs dried in both freeze dryers. The endpoints of primary and secondary drying for the product runs were clearly identified. Comparison of the velocity and mass flux profiles between the laboratory and pilot dryers indicated a higher restriction to mass flow for the lab scale freeze dryer. Copyright 2007 Wiley-Liss, Inc.

  10. Modification of physical properties of freeze-dried rice

    NASA Technical Reports Server (NTRS)

    Huber, C. S.

    1971-01-01

    Freeze cycling process consists of alternately freezing and thawing precooked rice for two cycles, rice is then frozen and freeze-dehydrated in vacuum sufficient to remove water from rice by sublimitation. Process modifies rice grain structure and porosity, enabling complete rehydration in one minute in hot water.

  11. Color, bioactive compounds and morphological characteristics of encapsulated Asian pear juice powder during spray drying.

    PubMed

    Lee, Chang-Gon; Ahmed, Maruf; Jiang, Gui-Hun; Eun, Jong-Bang

    2017-08-01

    Encapsulated Asian pear juice powder was produced through spray drying using three maltodextrin levels (15, 20, and 25% w/v) and three inlet air temperatures (130, 150, and 170 °C). The impact of maltodextrin concentrations and inlet air temperatures on color, bioactive compounds, and morphological characteristics of encapsulated Asian pear juice powder were investigated. Maltodextrin concentrations and inlet air temperatures significantly influenced L * and b * values of encapsulated Asian pear juice powder. Increasing inlet air temperatures increased total phenolic content, whereas the vitamin C content decreased. Vitamin C content was strongly correlated with particle size, inlet air temperature, and maltodextrin concentration. ABTS + radical-scavenging activity was highly correlated with total phenol content while DPPH radical-scavenging activity was highly correlated with vitamin C content. Encapsulated powders made with higher inlet air temperature and higher maltodextrin concentration had lowest median particle diameter with a smoother, more regular and rounded outer surface than those of encapsulated powders produced with lower inlet air temperature and lower maltodextrin concentration. Therefore, the results demonstrate that high-quality encapsulated Asian pear juice powder could be manufactured by adding 15% (w/v) maltodextrin and spray-drying at 170 °C.

  12. The Mechanism of Freezing Injury in Xylem of Winter Apple Twigs 1

    PubMed Central

    Quamme, H.; Weiser, C. J.; Stushnoff, C.

    1973-01-01

    In acclimated winter twigs of Haralson apple (Pyrus Malus L.), a lag in temperature during cooling at a constant rate was observed at about −41 C by differential thermal analysis. The temperature at which this low temperature exotherm occurred was essentially unaffected by the cooling rate. During thawing there was no lag in temperature (endotherm) near the temperature at which the low temperature exotherm occurred, but upon subsequent refreezing the exotherm reappeared at a somewhat higher temperature when twigs were rewarmed to at least −5 C before refreezing. These observations indicate that a small fraction of water may remain unfrozen to as low as −42 C after freezing of the bulk water in stems. The low temperature exotherm was not present in twigs freeze-dried to a water content below 8.5% (per unit fresh weight), but it reappeared when twigs were rehydrated to 20% water. When freeze-dried twigs were ground to a fine powder prior to rehydration, no exotherm was observed. Previous work has shown that the low temperature exotherm arises from xylem and pith tissues, and that injury to living cells in these tissues invariably occurs only when twigs are cooled below, but not above the temperature of the low temperature exotherm. This study revealed that the low temperature exotherm resulted from the freezing of a water fraction, that the freezing of this water was independent of the freezing of the bulk water, that the exotherm was associated with some gross structural feature but not the viability of the tissue, and that injury to living cells in the xylem and pith was closely and perhaps causally related to the initial freezing of this water. PMID:16658314

  13. Systemic delivery of parathyroid hormone (1-34) using inhalation dry powders in rats.

    PubMed

    Codrons, Valérie; Vanderbist, Francis; Verbeeck, Roger K; Arras, Mohammed; Lison, Dominique; Préat, Véronique; Vanbever, Rita

    2003-05-01

    The aim of this work was to prepare and characterize inhalation dry powders of human parathyroid hormone (PTH), as well as to assess their efficacy for systemic delivery of the peptide and safety in rats. The powders were prepared by spray-drying using PTH, sugars, dipalmitoylphosphatidylcholine, and/or albumin. They presented an average primary particle diameter of 4.5 microm and tap density of 0.06 g/cm(3), a mass median aerodynamic diameter between 3.9 and 5.9 microm, and reached up to 98% emitted dose and up to 61% fine particle fraction in the multi-stage liquid impinger using a Spinhaler inhaler device. Varying the airflow rate from 30 to 100 L/min had limited influence on the aerodynamic behavior of the aerosols. The absolute PTH bioavailability was 21% after intratracheal administration of the powder formed of PTH/albumin/lactose/dipalmitoylphosphatidylcholine and 18% after subcutaneous injection in rats. Equilibrium dialysis revealed a 78% binding of PTH to albumin and the withdrawal of albumin from the powder increased absolute bioavailability after inhalation from 21 to 34%. No acute inflammation appeared in the lung up to 48 h after a single inhalation. The increased bioavailability of the optimized powder aerosol of PTH makes it a promising alternative to subcutaneous injection. Copyright 2003 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 92:938-950, 2003

  14. Dry powder inhalers of gentamicin and leucine: formulation parameters, aerosol performance and in vitro toxicity on CuFi1 cells.

    PubMed

    Aquino, R P; Prota, L; Auriemma, G; Santoro, A; Mencherini, T; Colombo, G; Russo, P

    2012-04-15

    The high hygroscopicity of gentamicin (G) as raw material hampers the production of respirable particles during aerosol generation and prevents its direct use as powder for inhalation in patients suffering from cystic fibrosis (CF). Therefore, this research aimed to design a new dry powder formulation of G studying dispersibility properties of an aminoacid, L-leucine (leu), and appropriate process conditions. Spray-dried powders were characterized as to water uptake, particle size distribution, morphology and stability, in correlation with process parameters. Aerodynamic properties were analyzed both by Single Stage Glass Impinger and Andersen Cascade Impactor. Moreover, the potential cytotoxicity on bronchial epithelial cells bearing a CFTR F508/F508 mutant genotype (CuFi1) were tested. Results indicated that leu may improve the aerosol performance of G-dried powders. The maximum fine particle fraction (FPF) of about 58.3% was obtained when water/isopropyl alcohol 7:3 system and 15-20% (w/w) of leu were used, compared to a FPF value of 13.4% for neat G-dried powders. The enhancement of aerosol efficiency was credited both to the improvement of the powder flowability, caused by the dispersibility enhancer (aminoacid), and to the modification of the particle surface due to the influence of the organic co-solvent on drying process. No significant degradation of the dry powder was observed up to 6 months of storage. Moreover, particle engineering did not affect either the cell viability or cell proliferation of CuFi1 over a 24 h period. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A single immunization with a dry powder anthrax vaccine protects rabbits against lethal aerosol challenge

    PubMed Central

    Klas, S.D.; Petrie, C.R.; Warwood, S.J.; Williams, M.S.; Olds, C.L.; Stenz, J.P.; Cheff, A.M.; Hinchcliffe, M.; Richardson, C.; Wimer, S.

    2009-01-01

    Here we confirm that intranasal (IN) dry powder anthrax vaccine formulations are able to protect rabbits against aerosol challenge 9 weeks after a single immunization. The optimum dose of rPA in our dry powder anthrax vaccine formulation in rabbits was experimentally determined to be 150 μg and therefore was chosen as the target dose for all subsequent experiments. Rabbits received a single dose of either 150 μg rPA, 150 μg rPA + 150 μg of a conjugated 10-mer peptide representing the B. anthracis capsule (conj), or 150 μg of conj alone. All dry powder formulations contained MPL and chitosan (ChiSys®). Significant anti-rPA titers and anthrax lethal toxin neutralizing antibody (TNA) levels were seen with both rPA containing vaccines, although rPA-specific IgG and TNA levels were reduced in rabbits immunized with rPA plus conj. Nine weeks after immunization, rabbits were exposed to a mean aerosol challenge dose of 278 LD50 of Ames spores. Groups immunized with rPA or with rPA + conj had significant increases in survivor proportions compared to the negative control group by Logrank test (p = 0.0001 and 0.003, respectively), and survival was not statistically different for the rPA and rPA + conj immunized groups (p = 0.63). These data demonstrate that a single immunization with our dry powder anthrax vaccine can protect against a lethal aerosol spore challenge 9 weeks later. PMID:18703110

  16. A single immunization with a dry powder anthrax vaccine protects rabbits against lethal aerosol challenge.

    PubMed

    Klas, S D; Petrie, C R; Warwood, S J; Williams, M S; Olds, C L; Stenz, J P; Cheff, A M; Hinchcliffe, M; Richardson, C; Wimer, S

    2008-10-09

    Here we confirm that intranasal (IN) dry powder anthrax vaccine formulations are able to protect rabbits against aerosol challenge 9 weeks after a single immunization. The optimum dose of rPA in our dry powder anthrax vaccine formulation in rabbits was experimentally determined to be 150microg and therefore was chosen as the target dose for all subsequent experiments. Rabbits received a single dose of either 150microg rPA, 150microg rPA+150microg of a conjugated 10-mer peptide representing the Bacillus anthracis capsule (conj), or 150microg of conj alone. All dry powder formulations contained MPL and chitosan (ChiSys). Significant anti-rPA titers and anthrax lethal toxin neutralizing antibody (TNA) levels were seen with both rPA containing vaccines, although rPA-specific IgG and TNA levels were reduced in rabbits immunized with rPA plus conj. Nine weeks after immunization, rabbits were exposed to a mean aerosol challenge dose of 278 LD50 of Ames spores. Groups immunized with rPA or with rPA+conj had significant increases in survivor proportions compared to the negative control group by Logrank test (p=0.0001 and 0.003, respectively), and survival was not statistically different for the rPA and rPA+conj immunized groups (p=0.63). These data demonstrate that a single immunization with our dry powder anthrax vaccine can protect against a lethal aerosol spore challenge 9 weeks later.

  17. Freeze-drying simulation framework coupling product attributes and equipment capability: toward accelerating process by equipment modifications.

    PubMed

    Ganguly, Arnab; Alexeenko, Alina A; Schultz, Steven G; Kim, Sherry G

    2013-10-01

    A physics-based model for the sublimation-transport-condensation processes occurring in pharmaceutical freeze-drying by coupling product attributes and equipment capabilities into a unified simulation framework is presented. The system-level model is used to determine the effect of operating conditions such as shelf temperature, chamber pressure, and the load size on occurrence of choking for a production-scale dryer. Several data sets corresponding to production-scale runs with a load from 120 to 485 L have been compared with simulations. A subset of data is used for calibration, whereas another data set corresponding to a load of 150 L is used for model validation. The model predictions for both the onset and extent of choking as well as for the measured product temperature agree well with the production-scale measurements. Additionally, we study the effect of resistance to vapor transport presented by the duct with a valve and a baffle in the production-scale freeze-dryer. Computation Fluid Dynamics (CFD) techniques augmented with a system-level unsteady heat and mass transfer model allow to predict dynamic process conditions taking into consideration specific dryer design. CFD modeling of flow structure in the duct presented here for a production-scale freeze-dryer quantifies the benefit of reducing the obstruction to the flow through several design modifications. It is found that the use of a combined valve-baffle system can increase vapor flow rate by a factor of 2.2. Moreover, minor design changes such as moving the baffle downstream by about 10 cm can increase the flow rate by 54%. The proposed design changes can increase drying rates, improve efficiency, and reduce cycle times due to fewer obstructions in the vapor flow path. The comprehensive simulation framework combining the system-level model and the detailed CFD computations can provide a process analytical tool for more efficient and robust freeze-drying of bio-pharmaceuticals. Copyright © 2013

  18. Process Analytical Technology in Freeze-Drying: Detection of the Secondary Solute + Water Crystallization with Heat Flux Sensors.

    PubMed

    Wang, Qiming; Shalaev, Evgenyi

    2018-04-01

    In situ and non-invasive detection of solute crystallization during freeze-drying would facilitate cycle optimization and scale-up from the laboratory to commercial manufacturing scale. The objective of the study is to evaluate heat flux sensor (HFS) as a tool for monitoring solute crystallization and other first-order phase transitions (e.g., onset of freezing). HFS is a thin-film differential thermopile, which acts as a transducer to generate an electrical signal proportional to the total heat applied to its surface. In this study, HFS is used to detect both primary (ice formation) and secondary (also known as eutectic) solute + water crystallization during cooling and heating of solutions in a freeze-dryer. Binary water-solute mixtures with typical excipients concentrations (e.g., 0.9% of NaCl and 5% mannitol) and fill volumes (1 to 3 ml/vial) are studied. Secondary crystallization is detected by the HFS during cooling in all experiments with NaCl solutions, whereas timing of mannitol crystallization depends on the cooling conditions. In particular, mannitol crystallization takes place during cooling, if the cooling rate is lower than the critical value. On the other hand, if the cooling rate exceeds the critical cooling rate, mannitol crystallization during cooling is prevented, and crystallization occurs during subsequent warming or annealing. It is also observed that, while controlled ice nucleation allows initiation of the primary freezing event in different vials simultaneously, there is a noticeable vial-to-vial difference in the timing of secondary crystallization. The HFS could be a valuable process monitoring tool for non-invasive detection of various crystallization events during freeze-drying manufacturing.

  19. Spray dried amikacin powder for inhalation in cystic fibrosis patients: a quality by design approach for product construction.

    PubMed

    Belotti, Silvia; Rossi, Alessandra; Colombo, Paolo; Bettini, Ruggero; Rekkas, Dimitrios; Politis, Stavros; Colombo, Gaia; Balducci, Anna Giulia; Buttini, Francesca

    2014-08-25

    An amikacin product for convenient and compliant inhalation in cystic fibrosis patients was constructed by spray-drying in order to produce powders of pure drug having high respirability and flowability. An experimental design was applied as a statistical tool for the characterization of amikacin spray drying process, through the establishment of mathematical relationships between six Critical Quality Attributes (CQAs) of the finished product and five Critical Process Parameters (CPPs). The surface-active excipient, PEG-32 stearate, studied for particle engineering, in general did not benefit the CQAs of the spray dried powders for inhalation. The spray drying feed solution required the inclusion of 10% (v/v) ethanol in order to reach the desired aerodynamic performance of powders. All desirable function solutions indicated that the favourable concentration of amikacin in the feed solution had to be kept at 1% w/v level. It was found that when the feed rate of the sprayed solution was raised, an increase in the drying temperature to the maximum value (160 °C) was required to maintain good powder respirability. Finally, the increase in drying temperature always led to an evident increase in emitted dose (ED) without affecting the desirable fine particle dose (FPD) values. The application of the experimental design enabled us to obtain amikacin powders with both ED and FPD, well above the regulatory and scientific references. The finished product contained only the active ingredient, which keeps low the mass to inhale for dose requirement. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Microencapsulation by freeze-drying of potassium norbixinate and curcumin with maltodextrin: stability, solubility, and food application.

    PubMed

    Sousdaleff, Mirian; Baesso, Mauro Luciano; Medina Neto, Antonio; Nogueira, Ana Cláudia; Marcolino, Vanessa Aparecida; Matioli, Graciette

    2013-01-30

    Stability of potassium norbixinate and curcumin by microencapsulation with maltodextrin DE20 and freeze-drying was evaluated as a function of exposition to light, air, different pH, water solubility, and in food applications. The best results were obtained with microencapsulated potassium norbixinate 1:20, which, when vacuum-packed and in the presence of natural light, showed color retention of 78%, while microencapsulated curcumin 1:20 showed color retention of 71%. Differential scanning calorimetry and thermogravimetry provided an indication of interaction between colorants and maltodextrin. Photoacoustic spectroscopy (PAS) showed that free and microencapsulated colorants exhibited high rates of absorption throughout the measured spectral region. This work evidenced that the freeze-drying process is favorable for microencapsulation of curcumin by maltodextrin, providing improved solubility to the microencapsulated colorant. Both microencapsulated colorants showed relevant results for use in a wide range of pH and food applications. The PAS technique was useful for the evaluation of the stability of free and microencapsulated colorants.

  1. [Preparation of freeze - drying control materials of IgG antibody against Schistosoma japonicum for immunodetection kits].

    PubMed

    Jin, Huang; Chun-Lian, Tang; Zu-Wu, Tu; Li, Tang; Ke-Hui, Zhang; Qian, Li; Jun, Ye

    2018-04-18

    To prepare freeze-drying control materials of IgG antibody against Schistosoma japonicum for detection kits. The serum samples of schistosomiasis patients from endemic areas and normal people without history of schistosome infection or contact with infested water in Hubei Province were collected. All the sera were detected by the method approved by China Food and Drug Administration and selected for preparation of quality control samples. Totally twelve positive quality control materials, ten negative quality control materials, and one sensitive and one precision quality control materials were screened. According to the positive serum level, the positive degrees of quality control materials were divided into strong, medium and weak levels. The stability could be valid for one year. The freeze-drying quality control materials of IgG antibody against S. japonicum for detection kits are prepared. They are easy to use and have good stability, and therefore, they may meet the requirement of quality control for the detection of schistosomiasis diagnostics kits.

  2. Through-vial impedance spectroscopy of the mechanisms of annealing in the freeze-drying of maltodextrin: the impact of annealing hold time and temperature on the primary drying rate.

    PubMed

    Smith, Geoff; Arshad, Muhammad Sohail; Polygalov, Eugene; Ermolina, Irina

    2014-06-01

    The study aims to investigate the impact of annealing hold time and temperature on the primary drying rate/duration of a 10% (w/v) solution of maltodextrin with an emphasis on how the mechanisms of annealing might be understood from the in-vial measurements of the ice crystal growth and the glass transition. The electrical impedance of the solution within a modified glass vial was recorded between 10 and 10(6) Hz during freeze-drying cycles with varying annealing hold times (1-5 h) and temperatures. Primary drying times decreased by 7%, 27% and 34% (1.1, 4.3 and 5.5 h) with the inclusion of an annealing step at temperatures of -15°C, -10°C and -5°C, respectively. The glass transition was recorded at approximately -16°C during the re-heating and re-cooling steps, which is close to the glass transition (Tg ') reported for 10% (w/v) maltodextrin and therefore indicates that a maximum freeze concentration (∼86%, w/w, from the Gordon-Taylor equation) was achieved during first freezing, with no further ice being formed on annealing. This observation, coupled to the decrease in electrical resistance that was observed during the annealing hold time, suggests that the reduction in the drying time was because of improved connectivity of ice crystals because of Ostwald ripening rather than devitrification. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Effects of extrusion cooking on the chemical composition and functional properties of dry bean powders

    USDA-ARS?s Scientific Manuscript database

    This study aimed to investigate the impacts of extrusion cooking on the chemical composition and functional properties of bean powders from four bean varieties. The raw bean powders were extruded under eight different conditions, and the extrudates were then dried and ground (particle size = 0.5 mm)...

  4. Chargeability measurements of selected pharmaceutical dry powders to assess their electrostatic charge control capabilities.

    PubMed

    Ramirez-Dorronsoro, Juan-Carlos; Jacko, Robert B; Kildsig, Dane O

    2006-01-01

    The purpose of this study was to develop an instrument (the Purdue instrument) and the corresponding methodologies to measure the electrostatic charge development (chargeability) of dry powders when they are in dynamic contact with stainless steel surfaces. The system used an inductive noncontact sensor located inside an aluminum Faraday cage and was optimized to measure the charging capabilities of a fixed volume of powder (0.5 cc). The chargeability of 5,5-diphenyl-hydantoin, calcium sulfate dihydrate, cimetidine, 3 grades of colloidal silicon dioxide, magnesium stearate, 4 grades of microcrystalline cellulose, salicylic acid, sodium carbonate, sodium salicylate, spray-dried lactose, and sulfinpyrazone were tested at 4 linear velocities, and the particle size distribution effect was assessed for 3 different grades of colloidal silicon dioxide and 4 different grades of microcrystalline cellulose. The chargeability values exhibited a linear relationship for the range of velocities studied, with colloidal silicon dioxide exhibiting the maximum negative chargeability and with spray-dried lactose being the only compound to exhibit positive chargeability. The instrument sensitivity was improved by a factor of 2 over the first generation version, and the electrostatic charge measurements were reproducible with relative standard deviations ranging from nondetectable to 33.7% (minimum of 3 replicates). These results demonstrate the feasibility of using the Purdue instrument to measure the electrostatic charge control capabilities of pharmaceutical dry powders with a reasonable level of precision.

  5. Management of unicameral bone cyst by using freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow.

    PubMed

    Datta, N K; Das, K P; Alam, M S; Kaiser, M S

    2014-07-01

    Unicameral bone cyst is a common benign bone tumor and most frequent cause of the pathological fracture in children. We have started a prospective study for that treatment of unicameral bone cyst by using freeze dried radiation sterilized bone allograft impregnated with autogenous bone marrow in the department of Orthopaedics, Bangabandhu Sheikh Mujib Medical University (BSMMU) during May 1999 to April 2012. Aim of this study was to see Freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow a satisfactory graft material in the treatment of unicameral bone cyst as well as factors such as patients age, sex, cyst size and site of lesion influence on cyst healing. A total 35 patients of unicameral bone cyst were operated. In this study out of 35 patients, male were 22(62.86%) and female were 13(37.14). Male Female ratio 22:13(1.70:1) Age of the patients ranging from 2 years 6 month to 20 years, mean age 12.18 years more common 11 years to 20 years 29(82.86%) patients. Common bones sites involvements are proximal end of Humerus 20(57.14%), proximal end of Femur 7(20 %), proximal end of Tibia 3(8.57%), Calcanium 2(5.71%), proximal end of Ulna 1(2.86%), shaft of Radius 1(2.86%) and Phalanx 1(2.86%). Final clinical outcome of unicameral bone cyst treated by thorough curettage of cavity and tightly filled with freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow in which healed (success rate) 88.57% (31) and recurrence rate is 11.43% (4). P value is <0.001. Follow up period was 6 month to 11 years. From our study it was realized that freeze dried radiation sterilized bone allograft impregnated with autogenous bone marrow is useful graft material for healing of the lesional area as well as restoring structural integrity for the treatment of unicameral bone cyst.

  6. Bend strengths of reaction bonded silicon nitride prepared from dry attrition milled silicon powder

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Glasgow, T. K.

    1979-01-01

    Dry attrition milled silicon powder was compacted, sintered in helium, and reaction bonded in nitrogen-4 volume percent hydrogen. Bend strengths of bars with as-nitrided surfaces averaged as high as 210 MPa at room temperature and 220 MPa at 1400 C. Bars prepared from the milled powder were stronger than those prepared from as-received powder at both room temperature and at 1400 C. Room temperature strength decreased with increased milling time and 1400 C strength increased with increased milling time.

  7. Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores.

    PubMed

    Yook, Se-Won; Jung, Hyun-Do; Park, Chang-Hoon; Shin, Kwan-Ha; Koh, Young-Hag; Estrin, Yuri; Kim, Hyoun-Ee

    2012-07-01

    Highly porous titanium with aligned large pores up to 500 μm in size, which is suitable for scaffold applications, was successfully fabricated using the reverse freeze casting method. In this process we have newly developed, the Ti powders migrated spontaneously along the pre-aligned camphene boundaries at a temperature of 45.5°C and formed a titanium-camphene mixture with an aligned structure; this was followed by freeze drying and sintering. As the casting time increased from 24 to 48 h, the initial columnar structures turned into lamellar structures, with the porosity decreasing from 69 to 51%. This reduction in porosity caused the compressive yield strength to increase from 121 to 302 MPa, with an elastic modulus of the samples being in the range of 2-5 GPa. In addition, it was demonstrated that reverse freeze casting can also be successfully applied to various other raw powders, suggesting that the method developed in this work opens up new avenues for the production of a range of porous metallic and ceramic scaffolds with highly aligned pores. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Dry-powder formulations of non-covalent protein complexes with linear or miktoarm copolymers for pulmonary delivery.

    PubMed

    Nieto-Orellana, Alejandro; Coghlan, David; Rothery, Malcolm; Falcone, Franco H; Bosquillon, Cynthia; Childerhouse, Nick; Mantovani, Giuseppe; Stolnik, Snow

    2018-04-05

    Pulmonary delivery of protein therapeutics has considerable clinical potential for treating both local and systemic diseases. However, poor protein conformational stability, immunogenicity and protein degradation by proteolytic enzymes in the lung are major challenges to overcome for the development of effective therapeutics. To address these, a family of structurally related copolymers comprising polyethylene glycol, mPEG 2k , and poly(glutamic acid) with linear A-B (mPEG 2k -lin-GA) and miktoarm A-B 3 (mPEG 2k -mik-(GA) 3 ) macromolecular architectures was investigated as potential protein stabilisers. These copolymers form non-covalent nanocomplexes with a model protein (lysozyme) which can be formulated into dry powders by spray-drying using common aerosol excipients (mannitol, trehalose and leucine). Powder formulations with excellent aerodynamic properties (fine particle fraction of up to 68%) were obtained with particle size (D 50 ) in the 2.5 µm range, low moisture content (<5%), and high glass transitions temperatures, i.e. formulation attributes all suitable for inhalation application. In aqueous medium, dry powders rapidly disintegrated into the original polymer-protein nanocomplexes which provided protection towards proteolytic degradation. Taken together, the present study shows that dry powders based on (mPEG 2k -polyGA)-protein nanocomplexes possess potentials as an inhalation delivery system. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A novel electrostatic dry powder coating process for pharmaceutical dosage forms: immediate release coatings for tablets.

    PubMed

    Qiao, Mingxi; Zhang, Liqiang; Ma, Yingliang; Zhu, Jesse; Chow, Kwok

    2010-10-01

    An electrostatic dry powder coating process for pharmaceutical solid dosage forms was developed for the first time by electrostatic dry powder coating in a pan coater system. Two immediate release coating compositions with Opadry® AMB and Eudragit® EPO were successfully applied using this process. A liquid plasticizer was sprayed onto the surface of the tablet cores to increase the conductivity of tablet cores to enhance particle deposition, electrical resistivity reduced from greater than 1×10(13)Ωm to less than 1×10(9)Ωm, and to lower the glass transition temperature (T(g)) of the coating polymer for film forming in the pan coater. The application of liquid plasticizer was followed by spraying charged coating particles using an electrostatic charging gun to enhance the uniform deposition on tablet surface. The coating particles were coalesced into a thin film by curing at an acceptable processing temperature as formation was confirmed by SEM micrographs. The results also show that the optimized dry powder coating process produces tablets with smooth surface, good coating uniformity and release profile that are comparable to that of the tablet cores. The data also suggest that this novel electrostatic dry powder coating technique is an alternative to aqueous- or solvent-based coating process for pharmaceutical products. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  10. Oligosaccharide-based Surfactant/Citric Acid Buffer System Stabilizes Lactate Dehydrogenase during Freeze-drying and Storage without the Addition of Natural Sugar.

    PubMed

    Ogawa, Shigesaburo; Kawai, Ryuichiro; Koga, Maito; Asakura, Kouichi; Takahashi, Isao; Osanai, Shuichi

    2016-06-01

    Experiments were conducted to assess the maintenance effects of oligosaccharide-based surfactants on the enzymatic activity of a model protein, lactate dehydrogenase (LDH), during freeze-drying and room temperature storage using the citric acid buffer system. Oligosaccharide-based surfactants, which exhibit a high glass transition temperature (Tg), promoted the eminent retention of enzymatic activity during these protocols, whereas monosaccharide-based surfactants with a low Tg displayed poor performance at high concentration, albeit much better than that of Tween 80 at middle concentration. The increase in the alkyl chain length did not exert positive effects as observed for the maintenance effect during freeze-thawing, but an amphiphilic nature and a glass forming ability were crucial for the effective stabilization at a low excipient concentration during freeze-drying. Even a low oligosaccharide-based surfactant content (0.1 mg mL(-1)) could maintain LDH activity during freeze-drying, but a high surfactant content (1.0 mg mL(-1)) was required to prevent buffer precipitation and retain high LDH activity on storage. Regarding storage, glass formation restricted molecular mobility in the lyophilized matrix, and LDH activity was effectively retained. The present results describe a strategy based on the glass-forming ability of surfactant-type excipients that affords a natural sugar-free formulation or an alternative use for polysorbate-type surfactants.

  11. A novel freeze-dried storage and preparation method for the determination of mycophenolic acid in plasma by high-performance liquid chromatography.

    PubMed

    Wang, Lei; Qiang, Wei; Li, Ying; Cheng, Zeneng; Xie, Mengmeng

    2017-09-01

    Plasma samples were conventionally stored at freezing conditions until the time of detection. Such a technique, when carried out over an extended period, is energy consuming; in addition, preparation and transportation of stored samples is inconvenient. In this study, a freeze-dried storage and preparation method was proposed to determine the presence of mycophenolic acid (MPA) in plasma. Fresh plasma samples were freeze-dried using a device, and then stored at ambient temperature. After the stored samples were soaked with methanol spiked with the internal standard, high-performance liquid chromatography was conducted to detect MPA. The proposed method was demonstrated to be precise and accurate over the linear range of 0.5-50 μg mL -1 , with both intra- and inter-day precision being <7% and biases <10%. The freeze-dried samples were stable at ambient temperature for at least 40 days. This method was also successfully applied to the pharmacokinetic study of MPA in healthy volunteers. Pharmacokinetic parameters, such as maximum plasma concentration, time point of maximum plasma concentration and elimination half-life, among others, were consistent with the results in the published study. This proposed technique was proved to be simple, reproducible and energy saving. This approach could also simplify the storage and analysis of samples in clinical and scientific drug research. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA.

    PubMed

    Jensen, Ditte Krohn; Jensen, Linda Boye; Koocheki, Saeid; Bengtson, Lasse; Cun, Dongmei; Nielsen, Hanne Mørck; Foged, Camilla

    2012-01-10

    Matrix systems based on biocompatible and biodegradable polymers like the United States Food and Drug Administration (FDA)-approved polymer poly(DL-lactide-co-glycolide acid) (PLGA) are promising for the delivery of small interfering RNA (siRNA) due to favorable safety profiles, sustained release properties and improved colloidal stability, as compared to polyplexes. The purpose of this study was to design a dry powder formulation based on cationic lipid-modified PLGA nanoparticles intended for treatment of severe lung diseases by pulmonary delivery of siRNA. The cationic lipid dioleoyltrimethylammoniumpropane (DOTAP) was incorporated into the PLGA matrix to potentiate the gene silencing efficiency. The gene knock-down level in vitro was positively correlated to the weight ratio of DOTAP in the particles, and 73% silencing was achieved in the presence of 10% (v/v) serum at 25% (w/w) DOTAP. Optimal properties were found for nanoparticles modified with 15% (w/w) DOTAP, which reduced the gene expression with 54%. This formulation was spray-dried with mannitol into nanocomposite microparticles of an aerodynamic size appropriate for lung deposition. The spray-drying process did not affect the physicochemical properties of the readily re-dispersible nanoparticles, and most importantly, the in vitro gene silencing activity was preserved during spray-drying. The siRNA content in the powder was similar to the theoretical loading and the siRNA was intact, suggesting that the siRNA is preserved during the spray-drying process. Finally, X-ray powder diffraction analysis demonstrated that mannitol remained in a crystalline state upon spray-drying with PLGA nanoparticles suggesting that the sugar excipient might exert its stabilizing effect by sterical inhibition of the interactions between adjacent nanoparticles. This study demonstrates that spray-drying is an excellent technique for engineering dry powder formulations of siRNA nanoparticles, which might enable the local

  13. Effects of four different drying methods on the carotenoid composition and antioxidant capacity of dried Gac peel.

    PubMed

    Chuyen, Hoang V; Roach, Paul D; Golding, John B; Parks, Sophie E; Nguyen, Minh H

    2017-03-01

    Gac fruit (Momordica cochinchinensis Spreng.) is a rich source of carotenoids for the manufacture of powder, oil and capsules for food, cosmetic and pharmaceutical uses. Currently, only the aril of the Gac fruit is processed and the peel, similar to the other components, is discarded, although it contains high level of carotenoids, which could be extracted for commercial use. In the present study, four different drying methods (hot-air, vacuum, heat pump and freeze drying), different temperatures and drying times were investigated for producing dried Gac peel suitable for carotenoid extraction. The drying methods and drying temperatures significantly affected the drying time, carotenoid content and antioxidant capacity of the dried Gac peel. Among the investigated drying methods, hot-air drying at 80  o C and vacuum drying at 50  o C produced dried Gac peel that exhibited the highest retention of carotenoids and the strongest antioxidant capacity. Hot-air drying at 80  o C and vacuum drying at 50  o C are recommended for the drying of Gac peel. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Effect of repeated drying-wetting-freezing-thawing cycles on the active soil organic carbon pool

    NASA Astrophysics Data System (ADS)

    Semenov, V. M.; Kogut, B. M.; Lukin, S. M.

    2014-04-01

    Samples of soddy-podzolic soil (long-term overgrown fallow and continuous bare fallow), gray forest soil (forest, farming agrocenosis), and a typical chernozem (virgin steppe, forest area, farming agrocenosis, continuous bare fallow) have been incubated under stable conditions; other samples of these soils have been subjected to six drying-wetting-incubation-freezing-thawing-incubation cycles during 136 days. The wetting of dried soils and the thawing of frozen soils result in an abrupt but short increase in the emission rate of C-CO2 by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. As the soil is depleted in potentially mineralizable organic matter, the rate of the C-CO2 emission pulses initiated by disturbing impacts decreases. The cumulative extra production of C-CO2 by soils of natural lands for six cycles makes up 21-40% of that in the treatments with stable incubation conditions; the corresponding value for cultivated soils, including continuous clean fallow, is in the range of 45-82%. The content of potentially mineralizable organic matter in the soils subjected to recurrent drying-wetting-freezingthawing cycles decreased compared to the soils without disturbing impacts by 1.6-4.4 times, and the mineralization constants decreased by 1.9-3.6 times. It has been emphasized that the cumulative effect of drying-wetting-freezing-thawing cycles is manifested not only in the decrease in the total Corg from the soil but also in the reduction of the mineralization potential of the soil organic matter.

  15. A Novel Approach for Dry Powder Coating of Pellets with Ethylcellulose. Part II: Evaluation of Caffeine Release.

    PubMed

    Albertini, Beatrice; Melegari, Cecilia; Bertoni, Serena; Dolci, Luisa Stella; Passerini, Nadia

    2018-04-01

    The objective of this study was to assess the efficacy and the capability of a novel ethylcellulose-based dry-coating system to obtain prolonged and stable release profiles of caffeine-loaded pellets. Lauric and oleic acids at a suitable proportion were used to plasticize ethylcellulose. The effect of coating level, percentage of drug loading, inert core particle size, and composition of the coating formulation including the anti-sticking agent on the drug release profile were fully investigated. A coating level of 15% w/w was the maximum layered amount which could modify the drug release. The best controlled drug release was obtained by atomizing talc (2.5% w/w) together with the solid plasticizer during the dry powder-coating process. SEM pictures revealed a substantial drug re-crystallization on the pellet surface, and the release studies evidenced that caffeine diffused through the plasticized polymer acting as pore former. Therefore, the phenomenon of caffeine migration across the coating layer had a strong influence on the permeability of the coating membrane. Comparing dry powder-coated pellets to aqueous film-coated ones, drug migration happened during storage, though more sustained release profiles were obtained. The developed dry powder-coating process enabled the production of stable caffeine sustained release pellets. Surprisingly, the release properties of the dry-coated pellets were mainly influenced by the way of addition of talc into the dry powder-coating blend and by the drug nature and affinity to the coating components. It would be interesting to study the efficacy of novel coating system using a different API.

  16. Spray‐Dried Sodium Zirconate: A Rapid Absorption Powder for CO2 Capture with Enhanced Cyclic Stability

    PubMed Central

    Bamiduro, Faith; Ji, Guozhao; Brown, Andy P.; Dupont, Valerie A.

    2017-01-01

    Abstract Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption‐enhanced steam reforming. Here, we examine the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powders. Hollow spray‐dried microgranules with a wall thickness of 100–300 nm corresponding to the dimensions of the primary acetate‐derived particles gave about 75 wt % theoretical CO2 conversion after a process‐relevant 5 min exposure to 15 vol % CO2. A conventional powder prepared by solid‐state reaction carbonated more slowly, achieving only 50 % conversion owing to a greater proportion of the reaction requiring bulk diffusion through the densely agglomerated particles. The hollow granular structure of the spray‐dried powder was retained postcarbonation but chemical segregation resulted in islands of an amorphous Na‐rich phase (Na2CO3) within a crystalline ZrO2 particle matrix. Despite this phase separation, the reverse reaction to re‐form Na2ZrO3 could be achieved by heating each powder to 900 °C in N2 (no dwell time). This resulted in a very stable multicycle performance in 40 cycle tests using thermogravimetric analysis for both powders. Kinetic analysis of thermogravimetric data showed the carbonation process fits an Avrami–Erofeyev 2 D nucleation and nuclei growth model, consistent with microstructural evidence of a surface‐driven transformation. Thus, we demonstrate that spray drying is a viable processing route to enhance the carbon capture performance of Na2ZrO3 powder. PMID:28371521

  17. Freeze-dried, cross-linked bovine type I collagen: analysis of properties.

    PubMed

    Hyder, P R; Dowell, P; Singh, G; Dolby, A E

    1992-03-01

    This study was undertaken to assess the physical and biological properties of freeze-dried cross-linked bovine type I collagen and to assess its potential for use in the guided tissue regeneration method of treatment of periodontal disease in human adult subjects. The modulus of elasticity, swelling ratio, and biodegradation rate were investigated. The collagen sponge was implanted subdermally into Sprague-Dawley rats and a histological study carried out at 2, 7, 21, 35, and 49 days post implantation. Growth of human gingival and periodontal ligament derived fibroblasts on collagen sponge was assessed, as well as the effect of bovine collagen supernatants upon gingival and periodontal fibroblast cultures. The physical properties of the collagen sponge were consistent with good handling qualities and, therefore, it was appropriate for use at a surgical site. The histological study demonstrated a reduction in thickness of the collagen at 21 days; at 35 days there was a hazy appearance of the collagen remnants; and at 49 days the graft material had been completely replaced with fibrous tissues. The in vitro response of human gingival and periodontal fibroblasts to bovine collagen showed that, after 21 days, confluent fibroblast growth was observed around and underneath the sponge. The effect of bovine collagen supernatants upon fibroblasts demonstrated an apparent proliferative effect of the supernatant with both gingival and periodontal ligament fibroblasts. However, the non-parametric Friedman test revealed no significant differences between dilutions or time points. The overall findings provide encouraging evidence of the safety of freeze-dried cross-linked bovine collagen sponge in the surgical treatment of periodontal disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Investigation of the changes in aerosolization behavior between the jet-milled and spray-dried colistin powders through surface energy characterization

    PubMed Central

    Jong, Teresa; Li, Jian; Mortonx, David A.V.; Zhou, Qi (Tony); Larson, Ian

    2016-01-01

    This study aimed to investigate the surface energy factors behind improved aerosolization performance of spray-dried colistin powder formulations compared to those produced by jet-milling. Inhalable colistin powder formulations were produced by jet-milling or spray-drying (with or without L-leucine). Scanning electron micrographs showed the jet-milled particles had irregularly angular shapes, while the spray-dried particles were more spherical. Significantly higher fine particle fractions (FPFs) were measured for the spray-dried (43.8-49.6%) vs. the jet-milled formulation (28.4 %) from a Rotahaler at 60L/min; albeit the size distribution of the jet-milled powder was smaller. Surprisingly, addition of L-leucine in the spray drying feed-solution gave no significant improvement in FPF. As measured by inverse gas chromatography, spray-dried formulations had significantly (p<0.001) lower dispersive, specific and total surface energy values and more uniform surface energy distributions than the jet-milled powder. Interestingly, no significant difference was measured in the specific and total surface energy values between the spray-dried formulation with or without L-leucine. Based upon our previous findings in the self-assembling behavior of colistin in aqueous solution and the surface energy data obtained here, we propose the self-assembly of colistin molecules during spray-drying, contributed significantly to the reduction of surface free energy and the superior aerosolization performance. PMID:26886330

  19. Application of Optical Coherence Tomography Freeze-Drying Microscopy for Designing Lyophilization Process and Its Impact on Process Efficiency and Product Quality.

    PubMed

    Korang-Yeboah, Maxwell; Srinivasan, Charudharshini; Siddiqui, Akhtar; Awotwe-Otoo, David; Cruz, Celia N; Muhammad, Ashraf

    2018-01-01

    Optical coherence tomography freeze-drying microscopy (OCT-FDM) is a novel technique that allows the three-dimensional imaging of a drug product during the entire lyophilization process. OCT-FDM consists of a single-vial freeze dryer (SVFD) affixed with an optical coherence tomography (OCT) imaging system. Unlike the conventional techniques, such as modulated differential scanning calorimetry (mDSC) and light transmission freeze-drying microscopy, used for predicting the product collapse temperature (Tc), the OCT-FDM approach seeks to mimic the actual product and process conditions during the lyophilization process. However, there is limited understanding on the application of this emerging technique to the design of the lyophilization process. In this study, we investigated the suitability of OCT-FDM technique in designing a lyophilization process. Moreover, we compared the product quality attributes of the resulting lyophilized product manufactured using Tc, a critical process control parameter, as determined by OCT-FDM versus as estimated by mDSC. OCT-FDM analysis revealed the absence of collapse even for the low protein concentration (5 mg/ml) and low solid content formulation (1%w/v) studied. This was confirmed by lab scale lyophilization. In addition, lyophilization cycles designed using Tc values obtained from OCT-FDM were more efficient with higher sublimation rate and mass flux than the conventional cycles, since drying was conducted at higher shelf temperature. Finally, the quality attributes of the products lyophilized using Tc determined by OCT-FDM and mDSC were similar, and product shrinkage and cracks were observed in all the batches of freeze-dried products irrespective of the technique employed in predicting Tc.

  20. Oral application of freeze-dried yeast particles expressing the PCV2b Cap protein on their surface induce protection to subsequent PCV2b challenge in vivo.

    PubMed

    Patterson, Robert; Eley, Thomas; Browne, Christopher; Martineau, Henny M; Werling, Dirk

    2015-11-17

    Porcine circovirus type 2 (PCV2) is now endemic in every major pig producing country, causing PCV-associated disease (PCVAD), linked with large scale economic losses. Current vaccination strategies are based on the capsid protein of the virus and are reasonably successful in preventing PCVAD but fail to induce sterile immunity. Additionally, vaccinating whole herds is expensive and time consuming. In the present study a "proof of concept" vaccine trial was employed to test the effectiveness of powdered freeze-dried recombinant Saccharomyces cerevisiae yeast stably expressing the capsid protein of PCV2b on its surface as an orally applied vaccine. PCV2-free pigs were given 3 doses of vaccine or left un-vaccinated before challenge with a defined PCV2b strain. Rectal temperatures were measured and serum and faeces samples were collected weekly. At the end of the study, pigs were euthanized, tissue samples taken and tested for PCV2b load by qPCR and immunohistochemistry. The peak of viraemia in sera and faeces of unvaccinated pigs was higher than that of vaccinated pigs. Additionally more sIgA was found in faeces of vaccinated pigs than unvaccinated. Vaccination was associated with lower serum concentrations of TNFα and IL-1β but higher concentrations of IFNα and IFNγ in comparison to the unvaccinated animals. At the end of the trial, a higher viral load was found in several lymphatic tissues and the ileum of unvaccinated pigs in comparison to vaccinated pigs. The difference between groups was especially apparent in the ileum. The results presented here demonstrate a possible use for recombinant S. cerevisiae expressing viral proteins as an oral vaccine against PCV2. A powdered freeze-dried recombinant S. cerevisiae used as an oral vaccine could be mixed with feed and may offer a cheap and less labour intensive alternative to inoculation with the additional advantage that no cooling chain would be required for vaccine transport and storage. Copyright © 2015 The

  1. Rubber closures for freeze-dried products.

    PubMed

    Hopkins, G H

    1976-10-01

    Once a biological product has been developed to perform its required medical or pharmaceutical function, it is essential that a container-closure system by chosen which will preserve the efficacy of the product up to the point of administration. The general requirements applicable to proper closure function will be reviewed and the suitability of natural and synthetic elastomers to perform these functions will be discussed. The specialized application of elastomeric materials as closures for freeze-dried products presents additional requirements which are superimposed upon those previously discussed. The first of these unique considerations relates to the proper physical design which will permit the outgassing of water vapor during the sublimation step in the lyophilizing chamber. During this outgassing the design must also permit the closure to remain affixed in the neck while only partially inserted. Since these preparations are lyophilized because they are unstable in aqueous solutions, the elastomer used must constitute an effective barrier to the transmission of moisture vapor through the closure. The MVT and gas transmission properties of elastomers will be discussed. Special consideration will be given to the extremely low temperatures used in the sublimation, stoppering, and storage before use of lyophilized products. The phenomenon of glass transition points with different elastomers will be explained as its relation to satisfactory performance of the closure function at low temperatures.

  2. Hydroxypropyl-ß-cyclodextrin as a membrane protectant during freeze-drying of hydrogenated and non-hydrogenated liposomes and molecule-in-cyclodextrin-in- liposomes: Application to trans-anethole.

    PubMed

    Gharib, Riham; Greige-Gerges, Hélène; Fourmentin, Sophie; Charcosset, Catherine

    2018-11-30

    The effect of hydrogenation of phospholipids on the characteristics of freeze-dried liposomes was investigated using hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as membrane protectant. The ethanol-injection method was applied to prepare liposomes using hydrogenated (Phospholopion-90H and 80H) and non-hydrogenated phospholipids (Lipoid-S100) in combination with cholesterol. Various liposomal formulations were tested: conventional liposomes (CL) and HP-ß-CD-loaded liposomes (CDL). Liposome suspensions were concentrated by ultracentrifugation; the pellets were reconstituted in water or CD solution and the dispersions were characterized for their size, polydispersity index and zeta potential. Results demonstrated that HP-ß-CD protected only the hydrogenated batches (CL and CDL) during freeze-drying. Moreover, the presence of HP-ß-CD in the aqueous phase of CDL protected them during freeze-drying. Freeze-dried CL and CDL made of phospholipon-90H loading anethole were demonstrated to be physically stable upon reconstitution in HP-ß-CD solutions, and are able to retain anethole after 6 months of storage at 4 °C thereby making them valuable for food applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Volatile composition and sensory characteristics of onion powders prepared by convective drying.

    PubMed

    Choi, So Mang; Lee, Dong-Jin; Kim, Jong-Yea; Lim, Seung-Taik

    2017-09-15

    Volatile composition and sensory characteristics of onion powders prepared by convective drying at different temperatures (50, 70, and 90°C) were investigated. Dipropyl disulfide was the major volatile compound in fresh onion (77.70% of total volatile compounds). However it was considerably lost during drying, reaching 6.93-32.25µg/g solids. Dipropyl disulfide showed a positive correlation with green sensory attribute perceived by descriptive sensory analysis. Thiophenes, which were responsible for caramel and sweet attributes, were produced by drying especially when the drying temperature was high. Aldehydes, another type of volatile compound found in fresh onion, showed a positive correlation with humidity. The aldehyde content in dried onion was the highest at the lowest drying temperature, possibly because the aldehydes were produced by the residual enzymes in fresh onion. Using a low temperature for drying was ideal to retain the aroma of fresh onion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Functionalised particles using dry powder coating in pharmaceutical drug delivery: promises and challenges.

    PubMed

    Dahmash, Eman Z; Mohammed, Afzal R

    2015-01-01

    Production of functionalised particles using dry powder coating is a one-step, environmentally friendly process that paves the way for the development of particles with targeted properties and diverse functionalities. Applying the first principles in physical science for powders, fine guest particles can be homogeneously dispersed over the surface of larger host particles to develop functionalised particles. Multiple functionalities can be modified including: flowability, dispersibility, fluidisation, homogeneity, content uniformity and dissolution profile. The current publication seeks to understand the fundamental underpinning principles and science governing dry coating process, evaluate key technologies developed to produce functionalised particles along with outlining their advantages, limitations and applications and discusses in detail the resultant functionalities and their applications. Dry particle coating is a promising solvent-free manufacturing technology to produce particles with targeted functionalities. Progress within this area requires the development of continuous processing devices that can overcome challenges encountered with current technologies such as heat generation and particle attrition. Growth within this field requires extensive research to further understand the impact of process design and material properties on resultant functionalities.

  5. Optimization of a cryoprotective medium to increase the viability of freeze-dried Streptococcus thermophilus by response surface methodology

    USDA-ARS?s Scientific Manuscript database

    Streptococcus thermophilus normally exhibits different survival rates in different bacteria medium during freeze-drying. In this study, response surface methodology (RSM) was applied on the design of experiments for optimizing the cryoprotective medium. Results showed that the most significant facto...

  6. The Change of Total Anthocyanins in Blueberries and Their Antioxidant Effect After Drying and Freezing

    PubMed Central

    Srzednicki, George

    2004-01-01

    This study examined the effects of freezing, storage, and cabinet drying on the anthocyanin content and antioxidant activity of blueberries (Vaccinium corymbosum L). Fresh samples were stored for two weeks at 5°C while frozen samples were kept for up to three months at −20°C. There were two drying treatments, one including osmotic pretreatment followed by cabinet drying and the other involving only cabinet drying. Total anthocyanins found in fresh blueberries were 7.2 ± 0.5 mg/g dry matter, expressed as cyanidin 3-rutinoside equivalents. In comparison with fresh samples, total anthocyanins in untreated and pretreated dried blueberries were significantly reduced to 4.3 ± 0.1 mg/g solid content, 41% loss, and 3.7 ± 0.2 mg/g solid content, 49% loss, respectively. Osmotic treatment followed by a thermal treatment had a greater effect on anthocyanin loss than the thermal treatment alone. In contrast, the frozen samples did not show any significant decrease in anthocyanin level during three months of storage. Measurement of the antioxidant activity of anthocyanin extracts from blueberries showed there was no significant difference between fresh, dried, and frozen blueberries. PMID:15577185

  7. Nifedipine Nanoparticle Agglomeration as a Dry Powder Aerosol Formulation Strategy

    PubMed Central

    Plumley, Carl; Gorman, Eric M.; Munson, Eric J.; Berkland, Cory

    2009-01-01

    Efficient administration of drugs represents a leading challenge in pulmonary medicine. Dry powder aerosols are of great interest compared to traditional aerosolized liquid formulations in that they may offer improved stability, ease of administration, and simple device design. Particles 1–5 µm in size typically facilitate lung deposition. Nanoparticles may be exhaled as a result of their small size; however, they are desired to enhance the dissolution rate of poorly soluble drugs. Nanoparticles of the hypertension drug nifedipine were co-precipitated with stearic acid to form a colloid exhibiting negative surface charge. Nifedipine nanoparticle colloids were destabilized by using sodium chloride to disrupt the electrostatic repulsion between particles as a means to achieve the agglomerated nanoparticles of a controlled size. The aerodynamic performance of agglomerated nanoparticles was determined by cascade impaction. The powders were found to be well suited for pulmonary delivery. In addition, nanoparticle agglomerates revealed enhanced dissolution of the drug species suggesting the value of this formulation approach for poorly water soluble pulmonary medicines. Ultimately, nifedipine powders are envisioned as an approach to treat pulmonary hypertension. PMID:19015016

  8. Effects of hot air and freeze drying methods on antioxidant activity, colour and some nutritional characteristics of strawberry tree (Arbutus unedo L) fruit.

    PubMed

    Orak, H H; Aktas, T; Yagar, H; İsbilir, S Selen; Ekinci, N; Sahin, F Hasturk

    2012-08-01

    Antioxidant activity, colour and some nutritional properties of hot air and freeze-dried strawberry tree (Arbutus unedo L.) fruits were investigated. Additionally, the effects of two pre-treatments, namely ethyl oleate and water blanching, were compared in terms of drying characteristics. For determination of antioxidant activities in ethanol extracts, two different analytical methods were used: 1,1-diphenyl-2-picrylhydrazyl scavenging activity and β-carotene bleaching activity. As a result, the ethyl oleate pre-treatment shortened the drying time by hot air method and gave a higher 1,1-diphenyl-2-picrylhydrazyl scavenging activity (82.16 ± 0.34%), total phenolic content (7.62 ± 1.09 µg GAE/g extract), ascorbic acid content (236.93 ± 20.14 mg/100 g), besides hydromethylfurfural was not observed. Freeze-dried fruits exhibited higher ascorbic acid content (368.63 ± 17.16 mg/100 g) than those fresh fruits (231.33 ± 19.51 mg/100 g) and nearly 1,1-diphenyl-2-picrylhydrazyl activity (93.52 ± 0.41 %) to fresh fruits (94.03 ± 1.18%). Colour characteristics, sugar content and mineral contents of fruits were significantly affected by pre-treatments and drying methods (p < 0.05). It is concluded that the drying of strawberry tree fruits should bring a valuable and attractive foodstuff to food industry due to the rich nutritional components, antioxidant activity and colour. Another conclusion from this study is that the freeze-drying is the best drying method to keep the nutritional value, antioxidant activity and sensory properties of fruits.

  9. Freeze-dried Lactobacillus plantarum 299v increases iron absorption in young females—Double isotope sequential single-blind studies in menstruating women

    PubMed Central

    Önning, Gunilla; Hulthén, Lena

    2017-01-01

    Background The probiotic strain Lactobacillus plantarum 299v has earlier been shown to increase iron absorption when added to foods. However, it is not known if the same probiotic strain in a freeze-dried format included in a capsule increases the iron absorption. Objective The aim of this study was to test the hypotheses that non-heme iron absorption from a light meal is promoted by a simultaneous intake of freeze-dried Lactobacillus plantarum 299v (Lp299v, DSM 9843). Study design With a single blinded placebo controlled sequential design, iron absorption from a light breakfast meal administered with or without capsules containing 1010 cfu freeze-dried Lp299v was studied in healthy female volunteers of fertile age. The methodology used was a double isotope technique (59Fe and 55Fe). Two studies were performed using the same protocol. Results In study 1, the absorption of iron from a meal without Lp299v was found to be 17.4 ± 13.4%, and from an identical meal with Lp299v was found to be 22.4 ± 17.3% (mean ± SD). This difference was statistically significant (p = 0.040, n = 14). In study 2, the absorption of iron from a meal without Lp299v was found to be 20.9 ± 13.1%, and from an identical meal with Lp299v found to be 24.5 ± 12.0% (mean ± SD, n = 28), which again was statistically significant (p = 0.003). Conclusion Freeze-dried Lp299v enhances the absorption of iron when administered together with a meal with a high iron bioavailability. Trial registration ClinicalTrials.gov Identifier: NCT02131870 PMID:29236734

  10. A GIS analysis of the relationship between sinkholes, dry-well complaints and groundwater pumping for frost-freeze protection of winter strawberry production in Florida.

    PubMed

    Aurit, Mark D; Peterson, Robert O; Blanford, Justine I

    2013-01-01

    Florida is riddled with sinkholes due to its karst topography. Sometimes these sinkholes can cause extensive damage to infrastructure and homes. It has been suggested that agricultural practices, such as sprinkler irrigation methods used to protect crops, can increase the development of sinkholes, particularly when temperatures drop below freezing, causing groundwater levels to drop quickly during groundwater pumping. In the strawberry growing region, Dover/Plant City, Florida, the effects have caused water shortages resulting in dry-wells and ground subsidence through the development of sinkholes that can be costly to maintain and repair. In this study, we look at how frost-freeze events have affected West Central Florida over the past 25 years with detailed comparisons made between two cold-years (with severe frost-freeze events) and a warm year (no frost-freeze events). We analyzed the spatial and temporal correlation between strawberry farming freeze protection practices and the development of sinkholes/dry well complaints, and assessed the economic impact of such events from a water management perspective by evaluating the cost of repairing and drilling new wells and how these compared with using alternative crop-protection methods. We found that the spatial distribution of sinkholes was non-random during both frost-freeze events. A strong correlation between sinkhole occurrence and water extraction and minimum temperatures was found. Furthermore as temperatures fall below 41°F and water levels decrease by more than 20 ft, the number of sinkholes increase greatly (N >10). At this time alternative protection methods such as freeze-cloth are cost prohibitive in comparison to repairing dry wells. In conclusion, the findings from this study are applicable in other agricultural areas and can be used to develop comprehensive water management plans in areas where the abstraction of large quantities of water occur.

  11. A GIS Analysis of the Relationship between Sinkholes, Dry-Well Complaints and Groundwater Pumping for Frost-Freeze Protection of Winter Strawberry Production in Florida

    PubMed Central

    Aurit, Mark D.; Peterson, Robert O.; Blanford, Justine I.

    2013-01-01

    Florida is riddled with sinkholes due to its karst topography. Sometimes these sinkholes can cause extensive damage to infrastructure and homes. It has been suggested that agricultural practices, such as sprinkler irrigation methods used to protect crops, can increase the development of sinkholes, particularly when temperatures drop below freezing, causing groundwater levels to drop quickly during groundwater pumping. In the strawberry growing region, Dover/Plant City, Florida, the effects have caused water shortages resulting in dry- wells and ground subsidence through the development of sinkholes that can be costly to maintain and repair. In this study, we look at how frost-freeze events have affected West Central Florida over the past 25 years with detailed comparisons made between two cold-years (with severe frost-freeze events) and a warm year (no frost-freeze events). We analyzed the spatial and temporal correlation between strawberry farming freeze protection practices and the development of sinkholes/dry well complaints, and assessed the economic impact of such events from a water management perspective by evaluating the cost of repairing and drilling new wells and how these compared with using alternative crop-protection methods. We found that the spatial distribution of sinkholes was non-random during both frost-freeze events. A strong correlation between sinkhole occurrence and water extraction and minimum temperatures was found. Furthermore as temperatures fall below 41°F and water levels decrease by more than 20 ft, the number of sinkholes increase greatly (N >10). At this time alternative protection methods such as freeze-cloth are cost prohibitive in comparison to repairing dry wells. In conclusion, the findings from this study are applicable in other agricultural areas and can be used to develop comprehensive water management plans in areas where the abstraction of large quantities of water occur. PMID:23326518

  12. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology.

    PubMed

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-09-10

    In this study, five polysaccharides were applied as natural polymeric coating materials to prepare solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), and then the obtained lipid colloidal particles were transformed to solid powders by the innovative nano spray drying technology. The feasibility and suitability of this new technology to generate ultra-fine lipid powder particles were evaluated and the formulation was optimized. The spray dried SLN powder exhibited the aggregated and irregular shape and dimension, but small, uniform, well-separated spherical powder particles of was obtained from NLC. The optimal formulation of NLC was prepared by a 20-30% oleic acid content with carrageenan or pectin as coating material. Therefore, nano spray drying technology has a potential application to produce uniform, spherical, and sub-microscale lipid powder particles when the formulation of lipid delivery system is appropriately designed. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability.

    PubMed

    Ramos Yacasi, Gladys Rosario; Calpena Campmany, Ana Cristina; Egea Gras, María Antonia; Espina García, Marta; García López, María Luisa

    2017-04-01

    The stabilization of flurbiprofen loaded poly-ɛ-caprolactone nanoparticles (FB-PɛCL-NPs) for ocular delivery under accurate freeze-drying (FD) process provides the basis for a large-scale production and its commercial development. Optimization of the FD to improve long-term stability of ocular administration's FB-PɛCL-NPs. FB-PɛCL-NPs were prepared by solvent displacement method with poloxamer 188 (P188) as stabilizer. Freezing and primary drying (PD) were studied and optimized through freeze-thawing test and FD microscopy. Design of experiments was used to accurate secondary drying (SD) conditions and components concentration. Formulations were selected according to desired physicochemical properties. Furthermore, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to study interactions components. Optimized FB-PɛCL-NPs, stabilized with 3.5% (w/w) P188 and protected with 8% (w/w) poly(ethylene glycol), was submitted to precooling at +10 °C for 1 h, freezing at -50 °C for 4 h, PD at +5 °C and 0.140 mbar for 24 h and a SD at +45 °C during 10 h. These conditions showed 188.4 ± 1.3 nm, 0.087 ± 0.014, 85.5 ± 1.4%, 0.61 ± 0.12%, -16.4 ± 0.1 mV and 325 ± 7 mOsm/kg of average size, polydispersity index, entrapment efficiency, residual moisture, surface charge and osmolality, respectively. It performed a long-term stability >12 months. DSC and XRD spectra confirmed adequate chemical interaction between formulation components and showed a semi-crystalline state after FD. An optimal freeze dried ocular formulation was achieved. Evidently, the successful design of this promising colloidal system resulted from rational cooperation between a good formulation and the right conditions in the FD process.

  14. Fast freeze-drying cycle design and optimization using a PAT based on the measurement of product temperature.

    PubMed

    Bosca, Serena; Barresi, Antonello A; Fissore, Davide

    2013-10-01

    This paper is focused on the use of an innovative Process Analytical Technology for the fast design and optimization of freeze-drying cycles for pharmaceuticals. The tool is based on a soft-sensor, a device that uses the experimental measure of product temperature during freeze-drying, a mathematical model of the process, and the Extended Kalman Filter algorithm to estimate the sublimation flux, the residual amount of ice in the vial, and some model parameters (heat and mass transfer coefficients). The accuracy of the estimations provided by the soft-sensor has been shown using as test case aqueous solutions containing different excipients (sucrose, polyvinylpyrrolidone), processed at various operating conditions, pointing out that the soft-sensor allows a fast estimation of model parameters and product dynamics without involving expensive hardware or time consuming analysis. The possibility of using the soft-sensor to calculate in-line (or off-line) the design space of the primary drying phase is here presented and discussed. Results evidences that by this way, it is possible to identify the values of the heating fluid temperature that maintain product temperature below the limit value, as well as the operating conditions that maximize the sublimation flux. Various experiments have been carried out to test the effectiveness of the proposed approach for a fast design of the cycle, evidencing that drying time can be significantly reduced, without impairing product quality. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Product mass transfer resistance directly determined during freeze-drying cycle runs using tunable diode laser absorption spectroscopy (TDLAS) and pore diffusion model.

    PubMed

    Kuu, Wei Y; O'Bryan, Kevin R; Hardwick, Lisa M; Paul, Timothy W

    2011-08-01

    The pore diffusion model is used to express the dry layer mass transfer resistance, [Formula: see text], as a function of the ratio r(e)/?, where r(e) is the effective pore radius and ? is the tortuosity factor of the dry layer. Using this model, the effective pore radius of the dry layer can be estimated from the sublimation rate and product temperature profiles measured during primary drying. Freeze-drying cycle runs were performed using the LyoStar II dryer (FTS Systems), with real-time sublimation rate profiles during freeze drying continuously measured by tunable diode laser absorption spectroscopy (TDLAS). The formulations chosen for demonstration of the proposed approach include 5% mannitol, 5% sucrose, 5% lactose, 3% mannitol plus 2% sucrose, and a parenteral nutrition formulation denoted VitaM12. The three different methods used for determination of the product resistance are: (1) Using both the sublimation rate and product temperature profiles, (2) using the sublimation rate profile alone, and (3) using the product temperate profile alone. Unlike the second and third methods, the computation procedure of first method does not need solution of the complex heat and mass transfer equations.

  16. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery

    PubMed Central

    Duan, Jinghua; Vogt, Frederick G; Li, Xiaojian; Hayes, Don; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design and develop respirable antibiotics moxifloxacin (MOXI) hydrochloride and ofloxacin (OFLX) microparticles and nanoparticles, and multifunctional antibiotics particles with or without lung surfactant 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced by advanced spray-drying particle engineering from an organic solution in closed mode (no water) from dilute solution. Scanning electron microscopy indicated that these particles had both optimal particle morphology and surface morphology, and the particle size distributions were suitable for pulmonary delivery. Comprehensive and systematic physicochemical characterization and in vitro aerosol dispersion performance revealed significant differences between these two fluoroquinolone antibiotics following spray drying as drug aerosols and as cospray-dried antibiotic drug: DPPC aerosols. Fourier transform infrared spectroscopy and confocal Raman microspectroscopy were employed to probe composition and interactions in the solid state. Spray-dried MOXI was rendered noncrystalline (amorphous) following organic solution advanced spray drying. This was in contrast to spray-dried OFLX, which retained partial crystallinity, as did OFLX:DPPC powders at certain compositions. Aerosol dispersion performance was conducted using inertial impaction with a dry powder inhaler device approved for human use. The present study demonstrates that the use of DPPC offers improved aerosol delivery of MOXI as cospray-dried microparticulate/nanoparticulate powders, whereas residual partial crystallinity influenced aerosol dispersion of OFLX and most of the compositions of OFLX:DPPC inhalation powders. PMID:24092972

  17. On the Design of a Fuzzy Logic-Based Control System for Freeze-Drying Processes.

    PubMed

    Fissore, Davide

    2016-12-01

    This article is focused on the design of a fuzzy logic-based control system to optimize a drug freeze-drying process. The goal of the system is to keep product temperature as close as possible to the threshold value of the formulation being processed, without trespassing it, in such a way that product quality is not jeopardized and the sublimation flux is maximized. The method involves the measurement of product temperature and a set of rules that have been obtained through process simulation with the goal to obtain a unique set of rules for products with very different characteristics. Input variables are the difference between the temperature of the product and the threshold value, the difference between the temperature of the heating fluid and that of the product, and the rate of change of product temperature. The output variables are the variation of the temperature of the heating fluid and the pressure in the drying chamber. The effect of the starting value of the input variables and of the control interval has been investigated, thus resulting in the optimal configuration of the control system. Experimental investigation carried out in a pilot-scale freeze-dryer has been carried out to validate the proposed system. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Determination of free amino acids and 18 elements in freeze-dried strawberry and blueberry fruit using an Amino Acid Analyzer and ICP-MS with micro-wave digestion.

    PubMed

    Zhang, Hua; Wang, Zhen-Yu; Yang, Xin; Zhao, Hai-Tian; Zhang, Ying-Chun; Dong, Ai-Jun; Jing, Jing; Wang, Jing

    2014-03-15

    The objective of this study was to investigate the level of 18 trace elements of two freeze-dried samples from the Blueberry (Vaccinium corymbosum) and the Strawberry (Fragaria × Ananassa). The total free amino acid composition in the blueberry and strawberry was determined by an Amino Acid Analyzer. Eleven free amino acids were found in both berries. The trace elements in each dried fruit sample were determined by ICP-MS with microwave digestion. The linearity range of the standard curves was 0-1250.0 μg L(-1) (Mg, P, K, Ca),while in all cases, except for B, Na, Al, Cr, Mn, Fe, Ni, Cu, Zn, Se, Cd, Pb, Ge and As, which was 125.0 μg mL(-1), all related coefficients were above 0.9999; recovery was in the range of 79.0-106.8%. Minor concentrations of nutritional elements were found in each freeze-dried berry. In sum, the toxic trace element analysis found the content of toxic trace elements in each freeze-dried berry sample was safe for human consumption and that the overall quality of the blueberry surpassed that of the strawberry. The results certify that the two freeze-dried berries have potential for human consumption in value-added products and have a certain theoretical and practical significance. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Freeze Technology for Nuclear Applications - 13590

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostmark, Susanne C.; Knutsson, Sven; Lindberg, Maria

    2013-07-01

    Freezing of soil materials is a complicated process of a number of physical processes: - freezing of pore water in a thermal gradient, - cryogenic suction causing water migration and - ice formation expanding pores inducing frost heave. Structural changes due to increase of effective stress during freezing also take place. The over consolidation gives a powerful dewatering/drying effect and the freeze process causes separation of contaminates. Artificial ground freezing (AGF is a well established technique first practiced in south Wales, as early as 1862. AGF is mostly used to stabilize tunnels and excavations. During the last ten years underwatermore » applications of freeze technologies based on the AGF have been explored in Sweden. The technology can, and has been, used in many different steps in a remediation action. Freeze Sampling where undisturbed samples are removed in both soft and hard sediment/sludge, Freeze Dredging; retrieval of sediment with good precision and minimal redistribution, and Freeze Drying; volume reduction of contaminated sludge/sediment. The application of these technologies in a nuclear or radioactive environment provides several advantages. Sampling by freezing gives for example an advantage of an undisturbed sample taken at a specified depth, salvaging objects by freezing or removal of sludges is other applications of this, for the nuclear industry, novel technology. (authors)« less

  20. Identification of cyanidin glycosides as constituents of freeze-dried black raspberries which inhibit anti-benzo[a]pyrene-7,8-diol-9,10-epoxide induced NFκB and AP-1 activity

    PubMed Central

    Hecht, Stephen S.; Huang, Chuanshu; Stoner, Gary D.; Li, Jingxia; Kenney, Patrick M. J.; Sturla, Shana J.; Carmella, Steven G.

    2010-01-01

    Dietary freeze-dried black raspberries inhibit tumor induction by N-nitrosomethylbenzylamine in the rat esophagus, but the constituents responsible for this chemopreventive activity have not been identified. We fractionated freeze-dried black raspberries and used mouse epidermal JB6 Cl 41 cells stably transfected with either a nuclear factor kappa B (NFκB)- or an activator protein 1 (AP-1)-luciferase reporter, and treated with racemic anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), to assess the inhibitory effects of the fractions. The ethanol and water extracts of the freeze-dried black raspberries had inhibitory activity and these extracts were fractionated by HPLC to give several bioactive fractions. Further HPLC analysis yielded multiple subfractions, some of which inhibited BPDE-induced NFκB activity. Major constituents of the most active subfractions were identified by their spectral properties and in comparison with standards as cyanidin-3-O-glucoside, cyanidin 3-O-(2G-xylosylrutinoside) and cyanidin 3-O-rutinoside. Analysis of freeze-dried black raspberries indicated that these three components comprised ∼3.4% of the material by dry weight. Consistent with these results, standard cyanidin-3-O-glucoside and cyanidin chloride were also good inhibitors of BPDE-induced NFκB activity. The results of this study demonstrate that cyanidin glycosides of freeze-dried black raspberries are bioactive compounds which could account for at least some of the chemopreventive activity observed in animal models. PMID:16522666

  1. Identification of cyanidin glycosides as constituents of freeze-dried black raspberries which inhibit anti-benzo[a]pyrene-7,8-diol-9,10-epoxide induced NFkappaB and AP-1 activity.

    PubMed

    Hecht, Stephen S; Huang, Chuanshu; Stoner, Gary D; Li, Jingxia; Kenney, Patrick M J; Sturla, Shana J; Carmella, Steven G

    2006-08-01

    Dietary freeze-dried black raspberries inhibit tumor induction by N-nitrosomethylbenzylamine in the rat esophagus, but the constituents responsible for this chemopreventive activity have not been identified. We fractionated freeze-dried black raspberries and used mouse epidermal JB6 Cl 41 cells stably transfected with either a nuclear factor kappa B (NFkappaB)- or an activator protein 1 (AP-1)-luciferase reporter, and treated with racemic anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), to assess the inhibitory effects of the fractions. The ethanol and water extracts of the freeze-dried black raspberries had inhibitory activity and these extracts were fractionated by HPLC to give several bioactive fractions. Further HPLC analysis yielded multiple subfractions, some of which inhibited BPDE-induced NFkappaB activity. Major constituents of the most active subfractions were identified by their spectral properties and in comparison with standards as cyanidin-3-O-glucoside, cyanidin 3-O-(2(G)-xylosylrutinoside) and cyanidin 3-O-rutinoside. Analysis of freeze-dried black raspberries indicated that these three components comprised approximately 3.4% of the material by dry weight. Consistent with these results, standard cyanidin-3-O-glucoside and cyanidin chloride were also good inhibitors of BPDE-induced NFkappaB activity. The results of this study demonstrate that cyanidin glycosides of freeze-dried black raspberries are bioactive compounds which could account for at least some of the chemopreventive activity observed in animal models.

  2. Colloid-facilitated mobilization of metals by freeze-thaw cycles.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2014-01-21

    The potential of freeze-thaw cycles to release colloids and colloid-associated contaminants into water is unknown. We examined the effect of freeze-thaw cycles on the mobilization of cesium and strontium in association with colloids in intact cores of a fractured soil, where preferential flow paths are prevalent. Two intact cores were contaminated with cesium and strontium. To mobilize colloids and metal cations sequestered in the soil cores, each core was subjected to 10 intermittent wetting events separated by 66 h pauses. During the first five pauses, the cores were dried at room temperature, and during last five pauses, the cores were subjected to 42 h of freezing followed by 24 h of thawing. In comparison to drying, freeze-thaw cycles created additional preferential flow paths through which colloids, cesium, and strontium were mobilized. The wetting events following freeze-thaw intervals mobilized about twice as many colloids as wetting events following drying at room temperature. Successive wetting events following 66 h of drying mobilized similar amounts of colloids; in contrast, successive wetting events after 66 h of freeze-thaw intervals mobilized greater amounts of colloids than the previous one. Drying and freeze-thaw treatments, respectively, increased and decreased the dissolved cesium and strontium, but both treatments increased the colloidal cesium and strontium. Overall, the freeze-thaw cycles increased the mobilization of metal contaminants primarily in association with colloids through preferential flow paths. These findings suggest that the mobilization of colloid and colloid-associated contaminants could increase when temperature variations occur around the freezing point of water. Thus, climate extremes have the potential to mobilize contaminants that have been sequestered in the vadose zone for decades.

  3. Enhanced pulmonary absorption of poorly soluble itraconazole by micronized cocrystal dry powder formulations.

    PubMed

    Karashima, Masatoshi; Sano, Noriyasu; Yamamoto, Syunsuke; Arai, Yuta; Yamamoto, Katsuhiko; Amano, Nobuyuki; Ikeda, Yukihiro

    2017-06-01

    Micronized cocrystal powders and amorphous spray-dried formulations were prepared and evaluated in vivo and in vitro as pulmonary absorption enhancement formulations of poorly soluble itraconazole (ITZ). ITZ cocrystals with succinic acid (SA) or l-tartaric acid (TA) with a particle size diameter of <2μm were successfully micronized using the jet-milling system. The cocrystal crystalline morphologies observed using scanning electron microscopy (SEM) suggested particle shapes that differed from those of the crystalline or spray-dried amorphous ITZ. The micronized ITZ cocrystal powders showed better intrinsic dissolution rate (IDR) and pulmonary absorption profile in rats than that of the amorphous spray-dried formulation and crystalline ITZ with comparable particle sizes. Specifically, in rat pharmacokinetic studies following pulmonary administration, micronized ITZ-SA and ITZ-TA cocrystals showed area under the curve from 0 to 8h (AUC 0-8h ) values approximately 24- and 19-fold higher than those of the crystalline ITZ and 2.0- and 1.6-fold higher than the spray-dried ITZ amorphous values, respectively. The amorphous formulation appeared physically instable during the studies due to rapid crystallization of ITZ, which was its disadvantage compared to the crystalline formulations. Therefore, this study demonstrated that micronized cocrystals are promising formulations for enhancing the pulmonary absorption of poorly soluble compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A Novel In-Line Delivery System to Administer Dry Powder Mannitol to Mechanically Ventilated Patients.

    PubMed

    Feng, Benny; Tang, Patricia; Leung, Sharon Shui Yee; Dhanani, Jayesh; Chan, Hak-Kim

    2017-04-01

    Mechanically ventilated patients commonly suffer from ventilator-associated pneumonia, hypoxemia, and other lower respiratory tract infection as a result of pathogen colonization and poor sputum clearance. Consequently, there is a high rate of morbidity and mortality in these patients. Dry powder mannitol increases sputum clearance, and therefore, we developed a system to administer it to mechanically ventilated patients without disconnection from the ventilator. The inspiratory line from a ventilator was split by using a three-way valve into two parallel lines where one contains a humidifier for normal breathing cycle and the other line contains a dry powder inhaler (Osmohaler™). The inspiratory air went through the dry powder line and aerosolized the mannitol powder only when its administration to a patient is required. We determined the delivered dose and particle size distributions of emitted aerosols in vitro from 9.5 mm endotracheal and 7.5 mm tracheostomy tubes, with inspiratory airflow of 60, 70, and 80 L/min. This novel setup was able to deliver 24.6% ± 3.33% of the 160 mg loaded dose mannitol powder (4 × 40 mg capsules) and 26.7% ± 2.19% of the 320 mg dose (4 × 80 mg capsules) when the endotracheal tube was used. With the shorter tracheostomy tube, the delivery dose increased to 35.6% ± 3.01% and 39.5% ± 2.04% of the 160 and 320 mg doses, respectively. The volume median diameters of the aerosols were in the respirable range with the largest value being 5.17 ± 0.87 μm. This delivery system has been shown to consistently deliver a high respirable dose of mannitol powder. Since this setup does not require disconnection of patients from the ventilator, it is safer for hypoxemic patients and easier to be adapted in a real clinical use.

  5. Comparative study of subtalar arthrodesis after calcaneal frature malunion with autologous bone graft or freeze-dried xenograft.

    PubMed

    Henning, Carlo; Poglia, Gabriel; Leie, Murilo Anderson; Galia, Carlos Roberto

    2015-12-01

    Calcaneal fracture malunion may evolve into arthrosis and severe foot deformities. The aim of this study was to identify differences in bony union following corrective subtalar arthrodesis with interposition of autologous tricortical bone graft or freeze-dried bovine xenograft. We prospectively evaluated 12 patients who underwent subtalar arthrodesis, six patients received autografts and 6 received freeze-dried bovine xenografts. After a mean followup of 58 weeks, the patients were clinical assessed using AOFAS scale and the visual analog scale (VAS) for pain and for final radiographic parameters measurement. Two blind raters evaluated the length of time required for solid union of the arthrodesis and graft integration by retrospective radiographic examination. In the autograft group, AOFAS score improved from a preoperative average of 37 to 64 points postoperatively (p = 0.02) and mean VAS score improved from 4.7 to 1.9 (p = 0.028). In the xenograft group, AOFAS score improved from 38 to 74 points (p = 0.02) and VAS from 5.5 to 2.7 (p = 0.046). Solid union was achieved in all cases in the autograft group at an average of 5.3 weeks and in five cases in the xenograft group at 8.8 weeks (p = 0.077). Graft integration occurred after an average of 10.7 weeks in the autograft group and 28.8 weeks in the xenograft group (p = 0.016). With the numbers available, no significant difference could be detected in the length of time required for solid union of subtalar arthrodesis between groups, although time to integration of freeze-dried bovine xenografts was statistically higher. Clinical and functional improvement was observed in both groups.

  6. Ni-MH battery electrodes made by a dry powder process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Z.; Sakai, T.; Noreus, D.

    1995-12-01

    A dry powder roller pressing process, once developed for making both of the electrodes in low cost Ni-Cd consumer batteries, has been utilized to make electrodes for Ni-MH batteries. The process was evaluated by manually making a series of sub-C type cells that were characterized with respect to specific capacity, cycle life, and self-discharge. The performance was comparable in several respects with that of cells made by more complex Ni-foam technologies.

  7. Prediction of the acoustic and bubble fields in insonified freeze-drying vials.

    PubMed

    Louisnard, O; Cogné, C; Labouret, S; Montes-Quiroz, W; Peczalski, R; Baillon, F; Espitalier, F

    2015-09-01

    The acoustic field and the location of cavitation bubble are computed in vials used for freeze-drying, insonified from the bottom by a vibrating plate. The calculations rely on a nonlinear model of sound propagation in a cavitating liquid [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Both the vibration amplitude and the liquid level in the vial are parametrically varied. For low liquid levels, a threshold amplitude is required to form a cavitation zone at the bottom of the vial. For increasing vibration amplitudes, the bubble field slightly thickens but remains at the vial bottom, and the acoustic field saturates, which cannot be captured by linear acoustics. On the other hand, increasing the liquid level may promote the formation of a secondary bubble structure near the glass wall, a few centimeters below the free liquid surface. These predictions suggest that rather complex acoustic fields and bubble structures can arise even in such small volumes. As the acoustic and bubble fields govern ice nucleation during the freezing step, the final crystal's size distribution in the frozen product may crucially depend on the liquid level in the vial. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. L-Leucine as an excipient against moisture on in vitro aerosolization performances of highly hygroscopic spray-dried powders.

    PubMed

    Li, Liang; Sun, Siping; Parumasivam, Thaigarajan; Denman, John A; Gengenbach, Thomas; Tang, Patricia; Mao, Shirui; Chan, Hak-Kim

    2016-05-01

    L-Leucine (LL) has been widely used to enhance the dispersion performance of powders for inhalation. LL can also protect powders against moisture, but this effect is much less studied. The aim of this study was to investigate whether LL could prevent moisture-induced deterioration in in vitro aerosolization performances of highly hygroscopic spray-dried powders. Disodium cromoglycate (DSCG) was chosen as a model drug and different amounts of LL (2-40% w/w) were added to the formulation, with the aim to explore the relationship between powder dispersion, moisture protection and physicochemical properties of the powders. The powder formulations were prepared by spray drying of aqueous solutions containing known concentrations of DSCG and LL. The particle sizes were measured by laser diffraction. The physicochemical properties of fine particles were characterized by X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic vapor sorption (DVS). The surface morphology and chemistry of fine particles were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In vitro aerosolization performances were evaluated by a next generation impactor (NGI) after the powders were stored at 60% or 75% relative humidity (RH), and 25°C for 24h. Spray-dried (SD) DSCG powders were amorphous and absorbed 30-45% (w/w) water at 70-80% RH, resulting in deterioration in the aerosolization performance of the powders. LL did not decrease the water uptake of DSCG powders, but it could significantly reduce the effect of moisture on aerosolization performances. This is due to enrichment of crystalline LL on the surface of the composite particles. The effect was directly related to the percentage of LL coverage on the surface of particles. Formulations having 61-73% (molar percent) of LL on the particle surface (which correspond to 10-20% (w

  9. Effects of extrusion cooking on the chemical composition and functional properties of dry common bean powders.

    PubMed

    Ai, Yongfeng; Cichy, Karen A; Harte, Janice B; Kelly, James D; Ng, Perry K W

    2016-11-15

    The impact of extrusion cooking on the chemical composition and functional properties of bean powders from four common bean varieties was investigated. The raw bean powders were extruded under eight different conditions, and the extrudates were then dried and ground (particle size⩽0.5mm). Compared with corresponding non-extruded (raw) bean powders (particle size⩽0.5mm), the extrusion treatments did not substantially change the protein and starch contents of the bean powders and showed inconsistent effects on the sucrose, raffinose and stachyose contents. The extrusion cooking did cause complete starch gelatinization and protein denaturation of the bean powders and thus changed their pasting properties and solvent-retention capacities. The starch digestibilities of the cooked non-extruded and cooked extruded bean powders were comparable. The extruded bean powders displayed functional properties similar to those of two commercial bean powders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Application of the freeze-dried bioluminescent bioreporter Pseudomonas putida mt-2 KG1206 to the biomonitoring of groundwater samples from monitoring wells near gasoline leakage sites.

    PubMed

    Ko, Kyung-Seok; Kong, In Chul

    2017-02-01

    This study examined the applicability of a freeze-dried bioluminescent bioreporter, Pseudomonas putida mt-2 KG1206 (called KG1206), to the biomonitoring of groundwater samples. Samples were collected from the monitoring wells of gas station tanks or old pipeline leakage sites in Korea. In general, the freeze-dried strain in the presence of pure inducer chemicals showed low bioluminescence activity and a different activity order compared with that of the subcultured strain. The effects of KNO 3 as a bioluminescence stimulant were observed on the pure inducers and groundwater samples. The stimulation rates varied according to the type of inducers and samples, ranging from 2.2 to 20.5 times (for pure inducers) and from 1.1 to 11 times (for groundwater samples) the total bioluminescence of the control. No considerable correlations were observed between the bioluminescence intensity of the freeze-dried strain and the inducer concentrations in the samples (R 2  < 0.1344). However, samples without a high methyl tertiary butyl ether (MTBE) level and those from the gas station leakage site showed reasonable correlations with the bioluminescence activity with R 2 values of 0.3551 and 0.4131, respectively. These results highlight the potential of using freeze-dried bioluminescent bacteria as a rapid, simple, and portable tool for the preliminary biomonitoring of specific pollutants at contaminated sites.

  11. Effect of amino acids on the stability of spray freeze-dried immunoglobulin G in sugar-based matrices.

    PubMed

    Emami, Fakhrossadat; Vatanara, Alireza; Najafabadi, Abdolhosein Rouholamini; Kim, Yejin; Park, Eun Ji; Sardari, Soroush; Na, Dong Hee

    2018-07-01

    The purpose of this study was to prepare spray freeze-dried particles of immunoglobulin G (IgG) using various combinations of trehalose and different amino acids (leucine, phenylalanine, arginine, cysteine, and glycine), and investigate the effect of the amino acids on the stability of IgG during the spray freeze-drying (SFD) process and storage. The morphology and structural integrity of the processed particles were evaluated by physical and spectroscopic techniques. SFD-processed IgG without any excipient resulted in the formation of aggregates corresponding to approximately 14% of IgG. In contrast, IgG formulations stabilized using an optimal level of leucine, phenylalanine, or glycine in the presence of trehalose displayed aggregates <2.2%. In particular, phenylalanine combined with trehalose was most effective in stabilizing IgG against shear, freezing, and dehydration stresses during SFD. Arginine and cysteine were destabilizers displaying aggregation and fragmentation of IgG, respectively. Aggregation and fragmentation were evaluated by dynamic light scattering, ultraviolet spectrophotometry, size-exclusion chromatography, and microchip capillary gel electrophoresis. The IgG formulations prepared with leucine, phenylalanine, or glycine in the presence of trehalose showed good stability after storage at 40 °C and 75% relative humidity for 2 months. Thus, a combination of the excipients trehalose and uncharged, nonpolar amino acids appears effective for production of stable SFD IgG formulations. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols

    PubMed Central

    Meenach, Samantha A; Vogt, Frederick G; Anderson, Kimberly W; Hilt, J Zach; McGarry, Ronald C; Mansour, Heidi M

    2013-01-01

    Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol) (PEG)ylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG) with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. The size of the particles was statistically analyzed using the scanning electron micrographs and SigmaScan® software and were determined to be 600 nm to 1.2 μm in diameter, which is optimal for deep-lung alveolar penetration. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were performed to analyze solid-state transitions and long-range molecular order, respectively, and allowed for the confirmation of the presence of phospholipid bilayers in the solid state of the particles. The residual water content of the particles was very low, as quantified analytically via Karl Fischer titration. The composition of the particles was confirmed using attenuated total-reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and confocal Raman microscopy (CRM), and chemical imaging confirmed the chemical homogeneity of the particles. The dry powder aerosol dispersion properties were evaluated using the Next Generation Impactor™ (NGI™) coupled with the HandiHaler® dry powder inhaler device, where the mass median aerodynamic diameter from 2.6 to 4.3 μm with excellent aerosol dispersion performance, as exemplified by high values of emitted dose, fine particle fraction, and respirable fraction. Overall, it was determined that the pump rates defined in the

  13. Effect of molecular weight and ratio of poly ethylene glycols' derivatives in combination with trehalose on stability of freeze-dried IgG.

    PubMed

    Mohammad Zadeh, Amir Hossein; Rouholamini Najafabadi, Abdolhosein; Vatanara, Alireza; Faghihi, Homa; Gilani, Kambiz

    2017-12-01

    The influence of poly ethylene glycol (PEG) at different molecular weights (MWs) and ratios was studied on the stability of freeze-dried immune globulin G (IgG). PEGs (600-4000 Dalton) at concentrations of 0.5 and 5% W/V were applied in the presence of 40 and 60% W/W of trehalose to prepare freeze-dried IgG formulations. Size-exclusion chromatography, infra-red spectroscopy, differential scanning calorimeter, and gel electrophoresis were performed to characterize lyophilized samples. Pure IgG demonstrated the highest aggregation of 5.77 ± 0.10% after process and 12.66 ± 0.50% as well as 44.69 ± 0.50% upon 1 and 2 months of storage at 45 °C, respectively. 5% W/V of PEGs 4000 in combination with 40% W/W trehalose, significantly suppressed aggregation, 0.05 ± 0.01%, with minimum aggregation rate constant of 0.32 (1/month). The integrity of IgG molecules and secondary conformation were properly preserved in all formulations comparing native IgG. It could be concluded that appropriate concentration and MW of PEGs, prominently augmented stabilizing effect of trehalose on freeze-dried antibody through inserting additional supportive mechanisms of actions.

  14. A Comparison between Use of Spray and Freeze Drying Techniques for Preparation of Solid Self-Microemulsifying Formulation of Valsartan and In Vitro and In Vivo Evaluation

    PubMed Central

    Singh, Sanjay Kumar; Vuddanda, Parameswara Rao; Singh, Sanjay; Srivastava, Anand Kumar

    2013-01-01

    The objective of the present study was to develop self micro emulsifying formulation (SMEF) of valsartan to improve its oral bioavailability. The formulations were screened on the basis of solubility, stability, emulsification efficiency, particle size and zeta potential. The optimized liquid SMEF contains valsartan (20% w/w), Capmul MCM C8 (16% w/w), Tween 80 (42.66% w/w) and PEG 400 (21.33% w/w) as drug, oil, surfactant and co-surfactant, respectively. Further, Liquid SMEF was adsorbed on Aerosol 200 by spray and freeze drying methods in the ratio of 2 : 1 and transformed into free flowing powder. Both the optimized liquid and solid SMEF had the particle size <200 nm with rapid reconstitution properties. Both drying methods are equally capable for producing stable solid SMEF and immediate release of drug in in vitro and in vivo conditions. However, the solid SMEF produced by spray drying method showed high flowability and compressibility. The solid state characterization employing the FTIR, DSC and XRD studies indicated insignificant interaction of drug with lipid and adsorbed excipient. The relative bioavailability of solid SMEF was approximately 1.5 to 3.0 folds higher than marketed formulation and pure drug. Thus, the developed solid SMEF illustrates an alternative delivery of valsartan as compared to existing formulations with improved bioavailability. PMID:23971048

  15. [A case of freeze-dried gas gangrene antitoxin for the treatment of Clostridium perfringens sepsis].

    PubMed

    Yoshida, Juichiro; Nakamura, Hideki; Yamada, Shinya; Sekoguchi, Satoru; Suzuki, Takahiro; Tomatsuri, Naoya; Sato, Hideki; Okuyama, Yusuke; Kimura, Hiroyuki; Yoshida, Norimasa

    2015-02-01

    A 66-year-old man was admitted to our hospital with high fever. We diagnosed a gas-containing liver abscess and performed percutaneous abscess drainage. However, 15 hours after admission, he developed massive intravascular hemolysis and acidosis. Sepsis due to Clostridium perfringens was suspected and we treated the patient intensively with multidisciplinary approaches, including antibiotics, mechanical ventilation, and renal replacement therapy. Furthermore, we administered freeze-dried gas gangrene antitoxin. Despite intensive care, the patient died 43 hours after admission.

  16. Brewer's Yeast, Saccharomyces cerevisiae, Enhances Attraction of Two Invasive Yellowjackets (Hymenoptera: Vespidae) to Dried Fruit and Fruit Powder.

    PubMed

    Babcock, Tamara; Gries, Regine; Borden, John; Palmero, Luis; Mattiacci, Analía; Masciocchi, Maité; Corley, Juan; Gries, Gerhard

    2017-09-01

    The German yellowjacket, Vespula germanica F., and common yellowjacket, Vespula vulgaris L. (Hymenoptera: Vespidae), are pests of significant economic, environmental, and medical importance in many countries. There is a need for the development and improvement of attractive baits that can be deployed in traps to capture and kill these wasps in areas where they are a problem. Yellowjackets are known to feed on fermenting fruit, but this resource is seldom considered as a bait due to its ephemeral nature and its potential attractiveness to nontarget species. We analyzed the headspace volatiles of dried fruit and fruit powder baits with and without Brewer's yeast, Saccharomyces cerevisiae, using gas chromatography-mass spectrometry, and we field tested these baits for their attractiveness to yellowjackets in Argentina. The addition of yeast to dried fruit and fruit powder changed the volatile compositions, increasing the number of alcohols and acids and decreasing the number of aldehydes. Dried fruit and fruit powder baits on their own were hardly attractive to yellowjackets, but the addition of yeast improved their attractiveness by 9- to 50-fold and surpassed the attractiveness of a commercial heptyl butyrate-based wasp lure. We suggest that further research be done to test additional varieties and species of yeasts. A dried fruit or fruit powder bait in combination with yeast could become a useful tool in the management of yellowjackets. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  17. Incorporating freeze-dried strawberry powder into a high-fat meal does not alter postprandial vascular function or blood markers of cardiovascular disease risk: a randomized controlled trial.

    PubMed

    Richter, Chesney K; Skulas-Ray, Ann C; Gaugler, Trent L; Lambert, Joshua D; Proctor, David N; Kris-Etherton, Penny M

    2017-02-01

    Postprandial dysmetabolism-an exaggerated spike in triglycerides, glucose, and insulin-increases cardiovascular disease risk by inducing oxidative stress, inflammation, and endothelial dysfunction. Polyphenol-rich foods may blunt these effects when they are incorporated into a high-fat, calorie-dense meal. Strawberries are a rich source of polyphenols, but there is little research on their postprandial effects. This study was designed to investigate the effect of adding 40 g freeze-dried strawberry powder (∼1 lb. or 0.45 kg fresh strawberries) to a high-fat (50 g total fat) meal on postprandial vascular function, as well as triglyceride, glucose, and insulin responses. Healthy, overweight or obese [mean ± SEM body mass index (in kg/m 2 ): 31 ± 0.5] adults (mean ± SEM age: 28 ± 2 y; 17 men and 13 women) consumed a control meal and a strawberry meal in a randomized crossover design. Testing sessions were separated by ≥1 wk for men and ∼1 mo for women to control for hormonal variations. Blood samples were obtained before the meal and 0.5, 1, 2, and 4 h after the meal. Central blood pressure and arterial stiffness indexes were measured at baseline and 2 and 4 h postmeal with the use of pulse waveform analysis. There were no significant differences between the strawberry and control meals for any outcomes. Consumption of either meal significantly decreased the augmentation index at 2 and 4 h (P < 0.002) and significantly increased triglycerides, insulin, and glucose at all time points (P < 0.001) relative to baseline. The strawberry intervention did not alter vascular function or attenuate postprandial metabolic derangements in triglycerides, glucose, or insulin relative to the control meal. Additional research is needed to clarify whether strawberries or other polyphenol-rich interventions improve postprandial responses, and future studies should take into account the acute meal-induced improvements in measures of vascular function. This trial was registered

  18. Effect of temperature, high pressure and freezing/thawing of dry-cured ham slices on dielectric time domain reflectometry response.

    PubMed

    Rubio-Celorio, Marc; Garcia-Gil, Núria; Gou, Pere; Arnau, Jacint; Fulladosa, Elena

    2015-02-01

    Dielectric Time Domain Reflectometry (TDR) is a useful technique for the characterization and classification of dry-cured ham according to its composition. However, changes in the behavior of dielectric properties may occur depending on environmental factors and processing. The effect of temperature, high pressure (HP) and freezing/thawing of dry-cured ham slices on the obtained TDR curves and on the predictions of salt and water contents when using previously developed predictive models, was evaluated in three independent experiments. The results showed that at temperatures below 20 °C there is an increase of the predicted salt content error, being more important in samples with higher water content. HP treatment caused a decrease of the reflected signal intensity due to the major mobility of available ions promoting an increase of the predicted salt content. Freezing/thawing treatment caused an increase of the reflected signal intensity due to the microstructural damages and the loss of water and ions, promoting a decrease of the predicted salt content.

  19. Brewer’s Yeast, Saccharomyces cerevisiae, Enhances Attraction of Two Invasive Yellowjackets (Hymenoptera: Vespidae) to Dried Fruit and Fruit Powder

    PubMed Central

    Gries, Regine; Borden, John; Palmero, Luis; Mattiacci, Analía; Masciocchi, Maité; Corley, Juan; Gries, Gerhard

    2017-01-01

    Abstract The German yellowjacket, Vespula germanica F., and common yellowjacket, Vespula vulgaris L. (Hymenoptera: Vespidae), are pests of significant economic, environmental, and medical importance in many countries. There is a need for the development and improvement of attractive baits that can be deployed in traps to capture and kill these wasps in areas where they are a problem. Yellowjackets are known to feed on fermenting fruit, but this resource is seldom considered as a bait due to its ephemeral nature and its potential attractiveness to nontarget species. We analyzed the headspace volatiles of dried fruit and fruit powder baits with and without Brewer’s yeast, Saccharomyces cerevisiae, using gas chromatography–mass spectrometry, and we field tested these baits for their attractiveness to yellowjackets in Argentina. The addition of yeast to dried fruit and fruit powder changed the volatile compositions, increasing the number of alcohols and acids and decreasing the number of aldehydes. Dried fruit and fruit powder baits on their own were hardly attractive to yellowjackets, but the addition of yeast improved their attractiveness by 9- to 50-fold and surpassed the attractiveness of a commercial heptyl butyrate-based wasp lure. We suggest that further research be done to test additional varieties and species of yeasts. A dried fruit or fruit powder bait in combination with yeast could become a useful tool in the management of yellowjackets. PMID:28922898

  20. Freeze-drying of HI-6-loaded recombinant human serum albumin nanoparticles for improved storage stability.

    PubMed

    Dadparvar, Miriam; Wagner, Sylvia; Wien, Sascha; Worek, Franz; von Briesen, Hagen; Kreuter, Jörg

    2014-10-01

    Severe intoxications with organophosphates require the immediate administration of atropine in combination with acetyl cholinesterase (AChE) reactivators such as HI-6. Although this therapy regimen enables the treatment of peripheral symptoms, the blood-brain barrier (BBB) restricts the access of the hydrophilic antidotes to the central nervous system which could lead to a fatal respiratory arrest. Therefore, HI-6-loaded albumin nanoparticles were previously developed to enhance the transport across this barrier and were able to reactivate organophosphate-(OP)-inhibited AChE in an in vitro BBB model. Since HI-6 is known to be moisture-sensitive, the feasibility of freeze-drying of the HI-6-loaded nanoparticles was investigated in the present study using different cryo- and lyoprotectants at different concentrations. Trehalose and sucrose (3%, w/v)-containing formulations were superior to mannitol concerning the physicochemical parameters of the nanoparticles whereas trehalose-containing samples were subject of a prolonged storage stability study at temperatures between -20°C and +40°C for predetermined time intervals. Shelf-life computations of the freeze-dried HI-6 nanoparticle formulations revealed a shelf-life time of 18 months when stored at -20°C. The formulations' efficacy was proven in vitro by reactivation of OP-inhibited AChE after transport over a porcine brain capillary endothelial cell layer model. Copyright © 2014 Elsevier B.V. All rights reserved.