Sample records for jmaps mission overview

  1. Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Overview and Application to NWO Mission

    DTIC Science & Technology

    2009-03-11

    degrade
 at
a
much
reduced
rate
over
 time 
when
compared
with
the
Hipparcos
catalog.
 JMAPS
will
accomplish
this
with
a
relatively
modest
aperture...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...JMAPS
instrument
is
operated
in
a
fashion
similar
to
standard
star
trackers.

A
 star
field
is
imaged—in
the
case
of
JMAPS,
integration
 times 
of
1

  2. The Joint Milli-Arcsecond Pathfinder Survey (J-MAPS) Mission: Application for Space Situational Awareness

    DTIC Science & Technology

    2008-09-01

    One implication of this is that the instrument can physically resolve satellites at smaller separations than current and existing optical SSA assets...with the potential for 24/7 taskability and near-real time capability. By optimizing an instrument to perform position measurement rather than...sensors. The J-MAPS baseline also includes a novel filter-grating wheel, of interest in the area of non- resolved object characterization. We discuss the

  3. Timeline-Based Mission Operations Architecture: An Overview

    NASA Technical Reports Server (NTRS)

    Chung, Seung H.; Bindschadler, Duane L.

    2012-01-01

    Some of the challenges in developing a mission operations system and operating a mission can be traced back to the challenge of integrating a mission operations system from its many components and to the challenge of maintaining consistent and accountable information throughout the operations processes. An important contributing factor to both of these challenges is the file-centric nature of today's systems. In this paper, we provide an overview of these challenges and argue the need to move toward an information-centric mission operations system. We propose an information representation called Timeline as an approach to enable such a move, and we provide an overview of a Timeline-based Mission Operations System architecture.

  4. CORRELATED AND ZONAL ERRORS OF GLOBAL ASTROMETRIC MISSIONS: A SPHERICAL HARMONIC SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, V. V.; Dorland, B. N.; Gaume, R. A.

    We propose a computer-efficient and accurate method of estimating spatially correlated errors in astrometric positions, parallaxes, and proper motions obtained by space- and ground-based astrometry missions. In our method, the simulated observational equations are set up and solved for the coefficients of scalar and vector spherical harmonics representing the output errors rather than for individual objects in the output catalog. Both accidental and systematic correlated errors of astrometric parameters can be accurately estimated. The method is demonstrated on the example of the JMAPS mission, but can be used for other projects in space astrometry, such as SIM or JASMINE.

  5. Correlated and Zonal Errors of Global Astrometric Missions: A Spherical Harmonic Solution

    NASA Astrophysics Data System (ADS)

    Makarov, V. V.; Dorland, B. N.; Gaume, R. A.; Hennessy, G. S.; Berghea, C. T.; Dudik, R. P.; Schmitt, H. R.

    2012-07-01

    We propose a computer-efficient and accurate method of estimating spatially correlated errors in astrometric positions, parallaxes, and proper motions obtained by space- and ground-based astrometry missions. In our method, the simulated observational equations are set up and solved for the coefficients of scalar and vector spherical harmonics representing the output errors rather than for individual objects in the output catalog. Both accidental and systematic correlated errors of astrometric parameters can be accurately estimated. The method is demonstrated on the example of the JMAPS mission, but can be used for other projects in space astrometry, such as SIM or JASMINE.

  6. Jupiter icy moons orbiteer mission design overview

    NASA Technical Reports Server (NTRS)

    Sims, Jon A.

    2006-01-01

    An overview of the design of a mission to three large moons of Jupiter is presented. the Jupiter Icy Moons Orbiter (JIMO) mission uses ion thrusters powered by a nuclear reactor to transfer from Earth to Jupiter and enter a low-altitude science orbit around each of the moons.

  7. Neptune aerocapture mission and spacecraft design overview

    NASA Technical Reports Server (NTRS)

    Bailey, Robert W.; Hall, Jeff L.; Spliker, Tom R.; O'Kongo, Nora

    2004-01-01

    A detailed Neptune aerocapture systems analysis and spacecraft design study was performed as part of NASA's In-Space Propulsion Program. The primary objectives were to assess the feasibility of a spacecraft point design for a Neptune/Triton science mission. That uses aerocapture as the Neptune orbit insertion mechanism. This paper provides an overview of the science, mission and spacecraft design resulting from that study.

  8. The LUVOIR Mission Concept: Update and Technology Overview

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.

    2016-01-01

    We present an overview of the Large Ultra Violet Optical Infrared (LUVOIR) decadal mission concept study. We provide updates from recent activities of the Science and Technology Definition Team (STDT) and the Technology Working Group (TWG). We review the technology prioritization and discuss specific technology needs to enable the LUVOIR mission.

  9. Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview

    NASA Technical Reports Server (NTRS)

    Gonzales, Andrew A.; Stoker, Carol R.; Lemke, Lawrence G.; Bowles, Jeffery V.; Huynh, Loc C.; Faber, Nicholas T.; Race, Margaret S.

    2014-01-01

    Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This presentation provides an overview of a feasibility study for a MSR mission in which emerging commercial capabilities are used alongside other sources of mission elements. Goal is to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost.. Major elements required for the MSR mission are described. We report the feasibility of a complete and closed MSR mission design

  10. An Overview of the StarLight Mission

    NASA Technical Reports Server (NTRS)

    Lay, Oliver; Blackwood, Gary; Dubovitsky, Serge; Duren, Riley

    2004-01-01

    An overview of the Starlight Mission is presented. Mission summary: June 2006 launch to heliocentric orbit; Nominal 6 month mission with option of additional 6 month extension; Validate autonomous formation flying system: range control to 10 cm bearing, control to 4 arcmin; Demonstrate formation flying optical interferometry.The original 3 spacecraft design did not fit the budget. 2 spacecraft concept demonstrates all key areas of formation flying interferometry. Collector flown on the surface of a virtual paraboloid, with combiner at the focus. It Gives a baseline of 125 m with a fixed delay of only 14 m.

  11. Jupiter Icy Moons Orbiter Mission design overview

    NASA Technical Reports Server (NTRS)

    Sims, Jon A.

    2006-01-01

    An overview of the design of a possible mission to three large moons of Jupiter (Callisto, Ganymede, and Europa) is presented. The potential Jupiter Icy Moons Orbiter (JIMO) mission uses ion thrusters powered by a nuclear reactor to transfer from Earth to Jupiter and enter a low-altitude science orbit around each of the moons. The combination of very limited control authority and significant multibody dynamics resulted in some aspects of the trajectory design being different than for any previous mission. The results of several key trades, innovative trajectory types and design processes, and remaining issues are presented.

  12. The Cassini-Huygens Mission Overview

    NASA Technical Reports Server (NTRS)

    Vandermey, Nancy; Paczkowski, Brian G.

    2006-01-01

    The Cassini-Huygens Program is an international science mission to the Saturnian system. Three space agencies and seventeen nations contributed to building the Cassini spacecraft and Huygens probe. The Cassini orbiter is managed and operated by NASA's Jet Propulsion Laboratory. The Huygens probe was built and operated by the European Space Agency. The mission design for Cassini-Huygens calls for a four-year orbital survey of Saturn, its rings, magnetosphere, and satellites, and the descent into Titan's atmosphere of the Huygens probe. The Cassini orbiter tour consists of 76 orbits around Saturn with 45 close Titan flybys and 8 targeted icy satellite flybys. The Cassini orbiter spacecraft carries twelve scientific instruments that are performing a wide range of observations on a multitude of designated targets. The Huygens probe carried six additional instruments that provided in-situ sampling of the atmosphere and surface of Titan. The multi-national nature of this mission poses significant challenges in the area of flight operations. This paper will provide an overview of the mission, spacecraft, organization and flight operations environment used for the Cassini-Huygens Mission. It will address the operational complexities of the spacecraft and the science instruments and the approach used by Cassini-Huygens to address these issues.

  13. OHB's Exploration Capabilities Overview Relevant to Mars Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Jaime, A.; Gerth, I.; Rohrbeck, M.; Scheper, M.

    2018-04-01

    The presentation will give an overview to all the OHB past and current projects that are relevant to the Mars Sample Return (MSR) mission, including some valuable lessons learned applicable to the upcoming MSR mission.

  14. Overview and Status of the Kepler Mission

    NASA Technical Reports Server (NTRS)

    Koch, D.; Borucki, W.; Dunham, E.; Geary, J.; Gilliland, R.; Jenkins, J.; Latham, D.; Mayer, D.; Sobeck, C.; Duren, R.

    2003-01-01

    The Kepler Mission is a search for terrestrial planets with the design optimized for detecting Earth-size planets in the habitable zone (HZ) of solar-like stars. In addition, the mission has a broad detection capability for a wide range of planetary sizes, planetary orbits and spectral types of stars. The mission is in the midst of the development phase with good progress leading to the preliminary design review later this year. Long lead procurements are well under way. An overview in all areas is presented including both the flight system (photometer and spacecraft) and the ground system. Launch is on target for 2007 on a Delta II.

  15. STS-99 / Endeavour Mission Overview

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM). This radar system will produce unrivaled 3-D images of the Earth's Surface. This videotape presents a mission overview press briefing. The panel members are Dr. Ghassem Asrar, NASA Associate Administrator Earth Sciences; General James C. King, Director National Imagery and Mapping Agency (NIMA); Professor Achim Bachem, Member of the Executive Board, Deutschen Zentrum fur Luft- und Raumfahrt (DLR), the German National Aerospace Research Center; and Professor Sergio Deiulio, President of the Italian Space Agency. Dr. Asrar opened with a summary of the history of Earth Observations from space, relating the SRTM to this history. This mission, due to cost and complexity, required partnership with other agencies and nations, and the active participation of the astronauts. General King spoke to the expectations of NIMA, and the use of the Synthetic Aperture Radar to produce the high resolution topographic images. Dr. Achim Bachem spoke about the international cooperation that this mission required, and some of the commercial applications and companies that will use this data. Dr Deiulio spoke of future plans to improve knowledge of the Earth using satellites. Questions from the press concerned use of the information for military actions, the reason for the restriction on access to the higher resolution data, the mechanism to acquire that data for scientific research, and the cost sharing from the mission's partners. There was also discussion about the mission's length.

  16. The Hinode(Solar-B)Mission: An Overview

    NASA Technical Reports Server (NTRS)

    Kosugi, T.; Matsuzaki, K.; Sakao, T.; Shimizu, T.; Sone, Y.; Tachikawa, S.; Minesugi, K.; Ohnishi, A.; Yamada, T.; Tsuneta, S.; hide

    2007-01-01

    The Hinode satellite (formerly Solar-B) of the Japan Aerospace Exploration Agency's Institute of Space and Astronautical Science (ISAS/JAXA) was successfully launched in September 2006. As the successor to the Yohkoh mission, it aims to understand how magnetic energy is transferred from the photosphere to the upper atmospheres and resulting in explosive energy releases. Hinode is an observatory style mission, with all the instruments being designed and built to work together to address the science aims. There are three instruments onboard: the Solar Optical Telescope (SOT), the EUV Imaging Spectrometer (EIS), and the X-ray Telescope (XRT). This paper overviews the mission, including the satellite, the scientific payload and operations. It will conclude with discussions on how the international science community can participate in the analysis of the mission data.

  17. The Extreme Ultraviolet Explorer mission - Overview and initial results

    NASA Technical Reports Server (NTRS)

    Haisch, B.; Bowyer, S.; Malina, R. F.

    1993-01-01

    The history of extreme ultraviolet (EUV) astronomy is briefly reviewed, and an overview of the Extreme Ultraviolet Explorer mission, launched into a near-earth (550 km) orbit on June 7, 1992, is presented. First, the principal objective of the mission are summarized. The instrumentation and operation of the mission are then described, with particular attention given to the sky survey instruments, the deep survey instrument, and the spectrometers. The discussion also covers the current view of the interstellar medium, early results from the mission, and future prospects for EUV astronomy.

  18. Sample Handling Considerations for a Europa Sample Return Mission: An Overview

    NASA Technical Reports Server (NTRS)

    Fries, M. D.; Calaway, M. L.; Evans, C. A.; McCubbin, F. M.

    2015-01-01

    The intent of this abstract is to provide a basic overview of mission requirements for a generic Europan plume sample return mission, based on NASA Curation experience in NASA sample return missions ranging from Apollo to OSIRIS-REx. This should be useful for mission conception and early stage planning. We will break the mission down into Outbound and Return legs and discuss them separately.

  19. The Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Mission Overview and Attitude Sensing Applications

    DTIC Science & Technology

    2009-01-01

    employs a set of reference targets such as asteroids that are relatively numer- ous, more or less uniformly distributed around the Sun, and relatively...point source-like. Just such a population exists—90 km-class asteroids . There are about 100 of these objects with relatively well-know orbits...These are main belt objects that are approximately evenly distributed around the sun. They are large enough to be quasi-spherical in nature, and as a

  20. Spacelab 1 - Mission overview and summary of scientific results

    NASA Technical Reports Server (NTRS)

    Knott, K.; Chappell, C. R.

    1985-01-01

    This paper recalls the reasons which led NASA to build the Space Shuttle and ESA to manufacture Spacelab and presents the most important features of the mission where these two elements were combined for the first time. An overview on the objectives of the seven science disciplines participating in this mission is given and selected results as far as known in June 1984 are presented.

  1. Emirates Mars Mission (EMM) 2020 Overview

    NASA Astrophysics Data System (ADS)

    Amiri, S.; Sharaf, O.; AlMheiri, S.; AlRais, A.; Wali, M.; Al Shamsi, Z.; Al Qasim, I.; Al Harmoodi, K.; Al Teneiji, N.; Almatroushi, H. R.; Al Shamsi, M. R.; Altunaiji, E. S.; Lootah, F. H.; Badri, K. M.; McGrath, M.; Withnell, P.; Ferrington, N.; Reed, H.; Landin, B.; Ryan, S.; Pramann, B.; Brain, D.; Deighan, J.; Chaffin, M.; Holsclaw, G.; Drake, G.; Wolff, M. J.; Edwards, C. S.; Lillis, R. J.; Smith, M. D.; Forget, F.; Fillingim, M. O.; England, S.; Christensen, P. R.; Osterloo, M. M.; Jones, A. R.

    2017-12-01

    United Arab Emirates (UAE) has entered the space exploration race with the announcement of Emirates Mars Mission (EMM), the first Emirati mission to another planet, in 2014. Through this mission, UAE is to send an unmanned probe, called Hope probe, to be launched in summer 2020 and reach Mars by 2021 to coincide with UAE's 50th anniversary. The mission should be unique, and should aim for novel and significant discoveries that contributed to the ongoing work of the global space science community. EMM has passed its Mission Concept Review (MCR), System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR) phases. The mission is led by the Mohammed Bin Rashid Space Centre (MBRSC), in partnership with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP), University of California Berkeley Space Sciences Laboratory (SSL), and Arizona State University (ASU) School of Earth and Space Exploration. The mission is designed to answer the following three science questions: (1) How does the Martian lower atmosphere respond globally, diurnally, and seasonally to solar forcing? (2) How do conditions throughout the Martian atmosphere affect rates of atmospheric escape? (3) How does the Martian exosphere behave temporally and spatially?. Each question is aligned with three mission objectives and four investigations that study the Martian atmospheric circulation and connections through measurements done using three instruments that image Mars in the visible, thermal infrared and ultraviolet wavelengths. Data will be collected around Mars for a period of an entire Martian year to provide scientists with valuable understanding of the changes to the Martian atmosphere today. The presentation will focus on the overviews of the mission and science objectives, instruments and spacecraft, as well as the ground and launch segments.

  2. Overview of the U.S. Coast Guard short range aids to navigation mission

    DOT National Transportation Integrated Search

    1993-09-01

    This document provides an overview of the Coast Guard's Aids to Navigation (ATON) mission. Specific components of the mission described within include: the history of the mission; the supporting Coast Guard organizational structure; the resources emp...

  3. The Kaguya Mission Overview

    NASA Astrophysics Data System (ADS)

    Kato, Manabu; Sasaki, Susumu; Takizawa, Yoshisada

    2010-07-01

    The Japanese lunar orbiter Kaguya (SELENE) was successfully launched by an H2A rocket on September 14, 2007. On October 4, 2007, after passing through a phasing orbit 2.5 times around the Earth, Kaguya was inserted into a large elliptical orbit circling the Moon. After the apolune altitude was lowered, Kaguya reached its nominal 100 km circular polar observation orbit on October 19. During the process of realizing the nominal orbit, two subsatellites Okina (Rstar) and Ouna (Vstar) were released into elliptical orbits with 2400 km and 800 km apolune, respectively; both elliptical orbits had 100 km perilunes. After the functionality of bus system was verified, four radar antennas and a magnetometer boom were extended, and a plasma imager was deployed. Acquisition of scientific data was carried out for 10 months of nominal mission that began in mid-December 2007. During the 8-month extended mission, magnetic fields and gamma-rays from lower orbits were measured; in addition to this, low-altitude observations were carried out using a Terrain Camera, a Multiband Imager, and an HDTV camera. New data pertaining to an intense magnetic anomaly and GRS data with higher spatial resolution were acquired to study magnetism and the elemental distribution of the Moon. After some orbital maneuvers were performed by using the saved fuel, the Kaguya spacecraft finally impacted on the southeast part of the Moon. The Kaguya team has archived the initial science data, and since November 2, 2009, the data has been made available to public, and can be accessed at the Kaguya homepage of JAXA. The team continues to also study and publish initial results in international journals. Science purposes of the mission and onboard instruments including initial science results are described in this overview.

  4. ESA'S Biomass Mission System And Payload Overview

    NASA Astrophysics Data System (ADS)

    Arcioni, M.; Bensi, P.; Fois, F.; Gabriele, A.; Heliere, F.; Lin, C. C.; Massotti, L.; Scipal, K.

    2013-12-01

    Earth Explorers are the backbone of the science and research element of ESA's Living Planet Programme, providing an important contribution to the understanding of the Earth system. Following the User Consultation Meeting held in Graz, Austria on 5-6 March 2013, the Earth Science Advisory Committee (ESAC) has recommended implementing Biomass as the 7th Earth Explorer Mission within the frame of the ESA Earth Observation Envelope Programme. This paper will give an overview of the satellite system and its payload. The system technical description presented here is based on the results of the work performed during parallel Phase A system studies by two industrial consortia led by EADS Astrium Ltd. and Thales Alenia Space Italy. Two implementation concepts (respectively A and B) are described and provide viable options capable of meeting the mission requirements.

  5. The SENTINEL-3 Mission: Overview and Status

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Mecklenburg, S.

    2015-12-01

    The Copernicus Programme, being Europe's Earth Observation and Monitoring Programme led by the European Union, aims to provide, on a sustainable basis, reliable and timely services related to environmental and security issues. The Sentinel-3 mission forms part of the Copernicus Space Component. Its main objectives, building on the heritage and experience of the European Space Agency's (ESA) ERS and ENVISAT missions, are to measure sea-surface topography, sea- and land-surface temperature and ocean- and land-surface colour in support of ocean forecasting systems, and for environmental and climate monitoring. The series of Sentinel-3 satellites will ensure global, frequent and near-real time ocean, ice and land monitoring, with the provision of observation data in routine, long term (up to 20 years of operations) and continuous fashion, with a consistent quality and a high level of reliability and availability. The Sentinel-3 missions will be jointly operated by ESA and EUMETSAT. ESA will be responsible for the operations, maintenance and evolution of the Sentinel-3 ground segment on land related products and EUMETSAT for the marine products. The Sentinel-3 ground segment systematically acquires, processes and distributes a set of pre-defined core data products. Sentinel-3A is foreseen to be launched at the beginning of November 2015. The paper will give an overview on the mission, its instruments and objectives, the data products provided, the mechanisms to access the mission's data, and if available first results.

  6. NASA Technology Demonstrations Missions Program Overview

    NASA Technical Reports Server (NTRS)

    Turner, Susan

    2011-01-01

    , more than 70% of the TDM funds will be competitively awarded as a result of yearly calls for proposed flight demonstrators and selected based on possible payoff to NASA, technology maturity, customer interest, cost, and technical risk reduction. This paper will give an overview of the TDM Program s mission and organization, as well as its current status in delivering advanced space technologies that will enable more flexible and robust future missions. It also will provide several examples of missions that fit within these parameters and expected outcomes.

  7. LiteBIRD: mission overview and design tradeoffs

    NASA Astrophysics Data System (ADS)

    Matsumura, T.; Akiba, Y.; Borrill, J.; Chinone, Y.; Dobbs, M.; Fuke, H.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hazumi, M.; Holzapfel, W.; Hori, Y.; Inatani, J.; Inoue, M.; Inoue, Y.; Ishidoshiro, K.; Ishino, H.; Ishitsuka, H.; Karatsu, K.; Kashima, S.; Katayama, N.; Kawano, I.; Kibayashi, A.; Kibe, Y.; Kimura, K.; Kimura, N.; Komatsu, E.; Kozu, M.; Koga, K.; Lee, A.; Matsuhara, H.; Mima, S.; Mitsuda, K.; Mizukami, K.; Morii, H.; Morishima, T.; Nagai, M.; Nagata, R.; Nakamura, S.; Naruse, M.; Namikawa, T.; Natsume, K.; Nishibori, T.; Nishijo, K.; Nishino, H.; Noda, A.; Noguchi, T.; Ogawa, H.; Oguri, S.; Ohta, I. S.; Okada, N.; Otani, C.; Richards, P.; Sakai, S.; Sato, N.; Sato, Y.; Segawa, Y.; Sekimoto, Y.; Shinozaki, K.; Sugita, H.; Suzuki, A.; Suzuki, T.; Tajima, O.; Takada, S.; Takakura, S.; Takei, Y.; Tomaru, T.; Uzawa, Y.; Wada, T.; Watanabe, H.; Yamada, Y.; Yamaguchi, H.; Yamasaki, N.; Yoshida, M.; Yoshida, T.; Yotsumoto, K.

    2014-08-01

    We present the mission design of LiteBIRD, a next generation satellite for the study of B-mode polarization and inflation from cosmic microwave background radiation (CMB) detection. The science goal of LiteBIRD is to measure the CMB polarization with the sensitivity of δr = 0:001, and this allows testing the major single-field slow-roll inflation models experimentally. The LiteBIRD instrumental design is purely driven to achieve this goal. At the earlier stage of the mission design, several key instrumental specifications, e.g. observing band, optical system, scan strategy, and orbit, need to be defined in order to process the rest of the detailed design. We have gone through the feasibility studies for these items in order to understand the tradeoffs between the requirements from the science goal and the compatibilities with a satellite bus system. We describe the overview of LiteBIRD and discuss the tradeoffs among the choices of scientific instrumental specifications and strategies. The first round of feasibility studies will be completed by the end of year 2014 to be ready for the mission definition review and the target launch date is in early 2020s.

  8. NASA CYGNSS Mission Overview

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Balasubramaniam, R.; Gleason, S.; McKague, D. S.; O'Brien, A.

    2017-12-01

    The CYGNSS constellation of eight satellites was successfully launched on 15 December 2016 into a low inclination (tropical) Earth orbit. Each satellite carries a four-channel bi-static radar receiver that measures GPS signals scattered by the ocean, from which ocean surface roughness, near surface wind speed, and air-sea latent heat flux are estimated. The measurements are unique in several respects, most notably in their ability to penetrate through all levels of precipitation, made possible by the low frequency at which GPS operates, and in the frequent sampling of tropical cyclone intensification and of the diurnal cycle of winds, made possible by the large number of satellites. Engineering commissioning of the constellation was successfully completed in March 2017 and the mission is currently in the early phase of science operations. Level 2 science data products have been developed for near surface (10 m referenced) ocean wind speed, ocean surface roughness (mean square slope) and latent heat flux. Level 3 gridded versions of the L2 products have also been developed. A set of Level 4 products have also been developed specifically for direct tropical cyclone overpasses. These include the storm intensity (peak sustained winds) and size (radius of maximum winds), its extent (34, 50 and 64 knot wind radii), and its integrated kinetic energy. Assimilation of CYGNSS L2 wind speed data into the HWRF hurricane weather prediction model has also been developed. An overview and the current status of the mission will be presented, together with highlights of early on-orbit performance and scientific results.

  9. Cross support overview and operations concept for future space missions

    NASA Technical Reports Server (NTRS)

    Stallings, William; Kaufeler, Jean-Francois

    1994-01-01

    Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.

  10. An Overview of Mars Vicinity Transportation Concepts for a Human Mars Mission

    NASA Technical Reports Server (NTRS)

    Dexter, Carol E.; Kos, Larry

    1998-01-01

    To send a piloted mission to Mars, transportation systems must be developed for the Earth to Orbit, trans Mars injection (TMI), capture into Mars orbit, Mars descent, surface stay, Mars ascent, trans Earth injection (TEI), and Earth return phases. This paper presents a brief overview of the transportation systems for the Human Mars Mission (HMM) only in the vicinity of Mars. This includes: capture into Mars orbit, Mars descent, surface stay, and Mars ascent. Development of feasible mission scenarios now is important for identification of critical technology areas that must be developed to support future human missions. Although there is no funded human Mars mission today, architecture studies are focusing on missions traveling to Mars between 2011 and the early 2020's.

  11. Shuttle Radar Topography Mission (SRTM) Flight System Design and Operations Overview

    NASA Technical Reports Server (NTRS)

    Shen, Yuhsyen; Shaffer, Scott J.; Jordan, Rolando L.

    2000-01-01

    This paper provides an overview of the Shuttle Radar Topography Mission (SRTM), with emphasis on flight system implementation and mission operations from systems engineering perspective. Successfully flown in February, 2000, the SRTM's primary payload consists of several subsystems to form the first spaceborne dual-frequency (C-band and X-band) fixed baseline interferometric synthetic aperture radar (InSAR) system, with the mission objective to acquire data sets over 80% of Earth's landmass for height reconstruction. The paper provides system architecture, unique design features, engineering budgets, design verification, in-flight checkout and data acquisition of the SRTM payload, in particular for the C-band system. Mission operation and post-mission data processing activities are also presented. The complexity of the SRTM as a system, the ambitious mission objective, the demanding requirements and the high interdependency between multi-disciplined subsystems posed many challenges. The engineering experience and the insight thus gained have important implications for future spaceborne interferometric SAR mission design and implementation.

  12. 3 EXPOSE Missions - overview and lessons learned

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Willnekcer, R.; Reitz, G.; Aman, A.; Bman, B.; Cman, C.

    2011-10-01

    The International Space Station ISS provides a variety of external research platforms for experiments aiming at the utilization of space parameters like vacuum, temperature oscillation and in particular extraterrestrial short wavelength UV and ionizing radiation which cannot be simulated accurately in the laboratory. Three Missions, two past and one upcoming, will be presented. A family of astrobiological experimental ESA facilities called "EXPOSE" were and will be accommodated on these outside exposure platforms: on one of the external balconies of the European Columbus Module (EXPOSE-E) and on the URM-D platform on the Russian Zvezda Module (EXPOSE-R and EXPOSE-R2). Exobiological and radiation experiments, exposing chemical, biological and dosimetric samples to the harsh space environment are - and will be - accommodated on these facilities to increase our knowledge on the origin, evolution and distribution of life, on Earth and possibly beyond. The biological experiments investigate resistance and adaptation of organisms like bacteria, Achaea, fungi, lichens, plant seeds and small animals like mosquito larvae to extreme environmental conditions and underlying mechanisms like DNA repair. The organic chemical experiments analyse chemical reactions triggered by the extraterrestrial environment, especially short wavelength UV radiation, to better understand prebiotic chemistry. The facility is optimized to allow exposure of biological specimen and material samples under a variety of conditions, using optical filter systems. Environmental parameters like temperature and radiation are regularly recorded and down linked by telemetry. Two long term missions named according to their facility - EXPOSE-E and EXPOSE-R - are completed and a third mission is planned and currently prepared. Operations of all three missions including sample accommodation are performed by DLR. An overview of the two completed missions will be given including lessons learned as well as an outlook

  13. An Overview of Space Power Systems for NASA Missions

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Scott, John H.

    2007-01-01

    Power is a critical commodity for all engineering efforts and is especially challenging in the aerospace field. This paper will provide a broad brush overview of some of the immediate and important challenges to NASA missions in the field of aerospace power, for generation, energy conversion, distribution, and storage. NASA s newest vehicles which are currently in the design phase will have power systems that will be developed from current technology, but will have the challenges of being light-weight, energy-efficient, and space-qualified. Future lunar and Mars "outposts" will need high power generation units for life support and energy-intensive exploration efforts. An overview of the progress in concepts for power systems and the status of the required technologies are discussed.

  14. Overview of RICOR tactical cryogenic refrigerators for space missions

    NASA Astrophysics Data System (ADS)

    Riabzev, Sergey; Filis, Avishai; Livni, Dorit; Regev, Itai; Segal, Victor; Gover, Dan

    2016-05-01

    Cryogenic refrigerators represent a significant enabling technology for Earth and Space science enterprises. Many of the space instruments require cryogenic refrigeration to enable the use of advanced detectors to explore a wide range of phenomena from space. RICOR refrigerators involved in various space missions are overviewed in this paper, starting in 1994 with "Clementine" Moon mission, till the latest ExoMars mission launched in 2016. RICOR tactical rotary refrigerators have been incorporated in many space instruments, after passing qualification, life time, thermal management testing and flight acceptance. The tactical to space customization framework includes an extensive characterization and qualification test program to validate reliability, the design of thermal interfacing with a detector, vibration export control, efficient heat dissipation in a vacuum environment, robustness, mounting design, compliance with outgassing requirements and strict performance screening. Current RICOR development is focused on dedicated ultra-long-life, highly reliable, space cryogenic refrigerator based on a Pulse Tube design

  15. NASA's Asteroid Redirect Mission: Overview and Status

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Brophy, John; Mazanek, Dan; Muirhead, Brian

    mission will utilize an enhanced NEA observation campaign that will detect, track, and characterize both spacecraft mission targets and potentially hazardous asteroids that may threaten Earth in the future. Potential secondary objectives for ARM include planetary defense demonstrations at the NEA, conducting planetary science (both during the robotic and crewed mission segments), and encouraging commercial and international partnership opportunities. References [1] J. Brophy et al., “Asteroid Retrieval Feasibility Study,” Keck Institute for Space Studies Report, April 2012. [2] N. Strange et al., “Overview of Mission Design for NASA Asteroid Redirect Robotic Mission Concept,” presented at the 33rd International Electric Propulsion Conference, The George Washington University, Washington, D.C., October 2013. [3] B. Muirhead, J. Brophy “Asteroid Redirect Robotic Mission Feasibility Study,” presented at IEEE Aerospace Conference, Big Sky, Montana, March 2014. [4] Mazenek et al., “Asteroid Redirect Robotic Mission: Alternate Concept Overview”, American Institute of Aeronautics and Astronautics, Space 2014 Conference, San Diego, California, August 2014.

  16. EarthCARE mission, overview, implementation approach and development status

    NASA Astrophysics Data System (ADS)

    Lefebvre, Alain; Hélière, Arnaud; Pérez Albiñana, Abelardo; Wallace, Kotska; Maeusli, Damien; Lemanczyk, Jerzy; Lusteau, Cyrille; Nakatsuka, Hirotaka; Tomita, Eiichi

    2016-05-01

    The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop the EarthCARE satellite mission with the fundamental objective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere in order to include them correctly and reliably in climate and numerical weather prediction models. The satellite will be placed in a Sun-Synchronous Orbit at about 400 Km altitude and14h00 mean local solar time. The payload consisting of a High Spectral Resolution UV Atmospheric LIDar (ATLID), a 94GHz Cloud Profiling Radar (CPR) with Doppler capability, a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer will provide information on cloud and aerosol vertical structure of the atmosphere along the satellite track as well as information about the horizontal structures of clouds and radiant flux from sub-satellite cells. The presentation will cover the configuration of the satellite with its four instruments, the mission implementation approach, an overview of the ground segment and the overall mission development status.

  17. STS-114: Multi-Cut Profiles and Mission Overviews

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Profiles of the seven crewmembers of the STS-114 Discovery are shown. Eileen Collins, Commander, talks about her fascination with flying as a young child and her eagerness to have someone teach her to fly at age 19. Her eagerness and hard work earned her a master's in operations research from Stanford University in 1986 and a master's in space systems management from Webster University in 1989. Jim Kelly, Pilot, talks about his desire to become an astronaut at a very young age. Charles Camarda, Mission Specialist, always wanted to become an astronaut and earned a Bachelor's degree in aerospace engineering from Polytechnic Institute of Brooklyn in 1974, a Master's in engineering Science from George Washington University in 1980 and a doctorate in aerospace engineering from Virginia Polytechnic Institute and State University in 1990. Wendy Lawrence, Mission Specialist decided that she wanted to become an astronaut when she saw the first man to walk on the moon. Soichi Noguchi, Mission Specialist from JAXA expresses that people like scientists, doctors and engineers could fly and he also wanted to venture into spaceflight. Steve Robinson, Mission Specialist says that he was fascinated with things that flew as a child and wanted to make things fly. Australian born Andrew Thomas, Mission Specialist wanted to become an astronaut as a young boy but never realized that he would fulfill his dream. The crewmember profiles end with an overview of the STS-114 Discovery mission. Paul Hill, Lead Flight Director talks about the main goal of the STS-114 mission which is to demonstrate that changes to the Orbiter and flight procedures are good and the second goal is to finish construction of the International Space Station. Sergei Krikalev, Commander talks about increasing the capability of the International Space Station, Jim Kelly discusses the work that is being performed in the external tank, Andy Thomas talks about procedures done to stop foam release and Soichi Noguchi

  18. Joint NASA-ESA Outer Planet Mission study overview

    NASA Astrophysics Data System (ADS)

    Lebreton, J.-P.; Niebur, C.; Cutts, J.; Falkner, P.; Greeley, R.; Lunine, J.; Blanc, M.; Coustenis, A.; Pappalardo, R.; Matson, D.; Clark, K.; Reh, K.; Stankov, A.; Erd, C.; Beauchamp, P.

    2009-04-01

    evaluated by each agency between November 2008 and January 2009, and a joint decision as to which destination has been selected is expected to be announced in February 2009. The ESA Cosmic Vision selection process includes two additional competitive steps (that include two competing astronomy missions) before its contribution to the selected Outer Planet Mission is confirmed in 2012. NASA expects to proceed with the initial implementation of the mission in FY2009, while full implementation will start in FY2013, in line with ESA Cosmic Vision schedule. Should ESA select an astronomy mission instead, NASA would proceed in 2013 with the implementation of a NASA-only mission concept. This presentation will provide an overview of the selected Outer Planet Mission and outline the next steps towards its implementation.

  19. An Overview of the Solar-C Mission

    NASA Astrophysics Data System (ADS)

    Lemen, J. R.; Tarbell, T. D.; Cirtain, J. W.; DeLuca, E. E.; Doschek, G. A.

    2013-12-01

    Solar-C is a new mission in solar and heliospheric physics that is being proposed to JAXA for launch in 2020. It will be led by Japan with major contributions from the US and Europe. The main scientific objectives of the mission are to: * Determine the properties and evolution of the three dimensional magnetic field, especially on small spatial scales, using direct spectro-polarimetric measurements in the photosphere and chromosphere, and accurate model extrapolations and dynamic simulations into the corona that are based, for the first time, on boundary fields observed in a low plasma beta region; * Observe and understand fundamental physical processes such as magnetic reconnection, magneto-hydrodynamic waves, shocks, turbulence, and plasma instabilities * Reveal the mechanisms responsible for the heating and dynamics of the chromosphere and corona and the acceleration of the solar wind, and understand how plasma and energy are transferred between different parts of the solar atmosphere; * Determine the physical origin of the large-scale explosions and eruptions (flares, jets, and CMEs) that drive short-term solar, heliospheric, and geospace variability. To achieve the science objectives, Solar-C will deploy a carefully coordinated suite of three complementary instruments: the Solar Ultra-violet Visible and IR Telescope (SUVIT), the high-throughput EUV Spectroscopic Telescope (EUVST), and an X-ray Imaging Telescope/Extreme Ultraviolet Telescope (XIT). For the first time, it will simultaneously observe the entire atmosphere---photosphere, chromosphere, transition region, and corona---and do so with essentially the same spatial and temporal resolution at all locations. As is the case for other solar observatories, the Solar-C mission will have an open data policy. We provide an overview of the mission and its contributions to the future of solar physics and space weather research.

  20. Overview and Updated Status of the Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Mazanek, Daniel D.; Reeves, David M.; Chodas, Paul; Gates, Michele; Johnson, Lindley N.; Ticker, Ronald

    2016-10-01

    The National Aeronautics and Space Administration (NASA) is developing a mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder and regolith samples from its surface, demonstrate a planetary defense technique known as the enhanced gravity tractor, and return the asteroidal material to a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA's plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s and other destinations, as well as provide other broader benefits. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. Current plans are for the robotic mission to be launched in late 2021 with the crewed mission segment conducted using an Orion capsule via a Space Launch System rocket in 2026. In order to maximize the knowledge return from the mission, NASA is providing accommodations for payloads to be carried on the robotic segment of the mission and also organizing an ARM Investigation Team. The Investigation Team will be comprised of scientists, technologists, and other qualified and interested individuals from US industry, government, academia, and international institutions to help plan the implementation and execution of ARM. The presentation will provide a mission overview and the most recent update concerning the robotic and crewed segments of ARM, including the mission requirements, and potential

  1. An Overview of NASA's Asteroid Redirect Mission (ARM) Concept

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is developing the Asteroid Redirect Mission (ARM) as a capability demonstration for future human exploration, including use of high-power solar electric propulsion, which allows for the efficient movement of large masses through deep space. The ARM will also demonstrate the capability to conduct proximity operations with natural space objects and crewed operations beyond the security of quick Earth return. The Asteroid Redirect Robotic Mission (ARRM), currently in formulation, will visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, conduct a demonstration of a slow push planetary defense technique, and redirect the multi-ton boulder into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts aboard an Orion spacecraft will dock with the robotic vehicle to explore the boulder and return samples to Earth. The ARM is part of NASA's plan to advance technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. The ARM and subsequent availability of the asteroidal material in cis-lunar space, provide significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, and in-situ resource utilization (ISRU). NASA established the Formulation Assessment and Support Team (FAST), comprised of scientists, engineers, and technologists, which supported ARRM mission requirements formulation, answered specific questions concerning potential target asteroid physical properties, and produced a publically available report. The ARM Investigation Team is being organized to support ARM implementation and execution. NASA is also open to collaboration with its international partners and welcomes further discussions. An overview of the ARM robotic and crewed segments, including mission requirements, NEA targets, and mission operations, and a discussion

  2. The Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2008-01-01

    2014. An overview of the GPM mission status, instrument capabilities, ground validation plans, and anticipated scientific and societal benefits will be presented.

  3. Sentinel-1 Mission Overview and Implementation Status

    NASA Astrophysics Data System (ADS)

    Davidson, M.; Attema, E.; Snoeij, P.; Levrini, G.

    2009-04-01

    expected not only to support the existing key operational services but will also support the evolving user community both for operational and remote sensing science applications. The Sentinel-1 satellite carries a Synthetic Aperture Radar (SAR) instrument with four standard operational modes: Strip Map Mode, Interferometric Wide Swath Mode, Extra-wide Swath Mode and Wave Mode. Some of their important characteristics are listed below. MODE ACCESS ANGLE (DEG.) SINGLE LOOK RESOLUTION RANGE X AZIMUTH SWATH WIDTH POLARISATION STRIP MAP 20-45 5 X 5 M > 80 KM HH+HV OR VV+VH INTERFEROMETRIC WIDE SWATH > 25 5 X 20 M > 250 KM HH+HV OR VV+VH EXTRA WIDE SWATH > 20 20 X 40 M > 400 KM HH+HV OR VV+VH WAVE MODE 23 AND 36.5 20 X 5 M > 20 X 20 KM VIGNETTES AT 100 KM INTERVALS HH OR VV FOR ALL MODES RADIOMETRIC ACCURACY (3 Σ) 1 DB NOISE EQUIVALENT SIGMA ZERO -22 DB POINT TARGET AMBIGUITY RATIO -25 DB DISTRIBUTED TARGET AMBIGUITY RATIO -22 DB It is expected that Sentinel-1 be launched in 2011. Once in orbit Sentinel-1 will be operated from two centres on the ground. The Agency‘s facilities in Darmstadt, Germany will command the satellite ensuring its proper functioning along the orbit. The mission exploitation will be managed at the Agency‘s facilities in Frascati, Italy, including the planning of the acquisitions by the SAR instrument according to the mission requirements, the processing of the acquired data and the provision of the resulting products to the users. he presentation will provide an overview of the Sentinel-1 mission, the user requirements driving the mission, the status and characteristics of the technical implementation. The key elements of the mission supporting the evolving needs of the user community both in operational and remote sensing science applications will be highlighted.

  4. An overview of new insights from satellite salinity missions on oceanography

    NASA Astrophysics Data System (ADS)

    Reul, Nicolas

    2015-04-01

    The Soil Moisture and Ocean Salinity (SMOS) mission, launched on 2 November 2009, is the European Space Agency's (ESA) second Earth Explorer Opportunity mission. The scientific objectives of the SMOS mission directly respond to the need for global observations of soil moisture and ocean salinity, two key variables describing the Earth's water cycle and having been identified as Essential Climate Variables (ECVs) by the Global Climate Observing System (GCOS). After five years of satellite Sea Surface Salinity (SSS) monitoring from SMOS data, we will present an overview of the scientific highlights these data have brougtht to the oceanographic communities. In particular, we shall review the impact of SMOS SSS and brightness tempeaerture data for the monitoring of: -Mesoscale variability of SSS (and density) in frontal structures, eddies, -Ocean propagative SSS signals (e.g. TIW, planetary waves), -Freshwater flux Monitoring (Evaportaion minus precipitation, river run off), -Large scale SSS anomalies related to climate fluctuations (e.g. ENSO, IOD), -Air-Sea interactions (equatorial upwellings, Tropical cyclone wakes) -Temperature-Salinity dependencies, -Sea Ice thickness, -Tropical Storm and high wind monitoring, -Ocean surface bio-geo chemistry.

  5. The Solar and Heliospheric Observatory (SOHO) Mission: An Overview of Flight Dynamics Support of the Early Mission Phase

    NASA Technical Reports Server (NTRS)

    Short, R.; Behuncik, J.

    1996-01-01

    The SOHO spacecraft was successfully launched by an Atlas 2AS from the Eastern Range on December 2, 1995. After a short time in a nearly circular parking orbit, the spacecraft was placed by the Centaur upper stage on a transfer trajectory to the L1 libration point where it was inserted into a class 1 Halo orbit. The nominal mission lifetime is two years which will be spent collecting data from the Sun using a complement of twelve instruments. An overview of the early phases of Flight Dynamics Facility support of the mission is given. Maneuvers required for the mission are discussed, and an evaluation of these maneuvers is given with the attendent effects on the resultant orbit. Thruster performance is presented as well as real time monitoring of thruster activity during maneuvers. Attitude areas presented are the star identification process and role angle determination, momentum management, operating constraints on the star tracker, and guide star switching. A brief description of the two Heads Up displays is given.

  6. NASA's In-Space Propulsion Technology Project Overview, Near-term Products and Mission Applicability

    NASA Technical Reports Server (NTRS)

    Dankanich, John; Anderson, David J.

    2008-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved (1) guidance, navigation, and control models of blunt-body rigid aeroshells, 2) atmospheric models for Earth, Titan, Mars and Venus, and 3) models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  7. An overview and the latest status of the Landsat Data Continuity Mission (LDCM)

    NASA Astrophysics Data System (ADS)

    Sabelhaus, Phil

    2011-10-01

    The Landsat Data Continuity Mission (LDCM) will provide continuity in the multi-decadal land use/land cover change measurements of the Landsat Program for scientific research. The project office at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is responsible for the development, launch and post launch activation and check out for the Landsat Data Continuity Mission. The LDCM project is currently in its development phase with launch scheduled for December 2012 on an Atlas V launch vehicle provided by the Kennedy Space Center (KSC) from the Vandenberg Air Force Base (VAFB). The project is a partnership between NASA and the Department of the Interior (DOI)/United States Geological Survey (USGS). DOI/USGS is responsible for development of the ground system and will assume responsibility for satellite and ground system operations following the check-out period. This paper will provide an overview and the latest status of the LDCM mission.

  8. KEPLER Mission: development and overview

    NASA Astrophysics Data System (ADS)

    Borucki, William J.

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170 000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many ‘blind alleys’ before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170 000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.

  9. KEPLER Mission: development and overview.

    PubMed

    Borucki, William J

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170,000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170,000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.

  10. Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview

    NASA Technical Reports Server (NTRS)

    Gonzales, Andrew A.; Lemke, Lawrence G.; Stoker, Carol R.; Faber, Nicolas T.; Race, Margaret S.

    2014-01-01

    Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This paper presents an overview of a feasibility study for an MSR mission. The objective of the study was to determine whether emerging commercial capabilities can be used to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost. We report the feasibility of a complete and closed MSR mission design using the following scenario that covers three synodic launch opportunities, beginning with the 2022 opportunity: A Falcon Heavy injects a SpaceX Red Dragon capsule and trunk onto a Trans Mars Injection (TMI) trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV), and hardware to transfer a sample collected in a previously landed rover mission to the ERV. The Red Dragon descends to land on the surface of Mars using Super Sonic Retro Propulsion (SSRP). After previously collected samples are transferred to the ERV, the single-stage MAV launches the ERV from the surface of Mars. The MAV uses a storable liquid bi-propellant propulsion system to deliver the ERV to a Mars phasing orbit. After a brief phasing period, the ERV, which also uses a storable bi-propellant system, performs a Trans Earth Injection (TEI) burn. Upon arrival at Earth, the ERV performs Earth and lunar swing-bys and is placed into a lunar trailing circular orbit - an Earth orbit, at lunar distance. A later mission, using Dragon and launched by a Falcon Heavy, performs a rendezvous with the ERV in the lunar trailing orbit, retrieves the sample container and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release

  11. MISSION: Mission and Safety Critical Support Environment. Executive overview

    NASA Technical Reports Server (NTRS)

    Mckay, Charles; Atkinson, Colin

    1992-01-01

    For mission and safety critical systems it is necessary to: improve definition, evolution and sustenance techniques; lower development and maintenance costs; support safe, timely and affordable system modifications; and support fault tolerance and survivability. The goal of the MISSION project is to lay the foundation for a new generation of integrated systems software providing a unified infrastructure for mission and safety critical applications and systems. This will involve the definition of a common, modular target architecture and a supporting infrastructure.

  12. Aquarius Mission Technical Overview

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S. E.; Yueh, S.; Dinnat, E.; Pellerano, F.

    2007-01-01

    Aquarius is an L-band microwave instrument being developed to map the surface salinity field of the oceans from space. It is part of the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for early in 2009. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis.

  13. Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview

    NASA Technical Reports Server (NTRS)

    Gonzales, Andrew A.; Stoker, Carol R.; Lemke, Lawrence G.; Faber, Nicholas T.; Race, Margaret S.

    2013-01-01

    Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This paper presents an overview of a feasibility study for a MSR mission. The objective of the study was to determine whether emerging commercial capabilities can be used to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost. The major element required for the MSR mission are described and include an integration of the emerging commercial capabilities with small spacecraft design techniques; new utilizations of traditional aerospace technologies; and recent technological developments. We report the feasibility of a complete and closed MSR mission design using the following scenario that covers three synodic launch opportunities, beginning with the 2022 opportunity: A Falcon Heavy injects a SpaceX Red Dragon capsule and trunk onto a Trans Mars Injection (TMI) trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV); an Earth Return Vehicle (ERV); and hardware to transfer a sample collected in a previously landed rover mission to the ERV. The Red Dragon descends to land on the surface of Mars using Supersonic Retro Propulsion (SRP). After previously collected samples are transferred to the ERV, the single-stage MAV launches the ERV from the surface of Mars to a Mars phasing orbit. The MAV uses a storable liquid, pump fed bi-propellant propulsion system. After a brief phasing period, the ERV, which also uses a storable bi-propellant system, performs a Trans Earth Injection (TEI) burn. Once near Earth the ERV performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit (LTO0 - an Earth orbit, at lunar distance. A later mission, using a Dragon and launched by a Falcon Heavy, performs a rendezvous with the ERV in the lunar trailing orbit, retrieves the

  14. 2001 Mars Odyssey Mission

    NASA Technical Reports Server (NTRS)

    Varghese, Philip

    2008-01-01

    This viewgraph presentation reviews the 2001 Mars Odyssey Mission. The contents include: 1) Mission Overview; 2) Current Scope of Work: 3) Facilities; 4) Critical Role of DSN; 5) Relay as Mission Supplement; 6) Current Mars Telecom Infrastructure; 7) PHX EDL Comm Overview; 8) EDL Geometry (Entry through Landing); 9) Phoenix Support; 10) Preparations for Phoenix; 11) EDL Support Timeline; 12) One Year Rolling Schedule; 13) E3 Rationale; and 14) Spacecraft Status.

  15. Overview of the Development of the Solar Electric Propulsion Technology Demonstration Mission 12.5-kW Hall Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy; hide

    2014-01-01

    NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASA's exploration goals, a number of projects are developing extensible technologies to support NASA's near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kilowatt magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.

  16. Overview of the Development of the Solar Electric Propulsion Technology Demonstration Mission 12.5-kW Hall Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy; hide

    2014-01-01

    NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASAs exploration goals, a number of projects are developing extensible technologies to support NASAs near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kW magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.

  17. Gravity Probe-B (GP-B) Mission and Tracking, Telemetry and Control Subsystem Overview

    NASA Technical Reports Server (NTRS)

    Kennedy, Paul; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) in Huntsville, Alabama will launch the Gravity Probe B (GP-B) space experiment in the Fall of 2002. The GP-B spacecraft was developed to prove Einstein's theory of General Relativity. This paper will provide an overview of the GPB mission and will discuss the design, and test of the spacecraft Tracking, Telemetry and Control (TT&C) subsystem which incorporates NASA's latest generation standard transponder for use with the NASA Tracking and Data Relay Satellite System (TDRSS).

  18. Overview of the Nasa/science Mission Directorate University Student Instrument Project (usip)

    NASA Astrophysics Data System (ADS)

    Pierce, D. L.

    2016-12-01

    These are incredible times of space and Earth science discovery related to the Earth system, our Sun, the planets, and the universe. The National Aeronautics and Space Administration (NASA) Science Mission Directorate (SMD) provides authentic student-led hands-on flight research projects as a component part of the NASA's science program. The goal of the Undergraduate Student Instrument Project (USIP) is to enable student-led scientific and technology investigations, while also providing crucial hands-on training opportunities for the Nation's future researchers. SMD, working with NASA's Office of Education (OE), the Space Technology Mission Directorate (STMD) and its Centers (GSFC/WFF and AFRC), is actively advancing the vision for student flight research using NASA's suborbital and small spacecraft platforms. Recently proposed and selected USIP projects will open up opportunities for undergraduate researchers in conducting science and developing space technologies. The paper will present an overview of USIP, results of USIP-I, and the status of current USIP-II projects that NASA is sponsoring and expects to fly in the near future.

  19. NASA Earth Remote Sensing Programs: An Overview with Special Emphasis on the NASA/JAXA Led Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2009-01-01

    This slide presentation gives an overview of NASA's operations monitoring the earth from space. It includes information on NASA's administrative divisions and key operating earth science missions with specific information on the Landsat satellites, Seastar spacecraft, and the TRMM satellite.

  20. Emirates Mars Mission (EMM) Overview

    NASA Astrophysics Data System (ADS)

    Sharaf, Omran; Amiri, Sarah; AlMheiri, Suhail; Alrais, Adnan; Wali, Mohammad; AlShamsi, Zakareyya; AlQasim, Ibrahim; AlHarmoodi, Khuloud; AlTeneiji, Nour; Almatroushi, Hessa; AlShamsi, Maryam; AlAwadhi, Mohsen; McGrath, Michael; Withnell, Pete; Ferrington, Nicolas; Reed, Heather; Landin, Brett; Ryan, Sean; Pramann, Brian

    2017-04-01

    United Arab Emirates (UAE) has entered the space exploration race with the announcement of Emirates Mars Mission (EMM), the first Arab Islamic mission to another planet, in 2014. Through this mission, UAE is to send an unmanned probe, called Hope probe, to be launched in summer 2020 and reach Mars by 2021 to coincide with UAE's 50th anniversary. Through a sequence of subsequent maneuvers, the spacecraft will enter a large science orbit that has a periapsis altitude of 20,000 km, an apoapsis altitude of 43,000 km, and an inclination of 25 degrees. The mission is designed to (1) characterize the state of the Martian lower atmosphere on global scales and its geographic, diurnal and seasonal variability, (2) correlate rates of thermal and photochemical atmospheric escape with conditions in the collisional Martian atmosphere, and (3) characterize the spatial structure and variability of key constituents in the Martian exosphere. These objectives will be met by four investigations with diurnal variability on sub-seasonal timescales which are (1) determining the three-dimensional thermal state of the lower atmosphere, (2) determining the geographic and diurnal distribution of key constituents in the lower atmosphere, (3) determining the abundance and spatial variability of key neutral species in the thermosphere, and (4) determining the three-dimensional structure and variability of key species in the exosphere. EMM will collect these information about the Mars atmospheric circulation and connections through a combination of three distinct instruments that image Mars in the visible, thermal infrared and ultraviolet wavelengths and they are the Emirates eXploration Imager (EXI), the Emirates Mars InfraRed Spectrometer (EMIRS), and the EMM Mars Ultraviolet Spectrometer (EMUS). EMM has passed its Mission Concept Review (MCR), System Requirements Review (SRR), System Design Review (SDR), and Preliminary Design Review (PDR) phases. The mission is led by Emiratis from Mohammed

  1. Core Science Systems--Mission overview

    USGS Publications Warehouse

    Gallagher, Kevin T.

    2012-01-01

    CSS provides a foundation for all USGS Mission Areas, as well as for the mission of the Department of the Interior (DOI), in the following ways: 1) Conducts basic and applied science research and development 2) Fosters broad understanding and application of analyses and information 3) Provides a framework for data and information sharing 4) Creates new geospatially enabled data and information 5) Provides technical expertise in standards and methods 6) Builds and facilitates partnerships and innovation

  2. Aquarius/SAC-D mission overview

    NASA Astrophysics Data System (ADS)

    Sen, Amit; Kim, Yunjin; Caruso, Daniel; Lagerloef, Gary; Colomb, Raul; Yueh, Simon; Le Vine, David

    2006-09-01

    Aquarius/SAC-D is a cooperative international mission developed between the National Aeronautics and Space Administration (NASA) of United States of America (USA) and the Comisión Nacional de Actividades Espaciales (CONAE) of Argentina. The overall mission objective is to contribute to the understanding of the total Earth system and the consequences of the natural and man-made changes in the environment of the planet. Major themes are: ocean surface salinity, carbon, water cycle, geo-hazards, and cryosphere.

  3. The Mission Accessible Near-Earth Object Survey (MANOS): Project Overview

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas; Polishook, David; Thomas, Cristina; Willman, Mark; DeMeo, Francesca; Mommert, Michael; Endicott, Thomas; Trilling, David; Binzel, Richard; Hinkle, Mary; Siu, Hosea; Neugent, Kathryn; Christensen, Eric; Person, Michael; Burt, Brian; Grundy, Will; Roe, Henry; Abell, Paul; Busch, Michael

    2014-11-01

    The Mission Accessible Near-Earth Object Survey (MANOS) began in August 2013 as a multi-year physical characterization survey that was awarded survey status by NOAO. MANOS will target several hundred mission-accessible NEOs across visible and near-infrared wavelengths, ultimately providing a comprehensive catalog of physical properties (astrometry, light curves, spectra). Particular focus is paid to sub-km NEOs, for which little data currently exists. These small bodies are essential to understanding the link between meteorites and asteroids, pose the most immediate impact hazard to the Earth, and are highly relevant to a variety of planetary mission scenarios. Accessing these targets is enabled through a combination of classical, queue, and target-of-opportunity observations carried out at 1- to 8-meter class facilities in both the northern and southern hemispheres. The MANOS observing strategy is specifically designed to rapidly characterize newly discovered NEOs before they fade beyond observational limits. MANOS will provide major advances in our understanding of the NEO population as a whole and for specific objects of interest. Here we present an overview of the survey, progress to date, and early science highlights including: (1) an estimate of the taxonomic distribution of spectral types for NEOs smaller than ~100 meters, (2) the distribution of rotational properties for approximately 100 previously unstudied objects, (3) models for the dynamical evolution of the overall NEO population over the past 0.5 Myr, and (4) progress in developing a new set of online tools at asteroid.lowell.edu that will enable near realtime public dissemination of our data while providing a portal to facilitate coordination efforts within the small body observer community.MANOS is supported through telescope allocations from NOAO and Lowell Observatory. We acknowledge funding support from an NSF Astronomy and Astrophysics Postdoctoral Fellowship to N. Moskovitz and NASA NEOO grant

  4. Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2012-01-01

    ) forocietal applications ranging from position fixes of storm centers, numerical weather prediction, flood forecasting, freshwater management, landslide warning, crop prediction, to tracking of water-borne diseases. An overview of the GPM mission design, retrieval strategy, ground validation activities, and international science collaboration will be presented.

  5. Overview of Key Saturn Probe Mission Trades

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Kowalkowski, Theresa; Folkner, Bill

    2007-01-01

    Ongoing studies, performed at NASA/JPL over the past two years in support of NASA's SSE Roadmap activities, proved the feasibility of a NF class Saturn probe mission. I. This proposed mission could also provide a good opportunity for international collaboration with the proposed Cosmic Vision KRONOS mission: a) With ESA contributed probes (descent modules) on a NASA lead mission; b) Early 2017 launch could be a good programmatic option for ESA-CV/NASA-NF. II. A number of mission architectures could be suitable for this mission: a) Probe Relay based architecture with short flight time (approx. 6.3-7 years); b) DTE probe telecom based architecture with long flight time (-11 years), and low probe data rate, but with the probes decoupled from the carrier, allowing for polar trajectories I orbiter. This option may need technology development for telecom; c) Orbiter would likely impact mission cost over flyby, but would provide significantly higher science return. The Saturn probes mission is expected to be identified in NASA's New Frontiers AO. Thus, further studies are recommended to refine the most suitable architecture. International collaboration is started through the KRONOS proposal work; further collaborated studies will follow once KRONOS is selected in October under ESA's Cosmic Vision Program.

  6. Overview of Mission Design for NASA Asteroid Redirect Robotic Mission Concept

    NASA Technical Reports Server (NTRS)

    Strange, Nathan; Landau, Damon; McElrath, Timothy; Lantoine, Gregory; Lam, Try; McGuire, Melissa; Burke, Laura; Martini, Michael; Dankanich, John

    2013-01-01

    Part of NASA's new asteroid initiative would be a robotic mission to capture a roughly four to ten meter asteroid and redirect its orbit to place it in translunar space. Once in a stable storage orbit at the Moon, astronauts would then visit the asteroid for science investigations, to test in space resource extraction, and to develop experience with human deep space missions. This paper discusses the mission design techniques that would enable the redirection of a 100-1000 metric ton asteroid into lunar orbit with a 40-50 kW Solar Electric Propulsion (SEP) system.

  7. Asteroid Redirect Mission: EVA and Sample Collection

    NASA Technical Reports Server (NTRS)

    Abell, Paul; Stich, Steve

    2015-01-01

    Asteroid Redirect Mission (ARM) Overview (1) Notional Development Schedule, (2) ARV Crewed Mission Accommodations; Asteroid Redirect Crewed Mission (ARCM) Mission Summary; ARCM Accomplishments; Sample collection/curation plan (1) CAPTEM Requirements; SBAG Engagement Plan

  8. An overview on the TACTS mission using the new German research aircraft HALO in summer 2012

    NASA Astrophysics Data System (ADS)

    Engel, Andreas; Boenisch, Harald

    2013-04-01

    The TACTS (Transport and Composition in the UTLS) mission is the first large atmospheric mission of the new German research aircraft HALO. TACTS aims at improving our understanding of the transport processes which determine the chemical composition in the UTLS with a special emphasis on the transition from summer to fall. The mission was flown in August and September 2012 with a fully equipped aircraft carrying 13 different instruments measuring a wide range of chemical tracers with different lifetimes and different source-sink characteristics. The payload consists of both in-situ and remote sensing instruments. In addition to TACTS the same payload was employed to measure the chemical composition during a large north-south transect as part of the ESMVal project. Data are available up to to altitudes above 15 km, potential temperatures above 400 K and covering the latitude range from 65°S to 80°N. Due to the large payload a very wide range of measurements allows for a very good characterisation of the chemical composition. All instruments performed well and close to complete data sets are available for all flights performed during both missions. We present an overview of the scientific aims of TACTS, the payload, the measurements performed and some selected first results.

  9. Overview of EVA PRA for TPS Repair for Hubble Space Telescope Servicing Mission

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Duncan, Gary; Roeschel, Eduardo; Canga, Michael

    2010-01-01

    Following the Columbia accident in 2003, NASA developed techniques to repair the Thermal Protection System (TPS) in the event of damage to the TPS as one of several actions to reduce the risk to future flights from ascent debris, micro-meteoroid and/or orbital debris (MMOD). Other actions to help reduce the risk include improved inspection techniques, reduced shedding of debris from the External Tank and ability to rescue the crew with a launch on need vehicle. For the Hubble Space Telescope (HST) Servicing Mission the crew rescue capability was limited by the inability to safe haven on the International Space Station (ISS), resulting in a greater reliance on the repair capability. Therefore it was desirable to have an idea of the risk associated with conducting a repair, where the repair would have to be conducted using an Extra-Vehicular Activity (EVA). Previously, focused analyses had been conducted to quantify the risk associated with certain aspects of an EVA, for example the EVA Mobility Unit (EMU) or Space Suit; however, the analyses were somewhat limited in scope. A complete integrated model of an EVA which could quantify the risk associated with all of the major components of an EVA had never been done before. It was desired to have a complete integrated model to be able to assess the risks associated with an EVA to support the Space Shuttle Program (SSP) in making risk informed decisions. In the case of the HST Servicing Mission, this model was developed to assess specifically the risks associated with performing a TPS repair EVA. This paper provides an overview of the model that was developed to support the HST mission in the event of TPS damage. The HST Servicing Mission was successfully completed on May 24th 2009 with no critical TPS damage; therefore the model was not required for real-time mission support. However, it laid the foundation upon which future EVA quantitative risk assessments could be based.

  10. Prototype integration of the joint munitions assessment and planning model with the OSD threat methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, R.Y.S.; Bolmarcich, J.J.

    The purpose of this Memorandum is to propose a prototype procedure which the Office of Munitions might employ to exercise, in a supportive joint fashion, two of its High Level Conventional Munitions Models, namely, the OSD Threat Methodology and the Joint Munitions Assessment and Planning (JMAP) model. The joint application of JMAP and the OSD Threat Methodology provides a tool to optimize munitions stockpiles. The remainder of this Memorandum comprises five parts. The first is a description of the structure and use of the OSD Threat Methodology. The second is a description of JMAP and its use. The third discussesmore » the concept of the joint application of JMAP and OSD Threat Methodology. The fourth displays sample output of the joint application. The fifth is a summary and epilogue. Finally, three appendices contain details of the formulation, data, and computer code.« less

  11. Planetary mission summaries. Volume 1: Introduction and overview

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Tabular synopses of twelve missions are presented along with the Mariner Jupiter/Saturn 1977 mission for comparison. Mission definitions considered include: Mars Polar Orbiter; Mars Surface Sample Return; Mars Rover; Marine Jupiter/Uranus 1979 with Uranus Entry Probe; Mariner Jupiter Orbiter; Mariner Mercury Orbiter 1978; Early Mariner Comet Flyby Solar Electric Encke Slow Flyby; Mariner Encke Ballistic Flyby; Solar Electric Encke Rendezvous 1981; Venus Orbital Imaging Radar; Solar Electric Out-of-the-Eliptic Probe 1979. Technical conclusions of mission studies are given in order that these results may interact with the broader questions of scope, pace, and priorities in the planetary exploration program.

  12. The Chang'e 3 Mission Overview

    NASA Astrophysics Data System (ADS)

    Li, Chunlai; Liu, Jianjun; Ren, Xin; Zuo, Wei; Tan, Xu; Wen, Weibin; Li, Han; Mu, Lingli; Su, Yan; Zhang, Hongbo; Yan, Jun; Ouyang, Ziyuan

    2015-07-01

    The Chang'e 3 (CE-3) mission was implemented as the first lander/rover mission of the Chinese Lunar Exploration Program (CLEP). After its successful launch at 01:30 local time on December 2, 2013, CE-3 was inserted into an eccentric polar lunar orbit on December 6, and landed to the east of a 430 m crater in northwestern Mare Imbrium (19.51°W, 44.12°N) at 21:11 on December 14, 2013. The Yutu rover separated from the lander at 04:35, December 15, and traversed for a total of 0.114 km. Acquisition of science data began during the descent of the lander and will continue for 12 months during the nominal mission. The CE-3 lander and rover each carry four science instruments. Instruments on the lander are: Landing Camera (LCAM), Terrain Camera (TCAM), Extreme Ultraviolet Camera (EUVC), and Moon-based Ultraviolet Telescope (MUVT). The four instruments on the rover are: Panoramic Camera (PCAM), VIS-NIR Imaging Spectrometer (VNIS), Active Particle induced X-ray Spectrometer (APXS), and Lunar Penetrating Radar (LPR). The science objectives of the CE-3 mission include: (1) investigation of the morphological features and geological structures of and near the landing area; (2) integrated in-situ analysis of mineral and chemical composition of and near the landing area; and (3) exploration of the terrestrial-lunar space environment and lunar-based astronomical observations. This paper describes the CE-3 objectives and measurements that address the science objectives outlined by the Comprehensive Demonstration Report of Phase II of CLEP. The CE-3 team has archived the initial science data, and we describe data accessibility by the science community.

  13. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    -track scanning humidity sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, the NASA/NOAA Joint Polar Satellite System (JPSS), and EUMETSAT MetOp satellites. Data from Chinese and Russian microwave radiometers may also become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. Relative to current data products, GPM's "nextgeneration" precipitation products will be characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) more frequent sampling by an expanded constellation of microwave radiometers including operational humidity sounders over land, (3) intercalibrated microwave brightness temperatures from constellation radiometers within a unified framework, and (4) physical-based precipitation retrievals from constellation radiometers using a common a priori hydrometeor database constrained by combined radar/radiometer measurements provided by the GPM Core Observatory. An overview of the GPM mission concept, the U.S. GPM program status and updates on international science collaborations on GPM will be presented.

  14. An Overview of Mission 21. A Program Designed To Assist Teachers in Integrating Technology into Their Present Curriculum through a Problem-Solving Approach. Grades 1 through 6.

    ERIC Educational Resources Information Center

    Brusic, Sharon A.; And Others

    This booklet presents an overview of Mission 21, a project that promotes technological literacy in the elementary school classroom. Funded since 1985, Mission 21 has enabled graduate research associates and Virginia teachers to write and field test a technology education program for children in grades 1 through 6. Over 30 elementary teachers in 11…

  15. Lunar Reconnaissance Orbiter (LRO) Navigation Overview

    NASA Technical Reports Server (NTRS)

    Lamb, Rivers

    2008-01-01

    This viewgraph presentation is an overview of the Lunar Reconnaissance Orbiter (LRO), with emphasis on the navigation and plans for the mission. The objective of the LRO mission is to conduct investigations that will be specifically target to prepare for and support future human exploration of the Moon. There is a review of the scientific instruments on board the LRO and an overview of the phases of the planned trajectory.

  16. Land Remote Sensing Overview

    NASA Technical Reports Server (NTRS)

    Byrnes, Ray

    2007-01-01

    A general overview of the USGS land remote sensing program is presented. The contents include: 1) Brief overview of USGS land remote sensing program; 2) Highlights of JACIE work at USGS; 3) Update on NASA/USGS Landsat Data Continuity Mission; and 4) Notes on alternative data sources.

  17. Biomorphic Systems and Biomorphic Missions

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    2000-01-01

    A viewgraph presentation (with an explanation for each slide) gives an overview of biomorphic systems and missions. Biomorphic explorers are classified, and the challenge to obtain a biomorphic robot is described. Characteristics of biomorphic explorers are described, and biomorphic missions are discussed.

  18. The solar polar radio telescope mission: an overview

    NASA Astrophysics Data System (ADS)

    Sun, Weiying; Zhang, Cheng; Zheng, Jianhua; Wu, Ji; Wang, C. B.; Wang, Chi; Wang, S.

    : The solar polar orbit telescope (SPORT) is a mission proposed for the observation of ICMEs. The main payload is a synthetic aperture radiometer working at meter wave band taking images of the high density interplanetary plasma clouds formed by ICMEs and follows the propagation if it from the surface of the Sun all the way to as far as 0.5 AU or even further. With such a capability of observation, also the SPORT will study transient high energy phenomenon, the magnetic topology, temperature and density as well as velocity of the solar wind in the inner interplanetary heliosphere. In the practical part, the mission is also very useful for space weather forecast in advance of the geo-storm events. Other instruments are also selected to be on board of the solar polar orbit mission for in-situ measurement, such as fluxgate magnetometer, solar wind ion detector and high energy particle detectors. In this paper, we describe the scientific objective, basic principles and feasibility of the interferometric radiometer, general mission design and the status of the SPORT mission.

  19. Hayabusa2 Mission Overview

    NASA Astrophysics Data System (ADS)

    Watanabe, Sei-ichiro; Tsuda, Yuichi; Yoshikawa, Makoto; Tanaka, Satoshi; Saiki, Takanao; Nakazawa, Satoru

    2017-07-01

    The Hayabusa2 mission journeys to C-type near-Earth asteroid (162173) Ryugu (1999 JU3) to observe and explore the 900 m-sized object, as well as return samples collected from the surface layer. The Haybusa2 spacecraft developed by Japan Aerospace Exploration Agency (JAXA) was successfully launched on December 3, 2014 by an H-IIA launch vehicle and performed an Earth swing-by on December 3, 2015 to set it on a course toward its target Ryugu. Hayabusa2 aims at increasing our knowledge of the early history and transfer processes of the solar system through deciphering memories recorded on Ryugu, especially about the origin of water and organic materials transferred to the Earth's region. Hayabusa2 carries four remote-sensing instruments, a telescopic optical camera with seven colors (ONC-T), a laser altimeter (LIDAR), a near-infrared spectrometer covering the 3-μm absorption band (NIRS3), and a thermal infrared imager (TIR). It also has three small rovers of MINERVA-II and a small lander MASCOT (Mobile Asteroid Surface Scout) developed by German Aerospace Center (DLR) in cooperation with French space agency CNES. MASCOT has a wide angle imager (MasCam), a 6-band thermal radiator (MARA), a 3-axis magnetometer (MasMag), and a hyperspectral infrared microscope (MicrOmega). Further, Hayabusa2 has a sampling device (SMP), and impact experiment devices which consist of a small carry-on impactor (SCI) and a deployable camera (DCAM3). The interdisciplinary research using the data from these onboard and lander's instruments and the analyses of returned samples are the key to success of the mission.

  20. Kepler Mission: A Technical Overview

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.

    2003-01-01

    The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. A ground-based program to classify all 225,000 stars in the FOV and to do a detailed examination of a subset of the stars that show planetary companions is also planned.

  1. The German/Russian MIR 1997 Mission: An Overview

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TP4 includes short reports concerning: (1) Life Science Experiments During the German-Russian Mir '97 Mission; (2) Orthostatic Intolerance Following Microgravity: A Role for Autonomic Dysfunction; (3) Heart Rate Variability and Skin Blood Flow in Man During Orthostatic Stress in Weightlessness; (4) Effects of Microgravity and Lower Body Negative Pressure on Circulatory Drives from Excercising Calf Muscles; (5) The Mir Station in Its Second Decade: Crew Science Operation During Mir '97; (6) Metabolic WARD (Water, Sodium, Calcium, and Bone Metabolism) and Endocrinological Experiments During the Mir '97 Mission; (7) Long-term Monitoring of the Spine-geometry During the Mir '97 Mission: Introduction of a New Method; and (8) Effects of 20 days of Microgravity (German/Russian Mir '97 Mission) on the Mechanical and Electromyographic Characteristics of Explosive Efforts of the Lower Limbs and of Cycloergometric Exercises of Mild to Sprint-Like Intensity.

  2. Overview of the Mission Design Reference Trajectory for NASA's Asteroid Redirect Robotic Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Strange, Nathan J.; Burke, Laura M.; McCarty, Steven L.; Lantoine, Gregory B.; Qu, Min; Shen, Haijun; Smith, David A.; Vavrina, Matthew A.

    2017-01-01

    The National Aeronautics and Space Administration's (NASA's) recently cancelled Asteroid Redirect Mission was proposed to rendezvous with and characterize a 100 m plus class near-Earth asteroid and provide the capability to capture and retrieve a boulder off of the surface of the asteroid and bring the asteroidal material back to cislunar space. Leveraging the best of NASA's science, technology, and human exploration efforts, this mission was originally conceived to support observation campaigns, advanced solar electric propulsion, and NASA's Space Launch System heavy-lift rocket and Orion crew vehicle. The asteroid characterization and capture portion of ARM was referred to as the Asteroid Redirect Robotic Mission (ARRM) and was focused on the robotic capture and then redirection of an asteroidal boulder mass from the reference target, asteroid 2008 EV5, into an orbit near the Moon, referred to as a Near Rectilinear Halo Orbit where astronauts would visit and study it. The purpose of this paper is to document the final reference trajectory of ARRM and the challenges and unique methods employed in the trajectory design of the mission.

  3. STS-34: Mission Overview Briefing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Live footage shows Milt Heflin, the Lead Flight Director participating in the STS-34 Mission Briefing. He addresses the primary objective, and answered questions from the audience and other NASA Centers. Heflin also mentions the Shuttle Solar Backscatter Ultraviolet secondary payload, and several experiments. These experiments include Growth Hormone Crystal Distribution (Plants), Polymer Morphology, Sensor Technology Experiment, Mesoscale Lightning Experiment, Shuttle Student Involvement Program "Ice Crystals", and the Air Force Maui Optical Site.

  4. Mission Medical Information System

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.; Joe, John C.; Follansbee, Nicole M.

    2008-01-01

    This viewgraph presentation gives an overview of the Mission Medical Information System (MMIS). The topics include: 1) What is MMIS?; 2) MMIS Goals; 3) Terrestrial Health Information Technology Vision; 4) NASA Health Information Technology Needs; 5) Mission Medical Information System Components; 6) Electronic Medical Record; 7) Longitudinal Study of Astronaut Health (LSAH); 8) Methods; and 9) Data Submission Agreement (example).

  5. Solar Power for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    2014-01-01

    An overview of NASA missions and technology development efforts are discussed. Future spacecraft will need higher power, higher voltage, and much lower cost solar arrays to enable a variety of missions. One application driving development of these future arrays is solar electric propulsion.

  6. GOCE: Mission Overview and Early Results (Invited)

    NASA Astrophysics Data System (ADS)

    Rummel, R. F.; Muzi, D.; Drinkwater, M. R.; Floberghagen, R.; Fehringer, M.

    2009-12-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission is the first Earth Explorer Core mission of the Living Planet Programme of the European Space Agency (ESA). The primary objective of the GOCE mission is to provide global and regional models of the Earth gravity field and the geoid, its reference equi-potential surface, with unprecedented spatial resolution and accuracy. GOCE was launched successfully on 17 March 2009 from the Plesetsk Cosmodrome in northern Russia onboard a Rockot launch vehicle. System commissioning and payload calibration have been completed and the satellite is decaying to its initial measurement operating altitude of 255 km, which is expected to be reached in mid-September 2009. After one week of final payload calibration, GOCE will enter its first 6 month duration phase of uninterrupted science measurements at that altitude. This presentation will recall GOCE's main goals and its major development milestones. In addition, a description of the data products generated and some highlights of the satellite performance will be outlined. Artist's impression of GOCE Satellite in flight (courtesy AOES-Medialab).

  7. Mission critical technology development

    NASA Technical Reports Server (NTRS)

    Sliwa, Nancy

    1991-01-01

    Mission critical technology development is presented in the form of the viewgraphs. The following subject areas are covered: organization/philosophy overview; fault management technology; and introduction to optical processing.

  8. Aeronomy of Ice in the Mesosphere Mission Overview and Collaborative Studies Using the AIM and TIMED Data Sets

    NASA Astrophysics Data System (ADS)

    Rusell, J. M.; Bailey, S. M.; Rusch, D.; Gordley, L. L.; Hervig, M. E.; Merkel, A.

    2007-12-01

    The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California on April 25, 2007 becoming the first satellite mission dedicated to the study of noctilucent clouds that occur at approximately 83km altitude. A Pegasus XL rocket launched the satellite into a near perfect 600 km sun synchronous circular orbit. AIM carries three instruments - a nadir imager, a solar occultation instrument and an in-situ cosmic dust detector - that were specifically selected because of their ability to provide key measurements needed to address the six AIM science objectives. The Thermosphere Ionosphere Mesosphere Energetics and Dynamics mission was launched from Vandenberg Air Force Base on December 7, 2001 and is dedicated to the study of the structure, chemistry, energetics and dynamics of the atmospheric region between 60 km and 180 km altitude. TIMED carries four instruments including an infrared limb sounder to characteristic the temperature, chemistry, energetics and dynamics of the region; a global ultraviolet imager; a solar flux monitor and an instrument to measure winds. Together AIM and TIMED form an important component of the Heliophysics Great Observatory. This paper will provide an overview of the AIM mission and will discuss collaborative studies using the combined AIM/TIMED data sets in a synergistic way to advance our knowledge of this region where the sun first interacts with Earth's atmosphere.

  9. Magnetospheric MultiScale Mission (MMS) Overview

    NASA Technical Reports Server (NTRS)

    Schiff, Conrad

    2015-01-01

    The MMS mission was launched on March 13, 2015 aboard an Atlas V rocket from Space Launch Complex 40, Cape Canaveral, Florida Each of the four observatories were successfully released at five minute intervals spinning at 3 rpm approximately 1.5 hours after launch.

  10. SONEX airborne mission and coordinated POLINAT-2 activity: Overview and accomplishments

    NASA Astrophysics Data System (ADS)

    Singh, Hanwant B.; Thompson, Anne M.; Schlager, H.

    The SASS (Subsonic Assessment) Ozone and NOx Experiment (SONEX) was an airborne field campaign conducted in October-November 1997 in the vicinity of the North Atlantic Flight Corridor to study the impact of aircraft emissions on NOx and ozone (O3). A fully instrumented NASA DC-8 aircraft was used as the primary SONEX platform. SONEX activities were closely coordinated with the European POLINAT-2 (Pollution from Aircraft Emissions in the North Atlantic Flight Corridor) program, which used a Falcon-20 aircraft. Both campaigns focused on the upper troposphere/“lowermost” stratosphere (UT/LS) as the region of greatest interest. Specific sampling goals were achieved with the aid of a state-of-the art modeling and meteorological support system, which allowed targeted sampling of air parcels with desired characteristics. A substantial impact of aircraft emissions on NOx, O3, and CN in the UT/LS of the study region is shown to be present. This mission provided direct support for the highly nonlinear nature of the NOx-O3 chemistry. The results are being published in Special Sections of GRL and JGR. This overview provides a context within which these publications can be understood.

  11. An Overview of Power Capability Requirements for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Davis, Jose M.; Cataldo, Robert L.; Soeder, James F.; Manzo, Michelle A.; Hakimzadeh, Roshanak

    2005-01-01

    Advanced power is one of the key capabilities that will be needed to achieve NASA's missions of exploration and scientific advancement. Significant gaps exist in advanced power capabilities that are on the critical path to enabling human exploration beyond Earth orbit and advanced robotic exploration of the solar system. Focused studies and investment are needed to answer key development issues for all candidate technologies before down-selection. The viability of candidate power technology alternatives will be a major factor in determining what exploration mission architectures are possible. Achieving the capabilities needed to enable the CEV, Moon, and Mars missions is dependent on adequate funding. Focused investment in advanced power technologies for human and robotic exploration missions is imperative now to reduce risk and to make informed decisions on potential exploration mission decisions beginning in 2008. This investment would begin the long lead-time needed to develop capabilities for human exploration missions in the 2015 to 2030 timeframe. This paper identifies some of the key technologies that will be needed to fill these power capability gaps. Recommendations are offered to address capability gaps in advanced power for Crew Exploration Vehicle (CEV) power, surface nuclear power systems, surface mobile power systems, high efficiency power systems, and space transportation power systems. These capabilities fill gaps that are on the critical path to enabling robotic and human exploration missions. The recommendations address the following critical technology areas: Energy Conversion, Energy Storage, and Power Management and Distribution.

  12. The Lobster Mission

    NASA Technical Reports Server (NTRS)

    Barthelmy, Scott

    2011-01-01

    I will give an overview of the Goddard Lobster mission: the science goals, the two instruments, the overall instruments designs, with particular attention to the wide-field x-ray instrument (WFI) using the lobster-eye-like micro-channel optics.

  13. Mission Design Overview for Mars 2003/2005 Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Lee, Wayne J.; DAmario, Louis A.; Roncoli, Ralph B.; Smith, John C.

    2000-01-01

    In May 2003, a new and exciting chapter in Mars exploration will begin with the launch of the first of three spacecraft that will collectively contribute toward the goal of delivering samples from the Red Planet to Earth. This mission is called Mars Sample Return (MSR) and will utilize both the 2003 and 2005 launch opportunities with an expected sample return in October 2008. NASA and CNES are major partners in this mission. The baseline mission mode selected for MSR is Mars orbit rendezvous (MOR), analogous in concept to the lunar orbit rendezvous (LOR) mode used for Apollo in the 1960s. Specifically, MSR will employ two NASA-provided landers of nearly identical design and one CNES-provided orbiter carrying a NASA payload of rendezvous sensors, orbital capture mechanisms, and an Earth entry vehicle (EEV). The high-level concept is that the landers will launch surface samples into Mars orbit, and the orbiter will retrieve the samples in orbit and then carry them back to Earth. The first element to depart for Mars will be one of the two landers. Currently, it is proposed that an intermediate class launch vehicle, such as the Boeing Delta 3 or Lockheed Martin Atlas 3A, will launch this 1800-kg lander from Cape Canaveral during the May 2003 opportunity. The lander will utilize a Type-1 transfer trajectory with an arrival at Mars in mid-December 2003. Landing will be aided by precision approach navigation and a guided hypersonic entry to achieve a touchdown accuracy of 10 km or better. Although the exact landing site has not yet been determined, it is estimated that lander resource constraints will limit the site to between 15 degrees north and south latitudes. Following touchdown, the lander will deploy a six-wheeled, 60-kg rover carrying an extensive suite of instruments designed to aid in the analysis of the local terrain and collection of core samples from selected rocks. The surface mission is currently designed around a concept called the surface traverse. Each

  14. Asteroid Redirect Robotic Mission: Robotic Boulder Capture Option Overview

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Merrill, Raymond G.; Belbin, Scott P.; Reeves, David M.; Earle, Kevin D.; Naasz, Bo J.; Abell, Paul A.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is currently studying an option for the Asteroid Redirect Robotic Mission (ARRM) that would capture a multi-ton boulder (typically 2-4 meters in size) from the surface of a large (is approximately 100+ meter) Near-Earth Asteroid (NEA) and return it to cislunar space for subsequent human and robotic exploration. This alternative mission approach, designated the Robotic Boulder Capture Option (Option B), has been investigated to determine the mission feasibility and identify potential differences from the initial ARRM concept of capturing an entire small NEA (4-10 meters in size), which has been designated the Small Asteroid Capture Option (Option A). Compared to the initial ARRM concept, Option B allows for centimeter-level characterization over an entire large NEA, the certainty of target NEA composition type, the ability to select the boulder that is captured, numerous opportunities for mission enhancements to support science objectives, additional experience operating at a low-gravity planetary body including extended surface contact, and the ability to demonstrate future planetary defense strategies on a hazardous-size NEA. Option B can leverage precursor missions and existing Agency capabilities to help ensure mission success by targeting wellcharacterized asteroids and can accommodate uncertain programmatic schedules by tailoring the return mass.

  15. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Science Status

    NASA Astrophysics Data System (ADS)

    Hou, Arthur Y.; Skofronick-Jackson, Gail; Stocker, Erich F.

    2013-04-01

    -orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), and (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. Currently global rainfall products combine observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM is designed to provide the next-generation of precipitation products characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) intercalibrated microwave brightness temperatures from constellation radiometers within a consistent framework, and (3) unified precipitation retrievals from constellation radiometers using a common a priori hydrometeor database consistent with combined radar/radiometer measurements by the GPM Core Observatory. As a science mission with integrated applications goals, GPM will advance the understanding of global water cycle variability in a changing climate by offering insights into 3-dimensional structures of hurricanes and midlatitude storms, microphysical properties of precipitating particles, and latent heat associated with precipitation processes. The GPM Mission will also make data available in near realtime (within 3 hours of observations) for societal applications ranging from position fixes of storm centers, numerical weather prediction, flood forecasting, freshwater management, landslide warning, crop prediction, to tracking of water-borne diseases. This presentation will give an overview of the GPM mission and its development status approximately one-year prior to launch.

  16. Kepler Mission: A Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Koch, David; Fonda, Mark (Technical Monitor)

    2002-01-01

    The Kepler Mission was selected by NASA as one of the next two Discovery Missions. The mission design is based on the search for Earth-size planets in the habitable zone of solar-like stars, but does not preclude the discovery of larger or smaller planets in other orbits of non-solar-like stars. An overview of the mission, the scientific goals and the anticipated results will be presented.

  17. The US/USSR Biological Satellite Program: COSMOS 936 Mission Overview

    NASA Technical Reports Server (NTRS)

    Souza, K. A.

    1978-01-01

    On August 3, 1977, the Soviet Union launched Cosmos 936, an unmanned spacecraft carrying biology and physics experiments from 9 countries, including both the Soviet Union and U.S. The launch marked the second time the Soviet Union has flown U.S. experiments aboard one of its spacecraft, the first being Cosmos 782 launched Nov. 25, 1975, which remained in orbit 19.5 days. Aboard Cosmos 936 were: 30 young male Wistar SPF rats, 20 of which was exposed to hypogravity during flight while the remainder were subjected to a l x g acceleration by continuous configuration; 2) experiments with plants and fruit flies; 3) radiation physics experiments; and 4) a heat convection experiment. After 18.5 days in orbit, the spacecraft landed in central Asia where a Soviet recovery team began experiment operations, including animal autopsies, within 4.5 hr of landing. Half of the animals were autopsied at the recovery site and the remainder returned to Moscow and allowed to readapt to terrestrial gravity for 25 days after which they, too, were autopsied. Specimens for U.S. were initially prepared at the recovery site or Soviet laboratories and transferred to U.S. laboratories for complete analyses. An overview of the mission focusing on preflight, on-orbit, and postflight activities pertinent to the seven U.S. experiments aboard Cosmos 936 will be presented.

  18. Global Precipitation Measurement Mission: Architecture and Mission Concept

    NASA Technical Reports Server (NTRS)

    Bundas, David

    2005-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.

  19. Return to Europa: Overview of the Jupiter Europa Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Clark, K.; Tan-Wang, G.; Boldt, J.; Greeley, R.; Jun, I.; Lock, R.; Ludwinski, J.; Pappalardo, R.; Van Houten, T.; Yan, T.

    2009-01-01

    Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, Galileo supplied fascinating new insights into that satellite's secrets. The Jupiter Europa Orbiter (JEO) would be the NASA-led portion of the Europa Jupiter System Mission (EJSM), an international mission with orbiters developed by NASA, ESA and possibly JAXA. JEO would address a very important subset of the complete EJSM science objectives and is designed to function alone or in conjunction with ESA's Jupiter Ganymede Orbiter (JGO).

  20. Overview of the Mars Reconnaissance Orbiter mission

    NASA Technical Reports Server (NTRS)

    Mateer, B.; Graf, J.; Zurek, R.; Jones, R.; Eisen, H.; Johnston, M.; Jai, D. B.

    2002-01-01

    The Mars Reconnaissance Orbiter will deliver to Mars orbit a payload to conduct remote sensing science observations, characterize sites for future landers, and provide critical telecom/navigation relay capability for follow-on missions.

  1. Overview of a Preliminary Destination Mission Concept for a Human Orbital Mission to the Martial Moons

    NASA Technical Reports Server (NTRS)

    Mazanek, D. D.; Abell, P. A.; Antol, J.; Barbee, B. W.; Beaty, D. W.; Bass, D. S.; Castillo-Rogez, J. C.; Coan, D. A.; Colaprete, A.; Daugherty, K. J.; hide

    2012-01-01

    The National Aeronautics and Space Administration s Human Spaceflight Architecture Team (HAT) has been developing a preliminary Destination Mission Concept (DMC) to assess how a human orbital mission to one or both of the Martian moons, Phobos and Deimos, might be conducted as a follow-on to a human mission to a near-Earth asteroid (NEA) and as a possible preliminary step prior to a human landing on Mars. The HAT Mars-Phobos-Deimos (MPD) mission also permits the teleoperation of robotic systems by the crew while in the Mars system. The DMC development activity provides an initial effort to identify the science and exploration objectives and investigate the capabilities and operations concepts required for a human orbital mission to the Mars system. In addition, the MPD Team identified potential synergistic opportunities via prior exploration of other destinations currently under consideration.

  2. Overview of the NASA soil moisture active/passive mission

    USDA-ARS?s Scientific Manuscript database

    The NASA Soil Moisture Active Passive (SMAP) Mission is currently in design Phase C and scheduled for launch in October 2014. Its mission concept is based on combined L-band radar and radiometry measurements obtained from a shared, rotating 6-meter antennae. These measurements will be used to retrie...

  3. Abort Flight Test Project Overview

    NASA Technical Reports Server (NTRS)

    Sitz, Joel

    2007-01-01

    A general overview of the Orion abort flight test is presented. The contents include: 1) Abort Flight Test Project Overview; 2) DFRC Exploration Mission Directorate; 3) Abort Flight Test; 4) Flight Test Configurations; 5) Flight Test Vehicle Engineering Office; 6) DFRC FTA Scope; 7) Flight Test Operations; 8) DFRC Ops Support; 9) Launch Facilities; and 10) Scope of Launch Abort Flight Test

  4. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  5. The Rosetta mission orbiter science overview: the comet phase

    PubMed Central

    Altobelli, N.; Buratti, B. J.; Choukroun, M.

    2017-01-01

    The international Rosetta mission was launched in 2004 and consists of the orbiter spacecraft Rosetta and the lander Philae. The aim of the mission is to map the comet 67P/Churyumov–Gerasimenko by remote sensing, and to examine its environment in situ and its evolution in the inner Solar System. Rosetta was the first spacecraft to rendezvous with and orbit a comet, accompanying it as it passes through the inner Solar System, and to deploy a lander, Philae, and perform in situ science on the comet's surface. The primary goals of the mission were to: characterize the comet's nucleus; examine the chemical, mineralogical and isotopic composition of volatiles and refractories; examine the physical properties and interrelation of volatiles and refractories in a cometary nucleus; study the development of cometary activity and the processes in the surface layer of the nucleus and in the coma; detail the origin of comets, the relationship between cometary and interstellar material and the implications for the origin of the Solar System; and characterize asteroids 2867 Steins and 21 Lutetia. This paper presents a summary of mission operations and science, focusing on the Rosetta orbiter component of the mission during its comet phase, from early 2014 up to September 2016. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554981

  6. COSMOS 2044 Mission: Overview

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Ballard, R. W.; Connol, J. P.; Vasques, M. F.

    1992-01-01

    The COSMOS 2044 spaceflight was the ninth Soviet-International joint mission dedicated to space biomedicine and the seventh in which the United States has participated. The unmanned Vostok vehicle carried 10 rats and two rhesus monkeys on its 14-day voyage. This spaceflight yielded an unprecedented bounty of data on physiological responses to the microgravity environment. The tissues studied and the numbers and types of studies performed by members of the international science community constituted a new record. Many of the results obtained by the approximately 80 American scientists who participated are reported in the series of COSMOS 2044 papers in this issue. Descriptions of the spaceflight and animal procedures are detailed elsewhere. The broad goals of the space biomedical program are threefold. The first is to characterize qualitatively and quantitatively the biological responses to the microgravity environment, be they adaptive or pathological. The second goal is to clarify the physiological-biochemical mechanisms mediating the responses to microgravity. The third goal of this program is to use the space environment as a tool to better understand adaptive and disease processes in terrestrial organisms.

  7. Wireless Network Communications Overview for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.

    2009-01-01

    The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information.

  8. EPO in NASA's Science Mission Directorate

    NASA Astrophysics Data System (ADS)

    Krishnamurthi, A.; Cooper, L. P.

    2005-05-01

    The Science Mission Directorate (SMD) at NASA believes very strongly in education and public outreach (EPO) and has embedded such programs within its missions. There are also some funding opportunities that are available outside the mission context. We will provide an overview of the various funding opportunities available through the SMD at NASA to carry out EPO programs. We will introduce speakers who have won such EPO awards and they will discuss their experience with writing the proposals and carrying out their projects.

  9. Overview and Scientific Agenda of Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This paper addresses the status of the Global Precipitation Mission (GPM) currently planned for launch in the 2007-2008 time frame. The GPM notional design involves a 9-member satellite constellation, one of which wilt be an advanced TRMM-like "core" satellite carrying a dual-frequency Ku-Ka band radar (DFPR) and a TMI-like radiometer. The other eight members of the constellation will be considered daughters of the core satellite, each carrying some type of passive microwave radiometer measuring across the 10.7 - 85 GHz ,frequency range - likely to include a combination of lightweight satellites and co-existing operational/Experimental satellites carrying passive microwave radiometers (i.e., SSM/I and AMSR-E & -F). The constellation is designed to provide no worse than 3-hour sampling at any spot on the globe using sun-synchronous orbit architecture for the daughter satellites, with the core satellite providing relevant measurements on internal cloud-precipitation microphysical processes and the "training-calibrating" information for retrieval algorithms used on daughter satellite measurements. The GPM is organized internationally, currently involving a partnership between NASA in the US, NASDA in Japan, and ESA in Europe (representing the European community nations). The mission is expected to involve additional international participants, sister agencies to the mainstream space agencies, and a diverse collection scientists from academia, government, and the private sector, A critical element in understanding the scientific thinking which has motivated the GPM project is an understanding of what scientific problems TRMM has and has not been able to address and at what scales. The TRMM satellite broke important scientific ground because it carried to space an array of rain-sensitive instruments, two of which were specifically designed for physical precipitation retrieval. These were the 9-channel TRMM Microwave Imager (TMI) and the 13.8 GHz Precipitation Radar (PR

  10. JSC Crew Training Overview

    NASA Technical Reports Server (NTRS)

    Bolt, Kathryn; Wiseman, Reid

    2017-01-01

    This presentation describes a general overview of the different types of training that NASA and United States On-orbit Segment (USOS) International Partner (IP) astronauts receive in preparation for a mission to the International Space Station (ISS)..

  11. GPM Mission Overview and U.S. Science Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Art; Skofronick, Gail; Carlisle, Candace

    2012-01-01

    PM Core Observatory into orbit from Tanegashima Island, Japan in 2014. The GPM constellation is envisioned to comprise 8 or more microwave sensors provided by partners, including both conical imagers and cross-track sounders. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as humidity sounders or precipitation sensors on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), NOAA-NASA Joint Polar Satellite System (JPSS) satellites, European MetOp satellites, and DMSP follow-on sensors. In addition, data from Chinese and Russian microwave radiometers may be available through international cooperation under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). GPM's next-generation global precipitation data will lead to scientific advances and societal benefits in the following areas: (1) Improved knowledge of the Earth's water cycle and its link to climate change (2) New insights into precipitation microphysics, storm structures and large-scale atmospheric processes (3) Better understanding of climate sensitivity and feedback processes (4) Extended capabilities in monitoring and predicting hurricanes and other extreme weather events (5) Improved forecasting capabilities for natural hazards, including floods, droughts and landslides. (6) Enhanced numerical prediction skills for weather and climate (7) Better agricultural crop forecasting and monitoring of freshwater resources. An overview of the GPM mission concept and science activities in the United States, together with an update on international collaborations in radiometer intercalibration and ground validation, will be presented.

  12. 2007 Western States Fire Mission

    NASA Technical Reports Server (NTRS)

    Howell, Kathleen

    2008-01-01

    A general overview of the Ikhana Uninhabited Air System (UAS) is presented. The contents include: 1) Ikhana UAS; 2) Ikhana UAS / Ground Control Station (GCS); 3) Ikhana UAS / Antennas; 4) Western States Fire Mission 2007 Partners; 5) FAA Certificate of Authorization (COA); 6) Western States Fire Missions (WSFM) 2007; 7) WSFM 1-4 2007; 8) California Wildfire Emergency Response 2007; 9) WSFM 5-8 Emergency Response 2007; 10) WSFM Achievements; and 11) WSFM Challenges.

  13. The OICETS mission

    NASA Astrophysics Data System (ADS)

    Jono, Takashi; Arai, Katsuyoshi

    2017-11-01

    The Optical Inter-orbit Communications Engineering Test Satellite (OICETS) was successfully launched on 23th August 2005 and thrown into a circular orbit at the altitude of 610 km. The main mission is to demonstrate the free-space inter satellite laser communications with the cooperation of the Advanced Relay and Technology Mission (ARTEMIS) geostationary satellite developed by the European Space Agency. This paper presents the overview of the OICETS and laser terminal, a history of international cooperation between Japan Aerospace Exploration Agency (JAXA) and ESA and typical results of the inter-orbit laser communication experiment carried out with ARTEMIS.

  14. The Polar Stratosphere in a Changing Climate (POLSTRACC): Mission overview and first results

    NASA Astrophysics Data System (ADS)

    Oelhaf, Hermann; Sinnhuber, Björn-Martin; Woiwode, Wolfgang; Rapp, Markus; Dörnbrack, Andreas; Engel, Andreas; Bönisch, Harald

    2016-04-01

    Oberpfaffenhofen). The activities from Kiruna will be split into two intensive phases, with a focus on gravity wave observations in January 2016. Mission and flight planning is supported by a variety of model tools. The airborne field observations will be complemented by ground-based activities (e.g. lidars, radars and radio soundings) and satellite observations (e.g. CALIPSO, MLS and ACE-FTS). The first phase was concluded by Dec. 21 with two long flights, one dedicated to SALSA objectives towards the Atlantic sea, the other, designed as early winter survey, went from Oberpfaffenhofen northwards, around Spitsbergen at 81°N, and back over Scandinavia. With both flights the very unusual dynamical situation in Dec 2015 could be addressed. This Arctic stratospheric winter started to be exceptionally cold and the early winter measurements from our flights provide an excellent reference for the upcoming observations planned during the Kiruna phases. The presentation is intended to give a brief overview of the scientific objectives, the payload, and the mission, along with first results.

  15. Dryden Flight Research Center: Center Overview

    NASA Technical Reports Server (NTRS)

    Ratnayake, Nalin

    2009-01-01

    This viewgraph presentation describes a general overview of Dryden Flight Research Center. Strategic partnerships, Dryden's mission activity, exploration systems and aeronautics research programs are also described.

  16. Overview: Solar Electric Propulsion Concept Designs for SEP Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David; Herman, Daniel

    2014-01-01

    JPC presentation of the Concept designs for NASA Solar Electric Propulsion Technology Demonstration mission paper. Multiple Solar Electric Propulsion Technology Demonstration Missions were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kg spacecraft capable of delivering 4000 kg of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kg spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload.

  17. Radio Aurora Explorer : Mission overview and the science objectives

    NASA Astrophysics Data System (ADS)

    Bahcivan, H.; Cutler, J.; Buonocore, J.; Bennett, M.

    2009-12-01

    Radio Aurora Explorer (RAX) is the first CubeSat mission funded by the NSF Small Satellite Program as a collaborative research of SRI International and the University of Michigan. The mission is a ground-to-space bi-static radar experiment enabling exploration of small-scale turbulent ionospheric structures in the high latitudes not accessible from the ground or space alone. The primary science objective is to understand the microphysics of plasma instabilities that lead to meter-scale plasma turbulence in the form of field-aligned irregularities of electron density between the altitudes of 80 and 400 km. The best-known radar target for the mission is the Farley-Buneman (two-stream) instability occurring in the ionospheric E region when the convection electric field exceeds a threshold of ~20 mV/m. Other targets include spiky structures associated with electrostatic ion cyclotron waves, Post-Rosenbluth, lower, and upper hybrid waves. The science objectives are (1) to determine the altitude distribution of high-latitude ionospheric irregularities as a function of the convection electric field magnitude and direction, (2) to identify the plasma waves responsible for the scattering, and (3) to determine to what extent the irregularities are field-aligned? The mission will measure for the first time the 3-D k-spectrum of the irregularities, in particular measuring their magnetic field alignment. The irregularities will be irradiated by an incoherent scatter radar (PFISR for the first experiments) and the scattered radiation will form a hallow cone-shaped radio aurora into space as illustrated in the figure below. The satellite radar receiver will the scattered signals as the satellite passes through the radio aurora. Irregularity locations will be determined using the time delay between ISR transmissions and satellite receptions. Experiments throughout the lifetime of the mission will determine irregularity intensities as a function altitude, magnetic aspect angle, and

  18. NASA's RBSP-ECT Science Investigation of the Van Allen Probes Mission: Highlights of the Prime Mission Phase, Data Access Overview, and Opportunities to Collaborate in the Extended Mission Phase

    NASA Astrophysics Data System (ADS)

    Smith, S. S.; Friedel, R. H.; Larsen, B.; Reeves, G.; Spence, H. E.

    2015-12-01

    In this poster, we present a summary of access to the data products of the Radiation Belt Storm Probes - Energetic Particle Composition, and Thermal plasma (RBSP-ECT) suite of NASA's Van Allen Probes mission. The RBSP-ECT science investigation (http://rbsp-ect.sr.unh.edu) measures comprehensively the near-Earth charged particle environment in order to understand the processes that control the acceleration, global distribution, and variability of radiation belt electrons and ions. RBSP-ECT data products derive from the three instrument elements that comprise the suite, which collectively covers the broad energies that define the source and seed populations, the core radiation belts, and also their highest energy ultra-relativistic extensions. These RBSP-ECT instruments include, from lowest to highest energies: the Helium, Oxygen, Proton, and Electron (HOPE) sensor, the Magnetic Electron and Ion Spectrometer (MagEIS), and the Relativistic Electron and Proton Telescope (REPT). We provide a brief overview of their principles of operation, as well as a description of the Level 2-3 data products that the HOPE, MagEIS, and REPT instruments produce, both separately and together. We provide a summary of how to access these RBSP-ECT data products at our Science Operation Center and Science Data Center (http://www.rbsp-ect.lanl.gov/rbsp_ect.php ) as well as caveats for their use. Finally, in the spirit of efficiently and effectively promoting and encouraging new collaborations, we present a summary of past publications, current studies, and opportunities for your future participation in RBSP-ECT extended mission phase science.

  19. The PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael

    2012-01-01

    The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.

  20. Automated transient detection in the STEREO Heliospheric Imagers.

    NASA Astrophysics Data System (ADS)

    Barnard, Luke; Scott, Chris; Owens, Mat; Lockwood, Mike; Tucker-Hood, Kim; Davies, Jackie

    2014-05-01

    Since the launch of the twin STEREO satellites, the heliospheric imagers (HI) have been used, with good results, in tracking transients of solar origin, such as Coronal Mass Ejections (CMEs), out far into the heliosphere. A frequently used approach is to build a "J-map", in which multiple elongation profiles along a constant position angle are stacked in time, building an image in which radially propagating transients form curved tracks in the J-map. From this the time-elongation profile of a solar transient can be manually identified. This is a time consuming and laborious process, and the results are subjective, depending on the skill and expertise of the investigator. Therefore, it is desirable to develop an automated algorithm for the detection and tracking of the transient features observed in HI data. This is to some extent previously covered ground, as similar problems have been encountered in the analysis of coronagraph data and have led to the development of products such as CACtus etc. We present the results of our investigation into the automated detection of solar transients observed in J-maps formed from HI data. We use edge and line detection methods to identify transients in the J-maps, and then use kinematic models of the solar transient propagation (such as the fixed-phi and harmonic mean geometric models) to estimate the solar transients properties, such as transient speed and propagation direction, from the time-elongation profile. The effectiveness of this process is assessed by comparison of our results with a set of manually identified CMEs, extracted and analysed by the Solar Storm Watch Project. Solar Storm Watch is a citizen science project in which solar transients are identified in J-maps formed from HI data and tracked multiple times by different users. This allows the calculation of a consensus time-elongation profile for each event, and therefore does not suffer from the potential subjectivity of an individual researcher tracking an

  1. Mars geoscience/climatology orbiter low cost mission operations

    NASA Technical Reports Server (NTRS)

    Erickson, K. D.

    1984-01-01

    It will not be possible to support the multiple planetary missions of the magnitude and order of previous missions on the basis of foreseeable NASA funding. It is, therefore, necessary to seek innovative means for accomplishing the goals of planetary exploration with modestly allocated resources. In this connection, a Core Program set of planetary exploration missions has been recommended. Attention is given to a Mission Operations design overview which is based on the Mars Geoscience/Climatology Orbiter Phase-A study performed during spring of 1983.

  2. Cassini Solstice Mission Maneuver Experience: Year Two

    NASA Technical Reports Server (NTRS)

    Arrieta, Juan; Ballard, Christopher G.; Hahn, Yungsun

    2012-01-01

    The Cassini Spacecraft was launched in October 1997 on a mission to observe Saturn and its moons; it entered orbit around Saturn in July 2004 for a nominal four-year Prime Mission, later augmented by two extensions: the Equinox Mission, from July 2008 through September 2010, and the Solstice Mission, from October 2010 through September 2017. This paper provides an overview of the maneuver activities from August 2011 through June 2012 which include the design of 38 Orbit Trim Maneuvers--OTM-288 through OTM-326-- for attaining 14 natural satellite encounters: seven with Titan, six with Enceladus, and one with Dione.

  3. The Restore-L Servicing Mission

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.

    2016-01-01

    We will present information about the Restore-L Servicing Mission, a technology demonstration of servicing technologies via the robotic on-orbit refueling of a functional Government-owned satellite in polar low Earth orbit. This demonstration would establish U.S. leadership in robotic on-orbit satellite servicing, accelerate the maturation of technologies critical to NASAs Journey to Mars, and jumpstart a new domestic commercial servicing industry. We will present an overview of the Restore-L servicing mission, which was recently approved to progress to flight. We will also describe the technologies that NASA is advancing to achieve this mission, and provide the current status of the Restore-L effort.

  4. New Mission Control Center Briefing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Live footage shows panelists, Chief Center Systems Division John Muratore, and Acting Chief, Control Center Systems Division, Linda Uljon, giving an overview of the new Mission Control Center. Muratore and Uljon talk about the changes and modernization of the new Center. The panelists mention all the new capabilities of the new Center. They emphasize the Distributed real time command and control environment, the reduction in operation costs, and even the change from coaxial cables to fiber optic cables. Uljon also tells us that the new Control Center will experience its first mission after the launch of STS-70 and its first complete mission (both launching and landing) during STS-71.

  5. Turbulence Heating ObserveR - THOR: mission overview and payload summary

    NASA Astrophysics Data System (ADS)

    Escoubet, C.-Philippe; Voirin, Thomas; Wielders, Arno; Vaivads, Andris; Retino, Alessandro; Khotyaintsev, Yuri; Soucek, Jan; Valentini, Francesco; Chen, Chris; Fazakerley, Andrew; Lavraud, Benoit; Marcucci, Federica; Narita, Yasuhito; Vainio, Rami; Romstedt, Jens; Boudin, Nathalie; Junge, Axel; Osuna, Pedro; Walsh, Andrew

    2017-04-01

    The Turbulence Heating ObserveR (THOR) mission was selected as one of the three candidates, following the Call for Medium Class Missions M4 by the European Space Agency, with a launch planned in 2026. THOR is the first mission ever flown in space dedicated to plasma turbulence. THOR will lead to an understanding of the basic plasma heating and particle energization processes, of their effect on different plasma species and of their relative importance in different turbulent regimes. The THOR mission features one single spinning spacecraft, with the spin axis pointing toward the Sun, and 10 state-of-the-art scientific instruments, measuring electromagnetic fields and waves and electrons and ions at the highest spatial and temporal resolution ever achieved. THOR focuses on particular regions: pristine solar wind, Earth's bow shock and interplanetary shocks, and compressed solar wind regions downstream of shocks, that will be observed with three different orbits of 6 x 15 RE, 6 x 25 RE and 6 x 45 RE. These regions are selected because of their differing turbulent fluctuation characteristics, and reflect similar astrophysical environments. The THOR mission, the conceptual design of the spacecraft and a summary of the payload will be presented. Furthermore, driving requirements and their implications for the spacecraft like Electromagnetic Compatibility and cleanliness will be discussed.

  6. The Lunar Prospector Discovery Mission: mission and measurement description.

    NASA Astrophysics Data System (ADS)

    Hubbard, G. S.; Binder, A. B.; Feldman, W.

    1998-06-01

    Lunar Prospector, the first competitively selected planetary mission in NASA's Discovery Program, is described with emphasis on the radiation spectrometer instrumentation and anticipated scientific data return. Scheduled to be launched in January 1998, the mission will conduct a one year orbital survey of the Moon's composition and structure. The suite of five instruments are outlined: neutron spectrometer, alpha particle spectrometer, gamma-ray spectrometer, electron reflectometer and magnetometer. Scientific requirements and measurement approach to detect water/ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect radioactive gas release events and accurately map the Moon's gravitational and magnetic fields are given. A brief overview of the programmatic accomplishments in meeting a tightly constrained schedule and budget is also provided.

  7. The Lunar Prospector discovery mission: mission and measurement description.

    NASA Astrophysics Data System (ADS)

    Hubbard, G. S.; Binder, A. B.; Feldman, W.

    Lunar Prospector, the first competitively selected planetary mission in NASA's discovery program, is described with emphasis on the radiation spectrometer instrumentation and anticipated scientific data return. Scheduled to be launched in January 1998, the mission will conduct a one year orbital survey of the moon's composition and structure. The suite of five instruments will be outlined: neutron spectrometer, alpha particle spectrometer, gamma-ray spectrometer, electron reflectometer and magnetometer. Scientific requirements and measurement approach to detect water ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect radioactive gas release events and accurately map the moon's gravitational and magnetic fields are given. A brief overview of the programmatic accomplishments in meeting a tightly constrained schedule and budget is also provided.

  8. STS-81 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The flight crew of the STS-81 Space Shuttle Orbiter Atlantis Commander Michael A. Baker, Pilot Brent W. Jett Jr., and Mission Specialists, John M. Grunsfeld, Marsha S. Ivins, Peter J.K. Wisoff, and John M. Linenger present an overview of their mission. Video footage includes the following: prelaunch and launch activities, the crew eating breakfast, shuttle launch, on orbit activities, rendezvous with Mir, Shuttle/Mir joint activities, undocking, and the shuttle landing.

  9. General Mission Analysis Tool (GMAT)

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P. (Compiler)

    2016-01-01

    This is a software tutorial and presentation demonstrating the application of the General Mission Analysis Tool (GMAT) to the critical design phase of NASA missions. The demonstration discusses GMAT basics, then presents a detailed example of GMAT application to the Transiting Exoplanet Survey Satellite (TESS) mission. Other examples include OSIRIS-Rex. This talk is a combination of existing presentations; a GMAT basics and overview, and technical presentations from the TESS and OSIRIS-REx projects on their application of GMAT to critical mission design. The GMAT basics slides are taken from the open source training material. The OSIRIS-REx slides are from a previous conference presentation. The TESS slides are a streamlined version of the CDR package provided by the project with SBU and ITAR data removed by the TESS project.

  10. Optical Payload for the STARE Mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simms, L; Riot, V; De Vries, W

    2011-03-13

    Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) is a nano-sat based mission designed to better determine the trajectory of satellites and space debris in orbit around earth. In this paper, we give a brief overview of the mission and its place in the larger context of Space Situational Awareness (SSA). We then describe the details of the central optical payload, touching on the optical design and characterization of the on-board image sensor used in our Cubesat based prototype. Finally, we discuss the on-board star and satellite track detection algorithm central to the success of the mission.

  11. Overview of an Integrated Medical System for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Watkins, Sharmila; Rubin, David

    2013-01-01

    The Exploration Medical Capability (ExMC) element of the NASA Human Research Program (HRP) is charged with addressing the risk of unacceptable health and mission outcomes due to limitations of inflight medical capabilities. The Exploration Medical System Demonstration (EMSD) is a project within the ExMC element aimed at reducing this risk by improving the medical capabilities available for exploration missions. The EMSD project will demonstrate, on the ground and on ISS, the integration of several components felt to be essential to the delivery of medical care during long ]duration missions outside of low Earth orbit. The components of the EMSD include the electronic medical record, assisted medical procedure software, medical consumables tracking technology and RFID ] tagged consumables, video conferencing capability, ultrasound device and probes (ground demonstration only), peripheral biosensors, and the software to allow communication among the various components (middleware). This presentation seeks to inform our international partners of the goals and objectives of the EMSD and to foster collaboration opportunities related to this and future projects.

  12. NASA Ames Research Center: An Overview

    NASA Technical Reports Server (NTRS)

    Tu, Eugene; Yan, Jerry Chi Yiu

    2017-01-01

    This overview of NASA Ames Research Center is intended to give the target audience of university students a general understanding of the mission, core competencies, and research goals of NASA and Ames.

  13. Electromechanical Power for NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2005-01-01

    NASA has a wide range of missions that require electrochemical power sources. These needs are met with a variety of options that include primary and secondary cells and batteries, fuel cells, and regenerative fuel cells. This presentation wil cover an overview of NASA missions and requirements for electrochemical power sources and investigate the synergy and diversity that exist between NASA's requirements and those for military tactical power sources. Current development programs at GRC and other NASA centers, aimed at meeting NASA's future requirements will also be discussed.

  14. The Ninevah Mission: A design summary for an unmanned mission to Venus, volume 1

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The design summary for an unmanned mission to the planet Venus, with code name Ninevah, is presented. The design includes a Hohmann transfer trajectory analysis, propulsion trade study, an overview of the communication and instrumentation systems, power requirements, probe and lander analysis, and a weight and cost analysis.

  15. Satellite Constellations for Space Weather and Ionospheric Studies: Overview of the COSMIC and COSMIC-2 Missions

    NASA Astrophysics Data System (ADS)

    Schreiner, W. S.; Pedatella, N. M.; Weiss, J.

    2016-12-01

    in the first launch will also carry additional space weather payloads: a tri-band RF Beacon transmitter, and an Ion Velocity Meter instrument. This presentation will provide a short summary of the COSMIC mission and then present an overview of the COSMIC-2 mission, including expected data product performance and science goals

  16. Phoenix--the first Mars Scout mission.

    PubMed

    Shotwell, Robert

    2005-01-01

    NASA has initiated the first of a new series of missions to augment the current Mars Program. In addition to the systematic series of planned, directed missions currently comprising the Mars Program plan, NASA has started a series of Mars Scout missions that are low cost, price fixed, Principal [correction of Principle] Investigator-led projects. These missions are intended to provide an avenue for rapid response to discoveries made as a result of the primary Mars missions, as well as allow more risky technologies and approaches to be applied in the investigation of Mars. The first in this new series is the Phoenix mission which was selected as part of a highly competitive process. Phoenix will use the Mars 2001 Lander that was discontinued in 2000 and apply a new set of science objectives and mission objectives and will validate this soft lander architecture for future applications. This paper will provide an overview of both the Program and the Project. c2005 Elsevier Ltd. All rights reserved.

  17. National Risk Management Research Laboratory Strategic plan and Implementation - Overview

    EPA Science Inventory

    This publication provides an overview of the strategic plan recently developed by the National Risk Management Research Laboratory (NRMRL). It includes a description of NRMRL's mission and goals and their alignment with Agency goals. Additionally, the overview contains a brief se...

  18. The Philae lander mission and science overview.

    PubMed

    Boehnhardt, Hermann; Bibring, Jean-Pierre; Apathy, Istvan; Auster, Hans Ulrich; Ercoli Finzi, Amalia; Goesmann, Fred; Klingelhöfer, Göstar; Knapmeyer, Martin; Kofman, Wlodek; Krüger, Harald; Mottola, Stefano; Schmidt, Walter; Seidensticker, Klaus; Spohn, Tilman; Wright, Ian

    2017-07-13

    The Philae lander accomplished the first soft landing and the first scientific experiments of a human-made spacecraft on the surface of a comet. Planned, expected and unexpected activities and events happened during the descent, the touch-downs, the hopping across and the stay and operations on the surface. The key results were obtained during 12-14 November 2014, at 3 AU from the Sun, during the 63 h long period of the descent and of the first science sequence on the surface. Thereafter, Philae went into hibernation, waking up again in late April 2015 with subsequent communication periods with Earth (via the orbiter), too short to enable new scientific activities. The science return of the mission comes from eight of the 10 instruments on-board and focuses on morphological, thermal, mechanical and electrical properties of the surface as well as on the surface composition. It allows a first characterization of the local environment of the touch-down and landing sites. Unique conclusions on the organics in the cometary material, the nucleus interior, the comet formation and evolution became available through measurements of the Philae lander in the context of the Rosetta mission.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  19. An Overview of the Comet Nucleus TOUR Discovery Mission and a Description of Neutral Gas and Ion Measurements Planned

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Veverka, Joe; Niemann, Hasso; Harpold, Dan; Chiu, Mary; Reynolds, Edward; Owen, Toby; Kasprzak, Wayne; Patrick, Ed; Raaen, Eric

    2001-01-01

    The CONTOUR (Comet Nucleus TOUR) Mission led by its Principal Investigator Professor Joseph Veverka of Cornell is presently under development at the Johns Hopkins Applied Physics Laboratory for launch in July of 2002 with a flyby of Comet Encke scheduled for November 3, 2003 at a solar distance of 1.07 au. A robust Whipple dust shield is designed to allow a close nucleus approach distance (less than 150 km). The 2nd nominal CONTOUR target is Comet Schwassmann-Wachmann 3, although the spacecraft can alternately be directed to a new comet if such an interesting target is discovered. CONTOUR contains 4 instruments: an imaging spectrometer (CRISP) developed at APL that will obtain both high resolution nucleus images through 8 filters and IR spectra (800 to 2550 nm) of the nucleus, a narrow field of view forward imager (CFI) to locate the target days before the encounter, a dust composition time of flight mass spectrometer (CIDA) provided by Dr. J. Kissel and von Hoemer & Sulger, GmbH, and a mass spectrometer (NGIMS) provided by Goddard Space Flight Center to measure neutral gas and ambient ions. Laboratory calibration of the NGIMS has now been completed. NGIMS also includes an in-flight calibration system that we plan to exercise before and after each comet encounter. We will provide an overview of the CONTOUR Mission and discuss more specifically the NGIMS measurement goals for this mission.

  20. STS-93: Columbia / Chandra Mission Overview (from JSC)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A press briefing held on July 7, 1999 reviews the progress of the Chandra X ray Observatory project. The tape begins with an animated view of the launch of the Chandra X ray Observatory from the shuttle, as it was planned. Next is a press briefing. Bryan Austin, the Lead Flight Director, discusses the five day mission, and the reason for the shortened length, due to the added weight from the Chandra Observatory. He also reviews the other payloads, and activities that will take place during the mission. Kenneth Ledbetter, Science Director Mission Development, discusses the 4 great observatories and the role of each. They are the Hubble, which observed visible light; Compton Gamma Ray Observatory, the Chandra, and the Space Infrared Telescope Facility. A time line of the expected operational lifetime of each of the 4 great observatories is shown. Specific information about the Chandra Telescope is reviewed. The last press briefing presenter is Fred Wojtalik, who is the Chandra Program Manager. He reviews the Chandra's components, and acknowledges a few of the many companies that contributed to its building. He also reviews the orbital activation and checkout sequences. Question that follows, center around contingency plans if some part of the planned sequence is not successful. The costs are reviewed, and concerns about the Initial Upper Stage, the propulsion unit required to take the Chandra to its high orbit are addressed. The Chandra is planned to take an eliptical orbit, which is higher than the other space telescopes, thus far launched due to the requirement to avoid Earth generated X rays.

  1. Overview of OHB Expertise on Mars Planetary Exploration Missions

    NASA Astrophysics Data System (ADS)

    Bergemann, C.; Muehlbauer, Q.; Paul, R.; Jaime, A.; Thiel, M.

    2018-04-01

    The first part provides an overview of the design and testing of the ExoMars SPDS. Lastly, lessons learned obtained from the sample testing are presented showing how operational procedures can optimize the system and solve occurring problems.

  2. Designing Medical Support for a Near-Earth Asteroid Mission

    NASA Technical Reports Server (NTRS)

    Watkins, S. D.; Charles, J. B.; Kundrot, C. E.; Barr, Y. R.; Barsten, K. N.; Chin, D. A.; Kerstman, E. L.; Otto, C.

    2011-01-01

    This panel will discuss the design of medical support for a mission to a near-Earth asteroid (NEA) from a variety of perspectives. The panelists will discuss the proposed parameters for a NEA mission, the NEA medical condition list, recommendations from the NASA telemedicine workshop, an overview of the Exploration Medical System Demonstration planned for the International Space Station, use of predictive models for mission planning, and mission-related concerns for behavioral health and performance. This panel is intended to make the audience aware of the multitude of factors influencing medical support during a NEA mission.

  3. Mars Sample Return Architecture Overview

    NASA Astrophysics Data System (ADS)

    Edwards, C. D.; Vijendran, S.

    2018-04-01

    NASA and ESA are exploring potential concepts for a Sample Retrieval Lander and Earth Return Orbiter that could return samples planned to be collected and cached by the Mars 2020 rover mission. We provide an overview of the Mars Sample Return architecture.

  4. Human Mars Mission Overview and Dust Storm Impacts on Site Selection

    NASA Technical Reports Server (NTRS)

    Hoffman, S. J.

    2017-01-01

    NASA has begun a process to identify and discuss candidate locations where humans could land, live and work on the martian surface. This process is being carried out as a cooperative effort by NASA's Human Exploration and Operations Mission Directorate (HEOMD), responsible for future human mission preparations, and the Science Mission Directorate (SMD), responsible for the on-going Mars Exploration Program of robotic vehicles in orbit and on the surface of Mars. Both of these Directorates have a significant interest in this process, as these candidate locations will be used by NASA as part of a multi-year effort to determine where and how humans could explore Mars. In the near term this process includes: (a) identifying locations that would maximize the potential science return from future human exploration missions, (b) identifying locations with the potential for resources required to support humans, (c) developing concepts and engineering systems needed by future human crews to conduct operations within a candidate location, and (d) identifying key characteristics of the proposed candidate locations that cannot be evaluated using existing data sets, thus helping to define precursor measurements needed in advance of human missions.

  5. Overview of the Mars Exploration Rover Mission

    NASA Astrophysics Data System (ADS)

    Adler, M.

    2002-12-01

    The Mars Exploration Rover (MER) Project is an ambitious mission to land two highly capable rovers at different sites in the equatorial region of Mars. The two vehicles are launched separately in May through July of 2003. Mars surface operations begin on January 4, 2004 with the first landing, followed by the second landing three weeks later on January 25. The useful surface lifetime of each rover will be at least 90 sols. The science objectives of exploring multiple locations within each of two widely separated and scientifically distinct landing sites will be accomplished along with the demonstration of key surface exploration technologies for future missions. The two MER spacecraft are planned to be identical. The rovers are landed using the Mars Pathfinder approach of a heatshield and parachute to slow the vehicle relative to the atmosphere, solid rockets to slow the lander near the surface, and airbags to cushion the surface impacts. During entry, descent, and landing, the vehicles will transmit coded tones directly to Earth, and in the terminal descent phase will also transmit telemetry to the MGS orbiter to indicate progress through the critical events. Once the lander rolls to a stop, a tetrahedral structure opens to right the lander and to reveal the folded rover, which then deploys and later by command will roll off of the lander to begin its exploration. Each six-wheeled rover carries a suite of instruments to collect contextual information about the landing site using visible and thermal infrared remote sensing, and to collect in situ information on the composition, mineralogy, and texture of selected Martian soils and rocks using an arm-mounted microscopic imager, rock abrasion tool, and spectrometers. During their surface missions, the rovers will communicate with Earth directly through the Deep Space Network as well as indirectly through the Odyssey and MGS orbiters. The solar-powered rovers will be commanded in the morning of each Sol, with the

  6. NICER: Mission Overview and Status

    NASA Astrophysics Data System (ADS)

    Arzoumanian, Zaven; Gendreau, Keith C.

    2016-04-01

    NASA's Neutron star Interior Composition Explorer (NICER) mission will explore the structure, dynamics, and energetics of neutron stars through soft X-ray (0.2-12 keV) timing and spectroscopy. An external attached payload on the International Space Station (ISS), NICER is manifested on the Commercial Resupply Services SpaceX-11 flight, with launch scheduled for late 2016. The NICER payload is currently in final integration and environmental testing. Ground calibration has provided robust performance measures of the optical and detector subsystems, demonstrating that the instrument meets or surpasses its effective area, timing resolution, energy resolution, etc., requirements. We briefly describe the NICER hardware, its continuing testing, operations and environment on ISS, and the objectives of NICER's prime mission—including precise radius measurements for a handful of neutron stars to constrain the equation of state of cold, ultra-dense matter. Other contributions at this meeting address specific scientific investigations that are enabled by NICER, for neutron stars in their diverse manifestations as well as for broader X-ray astrophysics through a brief, approved Guest Observer program beginning in 2018.

  7. James Webb Space Telescope Project (JWST) Overview

    NASA Technical Reports Server (NTRS)

    Dutta, Mitra

    2008-01-01

    This presentation provides an overview of the James Webb Space Telescope (JWST) Project. The JWST is an infrared telescope designed to collect data in the cosmic dark zone. Specifically, the mission of the JWST is to study the origin and evolution of galaxies, stars and planetary systems. It is a deployable telescope with a 6.5 m diameter, segmented, adjustable primary mirror. outfitted with cryogenic temperature telescope and instruments for infrared performance. The JWST is several times more sensitive than previous telescope and other photographic and electronic detection methods. It hosts a near infrared camera, near infrared spectrometer, mid-infrared instrument and a fine guidance sensor. The JWST mission objection and architecture, integrated science payload, instrument overview, and operational orbit are described.

  8. The CanMars Analogue Mission: Lessons Learned for Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.; Beaty, D.; Battler, M.; Caudill, C.; Francis, R.; Haltigin, T.; Hipkin, V.; Pilles, E.

    2018-04-01

    We present an overview and lessons learned for Mars Sample Return from CanMars — an analogue mission that simulated a Mars 2020-like cache mission. Data from 39 sols of operations conducted in the Utah desert in 2015 and 2016 are presented.

  9. STS-88 Mission Highlights Resources Tape. Tape C

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-88 flight crew, Commander Robert D. Cabana, Pilot Frederick W. Sturckow, and Mission Specialists Nancy J. Currie, James H. Newman, Jerry L. Ross, and Sergei Krikalev present a video overview of their space flight. This is the last of three videos which show the highlights of the mission. This video covers the last four days (day 9 - 12) of the mission. Important images include the closing of the UNITY Connecting Module's hatch, the crew exercising, and the reentry of the spacecraft into Earth's atmosphere.

  10. The NASA Electronic Parts and Packaging (NEPP) Program: Overview and the New Tenets for Cost Conscious Mission Assurance on Electrical, Electronic, and Electromechanical (EEE) Parts

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2015-01-01

    The NEPP Program focuses on the reliability aspects of electronic devices (integrated circuits such as a processor in a computer). There are three principal aspects of this reliability: 1) Lifetime, inherent failure and design issues related to the EEE parts technology and packaging; 2) Effects of space radiation and the space environment on these technologies, and; 3) Creation and maintenance of the assurance support infrastructure required for mission success. The NEPP mission is to provide guidance to NASA for the selection and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment, and to ensure that appropriate EEE parts research is performed to meet NASA mission assurance needs. NEPPs FY15 goals are to represent the NASA voice to the greater aerospace EEE parts community including supporting anti-counterfeit and trust, provide relevant guidance to cost-effective missions, aid insertion of advanced (and commercial) technologies, resolve unexpected parts issues, ensure access to appropriate radiation test facilities, and collaborate as widely as possible with external entities. In accordance with the changing mission profiles throughout NASA, the NEPP Program has developed a balanced portfolio of efforts to provide agency-wide assurance for not only traditional spacecraft developments, but also those in-line with the new philosophies emerging worldwide. In this presentation, we shall present an overview of this program and considerations for EEE parts assurance as applied to cost conscious missions.

  11. Overview of the LARES Mission: orbit, error analysis and technological aspects

    NASA Astrophysics Data System (ADS)

    Ciufolini, Ignazio; Paolozzi, Antonio; Paris, Claudio

    2012-03-01

    LARES (LAser RElativity Satellite), is an Italian Space Agency (ASI) mission to be launched beginning of 2012 with the new European launch vehicle, VEGA; the launch opportunity was provided by the European Space Agency (ESA). LARES is a laser ranged satellite; it will be launched into a nearly circular orbit, with an altitude of 1450 km and an inclination of 69.5 degrees. The goal of the mission is the measurement of the Lense-Thirring effect with an uncertainty of few percent; such a small uncertainty will be achieved using LARES data together with data from the LAGEOS I (NASA) and LAGEOS II (NASA and ASI) satellites, and because GRACE mission (NASA-CSR and DLR-GFZ) is improving Earth's gravity field models. This paper describes LARES experiment along with the principal error sources affecting the measurement. Furthermore, some engineering aspects of the mission, in particular the structure and materials of the satellite (designed in order to minimize the non-gravitational perturbations), are described.

  12. Gaia I: the Mission - the adventure begins

    NASA Astrophysics Data System (ADS)

    Altmann, M.

    2015-10-01

    The ESA Gaia satellite mission, launched on Dec. 19, 2013, will undoubtedly leave a profound impact on Galactic dynamics, revolutionising many aspects of the trade. Nine months later, with the commissioning phase over and the regular five year measuring phase of Gaia starting, it is time to give an overview of the mission, what to expect after the potential of the spacecraft has been fully assessed in situ. Moreover this paper will give a brief description of the mission as a whole, to be followed by a second contribution by Figueras (2015) focussing on Gaia science.

  13. Sample Returns Missions in the Coming Decade

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Mitcheltree, Robert A.; Cheatwood, F. McNeil

    2000-01-01

    In the coming decade, several missions will attempt to return samples to Earth from varying parts of the solar system. These samples will provide invaluable insight into the conditions present during the early formation of the solar system, and possibly give clues to how life began on Earth. A description of five sample return missions is presented (Stardust, Genesis, Muses-C. Mars Sample Return, and Comet Nucleus Sample Return). An overview of each sample return mission is given, concentrating particularly on the technical challenges posed during the Earth entry, descent, and landing phase of the missions. Each mission faces unique challenges in the design of an Earth entry capsule. The design of the entry capsule must address the aerodynamic, heating, deceleration, landing, and recovery requirements for the safe return of samples to Earth.

  14. IMAGE Mission Science

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Fok, M.-C.; Fuselier, S.; Gladstone, G. R.; Green, J. L.; Fung, S. F.; Perez, J.; Reiff, P.; Roelof, E. C.; Wilson, G.

    1998-01-01

    Simultaneous, global measurement of major magnetospheric plasma systems will be performed for the first time with the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) Mission. The ring current, plasmasphere, and auroral systems will be imaged using energetic neutral and ultraviolet cameras. Quantitative remote measurement of the magnetosheath, plasmaspheric, and magnetospheric densities will be obtained through radio sounding by the Radio Plasma Imager. The IMAGE Mission will open a new era in global magnetospheric physics, while bringing with it new challenges in data analysis. An overview of the IMAGE Theory and Modeling team efforts will be presented, including the state of development of Internet tools that will be available to the science community for access and analysis of IMAGE observations.

  15. Lessons Learned from Optical Payload for Lasercomm Science (OPALS) Mission Operations

    NASA Technical Reports Server (NTRS)

    Sindiy, Oleg V.; Abrahamson, Matthew J.; Biswas, Abhijit; Wright, Malcolm W.; Padams, Jordan H.; Konyha, Alexander L.

    2015-01-01

    This paper provides an overview of Optical Payload for Lasercomm Science (OPALS) activities and lessons learned during mission operations. Activities described cover the periods of commissioning, prime, and extended mission operations, during which primary and secondary mission objectives were achieved for demonstrating space-to-ground optical communications. Lessons learned cover Mission Operations System topics in areas of: architecture verification and validation, staffing, mission support area, workstations, workstation tools, interfaces with support services, supporting ground stations, team training, procedures, flight software upgrades, post-processing tools, and public outreach.

  16. Overview of the Project Prometheus Program

    NASA Technical Reports Server (NTRS)

    Burdick, G. M.

    2003-01-01

    This presentation will give an overview of the Project Prometheus Program (PPP, formerly the Nuclear Systems Initiative, NSI) and the Jupiter Icy Moons Orbiter (JIMO) Project (a component of PPP), a mission to the three icy Galilean moons of Jupiter.

  17. NASA Exploration Team (NExT) In-Space Transportation Overview

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.; Cooke, Douglas R.; Kos, Larry D.; Brady, Hugh J. (Technical Monitor)

    2002-01-01

    This presentation provides an overview of NASA Exploration Team's (NEXT) vision of in-space transportation in the future. Hurdles facing in-space transportation include affordable power sources, crew health and safety, optimized robotic and human operations and space systems performance. Topics covered include: exploration of Earth's neighborhood, Earth's neighborhood architecture and elements, Mars mission trajectory options, delta-v variations, Mars mission duration options, Mars mission architecture, nuclear electric propulsion advantages and miscellaneous technology needs.

  18. Mars exploration advances: Missions to Mars - Mars base

    NASA Technical Reports Server (NTRS)

    Dejarnette, Fred R.; Mckay, Christopher P.

    1992-01-01

    An overview is presented of Mars missions and related planning with attention given to four mission architectures in the light of significant limitations. Planned unpiloted missions are discussed including the Mars Orbital Mapping Mission, the Mars Rover Sample Return, the Mars Aeronomy Orbiter, and the Mars Environmental Survey. General features relevant to the missions are mentioned including launch opportunities, manned-mission phases, and propulsion options. The four mission architectures are set forth and are made up of: (1) the Mars-exploration infrastructures; (2) science emphasis for the moon and Mars; (3) the moon to stay and Mars exploration; and (4) space resource utilization. The possibility of robotic missions to the moon and Mars is touched upon and are concluded to be possible by the end of the century. The ramifications of a Mars base are discussed with specific reference to habitability and base activities, and the human missions are shown to require a heavy-lift launcher and either chemical/aerobrake or nuclear-thermal propulsion system.

  19. Navigation of the Galileo mission

    NASA Technical Reports Server (NTRS)

    Miller, L. J.; Miller, J. K.; Kirhofer, W. E.

    1983-01-01

    An overview of the navigation of the Galileo mission is given. Predicted navigation performance for the various mission phases is discussed with particular emphasis given to the tour phase. Orbit determination strategies and resulting accuracies are discussed for various data types. In particular, the results of combining a new Very Long Baseline Interferometry (VLBI) data type called Differential One-Way Range (DOR) with conventional radio and optical data types are presented. Maneuver strategy results include the effects of maneuver placement and various targeting methods on propellant consumption and delivery accuracy. Emphasis is placed on new results obtained using asymptote and split targeting.

  20. Power Subsystem for Extravehicular Activities for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle

    2005-01-01

    The NASA Glenn Research Center has the responsibility to develop the next generation space suit power subsystem to support the Vision for Space Exploration. Various technology challenges exist in achieving extended duration missions as envisioned for future lunar and Mars mission scenarios. This paper presents an overview of ongoing development efforts undertaken at the Glenn Research Center in support of power subsystem development for future extravehicular activity systems.

  1. The NASA Soil Moisture Active Passive (SMAP) Mission: Overview

    NASA Technical Reports Server (NTRS)

    O'Neill, Peggy; Entekhabi, Dara; Njoku, Eni; Kellogg, Kent

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council?s Decadal Survey [1]. Its mission design consists of L-band radiometer and radar instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every 2-3 days. The combined active/passive microwave soil moisture product will have a spatial resolution of 10 km and a mean latency of 24 hours. In addition, the SMAP surface observations will be combined with advanced modeling and data assimilation to provide deeper root zone soil moisture and net ecosystem exchange of carbon. SMAP is expected to launch in the late 2014 - early 2015 time frame.

  2. Recce mission planning

    NASA Astrophysics Data System (ADS)

    York, Andrew M.

    2000-11-01

    The ever increasing sophistication of reconnaissance sensors reinforces the importance of timely, accurate, and equally sophisticated mission planning capabilities. Precision targeting and zero-tolerance for collateral damage and civilian casualties, stress the need for accuracy and timeliness. Recent events have highlighted the need for improvement in current planning procedures and systems. Annotating printed maps takes time and does not allow flexibility for rapid changes required in today's conflicts. We must give aircrew the ability to accurately navigate their aircraft to an area of interest, correctly position the sensor to obtain the required sensor coverage, adapt missions as required, and ensure mission success. The growth in automated mission planning system capability and the expansion of those systems to include dedicated and integrated reconnaissance modules, helps to overcome current limitations. Mission planning systems, coupled with extensive integrated visualization capabilities, allow aircrew to not only plan accurately and quickly, but know precisely when they will locate the target and visualize what the sensor will see during its operation. This paper will provide a broad overview of the current capabilities and describe how automated mission planning and visualization systems can improve and enhance the reconnaissance planning process and contribute to mission success. Think about the ultimate objective of the reconnaissance mission as we consider areas that technology can offer improvement. As we briefly review the fundamentals, remember where and how TAC RECCE systems will be used. Try to put yourself in the mindset of those who are on the front lines, working long hours at increasingly demanding tasks, trying to become familiar with new operating areas and equipment, while striving to minimize risk and optimize mission success. Technical advancements that can reduce the TAC RECCE timeline, simplify operations and instill Warfighter

  3. STS-71 Mission Highlights Resources Tape

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The flight crew of the STS-71 Space Shuttle Orbiter Atlantis Commander Robert L. Gibson, Pilot Charles J. Precourt, Mission Specialists, Ellen S. Baker, Bonnie J. Dunbar, Gregory J. Harbaugh, and Payload Specialists, Norman E. Thagard, Vladimir Dezhurov, and Gennadiy Strekalov present an overview of their mission. It's primary objective is the first Mir docking with a space shuttle and crew transfer. Video footage includes the following: prelaunch and launch activities; the crew eating breakfast; shuttle launch; on orbit activities; rendezvous with Mir; Shuttle/Mir joint activities; undocking; and the shuttle landing.

  4. STS-71 Shuttle/Mir mission report

    NASA Technical Reports Server (NTRS)

    Zimpfer, Douglas J.

    1995-01-01

    The performance measurements of the space shuttle on-orbit flight control system from the STS-71 mission is presented in this post-flight analysis report. This system is crucial to the stabilization of large space structures and will be needed during the assembly of the International Space Station A mission overview is presented, including the in-orbit flight tests (pre-docking with Mir) and the systems analysis during the docking and undocking operations. Systems errors and lessons learned are discussed, with possible corrective procedures presented for the upcoming Mir flight tests.

  5. Overview of the Solar-B Mission

    NASA Technical Reports Server (NTRS)

    Davis, John M.

    2006-01-01

    The Solar-B mission is a collaboration between the Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, the National Aeronautics and Space Administration (NASA) and the Particle Physics and Astronomy Research Council (PPARC) of the United Kingdom and the European Space Agency. The principal scientific goals of the mission are to understand the processes of magnetic field generation, transport and ultimate dissipation of solar magnetic fields and how the release of magnetic energy is responsible for the heating and structuring of the chromosphere and corona. The scientific payload consists of three instruments: the Solar Optical Telescope that consists of the Optical Telescope Assembly and the Focal Plane Package (FPP), the X-ray Telescope and the EUV Imaging Spectrometer Each instrument is a result of the combined talents of all the members of the international team and their design and performance is described in separate papers in this session. The instruments are designed to work together as an 'observatory' simultaneously studying the target, at which the spacecraft is pointed, at different levels in the atmosphere. The spacecraft is scheduled for launch in September 2006 from the Uchinoura Space Center into a 600 km circular, sun-synchronous, polar orbit with a nominal elevation of 97.9 degrees. The orbit provides at least two morning and two evening contacts in Japan. Morning contacts are used for recovering quick look science data and the evening contacts for uploading commands. In addition ESA will provide 15 contacts per day from the Norwegian high latitude (78deg 14' N) ground station at Svalbard. The data downloads are transmitted to the ISAS Sirius database. They will be reformatted into FITS files and archived as Level 0 data on the ISAS DARTS system and made available to the scientific community. Scientific operations will be conducted from the IS AS facility located in Sagamihara, Japan. They are separated into planning

  6. Academic Medical Centers Forming Accountable Care Organizations and Partnering With Community Providers: The Experience of the Johns Hopkins Medicine Alliance for Patients.

    PubMed

    Berkowitz, Scott A; Ishii, Lisa; Schulz, John; Poffenroth, Matt

    2016-03-01

    Academic medical centers (AMCs)--which include teaching hospital(s) and additional care delivery entities--that form accountable care organizations (ACOs) must decide whether to partner with other provider entities, such as community practices. Indeed, 67% (33/49) of AMC ACOs through the Medicare Shared Savings Program through 2014 are believed to include an outside community practice. There are opportunities for both the AMC and the community partners in pursuing such relationships, including possible alignment around shared goals and adding ACO beneficiaries. To create the Johns Hopkins Medicine Alliance for Patients (JMAP), in January 2014, Johns Hopkins Medicine chose to partner with two community primary care groups and one cardiology practice to support clinical integration while adding approximately 60 providers and 5,000 Medicare beneficiaries. The principal initial interventions within JMAP included care coordination for high-risk beneficiaries and later, in 2014, generating dashboards of ACO quality measures to facilitate quality improvement and early efforts at incorporating clinical pathways and Choosing Wisely recommendations. Additional interventions began in 2015.The principal initial challenges JMAP faced were data integration, generation of quality measure reports among disparate electronic medical records, receiving and then analyzing claims data, and seeking to achieve provider engagement; all these affected timely deployment of the early interventions. JMAP also created three regional advisory councils as a forum promoting engagement of local leadership. Network strategies among AMCs, including adding community practices in a nonemployment model, will continue to require thoughtful strategic planning and a keen understanding of local context.

  7. Challenges of Developing New Classes of NASA Self-Managing Mission

    NASA Technical Reports Server (NTRS)

    Hinchey, M. G.; Rash, J. I.; Truszkowski, W. F.; Rouff, C. A.; Sterritt, R.

    2005-01-01

    NASA is proposing increasingly complex missions that will require a high degree of autonomy and autonomicity. These missions pose hereto unforeseen problems and raise issues that have not been well-addressed by the community. Assuring success of such missions will require new software development techniques and tools. This paper discusses some of the challenges that NASA and the rest of the software development community are facing in developing these ever-increasingly complex systems. We give an overview of a proposed NASA mission as well as techniques and tools that are being developed to address autonomic management and the complexity issues inherent in these missions.

  8. Orion Passive Thermal Control Overview

    NASA Technical Reports Server (NTRS)

    Miller, Stephen W.

    2007-01-01

    An viewgraph presentation of Orion's passive thermal control system is shown. The topics include: 1) Orion in CxP Hierarchy; 2) General Orion Description/Orientation; 3) Module Descriptions and Images; 4) Orion PTCS Overview; 5) Requirements/Interfaces; 6) Design Reference Missions; 7) Natural Environments; 8) Thermal Models; 9) Challenges/Issues; and 10) Testing

  9. The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Studak, J. W.

    2013-01-01

    The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many of new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to/from an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides an overview of the SHM concept and the advantages it provides. A summary of calculations of the mass of the habitat propulsion system (HPS) needed to get the habitat from Low Mars Orbit (LMO) to the surface and back to LMO and an overview of trajectory and mission mass assessments related to use of a high specific impulse space based propulsion system is provided. Those calculations lead to the conclusion that the SHM concept can significantly reduce the mass required and streamline mission operations to explore Mars (and thus all exploration destinations).

  10. The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Studak, J. W.

    2013-01-01

    The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to/from an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides an overview of the SHM concept and the advantages it provides. The paper also provides a summary of calculations of the mass of the Habitat Propulsion System (HPS) needed to get the habitat from low-Mars orbit (LMO) to the surface and back to LMO, and an overview of trajectory and mission mass assessments related to use of a high specific impulse space-based propulsion system. Those calculations led to the conclusion that the SHM concept results in low total mass required and streamlines mission operations to explore Mars (or other exploration destinations).

  11. An Overview of the Mars Reconnaissance Orbiter (MRO) Science Mission

    NASA Technical Reports Server (NTRS)

    Zurek, Richard W.; Smrekar, Suzanne E.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) is the latest addition to the suite of missions on or orbiting Mars as part of the NASA Mars Exploration Program. Launched on 12 August 2005, the orbiter successfully entered Mars orbit on 10 March 2006 and finished aerobraking on 30 August 2006. Now in its near-polar, near-circular, low-altitude (approximately 300 km), 3 p.m. orbit, the spacecraft is operating its payload of six scientific instruments throughout a one-Mars-year Primary Science Phase (PSP) of global mapping, regional survey, and targeted observations. Eight scientific investigations were chosen for MRO, two of which use either the spacecraft accelerometers or tracking of the spacecraft telecom signal to acquire data needed for analysis. Six instruments, including three imaging systems, a visible-near infrared spectrometer, a shallow-probing subsurface radar, and a thermal-infrared profiler, were selected to complement and extend the capabilities of current working spacecraft at Mars. Whether observing the atmosphere, surface, or subsurface, the MRO instruments are designed to achieve significantly higher resolution while maintaining coverage comparable to the current best observations. The requirements to return higher-resolution data, to target routinely from a low-altitude orbit, and to operate a complex suite of instruments were major challenges successfully met in the design and build of the spacecraft, as well as by the mission design. Calibration activities during the seven-month cruise to Mars and limited payload operations during a three-day checkout prior to the start of aerobraking demonstrated, where possible, that the spacecraft and payload still had the functions critical to the science mission. Two critical events, the deployment of the SHARAD radar antenna and the opening of the CRISM telescope cover, were successfully accomplished in September 2006. Normal data collection began 7 November 2006 after solar conjunction. As part of its science

  12. NASA's Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Mazanek, Dan; Reeves, David; Naasz, Bo; Cichy, Benjamin

    2015-11-01

    The National Aeronautics and Space Administration (NASA) is developing a robotic mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, and redirect it into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA’s plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. In order to maximize the knowledge return from the mission, NASA is organizing an ARM Investigation Team, which is being preceded by the Formulation Assessment and Support Team. These teams will be comprised of scientists, technologists, and other qualified and interested individuals to help plan the implementation and execution of ARM. An overview of robotic and crewed segments of ARM, including the mission requirements, NEA targets, and mission operations, will be provided along with a discussion of the potential opportunities associated with the mission.

  13. The Asteroid Redirect Mission (ARM)

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2015-01-01

    The National Aeronautics and Space Administration (NASA) is developing a robotic mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, and redirect it into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA's plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. In order to maximize the knowledge return from the mission, NASA is organizing an ARM Investigation Team, which is being preceded by the Formulation Assessment and Support Team. These teams will be comprised of scientists, technologists, and other qualified and interested individuals to help plan the implementation and execution of ARM. An overview of robotic and crewed segments of ARM, including the mission requirements, NEA targets, and mission operations, will be provided along with a discussion of the potential opportunities associated with the mission.

  14. Overview of the SVOM Gamma-Ray Burst mission under development with a focus on its Trigger system

    NASA Astrophysics Data System (ADS)

    Schanne, Stephane

    2017-08-01

    The SVOM mission (Space-based Variable Objects Monitor) is a Chinese-French satellite mission under development, devoted to collecting a complete sample of Gamma-Ray Bursts (GRBs) observed at multi-wavelengths with a high fraction of redshift determinations. In January 2017 the mission entered Phase C, starting officially construction, and the launch is foreseen in 2021. The SVOM satellite is equipped with 4 instruments, 2 of which cover the prompt GRB phase. The ECLAIRs coded-mask imager surveys a 2-sr large portion of the sky in the 4-150 keV energy range, well suited for the detection of X-ray rich and highly redshifted GRBs. The ECLAIRs trigger system continuously searches for GRBs using two algorithms, a count-rate trigger for short time scales and an image trigger for long time scales. In case of a localized new GRB candidate or a bright outburst of a known source, it promptly requests a satellite slew and sends an alert to ground. The onboard GRM (Gamma-Ray Monitor) extends the prompt energy coverage up to 5 MeV. After slew, 2 more onboard instruments study the GRB afterglow and refine the GRB localization: the MXT (Multi-pore optics X-ray Telescope) and the VT (Visible Telescope). Two types of ground telescopes are dedicated to SVOM. The GFTs (Ground Follow-up Telescopes) repoint autonomously to GRB alerts, refine their localization and provide photometric redshift. The SVOM observing strategy with roughly antisolar pointing combined with Galactic plane avoidance, ensures that most GRBs are quickly visible by the GFTs and large spectroscopic telescopes. The GWAC (Ground Wide Angle Camera) will observe the sky simultaneously with ECLAIRs to detect prompt optical GRB emissions. Today part of the GWAC is already operational. The SVOM GRB program is complemented by pre-planned target observations and ground-commanded targets of opportunity, e.g. to search for electromagnetic counterparts of gravity-wave events. On behalf of the SVOM and ECLAIRs teams, this

  15. ARTEMIS Mission Overview: From Concept to Operations

    NASA Technical Reports Server (NTRS)

    Folta, David; Sweetser, Theodore

    2011-01-01

    ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun) repurposed two spacecraft to extend their useful science (Angelopoulos, 2010) by moving them via lunar gravity assists from elliptical Earth orbits to L1 and L2 Earth-Moon libration orbits and then to lunar orbits by exploiting the Earth-Moon-Sun dynamical environment. This paper describes the complete design from conceptual plans using weak stability transfer options and lunar gravity assist to the implementation and operational support of the Earth-Moon libration and lunar orbits. The two spacecraft of the ARTEMIS mission will have just entered lunar orbit at this paper's presentation.

  16. High-Energy Astrophysics: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2007-01-01

    High-energy astrophysics is the study of objects and phenomena in space with energy densities much greater than that found in normal stars and galaxies. These include black holes, neutron stars, cosmic rays, hypernovae and gamma-ray bursts. A history and an overview of high-energy astrophysics will be presented, including a description of the objects that are observed. Observing techniques, space-borne missions in high-energy astrophysics and some recent discoveries will also be described. Several entirely new types of astronomy are being employed in high-energy astrophysics. These will be briefly described, along with some NASA missions currently under development.

  17. Overview of the Radiation Dosimetry Experiment (RaD-X) flight mission

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.

    2016-11-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  18. Overview of the Radiation Dosimetry Experiment (RaD-X) Flight Mission

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5 N, 104.2 W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  19. NASA Overview (K-12, Educators, and General Public)

    NASA Technical Reports Server (NTRS)

    Ericsson, Aprille Joy

    2003-01-01

    This viewgraph presentation provides an overview of NASA activities intended for recruitment of employees. It includes NASA's vision statement and mission, images of solar system bodies and the Sojourner rover, as well as information the Aqua satellite and the Stratospheric Aerosol and Gas Experiment III (Sage III). Images of experimental aircraft, a space shuttle, and the Hubble Space Telescope (HST) are shown, and a section on mission planning is included.

  20. Mars Observer Mission: Mapping the Martian World

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The 1992 Mars Observer Mission is highlighted in this video overview of the mission objectives and planning. Using previous photography and computer graphics and simulation, the main objectives of the 687 day (one Martian year) consecutive orbit by the Mars Observer Satellite around Mars are explained. Dr. Arden Albee, the project scientist, speaks about the pole-to-pole mapping of the Martian surface topography, the planned relief maps, the chemical and mineral composition analysis, the gravity fields analysis, and the proposed search for any Mars magnetic fields.

  1. Overviews of the Apollo Program and Its Management

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This special bibliography includes items individually selected by scientific and technical information professionals that provide an overview of the history, events, and results of the Apollo missions. Planning, scheduling, and management are also included.

  2. Lander Propulsion Overview and Technology Requirements Discussion

    NASA Technical Reports Server (NTRS)

    Brown, Thomas M.

    2007-01-01

    This viewgraph presentation reviews the lunar lander propulsion requirements. It includes discussion on: Lander Project Overview, Project Evolution/Design Cycles, Lunar Architecture & Lander Reference Missions, Lander Concept Configurations, Descent and Ascent propulsion reviews, and a review of the technology requirements.

  3. Thermal Design Overview of the Mars Exploration Rover Project

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Glenn

    2002-01-01

    Contents include the following: Mission Overview. Thermal Environments. Driving Thermal Requirements. Thermal Design Approach. Thermal Control Block Diagram. Thermal Design Description. Thermal Analysis Results Summary. Testing Plans. Issues & Concerns.

  4. Spacelab Life Sciences 1 - Dedicated life sciences mission

    NASA Technical Reports Server (NTRS)

    Womack, W. D.

    1990-01-01

    The Spacelab Life Sciences 1 (SLS-1) mission is discussed, and an overview of the SLS-1 Spacelab configuration is shown. Twenty interdisciplinary experiments, planned for this mission, are intended to explore the early stages of human and animal physiological adaptation to space flight conditions. Biomedical and gravitational biology experiments include cardiovascular and cardiopulmonary deconditioning, altered vestibular functions, altered metabolic functions (including altered fluid-electrolyte regulation), muscle atrophy, bone demineralization, decreased red blood cell mass, and altered immunologic responses.

  5. The High Energy Transient Explorer (HETE): Mission and Science Overview

    NASA Astrophysics Data System (ADS)

    Ricker, G. R.; Atteia, J.-L.; Crew, G. B.; Doty, J. P.; Fenimore, E. E.; Galassi, M.; Graziani, C.; Hurley, K.; Jernigan, J. G.; Kawai, N.; Lamb, D. Q.; Matsuoka, M.; Pizzichini, G.; Shirasaki, Y.; Tamagawa, T.; Vanderspek, R.; Vedrenne, G.; Villasenor, J.; Woosley, S. E.; Yoshida, A.

    2003-04-01

    The High Energy Transient Explorer (HETE ) mission is devoted to the study of gamma-ray bursts (GRBs) using soft X-ray, medium X-ray, and gamma-ray instruments mounted on a compact spacecraft. The HETE satellite was launched into equatorial orbit on 9 October 2000. A science team from France, Japan, Brazil, India, Italy, and the US is responsible for the HETE mission, which was completed for ~ 1/3 the cost of a NASA Small Explorer (SMEX). The HETE mission is unique in that it is entirely ``self-contained,'' insofar as it relies upon dedicated tracking, data acquisition, mission operations, and data analysis facilities run by members of its international Science Team. A powerful feature of HETE is its potential for localizing GRBs within seconds of the trigger with good precision (~ 10') using medium energy X-rays and, for a subset of bright GRBs, improving the localization to ~ 30''accuracy using low energy X-rays. Real-time GRB localizations are transmitted to ground observers within seconds via a dedicated network of 14 automated ``Burst Alert Stations,'' thereby allowing prompt optical, IR, and radio follow-up, leading to the identification of counterparts for a large fraction of HETE -localized GRBs. HETE is the only satellite that can provide near-real time localizations of GRBs, and that can localize GRBs that do not have X-ray, optical, and radio afterglows, during the next two years. These capabilities are the key to allowing HETE to probe further the unique physics that produces the brightest known photon sources in the universe. To date (December 2002), HETE has produced 31 GRB localizations. Localization accuracies are routinely in the 4'- 20' range; for the five GRBs with SXC localization, accuracies are ~1-2'. In addition, HETE has detected ~ 25 bursts from soft gamma repeaters (SGRs), and >600 X-ray bursts (XRBs).

  6. LARES Mission: Separation and Retention Subsystem

    NASA Technical Reports Server (NTRS)

    Bursi, Alessandro; Camilli, Pierluigi; Piredda, Claudio; Babini, Gianni; Mangraviti, Elio

    2014-01-01

    As part of the Lares (LAser RElativity Satellite) mission, an all-Italian scientific mission launched with the Vega maiden flight in February 2012, a mechanical separation and retention subsystem (SSEP) has been developed to retain the LARES satellite during launch and release it in the final orbit. The design flow was based on the identification of the driving requirements and critical areas to guide the trade-off, design, analysis and test activities. In particular, the SSEP had to face very high environmental loads and to minimize the contact areas with the satellite that had a spherical shape. The test activity overview is provided.

  7. The Microwave Anisotropy Probe (MAP) Mission

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.

  8. STS-107 Crew Interviews: Laurel Clark, Mission Specialist

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-107 Mission Specialist 4 Laurel Clark is seen during this preflight interview, where she gives a quick overview of the mission before answering questions about her inspiration to become an astronaut and her career path. Clark outlines her role in the mission in general, and specifically in conducting onboard science experiments. She discusses the following suite of experiments and instruments in detail: ARMS (Advanced Respiratory Monitoring System) and the European Space Agency's Biopack. Clark also mentions on-board activities and responsibilities during launch and reentry, mission training, and microgravity research. In addition, she touches on the use of crew members as research subjects including pre and postflight monitoring activities, the emphasis on crew safety and the value of international cooperation.

  9. Exomars Mission Verification Approach

    NASA Astrophysics Data System (ADS)

    Cassi, Carlo; Gilardi, Franco; Bethge, Boris

    between the different levels (system, modules, subsystems, etc) and giving an overview of the main test defined at Spacecraft level. The paper is mainly focused on the verification aspects of the EDL Demonstrator Module and the Rover Module, for which an intense testing activity without previous heritage in Europe is foreseen. In particular the Descent Module has to survive to the Mars atmospheric entry and landing, its surface platform has to stay operational for 8 sols on Martian surface, transmitting scientific data to the Orbiter. The Rover Module has to perform 180 sols mission in Mars surface environment. These operative conditions cannot be verified only by analysis; consequently a test campaign is defined including mechanical tests to simulate the entry loads, thermal test in Mars environment and the simulation of Rover operations on a 'Mars like' terrain. Finally, the paper present an overview of the documentation flow defined to ensure the correct translation of the mission requirements in verification activities (test, analysis, review of design) until the final verification close-out of the above requirements with the final verification reports.

  10. STS-107 Crew Interviews: Ilan Ramon, Mission Specialist

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-107 Mission Specialist Ilan Ramon is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. He outlines his role in the mission in general, and specifically in conducting on-board science experiments. He discusses the following instruments and sets of experiments in detail: CM2 (Combustion Module 2), FREESTAR (Fast Reaction Enabling Science Technology and Research), MEIDEX (Mediterranean Israeli Dust Experiment) and MGM (Mechanics of Granular Materials). Ramon also mentions on-board activities during launch and reentry, mission training and microgravity research. In addition, he touches on the dual work-shift nature of the mission, the use of crew members as research subjects including pre and postflight monitoring activities, the emphasis on crew safety during training and the value of international cooperation.

  11. WFIRST-AFTA Overview Technology needs summary Mirror Technology Conference 2015

    NASA Technical Reports Server (NTRS)

    Marx, Catherine (Editor); Content, David; Zhao, Feng

    2015-01-01

    Presentation covers the overview of the science and hardware of the WFIRST-AFTA (Wide-Field Infrared Survey Telescope) (Astrophysics Focused Telescope Assets) mission. It includes an overview of the technology, with an emphasis on optics technology. It also introduces the WFIRST talks that come later, one on the Wide Field Instrument filters and the other on the CoronaGraph Instrument.

  12. Viking orbiter system primary mission

    NASA Technical Reports Server (NTRS)

    Goudy, J. R.

    1977-01-01

    An overview of Viking Orbiter (VO) system and subsystem performances during the primary mission (the time period from VO-1 launch on August 20, 1975, through November 15, 1976) is presented. Brief descriptions, key design requirements, pertinent historical information, unique applications or situations, and predicted versus actual performances are included for all VO-1 and VO-2 subsystems, both individually and as an integrated system.

  13. Hard X-Ray/Soft Gamma-Ray Experiments and Missions: Overview and Prospects

    NASA Astrophysics Data System (ADS)

    Cavallari, Erica; Frontera, Filippo

    2017-10-01

    Starting from 1960s, a great number of missions and experiments have been performed for the study of the high-energy sky. This review gives a wide vision of the most important space missions and balloon experiments that have operated in the 10-600 keV band, a crucial window for the study of the most energetic and violent phenomena in the Universe. Thus it is important to take the stock of the achievements to better establish what we have still to do with future missions in order to progress in this field, to establish which are the technologies required to solve the still open issues and to extend our knowledge of the Universe.

  14. Dryden Flight Research Center Overview

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.

    2007-01-01

    This viewgraph document presents a overview of the Dryden Flight Research Center's facilities. Dryden's mission is to advancing technology and science through flight. The mission elements are: perform flight research and technology integration to revolutionize aviation and pioneer aerospace technology, validate space exploration concepts, conduct airborne remote sensing and science observations, and support operations of the Space Shuttle and the ISS for NASA and the Nation. It reviews some of the recent research projects that Dryden has been involved in, such as autonomous aerial refueling, the"Quiet Spike" demonstration on supersonic F-15, intelligent flight controls, high angle of attack research on blended wing body configuration, and Orion launch abort tests.

  15. Control-Structure-Interaction (CSI) technologies and trends to future NASA missions

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Control-structure-interaction (CSI) issues which are relevant for future NASA missions are reviewed. This goal was achieved by: (1) reviewing large space structures (LSS) technologies to provide a background and survey of the current state of the art (SOA); (2) analytically studying a focus mission to identify opportunities where CSI technology may be applied to enhance or enable future NASA spacecraft; and (3) expanding a portion of the focus mission, the large antenna, to provide in-depth trade studies, scaling laws, and methodologies which may be applied to other NASA missions. Several sections are presented. Section 1 defines CSI issues and presents an overview of the relevant modeling and control issues for LLS. Section 2 presents the results of the three phases of the CSI study. Section 2.1 gives the results of a CSI study conducted with the Geostationary Platform (Geoplat) as the focus mission. Section 2.2 contains an overview of the CSI control design methodology available in the technical community. Included is a survey of the CSI ground-based experiments which were conducted to verify theoretical performance predictions. Section 2.3 presents and demonstrates a new CSI scaling law methodology for assessing potential CSI with large antenna systems.

  16. Integrated Medical Model Overview

    NASA Technical Reports Server (NTRS)

    Myers, J.; Boley, L.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.; Saile, L.; hide

    2015-01-01

    The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project.

  17. Overview of the Landsat-7 Mission

    NASA Technical Reports Server (NTRS)

    Williams, Darrel; Irons, James; Goward, Samuel N.; Masek, Jefery

    1999-01-01

    Landsat-7 is scheduled for launch on April 15 from the Western Test Range at Vandenberg Air Force Base, Calif., on a Delta-H expendable launch vehicle. The Landsat 7 satellite consists of a spacecraft bus being provided by Lockheed Martin Missiles and Space (Valley Forge, Pa.) and the Enhanced Thematic Mapper Plus instrument built by Raytheon (formerly Hughes) Santa Barbara Remote Sensing (Santa Barbara, Calif.). The instrument on board Landsat 7 is the Enhanced Thematic Mapper Plus (ETM+). ETM+ improves upon the previous Thematic Mapper (TM) instruments on Landsat's 4 and 5 (Fig. la and lb). It includes the previous 7 spectral bands measuring reflected solar radiation and emitted thermal emissions but, in addition, includes a new 15 in panchromatic (visible-near infrared) band. The spatial resolution of the thermal infrared band has also been improved to 60 m. Both the radiometric precision and accuracy of the sensor are also improved from the previous TM sensors. After being launched into a sun-synchronous polar orbit, the satellite will use on-board propulsion to adjust its orbit to a circular altitude of 438 miles (705 kilometers) crossing the equator at approximately 10 a.m. on its southward track. This orbit will place Landsat 7 along the same ground track as previous Landsat satellites. The orbit will be maintained with periodic adjustments for the life of the mission. A three-axis attitude control subsystem will stabilize the satellite and keep the instrument pointed toward the Earth to within 0.05 degrees. Later this year, plans call for the NASA Earth Observation System (EOS) Terra (AM-1) observatory and the experimental EO-1 mission to closely follow Landsat-7's orbit to support synergistic research and applications from this new suite of terrestrial sensor systems. Landsat is the United States' oldest land-surface observation satellite system, with satellites continuously operating since 1972. Although the program has scored numerous successes in

  18. STS-107 Crew Interviews: Michael Anderson, Mission Specialist

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-107 Mission Specialist 3 and Payload Commander Michael Anderson is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. He outlines his role in the mission in general, and specifically in conducting onboard science experiments. He discusses the following instruments and sets of experiments in detail: CM2 (Combustion Module 2), FREESTAR (Fast Reaction Enabling Science Technology and Research, MEIDEX (Mediterranean Israeli Dust Experiment) and MGM (Mechanics of Granular Materials). Anderson also mentions on-board activities and responsibilities during launch and reentry, mission training, and microgravity research. In addition, he touches on the dual work-shift nature of the mission, the use of crew members as research subjects including pre and postflight monitoring activities, the emphasis on crew safety during training and the value of international cooperation.

  19. Mission operations systems for planetary exploration

    NASA Technical Reports Server (NTRS)

    Mclaughlin, William I.; Wolff, Donna M.

    1988-01-01

    The purpose of the paper is twofold: (1) to present an overview of the processes comprising planetary mission operations as conducted at the Jet Propulsion Laboratory, and (2) to present a project-specific and historical context within which this evolving process functions. In order to accomplish these objectives, the generic uplink and downlink functions are described along with their specialization to current flight projects. Also, new multimission capabilities are outlined, including prototyping of advanced-capability software for subsequent incorporation into more automated future operations. Finally, a specific historical ground is provided by listing some major operations software plus a genealogy of planetary missions beginning with Mariner 2 in 1962.

  20. 2011 Mars Science Laboratory Mission Design Overview

    NASA Technical Reports Server (NTRS)

    Abilleira, Fernando

    2010-01-01

    Scheduled to launch in the fall of 2011 with arrival at Mars occurring in the summer of 2012, NASA's Mars Science Laboratory will explore and assess whether Mars ever had conditions capable of supporting microbial life. In order to achieve its science objectives, the Mars Science Laboratory will be equipped with the most advanced suite of instruments ever sent to the surface of the Red Planet. Delivering the next mobile science laboratory safely to the surface of Mars has various key challenges derived from a strict set of requirements which include launch vehicle performance, spacecraft mass, communications coverage during Entry, Descent, and Landing, atmosphere-relative entry speeds, latitude accessibility, and dust storm season avoidance among others. The Mars Science Laboratory launch/arrival strategy selected after careful review satisfies all these mission requirements.

  1. Instrument Overview of the JEM-EUSO Mission

    NASA Technical Reports Server (NTRS)

    Kajino, F.; Yamamoto, T.; Sakata, M.; Yamamoto, Y.; Sato, H.; Ebizuka, N.; Ebisuzaki, T.; Uehara, Y.; Ohmori, H.; Kawasaki, Y.; hide

    2007-01-01

    JEM-EUSO with a large and wide-angle telescope mounted on the International Space Station (ISS) has been planned as a space mission to explore extremes of the universe through the investigation of extreme energy cosmic rays by detecting photons which accompany air showers developed in the earth's atmosphere. JEM-EUSO will be launched by Japanese H-II Transfer Vehicle (HTV) and mounted at the Exposed Facility of Japanese Experiment Module (JEM/EF) of the ISS in the second phase of utilization plan. The telescope consists of high transmittance optical Fresnel lenses with a diameter of 2.5m, 200k channels of multi anode-photomultiplier tubes, focal surface front-end, readout, trigger and system electronics. An infrared camera and a LIDAR system will be also used to monitor the earth's atmosphere.

  2. An overview of new insights from 6 years of salinity data from SMOS mission

    NASA Astrophysics Data System (ADS)

    Nicolas, R.

    2015-12-01

    Measurements of salt held in surface seawater are becoming ever-more important for oceanographers and climatologists to gain a deeper understanding of ocean circulation and Earth's water cycle. ESA's SMOS mission is proving essential for this aim. Launched in 2009, SMOS has provided the longest continuous record (now ~6 years) of sea-surface salinity measurements from space. The salinity of surface seawater is controlled largely by the balance between evaporation and precipitation, but freshwater from rivers and the freezing and melting of ice also cause changes in concentrations. Along with temperature, salinity drives ocean circulation - the thermohaline circulation - which, in turn, plays a key role in the global climate. With a wealth of salinity data from SMOS now in hand complemented by measurements from the NASA-CONAE Aquarius satellite, which uses a different measuring technique. In this talk we shall provide an overview of how the SMOS mission - now celebrating 6 years in orbit - is providing detailed global measurements of SSS. An ensemble of key ocean processes for climate and biochemistry can now be determined and monitored for the first time from space : the detailed salinity structure of tropical instability waves along the equator and the salt exchanged across major oceanic current fronts, the occurrences of large-scale salinity anomalies in the Pacific and Indian oceans related to important climate indexes are also well-evidenced in the six year-long data. In addition, the dispersal of freshwater into the ocean from the major large tropical rivers (Amazon, Orinoco and Congo), their impact on tropical cyclone (TC) intensification and the oceanic imprints of the intense rainfall in the ITCZ and under TC can now be regularly monitored to better understand the variability of the oceanic part of the global water cycle. We will present how SMOS data, along with concurrent in situ Argo ocean-profile data, other satellite observations of sea

  3. The Atmospheric Chemistry Experiment (ACE): Mission Overview

    NASA Astrophysics Data System (ADS)

    Bernath, P. F.; Boone, C.; Walker, K.; McLeod, S.; Nassar, R.

    2003-12-01

    The ACE mission goals are: (1) to measure and to understand the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere, with a particular emphasis on the Arctic region; (2) to explore the relationship between atmospheric chemistry and climate change; (3) to study the effects of biomass burning in the free troposphere; (4) to measure aerosol number density, size distribution and composition in order to reduce the uncertainties in their effects on the global energy balance. ACE will make a comprehensive set of simultaneous measurements of trace gases, thin clouds, aerosols, and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) gives ACE coverage of tropical, mid-latitudes and polar regions. The solar occultation advantages are high sensitivity and self-calibration. A high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4100 cm-1) will measure the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. The ACE concept is derived from the now-retired ATMOS FTS instrument, which flew on the Space Shuttle in 1985, 1992, 1993, 1994. Climate-chemistry coupling may lead to the formation of an Arctic ozone hole. ACE will provide high quality data to confront these model predictions and will monitor polar chemistry as chlorine levels decline. The ACE-FTS can measure water vapor and HDO in the tropical tropopause region to study dehydration and strat-trop exchange. The molecular signatures of massive forest fires will evident in the ACE infrared spectra. The CO2 in our spectra can be used to either retrieve atmospheric pressure or (if the instrument pointing knowledge proves to be satisfactory) for an independent retrieval of a CO2 profile for carbon cycle science. Aerosols and clouds will be monitored using the extinction of solar radiation at

  4. The Atmospheric Chemistry Experiment (ACE): Mission Overview

    NASA Astrophysics Data System (ADS)

    Bernath, P.

    2003-04-01

    The ACE mission goals are: (1) to measure and to understand the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere, with a particular emphasis on the Arctic region; (2) to explore the relationship between atmospheric chemistry and climate change; (3) to study the effects of biomass burning in the free troposphere; (4) to measure aerosol number density, size distribution and composition in order to reduce the uncertainties in their effects on the global energy balance. ACE will make a comprehensive set of simultaneous measurements of trace gases, thin clouds, aerosols, and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) will give ACE coverage of tropical, mid-latitudes and polar regions. The solar occultation advantages are high sensitivity and self-calibration. A high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4100 cm-1) will measure the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. The ACE concept is derived from the now-retired ATMOS FTS instrument, which flew on the Space Shuttle in 1985, 1992, 1993, 1994. Climate-chemistry coupling may lead to the formation of an Arctic ozone hole. ACE will provide high quality data to confront these model predictions and will monitor polar chemistry as chlorine levels decline. The ACE-FTS can measure water vapor and HDO in the tropical tropopause region to study dehydration and strat-trop exchange. The molecular signatures of massive forest fires will evident in the ACE infrared spectra. The CO_2 in our spectra can be used to either retrieve atmospheric pressure or (if the instrument pointing knowledge proves to be satisfactory) for an independent retrieval of a CO_2 profile for carbon cycle science. Aerosols and clouds will be monitored using the extinction of solar

  5. Prelaunch Science briefing for Orbital Resupply Mission to the Space Station

    NASA Image and Video Library

    2018-05-19

    Orbital ATK is scheduled to launch its ninth contracted cargo resupply mission to the International Space Station from NASA's Wallops Flight Facility in Virginia, no earlier than Monday, May 21, at 4:39 a.m. EDT. During a prelaunch briefing on May 20, mission managers provided an overview and status of launch operations for the mission. Populations all along the U.S. east coast will have the chance to catch a glimpse of the Antares rocket as it powers the Cygnus cargo spacecraft to orbit.

  6. The New Jupiter: Results from the Juno Mission

    NASA Astrophysics Data System (ADS)

    Bolton, Scott

    2018-01-01

    NASA's Juno mission to Jupiter launched in 2011 and arrived at Jupiter on July 4, 2016. Juno's scientific objectives include the study of Jupiter's interior, atmosphere and magnetosphere with the goal of understanding Jupiter's origin, formation and evolution. An extensive campaign of Earth based observations of Jupiter and the solar wind were orchestrated to complement Juno measurements during Juno's approach to Jupiter and during its orbital mission around Jupiter. This presentation provides an overview of results from the Juno measurements during the early phases of Juno's prime mission. Scientific results include Jupiter's interior structure, magnetic field, deep atmospheric dynamics and composition, and the first in-situ exploration of Jupiter's polar magnetosphere and aurorae.

  7. Overview of the Neurolab Spacelab mission

    NASA Technical Reports Server (NTRS)

    Homick, J. L.; Delaney, P.; Rodda, K.

    1998-01-01

    Neurolab is a NASA Spacelab mission with multinational cooperative participation that is dedicated to research on the nervous system. The nervous systems of all animal species have evolved in a one-g environment and are functionally influenced by the presence of gravity. The absence of gravity presents a unique opportunity to gain new insights into basic neurologic functions as well as an enhanced understanding of physiological and behavioral responses mediated by the nervous system. The primary goal of Neurolab is to expand our understanding of how the nervous system develops, functions in, and adapts to microgravity space flight. Twenty-six peer reviewed investigations using human and nonhuman test subjects were assigned to one of eight science discipline teams. Individual and integrated experiments within these teams have been designed to collect a wide range of physiological and behavior data in flight as well as pre- and postflight. Information from these investigations will be applicable to enhancing the well being and performance of future long duration space travelers, will contribute to our understanding of normal and pathological functioning of the nervous system, and may be applied by the medical community to enhance the health of humans on Earth.

  8. Certification Processes for Safety-Critical and Mission-Critical Aerospace Software

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy

    2003-01-01

    This document is a quick reference guide with an overview of the processes required to certify safety-critical and mission-critical flight software at selected NASA centers and the FAA. Researchers and software developers can use this guide to jumpstart their understanding of how to get new or enhanced software onboard an aircraft or spacecraft. The introduction contains aerospace industry definitions of safety and safety-critical software, as well as, the current rationale for certification of safety-critical software. The Standards for Safety-Critical Aerospace Software section lists and describes current standards including NASA standards and RTCA DO-178B. The Mission-Critical versus Safety-Critical software section explains the difference between two important classes of software: safety-critical software involving the potential for loss of life due to software failure and mission-critical software involving the potential for aborting a mission due to software failure. The DO-178B Safety-critical Certification Requirements section describes special processes and methods required to obtain a safety-critical certification for aerospace software flying on vehicles under auspices of the FAA. The final two sections give an overview of the certification process used at Dryden Flight Research Center and the approval process at the Jet Propulsion Lab (JPL).

  9. On-Orbit Performance of the TRMM Mission Mode

    NASA Technical Reports Server (NTRS)

    Robertson, Brent; Placanica, Sam; Morgenstern, Wendy; Hashmall, Joseph A.; Glickman, Jonathan; Natanson, Gregory

    1999-01-01

    This paper presents an overview of the Tropical Rainfall Measuring Mission (TRMM) Attitude Control System along with detailed in-flight performance results of the TRMM Mission mode. The TRMM spacecraft is an Earth-pointed, zero momentum bias satellite launched on November 27, 1997 from Tanegashima Space Center, Japan. TRMM is a joint mission between NASA and the National Space Development Agency of Japan designed to monitor and study tropical rainfall and the associated release of energy. Prior to calibration, the spacecraft attitude showed larger Sun sensor yaw updates than expected. This was traced to not just sensor misalignment but also to a misalignment between the two heads within each Sun sensor. In order to avoid alteration of the flight software, Sun sensor transfer function coefficients were determined to minimize the error due to head misalignment. This paper describes the design, on-orbit checkout, calibration and performance of the TRMM Mission Mode with respect to the mission level requirements.

  10. Managing External Relations: The Lifeblood of Mission Success

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2007-01-01

    The slide presentation examines the role of customer and stakeholder relations in the success of space missions. Topics include agency transformation; an overview of project and program experience with a discussion of positions, technical accomplishments, and management lessons learned; and approaches to project success with emphasis on communication. Projects and programs discussed include the Space Shuttle Main Engine System, DC-XA Flight Demonstrator, X-33 Flight Demonstrator, Space Launch Initiative/2nd Generation Reusable Launch Vehicle, X-37 Flight Demonstrator, Constellation (pre Dr. Griffin), Safety and Mission Assurance, and Exploration Launch Projects.

  11. Using the General Mission Analysis Tool (GMAT)

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Conway, Darrel J.; Parker, Joel

    2017-01-01

    This is a software tutorial and presentation demonstrating the application of the General Mission Analysis Tool (GMAT). These slides will be used to accompany the demonstration. The demonstration discusses GMAT basics, then presents a detailed example of GMAT application to the Transiting Exoplanet Survey Satellite (TESS) mission. This talk is a combination of existing presentations and material; system user guide and technical documentation; a GMAT basics and overview, and technical presentations from the TESS projects on their application of GMAT to critical mission design. The GMAT basics slides are taken from the open source training material. The TESS slides are a streamlined version of the CDR package provided by the project with SBU and ITAR data removed by the TESS project. Slides for navigation and optimal control are borrowed from system documentation and training material.

  12. Trash to Supply Gas (TtSG) Project Overview

    NASA Technical Reports Server (NTRS)

    Hintze, Paul; Santiago-Maldonado, Edgardo; Kulis, Michael J.; Lytle, John K.; Fisher, John W.; Vaccaro, Helen; Ewert, Michael K.; Broyan, James L.

    2012-01-01

    Technologies that reduce logistical needs are a key to long term space missions. Currently, trash and waste generated during a mission is carried during the entire roundtrip mission or stored inside a logistic module which is de-orbited into Earth's atmosphere for destruction. The goal of the Trash to Supply Gas (TtSG) project is to develop space technology alternatives for converting trash and other waste materials from human spaceflight into high-value products that might include propellants or power system fuels in addition to life support oxygen and water. In addition to producing a useful product from waste, TtSG will decrease the volume needed to store waste on long term space missions. This paper presents an overview of the TtSG technologies and future plans for the project.

  13. Sentinel-1 mission scientific exploitation activities

    NASA Astrophysics Data System (ADS)

    Desnos, Yves louis; Foumelis, Michael; Engdahl, Marcus

    2017-04-01

    The Sentinel-1 mission is the European Imaging Radar Observatory for the Copernicus joint initiative of the European Commission (EC) and the European Space Agency (ESA). Sentinel-1 mission is composed of a constellation of two satellites, Sentinel-1A and Sentinel-1B (launched in April 2014 and April 2016, respectively), sharing the same orbital plane and featuring a short repeat cycle of 6 days optimised for Synthetic Aperture Radar (SAR) interferometry science and applications. The full operation capacity was achieved after the completion of the Sentinel-1B in-orbit commissioning on 14 September 2016. Sentinel-1 data are freely available via the ESA's Sentinels Scientific Data Hub since October 2014. The data uptake by the science community has been unprecedented and numerous results have been published to date. The objective of the current paper is to provide a brief overview of the latest ESA activities, in the frame of the Scientific Exploitation of Operational Missions (SEOM) programme, aimed to facilitate the scientific exploitation of Sentinel-1 mission as well as discuss future opportunities for research.

  14. Radioisotope Power Systems Program: A Program Overview

    NASA Technical Reports Server (NTRS)

    Hamley, John A.

    2016-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan, mature research in energy conversion, and partners with the Department of Energy (DOE) to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. Recent programs responsibilities include providing investment recommendations to NASA stakeholders on emerging thermoelectric and Stirling energy conversion technologies and insight on NASA investments at DOE in readying a generator for the Mars 2020 mission. This presentation provides an overview of the RPS Program content and status and the approach used to maintain the readiness of RPS to support potential future NASA missions.

  15. Spacecraft Formation Flying: An Overview of Missions and Technologies

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse

    2007-01-01

    Over the next two decades a revolution is likely to occur in how remote sensing of Earth, other planets or bodies, and a range of phenomena in the universe is performed from space. In particular, current launch vehicle fairing volume and mass constraints will continue to restrict the size of monolithic telescope apertures which can be launched to accommodate only slightly more performance capability than is achievable today, such as by the Hubble Space Telescope. Systems under formulation today, such as the James Webb Space Telescope, will be able to increase aperture size and, hence, imaging resolution, by deploying segmented optics. However, this approach is limited as well, by our ability to control such segments to optical tolerances over long distances with highly uncertain structural dynamics connecting them. Consequently, for orders of magnitude improved resolution as required for imaging black holes, imaging planets, or performing asteroseismology, the only viable approach will be to fly a collection of spacecraft in formation to synthesize a virtual segmented telescope or interferometer with very large baselines. This presentation highlights some of the strategic science missions planned in the National Aeronautics and Space Administration, and identifies some of the critical technologies needed to enable some of the most challenging space missions ever conceived which have realistic hopes of flying.

  16. Lunar Prospector: developing a very low cost planetary mission.

    NASA Astrophysics Data System (ADS)

    Hubbard, G. S.

    Lunar Prospector, the first competitively selected planetary mission in NASA's Discovery Program, is described with emphasis on the lessons learned from managing a very low cost project. Insights into government-industry teaming, project management, contractual arrangements, schedule and budget reserve approach are discussed. The mission is conducting an orbital survey of the Moon's composition and structure. A mission overview and scientific data return is briefly described in the context of low cost mission development. The suite of five instruments is outlined: neutron spectrometer (NS), alpha particle spectrometer (APS), gamma ray spectrometer (GRS), magnetometer (MAG) and an electron reflectometer (ER). Scientific requirements and measurement approaches to detect water ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect gas release events and accurately map the Moon's gravitational and magnetic fields are described.

  17. STS-111 Crew Interviews: Phillippe Perrin, Mission Specialist 1

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-111 Mission Specialist 1 Phillippe Perrin is seen during this preflight interview, where he gives a quick overview of his mission before answering questions about his inspiration to become an astronaut and his career path. Perrin outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes what the crew exchange will be like (transferring the Expedition 5 crew in place of the Expedition 4 crew on the International Space Station (ISS)) and the payloads (Mobile Base System (MBS) and the Leonardo Multi-Purpose Logistics Module). Perrin discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the ISS. He also provides his thoughts about the significance of the mission to France and the value of the ISS.

  18. The Cooperative US/Ukrainian Experiment: An Overview

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session FA1, the discussion is focuses on the following topics: History of the Cooperative US/Ukrainian Experiment (CUE); The Collaborative Ukrainian Experiment, Science Overview; Double Fertilization of Inquiring Minds, Teachers and Students Investigating Plants in Space for the Collaborative Ukrainian Experiment; and Mission Operations for the Collaborative Ukrainian Experiment.

  19. Prelaunch Status Briefing for Orbital ATK Resupply Mission to the Space Station

    NASA Image and Video Library

    2018-05-20

    Orbital ATK is scheduled to launch its ninth contracted cargo resupply mission to the International Space Station from NASA's Wallops Flight Facility in Virginia, no earlier than Monday, May 21, at 4:39 a.m. EDT. During a prelaunch briefing on May 20, mission managers provided an overview and status of launch operations for the mission. Populations all along the U.S. east coast will have the chance to catch a glimpse of the Antares rocket as it powers the Cygnus cargo spacecraft to orbit.

  20. An overview of NASA's ASCENDS Mission's Lidar Measurement Requirements

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Browell, E. V.; Menzies, R. T.; Lin, B.; Spiers, G. D.; Ismail, S.

    2014-12-01

    The objectives of NASA's ASCENDS mission are to improve the knowledge of global CO2 sources and sinks by precisely measuring the tropospheric column abundance of atmospheric CO2 and O2. The mission will use a continuously operating nadir-pointed integrated path differential absorption (IPDA) lidar in a polar orbit. The lidar offers a number of important new capabilities and will measure atmospheric CO2 globally over a wide range of challenging conditions, including at night, at high latitudes, through hazy and thin cloud conditions, and to cloud tops. The laser source enables a measurement of range, so that the absorption path length to the scattering surface will be always accurately known. The lidar approach also measures consistently in a nadir-zenith path and the narrow laser linewidth allows weighting the measurement to the lower troposphere. Using these measurements with atmospheric and flux models will allow improved estimates of CO2 fluxes and hence better understanding of the processes that exchange CO2 between the surface and atmosphere. The ASCENDS formulation team has developed a preliminary set of requirements for the lidar measurements. These were developed based on experience gained from the numerous ASCENDS airborne campaigns that have used different candidate lidar measurement techniques. They also take into account the complexity of making precise measurement of atmospheric gas columns when viewing the Earth from space. Some of the complicating factors are the widely varying reflectance and topographic heights of the Earth's land and ocean surfaces, the variety of cloud types, and the degree of cloud and aerosol absorption and scattering in the atmosphere. The requirements address the precision and bias in the measured column mixing ratio, the dynamic range of the expected surface reflected signal, the along-track sampling resolution, measurements made through thin clouds, measurements to forested and slope surfaces, range precision, measurements

  1. STS-99 Mission Highlights Resource Tape, Part 1 of 2

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An overview of the STS-99 Endeavour mission is given through footage of each flight day. Scenes from flight days one through ten show activities such as astronaut prelaunch procedures (breakfast, suit-up, and boarding Endeavour), launch, and on-orbit activities such as the deployment of the Shuttle Radar Topography Mission (SRTM) instrument. Crewmembers are seeing during such everyday activities as brushing their teeth, exercising (bicycle), and emerging from their sleeping bunks. One of the crewmembers shows the contents of the onboard medical kit. See 'STS-99 Mission Highlights Resource Tape, Part 2 of 2' for the activities of flight days 11-12 and the landing of Endeavour.

  2. STS-335 crew training, EVA TPS Overview with instructor John Ray

    NASA Image and Video Library

    2010-11-03

    JSC2010-E-183513 (3 Nov. 2010) --- STS-135 crew members participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Pictured from the left are NASA astronauts Chris Ferguson, commander; Rex Walheim, mission specialist; Doug Hurley, pilot; and Sandy Magnus, mission specialist. John Ray (right) assisted the crew members. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  3. STS-335 crew training, EVA TPS Overview with instructor John Ray

    NASA Image and Video Library

    2010-11-03

    JSC2010-E-183514 (3 Nov. 2010) --- STS-135 crew members participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Pictured from the left are NASA astronauts Chris Ferguson, commander; Rex Walheim, mission specialist; Doug Hurley, pilot; and Sandy Magnus, mission specialist. John Ray (right) assisted the crew members. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  4. STS-335 crew training, EVA TPS Overview with instructor John Ray

    NASA Image and Video Library

    2010-11-03

    JSC2010-E-183512 (3 Nov. 2010) --- STS-135 crew members participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Pictured from the left are NASA astronauts Chris Ferguson, commander; Rex Walheim, mission specialist; Doug Hurley, pilot; and Sandy Magnus, mission specialist. John Ray (right) assisted the crew members. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  5. STS-134 crew during EVA TPS Overview training in the TPS/PABF

    NASA Image and Video Library

    2009-12-15

    JSC2009-E-284898 (15 Dec. 2009) --- NASA astronauts Gregory H. Johnson (center), STS-134 pilot; and Michael Fincke (right), mission specialist; along with European Space Agency astronaut Roberto Vittori, mission specialist, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center.

  6. STS-134 crew during EVA TPS Overview training in the TPS/PABF

    NASA Image and Video Library

    2009-12-15

    JSC2009-E-284900 (15 Dec. 2009) --- NASA astronauts Gregory H. Johnson (center), STS-134 pilot; and Michael Fincke (right), mission specialist; along with European Space Agency astronaut Roberto Vittori, mission specialist, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center.

  7. The Deep Space Atomic Clock Mission

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Koch, Timothy; Kuang, Da; Lee, Karen; Murphy, David; Prestage, John; Tjoelker, Robert; Seubert, Jill

    2012-01-01

    The Deep Space Atomic Clock (DSAC) mission will demonstrate the space flight performance of a small, low-mass, high-stability mercury-ion atomic clock with long term stability and accuracy on par with that of the Deep Space Network. The timing stability introduced by DSAC allows for a 1-Way radiometric tracking paradigm for deep space navigation, with benefits including increased tracking via utilization of the DSN's Multiple Spacecraft Per Aperture (MSPA) capability and full ground station-spacecraft view periods, more accurate radio occultation signals, decreased single-frequency measurement noise, and the possibility for fully autonomous on-board navigation. Specific examples of navigation and radio science benefits to deep space missions are highlighted through simulations of Mars orbiter and Europa flyby missions. Additionally, this paper provides an overview of the mercury-ion trap technology behind DSAC, details of and options for the upcoming 2015/2016 space demonstration, and expected on-orbit clock performance.

  8. Overview of Energy Storage Technologies for Space Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao

    2006-01-01

    This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.

  9. An overview of photovoltaic applications in space

    NASA Technical Reports Server (NTRS)

    Wasel, Robert A.

    1987-01-01

    An overview is given of the uses of photovoltaic (PV) power in space. The contribution of PV systems on unmanned, low Earth orbit and inner planetary missions is noted. The development of PV technology along the two paths of high efficiency and high power is discussed. The importance of increasing the service life of PV systems is covered.

  10. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. Building upon the success of the U.S.-Japan Tropical Rainfall Measuring Mission (TRMM), the National Aeronautics and Space Administration (NASA) of the United States and the Japan Aerospace and Exploration Agency (JAXA) will deploy in 2013 a GPM "Core" satellite carrying a KulKa-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Imager (GMI) to establish a new reference standard for precipitation measurements from space. The combined active/passive sensor measurements will also be used to provide common database for precipitation retrievals from constellation sensors. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer- 2 (AMSR-2) on the GCOM-Wl satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological

  11. Religion, Modernity and Politics: Colonial Education and the Australian Mission in Korea, 1910-1941

    ERIC Educational Resources Information Center

    Lee, Yoonmi

    2016-01-01

    The work of the Australian mission in the southern part of Korea during the first half of the twentieth century has been a relatively undeveloped subject in scholarly research. By focusing on the educational work of the mission between 1910 and 1941, this article provides an overview of how the missionaries interacted with the Japanese colonial…

  12. On the Tropical Rainfall Measuring Mission (TRMM): Bringing NASA's Earth System Science Program to the Classroom

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall

    1998-01-01

    The Tropical Rainfall Measuring Mission is the first mission dedicated to measuring tropical and subtropical rainfall using a variety of remote sensing instrumentation, including the first spaceborne rain-measuring radar. Since the energy released when tropical rainfall occurs is a primary "fuel" supply for the weather and climate "engine"; improvements in computer models which predict future weather and climate states may depend on better measurements of global tropical rainfall and its energy. In support of the STANYS conference theme of Education and Space, this presentation focuses on one aspect of NASA's Earth Systems Science Program. We seek to present an overview of the TRMM mission. This overview will discuss the scientific motivation for TRMM, the TRMM instrument package, and recent images from tropical rainfall systems and hurricanes. The presentation also targets educational components of the TRMM mission in the areas of weather, mathematics, technology, and geography that can be used by secondary school/high school educators in the classroom.

  13. National Center for Advanced Manufacturing Overview

    NASA Technical Reports Server (NTRS)

    Vickers, John H.

    2000-01-01

    This paper presents a general overview of the National Center for Advanced Manufacturing, with an emphasis on Aerospace Materials, Processes and Environmental Technology. The topics include: 1) Background; 2) Mission; 3) Technology Development Approach; 4) Space Transportation Significance; 5) Partnering; 6) NCAM MAF Project; 7) NASA & Calhoun Community College; 8) Educational Development; and 9) Intelligent Synthesis Environment. This paper is presented in viewgraph form.

  14. The Microscope Mission and Pre-Flight Performance Verification

    NASA Astrophysics Data System (ADS)

    Hudson, D.; Touboul, P.; Rodrigues, M.

    2006-04-01

    Recent developments in fundamental physics have renewed interest in disproving the equivalence principle. The MICROSCOPE mission will be the first test to capitalize on the advantages of space to achieve an accuracy of 10-15, more than two orders of magnitude better than current ground based results. It is a joint CNES, ONERA, and Observatoire de la Côte d'Azur mission in the CNES Myriade microsatellite program. The principle of the test is to place two masses of different material on precisely the same orbit and measure any difference in the forces required to maintain the common orbit. The test is performed by a differential electrostatic accelerometer containing two concentric cylindrical test masses. This paper will present both an overview of the mission, and a description of the accelerometer development and performance verification.

  15. Low Earth Orbital Mission Aboard the Space Test Experiments Platform (STEP-3)

    NASA Technical Reports Server (NTRS)

    Brinza, David E.

    1992-01-01

    A discussion of the Space Active Modular Materials Experiments (SAMMES) is presented in vugraph form. The discussion is divided into three sections: (1) a description of SAMMES; (2) a SAMMES/STEP-3 mission overview; and (3) SAMMES follow on efforts. The SAMMES/STEP-3 mission objectives are as follows: assess LEO space environmental effects on SDIO materials; quantify orbital and local environments; and demonstrate the modular experiment concept.

  16. Delta II Stardust Mission Briefing

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An overview of the Stardust Mission is shown. NASA personnel is seen discussing and explaining the path of the probe. An animated clip is presented to demonstrate how the probe will collect interstellar dust materials, and space particles by using an aerogel. The animation also described the process by which the probe will take photographs of the comets from the on board camera. The dust samples and the photographs will be analyzed in order to learn more about interstellar materials.

  17. Current Status of the International Lunar Network (ILN) Anchor Nodes Mission

    NASA Astrophysics Data System (ADS)

    Cohen, Barbara; Bassler, J.; Harris, D.; Morse, B.; Reed, C.; Kirby, K.; Eng, D.

    2009-09-01

    NASA's Science Mission Directorate's (SMD) International Lunar Network Anchor Nodes Mission continues its concept development and is scheduled to complete the first formal milestone gate of a Mission Concept Review (MCR) in late 2009. The mission will establish two-four nodes of the International Lunar Network (ILN), a network of lunar geophysical stations envisioned to be emplaced by the many nations collaborating on this joint endeavor. This mission will operate over six years or more and make significant progress in satisfying many of the National Research Council's lunar science objectives, while strategically contributing to the U.S. Vision for Space Exploration Policy's objective for a robust robotic lunar program. This paper will provide a status report on the ILN Anchor Nodes mission and overview of the concept to date, which is being implemented jointly by NASA's Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory.

  18. STS-111 Crew Interviews: Franklin Chang-Diaz, Mission Specialist 2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-111 Mission Specialist 2 Franklin Chang-Diaz is seen during this interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Chang-Diaz outlines his role in the mission in general, and specifically during the extravehicular activities (EVAs). He describes in great detail his duties in the three EVAs which involved preparing the Mobile Remote Servicer Base System (MBS) for installation onto the Space Station's Mobile Transporter, attaching the MBS onto the Space Station and replacing a wrist roll joint on the station's robot arm. Chang-Diaz also discusses the science experiments which are being brought on board the Space Station by the STS-111 mission. He also offers thoughts on how the International Space Station (ISS) fits into NASA's vision and how his previous space mission experience will benefit the STS-111 flight.

  19. Navigation Operations for the Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission employs four identical spinning spacecraft flying in highly elliptical Earth orbits. These spacecraft will fly in a series of tetrahedral formations with separations of less than 10 km. MMS navigation operations use onboard navigation to satisfy the mission definitive orbit and time determination requirements and in addition to minimize operations cost and complexity. The onboard navigation subsystem consists of the Navigator GPS receiver with Goddard Enhanced Onboard Navigation System (GEONS) software, and an Ultra-Stable Oscillator. The four MMS spacecraft are operated from a single Mission Operations Center, which includes a Flight Dynamics Operations Area (FDOA) that supports MMS navigation operations, as well as maneuver planning, conjunction assessment and attitude ground operations. The System Manager component of the FDOA automates routine operations processes. The GEONS Ground Support System component of the FDOA provides the tools needed to support MMS navigation operations. This paper provides an overview of the MMS mission and associated navigation requirements and constraints and discusses MMS navigation operations and the associated MMS ground system components built to support navigation-related operations.

  20. Overview and current status of DOE/UPVG`s TEAM-UP Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hester, S.

    1995-11-01

    An overview is given of the Utility Photovoltaic Group. The mission is to accelerate the use of small-scale and large scale applications of photovoltaics for the benefit of the electric utilities and their customers.

  1. NICER Mission Overview, Status, and GO opportunities

    NASA Astrophysics Data System (ADS)

    Gendreau, Keith C.

    2018-01-01

    The Neutron Interior Composition Explorer (NICER) was launched in June 2017 to the International Space Station (ISS) where it is studying the time-domain X-ray sky. NICER consists of a collection of X-ray concentrators, silicon drift detectors, an optical bench, and pointing system that together provide a large collection area in the soft (0.2-12 keV) X-ray bandpass. NICER time-stamps individual X-ray photons to an absolute precision of better than 100 nanoseconds while providing moderate CCD-like energy resolution. Since installation, NICER has observed over 100 celestial targets including neutron stars and other objects. The NICER team accepts target of opportunity (TOO) requests for consideration. In addition, NICER will be demonstrating the use of some millisecond pulsars as navigational beacons. NICER will complete its baseline mission in January 2019 with data beginning to be made public in January 2018. Conditional on the status of its baseline science objectives, NICER will be open to a guest observer program with first round proposals due in mid 2018 for observations beginning in 2019.

  2. Tactical Satellite-3 Mission Overview and Initial Lessons Learned (Postprint)

    DTIC Science & Technology

    2013-03-01

    current buses. The spacecraft bus includes the main structure; attitude control system (reaction wheels and torque rods); the thermal protection...Specific key areas are the relatively rapid checkout of the spacecraft and lessons from the responsive space development. 15. SUBJECT TERMS...relatively rapid checkout of the spacecraft and lessons from the responsive space development. INTRODUCTION The Tactical Satellite 3 mission was a

  3. Telecommunications and data acquisition systems support for the Viking 1975 mission to Mars

    NASA Technical Reports Server (NTRS)

    Mudgway, D. J.

    1983-01-01

    The background for the Viking Lander Monitor Mission (VLMM) is given, and the technical and operational aspects of the tracking and data acquisition support that the Network was called upon to provide are described. An overview of the science results obtained from the imaging, meteorological, and radio science data is also given. The intensive efforts that were made to recover the mission are described.

  4. Guidelines for NASA Missions to Engage the User Community as a Part of the Mission Life Cycle

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Friedl, L.; Bonniksen, C. K.

    2017-12-01

    NASA continues to improve the Earth Science Directorate in the areas of thematic integration, stakeholder feedback and Project Applications Program tailoring for missions to transfer knowledge between scientists and projects. The integration of application themes and the implementation of application science activities in flight projects have evolved to formally include user feedback and stakeholder integration. NASA's new Flight Applied Science Program Guidelines are designed to bridge NASA Earth Science Directorates in Flight, Applied Sciences and Research and Development by agreeing to integrate the user community into mission life cycles. Thus science development and science applications will guide all new instruments launched by NASAs ESD. The continued integration with the user community has enabled socio-economic considerations into NASA Earth Science projects to advance significantly. Making users a natural part of mission science leverages future socio-economic impact research and provides a platform for innovative and more actionable product to be used in decision support systems by society. This presentation will give an overview of the new NASA Guidelines and provide samples that demonstrate how the user community can be a part of NASA mission designs.

  5. The Simbol-X Mission

    NASA Astrophysics Data System (ADS)

    Ferrando, P.; Arnaud, M.; Briel, U.; Cavazzuti, E.; Clédassou, R.; Counil, J. L.; Fiore, F.; Giommi, P.; Goldwurm, A.; Lamarle, O.; Laurent, P.; Lebrun, F.; Malaguti, G.; Mereghetti, S.; Micela, G.; Pareschi, G.; Piermaria, M.; Roques, J. P.; Santangelo, A.; Tagliaferri, G.

    2009-05-01

    The elucidation of key questions in astrophysics, in particular those related to black hole physics and census, and to particle acceleration mechanisms, necessitates to develop new observational capabilities in the hard X-ray domain with performances several orders of magnitude better than presently available. Relying on two spacecrafts in a formation flying configuration, Simbol-X will provide the world-wide astrophysics community with a single optics long focal length telescope. This observatory will have unrivaled performances in the hard X-ray domain, up to ~80 keV, as well as very good characteristics in the soft X-ray domain, down to ~0.5 keV. The Simbol-X mission has successfully passed a phase A study, jointly conducted by CNES and ASI, with the participation of German laboratories. It is now entering phase B studies with the participation of new international partners, for a launch in 2015. We give in this paper a general overview of the mission, as consolidated at the start of phase B.

  6. An agent-oriented approach to automated mission operations

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Odubiyi, Jide

    1994-01-01

    As we plan for the next generation of Mission Operations Control Center (MOCC) systems, there are many opportunities for the increased utilization of innovative knowledge-based technologies. The innovative technology discussed is an advanced use of agent-oriented approaches to the automation of mission operations. The paper presents an overview of this technology and discusses applied operational scenarios currently being investigated and prototyped. A major focus of the current work is the development of a simple user mechanism that would empower operations staff members to create, in real time, software agents to assist them in common, labor intensive operations tasks. These operational tasks would include: handling routine data and information management functions; amplifying the capabilities of a spacecraft analyst/operator to rapidly identify, analyze, and correct spacecraft anomalies by correlating complex data/information sets and filtering error messages; improving routine monitoring and trend analysis by detecting common failure signatures; and serving as a sentinel for spacecraft changes during critical maneuvers enhancing the system's capabilities to support nonroutine operational conditions with minimum additional staff. An agent-based testbed is under development. This testbed will allow us to: (1) more clearly understand the intricacies of applying agent-based technology in support of the advanced automation of mission operations and (2) access the full set of benefits that can be realized by the proper application of agent-oriented technology in a mission operations environment. The testbed under development addresses some of the data management and report generation functions for the Explorer Platform (EP)/Extreme UltraViolet Explorer (EUVE) Flight Operations Team (FOT). We present an overview of agent-oriented technology and a detailed report on the operation's concept for the testbed.

  7. STS-106 ISS Overview Briefing

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Dwayne Brown, NASA Public Affairs, introduces Bob Cabana of NASA, Mikhail Sinelshikov of PKA, Vasily Tsibliev of GCTC, Steve Mozes of CSA, Ian Pryke of ESA, and Masaaki Komatsu of NASDA. Each man gives an overview of the status of the International Space Station (ISS), including details on the current configuration, future missions and what they will bring to the ISS, and each space agency's contribution to the ISS. They then answer questions from the press.

  8. STS-335 crew training, EVA TPS Overview with instructor John Ray

    NASA Image and Video Library

    2010-11-03

    JSC2010-E-183523 (3 Nov. 2010) --- NASA astronauts Rex Walheim (left), STS-135 mission specialist; and Doug Hurley, pilot, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  9. STS-335 crew training, EVA TPS Overview with instructor John Ray

    NASA Image and Video Library

    2010-11-03

    JSC2010-E-183524 (3 Nov. 2010) --- NASA astronauts Rex Walheim (left), STS-135 mission specialist; and Doug Hurley, pilot, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  10. STS-335 crew training, EVA TPS Overview with instructor John Ray

    NASA Image and Video Library

    2010-11-03

    JSC2010-E-183519 (3 Nov. 2010) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus, mission specialist, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  11. Autonomous formation flying sensor for the Star Light Mission

    NASA Technical Reports Server (NTRS)

    Aung, M.; Purcell, G.; Tien, J.; Young, L.; Srinivasan, J.; Ciminera, M. A.; Chong, Y. J.; Amaro, L. R.; Young, L. E.

    2002-01-01

    The StarLight Mission, an element of NASA's Origins Program, was designed for first-time demonstration of two technologies: formation flying optical interferometry between spacecraft and autonomous precise formation flying of an array of spacecraft to support optical interferometry. The design overview and results of the technology effort are presented in this paper.

  12. Overview of the ICESat Mission and Results

    NASA Astrophysics Data System (ADS)

    Zwally, H.

    2004-12-01

    NASA's Ice, Cloud, and Land Elevation Satellite (ICESat), launched in January, 2003, has been measuring surface elevations of ice and land, vertical distributions of clouds and aerosols, vegetation-canopy heights, and other features with unprecedented accuracy and sensitivity. The ICESat mission, which was designed to operate continuously for 3 to 5 years, has so far acquired science data during five periods of laser operation ranging from 33 to 54 days each. The primary purpose of ICESat has been to acquire time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and improve estimates of the present and future contributions to global sea level rise. ICEsat's atmospheric measurements are providing fundamentally new information on the precise vertical structure of clouds and aerosols. In particular, cloud heights are important for understanding radiation balance and their effects on climate change. Other applications include mapping of polar sea-ice freeboard and thickness, high-resolution mapping of ocean eddies, glacier topography, and lake and river levels. ICESat has a 1064 nm laser channel for near-surface altimetry with a designed range precision of 10 cm that is actually 2 cm on-orbit. Vertical distributions of clouds and aerosols are obtained with 75 m resolution from both the 1064 nm channel and the more sensitive 532 nm channel. The laser footprints are about 70 m spaced at 170 m along-track. The accuracy of the satellite-orbital heights is about 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibration is completed. The spacecraft attitude is controlled to point the laser beam to within 100 m (35 m goal) of reference surface tracks at high latitudes and to point off-nadir up to 5 degrees to targets of interest. The remaining laser lifetime will be used

  13. Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.

  14. Overview of recent aero-optics flight tests

    NASA Technical Reports Server (NTRS)

    Otten, L. J., III

    1980-01-01

    A chronological overview of aero-optics test flights is presented highlighting the objectives and conclusions from the tests. Flight tests performed in coordination with the PRESS reentry observation missions and the ALL Cycle 2 laser propagation and tracking demonstrations are described addressing the identification and quantification of distortion phenomena. Finally, current aero-optics flight investigations of an atmospheric turbulence probe are briefly discussed.

  15. The Aeronomy of Ice in the Mesosphere Mission: Overview and Early Results

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; Bailey, S. M.; Thomas, G.; Rusch, D.; Gordley, L. L.; Hervig, M.; Horanyi, M.; Randall, C.; McClintock, W.; Siskind, D. E.; Stevens, M.; Englert, C.; Taylor, M.; Summeers, M.; Merkel, A.

    2007-12-01

    The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California at 1:26:03 PDT on April 25, 2007 becoming the first satellite mission dedicated to the study of noctilucent clouds. A Pegasus XL rocket launched the satellite into a near perfect 600 km sun synchronous circular orbit. AIM carries three instruments - a nadir imager, a solar occultation instrument and in-situ cosmic dust detectors - that were specifically selected because of their ability to provide key measurements needed to address the six AIM science objectives. Brief descriptions of the science, instruments and observation scenario will be presented along with early science results.

  16. Cluster: Mission Overview and End-of-Life Analysis

    NASA Technical Reports Server (NTRS)

    Pallaschke, S.; Munoz, I.; Rodriquez-Canabal, J.; Sieg, D.; Yde, J. J.

    2007-01-01

    The Cluster mission is part of the scientific programme of the European Space Agency (ESA) and its purpose is the analysis of the Earth's magnetosphere. The Cluster project consists of four satellites. The selected polar orbit has a shape of 4.0 and 19.2 Re which is required for performing measurements near the cusp and the tail of the magnetosphere. When crossing these regions the satellites form a constellation which in most of the cases so far has been a regular tetrahedron. The satellite operations are carried out by the European Space Operations Centre (ESOC) at Darmstadt, Germany. The paper outlines the future orbit evolution and the envisaged operations from a Flight Dynamics point of view. In addition a brief summary of the LEOP and routine operations is included beforehand.

  17. Overview of a Proposed Flight Validation of Aerocapture System Technology for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Hall, Jeffery L.; Oh, David; Munk, Michelle M.

    2006-01-01

    Aerocapture System Technology for Planetary Missions is being proposed to NASA's New Millennium Program for flight aboard the Space Technology 9 (ST9) flight opportunity. The proposed ST9 aerocapture mission is a system-level flight validation of the aerocapture maneuver as performed by an instrumented, high-fidelity flight vehicle within a true in-space and atmospheric environment. Successful validation of the aerocapture maneuver will be enabled through the flight validation of an advanced guidance, navigation, and control system as developed by Ball Aerospace and two advanced Thermal Protection System (TPS) materials, Silicon Refined Ablative Material-20 (SRAM-20) and SRAM-14, as developed by Applied Research Associates (ARA) Ablatives Laboratory. The ST9 aerocapture flight validation will be sufficient for immediate infusion of these technologies into NASA science missions being proposed for flight to a variety of Solar System destinations possessing a significant planetary atmosphere.

  18. Emirates eXploration Imager (EXI) Overview from the Emirates Mars Mission

    NASA Astrophysics Data System (ADS)

    AlShamsi, Maryam; Wolff, Michael; Khoory, Mohammad; AlMheiri, Suhail; Jones, Andrew; Drake, Ginger; Osterloo, Mikki; Reed, Heather

    2017-04-01

    The Emirates eXploration Imager (EXI) instrument is one of three scientific instruments abroad the Emirate Mars Mission (EMM) spacecraft, "Hope". The planned launch window opens in the summer of 2020, with the goal of this United Arab Emirates (UAE) mission to explore the dynamics of the Martian atmosphere through global spatial sampling which includes both diurnal and seasonal timescales. A particular focus of the mission is the improvement of our understanding of the global circulation in the lower atmosphere and the connections to the upward transport of energy of the escaping atmospheric particles from the upper atmosphere. This will be accomplished using three unique and complementary scientific instruments. The subject of this presentation, EXI, is a multi-band camera capable of taking 12 megapixel images, which translates to a spatial resolution of better than 8 km with a well calibrated radiometric performance. EXI uses a selector wheel mechanism consisting of 6 discrete bandpass filters to sample the optical spectral region: 3 UV bands and 3 visible (RGB) bands. Atmospheric characterization will involve the retrieval of the ice optical depth using the 300-340 nm band, the dust optical depth in the 205-235nm range, and the column abundance of ozone with a band covering 245-275 nm. Radiometric fidelity is optimized while simplifying the optical design by separating the UV and VIS optical paths. The instrument is being developed jointly by the Laboratory for Atmospheric and Space Physics (LASP), University of California, Boulder, USA, and Mohammed Bin Rashid Space Centre (MBRSC), Dubai, UAE.

  19. Nanosatellite missions - the future

    NASA Astrophysics Data System (ADS)

    Koudelka, O.; Kuschnig, R.; Wenger, M.; Romano, P.

    2017-09-01

    In the beginning, nanosatellite projects were focused on educational aspects. In the meantime, the technology matured and now allows to test, demonstrate and validate new systems, operational procedures and services in space at low cost and within much shorter timescales than traditional space endeavors. The number of spacecraft developed and launched has been increasing exponentially in the last years. The constellation of BRITE nanosatellites is demonstrating impressively that demanding scientific requirements can be met with small, low-cost satellites. Industry and space agencies are now embracing small satellite technology. Particularly in the USA, companies have been established to provide commercial services based on CubeSats. The approach is in general different from traditional space projects with their strict product/quality assurance and documentation requirements. The paper gives an overview of nanosatellite missions in different areas of application. Based on lessons learnt from the BRITE mission and recent developments at TU Graz (in particular the implementation of the OPS-SAT nanosatellite for ESA), enhanced technical possibilities for a future astronomy mission after BRITE will be discussed. Powerful on-board computers will allow on-board data pre-processing. A state-of-the-art telemetry system with high data rates would facilitate interference-free operations and increase science data return.

  20. Overview of the MEDLI Project

    NASA Technical Reports Server (NTRS)

    Gazarik, Michael J.; Hwang, Helen; Little, Alan; Cheatwood, Neil; Wright, Michael; Herath, Jeff

    2007-01-01

    The Mars Science Laboratory Entry, Descent, and Landing Instrumentation (MEDLI) Project's objectives are to measure aerothermal environments, sub-surface heatshield material response, vehicle orientation, and atmospheric density for the atmospheric entry and descent phases of the Mars Science Laboratory (MSL) entry vehicle. The flight science objectives of MEDLI directly address the largest uncertainties in the ability to design and validate a robust Mars entry system, including aerothermal, aerodynamic and atmosphere models, and thermal protection system (TPS) design. The instrumentation suite will be installed in the heatshield of the MSL entry vehicle. The acquired data will support future Mars entry and aerocapture missions by providing measured atmospheric data to validate Mars atmosphere models and clarify the design margins for future Mars missions. MEDLI thermocouple and recession sensor data will significantly improve the understanding of aeroheating and TPS performance uncertainties for future missions. MEDLI pressure data will permit more accurate trajectory reconstruction, as well as separation of aerodynamic and atmospheric uncertainties in the hypersonic and supersonic regimes. This paper provides an overview of the project including the instrumentation design, system architecture, and expected measurement response.

  1. WFIRST: Project Overview and Status

    NASA Astrophysics Data System (ADS)

    Kruk, Jeffrey; WFIRST Formulation Science Working Group, WFIRST Project Team

    2018-01-01

    The Wide-Field InfraRed Survey Telescope (WFIRST) will be the next Astrophysics flagship mission to follow JWST. The observatory payload consists of a Hubble-size telescope aperture with a wide-field NIR instrument and a coronagraph operating at visible wavelengths and employing state-of-the-art wavefront sensing and control. The Wide-field instrument is optimized for large area NIR imaging and spectroscopic surveys, with performance requirements driven by programs to study cosmology and exoplanet detection via gravitational microlensing. All data will be public immediately, and a substantial guest observer program will be supported.The WFIRST Project is presently in Phase A, with a transition to Phase B expected in early to mid 2018. Candidate observing programs are under detailed study in order to inform the mission design, but the actual science investigations will not be selected until much closer to launch. We will present an overview of the present mission design and expected performance, a summary of Project status, and plans for selecting the observing programs.

  2. The Cosmic Evolution Through UV Spectroscopy (CETUS) Probe Mission Concept

    NASA Astrophysics Data System (ADS)

    Danchi, William; Heap, Sara; Woodruff, Robert; Hull, Anthony; Kendrick, Stephen E.; Purves, Lloyd; McCandliss, Stephan; Kelly Dodson, Greg Mehle, James Burge, Martin Valente, Michael Rhee, Walter Smith, Michael Choi, Eric Stoneking

    2018-01-01

    CETUS is a mission concept for an all-UV telescope with 3 scientific instruments: a wide-field camera, a wide-field multi-object spectrograph, and a point-source high-resolution and medium resolution spectrograph. It is primarily intended to work with other survey telescopes in the 2020’s (e.g. E-ROSITA (X-ray), LSST, Subaru, WFIRST (optical-near-IR), SKA (radio) to solve major, outstanding problems in astrophysics. In this poster presentation, we give an overview of CETUS key science goals and a progress report on the CETUS mission and instrument design.

  3. Overview of the Development and Mission Application of the Advanced Electric Propulsion System (AEPS)

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Tofil, Todd; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Picha, Frank; Jackson, Jerry; Allen, May

    2017-01-01

    NASA remains committed to the development and demonstration of a high-power solar electric propulsion capability for the Agency. NASA is continuing to develop the 14 kilowatt Advanced Electric Propulsion System (AEPS), which has recently completed an Early Integrated System Test and System Preliminary Design Review. NASA continues to pursue Solar Electric Propulsion (SEP) Technology Demonstration Mission partners and mature high-power SEP mission concepts. The recent announcement of the development of a Power and Propulsion Element (PPE) as the first element of an evolvable human architecture to Mars has replaced the Asteroid Redirect Robotic Mission as the most probable first application of the AEPS Hall thruster system. This high-power SEP capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. This paper presents the status of the combined NASA and Aerojet AEPS development activities and updated mission concept for implementation of the AEPS hardware as part of the ion propulsion system for a PPE.

  4. Overview of the Development and Mission Application of the Advanced Electric Propulsion System (AEPS)

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Tofil, Todd A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John S.; Hofer, Richard R.; Picha, Frank Q.; Jackson, Jerry; Allen, May

    2018-01-01

    NASA remains committed to the development and demonstration of a high-power solar electric propulsion capability for the Agency. NASA is continuing to develop the 14 kW Advanced Electric Propulsion System (AEPS), which has recently completed an Early Integrated System Test and System Preliminary Design Review. NASA continues to pursue Solar Electric Propulsion (SEP) Technology Demonstration Mission partners and mature high-power SEP mission concepts. The recent announcement of the development of a Power and Propulsion Element (PPE) as the first element of an evolvable human architecture to Mars has replaced the Asteroid Redirect Robotic Mission (ARRM) as the most probable first application of the AEPS Hall thruster system. This high-power SEP capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned exploration architecture. This paper presents the status of the combined NASA and Aerojet Rocketdyne AEPS development activities and updated mission concept for implementation of the AEPS hardware as part of the ion propulsion system for a PPE.

  5. Apollo Command and Service Module Propulsion Systems Overview

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael A.

    2009-01-01

    An overview of the Apollo Command and Service Module (CSM) propulsion systems is provided. The systems for CSM propulsion and control are defined, the times during the mission when each system is used are listed, and, the basic components and operation of the service propulsion system, SM reaction control system and CM reaction control system are described.

  6. Coordinated Information Services For a Discipline- Or Mission-Oriented Community.

    ERIC Educational Resources Information Center

    Engelbart, Douglas C.

    An overview is given of the potential contribution of computerized information services to communities involved with common disciplines or common missions. The author first describes the knowledge workshop--an environment in which knowledge workers do their knowledge work--and then discusses the prototype of the community workshop which has been…

  7. Attitude Drift Analysis for the WIND and POLAR Missions

    NASA Technical Reports Server (NTRS)

    Crouse, Patrick

    1996-01-01

    The spin axis attitude drift due to environmental torques acting on the Global Geospace Science (GGS) Interplanetary Physics Laboratory (WIND) and the Polar Plasma Laboratory (POLAR) and the subsequent impact on the maneuver planning strategy for each mission is investigated. A brief overview of each mission is presented, including mission objectives, requirements, constraints, and spacecraft design. The environmental torques that act on the spacecraft and the relative importance of each is addressed. Analysis results are presented that provide the basis for recommendations made pre-launch to target the spin axis attitude to minimize attitude trim maneuvers for both spacecraft over their respective mission lives. It is demonstrated that attitude drift is not the dominant factor in maintaining the pointing requirement for each spacecraft. Further it is demonstrated that the WIND pointing cannot be met pas 4 months due to the Sun angle constraint, while the POLAR initial attitude can be chosen such that attitude trim maneuvers are not required during each 6 month viewing period.

  8. Return to the red planet: The Mars Observer Mission

    NASA Technical Reports Server (NTRS)

    French, Bevan M.; Young, Carolynn (Editor)

    1993-01-01

    An overview of the Mars Observer Mission is discussed. Highlights include: (1) the spacecraft; (2) the instrumentation and science experiments; (3) the countries involved; (4) the flight teams; and (5) the planet Mars itself (a brief history). Photographs and flow charts are included, along with diagrams of instrumentation and a brief historical narrative of space observation and exploration.

  9. STS-89 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The flight crew of the STS-89 Space Shuttle Orbiter Endeavour, Cmdr. Terrence W. Wilcutt, Pilot Frank Edwards, and Mission Specialists Michael P. Anderson, James F. Reilly, Bonnie J. Dunbar, Salizhan Shakirovich Sharipov, David A. Wolf, and Andrew S.W. Thomas, present an overview of their mission. Images include prelaunch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also included are various panoramic views of the shuttle on the pad. The crew is readied in the white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters (SRBs). Once in orbit, there are various views of the Mir Space Station as the shuttle begins its approach and docks. After the docking the two crews open the entry hatch and greet each other. The astronauts and cosmonauts transfer supplies from the shuttle to Mir. The astronauts prepare for the reentry phase of their mission. Endeavour separates from the Russian Space Station with a gentle push from springs in the docking mechanism that attaches it to the Space Station. The final view shows the crews' preparations for reentry and landing.

  10. STS-72 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The flight crew of the STS-72 Space Shuttle Orbiter Endeavour Cmdr. Brian Duffy, Pilot Brent W. Jett, and Mission Specialists; Leroy Chiao, Daniel T. Barry, Winston E. Scott, and Koichi Wakata (NASDA) present an overview of their mission, whose primary objective is the retrieval of two research satellites. The major activities of the mission will include retrieval of the Japanese Space Flyer Unit (SFU), which was launched aboard a Japanese H-2 rocket to conduct a variety of microgravity experiments. In addition, the STS-72 crew will deploy the AST-Flyer, a satellite, that will fly free of the Shuttle for about 50 hours. Four experiments on the science platform will operate autonomously before the satellite is retrieved by Endeavour's robot arm. Three of Endeavour's astronauts will conduct a pair of spacewalks during the mission to test hardware and tools that will be used in the assembly of the Space Station. Video footage includes the following: prelaunch and launch activities; the crew eating breakfast; shuttle launch; retrieval of the Japanese Space Flyer Unit (SFU); suit-up and EVA-1; EVA-2; crew members performing various physical exercises; various earth views; and the night landing of the shuttle at KSC.

  11. Recommendation of a More Effective Alternative to the NASA Launch Services Program Mission Integration Reporting System (MIRS) and Implementation of Updates to the Mission Plan

    NASA Technical Reports Server (NTRS)

    Dunn, Michael R.

    2014-01-01

    Over the course of my internship in the Flight Projects Office of NASA's Launch Services Program (LSP), I worked on two major projects, both of which dealt with updating current systems to make them more accurate and to allow them to operate more efficiently. The first project dealt with the Mission Integration Reporting System (MIRS), a web-accessible database application used to manage and provide mission status reporting for the LSP portfolio of awarded missions. MIRS had not gone through any major updates since its implementation in 2005, and it was my job to formulate a recommendation for the improvement of the system. The second project I worked on dealt with the Mission Plan, a document that contains an overview of the general life cycle that is followed by every LSP mission. My job on this project was to update the information currently in the mission plan and to add certain features in order to increase the accuracy and thoroughness of the document. The outcomes of these projects have implications in the orderly and efficient operation of the Flight Projects Office, and the process of Mission Management in the Launch Services Program as a whole.

  12. STS-134 crew during EVA TPS Overview training in the TPS/PABF

    NASA Image and Video Library

    2009-12-15

    JSC2009-E-284891 (15 Dec. 2009) --- STS-134 crew members participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center. Pictured from the right are NASA astronauts Andrew Feustel, Greg Chamitoff, Michael Fincke, all mission specialists; along with NASA astronaut Gregory H. Johnson, pilot; and European Space Agency astronaut Roberto Vittori, mission specialist.

  13. An Overview of the Juno Mission to Jupiter

    NASA Technical Reports Server (NTRS)

    Grammier, Richard S.

    2006-01-01

    Arriving in orbit around the planet Jupiter in 2016 after a five-year journey, the Juno spacecraft will begin a one-year investigation of the gas giant in order to understand its origin and evolution by determining its water abundance and constraining its core mass. In addition, Juno will map the planet's magnetic and gravitational fields, map its atmosphere, and explore the three-dimensional structure of Jupiter's polar magnetosphere and auroras. Juno will discriminate among different models for giant planet formation. These investigations will be conducted over the course of thirty-two 11-day elliptical polar orbits of the planet. The orbits are designed to avoid Jupiter's highest radiation regions. The spacecraft is a spinning, solar-powered system carrying a complement of eight science instruments for conducting the investigations. The spacecraft systems and instruments take advantage of significant design and operational heritage from previous space missions.

  14. OSIRIS-REx Touch-and-Go (TAG) Mission Design for Asteroid Sample Collection

    NASA Technical Reports Server (NTRS)

    May, Alexander; Sutter, Brian; Linn, Timothy; Bierhaus, Beau; Berry, Kevin; Mink, Ron

    2014-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in September 2016 to rendezvous with the near-Earth asteroid Bennu in October 2018. After several months of proximity operations to characterize the asteroid, OSIRIS-REx flies a Touch-And-Go (TAG) trajectory to the asteroid's surface to collect at least 60 g of pristine regolith sample for Earth return. This paper provides mission and flight system overviews, with more details on the TAG mission design and key events that occur to safely and successfully collect the sample. An overview of the navigation performed relative to a chosen sample site, along with the maneuvers to reach the desired site is described. Safety monitoring during descent is performed with onboard sensors providing an option to abort, troubleshoot, and try again if necessary. Sample collection occurs using a collection device at the end of an articulating robotic arm during a brief five second contact period, while a constant force spring mechanism in the arm assists to rebound the spacecraft away from the surface. Finally, the sample is measured quantitatively utilizing the law of conservation of angular momentum, along with qualitative data from imagery of the sampling device. Upon sample mass verification, the arm places the sample into the Stardust-heritage Sample Return Capsule (SRC) for return to Earth in September 2023.

  15. Web Design for Space Operations: An Overview of the Challenges and New Technologies Used in Developing and Operating Web-Based Applications in Real-Time Operational Support Onboard the International Space Station, in Astronaut Mission Planning and Mission Control Operations

    NASA Technical Reports Server (NTRS)

    Khan, Ahmed

    2010-01-01

    The International Space Station (ISS) Operations Planning Team, Mission Control Centre and Mission Automation Support Network (MAS) have all evolved over the years to use commercial web-based technologies to create a configurable electronic infrastructure to manage the complex network of real-time planning, crew scheduling, resource and activity management as well as onboard document and procedure management required to co-ordinate ISS assembly, daily operations and mission support. While these Web technologies are classified as non-critical in nature, their use is part of an essential backbone of daily operations on the ISS and allows the crew to operate the ISS as a functioning science laboratory. The rapid evolution of the internet from 1998 (when ISS assembly began) to today, along with the nature of continuous manned operations in space, have presented a unique challenge in terms of software engineering and system development. In addition, the use of a wide array of competing internet technologies (including commercial technologies such as .NET and JAVA ) and the special requirements of having to support this network, both nationally among various control centres for International Partners (IPs), as well as onboard the station itself, have created special challenges for the MCC Web Tools Development Team, software engineers and flight controllers, who implement and maintain this system. This paper presents an overview of some of these operational challenges, and the evolving nature of the solutions and the future use of COTS based rich internet technologies in manned space flight operations. In particular this paper will focus on the use of Microsoft.s .NET API to develop Web-Based Operational tools, the use of XML based service oriented architectures (SOA) that needed to be customized to support Mission operations, the maintenance of a Microsoft IIS web server onboard the ISS, The OpsLan, functional-oriented Web Design with AJAX

  16. Sentinel-4: the geostationary component of the GMES atmosphere monitoring missions

    NASA Astrophysics Data System (ADS)

    Bazalgette Courrèges-Lacoste, G.; Arcioni, M.; Meijer, Y.; Bézy, J.-L.; Bensi, P.; Langen, J.

    2017-11-01

    The implementation of operational atmospheric composition monitoring missions is foreseen in the context of the Global Monitoring for Environment and Security (GMES) initiative. Sentinel-4 will address the geostationary observations and Sentinel-5 the low Earth orbit ones. The two missions are planned to be launched on-board Eumetsat's Meteosat Third Generation (MTG) and Post-EPS satellites, respectively. This paper presents an overview of the GMES Sentinel- 4 mission, which has been assessed at Phase-0 level. It describes the key requirements and outlines the main aspects of the candidate implementation concepts available at completion of Phase-0. The paper will particularly focus on the observation mode, the estimated performance and the related technology developments.

  17. Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.

    2011-01-01

    This paper presents an overview of the attitude ground system (AGS) currently under development for the Magnetospheric Multiscale (MMS) mission. The primary responsibilities for the MMS AGS are definitive attitude determination, validation of the onboard attitude filter, and computation of certain parameters needed to improve maneuver performance. For these purposes, the ground support utilities include attitude and rate estimation for validation of the onboard estimates, sensor calibration, inertia tensor calibration, accelerometer bias estimation, center of mass estimation, and production of a definitive attitude history for use by the science teams. Much of the AGS functionality already exists in utilities used at NASA's Goddard Space Flight Center with support heritage from many other missions, but new utilities are being created specifically for the MMS mission, such as for the inertia tensor, accelerometer bias, and center of mass estimation. Algorithms and test results for all the major AGS subsystems are presented here.

  18. Medical mission to dominican republic: one dermatology group?s experiences.

    PubMed

    Ahmed, Atif; Peine, Steven

    2013-01-01

    The intents of this article are to share our experiences during a medical mission in the Dominican Republic and to provide the reader with a cross-sectional view of conditions seen and an overview of interesting and challenging cases encountered. We also discuss treatments and techniques used and share lessons learned. 2013.

  19. Arase: mission overview and initial results

    NASA Astrophysics Data System (ADS)

    Miyoshi, Y.; Shinohara, I.; Takashima, T.; Asamura, K.; Wang, S. Y.; Kazama, Y.; Kasahara, S.; Yokota, S.; Mitani, T.; Higashio, N.; Kasahara, Y.; Kasaba, Y.; Yagitani, S.; Matsuoka, A.; Kojima, H.; Kazuo, S.; Seki, K.; Hori, T.; Shoji, M.; Teramoto, M.; Chang, T. F.; Kurita, S.; Matsuda, S.; Keika, K.; Miyashita, Y.; Hosokawa, K.; Ogawa, Y.; Kadokura, A.; Kataoka, R.; Ono, T.

    2017-12-01

    collaboration with other satellites; Van Allen Probes, THEMIS and MMS are realized. In this presentation, we will report overview and initial highlights for the first year and discuss importance of synergies of multi-satellites and ground-based observations that are realized by international collaborations.

  20. Greenhouse gases observation from space: overview of TANSO and GOSAT

    NASA Astrophysics Data System (ADS)

    Hamazaki, Takashi

    2017-11-01

    Japan Aerospace Exploration Agency (JAXA) is developing Greenhouse gases Observing Satellite (GOSAT). GOSAT is the first satellite to monitor the columnar density of carbon dioxide and methane operationally from space. The GOSAT is the joint endeavor with JAXA, National Institute for Environmental Studies and Ministry of the Environment. The GOSAT will be launched with the H-IIA launch vehicle in early 2009. This paper shows the overview of GOSAT and its mission instrument, TANSO. Mission objectives, sensor and satellite design, its performance and summary of ground test results are also provided.

  1. Overview of the TILDAE High-Altitude Balloon Mission

    NASA Astrophysics Data System (ADS)

    Godbole, N. H.; Maruca, B.; Marino, R.; Sundkvist, D. J.; Constantin, S.; Zimmerman, H.; Carbone, V.

    2016-12-01

    Though the presence of intermittent turbulence in the stratosphere has been well established, much remains unknown about it. In situ observations of this phenomenon, which have provided the greatest detail of it, have typically been achieved via sounding balloons (i.e., small balloons which burst at peak altitude) carrying constant-temperature "hot wire" anemometers (CTAs). The Turbulence and Intermittency Long-Duration Atmospheric Experiment (TILDAE) was developed to test a new paradigm for stratospheric observations. Rather than flying on a sounding balloon, TILDAE was incorporated as an "add-on" experiment to the payload of a NASA long-duration balloon mission that launched in January, 2016 from McMurdo Station, Antarctica. Furthermore, TILDAE's key instrument was a sonic anemometer, which (relative to a CTA) provides better-calibrated measurements of wind velocity and more-robust separation of velocity components. This presentation focuses on the technical details of TILDAE's instrumentation and the performance thereof during its flight. Potential design improvements for future flights are also discussed.

  2. Space Shuttle mission: STS-67

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle Endeavor, scheduled to launch March 2, 1995 from NASA's Kennedy Space Center, will conduct NASA's longest Shuttle flight prior to date. The mission, designated STS-67, has a number of experiments and payloads, which the crew, commanded by Stephen S. Oswald, will have to oversee. This NASA press kit for the mission contains a general background (general press release, media services information, quick-look facts page, shuttle abort modes, summary timeline, payload and vehicle weights, orbital summary, and crew responsibilities); cargo bay payloads and activities (Astro 2, Get Away Special Experiments); in-cabin payloads (Commercial Minimum Descent Altitude Instrumentation Technology Associates Experiments, protein crystal growth experiments, Middeck Active Control Experiment, and Shuttle Amateur Radio Experiment); and the STS-67 crew biographies. The payloads and experiments are described and summarized to give an overview of the goals, objectives, apparatuses, procedures, sponsoring parties, and the assigned crew members to carry out the tasks.

  3. Overview of NASA's In Space Robotic Servicing

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.

    2015-01-01

    The panel discussion will start with a presentation of the work of the Satellite Servicing Capabilities Office (SSCO), a team responsible for the overall management, coordination, and implementation of satellite servicing technologies and capabilities for NASA. Born from the team that executed the five Hubble servicing missions, SSCO is now maturing a core set of technologies that support both servicing goals and NASA's exploration and science objectives, including: autonomous rendezvous and docking systems; dexterous robotics; high-speed, fault-tolerant computing; advanced robotic tools, and propellant transfer systems. SSCOs proposed Restore-L mission, under development since 2009, is rapidly advancing the core capabilities the fledgling satellite-servicing industry needs to jumpstart a new national industry. Restore-L is also providing key technologies and core expertise to the Asteroid Redirect Robotic Mission (ARRM), with SSCO serving as the capture module lead for the ARRM effort. Reed will present a brief overview of SSCOs history, capabilities and technologies.

  4. Nisar Spacecraft Concept Overview: Design Challenges for a Proposed Flagship Dual-Frequency SAR Mission

    NASA Technical Reports Server (NTRS)

    Xaypraseuth, Peter; Chatterjee, Alok; Satish, R.

    2015-01-01

    NISAR would be the inaugural collaboration between National Aeronautics and Space Administration (NASA) and Indian Space Research Organization (ISRO) on an Earth Science mission, which would feature an L-Band SAR instrument and an S-Band SAR instrument. As partners, NASA and ISRO would each contribute different engineering elements to help achieve the proposed scientific objectives of the mission. ISRO-Vikram Sarabhai Space Centre would provide the GSLV-Mark II launch vehicle, which would deliver the spacecraft into the desired orbit. ISRO-Satellite Centre would provide the spacecraft based on its I3K structural bus, a commonly used platform for ISRO's communication satellite missions, which would provide the resources necessary to operate the science payload. NASA would augment the spacecraft capabilities with engineering payload systems to help store, and transmit the large volume of science data.

  5. The Application of LENR to Synergistic Mission Capabilities

    NASA Technical Reports Server (NTRS)

    Wells, Douglas P.; Mavris, Dimitri N.

    2014-01-01

    This paper presents an overview of several missions that exploit the capabilities of a Low Energy Nuclear Reaction (LENR) aircraft propulsion system. LENR is a form of nuclear energy and potentially has over 4,000 times the energy density of chemical energy sources. It does not have any harmful emissions or radiation which makes it extremely appealing. The global reliance on crude oil for aircraft energy creates the opportunity for a revolutionary change with LENR. LENR will impact aircraft performance capabilities, military capabilities, the environment, the economy, and society. Although there is a lot of interest in LENR, there is no proven theory that explains it. Some of the technical challenges are thermal runaway and start-up time. This paper does not explore the feasibility of LENR and assumes that a system is available. A non-dimensional aircraft mass (NAM) ratio diagram is used to explore the aircraft system design space. The NAM ratio diagram shows that LENR can enable long range and high speed missions. The design space exploration led to the conclusion that LENR aircraft would be well suited for high altitude long endurance (HALE) missions, including communications relay and scientific missions for hurricane tracking and other weather phenomena, military intelligence, surveillance, and reconnaissance (ISR) and airspace denial missions, supersonic passenger transport aircraft, and international cargo transport. This paper describes six of those missions.

  6. Multi-Mission Strategic Technology Prioritization Study

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Rodriquez, G.; Elfes, A.; Derleth, J.; Smith, J. H.; Manvi, R.; Kennedy, B.; Shelton, K.

    2004-01-01

    This viewgraph presentation provides an overview of a pilot study intended to demonstrate in an auditable fashion how advanced space technology development can best impact future NASA missions. The study was a joint project by staff members of NASA's Jet Propulsion Laboratory (JPL), and Goddard Space Flight Center (GSFC). The other goals of the study were to show an approach to deal effectively with inter-program analysis trades, and to explore the limits of these approaches and tools in terms of what can be realistically achieved.

  7. Summary Report of Mission Acceleration Measurements for STS-62, Launched 4 March 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1994-01-01

    The second mission of the United States Microgravity Payload on-board the STS-62 mission was supported with three accelerometer instruments: the Orbital Acceleration Research Experiment (OARE) and two units of the Space Acceleration Measurements System (SAMS). The March 4, 1994 launch was the fourth successful mission for OARE and the ninth successful mission for SAMS. The OARE instrument utilizes a sensor for very low frequency measurements below one Hertz. The accelerations in this frequency range are typically referred to as quasisteady accelerations. One of the SAMS units had two remote triaxial sensor heads mounted on the forward MPESS structure between two furnance experiments, MEPHISTO and AADSF. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The other SAMS unit utilized three remote triaxial sensor heads. Two of the sensor heads were mounted on the aft MPESS structure between the two experiments IDGE and ZENO. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The third sensor head was mounted on the thermostat housing inside the IDGE experiment container. This triaxial head had a low-pass filter cut-off frequency at 5 Hz. This report is prepared to furnish interested experiment investigators with a guide to evaluating the acceleration environment during STS-62 and as a means of identifying areas which require further study. To achieve this purpose, various pieces of information are included, such as an overview of the STS-62 mission, a description of the accelerometer system flown on STS-62, some specific analysis of the accelerometer data in relation to the various mission activities, and an overview of the low-gravity environment during the entire mission. An evaluation form is included at the end of the report to solicit users' comments about the usefulness of this series of reports.

  8. Overview of the MEDLI Project

    NASA Technical Reports Server (NTRS)

    Gazarik, Michael J.; Little, Alan; Cheatwood, F. Neil; Wright, Michael J.; Herath, Jeff A.; Martinez, Edward R.; Munk, Michelle; Novak, Frank J.; Wright, Henry S.

    2008-01-01

    The Mars Science Laboratory Entry, Descent, and Landing Instrumentation (MEDLI) Project s objectives are to measure aerothermal environments, sub-surface heatshield material response, vehicle orientation, and atmospheric density for the atmospheric entry and descent phases of the Mars Science Laboratory (MSL) entry vehicle. The flight science objectives of MEDLI directly address the largest uncertainties in the ability to design and validate a robust Mars entry system, including aerothermal, aerodynamic and atmosphere models, and thermal protection system (TPS) design. The instrumentation suite will be installed in the heatshield of the MSL entry vehicle. The acquired data will support future Mars entry and aerocapture missions by providing measured atmospheric data to validate Mars atmosphere models and clarify the design margins for future Mars missions. MEDLI thermocouple and recession sensor data will significantly improve the understanding of aeroheating and TPS performance uncertainties for future missions. MEDLI pressure data will permit more accurate trajectory reconstruction, as well as separation of aerodynamic and atmospheric uncertainties in the hypersonic and supersonic regimes. This paper provides an overview of the project including the instrumentation design, system architecture, and expected measurement response.

  9. Safety and Mission Assurance: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.

    2016-01-01

    Manned spaceflight is an incredibly complex and inherently risky human endeavor. As the result of the lessons learned through years of triumph and tragedy, the National Aeronautics and Space Administration (NASA) has embraced a comprehensive and integrated approach to the challenge of ensuring safety and mission success. This presentation will provide an overview of some of the techniques employed in this effort, with a focus on the processing operations performed at the Kennedy Space Center (KSC).

  10. STS-113 Crew Interviews: Michael Lopez-Alegria, Mission Specialist 1

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-113 Mission Specialist 1 Michael Lopez-Alegria is seen during this preflight interview where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Lopez-Alegria outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (P1 truss) and the crew transfer activities (the crew of Expedition Six is replacing the crew of Expedition Five on the International Space Station (ISS)). Lopez-Alegria discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew. He ends with his thoughts on the importance of the ISS as the second anniversary of human occupation of the Space Station approaches.

  11. Overview of GPM Missions's Ground Validation Program

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Mugnai, Alberto; Nakamura, Kenji

    2004-01-01

    An important element of the internationally structured Global Precipitation Measurement (GPM) mission will be its ground validation research program. Within the last year, the initial architecture of this program has taken shape. This talk will describe that architecture, both in terms of the international program and in terms of the separate regional programs of the principle participating space agencies, i.e., ESA, JAXA, and NASA. There are three overriding goals being addressed in the planning of this program; (1) establishing various new, challenging and important scientific research goals vis-a-vis current ground validation programs supporting satellite retrieval of precipitation; (2) designing the program as an international partnership which operates, out of necessity, heterogeneous sites in terms of their respective observational foci and science thrusts, but anneals itself in terms of achieving a few overarching scientific objectives; and (3) developing a well-designed protocol that allows specific sites or site networks, at their choosing, to operate in a 'supersite' mode - defined as the capability to routinely transmit GV information at low latency to GPM's Precipitation Processing System (PPS). (The PPS is being designed as GPM's data information system, a distributed data system with main centers at the Goddard Space Flight Center (GSFC) within NASA, the Earth Observation Research Center (EORC) within JAXA, and a TBD facility to be identified by the ESA s ESTEC facility in Noordwijk.)

  12. The BRITE Constellation Nanosatellite Mission: Testing, Commissioning, and Operations

    NASA Astrophysics Data System (ADS)

    Pablo, H.; Whittaker, G. N.; Popowicz, A.; Mochnacki, S. M.; Kuschnig, R.; Grant, C. C.; Moffat, A. F. J.; Rucinski, S. M.; Matthews, J. M.; Schwarzenberg-Czerny, A.; Handler, G.; Weiss, W. W.; Baade, D.; Wade, G. A.; Zocłońska, E.; Ramiaramanantsoa, T.; Unterberger, M.; Zwintz, K.; Pigulski, A.; Rowe, J.; Koudelka, O.; Orleański, P.; Pamyatnykh, A.; Neiner, C.; Wawrzaszek, R.; Marciniszyn, G.; Romano, P.; Woźniak, G.; Zawistowski, T.; Zee, R. E.

    2016-12-01

    BRIght Target Explorer (BRITE) Constellation, the first nanosatellite mission applied to astrophysical research, is a collaboration among Austria, Canada and Poland. The fleet of satellites (6 launched; 5 functioning) performs precise optical photometry of the brightest stars in the night sky. A pioneering mission like BRITE—with optics and instruments restricted to small volume, mass and power in several nanosatellites, whose measurements must be coordinated in orbit—poses many unique challenges. We discuss the technical issues, including problems encountered during on-orbit commissioning (especially higher-than-expected sensitivity of the CCDs to particle radiation). We describe in detail how the BRITE team has mitigated these problems, and provide a complete overview of mission operations. This paper serves as a template for how to effectively plan, build and operate future low-cost niche-driven space astronomy missions. Based on data collected by the BRITE Constellation satellite mission, designed, built, launched, operated and supported by the Austrian Research Promotion Agency (FFG), the University of Vienna, the Technical University of Graz, the Canadian Space Agency (CSA), the University of Toronto Institute for Aerospace Studies (UTIAS), the Foundation for Polish Science & Technology (FNiTP MNiSW), and National Science Centre (NCN).

  13. The NASA Electronic Parts and Packaging (NEPP) Program: An Overview

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.; Sampson, Michael J.

    2016-01-01

    This presentation provides an overview of the NEPP Program. The NEPP Mission is to provide guidance to NASA for the selection and application of microelectronics technologies; Improve understanding of the risks related to the use of these technologies in the space environment; Ensure that appropriate research is performed to meet NASA mission assurance needs. NEPP's Goals are to provide customers with appropriate and cost-effective risk knowledge to aid in: Selection and application of microelectronics technologies; Improved understanding of risks related to the use of these technologies in the space environment; Appropriate evaluations to meet NASA mission assurance needs; Guidelines for test and application of parts technologies in space; Assurance infrastructure and support for technologies in use by NASA space systems.

  14. TerraSAR-X mission

    NASA Astrophysics Data System (ADS)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the

  15. Simulation Exploration Experience 2018 Overview

    NASA Technical Reports Server (NTRS)

    Paglialonga, Stephen; Elfrey, Priscilla; Crues, Edwin Z.

    2018-01-01

    The Simulation Exploration Experience (SEE) joins students, industry, professional associations, and faculty together for an annual modeling and simulation (M&S) challenge. SEE champions collaborative collegiate-level modeling and simulation by providing a venue for students to work in highly dispersed inter-university teams to design, develop, test, and execute simulated missions associated with space exploration. Participating teams gain valuable knowledge, skills, and increased employability by working closely with industry professionals, NASA, and faculty advisors. This presentation gives and overview of the SEE and the upcoming 2018 SEE event.

  16. Low-latitude ionospheric research using the CIRCE Mission: instrumentation overview

    NASA Astrophysics Data System (ADS)

    Dymond, K. F.; Nicholas, A. C.; Budzien, S. A.; Stephan, A. W.; Marquis, P.; Brown, C. M.; Finne, T.; Wolfram, K. D.

    2017-08-01

    The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) is a dual-satellite mission consisting of two 6U CubeSats actively maintaining a lead-follow configuration in the same orbit with a launch planned for the 2018-2019 time-frame. These nanosatellites will each feature two 1U size ultraviolet photometers, observing the 135.6 nm emission of atomic oxygen at nighttime. The primary objective is to characterize the two-dimensional distribution of electrons in the orbital plane of the vehicles with special emphasis on studying the morphology of the Equatorial Ionization Anomaly (EIA). The methodology used to reconstruct the nighttime ionosphere employs continuous UV photometry from four distinct viewing angles in combination with an additional data source, such as in situ plasma density measurements or a wide-band beacon data, with advanced image space reconstruction algorithm tomography techniques. The COSMIC/FORMOSAT-3 (CF3) constellation featured six Tiny Ionospheric Photometers, compact UV sensors which served as the pathfinder for the CIRCE instruments. The TIP instruments on the CF3 satellites demonstrated detection of ionospheric bubbles before they had penetrated the peak of the F-region ionosphere, showed the temporal evolution of the EIA, and observed a Medium Scale Travelling Ionospheric Disturbance. We present our mission concept, some pertinent information regarding the instrument design, the results of simulations illustrating the imaging capability of the sensor suite, and a range of science questions addressable using such a system.

  17. Conceptual Design of a Hypervelocity Asteroid Intercept Vehicle (HAIV) Flight Validation Mission

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2013-01-01

    In this paper we present a detailed overview of the MDL study results and subsequent advances in the design of GNC algorithms for accurate terminal guidance during hypervelocity NEO intercept. The MDL study produced a conceptual con guration of the two-body HAIV and its subsystems; a mission scenario and trajectory design for a notional flight validation mission to a selected candidate target NEO; GNC results regarding the ability of the HAIV to reliably intercept small (50 m) NEOs at hypervelocity (typically greater than 10 km/s); candidate launch vehicle selection; a notional operations concept and cost estimate for the flight validation mission; and a list of topics to address during the remainder of our NIAC Phase II study.

  18. JWST's near infrared spectrograph status and performance overview

    NASA Astrophysics Data System (ADS)

    Te Plate, Maurice; Birkmann, Stephan; Sirianni, Marco; Rumler, Peter; Jensen, Peter; Ehrenwinkler, Ralf; Mosner, Peter; Karl, Hermann; Rapp, Robert; Wright, Ray; Wu, Rai

    2016-09-01

    The James Webb Space Telescope (JWST) Observatory is the follow-on mission to the Hubble Space Telescope (HST). JWST will be the biggest space telescope ever built and it will lead to astounding scientific breakthroughs. The mission will be launched in October 2018 from Kourou, French Guyana by an ESA provided Ariane 5 rocket. NIRSpec, one of the four instruments on board of the mission, recently underwent a major upgrade. New infrared detectors were installed and the Micro Shutter Assembly (MSA) was replaced as well. The rework was necessary because both systems were found to be degrading beyond a level that could be accepted. Now in its final flight configuration, NIRSpec underwent a final cryogenic performance test at NASA's Goddard Space Flight Center (GSFC) as part of the Integrated Science Instrument Module (ISIM). This paper will present a status overview and results of the recent test campaigns.

  19. STS-95 Mission Highlights Resources Tape

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-95 flight crew, Commander Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn present a video overview of their space flight. They are seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. Once on-orbit the primary objectives include conducting a variety of science experiments in the pressurized SPACEHAB module, the deployment and retrieval of the Spartan free-flyer payload, and operations with the Hubble Space Telescope (HST) Orbiting Systems Test (HOST) and the International Extreme Ultraviolet Hitchhiker (IEH) payloads being carried in the payload bay. Throughout the presentation, the astronauts take turns narrating particular aspects of the mission with which they were involved.

  20. STS-134 crew during EVA TPS Overview training in the TPS/PABF

    NASA Image and Video Library

    2009-12-15

    JSC2009-E-284897 (15 Dec. 2009) --- STS-134 crew members participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center. Pictured from the right are NASA astronauts Andrew Feustel, Greg Chamitoff, Michael Fincke, all mission specialists; along with NASA astronaut Gregory H. Johnson, pilot; and European Space Agency astronaut Roberto Vittori, mission specialist. John Ray (left) assisted the crew members.

  1. NASA Glenn Research Center Electrochemistry Branch Battery Overview

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2010-01-01

    This presentation covers an overview of NASA Glenn s history and heritage in the development of electrochemical systems for aerospace applications. Specific areas of focus are Li-ion batteries and their development for future Exploration missions. Current component development efforts for high energy and ultra high energy Li-ion batteries are addressed. Electrochemical systems are critical to the success of Exploration, Science and Space Operations missions. NASA Glenn has a long, successful heritage with batteries and fuel cells for aerospace applications. GRC Battery capabilities and expertise span basic research through flight hardware development and implementation. There is a great deal of synergy between energy storage system needs for aerospace and terrestrial applications.

  2. Redefining Our Mission: What Does Higher Education Need from Student Affairs?

    ERIC Educational Resources Information Center

    Porterfield, Kent T.; Roper, Larry D.; Whitt, Elizabeth J.

    2011-01-01

    In this article, the authors argue that the relevance of student affairs depends on the will to redefine the mission, structures, and practices to provide the leadership that institutions require. They begin with an overview of challenges to higher education and student affairs, examine the implications of those challenges for student affairs, and…

  3. Neurolab - A Space Shuttle Mission Dedicated to Neuroscience Research

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session JA5 includes short reports concerning: (1) NASA/NIH Neurolab Collaborations; (2) Neurolab Mission: An Example of International Cooperation; (3) Neurolab: An Overview of the Planned Scientific Investigations; (4) EDEN: A Payload for NEUROLAB, dedicated to Neuro Vestibular Research; (5) Neurolab Experiments on the Role of Visual Cues in Microgravity Spatial Orientation; and (6) The Role of Space in the Exploration of the Mammalian Vestibular System.

  4. Practical Application of Model-based Programming and State-based Architecture to Space Missions

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory; Ingham, Michel; Chung, Seung; Martin, Oliver; Williams, Brian

    2006-01-01

    A viewgraph presentation to develop models from systems engineers that accomplish mission objectives and manage the health of the system is shown. The topics include: 1) Overview; 2) Motivation; 3) Objective/Vision; 4) Approach; 5) Background: The Mission Data System; 6) Background: State-based Control Architecture System; 7) Background: State Analysis; 8) Overview of State Analysis; 9) Background: MDS Software Frameworks; 10) Background: Model-based Programming; 10) Background: Titan Model-based Executive; 11) Model-based Execution Architecture; 12) Compatibility Analysis of MDS and Titan Architectures; 13) Integrating Model-based Programming and Execution into the Architecture; 14) State Analysis and Modeling; 15) IMU Subsystem State Effects Diagram; 16) Titan Subsystem Model: IMU Health; 17) Integrating Model-based Programming and Execution into the Software IMU; 18) Testing Program; 19) Computationally Tractable State Estimation & Fault Diagnosis; 20) Diagnostic Algorithm Performance; 21) Integration and Test Issues; 22) Demonstrated Benefits; and 23) Next Steps

  5. Emirates eXploration Imager (EXI) Overview from the Emirates Mars Mission

    NASA Astrophysics Data System (ADS)

    Al Shamsi, M. R.; Wolff, M. J.; Jones, A. R.; Khoory, M. A.; Osterloo, M. M.; AlMheiri, S.; Reed, H.; Drake, G.

    2017-12-01

    The Emirates eXploration Imager (EXI) instrument is one of three scientific instruments abroad the Emirate Mars Mission (EMM) spacecraft, "Hope". The planned launch window opens in the summer of 2020, with the goal of this United Arab Emirates (UAE) mission to explore the dynamics of the Martian atmosphere through global spatial sampling which includes both diurnal and seasonal timescales. A particular focus of the mission is the improvement of our understanding of the global circulation in the lower atmosphere and the connections to the upward transport of energy of the escaping atmospheric particles from the upper atmosphere. This will be accomplished using three unique and complementary scientific instruments. The subject of this presentation, EXI, is a multi-band, camera capable of taking 12 megapixel images, which translates to a spatial resolution of better than 8 km with a well calibrated radiometric performance. EXI uses a selector wheel mechanism consisting of 6 discrete bandpass filters to sample the optical spectral region: 3 UV bands and 3 visible (RGB) bands. Atmospheric characterization will involve the retrieval of the ice optical depth using the 300-340 nm band, the dust optical depth in the 205-235nm range, and the column abundance of ozone with a band covering 245-275 nm. Radiometric fidelity is optimized while simplifying the optical design by separating the UV and VIS optical paths. The instrument is being developed jointly by the Laboratory for Atmospheric and Space Physics (LASP), University of California, Boulder, USA, and Mohammed Bin Rashid Space Centre (MBRSC), Dubai, UAE. The development of analysis software (reduction and retrieval) is being enabled through an EXI Observation Simulator. This package will produce EXI-like images using a combination of realistic viewing geometry (NAIF and a "reference trajectory") and simulated radiance values that include relevant atmospheric conditions and properties (Global Climate Model, DISORT). These

  6. Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater

    USGS Publications Warehouse

    Arvidson, R. E.; Ashley, James W.; Bell, J.F.; Chojnacki, M.; Cohen, J.; Economou, T.E.; Farrand, W. H.; Fergason, R.; Fleischer, I.; Geissler, P.; Gellert, Ralf; Golombek, M.P.; Grotzinger, J.P.; Guinness, E.A.; Haberle, R.M.; Herkenhoff, K. E.; Herman, J.A.; Iagnemma, K.D.; Jolliff, B.L.; Johnson, J. R.; Klingelhofer, G.; Knoll, A.H.; Knudson, A.T.; Li, R.; McLennan, S.M.; Mittlefehldt, D. W.; Morris, R.V.; Parker, T.J.; Rice, M.S.; Schroder, C.; Soderblom, L.A.; Squyres, S. W.; Sullivan, R.J.; Wolff, M.J.

    2011-01-01

    Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boulders that include iron and stony-iron meteorites and Martian impact ejecta; (4) measurements of wall rock strata within Erebus and Victoria craters that provide compelling evidence of formation by aeolian sand deposition, with local reworking within ephemeral lakes; (5) determination that the stratigraphy exposed in the walls of Victoria and Endurance craters show an enrichment of chlorine and depletion of magnesium and sulfur with increasing depth. This result implies that regional-scale aqueous alteration took place before formation of these craters. Most recently, Opportunity has been traversing toward the ancient Endeavour crater. Orbital data show that clay minerals are exposed on its rim. Hydrated sulfate minerals are exposed in plains rocks adjacent to the rim, unlike the surfaces of plains outcrops observed thus far by Opportunity. With continued mechanical health, Opportunity will reach terrains on and around Endeavour's rim that will be markedly different from anything examined to date.

  7. Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater

    USGS Publications Warehouse

    Arvidson, R. E.; Ashley, James W.; Bell, J.F.; Chojnacki, M.; Cohen, J.; Economou, T.E.; Farrand, W. H.; Fergason, R.; Fleischer, I.; Geissler, P.; Gellert, Ralf; Golombek, M.P.; Grotzinger, J.P.; Guinness, E.A.; Haberle, R.M.; Herkenhoff, K. E.; Herman, J.A.; Iagnemma, K.D.; Jolliff, B.L.; Johnson, J. R.; Klingelhofer, G.; Knoll, A.H.; Knudson, A.T.; Li, R.; McLennan, S.M.; Mittlefehldt, D. W.; Morris, R.V.; Parker, T.J.; Rice, M.S.; Schroder, C.; Soderblom, L.A.; Squyres, S. W.; Sullivan, R.J.; Wolff, M.J.

    2011-01-01

    Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boulders that include iron and stony-iron meteorites and Martian impact ejecta; (4) measurements of wall rock strata within Erebus and Victoria craters that provide compelling evidence of formation by aeolian sand deposition, with local reworking within ephemeral lakes; (5) determination that the stratigraphy exposed in the walls of Victoria and Endurance craters show an enrichment of chlorine and depletion of magnesium and sulfur with increasing depth. This result implies that regional-scale aqueous alteration took place before formation of these craters. Most recently, Opportunity has been traversing toward the ancient Endeavour crater. Orbital data show that clay minerals are exposed on its rim. Hydrated sulfate minerals are exposed in plains rocks adjacent to the rim, unlike the surfaces of plains outcrops observed thus far by Opportunity. With continued mechanical health, Opportunity will reach terrains on and around Endeavour's rim that will be markedly different from anything examined to date. Copyright 2011 by the American Geophysical Union.

  8. From the Vega mission to comet Halley to the Rosetta mission to comet 67/P Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Zelenyi, L. M.; Ksanfomality, L. V.

    2016-12-01

    The data acquired by the Vega and Giotto spacecraft, while investigating comet 1P/Halley in 1986, are compared to the results of the first phase of exploration of the nucleus of comet 67P/Churyumov-Gerasimenko performed with the Rosetta and Philae modules. The course of the Rosetta mission activity and the status of the modules after the Philae probe landing on the comet's nucleus are overviewed. Since some elements of the touchdown equipment failed, a number of in-situ experiments on the comet's nucleus were not carried out.

  9. Global Precipitation Measurement (GPM) Mission Core Spacecraft Systems Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Bundas, David J.; ONeill, Deborah; Field, Thomas; Meadows, Gary; Patterson, Peter

    2006-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  10. Global precipitation measurement (GPM) mission core spacecraft systems engineering challenges

    NASA Astrophysics Data System (ADS)

    Bundas, David J.; O'Neill, Deborah; Rhee, Michael; Feild, Thomas; Meadows, Gary; Patterson, Peter

    2006-09-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  11. Archiving Mars Mission Data Sets with the Planetary Data System

    NASA Technical Reports Server (NTRS)

    Guinness, Edward A.

    2006-01-01

    This viewgraph presentation reviews the use of the Planetary Data System (PDS) to archive the datasets that are received from the Mars Missions. It reviews the lessons learned in the actual archiving process, and presents an overview of the actual archiving process. It also reviews the lessons learned from the perspectives of the projects, the data producers and the data users.

  12. Cryogenic Propulsion Stage (CPS) Configuration in Support of NASA's Multiple Design Reference Missions (DRMs)

    NASA Technical Reports Server (NTRS)

    Hanna, Stephen G.; Jones, David L.; Creech, Stephen D.; Lawrence, Thomas D.

    2012-01-01

    In support of the National Aeronautics and Space Administration's (NASA) Human Exploration and Operations Mission Directorate (HEOMD), the Space Launch System (SLS) is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's or-bit (BEO). The SLS Team is tasked with developing a system capable of safely and repeatedly lofting a new fleet of spaceflight vehicles beyond Earth orbit. The Cryogenic Propulsion Stage (CPS) is a key enabler for evolving the SLS capability for BEO missions. This paper reports on the methodology and initial recommendations relative to the CPS, giving a brief retrospective of early studies on this promising propulsion hardware. This paper provides an overview of the requirements development and CPS configuration in support of NASA's multiple Design Reference Missions (DRMs).

  13. Woven TPS Enabling Missions Beyond Heritage Carbon Phenolic

    NASA Technical Reports Server (NTRS)

    Stackpoole, M.; Feldman, J.; Venkatapathy, E.

    2013-01-01

    WTPS is a new approach to producing TPS architectures that uses precisely engineered 3D weaving techniques to customize material characteristics needed to meet specific missions requirements for protecting space vehicles from the intense heating generated during atmospheric entry. Using WTPS, sustainable, scalable, mission-optimized TPS solutions can be achieved with relatively low life cycle costs compared with the high costs and long development schedules currently associated with material development and certification. WTPS leverages the mature state-of-the-art weaving technology that has evolved from the textile industry to design TPS materials with tailorable performance. Currently, missions anticipated encountering heat fluxes in the range of 1500 4000 Wcm2 and pressures greater than 1.5 atm are limited to using fully dense Carbon Phenolic. However, fully dense carbon phenolic is only mass efficient at higher heat fluxes greater than 4000 Wcm2), and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this mid-density TPS gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This presentation will overview the WTPS concept and present some results from initial testing completed comparing WTPS architectures to heritage carbon phenolic.

  14. The Computer Revolution and Evangelical Mission Research and Strategy: An Historical Overview

    ERIC Educational Resources Information Center

    Jaffarian, Michael

    2014-01-01

    This chapter consists of a short history of the impact of computer technology on Christian evangelical mission research from the 1970's to the present. The trail winds through World Vision, MARC, the "World Christian Encyclopedia," "Operation World," SIL, OC International, DAWN, Global Mapping International, the AD2000 and…

  15. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.; Wusk, Mary E.; Hughes, Monica F.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future.

  16. Exploration Life Support Overview and Benefits

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe P.

    2007-01-01

    NASA s Exploration Life Support (ELS) Project is providing technology development to address air, water and waste product handling for future exploration vehicles. Existing life support technology and processes need to improve to enable exploration vehicles to meet mission goals. The weight, volume, power and thermal control required, reliability, crew time and life cycle cost are the primary targets for ELS technology development improvements. An overview of the ELS technologies being developed leads into an evaluation of the benefits the ELS technology developments offer.

  17. Overview of the Applied Aerodynamics Division

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A major reorganization of the Aeronautics Directorate of the Langley Research Center occurred in early 1989. As a result of this reorganization, the scope of research in the Applied Aeronautics Division is now quite different than that in the past. An overview of the current organization, mission, and facilities of this division is presented. A summary of current research programs and sample highlights of recent research are also presented. This is intended to provide a general view of the scope and capabilities of the division.

  18. HDU Deep Space Habitat (DSH) Overview

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project Deep Space Habitat (DSH) analog that will be field-tested during the 2011 Desert Research and Technologies Studies (D-RATS) field tests. The HDU project is a technology pull project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU Pressurized Excursion Module (PEM) that was field tested in the 2010 D-RATS, adding habitation functionality to the prototype unit. The 2010 configuration of the HDU-PEM consisted of a lunar surface laboratory module that was used to bring over 20 habitation-related technologies together in a single platform that could be tested as an advanced habitation analog in the context of mission architectures and surface operations. The 2011 HDU-DSH configuration will build upon the PEM work, and emphasize validity of crew operations (habitation and living, etc), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The HDU project consists of a multi-center team brought together in a skunkworks approach to quickly build and validate hardware in analog environments. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 analog field test will include Multi Mission Space Exploration Vehicles (MMSEV) and the DSH among other demonstration elements to be brought together in a mission architecture context. This paper will describe overall objectives, various habitat configurations, strategic plan, and technology integration as it pertains to the 2011 field tests.

  19. Japanese Next Solar Mission: SOLAR-C

    NASA Astrophysics Data System (ADS)

    Sakao, T.; Solar-C, W. G.

    2008-09-01

    We present introductory overview on the next Japanese solar mission, SOLAR-C, which has been envisaged following the success of Hinode (SOLAR-B) mission. Two plans, Plan A and Plan B, are under extensive study from science objectives as well as engineering point of view. Plan A aims to perform out-of-ecliptic observations for investigating, with helioseismic approach, internal structure and dynamo mechanisms of the Sun. It also explores polar regions where fast solar wind is believed to be originated. The baseline orbit for Plan A is a circular orbit of 1 AU distance from the Sun, with its inclination at around, or greater than, 40 degrees. Plan B pursues small-scale plasma processes and structures in the solar atmosphere which attract growing interest, following Hinode discoveries, for understanding fully dynamism and magnetic nature of the atmosphere. With Plan B, high-angular-resolution investigation of the entire solar atmosphere (from the photosphere to the corona, including their interface layers, i.e., chromosphere and transition region) is to be performed with enhanced spectroscopic and spectro-polarimetric capability as compared with Hinode, together with enhanced sensitivity towards ultra-violet wavelengths. There has been wide and evolving support for the SOLAR-C mission not only from solar physics community but also from related research areas in Japan. We request SOLAR-C to be launched in mid. 2010s. Following the highly-successful achievements of international collaboration for Yohkoh and Hinode, we strongly hope the SOLAR-C mission be realized under extensive collaboration with European and U.S. partners. Japanese SOLAR-C working group was officially approved by ISAS/JAXA in December 2007 for mission studies and promoting international collaboration. It is expected that a single mission plan is to be proposed after one year of investigation on Plan A and Plan B.

  20. Fuel Cell Research and Development for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Hoberecht, Mark; Loyselle, Patricia; Burke, Kenneth; Bents, David; Farmer, Serene; Kohout, Lisa

    2006-01-01

    NASA has been using fuel cell systems since the early days of space flight. Polymer Exchange Membrane Fuel cells provided the primary power for the Gemini and Apollo missions and more recently, alkaline fuel cells serve as the primary power source for the Space Shuttle. NASA's current investments in fuel cell technology support both Exploration and Aeronautics programs. This presentation provides an overview of NASA's fuel cell development programs.

  1. Crossing Mars: Past and Future Missions to a Cold, Dry Desert

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    Dr. Geoffrey A. Landis of the Photovoltaics and Space Environment Effects Branch presented an overview of recent discoveries about the environment of Mars. He covered missions from the 1966 Mariner IV that returned those first grainy close-up pictures of Mars showing an ancient cratered terrain to the Mars Odyssey mission with its tantalizing evidence of recent water flows on Mars. Mars is one of the most interesting planets in the solar system, featuring enormous canyons, giant volcanoes, and indications that, early in its history, it might have had rivers and perhaps even oceans. Five years ago, in July of 1997, the Pathfinder mission landed on Mars, bringing with it the microwave-oven sized Sojourner rover to wander around on the surface and analyze rocks. Pathfinder is only the first of an armada of spacecraft that will examine Mars from the pole to the equator in the next decade, culminating (someday, we hope!) with a mission to bring humans to Mars.

  2. On-Orbit Maintenance of a Short Duration Mission: Space Technology 5

    NASA Technical Reports Server (NTRS)

    Calder, Alexander C.

    2008-01-01

    This viewgraph presentation contains an overview of the the Space Technology 5 (ST5) mission, a review of the Post-separation anomaly that occurred, and the patches and work-arounds that were implemented to correct the problems caused by the anomaly. The events that involved multi-bit errors and the actions that occurred to correct these are also reviewed.

  3. Habitation Concepts for Human Missions Beyond Low-Earth-Orbit

    NASA Technical Reports Server (NTRS)

    Smitherman, David V.

    2016-01-01

    The Advanced Concepts Office at the NASA Marshall Space Flight Center has been engaged for several years in a variety of study activities to help define various options for deep space habitation. This work includes study activities supporting asteroid, lunar and Mars mission activities for the Human spaceflight Architecture Team (HAT), the Deep Space Habitat (DSH) project, and the Exploration Augmentation Module (EAM) project through the NASA Advanced Exploration Systems (AES) Program. The missions under consideration required human habitation beyond low-Earth-orbit (LEO) including deep space habitation in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar surface missions, deep space research facilities, Mars vehicle servicing, and Mars transit missions. Additional considerations included international interest and near term capabilities through the International Space Station (ISS) and Space Launch System (SLS) programs. A variety of habitat layouts have been considered, including those derived from the existing ISS systems, those that could be fabricated from SLS components, and other approaches. This paper presents an overview of several leading designs explored in late fiscal year (FY) 2015 for asteroid, lunar, and Mars mission habitats and identifies some of the known advantages and disadvantages inherent in each. Key findings indicate that module diameters larger than those used for ISS can offer lighter structures per unit volume, and sufficient volume to accommodate consumables for long-duration missions in deep space. The information provided with the findings includes mass and volume data that should be helpful to future exploration mission planning and deep space habitat design efforts.

  4. Asteroid Redirect Mission Concept: A Bold Approach for Utilizing Space Resources

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Merrill, Raymond G.; Brophy, John R.; Mueller, Robert P.

    2014-01-01

    The utilization of natural resources from asteroids is an idea that is older than the Space Age. The technologies are now available to transform this endeavour from an idea into reality. The Asteroid Redirect Mission (ARM) is a mission concept which includes the goal of robotically returning a small Near-Earth Asteroid (NEA) or a multi-ton boulder from a large NEA to cislunar space in the mid 2020's using an advanced Solar Electric Propulsion (SEP) vehicle and currently available technologies. The paradigm shift enabled by the ARM concept would allow in-situ resource utilization (ISRU) to be used at the human mission departure location (i.e., cislunar space) versus exclusively at the deep-space mission destination. This approach drastically reduces the barriers associated with utilizing ISRU for human deep-space missions. The successful testing of ISRU techniques and associated equipment could enable large-scale commercial ISRU operations to become a reality and enable a future space-based economy utilizing processed asteroidal materials. This paper provides an overview of the ARM concept and discusses the mission objectives, key technologies, and capabilities associated with the mission, as well as how the ARM and associated operations would benefit humanity's quest for the exploration and settlement of space.

  5. ESA Sentinel-1 Mission and Products

    NASA Astrophysics Data System (ADS)

    Floury, Nicolas; Attema, Evert; Davidson, Malcolm; Levrini, Guido; Rommen, Björn; Rosich, Betlem; Snoeij, Paul

    The global Monitoring for Environment and Security (GMES) space component relies on existing and planned space assets by European States, the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the European Space Agency (ESA), as well as new complementary developments by ESA. The new developments are implemented in terms of five families of satellites called Sentinels. The Sentinel-1 mission is an imaging synthetic aperture radar (SAR) mission at C-band designed to supply all-weather day-and-night imagery to a number of operational Earth observation based services. Three priorities (fasttrack services) for the mission have been identified by user consultation working groups of the European Union: Marine Core Services, Land Monitoring and Emergency Services. These cover applications such as: - monitoring sea ice zones and the arctic environment, - surveillance of marine environment, - monitoring land surface motion risks, - mapping of land surfaces: forest, water and soil, agriculture, - mapping in support of humanitarian aid in crisis situations. Sentinel-1 has been designed to address medium resolution applications. It includes a main mode of operation that features a wide swath (250 km) and a medium resolution (5 m x 20 m). The two-satellite constellation offers six days exact repeat and the conflict-free operations based on the main operational mode allow exploiting every single data take. This paper describes the Sentinel-1 mission, provides an overview of the mission requirements, and presents some of the key user driven information products, the crucial requirements for operational sustainable services being continuity of data supply, frequent revisit, geographical coverage and timeliness. As data products from the Agency‘s successful ERS-1, ERS-2 and Envisat missions form the basis for many of the pilot GMES services, Sentinel-1 data products need to maintain and in some ways to improve data quality levels of the Agency

  6. Recent Science Highlights of the Van Allen Probes Mission

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, Aleksandr

    2016-10-01

    The morning of 30 August 2012 saw an Atlas 5 rocket launch NASA's second Living With a Star spacecraft mission, the twin Radiation Belt Storm Probes, into an elliptic orbit cutting through Earth's radiation belts. Renamed the Van Allen Probes soon after launch, the Probes are designed to determine how the highly variable populations of high-energy charged particles within the radiation belts, dangerous to astronauts and satellites, are created, respond to solar variations, and evolve in space environments. The Van Allen Probes mission extends beyond the practical considerations of the hazard's of Earth's space environment. Twentieth century observations of space and astrophysical systems throughout the solar system and out into the observable universe have shown that the processes that generate intense particle radiation within magnetized environments such as Earth's are universal. During its mission the Van Allen Probes verified and quantified previously suggested energization processes, discovered new energization mechanisms, revealed the critical importance of dynamic plasma injections into the innermost magnetosphere, and used uniquely capable instruments to reveal inner radiation belt features that were all but invisible to previous sensors. This paper gives a brief overview of the mission, presents some recent science highlights, and discusses plans for the extended mission.

  7. STS-88 Mission Highlights Resources Tape. Tape B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-88 flight crew, Commander Robert D. Cabana, Pilot Frederick W. Sturckow, and Mission Specialists Nancy J. Currie, James H. Newman, Jerry L. Ross, and Sergei Krikalev present a video overview of their space flight. Tape two of three includes the installation of an S-Band to help monitor the UNITY Connecting Module, the opening of UNITY's hatch, the opening of the main compartment hatch to ZARYA Control Module, and the repair of the inflight maintenance system.

  8. STS-88 Mission Highlights Resources Tape. Tape A

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-88 flight crew, Commander Robert D. Cabana, Pilot Frederick W. Sturckow, and Mission Specialists Nancy J. Currie, James H. Newman, Jerry L. Ross, and Sergei Krikalev present a video overview of their space flight. This is the first of three videos which show the highlights of the Endeavour mission. Important visual images include pre-launch activities such as the eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also included are various panoramic views of the shuttle on the pad. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. Once on-orbit crew members are seen delivering and connecting the UNITY Connecting Module to the ZARYA Control Module.

  9. Using Computer Simulation for Neurolab 2 Mission Planning

    NASA Technical Reports Server (NTRS)

    Sanders, Betty M.

    1997-01-01

    This paper presents an overview of the procedure used in the creation of a computer simulation video generated by the Graphics Research and Analysis Facility at NASA/Johnson Space Center. The simulation was preceded by an analysis of anthropometric characteristics of crew members and workspace requirements for 13 experiments to be conducted on Neurolab 2 which is dedicated to neuroscience and behavioral research. Neurolab 2 is being carried out as a partnership among national domestic research institutes and international space agencies. The video is a tour of the Spacelab module as it will be configured for STS-90, scheduled for launch in the spring of 1998, and identifies experiments that can be conducted in parallel during that mission. Therefore, this paper will also address methods for using computer modeling to facilitate the mission planning activity.

  10. LTN Inlets and Nozzles Branch Overview; NASA GE - Methods Development Review

    NASA Technical Reports Server (NTRS)

    Long-Davis, Mary Jo

    2017-01-01

    LTNInlets and Nozzles Branch Overview to be presented to GE during method review meeting. Presentation outlines the capabilities, facilities and tools used by the LTN Branch to conduct its mission of developing design and analysis tools and technologies for inlets and nozzles used on advanced vehicle concepts ranging from subsonic to hypersonic speeds.

  11. Community Participation in the Space Infrared Telescope Facility (SIRTF) Mission: an Overview

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Beichman, C. A.; Bicay, M. D.; Caroff, L. J.; Christian, C. A.; Clemens, D. P.; Cruikshank, D. P.; Cutri, R. M.; Greenhouse, M. A.; Hanner, M. S.; Jones, T. J.; Miller, R. B.; Rieke, M. J.; Thronson, H. A., Jr.; Weiler, E. J.; Werner, M. W.; Woodward, C. E.

    1996-12-01

    Seventy five to eighty percent of the observing time on SIRTF will be awarded to the general astronomical community through Legacy Project (LP), Guest Observer (GO), Target of Opportunity (ToO), and Director's Discretionary Observations (DDO) programs. We describe the organization of the community of potential SIRTF observers under the auspices of the SIRTF Community Task Force (CTF) and summarize the activities of the CTF since its organization in late 1994. The CTF has appointed Working Groups (WGs) that include broad community representation to explore issues related to the definition of the LP, GO, and ToO Programs. Additional Wgs have been designated to study SIRTF Solar System Science and Data Archiving and Analysis. White papers delineating the major issues currently before the WGs can be read on the SIRTF-homepage at http://www.ipac.caltech.edu/SIRTF. An interactive forum on the homepage will enable the community to participate actively during the mission definition phase. Activities conducted at the SIRTF Community Workshops held at the 185th (January 1995, Tucson, AZ), 187th (January 1996, Austin, TX), and 189th (January, 1997, Toronto Canada) AAS meetings are summarized. A current version of the SIRTF Science Activities Timeline (SSAT) is presented. The SSAT defines the schedule for community activities that are necessary to conduct the SIRTF mission through its design, development, construction, preflight testing, and flight phases. Major milestones to be described include a series of workshops to define the LP program, NASA Research Announcement (NRA) releases for the LP and GO Programs, and NRA releases for flight-phase data archiving and analysis activities. An estimate of the fractional distribution of SIRTF observing time among Guaranteed Time Observations (GTOs), LPS, GOs, ToOs, and DDOs during the flight phase is presented. Further information regarding community activities in support of this NASA mission can be found on the SIRTF-homepage.

  12. Palmer Quest: A Feasible Nuclear Fission "Vision Mission" to the Mars Polar Caps

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Beegle, L. W.; Nakagawa, R.; Elliott, J. O.; Matthews, J. B.; Coleman, M. L.; Hecht, M. H.; Ivaniov, A. B.; Head, J. W.; Milkovich, S.

    2005-01-01

    We are engaged in a NASA Vision Mission study, called Palmer Quest after the American Antarctic explorer Nathaniel Palmer, to assess the presence of life and evaluate the habitability of the basal domain of the Mars polar caps. We address this goal through four objectives: 1. Determine the presence of amino acids, nutrients, and geochemical heterogeneity in the ice sheet. 2. Quantify and characterize the provenance of the amino acids in Mars ice. 3. Assess the stratification of outcropped units for indications of habitable zones. 4. Determine the accumulation of ice, mineralogic material, and amino acids in Mars ice caps over the present epoch. Because of the defined scientific goal for the vision mission, the Palmer Quest focus is astrobiological; however, the results of the study make us optimistic that aggressive multi-platform in-situ missions that address a wide range of objectives, such as climate change, can be supported by variations of the approach used on this mission. Mission Overview: The Palmer Quest baseline

  13. Spectroscopic and Photometric Survey of Northern Sky for the ESA PLATO space mission

    NASA Astrophysics Data System (ADS)

    Ženovienė, Renata; Bagdonas, Vilius; Drazdauskas, Arnas; Janulis, Rimvydas; Klebonas, Lukas; Mikolaitis, Šarūnas; Pakštienė, Erika; Tautvaišienė, Gražina

    2018-04-01

    The ESA-PLATO 2.0 mission will perform an in-depth analysis of the large part of the sky-sphere searching for extraterrestrial telluric-like planets. At the Molėtai Astronomical Observatory of Vilnius University, we started a spectroscopic and photometric survey of the northern sky fields that potentially will be targeted by the PLATO mission. We aim to contribute in developing the PLATO input catalogue by delivering a long-duration stellar variability information and a full spectroscopic characterization of brightest targets. First results of this survey are overviewed.

  14. Technology development, demonstration, and orbital support requirements for manned lunar and Mars missions

    NASA Technical Reports Server (NTRS)

    Llewellyn, Charles P.; Brender, Karen D.

    1990-01-01

    An overview of the critical technology needs and the Space Station Freedom (SSF) focused support requirements for the Office of Exploration's (OEXP) manned lunar and Mars missions is presented. Major emphasis is directed at the technology needs associated with the low earth orbit (LEO) transportation node assembly and vehicle processing functions required by the lunar and Mars mission flight elements. The key technology areas identified as crucial to support the LEO node function include in-space assembly and construction, in-space vehicle processing and refurbishment, space storable cryogenics, and autonomous rendezvous and docking.

  15. Technology needs development and orbital support requirements for manned lunar and Mars missions

    NASA Technical Reports Server (NTRS)

    Brender, Karen D.; Llewellyn, Charles P.

    1990-01-01

    This paper presents an overview of the critical technology needs and the Space Station Freedom focused support requirements for the Office of Exploration's manned lunar and Mars missions. The emphasis is on e directed at the technology needs associated with the low earth orbit (LEO) transportation node assembly and vehicle processing functions required by the lunar Mars mission flight elements. The key technology areas identified as crucial to support the LEO node function include in-space assembly and construction, in-space vehicle processing and refurbishment, space storable cryogenics, and autonomous rendezvous and docking.

  16. NASA's Radioisotope Power Systems Program Overview - A Focus on RPS Users

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; McCallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. To meet this goal, the RPS Program manages investments in RPS technologies and RPS system development, working closely with the Department of Energy. This paper provides an overview of the RPS Program content and status, its collaborations with potential RPS users, and the approach employed to maintain the readiness of RPS to support future NASA mission concepts.

  17. NASA Post-Columbia Safety & Mission Assurance, Review and Assessment Initiatives

    NASA Astrophysics Data System (ADS)

    Newman, J. Steven; Wander, Stephen M.; Vecellio, Don; Miller, Andrew J.

    2005-12-01

    On February 1, 2003, NASA again experienced a tragic accident as the Space Shuttle Columbia broke apart upon reentry, resulting in the loss of seven astronauts. Several of the findings and observations of the Columbia Accident Investigation Board addressed the need to strengthen the safety and mission assurance function at NASA. This paper highlights key steps undertaken by the NASA Office of Safety and Mission Assurance (OSMA) to establish a stronger and more- robust safety and mission assurance function for NASA programs, projects, facilities and operations. This paper provides an overview of the interlocking OSMA Review and Assessment Division (RAD) institutional and programmatic processes designed to 1) educate, inform, and prepare for audits, 2) verify requirements flow-down, 3) verify process capability, 4) verify compliance with requirements, 5) support risk management decision making, 6) facilitate secure web- based collaboration, and 7) foster continual improvement and the use of lessons learned.

  18. Engineering a Successful Mission: Lessons from the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Everett, David F.

    2011-01-01

    Schedule pressure is common in the commercial world, where late delivery of a product means delayed income and loss of profit. 12 Research spacecraft developed by NASA, on the other hand, tend to be driven by the high cost of launch vehicles and the public scrutiny of failure-- the primary driver is ensuring proper operation in space for a system that cannot be retrieved for repair. The Lunar Reconnaissance Orbiter (LRO) development faced both schedule pressure and high visibility. The team had to balance the strong push to meet a launch date against the need to ensure that this first mission for Exploration succeeded. This paper will provide an overview of the mission from concept through its first year of operation and explore some of the challenges the systems engineering team faced taking a mission from preliminary design review to pre-ship review in 3 years.

  19. An Overview of the James Webb Space Telescope (JWST) Project

    NASA Technical Reports Server (NTRS)

    Sabelhaus, Phillip A.

    2004-01-01

    The JWST project at the GSFC is responsible for the development, launch, operations and science data processing for the James Webb Space Telescope. The JWST project is currently in phase B with its launch scheduled for August 2011. The project is a partnership between NASA, ESA and CSA. The U.S. JWST team is now fully in place with the recent selection of Northrop Grumman Space Technology (NGST) as the prime contractor for the telescope and the Space Telescope Science Institute (STScI) as the mission operations and science data processing lead. This paper will provide an overview of the current JWST architecture and mission status including technology developments and risks.

  20. An Overview of the James Webb Space Telescope (JWST) Project

    NASA Technical Reports Server (NTRS)

    Sabelhaus, Phillip A.; Campbell, Doug; Clampin, Mark; Decker, John; Greenhouse, Matt; Johns, Alan; Menzel, Mike; Smith, Robert; Sullivan, Pam

    2005-01-01

    The JWST project at the GSFC is responsible for the development, launch, operations and science data processing for the James Webb Space Telescope. The JWST project is currently in phase B with its launch scheduled for August 2011. The project is a partnership between NASA, ESA and CSA. The U.S. JWST team is now fully in place with the selection of Northrop Grumman Space Technology (NGST) as the prime contractor for the telescope and the Space Telescope Science Institute (STScI) as the mission operations and science data processing lead. This paper will provide an overview of the current JWST architecture and mission status including technology developments and risks.

  1. The MARS2013 Mars analog mission.

    PubMed

    Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations.

  2. The Aerosol/Cloud/Ecosystems Mission (ACE)

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark

    2008-01-01

    The goals and measurement strategy of the Aerosol/Cloud/Ecosystems Mission (ACE) are described. ACE will help to answer fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems. Specifically, the goals of ACE are: 1) to quantify aerosol-cloud interactions and to assess the impact of aerosols on the hydrological cycle and 2) determine Ocean Carbon Cycling and other ocean biological processes. It is expected that ACE will: narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change; measure the ocean ecosystem changes and precisely quantify ocean carbon uptake; and, improve air quality forecasting by determining the height and type of aerosols being transported long distances. Overviews are provided of the aerosol-cloud community measurement strategy, aerosol and cloud observations over South Asia, and ocean biology research goals. Instruments used in the measurement strategy of the ACE mission are also highlighted, including: multi-beam lidar, multiwavelength high spectra resolution lidar, the ocean color instrument (ORCA)--a spectroradiometer for ocean remote sensing, dual frequency cloud radar and high- and low-frequency micron-wave radiometer. Future steps for the ACE mission include refining measurement requirements and carrying out additional instrument and payload studies.

  3. STS-87 Mission Highlights Resources Tape

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-87 mission the flight crew, Commander Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk present an overview of there mission. STS-87 will fly the United States Microgravity Payload (USMP-4), the Spartan-201, the Orbital Acceleration Research Experiment (OARE), the EVA Demonstration Flight Test 5 (EDFT-05). The objective of the observations are to investigate the mechanisms causing the heating of the solar corona and the acceleration of the solar wind which originates in the corona. While flying separately in the cargo bay, the Orbital Acceleration Research Experiment (OARE) is an integral part of USMP-04. It is a highly sensitive instrument designed to acquire and record data of low-level aerodynamic acceleration along the orbiter's principal axes in the free-molecular flow regime at orbital altitudes and in the transition regime during re-entry. OARE data will support advances in space materials processing by providing measurements of the low-level, low frequency disturbance environment affecting various microgravity experiments. OARE data will also support advances in orbital drag prediction technology by increasing the understanding of the fundamental flow phenomena in the upper atmosphere.

  4. Electronics for Low Temperature Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2007-01-01

    Exploration missions to outer planets and deep space require spacecraft, probes, and on-board data and communication systems to operate reliably and efficiently under severe harsh conditions. On-board electronics, in particular those in direct exposures to the space environment without any shielding or protection, will encounter extreme low temperature and thermal cycling in their service cycle in most of NASA s upcoming exploration missions. For example, Venus atmosphere, Jupiter atmosphere, Moon surface, Pluto orbiter, Mars, comets, Titan, Europa, and James Webb Space Telescope all involve low-temperature surroundings. Therefore, electronics for space exploration missions need to be designed for operation under such environmental conditions. There are ongoing efforts at the NASA Glenn Research Center (GRC) to establish a database on the operation and reliability of electronic devices and circuits under extreme temperature operation for space applications. This work is being performed under the Extreme Temperature Electronics Program with collaboration and support of the NASA Electronic Parts and Packaging (NEPP) Program. The results of these investigations will be used to establish safe operating areas and to identify degradation and failure modes, and the information will be disseminated to mission planners and system designers for use as tools for proper part selection and in risk mitigation. An overview of this program along with experimental data will be presented.

  5. Exploration Medical System Trade Study Tools Overview

    NASA Technical Reports Server (NTRS)

    Mindock, J.; Myers, J.; Latorella, K.; Cerro, J.; Hanson, A.; Hailey, M.; Middour, C.

    2018-01-01

    ExMC is creating an ecosystem of tools to enable well-informed medical system trade studies. The suite of tools address important system implementation aspects of the space medical capabilities trade space and are being built using knowledge from the medical community regarding the unique aspects of space flight. Two integrating models, a systems engineering model and a medical risk analysis model, tie the tools together to produce an integrated assessment of the medical system and its ability to achieve medical system target requirements. This presentation will provide an overview of the various tools that are a part of the tool ecosystem. Initially, the presentation's focus will address the tools that supply the foundational information to the ecosystem. Specifically, the talk will describe how information that describes how medicine will be practiced is captured and categorized for efficient utilization in the tool suite. For example, the talk will include capturing what conditions will be planned for in-mission treatment, planned medical activities (e.g., periodic physical exam), required medical capabilities (e.g., provide imaging), and options to implement the capabilities (e.g., an ultrasound device). Database storage and configuration management will also be discussed. The presentation will include an overview of how these information tools will be tied to parameters in a Systems Modeling Language (SysML) model, allowing traceability to system behavioral, structural, and requirements content. The discussion will also describe an HRP-led enhanced risk assessment model developed to provide quantitative insight into each capability's contribution to mission success. Key outputs from these various tools, to be shared with the space medical and exploration mission development communities, will be assessments of medical system implementation option satisfaction of requirements and per-capability contributions toward achieving requirements.

  6. An overview of the phase-modular fault tree approach to phased mission system analysis

    NASA Technical Reports Server (NTRS)

    Meshkat, L.; Xing, L.; Donohue, S. K.; Ou, Y.

    2003-01-01

    We look at how fault tree analysis (FTA), a primary means of performing reliability analysis of PMS, can meet this challenge in this paper by presenting an overview of the modular approach to solving fault trees that represent PMS.

  7. Woven TPS Enabling Missions Beyond Heritage Carbon Phenolic

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M.; Venkatapathy, Ethiraj; Feldman, Jay D.

    2013-01-01

    NASAs Office of the Chief Technologist (OCT) Game Changing Division recently funded an effort to advance a Woven TPS (WTPS) concept. WTPS is a new approach to producing TPS architectures that uses precisely engineered 3D weaving techniques to customize material characteristics needed to meet specific missions requirements for protecting space vehicles from the intense heating generated during atmospheric entry. Using WTPS, sustainable, scalable, mission-optimized TPS solutions can be achieved with relatively low life cycle costs compared with the high costs and long development schedules currently associated with material development and certification. WTPS leverages the mature state-of-the-art weaving technology that has evolved from the textile industry to design TPS materials with tailorable performance. Currently, missions anticipated encountering heat fluxes in the range of 1500 4000 Wcm2 and pressures greater than 1.5 atm are limited to using fully dense Carbon Phenolic. However, fully dense carbon phenolic is only mass efficient at higher heat fluxes g(reater than 4000 Wcm2), and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this mid-density TPS gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This presentation will overview the WTPS concept and present some results from initial testing completed comparing WTPS architectures to heritage carbon phenolic.

  8. Mission simulator test data. [an overview of a real time mission simulation test program of a nickel cadmium battery

    NASA Technical Reports Server (NTRS)

    Hendee, E. A.

    1980-01-01

    A real time mission simulation test program of nickel cadmium cells, performed in conjunction with the Anik 1A2 satellite, is reviewed. Simulation of the temperature profiles, the electrical profiles, the depth of discharge, and the rate of charge and discharge is reported. The type of separator used in the cells and the transfer of electrolytes during overcharge are discussed.

  9. MERLIN (Methane Remote Sensing Lidar Mission): an Overview

    NASA Astrophysics Data System (ADS)

    Pierangelo, C.; Millet, B.; Esteve, F.; Alpers, M.; Ehret, G.; Flamant, P.; Berthier, S.; Gibert, F.; Chomette, O.; Edouart, D.; Deniel, C.; Bousquet, P.; Chevallier, F.

    2016-06-01

    The Methane Remote Sensing Lidar Mission (MERLIN), currently in phase B, is a joint cooperation between France and Germany on the development, launch and operation of a methane (CH4) monitoring satellite. MERLIN is focused on global measurements of the spatial and temporal gradients of atmospheric CH4, the second most anthropogenic gas, with a precision and accuracy sufficient to constrain Methane fluxes significantly better than with the current observation network. For the first time, measurements of atmospheric composition will be performed from space thanks to an IPDA (Integrated Path Differential Absorption) LIDAR (Light Detecting And Ranging). This payload is under the responsibility of the German space agency (DLR), while the platform (MYRIADE Evolutions product line) is developed by the French space agency (CNES). The IPDA technique relies on DIAL (Differential Absorption LIDAR) measurements using a pulsed laser emitting at two wavelengths, one wavelength accurately locked on a spectral feature of the methane absorption line, and the other wavelength free from absorption to be used as reference. This technique enables measurements in all seasons, at all latitudes. It also guarantees almost no contamination by aerosols or water vapour cross-sensitivity, and thus has the advantage of an extremely low level of systematic error on the dry-air column mixing ratio of CH4.

  10. Constellation Launch Vehicles Overview

    NASA Technical Reports Server (NTRS)

    Cook, Steve; Fragola, Joseph R.; Priskos, Alex; Davis, Danny; Kaynard, Mike; Hutt, John; Davis, Stephan; Creech, Steve

    2009-01-01

    This slide presentation reviews the current status of the launch vehicles associated with the Constellation Program. These are the Ares I and the Ares V. An overview of the Ares launch vehicles is included. The presentation stresses that the major criteria for the Ares I launcher is the safety of the crew, and the presentation reviews the various features that are designed to assure that aim. The Ares I vehicle is being built on a foundation of proven technologies, and the Ares V will give NASA unprecedented performance and payload volume that can enable a range of future missions. The CDs contain videos of scenes from various activities surrounding the design, construction and testing of the vehicles.

  11. Science Formulation of Global Precipitation Mission (gpm)

    NASA Astrophysics Data System (ADS)

    Smith, Eric A.

    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). The new mission, which is now in its formulation phase, is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC), although not restricted to that branch of research. Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally-sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various areas in the course of the mission formulation phase that are of interest to the Natural Hazards scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning the rate of the global water cycling, cloud macrophysical-microphysical processes of flood-producing storms, and the general improvement in measuring precipitation at the fundamental microphysical level.

  12. Science Formulation of Global Precipitation Mission (GPM)

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Mehta, Amita; Shepherd, Marshall; Starr, David O. (Technical Monitor)

    2002-01-01

    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). The new mission, which is now in its formulation phase, is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC), although not restricted to that branch of research. Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various areas in the course of the mission formulation phase that are of interest to the Natural Hazards scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning the rate of the global water cycling, cloud macrophysical-microphysical processes of flood-producing storms, and the general improvement in measuring precipitation at the fundamental microphysical level.

  13. The James Webb Space Telescope: Mission Overview and Status

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.

    2011-01-01

    The James Webb Space Telescope (JWST) is the Infrared successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq m aperture (6 m class) telescope yielding diffraction limited angular resolution at a wave1ength of 2 micron. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronagraphy, as well as multi-object and integral-field spectroscopy over the 0.6 mission design are complete, and construction is underway in all areas of the program.

  14. Telecommunications, navigation and information management concept overview for the Space Exploration Initiative program

    NASA Technical Reports Server (NTRS)

    Bell, Jerome A.; Stephens, Elaine; Barton, Gregg

    1991-01-01

    An overview is provided of the Space Exploration Initiative (SEI) concepts for telecommunications, information systems, and navigation (TISN), and engineering and architecture issues are discussed. The SEI program data system is reviewed to identify mission TISN interfaces, and reference TISN concepts are described for nominal, degraded, and mission-critical data services. The infrastructures reviewed include telecommunications for robotics support, autonomous navigation without earth-based support, and information networks for tracking and data acquisition. Four options for TISN support architectures are examined which relate to unique SEI exploration strategies. Detailed support estimates are given for: (1) a manned stay on Mars; (2) permanent lunar and Martian settlements; short-duration missions; and (4) systematic exploration of the moon and Mars.

  15. Overview of Microbial Monitoring Technologies Considered for Use Inside Long Duration Spaceflights and Planetary Habitats

    NASA Astrophysics Data System (ADS)

    Roman, M. C.; Ott, C. M.

    2015-03-01

    NASA has been looking at microbial monitoring technologies that could be used in long duration missions. This presentation will provide an overview of the microbial monitoring technologies that are been considered for use inside spacecrafts and planetary habitats.

  16. Operational training for the mission operations at the Brazilian National Institute for Space Research (INPE)

    NASA Technical Reports Server (NTRS)

    Rozenfeld, Pawel

    1993-01-01

    This paper describes the selection and training process of satellite controllers and data network operators performed at INPE's Satellite Tracking and Control Center in order to prepare them for the mission operations of the INPE's first (SCD1) satellite. An overview of the ground control system and SCD1 architecture and mission is given. Different training phases are described, taking into account that the applicants had no previous knowledge of space operations requiring, therefore, a training which started from the basics.

  17. Design and Analysis of a Formation Flying System for the Cross-Scale Mission Concept

    NASA Technical Reports Server (NTRS)

    Cornara, Stefania; Bastante, Juan C.; Jubineau, Franck

    2007-01-01

    The ESA-funded "Cross-Scale Technology Reference Study has been carried out with the primary aim to identify and analyse a mission concept for the investigation of fundamental space plasma processes that involve dynamical non-linear coupling across multiple length scales. To fulfill this scientific mission goal, a constellation of spacecraft is required, flying in loose formations around the Earth and sampling three characteristic plasma scale distances simultaneously, with at least two satellites per scale: electron kinetic (10 km), ion kinetic (100-2000 km), magnetospheric fluid (3000-15000 km). The key Cross-Scale mission drivers identified are the number of S/C, the space segment configuration, the reference orbit design, the transfer and deployment strategy, the inter-satellite localization and synchronization process and the mission operations. This paper presents a comprehensive overview of the mission design and analysis for the Cross-Scale concept and outlines a technically feasible mission architecture for a multi-dimensional investigation of space plasma phenomena. The main effort has been devoted to apply a thorough mission-level trade-off approach and to accomplish an exhaustive analysis, so as to allow the characterization of a wide range of mission requirements and design solutions.

  18. The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor

    2009-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  19. Design of a Slowed-Rotor Compound Helicopter for Future Joint Service Missions

    NASA Technical Reports Server (NTRS)

    Silva, Christopher; Yeo, Hyeonsoo; Johnson, Wayne R.

    2010-01-01

    A slowed-rotor compound helicopter has been synthesized using the NASA Design and Analysis of Rotorcraft (NDARC) conceptual design software. An overview of the design process and the capabilities of NDARC are presented. The benefits of trading rotor speed, wing-rotor lift share, and trim strategies are presented for an example set of sizing conditions and missions.

  20. An overview of tested and analyzed NTP concepts

    NASA Technical Reports Server (NTRS)

    Walton, James T.

    1991-01-01

    If we buy into the goals of the Space Exploration Initiative (SEI) and accept that they are worthy of the hefty investment of our tax dollars, then we must begin to evaluate the technologies which enable their attainment. The main driving technology is the propulsion systems; for interplanetary missions, the safest and most affordable is a Nuclear Thermal Propulsion (NTP) system. An overview is presented of the NTP systems which received detailed conceptual design and, for several, testing.

  1. STS-134 crew during EVA TPS Overview training in the TPS/PABF

    NASA Image and Video Library

    2009-12-15

    JSC2009-E-284901 (15 Dec. 2009) --- NASA astronauts Gregory H. Johnson (left), STS-134 pilot; and Michael Fincke, mission specialist, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center.

  2. NASA Glenn Research Center Electrochemistry Branch Battery and Fuel Cell Development Overview

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2011-01-01

    This presentation covers an overview of NASA Glenn s history and heritage in the development of electrochemical systems for aerospace applications. Current developments related to batteries and fuel cells are addressed. Specific areas of focus are Li-ion batteries and Polymer Electrolyte Membrane Fuel cells systems and their development for future Exploration missions.

  3. Potential of future operational missions sentinel 4 and 5 for atmospheric monitoring and science (CAMELOT).

    NASA Astrophysics Data System (ADS)

    Levelt, P. F.; Veefkind, J. P.

    2010-05-01

    Dedicated atmospheric chemistry observations from space have been made for over 30 years now, starting with the SBUV and TOMS measurements of the ozone layer. Since then huge progress has been made, improving the accuracy of the measurements, extending the amount of constituents, and by sensing not only the stratosphere, but the last five to ten years also the troposphere. The potential to operational monitor the atmosphere, following the meteorological community, came within reach. At the same time, the importance for society of regular operational environmental measurements, related to the ozone layer, air quality and climate change, became apparent, amongst others resulting in the EU initiative Global Monitoring for Environment and Security (GMES) In order to prepare the operational missions in the context of the GMES, ESA took the initiative to further study the user requirements for the Sentinel 4 and 5 (precursor) missions. The Sentinel 4 and 5 (precursor) missions are dedicated operational missions to monitor the atmospheric composition in the 2013-2020 timeframe and onward. The user requirements for the sentinel missions focus on monitoring the atmosphere from an environmental point of view (ozone layer, air quality and climate). ESA's CAMELOT (Composition of the Atmospheric Mission concEpts and SentineL Observation Techniques) study is the follow-on study to ESA's CAPACITY study finished in 2005. The general objective of the CAMELOT study is to further contribute to the definition of the air quality and climate protocol monitoring parts of the GMES Sentinel 4 and 5 missions. CAMELOT consists of a large European consortium formed by 9 European institutes (KNMI (lead), RAL, U.Leicester, SRON, FMI, BIRA-IASB, CNR-IFAC,NOVELTIS and RIU-U.Koeln). In the presentation an overview will give a short overview of the CAMELOT study, including some specific results for combined retrievals, cloud statistics for different orbit geometries and retrievals for several orbit

  4. A Distributed Simulation Software System for Multi-Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Burns, Richard; Davis, George; Cary, Everett

    2003-01-01

    The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.

  5. Status of the assessment phase of the ESA M3 mission candidate LOFT

    NASA Astrophysics Data System (ADS)

    Corral van Damme, Carlos; Ayre, Mark; Lumb, David; Short, Alexander D.; Rando, Nicola

    2012-09-01

    LOFT (Large Observatory For x-ray Timing) is one of four candidates for the M3 slot (launch in 2024, with the option of a launch in 2022) of ESAs Cosmic Vision 2015 - 2025 Plan, and as such it is currently undergoing an initial assessment phase lasting one year. The objective of the assessment phase is to provide the information required to enable the down selection process, in particular: the space segment definition for meeting the assigned science objectives; consideration of and initial definition of the implementation schedule; an estimate of the mission Cost at Completion (CaC); an evaluation of the technology readiness evaluation and risk assessment. The assessment phase is divided into two interleaved components: (i) A payload assessment study, performed by teams funded by member states, which is primarily intended for design, definition and programmatic/cost evaluation of the payload, and (ii) A system industrial study, which has essentially the same objectives for the space segment of the mission. This paper provides an overview of the status of the LOFT assessment phase, both for payload and platform. The initial focus is on the payload design status, providing the reader with an understanding of the main features of the design. Then the space segment assessment study status is presented, with an overview of the principal challenges presented by the LOFT payload and mission requirements, and a presentation of the expected solutions. Overall the mission is expected to enable cutting-edge science, is technically feasible, and should remain within the required CaC for an M3 candidate.

  6. (abstract) Student Involvement in the Pluto Mission

    NASA Technical Reports Server (NTRS)

    Weinstein, Stacy

    1994-01-01

    The Pluto Fast Flyby mission development baseline consists of 2 identical spacecraft (120 - 165 kg) to be launched to Pluto/ Charon in the late 1990s. These spacecraft are intended to fly by Pluto and Charon in order to perform various remote-sensing scientific investigations and have a mission development cost less than $400M (FY92$) through launch plus 30 days. The Pluto team is committed to involving students in all areas of mission development and operations. In November 1992, the Pluto team sent a request for information to industry and universities looking for ways to lower the mass and cost of the mission. A number of universities responded with creative and promising technological developments. In addition to contracts with industry and other federal labs, contracts were signed with schools which allowed students to apply their research, enabling the Pluto team to use valuable resources on a variety of advanced technology endeavors. Perhaps the most exciting aspect of these investigations was that the deliverables that the students produced were not just final reports, but actual prototype hardware complete with write-ups on lessons learned in machining, programming, and design. Another exciting development was a prototype adapter competition in which 7 universities competed to design, build, and test their idea of a lightweight spacecraft-propulsion stack adapter. Georgia Tech won with an innovative dodecahedron composite lattice cone. Other students from other universities were involved as well. All in all, over 40 students from 20 different colleges made significant contributions to the Pluto Fast Flyby mission development through their efforts. This paper will give an overview of Pluto student involvement, the technologies which they examined, and useful results for the mission.

  7. An Overview of Future NASA Missions, Concepts, and Technologies Related to Imaging of the World's Land Areas

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    1999-01-01

    In the near term NASA is entering into the peak activity period of the Earth Observing System (EOS). The EOS AM-1 /"Terra" spacecraft is nearing launch and operation to be followed soon by the New Millennium Program (NMP) Earth Observing (EO-1) mission. Other missions related to land imaging and studies include EOS PM-1 mission, the Earth System Sciences Program (ESSP) Vegetation Canopy Lidar (VCL) mission, the EOS/IceSat mission. These missions involve clear advances in technologies and observational capability including improvements in multispectral imaging and other observing strategies, for example, "formation flying". Plans are underway to define the next era of EOS missions, commonly called "EOS Follow-on" or EOS II. The programmatic planning includes concepts that represent advances over the present Landsat-7 mission that concomitantly recognize the advances being made in land imaging within the private sector. The National Polar Orbiting Environmental Satellite Series (NPOESS) Preparatory Project (NPP) is an effort that will help to transition EOS medium resolution (herein meaning spatial resolutions near 500 meters), multispectral measurement capabilities such as represented by the EOS Moderate Resolution Imaging Spectroradiometer (MODIS) into the NPOESS operational series of satellites. Developments in Synthetic Aperture Radar (SAR) and passive microwave land observing capabilities are also proceeding. Beyond these efforts the Earth Science Enterprise Technology Strategy is embarking efforts to advance technologies in several basic areas: instruments, flight systems and operational capability, and information systems. In the case of instruments architectures will be examined that offer significant reductions in mass, volume, power and observational flexibility. For flight systems and operational capability, formation flying including calibration and data fusion, systems operation autonomy, and mechanical and electronic innovations that can reduce

  8. Automation of Hubble Space Telescope Mission Operations

    NASA Technical Reports Server (NTRS)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  9. Evaluation of COTS Electronic Parts for Extreme Temperature Use in NASA Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronic systems capable of extreme temperature operation are required for many future NASA space exploration missions where it is desirable to have smaller, lighter, and less expensive spacecraft and probes. Presently, spacecraft on-board electronics are maintained at about room temperature by use of thermal control systems. An Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on development of electronics suitable for space exploration missions. The effects of exposure to extreme temperatures and thermal cycling are being investigated for commercial-off-the-shelf components as well as for components specially developed for harsh environments. An overview of this program along with selected data is presented.

  10. Ares Project Overview - Quality in Design

    NASA Technical Reports Server (NTRS)

    Cianciola, Chris; Crane, Kenneth

    2008-01-01

    This presentation introduces the audience to the overall goals of the Ares Project, which include providing human access to low-Earth orbit, the Moon, and beyond. The presentation also provides an overview of with the vehicles that will execute those goals and progress made on the vehicles to date. The briefing will provide an introduction to Lean, Six Sigma, and Kaizen practices Ares will use to improve the overall effectiveness and quality of its efforts. Finally, the briefing includes a summary of Safety and Mission Assurance practices being implemented within[Ares to ensure safety and quality early in the design process. Integrating Safety and Mission Assurance in Design: This presentation describes how the Ares Projects are learning from the successes and failures of previous launch systems in order to maximize safety and reliability while maintaining fiscal responsibility. The Ares Projects are integrating Safer T and Mission Assurance into design activities and embracing independent assessments by Quality experts in thorough reviews of designs and processes. Incorporating Lean thinking into the design process, Ares is also streamlining existing processes and future manufacturing flows which will yield savings during production. Understanding the value of early involvement of Quality experts, the Ares Projects are leading launch vehicle development into the 21st century.

  11. GeoEye(TradeMark) Corporate Overview

    NASA Technical Reports Server (NTRS)

    Jones, Dennis

    2007-01-01

    This viewgraph presentation gives a corporate overview of GeoEye, the world's largest commercial remote sensing company. The contents include: 1) About GeoEye; 2) GeoEye Mission; 3) The Company; 4) Com,pany Summary; 5) U.S. Government Commitment; 6) GeoEye Constellation; 7) Other Imaging Resources; 8) OrbView-3 & OrbView-2; 9) OrbView-3 System Architecture; 10) OrbView-3; 11) OrbView-2; 12) IKONOS; 13) Largest Image Archive in the World; 14) GeoEye-1; 15) Best-In-Class Development Team; 16) Highest Performance Available in the Commercial Market; and 17) Key Themes

  12. Emirates Mars Infrared Spectrometer (EMIRS) Overview from the Emirates Mars Mission

    NASA Astrophysics Data System (ADS)

    Altunaiji, Eman; Edwards, Christopher; Smith, Michael; Christensen, Philip; AlMheiri, Suhail; Reed, Heather

    2017-04-01

    Emirates Mars Infrared Spectrometer (EMIRS) instrument is one of three scientific instruments aboard the Emirate Mars Mission (EMM), with the name of "Hope". EMM is United Arab Emirates' (UAE) mission to be launched in 2020, with the aim of exploring the dynamics of the atmosphere of Mars on a global scale with sampling on a diurnal and sub-seasonal time-scales. EMM has three scientific instruments selected to provide an improved understanding of circulation and weather in the Martian lower atmosphere as well as the thermosphere and exosphere. The EMIRS instrument is an interferometric thermal infrared spectrometer that is jointly developed by Arizona State University (ASU) and Mohammed Bin Rashid Space Centre (MBRSC), Dubai, UAE. It builds on a long heritage of thermal infrared spectrometers designed, built, and managed, by ASU's Mars Space Flight Facility, including the Thermal Emission Spectrometer (TES), Miniature Thermal Emission Spectrometer (Mini-TES), and the OSIRIS-REx Thermal Emission Spectrometer (OTES). EMIRS operates in the 6-40+ μm range with 5 cm-1 spectral sampling, enabled by a Chemical Vapor-Deposited (CVD) diamond beam splitter and state of the art electronics. This instrument utilizes a 3×3 line array detector and a scan mirror to make high-precision infrared radiance measurements over most of the Martian hemisphere. The EMIRS instrument is optimized to capture the integrated, lower-middle atmosphere dynamics over a Martian hemisphere, using a scan-mirror to make 60 global images per week ( 20 images per orbit) at a resolution of 100-300 km/pixel while requiring no special spacecraft maneuvers.

  13. The James Webb Space Telescope: Mission Overview and Status

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.

    2009-01-01

    The James Webb Space Telescope (JWST) is the infrared successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq. m aperture (6 m telescope yielding diffraction limited angular resolution at a wavelength of 2 micron. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronagraphy, as well as multi object and integral-field spectroscopy over the 0.6 < 0 < 5.0 micron spectrum. An actively cooled mid-infrared instrument provides broad-band imagery, coronagraphy, and integral-field spectroscopy over the 5.0 < 0 < 29 micron spectrum. The JWST is being developed by NASA, in partnership with the European and Canadian Space Agencies, as a general user facility with science observations to be proposed by the international astronomical community in a manner similar to the Hubble Space Telescope. Technology development and mission design are complete, and construction is underway in all areas of the program. The JWST is on schedule to reach launch readiness during 2014.

  14. Development of advanced entry, descent, and landing technologies for future Mars Missions

    NASA Technical Reports Server (NTRS)

    Chu, Cheng-Chih (Chester)

    2006-01-01

    Future Mars missions may need the capability to land much closer to a desired target and/or advanced methods of detecting, avoiding, or tolerating landing hazards. Therefore, technologies that enable 'pinpoint landing' (within tens of meters to 1 km of a target site) will be crucial to meet future mission requirements. As part of NASA Research Announcement, NRA 03-OSS-01, NASA solicited proposals for technology development needs of missions to be launched to Mars during or after the 2009 launch opportunity. Six technology areas were identified as of high priority including advanced entry, descent, and landing (EDL) technologies. In May 2004, 11 proposals with PIs from universities, industries, and NASA centers, were awarded in the area of advanced EDL by NASA for further study and development. This paper presents an overview of these developing technologies.

  15. Wide Field Infra-Red Survey Telescope (WFIRST) 2.4-Meter Mission Study

    NASA Technical Reports Server (NTRS)

    Content, D.; Aaron, K.; Alplanalp, L.; Anderson, K.; Capps, R.; Chang, Z.; Dooley, J.; Egerman, R.; Goullioud, R.; Klein, D.; hide

    2013-01-01

    The most recent study of the Wide Field Infrared Survey Telescope (WFIRST) mission is based on reuse of an existing 2.4m telescope. This study was commissioned by NASA to examine the potential science return and cost effectiveness of WFIRST by using this significantly larger aperture telescope. We review the science program envisioned by the WFIRST 2012-2013 Science Definition Team (SDT), an overview of the mission concept, and the telescope design and status. Comparisons against the previous 1.3m and reduced cost 1.1m WFIRST design concepts are discussed. A significant departure from past point designs is the option for serviceability and the geostationary orbit location which enables servicing and replacement instrument insertion later during mission life. Other papers at this conference provide more in depth discussion of the wide field instrument and the optional exoplanet imaging coronagraph instrument.

  16. NASA Glenn Research Center Electrochemistry Branch Overview

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Hoberecht, Mark; Reid, Concha

    2010-01-01

    This presentation covers an overview of NASA Glenn's history and heritage in the development of electrochemical systems for aerospace applications. Current programs related to batteries and fuel cells are addressed. Specific areas of focus are Li-ion batteries and Polymer Electrolyte Membrane Fuel cells systems and their development for future Exploration missions. The presentation covers details of current component development efforts for high energy and ultra high energy Li-ion batteries and non-flow-through fuel cell stack and balance of plant development. Electrochemistry Branch capabilities and facilities are also addressed.

  17. STS-134 crew during EVA TPS Overview training in the TPS/PABF

    NASA Image and Video Library

    2009-12-15

    JSC2009-E-284896 (15 Dec. 2009) --- NASA astronauts Gregory H. Johnson (left), STS-134 pilot; along with astronauts Michael Fincke (center) and Greg Chamitoff, both mission specialists, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center.

  18. STS-134 crew during EVA TPS Overview training in the TPS/PABF

    NASA Image and Video Library

    2009-12-15

    JSC2009-E-284893 (15 Dec. 2009) --- NASA astronaut Gregory H. Johnson (right), STS-134 pilot; and European Space Agency astronaut Roberto Vittori, mission specialist, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center.

  19. Electrochemical Energy Storage and Power Sources for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    2007-01-01

    An overview of NASA s electrochemical energy storage programs for NASA Exploration missions is being presented at the 10th Electrochemical Power Sources R&D Symposium, which is being held in Williamsburg, VA on August 20-23, 2007. This public domain venue, which is sponsored by the U.S. Navy and held every two years, serves as a forum for the dissemination of research and development results related to electrochemical energy storage technology programs that are currently being supported and managed within governmental agencies. Technology areas of primary interest include batteries, fuel cells, and both overview and focused presentations on such are given by both governmental and contractual researchers. The forum also provides an opportunity to assess technology areas of mutual interest with respect to establishing collaborative and/or complementary programmatic interactions.

  20. An Overview of the Landsat Data Continuity Mission

    NASA Technical Reports Server (NTRS)

    Irons, James R.; Dwyer, John L.

    2010-01-01

    The advent of the Landsat Data Continuity Mission (LDCM), currently with a launch readiness date of December, 2012, will see evolutionary changes in the Landsat data products available from the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. The USGS initiated a revolution in 2009 when EROS began distributing Landsat data products at no cost to requestors in contrast to the past practice of charging the cost of fulfilling a request; that is, charging $600 per Landsat scene. To implement this drastic change, EROS terminated data processing options for requestors and began to produce all data products using a consistent processing recipe. EROS plans to continue this practice for the LDCM and will required new algorithms to process data from the LDCM sensors. All previous Landsat satellites flew multispectral scanners to collect image data of the global land surface. Additionally, Landsats 4, 5, and 7 flew sensors that acquired imagery for both reflective spectral bands and a single thermal band. In contrast, the LDCM will carry two pushbroom sensors; the Operational Land Imager (OLI) for reflective spectral bands and the Thermal InfraRed Sensor (TIRS) for two thermal bands. EROS is developing the ground data processing system that will both calibrate and correct the data from the thousands of detectors employed by the pushbroom sensors and that will also combine the data from the two sensors to create a single data product with registered data for all of the OLI and TIRS bands.

  1. Overview of NASA GRCs Green Propellant Infusion Mission Thruster Testing and Plume Diagnostics

    NASA Technical Reports Server (NTRS)

    Deans, Matthew C.; Reed, Brian D.; Yim, John T.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The models describe the pressure, temperature, density, Mach number, and species concentration of the AF-M315E thruster exhaust plumes. The models are being used to assess the impingement effects of the AF-M315E thrusters on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters will be tested in a small rocket, altitude facility at NASA GRC. The GRC thruster testing will be conducted at duty cycles representatives of the planned GPIM maneuvers. A suite of laser-based diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, Schlieren imaging, and physical probes will be used to acquire plume measurements of AFM315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  2. The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission concept technology development overview

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.

    2017-09-01

    The Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor is one of four large mission concept studies being developed by NASA for consideration in the 2020 Astrophysics Decadal Survey. LUVOIR will support a broad range of science objectives, including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. The LUVOIR Science and Technology Definition Team (STDT) has tasked a Technology Working Group (TWG), with more than 60 members from NASA centers, academia, industry, and international partners, with identifying technologies that enable or enhance the LUVOIR science mission. The TWG has identified such technologies in the areas of Coronagraphy, Ultra-Stable Opto-mechanical Systems, Detectors, Coatings, Starshades, and Instrument Components, and has completed a detailed assessment of the state-of-the-art. We present here a summary of this technology assessment effort, as well as the current progress in defining a technology development plan to mature these technologies to the required technology readiness level (TRL).

  3. The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission Concept Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.

    2017-01-01

    The Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor is one of four large mission concept studies being developed by NASA for consideration in the 2020 Astrophysics Decadal Survey. LUVOIR will support a broad range of science objectives, including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. The LUVOIR Science and Technology Definition Team (STDT) has tasked a Technology Working Group (TWG), with more than 60 members from NASA centers, academia, industry, and international partners, with identifying technologies that enable or enhance the LUVOIR science mission. The TWG has identified such technologies in the areas of Coronagraphy, Ultra-Stable Opto-mechanical Systems, Detectors, Coatings, Starshades, and Instrument Components, and has completed a detailed assessment of the state-of-the-art. We present here a summary of this technology assessment effort, as well as the current progress in defining a technology development plan to mature these technologies to the required technology readiness level (TRL).

  4. Development of Mission Adaptive Digital Composite Aerostructure Technologies (MADCAT)

    NASA Technical Reports Server (NTRS)

    Cheung, Kenneth; Cellucci, Daniel; Copplestone, Grace; Cramer, Nick; Fusco, Jesse; Jenett, Benjamin; Kim, Joseph; Mazhari, Alex; Trinh, Greenfield; Swei, Sean

    2017-01-01

    This paper reviews the development of the Mission Adaptive Digital Composite Aerostructures Technologies (MADCAT) v0 demonstrator aircraft, utilizing a novel aerostructure concept that combines advanced composite materials manufacturing and fabrication technologies with a discrete construction approach to achieve high stiffness-to-density ratio ultra-light aerostructures that provide versatility and adaptability. This revolutionary aerostructure concept has the potential to change how future air vehicles are designed, built, and flown, with dramatic reductions in weight and manufacturing complexity the number of types of structural components needed to build air vehicles while enabling new mission objectives. We utilize the innovative digital composite materials and discrete construction technologies to demonstrate the feasibility of the proposed aerostructure concept, by building and testing a scaled prototype UAV, MADCAT v0. This paper presents an overview of the design and development of the MADCAT v0 flight demonstrator.

  5. Advanced Spacecraft Designs in Support of Human Missions to Earth's Neighborhood

    NASA Technical Reports Server (NTRS)

    Fletcher, David

    2002-01-01

    NASA's strategic planning for technology investment draws on engineering studies of potential future missions. A number of hypothetical mission architectures have been studied. A recent study completed by The NASA/JSC Advanced Design Team addresses one such possible architecture strategy for missions to the moon. This conceptual study presents an overview of each of the spacecraft elements that would enable such missions. These elements include an orbiting lunar outpost at lunar L1 called the Gateway, a lunar transfer vehicle (LTV) which ferries a crew of four from the ISS to the Gateway, a lunar lander which ferries the crew from the Gateway to the lunar surface, and a one-way lunar habitat lander capable of supporting the crew for 30 days. Other supporting elements of this architecture discussed below include the LTV kickstage, a solar-electric propulsion (SEP) stage, and a logistics lander capable of re-supplying the 30-day habitat lander and bringing other payloads totaling 10.3 mt in support of surface mission activities. Launch vehicle infrastructure to low-earth orbit includes the Space Shuttle, which brings up the LTV and crew, and the Delta-IV Heavy expendable launch vehicle which launches the landers, kickstage, and SEP.

  6. Boundary Layer Transition Flight Experiment Overview

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.; Garske, Michael T.; Saucedo, Luis A.; Kinder, Gerald R.; Micklos, Ann M.

    2011-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS-128, STS-131 and STS-133 as well as Space Shuttle Endeavour for STS-134. Additional instrumentation was installed in order to obtain more spatially resolved measurements downstream of the protuberance. This paper provides an overview of the BLT FE Project with emphasis on the STS-131 and STS-133 results. A high-level overview of the in-situ flight data is presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data. Comparisons show that empirically correlated predictions for boundary layer transition onset time closely match the flight data, while predicted surface temperatures were significantly higher than observed flight temperatures. A thermocouple anomaly observed on a number of the missions is discussed as are a number of the mitigation actions that will be taken on the final flight, STS-134, including potential alterations of the flight trajectory and changes to the flight instrumentation.

  7. Mission specification for three generic mission classes

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Mission specifications for three generic mission classes are generated to provide a baseline for definition and analysis of data acquisition platform system concepts. The mission specifications define compatible groupings of sensors that satisfy specific earth resources and environmental mission objectives. The driving force behind the definition of sensor groupings is mission need; platform and space transportation system constraints are of secondary importance. The three generic mission classes are: (1) low earth orbit sun-synchronous; (2) geosynchronous; and (3) non-sun-synchronous, nongeosynchronous. These missions are chosen to provide a variety of sensor complements and implementation concepts. Each mission specification relates mission categories, mission objectives, measured parameters, and candidate sensors to orbits and coverage, operations compatibility, and platform fleet size.

  8. STS-335 crew training, EVA TPS Overview with instructor John Ray

    NASA Image and Video Library

    2010-11-03

    JSC2010-E-183521 (3 Nov. 2010) --- NASA astronaut Chris Ferguson, STS-135 commander, participates in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  9. 2014 Overview of NASA GRC Electrochemical Power and Energy Storage Technology

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2014-01-01

    Overview presentation to the IAPG Chemical Working Group meeting, discussing current electrochemical power and energy storage R and D at NASA GRC including missions, demonstrations, and reserch projects. Activities such as ISS Lithium-Ion Battery Replacements, the Advanced Exploration Systems Modular Power Systems project, Enabling Electric Aviation with Ultra-High Energy Litium Metal Batteries, Advanced Space Power Systems project, and SBIR STTR work, will be discussed.

  10. Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond

    NASA Astrophysics Data System (ADS)

    Vasavada, A. R.; Grotzinger, J. P.; Arvidson, R. E.; Calef, F. J.; Crisp, J. A.; Gupta, S.; Hurowitz, J.; Mangold, N.; Maurice, S.; Schmidt, M. E.; Wiens, R. C.; Williams, R. M. E.; Yingst, R. A.

    2014-06-01

    The Mars Science Laboratory mission reached Bradbury Landing in August 2012. In its first 500 sols, the rover Curiosity was commissioned and began its investigation of the habitability of past and present environments within Gale Crater. Curiosity traversed eastward toward Glenelg, investigating a boulder with a highly alkaline basaltic composition, encountering numerous exposures of outcropping pebble conglomerate, and sampling aeolian sediment at Rocknest and lacustrine mudstones at Yellowknife Bay. On sol 324, the mission turned its focus southwest, beginning a year-long journey to the lower reaches of Mt. Sharp, with brief stops at the Darwin and Cooperstown waypoints. The unprecedented complexity of the rover and payload systems posed challenges to science operations, as did a number of anomalies. Operational processes were revised to include additional opportunities for advance planning by the science and engineering teams.

  11. The Cryogenic Propellant Storage and Transfer Technology Demonstration Mission:. [Progress and Transition

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Taylor, William J.; Ginty, Carol A.; Melis, Matthew E.

    2014-01-01

    This presentation provides an overview of the Cryogenic Propellant Storage and Transfer (CPST) Mission from formulation through Systems Requirements Review and into preparation for Preliminary Design Review. Accomplishments of the technology maturation phase of the project are included. The presentation then summarizes the transition, due to Agency budget constraints, of CPST from a flight project into a ground project titled evolvable Cryogenics (eCryo).

  12. New opportunities for future small civil turbine engines: Overviewing the GATE studies

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1979-01-01

    An overview of four independent studies forecasts the potential impact of advanced technology turbine engines in the post 1988 market, identifies important aircraft and missions, desirable engine sizes, engine performance, and cost goals. Parametric evaluations of various engine cycles, configurations, design features, and advanced technology elements defined baseline conceptual engines for each of the important missions identified by the market analysis. Both fixed-wing and helicopter aircraft, and turboshaft, turboprop, and turbofan engines were considered. Sizable performance gains (e.g., 20% SFC decrease), and large engine cost reductions of sufficient magnitude are predicted to challenge the reciprocating engine in the 300-500 SHP class.

  13. An Overview of the VHITAL Program: A Two-Stage Bismuth Fed Very High Specific Impulse Thruster with Anode Layer

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Marrese-Reading, Colleen; Capelli, Mark; Scharfe, David; Tverdokhlebov, Sergey; Semenkin, Sasha; Tverdokhlebov, Oleg; Boyd, Ian; Keidar, Michael; Yalin, Azer; hide

    2005-01-01

    The Very High Isp Thruster with Anode Layer (VHITAL) is a two stage Hall thruster program that is a part of NASA's Prometheus Program in NASA's New Exploration Systems Mission Directorate (ESMD). It is a potentially viable low-cost alternative to ion engines for near-term NEP applications with the growth potential to support mid-term and far-term NEP missions... This paper will present an overview of the thruster fabrication, pre-existing TAL 160 demonstration, feed system development, lifetime assessment, contamination assessment, and mission study activities performed to date.

  14. Power System Simulations For The Globalstar2 Mission Using The PowerCap Software

    NASA Astrophysics Data System (ADS)

    Defoug, S.; Pin, R.

    2011-10-01

    The Globalstar system aims to enable customers to communicate all around the world thanks to its constellation of 48 LEO satellites. Thales Alenia Space is in charge of the design and manufacturing of the second generation of the Globalstar satellites. For such a long duration mission (15 years) and with a payload power consumption varying incessantly, the optimization of the solar arrays and battery has to be consolidated by an accurate power simulation tool. After a general overview of the Globalstar power system and of the PowerCap software, this paper presents the dedicated version elaborated for the GlobalStar2 mission, the simulations results and their correlation with the tests.

  15. Viking Imaging of Phobos and Deimos: An Overview of the Primary Mission

    NASA Technical Reports Server (NTRS)

    Duxbury, T. C.; Veverka, J.

    1977-01-01

    During the Viking primary mission the cameras on the two orbiters acquired about 50 pictures of the two Martian moons. The Viking images of the satellites have a higher surface resolution than those obtained by Mariner 9. The typical surface resolution achieved was 100-200 m, although detail as small as 40 m was imaged on Phobos during a particularly close passage. Attention is given to color sequences obtained for each satellite, aspects of phase angle coverage, and pictures for ephemeris improvement.

  16. A Meteorological Overview of the TC4 Mission

    NASA Technical Reports Server (NTRS)

    Pfister, L.; Selkirk, H. B.; Starr, D. O.; Rosenlof, K.; Newman, P. F.

    2010-01-01

    The TC4 mission in Central America during summer 2007 examined convective transport into the tropical Upper Troposphere/Lower Stratosphere (UTLS) and the evolution of cirrus clouds. The tropical tropopause layer (TTL) circulation is dominated by the Asian monsoon anticyclone and westward winds that stretch from the western Pacific into the Atlantic. During TC4, TTL westward flow over Central America was stronger than normal. Incidence of cold clouds over the Central American region was the third lowest out of 34 years sampled. The major factor was an incipient La Nina, specifically anomalously cold temperatures off the Pacific Coast of South America. Weakness in the low level Caribbean jet caused a shift in the coldest clouds from the Caribbean to the Pacific side of Central America. The character of tropopause temperature variability was that of upward propagating waves generated by local and nonlocal convection. These waves produced tropopause temperature variations of 3 K, with peak-to-peak variations of 8 K. At low levels in Central America, flow from the Sahara desert predominated; further south, the air came from the Amazon region. Convectively influenced air in the upper troposphere came from Central America, the northern Amazon region, the Atlantic ITCZ, and the North American monsoon. In the TTL, Asian and African convection affected the observed air masses. North of 10N in the Central American TTL, African and Asian convection may have contributed as much to the air masses as Central and South American convection. South of 8N, Asian and African convection had far less impact.

  17. A Randomized Controlled Trial of Acupuncture for Osteoarthritis of the Knee: Effects of Patient-Provider Communication

    PubMed Central

    Suarez-Almazor, Maria E.; Looney, Carol; Liu, YanFang; Cox, Vanessa; Pietz, Kenneth; Marcus, Donald M.; Street, Richard L.

    2012-01-01

    Objectives There is conflicting evidence on the efficacy of Traditional Chinese Acupuncture (TCA), and the role of placebo effects elicited by acupuncturists’ behavior has not been elucidated. We conducted a 3-month randomized clinical trial in patients with knee osteoarthritis to compare the efficacy of TCA to sham acupuncture, and examine the effects of acupuncturists’ communication style. Methods Acupuncturists were trained to interact in one of two communication styles: ‘high’ or ‘neutral’ expectations. Patients were randomized to one of 3 groups: waiting list, ‘high’ or ‘neutral’, and nested within style, TCA or sham acupuncture over 6 weeks. Sham acupuncture was performed in non-meridian points, with shallow needles and minimal stimulation. Primary outcome measures were: Joint-specific Multidimensional Assessment of Pain (J-MAP), Western Ontario McMaster Osteoarthritis Index (WOMAC), and satisfaction. Results 455 patients who received treatment (TCA or sham) and 72 controls were included. No statistically significant differences were observed between TCA or sham acupuncture, but both groups had significant reductions in J-MAP and WOMAC pain compared to the waiting group (-1.1, -1.0, and -0.1, p<0.001; -13.7, -14, -1.7, p<0.001). Statistically significant differences were observed in J-MAP pain reduction and satisfaction, favoring the ‘high’ expectations group. Fifty-two percent and 43% in the TCA and sham groups thought they had received TCA (kappa=0.05), suggesting successful blinding. Conclusion TCA was not superior to sham acupuncture. However, acupuncturists’ style had significant effects on pain reduction and satisfaction, suggesting that the analgesic benefits of acupuncture can be partially mediated through placebo effects related to the acupuncturist's behavior. PMID:20506122

  18. Emirates Mars Ultraviolet Spectrometer (EMUS) Overview from the Emirates Mars Mission

    NASA Astrophysics Data System (ADS)

    Lootah, F. H.; Almatroushi, H. R.; AlMheiri, S.; Holsclaw, G.; Deighan, J.; Chaffin, M.; Reed, H.; Lillis, R. J.; Fillingim, M. O.; England, S.

    2017-12-01

    The Emirates Mars Ultraviolet Spectrometer (EMUS) instrument is one of three science instruments on board the "Hope Probe" of the Emirates Mars Mission (EMM). EMM is a United Arab Emirates' (UAE) mission to Mars, launching in 2020, to explore the global dynamics of the Martian atmosphere, while sampling on both diurnal and seasonal timescales. The EMUS instrument is a far-ultraviolet imaging spectrograph that measures emissions in the spectral range 100-170 nm. Using a combination of its one-dimensional imaging and spacecraft motion, it will build up two-dimensional far-ultraviolet images of the Martian disk and near-space environment at several important wavelengths: the Lyman beta atomic hydrogen emission (102.6 nm), the Lyman alpha atomic hydrogen emission (121.6 nm), two atomic oxygen emissions (130.4 nm and 135.6 nm), and the carbon monoxide fourth positive group band emission (140 nm-170 nm). Radiances at these wavelengths will be used to derive the column abundance of atomic oxygen, and carbon monoxide in the Martian thermosphere, and the density of atomic oxygen and atomic hydrogen in the Martian exosphere both with spatial and sub-seasonal variability. The EMUS instrument consists of a single telescope mirror feeding a Rowland circle imaging spectrograph with selectable spectral resolution (1.3 nm, 1.8 nm, or 5 nm), and a photon-counting and locating detector (provided by the Space Sciences Laboratory at the University of California, Berkeley). The EMUS spatial resolution of less than 300 km on the disk is sufficient to characterize spatial variability in the Martian thermosphere (100-200 km altitude) and exosphere (>200 km altitude). The instrument is jointly developed by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and Mohammed Bin Rashid Space Centre (MBRSC) in Dubai, UAE.

  19. Emirates Mars Ultraviolet Spectrometer (EMUS) Overview from the Emirates Mars Mission

    NASA Astrophysics Data System (ADS)

    Almatroushi, Hessa; Lootah, Fatma; Holsclaw, Greg; Deighan, Justin; Chaffin, Michael; Lillis, Robert; Fillingim, Matthew; England, Scott; AlMheiri, Suhail; Reed, Heather

    2017-04-01

    The Emirates Mars Ultraviolet Spectrometer (EMUS) instrument is one of three science instruments to be carried on board the Emirate Mars Mission (EMM), the "Hope Probe". EMM is a United Arab Emirates' (UAE) mission to Mars launching in 2020 to explore the dynamics in the Martian atmosphere globally, while sampling on both diurnal and seasonal timescales. The EMUS instrument is a far-ultraviolet imaging spectrograph that measures emissions in the spectral range 100-170 nm. Using spacecraft motion, it will build up two-dimensional far-ultraviolet images of the Martian disk and near-space environment at several important wavelengths: Lyman beta atomic hydrogen emission (102.6 nm), Lyman alpha atomic hydrogen emission (121.6 nm), atomic oxygen emission (130.4 nm and 135.6 nm), and carbon monoxide fourth positive group band emission (140 nm-170 nm). Radiances at these wavelengths will be used to derive the column abundance of atomic oxygen, and carbon monoxide in the Martian thermosphere, and the density of atomic oxygen and atomic hydrogen in the Martian exosphere both with spatial and sub-seasonal variability. EMUS consists of a single telescope mirror feeding a Rowland circle imaging spectrograph capable of selectable spectral resolution (1.3 nm, 1.8 nm, or 5 nm) with a photon-counting and locating detector (provided by the Space Sciences Laboratory at the University of California, Berkeley). The EMUS spatial resolution of less than 300km on the disk is sufficient to characterize spatial variability in the Martian thermosphere (100-200 km altitude) and exosphere (>200 km altitude). The instrument is jointly developed by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and Mohammed Bin Rashid Space Centre (MBRSC) in Dubai, UAE

  20. IXV re-entry demonstrator: Mission overview, system challenges and flight reward

    NASA Astrophysics Data System (ADS)

    Angelini, Roberto; Denaro, Angelo

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is an advanced re-entry demonstrator vehicle aimed to perform in-flight experimentation of atmospheric re-entry enabling systems and technologies. The IXV integrates key technologies at the system level, with significant advancements on Europe's previous flying test-beds. The project builds on previous achievements at system and technology levels, and provides a unique and concrete way of establishing and consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission and system objectives are the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention is paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight. Following the extensive detailed design, manufacturing, qualification, integration and testing of the flight segment and ground segment elements, IXV has performed a full successful flight on February 11th 2015. After the launch with the VEGA launcher form the CSG spaceport in French Guyana, IXV has performed a full nominal mission ending with a successful splashdown in the Pacific Ocean. During Flight Phase, the IXV space and ground segments worked perfectly, implementing the whole flight program in line with the commanded maneuvers and trajectory prediction, performing an overall flight of 34.400 km including 7.600 km with hot atmospheric re-entry in automatic guidance, concluding with successful precision landing at a distance of ~1

  1. The ACES mission: scientific objectives and present status

    NASA Astrophysics Data System (ADS)

    Cacciapuoti, L.; Dimarcq, N.; Salomon, C.

    2017-11-01

    "Atomic Clock Ensemble in Space" (ACES) is a mission in fundamental physics that will operate a new generation of atomic clocks in the microgravity environment of the International Space Station (ISS). The ACES clock signal will combine the medium term frequency stability of a space hydrogen maser (SHM) and the long term stability and accuracy of a frequency standard based on cold cesium atoms (PHARAO). Fractional frequency stability and accuracy of few parts in 1016 will be achieved. The on-board time base distributed on Earth via a microwave link (MWL) will be used to test fundamental laws of physics (Einstein's theories of Special and General Relativity, Standard Model Extension, string theories…) and to develop applications in time and frequency metrology, universal time scales, global positioning and navigation, geodesy and gravimetry. After a general overview on the mission concept and its scientific objectives, the present status of ACES instruments and sub-systems will be discussed.

  2. Development of a prototype interactive learning system using multi-media technology for mission independent training program

    NASA Technical Reports Server (NTRS)

    Matson, Jack E.

    1992-01-01

    The Spacelab Mission Independent Training Program provides an overview of payload operations. Most of the training material is currently presented in workbook form with some lecture sessions to supplement selected topics. The goal of this project was to develop a prototype interactive learning system for one of the Mission Independent Training topics to demonstrate how the learning process can be improved by incorporating multi-media technology into an interactive system. This report documents the development process and some of the problems encountered during the analysis, design, and production phases of this system.

  3. Orbital Express mission operations planning and resource management using ASPEN

    NASA Astrophysics Data System (ADS)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel

    2008-04-01

    As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less labor-power rises. Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Like a tow-truck delivering gas to a car on the road, the "servicing" satellite of OE had to find the "client" from several kilometers away, connect directly to the client, and transfer fluid (or a battery) autonomously, while on earth-orbit. The mission met 100% of its success criteria, and proved that autonomous satellite servicing is now a reality for space operations. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. As the constraints for execution could change weekly, daily, and even hourly, the tools used create the mission execution plans needed to be flexible and adaptable to many different kinds of changes. At the same time, the hard constraints of the plans needed to be maintained and satisfied. The Automated Scheduling and Planning Environment (ASPEN) tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, an overview of the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the NASA's Earth Observing One mission's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.

  4. An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design

    NASA Technical Reports Server (NTRS)

    Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.

    2009-01-01

    Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.

  5. A space-to-space microwave wireless power transmission experiential mission using small satellites

    NASA Astrophysics Data System (ADS)

    Bergsrud, Corey; Straub, Jeremy

    2014-10-01

    A space solar microwave power transfer system (SSMPTS) may represent a paradigm shift to how space missions in Earth orbit are designed. A SSMPTS may allow a smaller receiving surface to be utilized on the receiving craft due to the higher-density power transfer (compared to direct solar flux) from a SSMPTS supplier craft; the receiving system is also more efficient and requires less mass and volume. The SSMPTS approach also increases mission lifetime, as antenna systems do not degrade nearly as quickly as solar panels. The SSMPTS supplier craft (instead) can be replaced as its solar panels degrade, a mechanism for replacing panels can be utilized or the SSMPTS can be maneuvered closer to a subset of consumer spacecraft. SSMPTS can also be utilized to supply power to spacecraft in eclipse and to supply variable amounts of power, based on current mission needs, to power the craft or augment other power systems. A minimal level of orbital demonstrations of SSP technologies have occurred. A mission is planned to demonstrate and characterize the efficacy of space-to-space microwave wireless power transfer. This paper presents an overview of this prospective mission. It then discusses the spacecraft system (comprised of an ESPA/SmallSat-class spacecraft and a 1-U CubeSat), launch options, mission operations and the process of evaluating mission outcomes.

  6. Communicating the Science from NASA's Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, Denise A.

    2015-01-01

    Communicating science from NASA's Astrophysics missions has multiple objectives, which leads to a multi-faceted approach. While a timely dissemination of knowledge to the scientific community follows the time-honored process of publication in peer reviewed journals, NASA delivers newsworthy research result to the public through news releases, its websites and social media. Knowledge in greater depth is infused into the educational system by the creation of educational material and teacher workshops that engage students and educators in cutting-edge NASA Astrophysics discoveries. Yet another avenue for the general public to learn about the science and technology through NASA missions is through exhibits at museums, science centers, libraries and other public venues. Examples of the variety of ways NASA conveys the excitement of its scientific discoveries to students, educators and the general public will be discussed in this talk. A brief overview of NASA's participation in the International Year of Light will also be given, as well as of the celebration of the twenty-fifth year of the launch of the Hubble Space Telescope.

  7. Overview and Results of ISS Space Medicine Operations Team (SMOT) Activities

    NASA Technical Reports Server (NTRS)

    Johnson, H. Magee; Sargsyan, Ashot E.; Armstrong, Cheryl; McDonald, P. Vernon; Duncan, James M.; Bogomolov, V. V.

    2007-01-01

    The Space Medicine Operations Team (SMOT) was created to integrate International Space Station (ISS) Medical Operations, promote awareness of all Partners, provide emergency response capability and management, provide operational input from all Partners for medically relevant concerns, and provide a source of medical input to ISS Mission Management. The viewgraph presentation provides an overview of educational objectives, purpose, operations, products, statistics, and its use in off-nominal situations.

  8. The Europa Clipper Mission Concept

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate

    2014-05-01

    A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon's surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite's ice and ocean, composition, and geology. The set of investigations derived from the Europa Clipper science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite's induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander

  9. Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities

    NASA Technical Reports Server (NTRS)

    Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald

    2004-01-01

    NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.

  10. EDL Pathfinder Missions

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2016-01-01

    NASA is developing a long-term strategy for achieving extended human missions to Mars in support of the policies outlined in the 2010 NASA Authorization Act and National Space Policy. The Authorization Act states that "A long term objective for human exploration of space should be the eventual international exploration of Mars." Echoing this is the National Space Policy, which directs that NASA should, "By 2025, begin crewed missions beyond the moon, including sending humans to an asteroid. By the mid-2030s, send humans to orbit Mars and return them safely to Earth." Further defining this goal, NASA's 2014 Strategic Plan identifies that "Our long-term goal is to send humans to Mars. Over the next two decades, we will develop and demonstrate the technologies and capabilities needed to send humans to explore the red planet and safely return them to Earth." Over the past several decades numerous assessments regarding human exploration of Mars have indicated that landing humans on the surface of Mars remains one of the key critical challenges. In 2015 NASA initiated an Agency-wide assessment of the challenges associated with Entry, Descent, and Landing (EDL) of large payloads necessary for supporting human exploration of Mars. Due to the criticality and long-lead nature of advancing EDL techniques, it is necessary to determine an appropriate strategy to improve the capability to land large payloads. This paper provides an overview of NASA's 2015 EDL assessment on understanding the key EDL risks with a focus on determining what "must" be tested at Mars. This process identified the various risks and potential risk mitigation strategies, that is, benefits of flight demonstration at Mars relative to terrestrial test, modeling, and analysis. The goal of the activity was to determine if a subscale demonstrator is necessary, or if NASA should take a direct path to a human-scale lander. This assessment also provided insight into how EDL advancements align with other Agency

  11. A Small Mission Featuring an Imaging X-ray Polarimeter with High Sensitivity

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Baldini, Luca; Bellazini, Ronaldo; Brez, Alessandro; Costa, Enrico; Dissley, Richard; Elsner, Ronald; Fabiani, Sergio; Matt, Giorgio; Minuti, Massimo; hide

    2013-01-01

    We present a detailed description of a small mission capable of obtaining high precision and meaningful measurement of the X-ray polarization of a variety of different classes of cosmic X-ray sources. Compared to other ideas that have been suggested this experiment has demonstrated in the laboratory a number of extremely important features relevant to the ultimate selection of such a mission by a funding agency. The most important of these questions are: 1) Have you demonstrated the sensitivity to a polarized beam at the energies of interest (i.e. the energies which represent the majority (not the minority) of detected photons from the X-ray source of interest? 2) Have you demonstrated that the device's sensitivity to an unpolarized beam is really negligible and/or quantified the impact of any systematic effects upon actual measurements? We present our answers to these questions backed up by laboratory measurements and give an overview of the mission.

  12. STS-134 crew during EVA TPS Overview training in the TPS/PABF

    NASA Image and Video Library

    2009-12-15

    JSC2009-E-284895 (15 Dec. 2009) --- NASA astronauts Gregory H. Johnson (left), STS-134 pilot; along with astronauts Michael Fincke, Greg Chamitoff and Andrew Feustel (mostly out of frame), all mission specialists, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center.

  13. The Planned Soil Moisture Active Passive (SMAP) Mission L-Band Radar/Radiometer Instrument

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Wheeler, Kevin; Chan, Samuel; Piepmeier, Jeffrey; Hudson, Derek; Medeiros, James

    2011-01-01

    The Soil Moisture Active/Passive (SMAP) mission is a NASA mission identified by the NRC 'decadal survey' to measure both soil moisture and freeze/thaw state from space. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. The instrument system has completed the preliminary design review (PDR) stage, and detailed instrument design has begun. In addition to providing an overview of the instrument design, two recent design modifications are discussed: 1) The addition of active thermal control to the instrument spun side to provide a more stable, settable thermal environment for the radiometer electronics, and 2) A 'sequential transmit' strategy for the two radar polarization channels which allows a single high-power amplifier to be used.

  14. EO-1/Hyperion: Nearing Twelve Years of Successful Mission Science Operation and Future Plans

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Campbell, Petya K.; Huemmrich, K. Fred; Zhang, Qingyuan; Landis, David R.; Ungar, Stephen G.; Ong, Lawrence; Pollack, Nathan H.; Cheng, Yen-Ben

    2012-01-01

    The Earth Observing One (EO-1) satellite is a technology demonstration mission that was launched in November 2000, and by July 2012 will have successfully completed almost 12 years of high spatial resolution (30 m) imaging operations from a low Earth orbit. EO-1 has two unique instruments, the Hyperion and the Advanced Land Imager (ALI). Both instruments have served as prototypes for NASA's newer satellite missions, including the forthcoming (in early 2013) Landsat-8 and the future Hyperspectral Infrared Imager (HyspIRI). As well, EO-1 is a heritage platform for the upcoming German satellite, EnMAP (2015). Here, we provide an overview of the mission, and highlight the capabilities of the Hyperion for support of science investigations, and present prototype products developed with Hyperion imagery for the HyspIRI and other space-borne spectrometers.

  15. Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)

    NASA Technical Reports Server (NTRS)

    Pitone, D. S.; Eudell, A. H.; Patt, F. S.

    1990-01-01

    The temperature correlation of the relative coalignment between the fine-pointing sun sensor and fixed-head star trackers measured on the Solar Maximum Mission (SMM) is analyzed. An overview of the SMM, including mission history and configuration, is given. Possible causes of the misalignment variation are discussed, with focus placed on spacecraft bending due to solar-radiation pressure, electronic or mechanical changes in the sensors, uncertainty in the attitude solutions, and mounting-plate expansion and contraction due to thermal effects. Yaw misalignment variation from the temperature profile is assessed, and suggestions for spacecraft operations are presented, involving methods to incorporate flight measurements of the temperature-versus-alignment function and its variance in operational procedures and the spacecraft structure temperatures in the attitude telemetry record.

  16. Autonomous Mission Manager for Rendezvous, Inspection and Mating

    NASA Technical Reports Server (NTRS)

    Zimpfer, Douglas J.

    2003-01-01

    To meet cost and safety objectives, space missions that involve proximity operations between two vehicles require a high level of autonomy to successfully complete their missions. The need for autonomy is primarily driven by the need to conduct complex operations outside of communication windows, and the communication time delays inherent in space missions. Autonomy also supports the goals of both NASA and the DOD to make space operations more routine, and lower operational costs by reducing the requirement for ground personnel. NASA and the DoD have several programs underway that require a much higher level of autonomy for space vehicles. NASA's Space Launch Initiative (SLI) program has ambitious goals of reducing costs by a factor or 10 and improving safety by a factor of 100. DARPA has recently begun its Orbital Express to demonstrate key technologies to make satellite servicing routine. The Air Force's XSS-ll program is developing a protoflight demonstration of an autonomous satellite inspector. A common element in space operations for many NASA and DOD missions is the ability to rendezvous, inspect anclJor dock with another spacecraft. For DARPA, this is required to service or refuel military satellites. For the Air Force, this is required to inspect un-cooperative resident space objects. For NASA, this is needed to meet the primary SLI design reference mission of International Space Station re-supply. A common aspect for each of these programs is an Autonomous Mission Manager that provides highly autonomous planning, execution and monitoring of the rendezvous, inspection and docking operations. This paper provides an overview of the Autonomous Mission Manager (AMM) design being incorporated into many of these technology programs. This AMM provides a highly scalable level of autonomous operations, ranging from automatic execution of ground-derived plans to highly autonomous onboard planning to meet ground developed mission goals. The AMM provides the

  17. Overview and early results of the Global Lightning and Sprite Measurements mission

    NASA Astrophysics Data System (ADS)

    Sato, M.; Ushio, T.; Morimoto, T.; Kikuchi, M.; Kikuchi, H.; Adachi, T.; Suzuki, M.; Yamazaki, A.; Takahashi, Y.; Inan, U.; Linscott, I.; Ishida, R.; Sakamoto, Y.; Yoshida, K.; Hobara, Y.; Sano, T.; Abe, T.; Nakamura, M.; Oda, H.; Kawasaki, Z.-I.

    2015-05-01

    Global Lightning and Sprite Measurements on Japanese Experiment Module (JEM-GLIMS) is a space mission to conduct the nadir observations of lightning discharges and transient luminous events (TLEs). The main objectives of this mission are to identify the horizontal distribution of TLEs and to solve the occurrence conditions determining the spatial distribution. JEM-GLIMS was successfully launched and started continuous nadir observations in 2012. The global distribution of the detected lightning events shows that most of the events occurred over continental regions in the local summer hemisphere. In some events, strong far-ultraviolet emissions have been simultaneously detected with N2 1P and 2P emissions by the spectrophotometers, which strongly suggest the occurrence of TLEs. Especially, in some of these events, no significant optical emission was measured by the narrowband filter camera, which suggests the occurrence of elves, not sprites. The VLF receiver also succeeded in detecting lightning whistlers, which show clear falling-tone frequency dispersion. Based on the optical data, the time delay from the detected lightning emission to the whistlers was identified as ˜10 ms, which can be reasonably explained by the wave propagation with the group velocity of whistlers. The VHF interferometer conducted the spaceborne interferometric observations and succeeded in detecting VHF pulses. We observed that the VHF pulses are likely to be excited by the lightning discharge possibly related with in-cloud discharges and measured with the JEM-GLIMS optical instruments. Thus, JEM-GLIMS provides the first full set of optical and electromagnetic data of lightning and TLEs obtained by nadir observations from space.

  18. STS-61 mission director's post-mission report

    NASA Technical Reports Server (NTRS)

    Newman, Ronald L.

    1995-01-01

    To ensure the success of the complex Hubble Space Telescope servicing mission, STS-61, NASA established a number of independent review groups to assess management, design, planning, and preparation for the mission. One of the resulting recommendations for mission success was that an overall Mission Director be appointed to coordinate management activities of the Space Shuttle and Hubble programs and to consolidate results of the team reviews and expedite responses to recommendations. This report presents pre-mission events important to the experience base of mission management, with related Mission Director's recommendations following the event(s) to which they apply. All Mission Director's recommendations are presented collectively in an appendix. Other appendixes contain recommendations from the various review groups, including Payload Officers, the JSC Extravehicular Activity (EVA) Section, JSC EVA Management Office, JSC Crew and Thermal Systems Division, and the STS-61 crew itself. This report also lists mission events in chronological order and includes as an appendix a post-mission summary by the lead Payload Deployment and Retrieval System Officer. Recommendations range from those pertaining to specific component use or operating techniques to those for improved management, review, planning, and safety procedures.

  19. SOCCER: Comet Coma Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Uesugi, K. T.; Tsou, Peter

    1994-01-01

    Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. Sample Of Comet Coma Earth Return (SOCCER), a joint effort between NASA and the Institute of Space and Astronautical Science (ISAS) in Japan, has two primary science objectives: (1) the imaging of the comet nucleus and (2) the return to Earth of samples of volatile species and intact dust. This effort makes use of the unique strengths and capabilities of both countries in realizing this important quest for the return of samples from a comet. This paper presents an overview of SOCCER's science payloads, engineering flight system, and its mission operations.

  20. Overview of the SMAP Applications and the SMAP Early Adopters Program - NASA's First Mission-Directed Outreach Effort

    NASA Technical Reports Server (NTRS)

    Escobar, V. M.; Delgado Arias, S.; Nearing, G.; Entekhabi, D.; Njoku, E.; Yueh, S.; Doorn, B.; Reichle, R.

    2016-01-01

    Satellite data provide global observations of many of the earths system processes and features. These data are valuable for developing scientific products that increase our understanding of how the earths systems are integrated. The water, energy and carbon cycle exchanges between the land and atmosphere are linked by soil moisture. NASAs Soil Moisture Active Passive (SMAP) mission provides soil moisture and freeze thaw measurements from space and allows scientists to link the water energy and carbon cycles. In order for SMAP data to be best integrated into decision support systems, the mission has engaged with the stakeholder community since 2009 and has attempted to scale the utility of the data to the thematic societal impacts of the satellite product applications. The SMAP Mission, which launched on January 31, 2015, has actively grown an Early Adopter (EA) community as part of its applications effort and worked with these EAs to demonstrate a scaled thematic impact of SMAP data product in societally relevant decision support applications. The SMAP mission provides global observations of the Earths surface soil moisture, providing high accuracy, resolution and continuous global coverage. Through the Early Adopters Program, the SMAP Applications Team will spend the next 2 years after launch documenting and evaluating the use of SMAP science products in applications related to weather forecasting, drought, agriculture productivity, floods, human health and national security.

  1. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, Wayne; Rogers, John; Moore, Arlene

    1992-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  2. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, R. Wayne; Moore, Arlene; Rogers, John

    1999-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA's) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  3. Summary Report on Phase I and Phase II Results From the 3D Printing in Zero-G Technology Demonstration Mission. Volume II

    NASA Technical Reports Server (NTRS)

    Prater, T. J.; Werkheiser, N. J.; Ledbetter, F. E., III

    2018-01-01

    In-space manufacturing seeks to develop the processes, skill sets, and certification architecture needed to provide a rapid response manufacturing capability on long-duration exploration missions. The first 3D printer on the Space Station was developed by Made in Space, Inc. and completed two rounds of operation on orbit as part of the 3D Printing in Zero-G Technology Demonstration Mission. This Technical Publication provides a comprehensive overview of the technical objections of the mission, the two phases of hardware operation conducted on orbit, and the subsequent detailed analysis of specimens produced. No engineering significant evidence of microgravity effects on material outcomes was noted. This technology demonstration mission represents the first step in developing a suite of manufacturing capabilities to meet future mission needs.

  4. Micro guidance and control technology overview

    NASA Technical Reports Server (NTRS)

    Kissel, Glen J.; Hadaegh, Fred Y.

    1993-01-01

    This paper gives an overview of micro-guidance and control technologies and in the process previews of the technology/user and systems issues presented in the guidance and control session at the workshop. We first present a discussion of the advantages of using micro-guidance and control components and then detail six micro-guidance and control thrusts that could have a revolutionary impact on space missions and systems. Specific technologies emerging in the micro-guidance and control field will be examined. These technologies fall into two broad categories: micro-attitude determination (inertial and celestial) and micro-actuation, control and sensing. Finally, the scope of the workshop's guidance and control panel are presented.

  5. An Overview of Low-Emission Combustion Research

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the Nitrogen Oxides (NOx) emission reduction in aircraft propulsion will be presented. The technology advancements and their impact on aircraft emissions will be discussed in the context of NASAs Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented will show how the past and current efforts have laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.

  6. Mapping photopolarimeter spectrometer instrument feasibility study for future planetary flight missions

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Evaluations are summarized directed towards defining optimal instrumentation for performing planetary polarization measurements from a spacecraft platform. An overview of the science rationale for polarimetric measurements is given to point out the importance of such measurements for future studies and exploration of the outer planets. The key instrument features required to perform the needed measurements are discussed and applied to the requirements for the Cassini mission to Saturn. The resultant conceptual design of a spectro-polarimeter photometer for Cassini is described in detail.

  7. Satellite Test of the Equivalence Principle, Overview and Progress

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffery

    2006-01-01

    An overview of STEP, the Satellite test of the Equivalence Principle will be presented. This space-based experiment will test the Universality of free fall and is designed to advance the present state of knowledge by over 5 orders of magnitude. The international STEP collaboration is pursuing a development plan to improve and verify the technology readiness of key systems. We will discuss recent advances with an emphasis on accelerometer fabrication and test. The transfer of critical technologies successfully demonstrated in flight by the Gravity Probe B mission will be described.

  8. SSC Tenant Meeting: NASA Near Earth Network (NEN) Overview

    NASA Technical Reports Server (NTRS)

    Carter, David; Larsen, David; Baldwin, Philip; Wilson, Cristy; Ruley, LaMont

    2018-01-01

    The Near Earth Network (NEN) consists of globally distributed tracking stations that are strategically located throughout the world which provide Telemetry, Tracking, and Commanding (TTC) services support to a variety of orbital and suborbital flight missions, including Low Earth Orbit (LEO), Geosynchronous Earth Orbit (GEO), highly elliptical, and lunar orbits. Swedish Space Corporation (SSC), which is one of the NEN Commercial Service Provider, has provided the NEN with TTC services support from its Alaska, Hawaii, Chile and Sweden. The presentation will give an overview of the NEN and its support from SSC.

  9. Nuclear electric propulsion mission engineering study development program and costs estimates, Phase 2 review

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are presented of the second six-month performance period of the Nuclear Electric Propulsion Mission Engineering Study. A brief overview of the program, identifying the study objectives and approach, and a discussion of the program status and schedule are presented. The program results are reviewed and key conclusions to date are summarized. Planned effort for the remainder of the program is reviewed.

  10. Spaceflight-Induced Intracranial Hypertension: An Overview

    NASA Technical Reports Server (NTRS)

    Traver, William J.

    2011-01-01

    This slide presentation is an overview of the some of the known results of spaceflight induced intracranial hypertension. Historical information from Gemini 5, Apollo, and the space shuttle programs indicated that some vision impairment was reported and a comparison between these historical missions and present missions is included. Optic Disc Edema, Globe Flattening, Choroidal Folds, Hyperopic Shifts and Raised Intracranial Pressure has occurred in Astronauts During and After Long Duration Space Flight. Views illustrate the occurrence of Optic Disc Edema, Globe Flattening, and Choroidal Folds. There are views of the Arachnoid Granulations and Venous return, and the question of spinal or venous compliance issues is discussed. The question of increased blood flow and its relation to increased Cerebrospinal fluid (CSF) is raised. Most observed on-orbit papilledema does not progress, and this might be a function of plateau homeostasis for the higher level of intracranial pressure. There are seven cases of astronauts experiencing in flight and post flight symptoms, which are summarized and follow-up is reviewed along with a comparison of the treatment options. The question is "is there other involvement besides vision," and other Clinical implications are raised,

  11. Landsat Data Continuity Mission (LDCM) Flight Dynamics System (FDS)

    NASA Technical Reports Server (NTRS)

    Good, Susan M.; Nicholson, Ann M.

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) will be launched in January 2013 to continue the legacy of Landsat land imagery collection that has been on-going for the past 40 years. While the overall mission and science goals are designed to produce the SAME data over the years, the ground systems designed to support the mission objectives have evolved immensely. The LDCM Flight Dynamics System (FDS) currently being tested and deployed for operations is highly automated and well integrated with the other ground system elements. The FDS encompasses the full suite of flight dynamics functional areas, including orbit and attitude determination and prediction, orbit and attitude maneuver planning and execution, and planning product generation. The integration of the orbit, attitude, maneuver, and products functions allows a very smooth flow for daily operations support with minimal input needed from the operator. The system also provides a valuable real-time component that monitors the on-board orbit and attitude during every ground contact and will autonomously alert the Flight Operations Team (FOT) personnel when any violations are found. This paper provides an overview of the LDCM Flight Dynamics System and a detailed description of how it is used to support space operations. For the first time on a Goddard Space Flight Center (GSFC)-managed mission, the ground attitude and orbits systems are fully integrated into a cohesive package. The executive engine of the FDS permits three levels of automation: low, medium, and high. The high-level, which will be the standard mode for LDCM, represents nearly lights-out operations. The paper provides an in-depth look at these processes within the FDS in support of LDCM in all mission phases.

  12. International Earth Science Constellation Mission Operations Working Group: Constellation Coordination System (CCS) Status. [Constellation Coordination System (CCS) Status

    NASA Technical Reports Server (NTRS)

    Skeberdis, Daniel

    2016-01-01

    This is a presentation at the MOWG fall meeting that will discuss CCS purpose, future status, security enhancements, arbitrary ephemeris mission features, overview of CCS 7.3, approach for the use of NORAD TLEs, account and data security, CCS System virtualization, control box visualization modification and other enhancements.

  13. Research on adaptive optics image restoration algorithm based on improved joint maximum a posteriori method

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Li, Yang; Wang, Junnan; Liu, Ying

    2018-03-01

    In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio ( PSNR) and Laplacian sum ( LS) value than the others. The research results have a certain application values for actual AO image restoration.

  14. NASDA's view of ground control in mission operations

    NASA Technical Reports Server (NTRS)

    Tateno, Satoshi

    1993-01-01

    This paper presents an overview of the present status and future plans of the National Space Development Agency of Japan 's (NASDA's) ground segment and related space missions. The described ground segment consists of the tracking and data acquisition (T&DA) system and the Earth Observation Center (EOC) system. In addition to these systems, the current plan of the Engineering Support Center (ESC) for the Japanese Experiment Module (JEM) attached to Space Station Freedom is introduced. Then, NASDA's fundamental point of view on the future trend of operations and technologies in the coming new space era is discussed. Within the discussion, the increasing importance of international cooperation is also mentioned.

  15. Potential Mission Scenarios Post Asteroid Crewed Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; McDonald, Mark A.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  16. Low Cost Mission Operations Workshop. [Space Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The presentations given at the Low Cost (Space) Mission Operations (LCMO) Workshop are outlined. The LCMO concepts are covered in four introductory sections: Definition of Mission Operations (OPS); Mission Operations (MOS) Elements; The Operations Concept; and Mission Operations for Two Classes of Missions (operationally simple and complex). Individual presentations cover the following topics: Science Data Processing and Analysis; Mis sion Design, Planning, and Sequencing; Data Transport and Delivery, and Mission Coordination and Engineering Analysis. A list of panelists who participated in the conference is included along with a listing of the contact persons for obtaining more information concerning LCMO at JPL. The presentation of this document is in outline and graphic form.

  17. EXPOSE-R on Mission on the ISS

    NASA Astrophysics Data System (ADS)

    Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Barczyk, Simon; Kloss, Maria; Reitz, Guenther

    Simulation Facilities (PSI) of DLR, Cologne: the space parameters (vacuum, temperature and extra-terrestrial UV-radiation) as delivered from the ISS are simulated. An overview over the EXPOSE mission from the EXPOSE-R Experiment Verification Test (EVT) Program to the flight sample preparation is presented.

  18. Mission description and in-flight operations of ERBE instruments on ERBS and NOAA 9 spacecraft, November 1984 - January 1986

    NASA Technical Reports Server (NTRS)

    Weaver, William L.; Bush, Kathryn A.; Harris, Chris J.; Howerton, Clayton E.; Tolson, Carol J.

    1991-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth orbiting spacecrafts: the Earth Radiation Budget Satellite (ERBS), NOAA-9, and NOAA-10. An overview is presented of the ERBE mission, in-orbit environments, and instrument design and operational features. An overview of science data processing and validation procedures is also presented. In-flight operations are described for the ERBE instruments aboard the ERBS and NOAA-9. Calibration and other operational procedures are described, and operational and instrument housekeeping data are presented and discussed.

  19. Fibre optics in the SMOS mission

    NASA Astrophysics Data System (ADS)

    Kudielka, K.; Benito-Hernández, F. J.; Rits, W.; Martin-Neira, M.

    2017-11-01

    Launched on November 2nd, 2009, SMOS (Soil Moisture, Ocean Salinity) is the second Earth Explorer Opportunity mission developed as part of ESA's Living Planet Programme. It demonstrates a completely new type of instrument - a large, deployable synthetic-aperture microwave radiometer [1]. RUAG Space, Switzerland, as a subcontractor of EADS Astrium, Spain, has provided the instrument's fibreoptic harness, which interconnects the central data processor with all 69 microwave receivers, as well as 12 auxiliary units on board. For reasons explained in Section 3, SMOS is the first European mission extensively using both fibre-optic clock distribution and data transmission in space. In Section 2, we present an overview of the scientific goals of SMOS, and describe the payload's basic function. There from we derive the rationale and the design of the fibre-optic harness (Section 3). In Section 4 all development, manufacturing, and test activities are summarised, which culminated in the successful delivery of all flight units to EADS Astrium by October 2006. We present the major test results obtained with the flight harness (Section 5), and conclude with a short summary of the higher-level activities, which lead to successful launch and commissioning of the SMOS satellite (Section 6).

  20. The Aeronomy of Ice in the Mesosphere (AIM) mission: Overview and early science results

    NASA Astrophysics Data System (ADS)

    Russell, James M., III; Bailey, Scott M.; Gordley, Larry L.; Rusch, David W.; Horányi, Mihály; Hervig, Mark E.; Thomas, Gary E.; Randall, Cora E.; Siskind, David E.; Stevens, Michael H.; Summers, Michael E.; Taylor, Michael J.; Englert, Christoph R.; Espy, Patrick J.; McClintock, William E.; Merkel, Aimee W.

    2009-03-01

    The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California at 1:26:03 PDT on April 25, 2007 becoming the first satellite mission dedicated to the study of polar mesospheric clouds. A Pegasus XL rocket launched the satellite into a near perfectly circular 600 km sun synchronous orbit. AIM carries three instruments selected because of their ability to provide key measurements needed to address the AIM goal which is to determine why these clouds form and vary. The instrument payload includes a nadir imager, a solar occultation instrument and an in-situ cosmic dust detector. Detailed descriptions of the science, instruments and observation scenario are presented. Early science results from the first northern and southern hemisphere seasons show a highly variable cloud morphology, clouds that are ten times brighter than measured by previous space-based instruments, and complex features that are reminiscent of tropospheric weather phenomena. The observations also confirm a previously theorized but never before directly observed population of small ice particles in the altitude region above the main Polar Mesospheric Cloud (PMC) layer that are widely believed to be the indirect cause of summertime radar echoes.

  1. Reusable space tug concept and mission

    NASA Astrophysics Data System (ADS)

    Cresto Aleina, Sara; Viola, Nicole; Stesina, Fabrizio; Viscio, Maria Antonietta; Ferraris, Simona

    2016-11-01

    The paper deals with the conceptual design of a space tug to be used in support to Earth satellites transfer manoeuvres. Usually Earth satellites are released in a non-definitive low orbit, depending on the adopted launcher, and they need to be equipped with an adequate propulsion system able to perform the transfer to their final operational location. In order to reduce the mass at launch of the satellite system, an element pre-deployed on orbit, i.e. the space tug, can be exploited to perform the transfer manoeuvres; this allows simplifying the propulsion requirements for the satellite, with a consequent decrease of mass and volume, in favour of larger payloads. The space tug here presented is conceived to be used for the transfer of a few satellites from low to high orbits, and vice versa, if needed. To support these manoeuvres, dedicated refuelling operations are envisaged. The paper starts from on overview of the mission scenario, the concept of operations and the related architecture elements. Then it focuses on the detailed definition of the space tug, from the requirements' assessment up to the budgets' development, through an iterative and recursive design process. The overall mission scenario has been derived from a set of trade-off analyses that have been performed to choose the mission architecture and operations that better satisfy stakeholder expectations: the most important features of these analyses and their results are described within the paper. Eventually, in the last part of the work main conclusions are drawn on the selected mission scenario and space tug and further utilizations of this innovative system in the frame of future space exploration are discussed. Specifically, an enhanced version of the space tug that has been described in the paper could be used to support on orbit assembly of large spacecraft for distant and long exploration missions. The Space Tug development is an activity carried on in the frame of the SAPERE project (Space

  2. The International Space Station Evolution Data Book: An Overview and Status

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Jorgensen, Catherine A.

    1999-01-01

    The evolution and enhancement of the International Space Station (ISS) is currently being planned in conjunction with the on-orbit construction of the baseline configuration. Three principal areas have been identified that will contribute to the evolution of ISS: Pre-Planned Program Improvement (P3I), Utilization & Commercialization, and Human Exploration and Development of Space (HEDS) missions. The ISS Evolution Strategy, under development by the Spacecraft and Sensors Branch of NASA Langley Research Center, seeks to coordinate the P3I technology development with Commercialization/Utilization activities and HEDS advanced mission accommodation to provide synergistic technology developments for all three areas. The focal point of this proposed strategy is the ISS Evolution Data Book (EDB), a tool for aiding the evolution and enhancement of ISS beyond Assembly Complete. This paper will discuss the strategy and provide an overview of the EDB, describing the contents of each section. It will also discuss potential applications of the EDB and present an example Design Reference Mission (DRM). The latest status of the EDB and the plans for completing and enhancing the book will also be summarized.

  3. An overview of the Nuclear Electric Xenon Ion System (NEXIS) program

    NASA Technical Reports Server (NTRS)

    Polk, Jay E.; Goebel, Don; Brophy, John R.; Beatty, John; Monheiser, J.; Giles, D.; Hobson, D.; Wilson, F.; Christensen, J.; De Pano, M.; hide

    2003-01-01

    NASA is investigating high power, high specific impulse propulsion technologies that could enable ambitious flights such as multi-body rendezvous missions, outer planet orbiters and interstellar precursor missions. The requirements for these missions are much more demanding than those for state-of-the-art solar-powered ion propulsion applications. The purpose of the NEXIS program is to develop advanced ion thruster technologies that satisfy the requirements for high power, high specific impulse operation, high efficiency and long thruster life. The nominal design point for the NEXIS thruster is 20 kWe at a specific impulse of 7500 s with an efficiency over 78% and a xenon throughput capability of greater than 2000 kg. These performance and throughput goals will be achieved by applying a combination of advanced technologies including a large discharge chamber, erosion resistant carbon-carbon grids, an advanced reservoir hollow cathode and techniques for increasing propellant efficiency such as grid masking and accelerator grid aperture diameter tailoring. This paper provides an overview of the challenges associated with these requirements and how they are being addressed in the NEXIS program.

  4. Life sciences flight experiments program - Overview

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.

    1981-01-01

    The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.

  5. The Solar Probe mission - Mission design concepts and requirements

    NASA Technical Reports Server (NTRS)

    Ayon, Juan A.

    1992-01-01

    The Solar Probe concept as studied by the Jet Propulsion Laboratory represents the first mission to combine out-of-the-ecliptic scientific coverage with multiple, close solar encounters (at 4 solar radii). The scientific objectives of the mission have driven the investigation and analysis of several mission design concepts, all optimized to meet the science/mission requirements. This paper reviews those mission design concepts developed, the science objectives that drive the mission design, and the principle mission requirements associated with these various concepts.

  6. The PROPEL Electrodynamic Tether Mission and Connecting to the Ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian; Bilen, Sven; Hoyt, Rob; Stone,Nobie; Vaughn, Jason; Fuhrhop, Keith; Krause, Linda; Khazanov, George; Johnson, Les

    2012-01-01

    The exponential increase of launch system size.and cost.with delta-V makes missions that require large total impulse cost prohibitive. Led by NASA's Marshall Space Flight Center, a team from government, industry, and academia has developed a flight demonstration mission concept of an integrated electrodynamic (ED) tethered satellite system called PROPEL: "Propulsion using Electrodynamics". The PROPEL Mission is focused on demonstrating a versatile configuration of an ED tether to overcome the limitations of the rocket equation, enable new classes of missions currently unaffordable or infeasible, and significantly advance the Technology Readiness Level (TRL) to an operational level. We are also focused on establishing a far deeper understanding of critical processes and technologies to be able to scale and improve tether systems in the future. Here, we provide an overview of the proposed PROPEL mission. One of the critical processes for efficient ED tether operation is the ability to inject current to and collect current from the ionosphere. Because the PROPEL mission is planned to have both boost and deboost capability using a single tether, the tether current must be capable of flowing in both directions and at levels well over 1 A. Given the greater mobility of electrons over that of ions, this generally requires that both ends of the ED tether system can both collect and emit electrons. For example, hollow cathode plasma contactors (HCPCs) generally are viewed as state-of-the-art and high TRL devices; however, for ED tether applications important questions remain of how efficiently they can operate as both electron collectors and emitters. Other technologies will be highlighted that are being investigated as possible alternatives to the HCPC such as Solex that generates a plasma cloud from a solid material (Teflon) and electron emission (only) technologies such as cold-cathode electron field emission or photo-electron beam generation (PEBG) techniques.

  7. Applications for Mission Operations Using Multi-agent Model-based Instructional Systems with Virtual Environments

    NASA Technical Reports Server (NTRS)

    Clancey, William J.

    2004-01-01

    This viewgraph presentation provides an overview of past and possible future applications for artifical intelligence (AI) in astronaut instruction and training. AI systems have been used in training simulation for the Hubble Space Telescope repair, the International Space Station, and operations simulation for the Mars Exploration Rovers. In the future, robots such as may work as partners with astronauts on missions such as planetary exploration and extravehicular activities.

  8. An Overview of Electric Propulsion Activities at NASA

    NASA Technical Reports Server (NTRS)

    Dunning, John W., Jr.; Hamley, John A.; Jankovsky, Robert S.; Oleson, Steven R.

    2004-01-01

    This paper provides an overview of NASA s activities in the area of electric propulsion with an emphasis on project directions, recent progress, and a view of future project directions. The goals of the electric propulsion programs are to develop key technologies to enable new and ambitious science missions and to transfer these technologies to industry. Activities include the development of gridded ion thruster technology, Hall thruster technology, pulsed plasma thruster technology, and very high power electric propulsion technology, as well as systems technology that supports practical implementation of these advanced concepts. The performance of clusters of ion and Hall thrusters is being revisited. Mission analyses, based on science requirements and preliminary mission specifications, guide the technology projects and introduce mission planners to new capabilities. Significant in-house activity, with strong industrial/academia participation via contracts and grants, is maintained to address these development efforts. NASA has initiated a program covering nuclear powered spacecraft that includes both reactor and radioisotope power sources. This has provided an impetus to investigate higher power and higher specific impulse thruster systems. NASA continues to work closely with both supplier and user communities to maximize the understanding and acceptance of new technology in a timely and cost-effective manner. NASA s electric propulsion efforts are closely coordinated with Department of Defense and other national programs to assure the most effective use of available resources. Several NASA Centers are actively involved in these electric propulsion activities, including, the Glenn Research Center, Jet Propulsion Laboratory, Johnson Space Center, and Marshall Space Flight Center.

  9. Workshop Report on Deep Mars: Accessing the Subsurface of Mars on Near Term Missions

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephanie R. (Editor)

    2008-01-01

    The workshop encompassed three major themes. The first theme was the scientific objectives of drilling, which center on the search for clues to the existence of past life and to the geological and climate history of Mars. Key questions are where and how deep to drill? Planetary protection issues were stressed as an important consideration in the design of any drilling mission. Secondly, architectures for drilling missions were discussed, including an overview of most of the current drills in operation that would be applicable to drilling on Mars. Considerable emphasis was placed on remote operation and drilling automation technologies. Finally, alternatives to conventional drilling were discussed. These included underground moles, penetrometers, horizontal drilling, impactors, and access to the subsurface from subsurface cavities. Considerable discussion centered on the possible Mars drilling missions that could be performed in both the near and longer term. The workshop participants concluded that useful science could be obtained today using low-cost impactors, with or without a sheperding spacecraft.

  10. AIRMOSS MISSION OVERVIEW

    USDA-ARS?s Scientific Manuscript database

    Active microwave remote sensing has long been recognized as a key component of an effective environmental observing strategy, due to the strong relationships of radar measurements with geometric and compositional properties of the Earth’s landscape. The Airborne Microwave Observatory of Subcanopy an...

  11. Mission Diversity and the Tension between Prestige and Effectiveness: An Overview of US Higher Education

    ERIC Educational Resources Information Center

    Eckel, Peter D.

    2008-01-01

    Higher education in the US has long prized mission diversity as illustrated in the range of its colleges and universities including community colleges, baccalaureate (or liberal arts) colleges, doctoral-granting universities, and special-focus institutions, as well as its public, private non-profit, and private for-profit forms of control. This…

  12. Overview of NASA Heliophysics and the Science of Space Weather

    NASA Astrophysics Data System (ADS)

    Talaat, E. R.

    2017-12-01

    In this paper, an overview is presented on the various activities within NASA that address space weather-related observations, model development, and research to operations. Specific to space weather, NASA formulates and implements, through the Heliophysics division, a national research program for understanding the Sun and its interactions with the Earth and the Solar System and how these phenomena impact life and society. NASA researches and prototypes new mission and instrument capabilities in this area, providing new physics-based algorithms to advance the state of solar, space physics, and space weather modeling.

  13. Ongoing Mars Missions: Extended Mission Plans

    NASA Astrophysics Data System (ADS)

    Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.

    2016-10-01

    Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this

  14. Habitation Concepts and Tools for Asteroid Missions and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Smitherman, David

    2010-01-01

    In 2009 studies were initiated in response to the Augustine Commission s review of the Human Spaceflight Program to examine the feasibility of additional options for space exploration beyond the lunar missions planned in the Constellation Program. One approach called a Flexible Path option included possible human missions to near-Earth asteroids. This paper presents an overview of possible asteroid missions with emphasis on the habitation options and vehicle configurations conceived for the crew excursion vehicles. One launch vehicle concept investigated for the Flexible Path option was to use a dual launch architecture that could serve a wide variety of exploration goals. The dual launch concept used two medium sized heavy lift launch vehicles for lunar missions as opposed to the single Saturn V architecture used for the Apollo Program, or the one-and-a-half vehicle Ares I / Ares V architecture proposed for the Constellation Program. This dual launch approach was studied as a Flexible Path option for lunar missions and for possible excursions to other destinations like geosynchronous earth orbiting satellites, Lagrange points, and as presented in this paper, asteroid rendezvous. New habitation and exploration systems for the crew are presented that permit crew sizes from 2 to 4, and mission durations from 100 to 360 days. Vehicle configurations are presented that include habitation systems and tools derived from International Space Station (ISS) experience and new extra-vehicular activity tools for asteroid exploration, Figure 1. Findings from these studies and as presented in this paper indicate that missions to near-Earth asteroids appear feasible in the near future using the dual launch architecture, the technologies under development from the Constellation Program, and systems derived from the current ISS Program. In addition, the capabilities derived from this approach that are particularly beneficial to the commercial sector include human access to

  15. An Overview of the NASA P-3B Airborne Laboratory

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.; Postell, George W.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) Wallops Flight Facility (WFF) P-3B Orion is a medium-lift, four engine turbo-prop aircraft that has been reconfigured from a military aircraft to an Earth Science research platform. The aircraft has a long history of supporting science missions, flying on average over 200 hours per year. Examples of research missions that have been flown aboard the aircraft are remote sensing flights to study geophysical parameters including ice-sheet topography and periodic change, soil moisture content, atmospheric aerosol constituents, and beach erosion. Missions are conducted for the purposes of calibration/validation of various NASA and international satellites that monitor climate change as well as process studies and the test of new prototype remote sensing instruments. In recent y ears the focus has been on ice surveys of the Arctic and Antarctic, soil moisture research, and measurements of atmospheric chemistry and radiation sciences. The aircraft has been conducting ice surveys of Greenland since 1993 for the purposes of topographic mapping of both the surface and basal topography. Another application of the aircraft has been for soil moisture research. Research has also been conducted using microwave radiometers and radars over various agricultural and forest lands. Recently, a mission was flown in the spring over the High-Arctic to collect air samples of haze and boreal forest fires in an effort to determine anthropogenic amounts and sources of pollution. This pa per will provide an overview of the P-3B platform and highlight recent science missions.

  16. Earth observations during Space Shuttle flight STS-41 - Discovery's mission to planet earth

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh P.; Helfert, Michael R.; Amsbury, David L.; Whitehead, Victor S.; Richards, Richard N.; Cabana, Robert D.; Shepherd, William M.; Akers, Thomas D.; Melnick, Bruce E.

    1991-01-01

    An overview of space flight STS-41 is presented, including personal observations and comments by the mission astronauts. The crew deployed the Ulysses spacecraft to study the polar regions of the sun and the interplanetary space above the poles. Environmental observations, including those of Lake Turkana, Lake Chad, biomass burning in Madagascar and Argentina, and circular features in Yucatan are described. Observations that include landforms and geology, continental sedimentation, desert landscapes, and river morphology are discussed.

  17. Ocean-atmosphere science from the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission

    NASA Astrophysics Data System (ADS)

    Werdell, J.

    2016-12-01

    The new NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission is a strategic climate continuity activity that will not only extend key heritage ocean color, cloud, and aerosol data records, but also enable new insight into oceanographic and atmospheric responses to Earth's changing climate. The primary PACE instrument will be a spectroradiometer that spans the ultraviolet to shortwave infrared region at 5 nm resolution with a ground sample distance of 1 km at nadir. This payload will likely be complemented by a multi-angle polarimeter with a similar spectral range. Scheduled for launch in 2022, this PACE instrument pair will revolutionize studies of global biogeochemistry and carbon cycles in the ocean-atmosphere system. Here, I present a PACE mission overview, with focus on instrument characteristics, core and advanced data products, and overarching science objectives.

  18. The Europa Clipper mission concept

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert; Lopes, Rosaly

    Jupiter's moon Europa may be a habitable world. Galileo spacecraft data suggest that an ocean most likely exists beneath Europa’s icy surface and that the “ingredients” necessary for life (liquid water, chemistry, and energy) could be present within this ocean today. Because of the potential for revolutionizing our understanding of life in the solar system, future exploration of Europa has been deemed an extremely high priority for planetary science. A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon’s surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite’s ice and ocean, composition, and geology. The set of investigations derived from these science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces

  19. Mission management - Lessons learned from early Spacelab missions

    NASA Technical Reports Server (NTRS)

    Craft, H. G., Jr.

    1980-01-01

    The concept and the responsibilities of a mission manager approach are reviewed, and some of the associated problems in implementing Spacelab mission are discussed. Consideration is given to program control, science management, integrated payload mission planning, and integration requirements. Payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities are outlined.

  20. Manned Mars mission accommodation: Sprint mission

    NASA Technical Reports Server (NTRS)

    Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.

    1988-01-01

    The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hangar, and a heavy lift launch vehicle to support the large launch requirements.

  1. NASA Space Cryocooler Programs: A 2003 Overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Boyle, R. F.; Kittel, P.

    2004-01-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science missions. An overview is presented of ongoing cryocooler activities within NASA in support of current flight projects, near-term flight instruments, and long-term technology development. NASA programs in Earth and space science observe a wide range of phenomena, from crop dynamics to stellar birth. Many of the instruments require cryogenic refrigeration to improve dynamic range, extend wavelength coverage, and enable the use of advanced detectors. Although, the largest utilization of coolers over the last decade has been for instruments operating at medium to high cryogenic temperatures (55 to 150 K), reflecting the relative maturity of the technology at these temperatures, important new developments are now focusing at the lower temperature range from 4 to 20 K in support of studies of the origin of the universe and the search for planets around distant stars. NASA's development of a 20K cryocooler for the European Planck spacecraft and its new Advanced Cryocooler Technology Development Program (ACTDP) for 6-18 K coolers are examples of the thrust to provide low temperature cooling for this class of missions.

  2. Mission Techniques for Exploring Saturn's icy moons Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John

    2010-05-01

    The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiѐre hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit within NASA's New Frontiers or ESA's Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, several mission concepts have been developed that potentially fit within various cost classes. Also, a clear blueprint has been laid out for early efforts critical toward reducing the risks inherent in such missions. The purpose of this paper is to provide a brief overview of potential Titan (and Enceladus) mission

  3. Dawn at Vesta: An overview after the Dawn mission

    NASA Astrophysics Data System (ADS)

    Zambon, Francesca

    2016-07-01

    Vesta, the second largest object in the main asteroid belt of our Solar System, was explored by the Dawn mission for over a year [1, 2]. Dawn is equipped with the Framing Camera (FC) [3], which provides geological and compositional analysis, the Visible and InfraRed (VIR) mapping spectrometer [4], which allowed a comprehensive mineralogical mapping of the surface, and the Gamma Ray and Neutron Detector (GRaND) [5], which reveals the elemental composition. A wealth of data acquired by these three instruments allowed for improving the knowledge on the surface and near-surface properties of Vesta. Dawn covered a large fraction of Vesta' surface. Dawn's mission at Vesta has been divided into four different phases based on the spacecraft altitude [1], which resulted in a variety of pixel resolutions, reaching down to ~70 m/pixel for VIR and ~25 m/pixel for the FC. Pyroxene absorptions are the most prominent visible-to-near infrared spectral features of Vesta [6]. The overall mineralogy is consistent with howardite-eucrite-diogenite (HED) meteorites [7, 8]. More specifically, VIR spectra, acquired in the overall range 0.25-5.1 μm at spatial scales ranging from tens of meters to tens of kilometers, are consistent with a surface covered by a howardite-like regolith containing various proportions of eucrite and diogenite at different locations [9, 10]. Diogenite shows up in localized regions and mostly occurs in the southern polar region within the Rheasilvia impact basin [10]. Lithologies other than HEDs were indeed revealed by VIR spectra at the local scale. Olivine-rich deposits have been detected in Bellicia and Arruntia craters as well as in a limited number of other sites [11, 12, 13], while a large number of bright [14] and dark units [15, 16, 17] overlay Vesta'surface. Spectrally distinct, eucrite-rich ejecta have been observed in the Oppia and Octavia ejecta, interpreted to be glassy impact melt [18, 19]. VIR spectral analysis highlights a shallow 2.8-μm band

  4. The Challenges and Opportunities for International Cooperative Radio Science; Experience with Mars Express and Venus Express Missions

    NASA Technical Reports Server (NTRS)

    Holmes, Dwight P.; Thompson, Tommy; Simpson, Richard; Tyler, G. Leonard; Dehant, Veronique; Rosenblatt, Pascal; Hausler, Bernd; Patzold, Martin; Goltz, Gene; Kahan, Daniel; hide

    2008-01-01

    Radio Science is an opportunistic discipline in the sense that the communication link between a spacecraft and its supporting ground station can be used to probe the intervening media remotely. Radio science has recently expanded to greater, cooperative use of international assets. Mars Express and Venus Express are two such cooperative missions managed by the European Space Agency with broad international science participation supported by NASA's Deep Space Network (DSN) and ESA's tracking network for deep space missions (ESTRAK). This paper provides an overview of the constraints, opportunities, and lessons learned from international cross support of radio science, and it explores techniques for potentially optimizing the resultant data sets.

  5. Multi-spectral optical scanners for commercial earth observation missions

    NASA Astrophysics Data System (ADS)

    Schröter, Karin; Engel, Wolfgang; Berndt, Klaus

    2017-11-01

    In recent years, a number of commercial Earth observation missions have been initiated with the aim to gather data in the visible and near-infrared wavelength range. Some of these missions aim at medium resolution (5 to 10 m) multi-spectral imaging with the special background of daily revisiting. Typical applications aim at monitoring of farming area for growth control and harvest prediction, irrigation control, or disaster monitoring such as hail damage in farming, or flood survey. In order to arrive at profitable business plans for such missions, it is mandatory to establish the space segment, i.e. the spacecraft with their opto -electronic payloads, at minimum cost while guaranteeing maximum reliability for mission success. As multiple spacecraft are required for daily revisiting, the solutions are typically based on micro-satellites. This paper presents designs for multi-spectral opto-electric scanners for this type of missions. These designs are drive n by minimum mass and power budgets of microsatellites, and the need for minimum cost. As a consequence, it is mandatory to arrive at thermally robust, compact telescope designs. The paper gives a comparison between refractive, catadioptric, and TMA optics. For mirror designs, aluminium and Zerodur mirror technologies are briefly discussed. State-of-the art focal plane designs are presented. The paper also addresses the choice of detector technologies such as CCDs and CMOS Active Pixel Sensors. The electronics of the multi-spectral scanners represent the main design driver regarding power consumption, reliability, and (most often) cost. It can be subdivided into the detector drive electronics, analog and digital data processing chains, the data mass memory unit, formatting and down - linking units, payload control electronics, and local power supply. The paper gives overviews and trade-offs between data compression strategies and electronics solutions, mass memory unit designs, and data formatting approaches

  6. Formulation Assessment and Support Team (FAST) for the Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Mazanek, Daniel D.; Abell, Paul; Reeves, David M.; NASA Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST)

    2016-10-01

    The Formulation Assessment and Support Team (FAST) for the Asteroid Redirect Mission (ARM) was a two-month effort, chartered by NASA, to provide timely inputs for mission requirement formulation in support of the Asteroid Redirect Robotic Mission (ARRM) Requirements Closure Technical Interchange Meeting held December 15-16, 2015. Additionally, the FAST was tasked with developing an initial list of potential mission investigations and providing input on potential hosted payloads and partnerships. The FAST explored several aspects of potential science benefits and knowledge gain from the ARM. Expertise from the science, engineering, and technology communities was represented in exploring lines of inquiry related to key characteristics of the ARRM reference target asteroid (2008 EV5) for engineering design purposes. Specific areas of interest included target origin, spatial distribution and size of boulders, surface geotechnical properties, boulder physical properties, and considerations for boulder handling, crew safety, and containment. In order to increase knowledge gain potential from the mission, opportunities for partnerships and accompanying payloads that could be provided by domestic and international partners were also investigated. The ARM FAST final report was publicly released on February 18, 2016 and represents the FAST's final product. The report and associated public comments are being used to support mission requirements formulation and serve as an initial inquiry to the science and engineering communities relating to the characteristics of the ARRM reference target asteroid. This report also provides a suggested list of potential investigations sorted and grouped based on their likely benefit to ARM and potential relevance to NASA science and exploration goals. These potential investigations could be conducted to reduce mission risks and increase knowledge return in the areas of science, planetary defense, asteroid resources and in-situ resource

  7. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    NASA Technical Reports Server (NTRS)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  8. Applications Explorer Missions (AEM): Mission planners handbook

    NASA Technical Reports Server (NTRS)

    Smith, S. R. (Editor)

    1974-01-01

    The Applications Explorer Missions (AEM) Program is a planned series of space applications missions whose purpose is to perform various tasks that require a low cost, quick reaction, small spacecraft in a dedicated orbit. The Heat Capacity Mapping Mission (HCMM) is the first mission of this series. The spacecraft described in this document was conceived to support a variety of applications instruments and the HCMM instrument in particular. The maximum use of commonality has been achieved. That is, all of the subsystems employed are taken directly or modified from other programs such as IUE, IMP, RAE, and Nimbus. The result is a small versatile spacecraft. The purpose of this document, the AEM Mission Planners Handbook (AEM/MPH) is to describe the spacecraft and its capabilities in general and the HCMM in particular. This document will also serve as a guide for potential users as to the capabilities of the AEM spacecraft and its achievable orbits. It should enable each potential user to determine the suitability of the AEM concept to his mission.

  9. An Overview of Scientific and Space Weather Results from the Communication/Navigation Outage Forecasting System (C/NOFS) Mission

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; de la Beaujardiere, O.; Hunton, D.; Heelis, R.; Earle, G.; Strauss, P.; Bernhardt, P.

    2012-01-01

    The Communication/Navigation Outage Forecasting System (C/NOFS) Mission of the Air Force Research Laboratory is described. C/NOFS science objectives may be organized into three categories: (1) to understand physical processes active in the background ionosphere and thermosphere in which plasma instabilities grow; (2) to identify mechanisms that trigger or quench the plasma irregularities responsible for signal degradation; and (3) to determine how the plasma irregularities affect the propagation of electromagnetic waves. The satellite was launched in April, 2008 into a low inclination (13 deg), elliptical (400 x 850 km) orbit. The satellite sensors measure the following parameters in situ: ambient and fluctuating electron densities, AC and DC electric and magnetic fields, ion drifts and large scale ion composition, ion and electron temperatures, and neutral winds. C/NOFS is also equipped with a GPS occultation receiver and a radio beacon. In addition to the satellite sensors, complementary ground-based measurements, theory, and advanced modeling techniques are also important parts of the mission. We report scientific and space weather highlights of the mission after nearly four years in orbit

  10. Advances in Architectural Elements For Future Missions to Titan

    NASA Astrophysics Data System (ADS)

    Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John

    2010-05-01

    The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Recent Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiere hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit into NASA New Frontiers or ESA Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, a clear blueprint has been laid out for the work needed to reduce the risks inherent in such missions and the areas where advances would be beneficial for elements critical to future Titan missions have been identified. The purpose of this paper is to provide a brief overview of the flagship mission architecture and

  11. Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.

    2015-01-01

    Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.

  12. An Overview of the Smart Sensor Inter-Agency Reference Testbench (SSIART)

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond S.; Braham, Stephen P.; Dufour, Jean-Francois; Barton, Richard J.

    2012-01-01

    In this paper, we present an overview of a proposed collaboration between the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA), which is designed to facilitate the introduction of commercial-off-the-shelf (COTS) radios for smart-sensing applications into international spaceflight programs and projects. The proposed work will produce test hardware reference designs, test software reference architectures and example implementations, test plans in reference test environments, and test results, all of which will be shared between the agencies and documented for future use by mission planners. The proposed collaborative structure together with all of the anticipated tools and results produced under the effort is collectively referred to as the Smart Sensor Inter-agency Reference Testbench or SSIART. It is intended to provide guidance in technology selection and in increasing the related readiness levels of projects and missions as well as the space industry.

  13. Candidate functions for advanced technology implementation in the Columbus mission planning environment

    NASA Technical Reports Server (NTRS)

    Loomis, Audrey; Kellner, Albrecht

    1988-01-01

    The Columbus Project is the European Space Agency's contribution to the International Space Station program. Columbus is planned to consist of three elements (a laboratory module attached to the Space Station base, a man-tended freeflyer orbiting with the Space Station base, and a platform in polar orbit). System definition and requirements analysis for Columbus are underway, scheduled for completion in mid-1990. An overview of the Columbus mission planning environment and operations concept as currently defined is given, and some of the challenges presented to software maintainers and ground segment personnel during mission operators are identified. The use of advanced technologies in system implementation is being explored. Both advantages of such solutions and potential problems they present are discussed, and the next steps to be taken by Columbus before targeting any functions for advanced technology implementation are summarized. Several functions in the mission planning process were identified as candidates for advanced technology implementation. These range from expert interaction with Columbus' data bases through activity scheduling and near-real-time response to departures from the planned timeline. Each function is described, and its potential for advanced technology implementation briefly assessed.

  14. An overview of thermionic power conversion technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Morgan C.

    1996-12-01

    Thermionic energy conversion is one of the many concepts which make up the direct power conversion technologies. Specifically, thermionics is the process of changing heat directly into electricity via a material`s ability to emit electrons when heated. This thesis presents a broad overview of the engineering and physics necessary to make thermionic energy conversion (TEC) a practical reality. It begins with an introduction to the technology and the history of its development. This is followed by a discussion of the physics and engineering necessary to develop practical power systems. Special emphasis is placed on the critical issues which are stillmore » being researched. Finally, there is a discussion of the missions which this technology may fulfill.« less

  15. Analysis of heliographic missions complementary to ISPM. [International Solar Polar Mission

    NASA Technical Reports Server (NTRS)

    Driver, J. M.

    1984-01-01

    Five concepts were formulated, analyzed, and compared for satisfying heliographic science mission objectives both with and without a concurrent International Solar Polar Mission (ISPM) Spacecraft. Key astrodynamic constraints and performance factors are known from literature for the Lagrange point mission and the sun-synchronous earth orbit mission, but are set forth in this paper for the three solar orbiting missions concepts considered. Any of these five missions should be doable at modest cost since no strong cost drivers were encountered in the analyses. The mission to be flown depends on mission capability to meet science measurement needs more than on strong economic factors. Each mission offers special advantages for particular measurement emphasis. Based on selected qualitative mission discriminators, an overall 'best mission' was selected and described in some detail.

  16. The design and realisation of the IXV Mission Analysis and Flight Mechanics

    NASA Astrophysics Data System (ADS)

    Haya-Ramos, Rodrigo; Blanco, Gonzalo; Pontijas, Irene; Bonetti, Davide; Freixa, Jordi; Parigini, Cristina; Bassano, Edmondo; Carducci, Riccardo; Sudars, Martins; Denaro, Angelo; Angelini, Roberto; Mancuso, Salvatore

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is a suborbital re-entry demonstrator successfully launched in February 2015 focusing on the in-flight demonstration of a lifting body system with active aerodynamic control surfaces. This paper presents an overview of the Mission Analysis and Flight Mechanics of the IXV vehicle, which comprises computation of the End-to-End (launch to splashdown) design trajectories, characterisation of the Entry Corridor, assessment of the Mission Performances through Monte Carlo campaigns, contribution to the aerodynamic database, analysis of the Visibility and link budget from Ground Stations and GPS, support to safety analyses (off nominal footprints), specification of the Centre of Gravity box, selection of the Angle of Attack trim line to be flown and characterisation of the Flying Qualities performances. An initial analysis and comparison with the raw flight data obtained during the flight will be discussed and first lessons learned derived.

  17. [The mission].

    PubMed

    Ruiz Moreno, J; Blanch Mon, A

    2000-01-01

    After having made a historical review of the concept of mission statement, of evaluating its importance (See Part I), of describing the bases to create a mission statement from a strategic perspective and of analyzing the advantages of this concept, probably more important as a business policy (See Parts I and II), the authors proceed to analyze the mission statement in health organizations. Due to the fact that a mission statement is lacking in the majority of health organizations, the strategy of health organizations are not exactly favored; as a consequence, neither are its competitive advantage nor the development of its essential competencies. After presenting a series of mission statements corresponding to Anglo-Saxon health organizations, the authors highlight two mission statements corresponding to our social context. The article finishes by suggesting an adequate sequence for developing a mission statement in those health organizations having a strategic sense.

  18. Systems engingeering for the Kepler Mission : a search for terrestrial planets

    NASA Technical Reports Server (NTRS)

    Duren, Riley M.; Dragon, Karen; Gunter, Steve Z.; Gautier, Nick; Koch, Dave; Harvey, Adam; Enos, Alan; Borucki, Bill; Sobeck, Charlie; Mayer, Dave; hide

    2004-01-01

    The Kepler mission will launch in 2007 and determine the distribution of earth-size planets (0.5 to 10 earth masses) in the habitable zones (HZs) of solar-like stars. The mission will monitor > 100,000 dwarf stars simultaneously for at least 4 years. Precision differential photometry will be used to detect the periodic signals of transiting planets. Kepler will also support asteroseismology by measuring the pressure-mode (p-mode) oscillations of selected stars. Key mission elements include a spacecraft bus and 0.95 meter, wide-field, CCD-based photometer injected into an earth-trailing heliocentric orbit by a 3-stage Delta II launch vehicle as well as a distributed Ground Segment and Follow-up Observing Program. The project is currently preparing for Preliminary Design Review (October 2004) and is proceeding with detailed design and procurement of long-lead components. In order to meet the unprecedented photometric precision requirement and to ensure a statistically significant result, the Kepler mission involves technical challenges in the areas of photometric noise and systematic error reduction, stability, and false-positive rejection. Programmatic and logistical challenges include the collaborative design, modeling, integration, test, and operation of a geographically and functionally distributed project. A very rigorous systems engineering program has evolved to address these challenges. This paper provides an overview of the Kepler systems engineering program, including some examples of our processes and techniques in areas such as requirements synthesis, validation & verification, system robustness design, and end-to-end performance modeling.

  19. A mission planning concept and mission planning system for future manned space missions

    NASA Technical Reports Server (NTRS)

    Wickler, Martin

    1994-01-01

    The international character of future manned space missions will compel the involvement of several international space agencies in mission planning tasks. Additionally, the community of users requires a higher degree of freedom for experiment planning. Both of these problems can be solved by a decentralized mission planning concept using the so-called 'envelope method,' by which resources are allocated to users by distributing resource profiles ('envelopes') which define resource availabilities at specified times. The users are essentially free to plan their activities independently of each other, provided that they stay within their envelopes. The new developments were aimed at refining the existing vague envelope concept into a practical method for decentralized planning. Selected critical functions were exercised by planning an example, founded on experience acquired by the MSCC during the Spacelab missions D-1 and D-2. The main activity regarding future mission planning tasks was to improve the existing MSCC mission planning system, using new techniques. An electronic interface was developed to collect all formalized user inputs more effectively, along with an 'envelope generator' for generation and manipulation of the resource envelopes. The existing scheduler and its data base were successfully replaced by an artificial intelligence scheduler. This scheduler is not only capable of handling resource envelopes, but also uses a new technology based on neuronal networks. Therefore, it is very well suited to solve the future scheduling problems more efficiently. This prototype mission planning system was used to gain new practical experience with decentralized mission planning, using the envelope method. In future steps, software tools will be optimized, and all data management planning activities will be embedded into the scheduler.

  20. A Reliable Service-Oriented Architecture for NASA's Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Mak, Ronald; Walton, Joan; Keely, Leslie; Hehner, Dennis; Chan, Louise

    2005-01-01

    The Collaborative Information Portal (CIP) was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory (JPL) for NASA's highly successful Mars Exploration Rover (MER) mission. Both MER and CIP have performed far beyond their original expectations. Mission managers and engineers ran CIP inside the mission control room at JPL, and the scientists ran CIP in their laboratories, homes, and offices. All the users connected securely over the Internet. Since the mission ran on Mars time, CIP displayed the current time in various Mars and Earth time zones, and it presented staffing and event schedules with Martian time scales. Users could send and receive broadcast messages, and they could view and download data and image files generated by the rovers' instruments. CIP had a three-tiered, service-oriented architecture (SOA) based on industry standards, including J2EE and web services, and it integrated commercial off-the-shelf software. A user's interactions with the graphical interface of the CIP client application generated web services requests to the CIP middleware. The middleware accessed the back-end data repositories if necessary and returned results for these requests. The client application could make multiple service requests for a single user action and then present a composition of the results. This happened transparently, and many users did not even realize that they were connecting to a server. CIP performed well and was extremely reliable; it attained better than 99% uptime during the course of the mission. In this paper, we present overviews of the MER mission and of CIP. We show how CIP helped to fulfill some of the mission needs and how people used it. We discuss the criteria for choosing its architecture, and we describe how the developers made the software so reliable. CIP's reliability did not come about by chance, but was the result of several key design decisions. We conclude with some of the important

  1. Radiation hazard during a manned mission to Mars.

    PubMed

    Jäkel, Oliver

    2004-01-01

    The radiation hazard of interplanetary flights is currently one of the major obstacles to manned missions to Mars. Highly energetic, heavy-charged particles from galactic cosmic radiation can not be sufficiently shielded in space vehicles. The long-term radiation effects to humans of these particles are largely unknown. In addition, unpredictable storms of solar particles may expose the crew to doses that lead to acute radiation effects. A manned flight to Mars currently seems to be a high-risk adventure. This article provides an overview on the radiation sources and risks for a crew on a manned flight to Mars, as currently estimated by scientists of the US National Administration for Space and Aeronautics (NASA) and the Space Studies Board (SSB) of the US National Research Council.

  2. Aerospace Communications Technologies in Support of NASA Mission

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2016-01-01

    NASA is endeavoring in expanding communications capabilities to enable and enhance robotic and human exploration of space and to advance aero communications here on Earth. This presentation will discuss some of the research and technology development work being performed at the NASA Glenn Research Center in aerospace communications in support of NASAs mission. An overview of the work conducted in-house and in collaboration with academia, industry, and other government agencies (OGA) to advance radio frequency (RF) and optical communications technologies in the areas of antennas, ultra-sensitive receivers, power amplifiers, among others, will be presented. In addition, the role of these and other related RF and optical communications technologies in enabling the NASA next generation aerospace communications architecture will be also discussed.

  3. Overview of Low Emission Combustion Research At NASA Glenn

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.

    2016-01-01

    An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the nitrogen oxides (NOx) emission reduction in aircraft propulsion is presented. The technology advancements and their impact on aircraft emissions are discussed in the context of NASA's Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented here show how the past and current efforts laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.

  4. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions:An Overview of the Technology Maturation Effort

    NASA Technical Reports Server (NTRS)

    Beck, Robin A S.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Prabhu, Dinesh K.; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

    2013-01-01

    The Office of Chief Technologist, NASA identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: Mass to Surface, Surface Access, Precision Landing, Surface Hazard Detection and Avoidance, Safety and Mission Assurance, and Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems are manufactured using techniques that require filling of each (38 cell) by hand, and in a limited amount of time all of the cells must be filled and the heatshield must be cured. The tile systems such as PICA pose a different challenge as the low strain-to-failure and manufacturing size limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS. A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials. The high strain-to-failure nature of the conformal ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. By reducing the overall part count, the cost of installation (based on cost comparisons between blanket

  5. Parametric Cost Modeling of Space Missions Using the Develop New Projects (DMP) Implementation Process

    NASA Technical Reports Server (NTRS)

    Rosenberg, Leigh; Hihn, Jairus; Roust, Kevin; Warfield, Keith

    2000-01-01

    This paper presents an overview of a parametric cost model that has been built at JPL to estimate costs of future, deep space, robotic science missions. Due to the recent dramatic changes in JPL business practices brought about by an internal reengineering effort known as develop new products (DNP), high-level historic cost data is no longer considered analogous to future missions. Therefore, the historic data is of little value in forecasting costs for projects developed using the DNP process. This has lead to the development of an approach for obtaining expert opinion and also for combining actual data with expert opinion to provide a cost database for future missions. In addition, the DNP cost model has a maximum of objective cost drivers which reduces the likelihood of model input error. Version 2 is now under development which expands the model capabilities, links it more tightly with key design technical parameters, and is grounded in more rigorous statistical techniques. The challenges faced in building this model will be discussed, as well as it's background, development approach, status, validation, and future plans.

  6. NASA In-Space Propulsion Technology Program: Overview and Update

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in - spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer.tethers, aeroassist and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA's plans for advancing them as part of the In-Space Propulsion Technology Program.

  7. NASA's In-Space Propulsion Technology Program: Overview and Status

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy; Bonometti, Joe; Herrmann, Melody; James, Bonnie; Montgomery, Sandy

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to advanced cryogenic propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, and NASA s plans for advancing them as part of the $60M per year In-Space Propulsion Technology Program.

  8. NASA's In-Space Propulsion Technology Program: Overview and Update

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals ase the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA s plans for advancing them as part of the In-Space Propulsion Technology Program.

  9. Exploring the High Energy Universe: GLAST Mission and Science

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2007-01-01

    GLAST, the Gamma-Ray Large Area Space Telescope, is NASA's next-generation high-energy gamma-ray satellite scheduled for launch in Autumn 2007. GLAST will allow measurements of cosmic gamma-ray sources in the 10 MeV to 100 GeV energy band to be made with unprecedented sensitivity. Amongst its key scientific objectives are to understand particle acceleration in Active Galactic Nuclei, Pulsars and Supernovae Remnants, to provide high resolution measurements of unidentified gamma-ray sources, to study transient high energy emission from objects such as gamma-ray bursts, and to probe Dark Matter and the early Universe. Dr. McEnery will present an overview of the GLAST mission and its scientific goals.

  10. Exploring the High Energy Universe: GLAST Mission and Science

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2007-01-01

    GLAST, the Gamma-Ray Large Area Space Telescope, is NASA's next-generation high-energy gamma-ray satellite scheduled for launch in Autumn 2007. GLAST will allow measurements of cosmic gamma-ray sources in t he 10 MeV to 100 GeV energy band to be made with unprecedented sensi tivity. Amongst its key scientific objectives are to understand part icle acceleration in Active Galactic Nuclei, Pulsars and Supernovae Remnants, to provide high resolution measurements of unidentified ga mma-ray sources, to study transient high energy emission from objects such as gamma-ray bursts, and to probe Dark Matter and the early Uni verse. Dr. McEnery will present an overview of the GLAST mission and its scientific goals.

  11. The UV Imager and its Role in the SMILE Mission

    NASA Astrophysics Data System (ADS)

    Donovan, E.; Escoubet, C. P.; Branduardi-Raymont, G.; Wang, C.; Hubert, B. A.; Spanswick, E.; Wang, Y.; Raab, W.; Sibeck, D. G.; Sembay, S.; Read, A.; Wielders, A.; Dimmock, A. P.; Romstedt, J.; Loicq, J.

    2017-12-01

    The upcoming SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) mission promises to revolutionize our understanding of the global geospace and space weather consequences of the Solar Wind Magnetosphere interaction. SMILE will carry four instruments: two in situ instruments which will specify the magnetic field and energetic particles at the spacecraft, an X-ray imager for imaging the magnetopause and cusps, and a UV imager for observing the global (northern hemisphere) auroral oval. The high apogee, which is necessary for obtaining the in situ measurements, presents challenges for the UV imager, but will also support by far the longest duration continuous imaging of the global aurora. As well, inbound and outbound from perigee (for up to 8 hours during each orbit), the UV imager will be able to provide images that will compete with THEMIS-ASI in terms of resolution across an area larger than Canada. In this presentation, we will give an overview of SMILE and its objectives, and an in depth discussion of the UV imager and the role its data will play in the mission science.

  12. An Overview of the Jupiter Icy Moons Orbiter (JIMO) Mission, Environments, and Materials Challenges

    NASA Technical Reports Server (NTRS)

    Edwards, Dave

    2012-01-01

    Congress authorized NASA's Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter with the following main objectives: (1) Develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration. (2) Explore the three icy moons of Jupiter -- Callisto, Ganymede, and Europa -- and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences.

  13. An update on the OpenOrbiter I Mission and its paradigm's benefits for the defense, homeland security and intelligence communities

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2017-05-01

    The OpenOrbiter I spacecraft is the culmination of significant work on reducing the cost levels of a CubeSat-class spacecraft. By redesigning the spacecraft from the ground up, down to the component level, to use readily available electronic and physical components, the cost of CubeSat construction has been significantly reduced. This paper provides an overview of the OpenOrbiter I mission, to date. It then focuses on the benefits that can be provided by the lower-cost, low-risk spacecraft. The paper discusses the prospective utility of this mission paradigm for the defense, homeland security and intelligence communities.

  14. Solar System Exploration Division Strategic Plan, volume 1. Executive summary and overview

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This first document is the first of a six-volume series presenting the Solar System Exploration Division's Strategic Plan for the 10-year period FY 1994 to FY 2003. The overall strategy is characterized by five fundamental precepts: (1) execute the current program; (2) improve the vitality of the program and the planetary science community; (3) initiate innovative, small, low-cost planetary missions; (4) initiate new major and moderate missions; and (5) prepare for the next generation of missions. This Strategic Plan describes in detail our proposed approach to accomplish these goals. Volume 1 provides first an Executive Summary of highlights of each of the six volumes, and then goes on to present an overview of the plan, including a discussion of the planning context and strategic approach. Volumes 2, 3, 4, and 5 describe in detail the initiatives proposed. An integral part of each of these volumes is a set of responses to the mission selection criteria questions developed by the Space and Earth Science Advisory Committee. Volume 2, Mission From Planet Earth, describes a strategy for exploring the Moon and Mars and sets forth proposed moderate missions--Lunar Observer and a Mars lander network. Volume 3, Pluto Flyby/Neptune Orbiter, discusses our proposed major new start candidate for the FY 1994 to FY 1998 time frame. Volume 4, Discovery, describes the Near-Earth Asteroid Rendezvous, as well as other candidates for this program of low-cost planetary missions. Volume 5, Toward Other Planetary Systems, describes a major research and analysis augmentation that focuses on extrasolar planet detection and the study of planetary system processes. Finally, Volume 6 summarizes the technology program that the division has structured around these four initiatives.

  15. Small carry-on impactor of Hayabusa2 mission

    NASA Astrophysics Data System (ADS)

    Saiki, Takanao; Sawada, Hirotaka; Okamoto, Chisato; Yano, Hajime; Takagi, Yasuhiko; Akahoshi, Yasuhiro; Yoshikawa, Makoto

    2013-03-01

    A Japanese spacecraft, Hayabusa2, the successor of Hayabusa, which came back from the Asteroid Itokawa with sample materials after its 7-year-interplanetary journeys, is a current mission of Japan Aerospace Exploration Agency (JAXA) and scheduled to be launched in 2014. Although its design basically follows Hayabusa, some new components are planned to be equipped in Hayabusa2 mission. A Small Carry-on Impactor (SCI), a small explosive device, is one of the challenges that were not seen with Hayabusa. An important scientific objective of Hayabusa2 is to investigate chemical and physical properties of the internal materials and structures. SCI creates an artificial crater on the surface of the asteroid and the mother spacecraft observes the crater and tries to get sample materials. High kinetic energy is required to creating a meaningful crater. The SCI would become complicated and heavy if the traditional acceleration devices like thrusters and rocket motors are used to hit the asteroid because the acceleration distance is quite large and guidance system is necessary. In order to make the system simpler, a technology of special type of shaped charge is used for the acceleration of the impact head. By using this technology, it becomes possible to accelerate the impact head very quickly and to hit the asteroid without guidance system. However, the impact operation should be complicated because SCI uses powerful explosive and it scatters high speed debris at the detonation. This paper presents the overview of our new small carry-on impact system and the impact operation of Hayabusa2 mission.

  16. Status of the ESA L1 mission candidate ATHENA

    NASA Astrophysics Data System (ADS)

    Rando, N.; Martin, D.; Lumb, D.; Verhoeve, P.; Oosterbroek, T.; Bavdaz, M.; Fransen, S.; Linder, M.; Peyrou-Lauga, R.; Voirin, T.; Braghin, M.; Mangunsong, S.; van Pelt, M.; Wille, E.

    2012-09-01

    ATHENA (Advanced Telescope for High Energy Astrophysics) was an L class mission candidate within the science programme Cosmic Vision 2015-2025 of the European Space Agency, with a planned launch by 2022. ATHENA was conceived as an ESA-led project, open to the possibility of focused contributions from JAXA and NASA. By allowing astrophysical observations between 100 eV and 10 keV, it would represent the new generation X-ray observatory, following the XMM-Newton, Astro-H and Chandra heritage. The main scientific objectives of ATHENA include the study of large scale structures, the evolution of black holes, strong gravity effects, neutron star structure as well as investigations into dark matter. The ATHENA mission concept would be based on focal length of 12m achieved via a rigid metering tube and a twoaperture, x-ray telescope. Two identical x-ray mirrors would illuminate fixed focal plane instruments: a cryogenic imaging spectrometer (XMS) and a wide field imager (WFI). The S/C is designed to be fully compatible with Ariane 5 ECA. The observatory would operate at SE-L2, with a nominal lifetime of 5 yr. This paper provides a summary of the reformulation activities, completed in December 2011. An overview of the spacecraft design and of the payload is provided, including both telescope and instruments. Following the ESA Science Programme Committee decision on the L1 mission in May 2012, ATHENA was not selected to enter Definition Phase.

  17. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One

    NASA Technical Reports Server (NTRS)

    Short, Kendra (Principal Investigator); Van Buren, David (Principal Investigator)

    2012-01-01

    Phase One objectives. Then an overview of the general field of printed electronics is provided, including manufacturing approaches, commercial drivers, and the current state of integrated systems. The bulk of the report contains the results and findings of Phase One organized into four sections: a survey of components required for a printable spacecraft, technology roadmaps considerations, science mission and engineering applications, and potential risks and challenges of the technology.

  18. NASA CYGNSS Tropical Cyclone Mission

    NASA Astrophysics Data System (ADS)

    Ruf, Chris; Atlas, Robert; Majumdar, Sharan; Ettammal, Suhas; Waliser, Duane

    2017-04-01

    properties for observing the Madden-Julian Oscillation (MJO) and Convectively Coupled Equatorial Waves (CCEW) indicate that it will allow for improved characterization of MJO temporal variability and of the major CCEW modes. The EGU 2017 presentation will include an overview of the CYGNSS mission, a report on current mission status, and summaries of the simulation studies performed regarding TC forecasts and MJO and CCEW characterization.

  19. Early Spacelab missions

    NASA Technical Reports Server (NTRS)

    Pace, R. E., Jr.; Craft, H. G., Jr.

    1977-01-01

    NASA has issued payload flight assignments for the first three Spacelab missions. The first two of these missions will have dual objectives, that of verifying Spacelab system performance and accomplishing meaningful space research. The first of these missions will be a joint NASA and ESA mission with a multidisciplinary payload. The second mission will verify a different Spacelab configuration while addressing the scientific disciplines of astrophysics. The third assigned mission will concentrate on utilizing the capabilities of Spacelab to perform meaningful experiments in space applications, primarily space processing. The paper describes these missions with their objectives, planned configuration and accommodation.

  20. Space and ground segment performance of the FORMOSAT-3/COSMIC mission: four years in orbit

    NASA Astrophysics Data System (ADS)

    Fong, C.-J.; Whiteley, D.; Yang, E.; Cook, K.; Chu, V.; Schreiner, B.; Ector, D.; Wilczynski, P.; Liu, T.-Y.; Yen, N.

    2011-01-01

    The FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) mission consisting of six Low-Earth-Orbit (LEO) satellites is the world's first demonstration constellation using radio occultation signals from Global Positioning System (GPS) satellites. The radio occultation signals are retrieved in near real-time for global weather/climate monitoring, numerical weather prediction, and space weather research. The mission has processed on average 1400 to 1800 high-quality atmospheric sounding profiles per day. The atmospheric radio occultation soundings data are assimilated into operational numerical weather prediction models for global weather prediction, including typhoon/hurricane/cyclone forecasts. The radio occultation data has shown a positive impact on weather predictions at many national weather forecast centers. A proposed follow-on mission transitions the program from the current experimental research system to a significantly improved real-time operational system, which will reliably provide 8000 radio occultation soundings per day. The follow-on mission as planned will consist of 12 satellites with a data latency of 45 min, which will provide greatly enhanced opportunities for operational forecasts and scientific research. This paper will address the FORMOSAT-3/COSMIC system and mission overview, the spacecraft and ground system performance after four years in orbit, the lessons learned from the encountered technical challenges and observations, and the expected design improvements for the new spacecraft and ground system.