Science.gov

Sample records for jnk pkc fak

  1. Requirements for PKC-augmented JNK activation by MKK4/7

    PubMed Central

    Lopez-Bergami, Pablo; Ronai, Ze'ev

    2008-01-01

    The c-Jun N-terminal kinases (JNKs) are activated in response to stress, DNA damage, and cytokines by MKK4 and MKK7. We recently demonstrated that PKC can augment the degree of JNK activation by phosphorylating JNK, which requires the adaptor protein RACK1. Here we report on the conditions required for PKC-dependent JNK activation. In vitro kinase assays reveal that PKC phosphorylation of JNK is not sufficient for its activation but rather augments JNK activation by canonical JNK upstream kinases MKK4 or MKK7 alone or in combination. Further, to enhance JNK activity, PKC phosphorylation of JNK should precede its phosphorylation by MKK4/7. Inhibition of PKC phosphorylation of JNK affects both early and late phases of JNK activation following UV-irradiation and reduces the apoptotic response mediated by JNK. These data provide important insight into the requirements for PKC activation of JNK signaling. PMID:18182317

  2. Protein kinase C (PKC) participates in acetaminophen hepatotoxicity through JNK dependent and independent signaling pathways

    PubMed Central

    Johnson, Heather S.; Gaarde, William A.; Han, Derick; Kaplowitz, Neil

    2013-01-01

    This study examines the role of protein kinase C (PKC) and AMP-activated kinase (AMPK) in acetaminophen (APAP) hepatotoxicity. Treatment of primary mouse hepatocytes with broad-spectrum PKC inhibitors (Ro-31-8245, Go6983), protected against APAP cytotoxicity despite sustained JNK activation. Broad-spectrum PKC inhibitor treatment enhanced p-AMPK levels and AMPK regulated survival-energy pathways including autophagy. AMPK inhibition by compound C or activation using an AMPK activator oppositely modulated APAP cytotoxicity, suggesting p-AMPK and AMPK regulated energy survival pathways particularly autophagy play a critical role in APAP cytotoxicity. Ro-31-8245 treatment in mice upregulated p-AMPK levels, increased autophagy (i.e. increased LC3-II formation, p62 degradation) and protected against APAP-induced liver injury, even in the presence of sustained JNK activation and translocation to mitochondria. In contrast, treatment of hepatocytes with classical PKC inhibitor (Go6976) protected against APAP by inhibiting JNK activation. Knockdown of PKC-α using antisense (ASO) in mice also protected against APAP-induced liver injury by inhibiting JNK activation. APAP treatment resulted in PKC-α translocation to mitochondria and phosphorylation of mitochondrial PKC substrates. JNK 1 and 2 silencing in vivo decreased APAP-induced PKC-α translocation to mitochondria, suggesting PKC-α and JNK interplay in a feed-forward mechanism to mediate APAP-induced liver injury. Conclusion: PKC-α and other PKC(s) regulate death (JNK) and survival (AMPK) proteins, to modulate APAP-induced liver injury. PMID:23873604

  3. Angiotensin II induces MMP 2 activity via FAK/JNK pathway in human endothelial cells.

    PubMed

    Jiménez, Eugenio; Pérez de la Blanca, Enrique; Urso, Loredana; González, Irene; Salas, Julián; Montiel, Mercedes

    2009-03-20

    Matrix metalloproteinases (MMPs) play an important role in the pathogenesis of cardiovascular diseases and are modified in response to a variety of stimuli such as bioactive peptides, cytokines and/or grown factors. In this study, we demonstrated that angiotensin II (Ang II) induces a time- and dose-dependent increase in the activity of metalloproteinase 2 (MMP 2) in human umbilical vein endothelial cells (HUVEC). The effect of Ang II was markedly attenuated in cells pretreated with wortmannin and LY294002, two selective inhibitors of phosphatidylinositol-3-kinase (PI3K), indicating that PI3K plays a key role in regulating MMP 2 activity. Similar results were observed when HUVEC were pretreated with genistein, a non-selective tyrosine kinases inhibitor, or with the specific Src-family tyrosine kinase inhibitor PP2, demonstrating the involvement of protein tyrosine kinases, and particularly Src-family tyrosine kinases on the downstream signaling pathway of Ang II receptors. Furthermore, Ang II-induced MMP 2 activation was markedly blocked by SP600125, a selective c-Jun N-terminal kinase (JNK) inhibitor, or pre-treatment of cells with antisense oligonucleotide to focal adhesion kinase (FAK), indicating that both molecules were important for the activation of MMP 2 by Ang II receptor stimulation. In conclusion, these results suggest that Ang II mediates an increase in MMP 2 activity in macrovascular endothelial cells through signal transduction pathways dependent on PI3K and Src-family tyrosine kinases activation, as well as JNK and FAK phosphorylation.

  4. Dexmedetomidine-Induced Contraction in the Isolated Endothelium-Denuded Rat Aorta Involves PKC-δ-mediated JNK Phosphorylation

    PubMed Central

    Yu, Jongsun; Ok, Seong-Ho; Kim, Won Ho; Cho, Hyunhoo; Park, Jungchul; Shin, il-Woo; Lee, Heon Keun; Chung, Young-Kyun; Choi, Mun-Jeoung; Kwon, Seong-Chun; Sohn, Ju-Tae

    2015-01-01

    Vasoconstriction mediated by the highly selective alpha-2 adrenoceptor agonist dexmedetomidine leads to transiently increased blood pressure and severe hypertension. The dexmedetomidine-induced contraction involves the protein kinase C (PKC)-mediated pathway. However, the main PKC isoform involved in the dexmedetomidine-induced contraction remains unknown. The goal of this in vitro study was to examine the specific PKC isoform that contributes to the dexmedetomidine-induced contraction in the isolated rat aorta. The endothelium-denuded rat aorta was suspended for isometric tension recording. Dexmedetomidine dose-response curves were generated in the presence or absence of the following inhibitors: the pan-PKC inhibitor, chelerythrine; the PKC-α and -β inhibitor, Go6976; the PKC-α inhibitor, safingol; the PKC-β inhibitor, ruboxistaurin; the PKC-δ inhibitor, rottlerin; the c-Jun NH2-terminal kinase (JNK) inhibitor, SP600125; and the myosin light chain kinase inhibitor, ML-7 hydrochloride. Western blot analysis was used to examine the effect of rottlerin on dexmedetomidine-induced PKC-δ expression and JNK phosphorylation in rat aortic vascular smooth muscle cells (VSMCs) and to investigate the effect of dexmedetomidine on PKC-δ expression in VSMCs transfected with PKC-δ small interfering RNA (siRNA) or control siRNA. Chelerythrine as well as SP600125 and ML-7 hydrochloride attenuated the dexmedetomidine-induced contraction. Go6976, safingol, and ruboxistaurin had no effect on the dexmedetomidine-induced contraction, whereas rottlerin inhibited the dexmedetomidine-induced contraction. Dexmedetomidine induced PKC-δ expression, whereas rottlerin and PKC-δ siRNA transfection inhibited dexmedetomidine-induced PKC-δ expression. Dexmedetomidine also induced JNK phosphorylation, which was inhibited by rottlerin. Taken together, these results suggest that the dexmedetomidine-induced contraction involves PKC-δ-dependent JNK phosphorylation in the isolated rat aorta

  5. Dexmedetomidine-Induced Contraction in the Isolated Endothelium-Denuded Rat Aorta Involves PKC-δ-mediated JNK Phosphorylation.

    PubMed

    Yu, Jongsun; Ok, Seong-Ho; Kim, Won Ho; Cho, Hyunhoo; Park, Jungchul; Shin, Il-Woo; Lee, Heon Keun; Chung, Young-Kyun; Choi, Mun-Jeoung; Kwon, Seong-Chun; Sohn, Ju-Tae

    2015-01-01

    Vasoconstriction mediated by the highly selective alpha-2 adrenoceptor agonist dexmedetomidine leads to transiently increased blood pressure and severe hypertension. The dexmedetomidine-induced contraction involves the protein kinase C (PKC)-mediated pathway. However, the main PKC isoform involved in the dexmedetomidine-induced contraction remains unknown. The goal of this in vitro study was to examine the specific PKC isoform that contributes to the dexmedetomidine-induced contraction in the isolated rat aorta. The endothelium-denuded rat aorta was suspended for isometric tension recording. Dexmedetomidine dose-response curves were generated in the presence or absence of the following inhibitors: the pan-PKC inhibitor, chelerythrine; the PKC-α and -β inhibitor, Go6976; the PKC-α inhibitor, safingol; the PKC-β inhibitor, ruboxistaurin; the PKC-δ inhibitor, rottlerin; the c-Jun NH2-terminal kinase (JNK) inhibitor, SP600125; and the myosin light chain kinase inhibitor, ML-7 hydrochloride. Western blot analysis was used to examine the effect of rottlerin on dexmedetomidine-induced PKC-δ expression and JNK phosphorylation in rat aortic vascular smooth muscle cells (VSMCs) and to investigate the effect of dexmedetomidine on PKC-δ expression in VSMCs transfected with PKC-δ small interfering RNA (siRNA) or control siRNA. Chelerythrine as well as SP600125 and ML-7 hydrochloride attenuated the dexmedetomidine-induced contraction. Go6976, safingol, and ruboxistaurin had no effect on the dexmedetomidine-induced contraction, whereas rottlerin inhibited the dexmedetomidine-induced contraction. Dexmedetomidine induced PKC-δ expression, whereas rottlerin and PKC-δ siRNA transfection inhibited dexmedetomidine-induced PKC-δ expression. Dexmedetomidine also induced JNK phosphorylation, which was inhibited by rottlerin. Taken together, these results suggest that the dexmedetomidine-induced contraction involves PKC-δ-dependent JNK phosphorylation in the isolated rat aorta.

  6. PKC{eta} confers protection against apoptosis by inhibiting the pro-apoptotic JNK activity in MCF-7 cells

    SciTech Connect

    Rotem-Dai, Noa; Oberkovitz, Galia; Abu-Ghanem, Sara; Livneh, Etta

    2009-09-10

    Apoptosis is frequently regulated by different protein kinases including protein kinase C family enzymes. Both inhibitory and stimulatory effects were demonstrated for several of the different PKC isoforms. Here we show that the novel PKC isoform, PKC{eta}, confers protection against apoptosis induced by the DNA damaging agents, UVC irradiation and the anti-cancer drug - Camptothecin, of the breast epithelial adenocarcinoma MCF-7 cells. The induced expression of PKC{eta} in MCF-7 cells, under the control of the tetracycline-responsive promoter, resulted in increased cell survival and inhibition of cleavage of the apoptotic marker PARP-1. Activation of caspase-7 and 9 and the release of cytochrome c were also inhibited by the inducible expression of PKC{eta}. Furthermore, JNK activity, required for apoptosis in MCF-7, as indicated by the inhibition of both caspase-7 cleavage and cytochrome c release from the mitochondria in the presence of the JNK inhibitor SP600125, was also suppressed by PKC{eta} expression. Hence, in contrast to most PKC isoforms enhancing JNK activation, our studies show that PKC{eta} is an anti-apoptotic protein, acting as a negative regulator of JNK activity. Thus, PKC{eta} could represent a target for intervention aimed to reduce resistance to anti-cancer treatments.

  7. Taurochenodeoxycholic acid induces NR8383 cells apoptosis via PKC/JNK-dependent pathway.

    PubMed

    Wang, Xu; Zhang, Ziying; He, Xiuling; Mao, Wei; Zhou, Lei; Li, Peifeng

    2016-09-05

    Our former studies have suggested that taurochenodeoxycholic acid (TCDCA) as a signaling molecule shows obvious anti-inflammatory and immune regulation properties. In this research, we tentatively explored the potential effects and the possible mechanism that involve in the apoptotic process in NR8383 cells induced by TCDCA. Using flow cytometry analysis, we evaluated the apoptosis rate. Gene expression levels were determined by qPCR. The expressions of protein kinase C (PKC), Jun N-terminal kinase (JNK) and their phosphorylation were measured by Western Blot. We observed the activities of caspase-3 and caspase-8 with Caspase-Glo® regent. The results demonstrated that TCDCA dramatically improved the apoptosis rate of NR8383 cells in a concentration-dependent manner. In the meantime, PKC mRNA levels and activities were significantly augmented by TCDCA treatments. In addition, JNK, caspase-3 and caspase-8 mRNA expression levels and activities were increased by TCDCA, while they were markedly decreased by specific inhibitors. We conclude that TCDCA contributes to the apoptosis through the activation of the caspase cascade in NR8383 cells, and the PKC/JNK signaling pathway may be involved in this process. These results indicate that TCDCA may be a latent effective pharmaceutical product for apoptosis-related diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Basic fibroblast growth factor promotes melanocyte migration via activating PI3K/Akt-Rac1-FAK-JNK and ERK signaling pathways.

    PubMed

    Shi, Hongxue; Lin, Beibei; Huang, Yan; Wu, Jiang; Zhang, Hongyu; Lin, Cai; Wang, Zhouguang; Zhu, Jingjing; Zhao, Yingzhen; Fu, Xiaobing; Lou, Zhencai; Li, Xiaokun; Xiao, Jian

    2016-09-01

    Vitiligo is a depigmentation disorder characterized by loss of functional melanocytes of the skin epidermis. The pathogenesis of vitiligo remains elusive. The purpose of this study is to investigate the effects of basic fibroblast growth factor (bFGF) on melanocyte migration, including its biochemical mechanism using transwell assay in vitro. We found that melanocyte treated with bFGF showed a significant increase in migration and cytoskeletal rearrangement. These changes were associated with increased activation of PI3K/Akt, Rac1, FAK, JNK, and ERK. Likewise, reduction of PI3K/Akt, Rac1, FAK, JNK, and ERK activity using selective inhibitors or siRNA was associated with impediment of bFGF-induced melanocyte migration. In addition, activity of Rac1, FAK, and JNK was reduced in cells in which PI3K/Akt was inhibited, activity of FAK and JNK was reduced in cells in which the Rac1 was inhibited, and activity of JNK was reduced in cells in which the FAK was inhibited. Collectively, these data demonstrate that bFGF facilitated melanocyte migration via PI3K/Akt-Rac1-FAK-JNK and ERK signaling pathways. © 2016 IUBMB Life, 68(9):735-747, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  9. Silencing Fibronectin Extra Domain A Enhances Radiosensitivity in Nasopharyngeal Carcinomas Involving an FAK/Akt/JNK Pathway

    SciTech Connect

    Ou Juanjuan; Pan Feng; Geng Peiliang; Wei Xing; Xie Ganfeng; Deng Jia; Pang Xueli; Liang Houjie

    2012-03-15

    Purpose: Fibronectin extra domain A (EDA) is known to play important roles in angiogenesis, lymphangiogenesis, and metastasis in malignant tumors. The present study examined the effect of EDA on the radioresistance potential of nasopharyngeal carcinoma (NPC). Methods and Materials: EDA expression levels in blood samples and tumor tissues of NPC patients were tested by enzyme-linked immunosorbent assay and immunohistochemistry. Radiosensitivity was tested by colony survival assay. Apoptosis was determined by flow cytometry. The expressions of EDA, cleaved caspase 9, cleaved caspase 3, cleaved PARP, Bcl-2, and the levels of phosphorylated FAK, Akt, and JNK were measured by Western blot. Xenografts were used to confirm the effect of EDA on radiosensitivity in vivo. Results: EDA levels in blood samples of advanced NPC patients were much higher than those in early-stage patients. In tumor tissues, the positive expressions of EDA in NPC tumor tissues were shown to be correlated with the differentiation degrees of cancer cells and lymph node metastases. Additionally, the expression of EDA is positively correlated with the expression of antiapoptotic gene (Bcl2), but negatively correlated with the expressions of apoptotic genes (cleaved caspase-3, cleaved caspase-9, cleaved PARP). In vitro, EDA-silenced NPC cells CNE-2 shows substantially enhanced radiosensitivity with lower colony survival and more apoptosis in response to radiation. In vivo, EDA-silenced xenografts were more sensitive to radiation. At the molecular level, FAK/Akt/JNK signaling was demonstrated to be inactivated in EDA-silenced CNE-2 cells. Conclusions: EDA strongly affected the radiosensitivity of NPC cells. FAK/Akt/JNK signaling was found to be a potential signaling mediating EDA function.

  10. Protein kinase C (PKC) participates in acetaminophen hepatotoxicity through c-jun-N-terminal kinase (JNK)-dependent and -independent signaling pathways.

    PubMed

    Saberi, Behnam; Ybanez, Maria D; Johnson, Heather S; Gaarde, William A; Han, Derick; Kaplowitz, Neil

    2014-04-01

    This study examines the role of protein kinase C (PKC) and AMP-activated kinase (AMPK) in acetaminophen (APAP) hepatotoxicity. Treatment of primary mouse hepatocytes with broad-spectrum PKC inhibitors (Ro-31-8245, Go6983), protected against APAP cytotoxicity despite sustained c-jun-N-terminal kinase (JNK) activation. Broad-spectrum PKC inhibitor treatment enhanced p-AMPK levels and AMPK regulated survival-energy pathways including autophagy. AMPK inhibition by compound C or activation using an AMPK activator oppositely modulated APAP cytotoxicity, suggesting that p-AMPK and AMPK regulated energy survival pathways, particularly autophagy, play a critical role in APAP cytotoxicity. Ro-31-8245 treatment in mice up-regulated p-AMPK levels, increased autophagy (i.e., increased LC3-II formation, p62 degradation), and protected against APAP-induced liver injury, even in the presence of sustained JNK activation and translocation to mitochondria. In contrast, treatment of hepatocytes with a classical PKC inhibitor (Go6976) protected against APAP by inhibiting JNK activation. Knockdown of PKC-α using antisense (ASO) in mice also protected against APAP-induced liver injury by inhibiting JNK activation. APAP treatment resulted in PKC-α translocation to mitochondria and phosphorylation of mitochondrial PKC substrates. JNK 1 and 2 silencing in vivo decreased APAP-induced PKC-α translocation to mitochondria, suggesting PKC-α and JNK interplay in a feed-forward mechanism to mediate APAP-induced liver injury. PKC-α and other PKC(s) regulate death (JNK) and survival (AMPK) proteins, to modulate APAP-induced liver injury. Copyright © 2014 by the American Association for the Study of Liver Diseases.

  11. Expression and proliferation profiles of PKC, JNK and p38MAPK in physiologically stretched human bladder smooth muscle cells

    SciTech Connect

    Wazir, Romel; Luo, De-Yi; Dai, Yi; Yue, Xuan; Tian, Ye; Wang, Kun-Jie

    2013-08-30

    Highlights: •Stretch induces proliferation in human bladder smooth muscle cells (HBSMC). •5% Equibiaxial elongation produces maximum proliferation. •Physiologic stretch decreases apoptotic cell death. •PKC is involved in functional modulation of bladder. •JNK and p38 are not involved in proliferating HBSMC. -- Abstract: Objective: To determine protein kinase C (PKC), c-Jun NH2-Terminal Kinase (JNK) and P38 mitogen-activated protein kinases (p38MAPK) expression levels and effects of their respective inhibitors on proliferation of human bladder smooth muscle cells (HBSMCs) when physiologically stretched in vitro. Materials and methods: HBSMCs were grown on silicone membrane and stretch was applied under varying conditions; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (frequency: 0.05, 0.1, 0.2, 0.5, 1 Hz). Optimal physiological stretch was established by assessing proliferation with 5-Bromo-2-deoxyuridine (BrdU) assay and flow cytometry. PKC, JNK and p38 expression levels were analyzed by Western blot. Specificity was maintained by employing specific inhibitors; (GF109203X for PKC, SP600125 for JNK and SB203580 for p38MAPK), in some experiments. Results: Optimum proliferation was observed at 5% equibiaxial stretch (BrdU: 0.837 ± 0.026 (control) to 1.462 ± 0.023)%, (P < 0.05) and apoptotic cell death rate decreased from 16.4 ± 0.21% (control) to 4.5 ± 0.13% (P < 0.05) applied at 0.1 Hz. Expression of PKC was upregulated with slight increase in JNK and no change in p38MAPK after application of stretch. Inhibition had effects on proliferation (1.075 ± 0.024, P < 0.05 GF109203X); (1.418 ± 0.021, P > 0.05 SP600125) and (1.461 ± 0.01, P > 0.05 SB203580). These findings show that mechanical stretch can promote magnitude-dependent proliferative modulation through PKC and possibly JNK but not via p38MAPK in hBSMCs.

  12. Ceramides and Cell Signaling Molecules in Psoriatic Epidermis: Reduced Levels of Ceramides, PKC-α, and JNK

    PubMed Central

    Lew, Bark-Lynn; Cho, Yunhi; Kim, Jungmin; Sim, Woo-Young

    2006-01-01

    Ceramides are the main lipids in the stratum corneum and are generated during cellular stress and apoptosis by de novo synthesis or by the action of sphingomyelinase. In addition, they are lipid second messengers produced by sphingolipid metabolism and trigger important cell responses, including protein kinase C-alpha (PKC-α) activation and the stimulation of signal transduction pathways with apoptosis and stress-activated protein kinases (SAPK), such as c-jun N-terminal kinase (JNK). Thus, ceramides have anti-proliferative and apoptotic effects. This study measured the changes in the levels of epidermal ceramides and ceramide-related apoptotic signaling molecules in psoriasis patients. Samples from lesional and non-lesional epidermis were obtained from psoriasis patients. Total ceramides were fractionated using thin-layer chromatography, and the levels of PKC-α and JNK expression were measured using Western blot analysis with specific antibodies. The ceramide level was reduced significantly, and this was associated with the downregulation of apoptotic signaling molecules, such as PKC-α and JNK, in the lesional epidermis of psoriasis patients. These results suggest that the decreased level of ceramides downregulates the apoptotic pathway, leading to epidermal proliferation in psoriasis. PMID:16479073

  13. PI3K p110β isoform synergizes with JNK in the regulation of glioblastoma cell proliferation and migration through Akt and FAK inhibition.

    PubMed

    Zhao, Hua-Fu; Wang, Jing; Jiang, Hao-Ran; Chen, Zhong-Ping; To, Shing-Shun Tony

    2016-05-12

    Glioblastoma multiforme is the most aggressive malignant primary brain tumor, characterized by rapid growth and extensive infiltration to neighboring normal brain parenchyma. Both PI3K/Akt and JNK pathways are essential to glioblastoma cell survival, migration and invasion. Due to their hyperactivation in glioblastoma cells, PI3K and JNK are promising targets for glioblastoma treatment. To investigate the combination effects of class IA PI3K catalytic isoforms (p110α, p110β and p110δ) and JNK inhibition on tumor cell growth and motility, glioblastoma cells and xenografts in nude mice were treated with isoform-selective PI3K inhibitors in combination with JNK inhibitor. We showed that combined inhibition of these PI3K isoforms and JNK exerted divergent effects on the proliferation, migration and invasion of glioblastoma cells in vitro. Pharmacological inhibition of p110β or p110δ, but not p110α, displayed synergistic inhibitory effect with JNK inhibition on glioblastoma cell proliferation and migration through decreasing phosphorylation of Akt, FAK and zyxin, leading to blockade of lamellipodia and membrane ruffles formation. No synergistic effect on invasion was observed in all the combination treatment. In vivo, combination of p110β and JNK inhibitors significantly reduced xenograft tumor growth compared with single inhibitor alone. Concurrent inhibition of p110β and JNK exhibited synergistic effects on suppressing glioblastoma cell proliferation and migration in vitro and xenograft tumor growth in vivo. Our data suggest that combined inhibition of PI3K p110β isoform and JNK may serve as a potent and promising therapeutic approach for glioblastoma multiforme.

  14. Antitumor effects of the flavone chalcone: inhibition of invasion and migration through the FAK/JNK signaling pathway in human gastric adenocarcinoma AGS cells.

    PubMed

    Lin, Su-Hsuan; Shih, Yuan-Wei

    2014-06-01

    Chalcones (benzylideneacetophenone) are cancer-preventive food components found in a human diet rich in fruits and vegetables. In this study, we first report the chemopreventive effect of chalcone in human gastric adenocarcinoma cell lines: AGS. The results showed that chalcone could inhibit the abilities of the adhesion, invasion, and migration by cell-matrix adhesion assay, Boyden chamber invasion/migration assay, and wound-healing assay. Molecular data showed that the effect of chalcone in AGS cells might be mediated via sustained inactivation of the phosphorylation of focal adhesion kinase (FAK) and c-Jun N-terminal kinase 1 and 2 (JNK1/2) signal involved in the downregulation of the expressions of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Next, chalcone-treated AGS cells showed tremendous decrease in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), the nuclear level of NF-κB, and the binding ability of NF-κB to NF-κB response element. Furthermore, treating FAK small interfering RNA (FAK siRNA) and specific inhibitor for JNK (SP600125) to AGS cells could reduce the phosphorylation of JNK1/2 and the activity of MMP-2 and MMP-9. Our results revealed that chalcone significantly inhibited the metastatic ability of AGS cells by reducing MMP-2 and MMP-9 expressions concomitantly with a marked reduction on cell invasion and migration through suppressing and JNK signaling pathways. We suggest that chalcone may offer the application in clinical medicine.

  15. FERM Domain Interaction Promotes FAK Signaling

    PubMed Central

    Dunty, Jill M.; Gabarra-Niecko, Veronica; King, Michelle L.; Ceccarelli, Derek F. J.; Eck, Michael J.; Schaller, Michael D.

    2004-01-01

    From the results of deletion analyses, the FERM domain of FAK has been proposed to inhibit enzymatic activity and repress FAK signaling. We have identified a sequence in the FERM domain that is important for FAK signaling in vivo. Point mutations in this sequence had little effect upon catalytic activity in vitro. However, the mutant exhibits reduced tyrosine phosphorylation and dramatically reduced Src family kinase binding. Further, the abilities of the mutant to transduce biochemical signals and to promote cell migration were severely impaired. The results implicate a FERM domain interaction in cell adhesion-dependent activation of FAK and downstream signaling. We also show that the purified FERM domain of FAK interacts with full-length FAK in vitro, and mutation of this sequence disrupts the interaction. These findings are discussed in the context of models of FAK regulation by its FERM domain. PMID:15169899

  16. Rewired ERK-JNK signaling pathways in melanoma.

    PubMed

    Lopez-Bergami, Pablo; Huang, Conway; Goydos, James S; Yip, Dana; Bar-Eli, Menashe; Herlyn, Meenhard; Smalley, Keiran S M; Mahale, Alka; Eroshkin, Alexey; Aaronson, Stuart; Ronai, Ze'ev

    2007-05-01

    Constitutive activation of MEK-ERK signaling is often found in melanomas. Here, we identify a mechanism that links ERK with JNK signaling in human melanoma. Constitutively active ERK increases c-Jun transcription and stability, which are mediated by CREB and GSK3, respectively. Subsequently, c-Jun increases transcription of target genes, including RACK1, an adaptor protein that enables PKC to phosphorylate and enhance JNK activity, enforcing a feed-forward mechanism of the JNK-Jun pathway. Activated c-Jun is also responsible for elevated cyclin D1 expression, which is frequently overexpressed in human melanoma. Our data reveal that, in human melanoma, the rewired ERK signaling pathway upregulates JNK and activates the c-Jun oncogene and its downstream targets, including RACK1 and cyclin D1.

  17. Apoptosis induced by penta-acetyl geniposide in C6 glioma cells is associated with JNK activation and Fas ligand induction

    SciTech Connect

    Peng, C.-H.; Tseng, T.-H.; Huang, C.-N.; Hsu, S.-P.; Wang, C.-J. . E-mail: wcj@csmu.edu.tw

    2005-01-15

    In our previous study, penta-acetyl geniposide ((AC){sub 5}GP) is suggested to induce tumor cell apoptosis through the specific activation of PKC{delta}. However, the downstream signal pathway of PKC{delta} has not yet been investigated. It was shown that JNK may play an important role in the regulation of apoptosis and could be a possible downstream signal of PKC{delta} isoforms. In the present study, we investigate whether JNK is involved in (AC){sub 5}GP induced apoptosis. The result reveals that (AC){sub 5}GP induces JNK activation and c-Jun phosphorylation thus stimulating the expression of Fas-L and Fas. Using SP600125 to block JNK activation shows that (AC){sub 5}GP-mediated apoptosis and related proteins expression are attenuated. Furthermore, we find that the (AC){sub 5}GP induces apoptosis through the activation of JNK/Jun/Fas L/Fas/caspase 8/caspase 3, a mitochondria-independent pathway. The JNK pathway is suggested to be the downstream signal of PKC{delta}, since rottlerin impedes (AC){sub 5}GP-induced JNK activation. Therefore, (AC){sub 5}GP mediates cell death via activation of PKC{delta}/JNK/FasL cascade signaling.

  18. PKC412 (CGP41251) modulates the proliferation and lipopolysaccharide-induced inflammatory responses of RAW 264.7 macrophages

    SciTech Connect

    Miyatake, Katsutoshi; Inoue, Hiroshi . E-mail: hinoue@genome.tokushima-u.ac.jp; Hashimoto, Kahoko; Takaku, Hiroshi; Takata, Yoichiro; Nakano, Shunji; Yasui, Natsuo; Itakura, Mitsuo

    2007-08-17

    PKC412 (CGP41251) is a multitarget protein kinase inhibitor with anti-tumor activities. Here, we investigated the effects of PKC412 on macrophages. PKC412 inhibited the proliferation of murine RAW 264.7 macrophages through induction of G2/M cell cycle arrest and apoptosis. At non-toxic drug concentrations, PKC412 significantly suppressed the lipopolysaccharide (LPS)-induced release of TNF-{alpha} and nitric oxide, while instead enhancing IL-6 secretion. PKC412 attenuated LPS-induced phosphorylations of MKK4 and JNK, as well as AP-1 DNA binding activities. Furthermore, PKC412 suppressed LPS-induced Akt and GSK-3{beta} phosphorylations. These results suggest that the anti-proliferative and immunomodulatory effects of PKC412 are, at least in part, mediated through its interference with the MKK4/JNK/AP-1 and/or Akt/GSK-3{beta} pathways. Since macrophages contribute significantly to the development of both acute and chronic inflammation, PKC412 may have therapeutic potential and applications in treating inflammatory and/or autoimmune diseases.

  19. Roles of focal adhesion kinase (FAK) in megakaryopoiesis and platelet function: studies using a megakaryocyte lineage–specific FAK knockout

    PubMed Central

    Hitchcock, Ian S.; Fox, Norma E.; Prévost, Nicolas; Sear, Katherine; Shattil, Sanford J.

    2008-01-01

    Focal adhesion kinase (FAK) plays a key role in mediating signaling downstream of integrins and growth factor receptors. In this study, we determined the roles of FAK in vivo by generating a megakaryocyte lineage–specific FAK-null mouse (Pf4-Cre/FAK-floxed). Megakaryocyte and platelet FAK expression was ablated in Pf4-Cre/FAK-floxed mice without affecting expression of the FAK homologue PYK2, although PYK2 phosphorylation was increased in FAK−/− megakaryocytes in response to fibrinogen. Megakaryopoiesis is greatly enhanced in Pf4-Cre/FAK-floxed mice, with significant increases in megakaryocytic progenitors (CFU-MK), mature megakaryocytes, megakaryocyte ploidy, and moderate increases in resting platelet number and platelet recovery following a thrombocytopenic stress. Thrombopoietin (Tpo)–mediated activation of Lyn kinase, a negative regulator of megakaryopoiesis, is severely attenuated in FAK-null megakaryocytes compared with wild-type controls. In contrast, Tpo-mediated activation of positive megakaryopoiesis regulators such as ERK1/2 and AKT is increased in FAK-null megakaryocytes, providing a plausible explanation for the observed increases in megakaryopoiesis in these mice. In Pf4-Cre/FAK-floxed mice, rebleeding times are significantly increased, and FAK-null platelets exhibit diminished spreading on immobilized fibrinogen. These studies establish clear roles for FAK in megakaryocyte growth and platelet function, setting the stage for manipulation of this component of the Tpo signaling apparatus for therapeutic benefit. PMID:17925492

  20. Dexmedetomidine-induced Contraction Involves Phosphorylation of Caldesmon by JNK in Endothelium-denuded Rat Aortas

    PubMed Central

    Baik, Jiseok; Ok, Seong-Ho; Cho, Hyunhoo; Yu, Jongsun; Kim, Woochan; Nam, In-Koo; Choi, Mun-Jeoung; Lee, Heon-Keun; Sohn, Ju-Tae

    2014-01-01

    Caldesmon, an inhibitory actin binding protein, binds to actin and inhibits actin-myosin interactions, whereas caldesmon phosphorylation reverses the inhibitory effect of caldesmon on actin-myosin interactions, potentially leading to enhanced contraction. The goal of this study was to investigate the cellular signaling pathway responsible for caldesmon phosphorylation, which is involved in the regulation of the contraction induced by dexmedetomidine (DMT), an alpha-2 adrenoceptor agonist, in endothelium-denuded rat aortas. SP600125 (a c-Jun NH2-terminal kinase [JNK] inhibitor) dose-response curves were generated in aortas that were pre-contracted with DMT or phorbol 12,13-dibutyrate (PDBu), a protein kinase C (PKC) activator. Dose-response curves to the PKC inhibitor chelerythrine were generated in rat aortas pre-contracted with DMT. The effects of SP600125 and rauwolscine (an alpha-2 adrenoceptor inhibitor) on DMT-induced caldesmon phosphorylation in rat aortic vascular smooth muscle cells (VSMCs) were investigated by western blot analysis. PDBu-induced caldesmon and DMT-induced PKC phosphorylation in rat aortic VSMCs was investigated by western blot analysis. The effects of GF109203X (a PKC inhibitor) on DMT- or PDBu-induced JNK phosphorylation in VSMCs were assessed. SP600125 resulted in the relaxation of aortas that were pre-contracted with DMT or PDBu, whereas rauwolscine attenuated DMT-induced contraction. Chelerythrine resulted in the vasodilation of aortas pre-contracted with DMT. SP600125 and rauwolscine inhibited DMT-induced caldesmon phosphorylation. Additionally, PDBu induced caldesmon phosphorylation, and GF109203X attenuated the JNK phosphorylation induced by DMT or PDBu. DMT induced PKC phosphorylation in rat aortic VSMCs. These results suggest that alpha-2 adrenoceptor-mediated, DMT-induced contraction involves caldesmon phosphorylation that is mediated by JNK phosphorylation by PKC. PMID:25332685

  1. FAK-heterozygous mice display enhanced tumour angiogenesis

    PubMed Central

    Kostourou, Vassiliki; Lechertier, Tanguy; Reynolds, Louise E.; Lees, Delphine M.; Baker, Marianne; Jones, Dylan T.; Tavora, Bernardo; Ramjaun, Antoine R.; Birdsey, Graeme M.; Robinson, Stephen D.; Parsons, Maddy; Randi, Anna M.; Hart, Ian R; Hodivala-Dilke, Kairbaan

    2013-01-01

    Genetic ablation of endothelial Focal Adhesion Kinase (FAK) can inhibit pathological angiogenesis, suggesting that loss of endothelial FAK is sufficient to reduce neovascularisation. Here we show that reduced stromal-FAK expression in FAK-heterozygous mice unexpectedly enhances both B16F0 and CMT19T tumour growth and angiogenesis. We further demonstrate that cell proliferation and microvessel sprouting, but not migration, are increased in serum-stimulated FAK-heterozygous endothelial cells. FAK-heterozygous endothelial cells display an imbalance in FAK phosphorylation at pY397 and pY861 without changes in Pyk2 or Erk1/2 activity. By contrast, serum-stimulated phosphorylation of Akt is enhanced in FAK-heterozygous endothelial cells and these cells are more sensitive to Akt inhibition. Additionally, low doses of a pharmacological FAK inhibitor, although too low to affect FAK autophosphorylation in vitro, can enhance angiogenesis ex vivo and tumor growth in vivo. Our results highlight a potential novel role for FAK as a non-linear, dose-dependent regulator of angiogenesis where heterozygous levels of FAK enhance angiogenesis. PMID:23799510

  2. Re-wired ERK-JNK signaling pathways in melanoma

    PubMed Central

    Lopez-Bergami, Pablo; Huang, Conway; Goydos, James S.; Yip, Dana; Bar-Eli, Menashe; Herlyn, Meenhard; Smalley, Keiran S. M.; Mahale, Alka; Eroshkin, Alexey; Aaronson, Stuart; Ronai, Ze’ev

    2007-01-01

    Summary Constitutive activation of MEK-ERK signaling is often found in melanomas. Here, we identify a mechanism that links ERK with JNK signaling in human melanoma. Constitutively active ERK increases c-Jun transcription and stability, which are mediated by CREB and GSK3, respectively. Subsequently, c-Jun increases transcription of target genes, including RACK1, an adaptor protein that enables PKC to phosphorylate and enhance JNK activity, enforcing a feed-forward mechanism of the JNK-Jun pathway. Activated c-Jun is also responsible for elevated cyclin D1 expression, which is frequently overexpressed in human melanoma. Our data reveal that in human melanoma the rewired ERK signaling pathway upregulates JNK and activates the c-Jun oncogene and its downstream targets including RACK1 and cyclin D1. Significance Although constitutively active ERK-MAPK signaling has been found in a large fraction of human melanoma tumors, how this pathway contributes to melanoma development remains largely elusive. Here we reveal the blueprint for rewiring of key signal transduction pathways in melanoma. In this re-wiring program, constitutively active ERK affects the c-Jun oncogene, its upstream kinase JNK, and its downstream targets RACK1 and cyclin D1. Understanding how key signaling pathways are re-wired in melanoma offers new targets for therapy of this tumor type. PMID:17482134

  3. Activation of JNK pathway in spinal astrocytes contributes to acute ultra-low-dose morphine thermal hyperalgesia.

    PubMed

    Sanna, Maria Domenica; Ghelardini, Carla; Galeotti, Nicoletta

    2015-07-01

    Accumulating evidence suggests that opioid analgesics can lead to paradoxical sensitization to pain when delivered in different administration patterns. Although opioid tolerance-induced hyperalgesia is largely studied, little is known about the mechanisms underlying acute ultra-low-dose morphine hyperalgesia. Activation of spinal glial cells is reported to regulate pain hypersensitivity. To elucidate the mechanism involved in acute ultra-low-dose morphine hyperalgesia, we tested whether an opioid agonist promoted the activation of spinal astrocytes and microglia and investigated the cellular pathways involved. Ultra-low-dose morphine activated spinal astrocytes with no effect on microglia. The astrocyte activation was selectively prevented by the opioid antagonist naloxone, the μ-opioid receptor (MOR) silencing and the JNK inhibitor SP600125. Morphine elevated spinal JNK1, JNK2, and c-Jun phosphorylation. Conversely, phosphorylation of cAMP response element-binding protein (CREB) and signal transducer and activator of transcription-1 (STAT-1) was not elevated, and nuclear factor kappa B (NF-κB) levels remained unmodified. Administration of SP600125 and the N-methyl-D-aspartate (NMDA) antagonist MK801 prevented morphine hyperalgesia. Ultra-low-dose morphine increased protein kinase C (PKC) γ phosphorylation. Pretreatment with a PKC inhibitor prevented morphine hyperalgesia and JNK and c-Jun overphosphorylation, indicating PKC is a JNK upstream modulator and illustrating the presence of a pathway involving PKC, NMDA, and JNK activated by morphine. Immunofluorescence experiments indicated the neuronal localization of spinal MOR. However, JNK was not detected in MOR-expressing cells, showing the presence of a neuron-astrocyte signaling pathway. These results illustrate the selective activation of an astrocyte JNK pathway after the stimulation of neuronal MOR, which contributes to ultra-low-dose morphine hyperalgesia.

  4. LRRK2 Inhibits FAK Activity by Promoting FERM-mediated Autoinhibition of FAK and Recruiting the Tyrosine Phosphatase, SHP-2

    PubMed Central

    Choi, Insup; Byun, Ji-won; Park, Sang Myun; Jou, Ilo

    2016-01-01

    Mutation of leucine-rich repeat kinase 2 (LRRK2) causes an autosomal dominant and late-onset familial Parkinson's disease (PD). Recently, we reported that LRRK2 directly binds to and phosphorylates the threonine 474 (T474)-containing Thr-X-Arg(Lys) (TXR) motif of focal adhesion kinase (FAK), thereby inhibiting the phosphorylation of FAK at tyrosine (Y) 397 residue (pY397-FAK), which is a marker of its activation. Mechanistically, however, it remained unclear how T474-FAK phosphorylation suppressed FAK activation. Here, we report that T474-FAK phosphorylation could inhibit FAK activation via at least two different mechanisms. First, T474 phosphorylation appears to induce a conformational change of FAK, enabling its N-terminal FERM domain to autoinhibit Y397 phosphorylation. This is supported by the observation that the levels of pY397-FAK were increased by deletion of the FERM domain and/or mutation of the FERM domain to prevent its interaction with the kinase domain of FAK. Second, pT474-FAK appears to recruit SHP-2, which is a phosphatase responsible for dephosphorylating pY397-FAK. We found that mutation of T474 into glutamate (T474E-FAK) to mimic phosphorylation induced more strong interaction with SHP-2 than WT-FAK, and that pharmacological inhibition of SHP-2 with NSC-87877 rescued the level of pY397 in HEK293T cells. These results collectively show that LRRK2 suppresses FAK activation through diverse mechanisms that include the promotion of autoinhibition and/or the recruitment of phosphatases, such as SHP-2. PMID:27790061

  5. Negative regulation of FAK signaling by SOCS proteins

    PubMed Central

    Liu, Enbo; Côté, Jean-François; Vuori, Kristiina

    2003-01-01

    Focal adhesion kinase (FAK) becomes activated upon integrin-mediated cell adhesion and controls cellular responses to the engagement of integrins, including cell migration and survival. We show here that a coordinated signaling by integrins and growth factor receptors induces expression of suppressor of cytokine signaling-3 (SOCS-3) and subsequent interaction between endogenous FAK and SOCS-3 proteins in 3T3 fibroblasts. Cotransfection studies demonstrated that SOCS-3, and also SOCS-1, interact with FAK in a FAK-Y397-dependent manner, and that both the Src homology 2 (SH2) and the kinase inhibitory region (KIR) domains of the SOCS proteins contribute to FAK binding. SOCS-1 and SOCS-3 were found to inhibit FAK-associated kinase activity in vitro and tyrosine phosphorylation of FAK in cells. The SOCS proteins also promoted polyubiquitination and degradation of FAK in a SOCS box-dependent manner and inhibited FAK-dependent signaling events, such as cell motility on fibronectin. These studies suggest a negative role of SOCS proteins in FAK signaling, and for a previously unidentified regulatory mechanism for FAK function. PMID:14517242

  6. FAK signalling controls insulin sensitivity through regulation of adipocyte survival

    PubMed Central

    Luk, Cynthia T.; Shi, Sally Yu; Cai, Erica P.; Sivasubramaniyam, Tharini; Krishnamurthy, Mansa; Brunt, Jara J.; Schroer, Stephanie A.; Winer, Daniel A.; Woo, Minna

    2017-01-01

    Focal adhesion kinase (FAK) plays a central role in integrin signalling, which regulates growth and survival of tumours. Here we show that FAK protein levels are increased in adipose tissue of insulin-resistant obese mice and humans. Disruption of adipocyte FAK in mice or in 3T3 L1 cells decreases adipocyte survival. Adipocyte-specific FAK knockout mice display impaired adipose tissue expansion and insulin resistance on prolonged metabolic stress from a high-fat diet or when crossed on an obese db/db or ob/ob genetic background. Treatment of these mice with a PPARγ agonist does not restore adiposity or improve insulin sensitivity. In contrast, inhibition of apoptosis, either genetically or pharmacologically, attenuates adipocyte death, restores normal adiposity and improves insulin sensitivity. Together, these results demonstrate that FAK is required for adipocyte survival and maintenance of insulin sensitivity, particularly in the context of adipose tissue expansion as a result of caloric excess. PMID:28165007

  7. Induction of ANGPTL4 expression in human airway smooth muscle cells by PMA through activation of PKC and MAPK pathways.

    PubMed

    Stapleton, Cliona M; Joo, Joung Hyuck; Kim, Yong-Sik; Liao, Grace; Panettieri, Reynold A; Jetten, Anton M

    2010-02-15

    In this study, we demonstrate that protein kinase C (PKC) activators, including phorbol-12-myristate-13-acetate (PMA), 1,2-dioctanoyl-sn-glycerol (DOG), and platelet-derived growth factor alpha are potent inducers of angiopoietin-like protein 4 (ANGPTL4) expression in several normal lung cell types and carcinoma cell lines. In human airway smooth muscle (HASM) cells induction of ANGPTL4 expression is observed as early as 2 h after the addition of PMA. PMA also increases the level of ANGPTL4 protein released in the medium. PKC inhibitors Ro31-8820 and Gö6983 greatly inhibit the induction of ANGPTL4 mRNA by PMA suggesting that this up-regulation involves activation of PKC. Knockdown of several PKCs by corresponding siRNAs suggest a role for PKCalpha. PMA does not activate MAPK p38 and p38 inhibitors have little effect on the induction of ANGPTL4 indicating that p38 is not involved in the regulation of ANGPTL4 by PMA. In contrast, treatment of HASM by PMA induces phosphorylation and activation of Ra, MEK1/2, ERK1/2, JNK, Elk-1, and c-Jun. The Ras inhibitor manumycin A, the MEK1/2 inhibitor U0126, and the JNK inhibitor SP600125, greatly reduce the increase in ANGPTL4 expression by PMA. Knockdown of MEK1/2 and JNK1/2 expression by corresponding siRNAs inhibits the induction of ANGPTL4. Our observations suggest that the induction of ANGPTL4 by PMA in HASM involves the activation of PKC, ERK, and JNK pathways. This induction may play a role in tissue remodeling during lung injury and be implicated in several lung pathologies.

  8. McEliece PKC Calculator

    NASA Astrophysics Data System (ADS)

    Marek, Repka

    2015-01-01

    The original McEliece PKC proposal is interesting thanks to its resistance against all known attacks, even using quantum cryptanalysis, in an IND-CCA2 secure conversion. Here we present a generic implementation of the original McEliece PKC proposal, which provides test vectors (for all important intermediate results), and also in which a measurement tool for side-channel analysis is employed. To our best knowledge, this is the first such an implementation. This Calculator is valuable in implementation optimization, in further McEliece/Niederreiter like PKCs properties investigations, and also in teaching. Thanks to that, one can, for example, examine side-channel vulnerability of a certain implementation, or one can find out and test particular parameters of the cryptosystem in order to make them appropriate for an efficient hardware implementation. This implementation is available [1] in executable binary format, and as a static C++ library, as well as in form of source codes, for Linux and Windows operating systems.

  9. Altering FAK-Paxillin Interactions Reduces Adhesion, Migration and Invasion Processes

    PubMed Central

    Deramaudt, Thérèse B.; Dujardin, Denis; Noulet, Fanny; Martin, Sophie; Vauchelles, Romain; Takeda, Ken; Rondé, Philippe

    2014-01-01

    Focal adhesion kinase (FAK) plays an important role in signal transduction pathways initiated at sites of integrin-mediated cell adhesion to the extracellular matrix. Thus, FAK is involved in many aspects of the metastatic process including adhesion, migration and invasion. Recently, several small molecule inhibitors which target FAK catalytic activity have been developed by pharmaceutical companies. The current study was aimed at addressing whether inhibiting FAK targeting to focal adhesions (FA) represents an efficient alternative strategy to inhibit FAK downstream pathways. Using a mutagenesis approach to alter the targeting domain of FAK, we constructed a FAK mutant that fails to bind paxillin. Inhibiting FAK-paxillin interactions led to a complete loss of FAK localization at FAs together with reduced phosphorylation of FAK and FAK targets such as paxillin and p130Cas. This in turn resulted in altered FA dynamics and inhibition of cell adhesion, migration and invasion. Moreover, the migration properties of cells expressing the FAK mutant were reduced as compared to FAK-/- cells. This was correlated with a decrease in both phospho-Src and phospho-p130Cas levels at FAs. We conclude that targeting FAK-paxillin interactions is an efficient strategy to reduce FAK signalling and thus may represent a target for the development of new FAK inhibitors. PMID:24642576

  10. Altering FAK-paxillin interactions reduces adhesion, migration and invasion processes.

    PubMed

    Deramaudt, Thérèse B; Dujardin, Denis; Noulet, Fanny; Martin, Sophie; Vauchelles, Romain; Takeda, Ken; Rondé, Philippe

    2014-01-01

    Focal adhesion kinase (FAK) plays an important role in signal transduction pathways initiated at sites of integrin-mediated cell adhesion to the extracellular matrix. Thus, FAK is involved in many aspects of the metastatic process including adhesion, migration and invasion. Recently, several small molecule inhibitors which target FAK catalytic activity have been developed by pharmaceutical companies. The current study was aimed at addressing whether inhibiting FAK targeting to focal adhesions (FA) represents an efficient alternative strategy to inhibit FAK downstream pathways. Using a mutagenesis approach to alter the targeting domain of FAK, we constructed a FAK mutant that fails to bind paxillin. Inhibiting FAK-paxillin interactions led to a complete loss of FAK localization at FAs together with reduced phosphorylation of FAK and FAK targets such as paxillin and p130Cas. This in turn resulted in altered FA dynamics and inhibition of cell adhesion, migration and invasion. Moreover, the migration properties of cells expressing the FAK mutant were reduced as compared to FAK-/- cells. This was correlated with a decrease in both phospho-Src and phospho-p130Cas levels at FAs. We conclude that targeting FAK-paxillin interactions is an efficient strategy to reduce FAK signalling and thus may represent a target for the development of new FAK inhibitors.

  11. FAK kinase activity is required for the progression of c-Met/β-catenin-driven HCC

    PubMed Central

    Shang, Na; Arteaga, Maribel; Zaidi, Ali; Cotler, Scott J.; Breslin, Peter; Ding, Xianzhong; Kuo, Paul; Nishimura, Michael; Zhang, Jiwang; Qiu, Wei

    2016-01-01

    Background & Aims There is an urgent need to develop new and more effective therapeutic strategies and agents to treat hepatocellular carcinoma (HCC). We have recently found that deletion of Fak in hepatocytes before tumors form inhibits tumor development and prolongs survival of animals in a c-Met (MET)/β-catenin (CAT)-driven HCC mouse model. However, it has yet to be determined whether FAK expression in hepatocytes promotes MET/CAT-induced HCC progression after tumor initiation. In addition, it remains unclear whether FAK promotes HCC development through its kinase activity. Methods We generated hepatocyte-specific inducible Fak-deficient mice (Alb-creERT2; Fakflox/flox) to examine the role of FAK in HCC progression. We re-expressed wild-type and mutant FAK in Fak-deficient mice to determine FAK’s kinase activity in HCC development. We also examined the efficacy of a FAK kinase inhibitor PF-562271 on HCC inhibition. Results We found that deletion of Fak after tumors form significantly repressed MET/CAT-induced tumor progression. Ectopic FAK expression restored HCC formation in hepatocyte-specific Fak-deficient mice. However, overexpression of a FAK kinase-dead mutant led to reduced tumor load compared to mice which express wild-type FAK. Furthermore, PF-562271 significantly suppressed progression of MET/CAT-induced HCC. Conclusion Fak kinase activity is important for MET/CAT-induced HCC progression. Inhibiting FAK kinase activity provides a potential therapeutic strategy to treat HCC. PMID:27142958

  12. Cyclic peptide *CRRETAWAC* attenuates fibronectin-induced cytokine secretion of human airway smooth muscle cells by inhibiting FAK and p38 MAPK.

    PubMed

    Chu, Mengdi; Ji, Jiani; Cao, Wenhao; Zhang, Huojun; Meng, Dan; Xie, Bangruan; Xu, Shuyun

    2017-10-01

    α5β1 integrin is highly expressed in airway smooth muscle cells and mediate the adhesion of airway smooth muscle cells to fibronectin to regulate airway remodelling in asthma. This study aimed to investigate the effects of synthetic cyclic peptide *CRRETAWAC* on fibronectin-induced cytokine secretion of airway smooth muscle cells and the underlying mechanism. Human airway smooth muscle cells were isolated and treated with fibronectin, IL-13, *CRRETAWAC* peptide, α5β1 integrin-blocking antibody, FAK inhibitor or p38 MAPK inhibitor. The transcription and secretion of eotaxin-1 and RANTES were detected by real-time PCR and ELISA, respectively. The phosphorylation of FAK and MAPKs including p38, ERK1/2 and JNK1/2 was detected by Western blot analysis. The transcription and secretion of eotaxin-1 and RANTES increased in airway smooth muscle cells cultured in fibronectin-coated plates. However, α5β1 integrin-blocking antibody, *CRRETAWAC* peptide, FAK inhibitor or p38 MAPK inhibitor significantly reduced mRNA levels and the secretion of eotaxin-1 and RANTES in airway smooth muscle cells cultured in fibronectin-coated plates. In addition, the phosphorylation of FAK and p38 MAPK was significantly increased in airway smooth muscle cells cultured in fibronectin-coated plates compared to the cells cultured in uncoated plates and was significantly reduced in airway smooth muscle cells treated with *CRRETAWAC* peptide. Fibronectin induces cytokine synthesis and secretion of airway smooth muscle cells. Peptide *CRRETAWAC* antagonizes fibronectin-induced cytokine synthesis and secretion of airway smooth muscle cells via the inhibition of FAK and p38 MAPK, and is a potential agent for the therapy of asthma. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. Regulation of JNK signaling by GSTp.

    PubMed Central

    Adler, V; Yin, Z; Fuchs, S Y; Benezra, M; Rosario, L; Tew, K D; Pincus, M R; Sardana, M; Henderson, C J; Wolf, C R; Davis, R J; Ronai, Z

    1999-01-01

    Studies of low basal Jun N-terminal kinase (JNK) activity in non-stressed cells led us to identify a JNK inhibitor that was purified and identified as glutathione S-transferase Pi (GSTp) and was characterized as a JNK-associated protein. UV irradiation or H2O2 treatment caused GSTp oligomerization and dissociation of the GSTp-JNK complex, indicating that it is the monomeric form of GSTp that elicits JNK inhibition. Addition of purified GSTp to the Jun-JNK complex caused a dose-dependent inhibition of JNK activity. Conversely, immunodepleting GSTp from protein extracts attenuated JNK inhibition. Furthermore, JNK activity was increased in the presence of specific GSTp inhibitors and a GSTp-derived peptide. Forced expression of GSTp decreased MKK4 and JNK phosphorylation which coincided with decreased JNK activity, increased c-Jun ubiquitination and decreased c-Jun-mediated transcription. Co-transfection of MEKK1 and GSTp restored MKK4 phosphorylation but did not affect GSTp inhibition of JNK activity, suggesting that the effect of GSTp on JNK is independent of the MEKK1-MKK4 module. Mouse embryo fibroblasts from GSTp-null mice exhibited a high basal level of JNK activity that could be reduced by forced expression of GSTp cDNA. In demonstrating the relationships between GSTp expression and its association with JNK, our findings provide new insight into the regulation of stress kinases. PMID:10064598

  14. Evidence that behavioral phenotypes of morphine in β-arr2-/- mice are due to the unmasking of JNK signaling.

    PubMed

    Mittal, Nitish; Tan, Miao; Egbuta, Onyemachi; Desai, Nina; Crawford, Cynthia; Xie, Cui-Wei; Evans, Christopher; Walwyn, Wendy

    2012-07-01

    The altered behavioral effects of morphine, but not most other mu agonists, in mice lacking β-arrestin 2, suggest that this scaffolding protein regulates the signaling cascade of this commonly used analgesic. One of the cascades that could be regulated by β-arrestin 2 is cJun-N-terminal kinase (JNK), which binds with β-arrestin 2 and modulates the analgesic effects of morphine. Using neurons lacking β-arrestin 2 (β-arr2-/-) to examine this interaction, we found that β-arr2-/- neurons show altered intracellular distribution of JNK and cJun, and that morphine, but not fentanyl, increased the nuclear localization of the phosphorylated, therefore activated, form of cJun, a JNK target in dorsal root ganglia neurons. This suggests that deleting β-arrestin 2 affects the JNK cascade. We therefore examined whether some of the behavioral phenotypes of mice lacking β-arrestin 2 could be a result of altered JNK signaling. Indeed, two different JNK inhibitors reversed the enhanced analgesic effect of morphine, a known phenotype of β-arr2-/- mice, to +/+ levels. Both the reduced locomotor effect of morphine and the psychomotor sensitization to repeated morphine administration in β-arr2-/- mice were also returned to +/+ levels by inhibiting JNK. In contrast, the behavioral effects of fentanyl were neither genotype-dependent nor affected by JNK inhibition. Furthermore, a PKC inhibitor had a similar effect as inhibiting JNK in reducing the enhanced analgesic effect of morphine in β-arr2-/- mice to +/+ levels. In summary, removing β-arrestin 2 reveals mu receptor activation of the JNK cascade in a ligand-specific manner explaining several behavioral phenotypes of β-arr2-/- mice.

  15. Dasatinib reduces FAK phosphorylation increasing the effects of RPI-1 inhibition in a RET/PTC1-expressing cell line

    PubMed Central

    2010-01-01

    Background TPC-1 is a papillary thyroid carcinoma (PTC)-derived cell line that spontaneously expresses the oncogene RET/PTC1. TPC-1 treated with the RET/PTC1 inhibitor RPI-1 displayed a cytostatic and reversible inhibition of cell proliferation and a strong activation of focal adhesion kinase (FAK). As dasatinib inhibition of Src results in reduction of FAK activation, we evaluated the effects of TPC-1 treatment with dasatinib in combination with RPI-1. Results Dasatinib (100 nM) strongly reduced TPC-1 proliferation and induced marked changes in TPC-1 morphology. Cells appeared smaller and more contracted, with decreased cell spreading, due to the inhibition of phosphorylation of important cytoskeletal proteins (p130CAS, Crk, and paxillin) by dasatinib. The combination of RPI-1 with dasatinib demonstrated enhanced effects on cell proliferation (more than 80% reduction) and on the phosphotyrosine protein profile. In particular, RPI-1 reduced the phosphorylation of RET, MET, DCDB2, CTND1, and PLCγ, while dasatinib acted on the phosphorylation of EGFR, EPHA2, and DOK1. Moreover, dasatinib completely abrogated the phosphorylation of FAK at all tyrosine sites (Y576, Y577, Y861, Y925) with the exception of the autoactivation site (Y397). Notably, the pharmacological treatments induced an overexpression of integrin β1 (ITB1) that was correlated with a mild enhancement in phosphorylation of ERK1/2 and STAT3, known for their roles in prevention of apoptosis and in increase of proliferation and survival. A reduction in Akt, p38 and JNK1/2 activation was observed. Conclusions All data demonstrate that the combination of the two drugs effectively reduced cell proliferation (by more than 80%), significantly decreased Tyr phosphorylation of almost all phosphorylable proteins, and altered the morphology of the cells, supporting high cytostatic effects. Following the combined treatment, cell survival pathways appeared to be mediated by STAT3 and ERK activities resulting from

  16. A novel mouse PKC{delta} splice variant, PKC{delta}IX, inhibits etoposide-induced apoptosis

    SciTech Connect

    Kim, Jung D.; Seo, Kwang W.; Lee, Eun A.; Quang, Nguyen N.; Cho, Hong R.; Kwon, Byungsuk

    2011-07-01

    Highlights: {yields} A novel PKC{delta} isoform, named PKC{delta}IX, that lacks the C1 domain and the ATP-binding site is ubiquitously expressed. {yields} PKC{delta}IX inhibits etoposide-induced apoptosis. {yields} PKC{delta}IX may function as an endogenous dominant negative isoform for PKC{delta}. -- Abstract: Protein kinase C (PKC) {delta} plays an important role in cellular proliferation and apoptosis. The catalytic fragment of PKC{delta} generated by caspase-dependent cleavage is essential for the initiation of etoposide-induced apoptosis. In this study, we identified a novel mouse PKC{delta} isoform named PKC{delta}IX (Genebank Accession No. (HQ840432)). PKC{delta}IX is generated by alternative splicing and is ubiquitously expressed, as seen in its full-length PKC{delta}. PKC{delta}IX lacks the C1 domain, the caspase 3 cleavage site, and the ATP binding site but preserves an almost intact c-terminal catalytic domain and a nuclear localization signal (NLS). The structural characteristics of PKC{delta}IX provided a possibility that this PKC{delta} isozyme functions as a novel dominant-negative form for PKC{delta} due to its lack of the ATP-binding domain that is required for the kinase activity of PKC{delta}. Indeed, overexpression of PKC{delta}IX significantly inhibited etoposide-induced apoptosis in NIH3T3 cells. In addition, an in vitro kinase assay showed that recombinant PKC{delta}IX protein could competitively inhibit the kinase activity of PKC{delta}. We conclude that PKC{delta}IX can function as a natural dominant-negative inhibitor of PKC{delta}in vivo.

  17. Inhibition of FAK kinase activity preferentially targets cancer stem cells

    PubMed Central

    Kolev, Vihren N.; Tam, Winnie F.; Wright, Quentin G.; McDermott, Sean P.; Vidal, Christian M.; Shapiro, Irina M.; Xu, Qunli; Wicha, Max S.; Pachter, Jonathan A.; Weaver, David T.

    2017-01-01

    Because cancer stem cells (CSCs) have been implicated in chemo-resistance, metastasis and tumor recurrence, therapeutic targeting of CSCs holds promise to address these clinical challenges to cancer treatment. VS-4718 and VS-6063 are potent inhibitors of focal adhesion kinase (FAK), a non-receptor tyrosine kinase that mediates cell signals transmitted by integrins and growth factor receptors. We report here that inhibition of FAK kinase activity by VS-4718 or VS-6063 preferentially targets CSCs, as demonstrated by a panel of orthogonal CSC assays in cell line models and surgically resected primary breast tumor specimens cultured ex vivo. Oral administration of VS-4718 or VS-6063 to mice bearing xenograft models of triple-negative breast cancer (TNBC) significantly reduced the proportion of CSCs in the tumors, as evidenced by a reduced tumor-initiating capability upon re-implantation in limiting dilutions of cells prepared from these tumors. In contrast, the cytotoxic chemotherapeutic agents, paclitaxel and carboplatin, enriched for CSCs, consistent with previous reports that these cytotoxic agents preferentially target non-CSCs. Importantly, VS-4718 and VS-6063 attenuated the chemotherapy-induced enrichment of CSCs in vitro and delayed tumor regrowth following cessation of chemotherapy. An intriguing crosstalk between FAK and the Wnt/β-catenin pathway was revealed wherein FAK inhibition blocks β-catenin activation by reducing tyrosine 654 phosphorylation of β-catenin. Furthermore, a constitutively active mutant form of β-catenin reversed the preferential targeting of CSCs by FAK inhibition, suggesting that this targeting is mediated, at least in part, through attenuating β-catenin activation. The preferential targeting of cancer stem cells by FAK inhibitors provides a rationale for the clinical development of FAK inhibitors aimed to increase durable responses for cancer patients. PMID:28881682

  18. Phospholipid binding to the FAK catalytic domain impacts function

    PubMed Central

    Schaller, Michael D.

    2017-01-01

    Focal adhesion kinase is an essential nonreceptor tyrosine kinase that plays an important role in development, in homeostasis and in the progression of human disease. Multiple stimuli activate FAK, which requires a change in structure from an autoinhibited to activated conformation. In the autoinhibited conformation the FERM domain associates with the catalytic domain of FAK and PI(4,5)P2 binding to the FERM domain plays a role in the release of autoinhibition, activating the enzyme. An in silico model of FAK/PI(4,5)P2 interaction suggests that residues on the catalytic domain interact with PI(4,5)P2, in addition to the known FERM domain PI(4,5)P2 binding site. This study was undertaken to test the significance of this in silico observation. Mutations designed to disrupt the putative PI(4,5)P2 binding site were engineered into FAK. These mutants exhibited defects in phosphorylation and failed to completely rescue the phenotype associated with fak -/- phenotype fibroblasts demonstrating the importance of these residues in FAK function. The catalytic domain of FAK exhibited PI(4,5)P2 binding in vitro and binding activity was lost upon mutation of putative PI(4,5)P2 binding site basic residues. However, binding was not selective for PI(4,5)P2, and the catalytic domain bound to several phosphatidylinositol phosphorylation variants. The mutant exhibiting the most severe biological defect was defective for phosphatidylinositol phosphate binding, supporting the model that catalytic domain phospholipid binding is important for biochemical and biological function. PMID:28222177

  19. PKC Isoform Expression in Modeled Microgravity

    NASA Technical Reports Server (NTRS)

    Risin, Diana; Sundaresan, Alamelu; Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Our previous studies showed that modeled (MMG) and true (USA Space Shuttle Missions STS-54 and STS-56) microgravity (MG) inhibit human lymphocyte locomotion, Modeled MG also suppressed polyclonal and antigen-specific lymphocyte activation. Activation of PKC by phorbol myristate acetate (PMA) restored the microgravity-inhibited lymphocyte locomotion as well as activation by phytohaemagglutinin (PHA), whereas calcium ionophore (ionomycin) was unable to restore these functions. Based on these results we hypothesized that MG-induced changes in lymphocyte functions are caused by a fundamental defect in signal transduction mechanism. This defect may be localized either at the PKC level or upstream of PKC, most likely, at the cell membrane level. In this study we examined the expression of PKC isoforms alpha, epsilon and delta in PBMC cultured in rotating wall vessel bioreactor, developed at NASA JSC, which models microgravity by sustaining cells in continuous free fall. The assessment of the isoforms was performed by FACS analysis following cell permeabilization. A decrease in the expression of isoforms epsilon and delta, but not isoform a, was observed in PBMC cultured in microgravity conditions. These data suggest that MMG might selectively affect the expression of Ca2+ independent isoforms of PKC Molecular analysis confirm selective suppression of Ca2+ independent isoforms of PKC.

  20. The FAK scaffold inhibitor C4 disrupts FAK-VEGFR-3 signaling and inhibits pancreatic cancer growth

    PubMed Central

    Kurenova, Elena; Liao, Jianqun; He, Di-Hua; Hunt, Darrell; Yemma, Michael; Bshara, Wiam; Seshadri, Mukund; Cance, William G.

    2013-01-01

    Even with successful surgical resection and perioperative chemotherapy and radiation, pancreatic ductal adenocarcinoma (PDA) has a high incidence of recurrence. Tumor cell survival depends on activation of signaling pathways that suppress the apoptotic stimuli of invasion and metastasis. Focal adhesion kinase (FAK) is a critical signaling molecule that has been implicated in tumor cell survival, invasion and metastasis. We have previously shown that FAK and vascular endothelial growth factor receptor 3 (VEGFR-3) are overexpressed in cancer cells and physically interact to confer a significant survival advantage. We subsequently identified a novel small molecule inhibitor C4 that targeted the VEGFR-3-FAK site of interaction. In this study, we have shown that C4 disrupted the FAK-VEGFR-3 complexes in PDA cells. C4 treatment caused dose-dependent dephosphorylation and inactivation of the VEGFR-3 and FAK, reduction in cell viability and proliferation, cell cycle arrest and apoptosis in PDA cells. C4 increased the sensitivity of tumor cells to gemcitabine chemotherapy in vitro that lead to apoptosis at nanomolar concentrations of both drugs. C4 reduced tumor growth in vivoin subcutaneous and orthotopic murine models of PDA. The drug alone at low dose, decreased tumor growth; however, concomitant administration with low dose of gemcitabine had significant synergistic effect and led to 70% tumor reduction. Combination of C4 with gemcitabine had a prolonged cytostatic effect on tumor growth after treatment withdrawal. Finally, we report an anecdotal case of stage IV pancreatic cancer treated with gemcitabine in combination with C4 that showed a significant clinical response in primary tumor and complete clinical response in liver metastasis over an eight month period. Taken together, these results demonstrate that targeting the scaffolding function of FAK with a small-molecule FAK-VEGFR-3 inhibitor can be an effective therapeutic strategy against PDA. PMID:24142503

  1. Retinoic acid induces nuclear FAK translocation and reduces breast cancer cell adhesion through Moesin, FAK, and Paxillin.

    PubMed

    Sanchez, Angel Matías; Shortrede, Jorge Eduardo; Vargas-Roig, Laura María; Flamini, Marina Inés

    2016-07-15

    Breast cancer is the most common malignancy in women, with metastases being the cause of death in 98%. In previous works we have demonstrated that retinoic acid (RA), the main retinoic acid receptor (RAR) ligand, is involved in the metastatic process by inhibiting migration through a reduced expression of the specific migration-related proteins Moesin, c-Src, and FAK. At present, our hypothesis is that RA also acts for short periods in a non-genomic action to cooperate with motility reduction and morphology of breast cancer cells. Here we identify that the administration of 10(-6) M RA (10-20 min) induces the activation of the migration-related proteins Moesin, FAK, and Paxillin in T-47D breast cancer cells. The phosphorylation exerted by the selective agonists for RARα and RARβ, on Moesin, FAK, and Paxillin was comparable to the activation exerted by RA. The RARγ agonist only led to a weak activation, suggesting the involvement of RARα and RARβ in this pathway. We then treated the cells with different inhibitors that are involved in cell signaling to regulate the mechanisms of cell motility. RA failed to activate Moesin, FAK, and Paxillin in cells treated with Src inhibitor (PP2) and PI3K inhibitor (WM), suggesting the participation of Src-PI3K in this pathway. Treatment with 10(-6) M RA for 20 min significantly decreased cell adhesion. However, when cells were treated with 10(-6) M RA and FAK inhibitor, the RA did not significantly inhibit adhesion, suggesting a role of FAK in the adhesion inhibited by RA. By immunofluorescence and immunoblotting analysis we demonstrated that RA induced nuclear FAK translocation leading to a reduced cellular adhesion. These findings provide new information on the actions of RA for short periods. RA participates in cell adhesion and subsequent migration, modulating the relocation and activation of proteins involved in cell migration.

  2. The FAK scaffold inhibitor C4 disrupts FAK-VEGFR-3 signaling and inhibits pancreatic cancer growth.

    PubMed

    Kurenova, Elena; Liao, Jianqun; He, Di-Hua; Hunt, Darrell; Yemma, Michael; Bshara, Wiam; Seshadri, Mukund; Cance, William G

    2013-10-01

    Even with successful surgical resection and perioperative chemotherapy and radiation, pancreatic ductal adenocarcinoma (PDA) has a high incidence of recurrence. Tumor cell survival depends on activation of signaling pathways that suppress the apoptotic stimuli of invasion and metastasis. Focal adhesion kinase (FAK) is a critical signaling molecule that has been implicated in tumor cell survival, invasion and metastasis. We have previously shown that FAK and vascular endothelial growth factor receptor 3 (VEGFR-3) are overexpressed in cancer cells and physically interact to confer a significant survival advantage. We subsequently identified a novel small molecule inhibitor C4 that targeted the VEGFR-3-FAK site of interaction. In this study, we have shown that C4 disrupted the FAK-VEGFR-3 complexes in PDA cells. C4 treatment caused dose-dependent dephosphorylation and inactivation of the VEGFR-3 and FAK, reduction in cell viability and proliferation, cell cycle arrest and apoptosis in PDA cells. C4 increased the sensitivity of tumor cells to gemcitabine chemotherapy in vitro that lead to apoptosis at nanomolar concentrations of both drugs. C4 reduced tumor growth in vivo in subcutaneous and orthotopic murine models of PDA. The drug alone at low dose, decreased tumor growth; however, concomitant administration with low dose of gemcitabine had significant synergistic effect and led to 70% tumor reduction. Combination of C4 with gemcitabine had a prolonged cytostatic effect on tumor growth after treatment withdrawal. Finally, we report an anecdotal case of stage IV pancreatic cancer treated with gemcitabine in combination with C4 that showed a significant clinical response in primary tumor and complete clinical response in liver metastasis over an eight month period. Taken together, these results demonstrate that targeting the scaffolding function of FAK with a small-molecule FAK-VEGFR-3 inhibitor can be an effective therapeutic strategy against PDA.

  3. Nuclear FAK: a New Mode of Gene Regulation from Cellular Adhesions

    PubMed Central

    Lim, Ssang-Taek Steve

    2013-01-01

    Focal adhesion kinase (FAK) is a protein tyrosine kinase (PTK) crucial in regulation of cell migration and proliferation. In addition to its canonical roles as a cytoplasmic kinase downstream of integrin and growth factor receptor signaling, recent studies revealed new aspects of FAK action in the nucleus. Nuclear FAK promotes p53 and GATA4 degradation via ubiquitination, resulting in enhanced cell proliferation and reduced inflammatory responses. FAK can also serve as a co-transcriptional regulator that alters a gene transcriptional activity. These findings established a new paradigm of FAK signaling from cellular adhesions to the nucleus. Although physiological stimuli for controlling FAK nuclear localization have not been completely characterized, FAK shuttles from focal adhesions to the nucleus to directly convey extracellular signals. Interestingly, nuclear translocation of FAK becomes prominent in kinase-inhibited conditions such as in de-adhesion and pharmacological FAK inhibition, while a small fraction of nuclear FAK is observed a normal growth condition. In this review, roles of nuclear FAK in regulating transcription factors will be discussed. Furthermore, a potential use of a pharmacological FAK inhibitor to target nuclear FAK function in diseases such as inflammation will be emphasized. PMID:23686429

  4. Tac-beta1 inhibits FAK activation and Src signaling.

    PubMed

    Berrier, Allison L; Jones, Christopher W; LaFlamme, Susan E

    2008-03-28

    The binding of integrins to extracellular matrix triggers signals that promote cell spreading. We previously demonstrated that expression of the integrin beta1 cytoplasmic domain in the context of a chimeric transmembrane receptor with the Tac subunit of the interleukin-2 receptor (Tac-beta1) inhibits cell spreading. To study the mechanism whereby Tac-beta1 inhibits cell spreading, we examined the effect of Tac-beta1 on early signaling events following integrin engagement namely FAK and Src signaling. We infected primary fibroblasts with adenoviruses expressing Tac or Tac-beta1 and found that Tac-beta1 prevented FAK activation by inhibiting the phosphorylation of FAK at Tyr-397. In contrast, Src activation was maintained, as phosphorylation of Src at Tyr-419 and Tyr-530 were not responsive to expression of Tac-beta1. Importantly, adhesion-induced tyrosine phosphorylation of the Src substrates p130Cas and paxillin was inhibited, indicating that Src signaling was blocked by Tac-beta1. These Src-dependent signaling events were found to require FAK signaling. Our results suggest that Tac-beta1 inhibits cell spreading, at least in part, by preventing the phosphorylation of FAK at Tyr-397 and the assembly of signaling complexes necessary for phosphorylation of p130Cas and other downstream effectors.

  5. β1 integrin- and JNK-dependent tumor growth upon hypofractionated radiation.

    PubMed

    Sayeed, Aejaz; Lu, Huimin; Liu, Qin; Deming, David; Duffy, Alexander; McCue, Peter; Dicker, Adam P; Davis, Roger J; Gabrilovich, Dmitry; Rodeck, Ulrich; Altieri, Dario C; Languino, Lucia R

    2016-08-16

    Radiation therapy is an effective cancer treatment modality although tumors invariably become resistant. Using the transgenic adenocarcinoma of mouse prostate (TRAMP) model system, we report that a hypofractionated radiation schedule (10 Gy/day for 5 consecutive days) effectively blocks prostate tumor growth in wild type (β1wt /TRAMP) mice as well as in mice carrying a conditional ablation of β1 integrins in the prostatic epithelium (β1pc-/- /TRAMP). Since JNK is known to be suppressed by β1 integrins and mediates radiation-induced apoptosis, we tested the effect of SP600125, an inhibitor of c-Jun amino-terminal kinase (JNK) in the TRAMP model system. Our results show that SP600125 negates the effect of radiation on tumor growth in β1pc-/- /TRAMP mice and leads to invasive adenocarcinoma. These effects are associated with increased focal adhesion kinase (FAK) expression and phosphorylation in prostate tumors in β1pc-/- /TRAMP mice. In marked contrast, radiation-induced tumor growth suppression, FAK expression and phosphorylation are not altered by SP600125 treatment of β1wt /TRAMP mice. Furthermore, we have reported earlier that abrogation of insulin-like growth factor receptor (IGF-IR) in prostate cancer cells enhances the sensitivity to radiation. Here we further explore the β1/IGF-IR crosstalk and report that β1 integrins promote cell proliferation partly by enhancing the expression of IGF-IR. In conclusion, we demonstrate that β1 integrin-mediated inhibition of JNK signaling modulates tumor growth rate upon hypofractionated radiation.

  6. β1 integrin- and JNK-dependent tumor growth upon hypofractionated radiation

    PubMed Central

    Sayeed, Aejaz; Lu, Huimin; Liu, Qin; II, David Deming; Duffy, Alexander; McCue, Peter; Dicker, Adam P.; Davis, Roger J.; Gabrilovich, Dmitry; Rodeck, Ulrich; Altieri, Dario C.; Languino, Lucia R.

    2016-01-01

    Radiation therapy is an effective cancer treatment modality although tumors invariably become resistant. Using the transgenic adenocarcinoma of mouse prostate (TRAMP) model system, we report that a hypofractionated radiation schedule (10 Gy/day for 5 consecutive days) effectively blocks prostate tumor growth in wild type (β1wt /TRAMP) mice as well as in mice carrying a conditional ablation of β1 integrins in the prostatic epithelium (β1pc-/- /TRAMP). Since JNK is known to be suppressed by β1 integrins and mediates radiation-induced apoptosis, we tested the effect of SP600125, an inhibitor of c-Jun amino-terminal kinase (JNK) in the TRAMP model system. Our results show that SP600125 negates the effect of radiation on tumor growth in β1pc-/- /TRAMP mice and leads to invasive adenocarcinoma. These effects are associated with increased focal adhesion kinase (FAK) expression and phosphorylation in prostate tumors in β1pc-/- /TRAMP mice. In marked contrast, radiation-induced tumor growth suppression, FAK expression and phosphorylation are not altered by SP600125 treatment of β1wt /TRAMP mice. Furthermore, we have reported earlier that abrogation of insulin-like growth factor receptor (IGF-IR) in prostate cancer cells enhances the sensitivity to radiation. Here we further explore the β1/IGF-IR crosstalk and report that β1 integrins promote cell proliferation partly by enhancing the expression of IGF-IR. In conclusion, we demonstrate that β1 integrin-mediated inhibition of JNK signaling modulates tumor growth rate upon hypofractionated radiation. PMID:27438371

  7. FAK and paxillin, two potential targets in pancreatic cancer

    PubMed Central

    Kanteti, Rajani; Batra, Surinder K.; Lennon, Frances E.; Salgia, Ravi

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer in large part due to late diagnosis and a lack of effective screening tests. In spite of recent progress in imaging, surgery and new therapeutic options for pancreatic cancer, the overall five-year survival still remains unacceptably low. Numerous studies have shown that focal adhesion kinase (FAK) is activated in many cancers including PDAC and promotes cancer progression and metastasis. Paxillin, an intracellular adaptor protein that plays a key role in cytoskeletal organization, connects integrins to FAK and plays a key role in assembly and disassembly of focal adhesions. Here, we have reviewed evidence in support of FAK as a potential therapeutic target and summarized related combinatorial therapies. PMID:26980710

  8. Contraction stimulates muscle glucose uptake independent of atypical PKC.

    PubMed

    Yu, Haiyan; Fujii, Nobuharu L; Toyoda, Taro; An, Ding; Farese, Robert V; Leitges, Michael; Hirshman, Michael F; Mul, Joram D; Goodyear, Laurie J

    2015-11-01

    Exercise increases skeletal muscle glucose uptake, but the underlying mechanisms are only partially understood. The atypical protein kinase C (PKC) isoforms λ and ζ (PKC-λ/ζ) have been shown to be necessary for insulin-, AICAR-, and metformin-stimulated glucose uptake in skeletal muscle, but not for treadmill exercise-stimulated muscle glucose uptake. To investigate if PKC-λ/ζ activity is required for contraction-stimulated muscle glucose uptake, we used mice with tibialis anterior muscle-specific overexpression of an empty vector (WT), wild-type PKC-ζ (PKC-ζ(WT)), or an enzymatically inactive T410A-PKC-ζ mutant (PKC-ζ(T410A)). We also studied skeletal muscle-specific PKC-λ knockout (MλKO) mice. Basal glucose uptake was similar between WT, PKC-ζ(WT), and PKC-ζ(T410A) tibialis anterior muscles. In contrast, in situ contraction-stimulated glucose uptake was increased in PKC-ζ(T410A) tibialis anterior muscles compared to WT or PKC-ζ(WT) tibialis anterior muscles. Furthermore, in vitro contraction-stimulated glucose uptake was greater in soleus muscles of MλKO mice than WT controls. Thus, loss of PKC-λ/ζ activity increases contraction-stimulated muscle glucose uptake. These data clearly demonstrate that PKC-λζ activity is not necessary for contraction-stimulated glucose uptake.

  9. Morus alba Leaf Lectin (MLL) Sensitizes MCF-7 Cells to Anoikis by Inhibiting Fibronectin Mediated Integrin-FAK Signaling through Ras and Activation of P38 MAPK

    PubMed Central

    Saranya, Jayaram; Shilpa, Ganesan; Raghu, Kozhiparambil G.; Priya, Sulochana

    2017-01-01

    Lectins are a unique class of carbohydrate binding proteins/glycoproteins, and many of them possess anticancer properties. They can induce cell cycle arrest and apoptosis, inhibit protein synthesis, telomerase activity and angiogenesis in cancer cells. In the present study, we have demonstrated the effect of Morus alba leaf lectin (MLL) on anoikis induction in MCF-7 cells. Anoikis induction in cancer cells has a significant role in preventing early stage metastasis. MLL treatment in monolayers of MCF-7 cells caused significant detachment of cells in a time and concentration dependent manner. The detached cells failed to re-adhere and grew even to culture plates coated with different matrix proteins. DNA fragmentation, membrane integrity studies, annexin V staining, caspase 9 activation and upregulation of Bax/Bad confirmed that the detached cells underwent apoptosis. Upregulation of matrix metalloproteinase 9 (MMP-9) caused a decrease in fibronectin (FN) production which facilitated the cells to detach by blocking the FN mediated downstream signaling. On treatment with MLL, we have observed downregulation of integrin expression, decreased phosphorylation of focal adhesion kinase (FAK), loss in FAK-integrin interaction and active Ras. MLL treatment downregulated the levels of phosphorylated Akt and PI3K. Also, we have studied the effect of MLL on two stress activated protein kinases p38 MAPK and JNK. p38 MAPK activation was found to be elevated, but there was no change in the level of JNK. Thus our study substantiated the possible antimetastatic effect of MLL by inducing anoikis in MCF-7 cells by activation of caspase 9 and proapoptotic Bax/Bad by blockage of FN mediated integrin/FAK signaling and partly by activation of p38 MAPK. PMID:28223935

  10. Pilocarpine-induced status epilepticus alters hippocampal PKC expression in mice.

    PubMed

    Liu, Jian Xin; Liu, Yong; Tang, Feng Ru

    2011-01-01

    We investigated the protein expression of different protein kinase C (PKC) isoforms (PKC-alpha, PKC-beta1, PKC-beta2, PKC-gamma, PKC-delta, PKC-epsilon, PKC-eta and PKC-zeta) in the hippocampus of normal control mice and progressive changes in PKC isoforms expression during and after pilocarpine induced status epilepticus (PISE). We showed the reduced expression of PKC-delta, PKC-eta and PKC-zeta in interneurons in the CA1 area and in the hilus of the dentate gyrus during or after PISE. Increased expression of PKC-alpha and PKC-beta1 was demonstrated in the stratum pyramidale of CA3 area, and PKC-epsilon was up-regulated in the stratum lucidum of the CA3 area during or after PISE. Our results suggest that hippocampal PKC isoforms may play different roles in seizure generation, and be targets for development of anti-convulsive drugs.

  11. Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK- cell migration.

    PubMed Central

    Sieg, D J; Ilić, D; Jones, K C; Damsky, C H; Hunter, T; Schlaepfer, D D

    1998-01-01

    The focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) links transmembrane integrin receptors to intracellular signaling pathways. We show that expression of the FAK-related PTK, Pyk2, is elevated in fibroblasts isolated from murine fak-/- embryos (FAK-) compared with cells from fak+/+ embryos (FAK+). Pyk2 was localized to perinuclear regions in both FAK+ and FAK- cells. Pyk2 tyrosine phosphorylation was enhanced by fibronectin (FN) stimulation of FAK- but not FAK+ cells. Increased Pyk2 tyrosine phosphorylation paralleled the time-course of Grb2 binding to Shc and activation of ERK2 in FAK- cells. Pyk2 in vitro autophosphorylation activity was not enhanced by FN plating of FAK- cells. However, Pyk2 associated with active Src-family PTKs after FN but not poly-L-lysine replating of the FAK- cells. Overexpression of both wild-type (WT) and kinase-inactive (Ala457), but not the autophosphorylation site mutant (Phe402) Pyk2, enhanced endogenous FN-stimulated c-Src in vitro kinase activity in FAK- cells, but only WT Pyk2 overexpression enhanced FN-stimulated activation of co-transfected ERK2. Interestingly, Pyk2 overexpression only weakly augmented FAK- cell migration to FN whereas transient FAK expression promoted FAK- cell migration to FN efficiently compared with FAK+ cells. Significantly, repression of endogenous Src-family PTK activity by p50(csk) overexpression inhibited FN-stimulated cell spreading, Pyk2 tyrosine phosphorylation, Grb2 binding to Shc, and ERK2 activation in the FAK- but not in FAK+ cells. These studies show that Pyk2 and Src-family PTKs combine to promote FN-stimulated signaling events to ERK2 in the absence of FAK, but that these signaling events are not sufficient to overcome the FAK- cell migration defects. PMID:9774338

  12. Simultaneous deactivation of FAK and Src improves the pathology of hypertrophic scar

    PubMed Central

    Su, Linlin; Li, Xiaodong; Wu, Xue; Hui, Bo; Han, Shichao; Gao, Jianxin; Li, Yan; Shi, Jihong; Zhu, Huayu; Zhao, Bin; Hu, Dahai

    2016-01-01

    Hypertrophic scar (HS) is a serious fibrotic skin condition with currently no satisfactory therapy due to undefined molecular mechanism. FAK and Src are two important non-receptor tyrosine kinases that have been indicated in HS pathogenesis. Here we found both FAK and Src were activated in HS vs. normal skin (NS), NS fibroblasts treated with TGF-β1 also exhibited FAK/Src activation. Co-immunoprecipitation and dual-labelled immunofluorescence revealed an enhanced FAK-Src association and co-localization in HS vs. NS. To examine effects of FAK/Src activation and their interplay on HS pathogenesis, site-directed mutagenesis followed by gene overexpression was conducted. Results showed only simultaneous overexpression of non-phosphorylatable mutant FAK Y407F and phosphomimetic mutant Src Y529E remarkably down-regulated the expression of Col I, Col III and α-SMA in cultured HS fibroblasts, alleviated extracellular matrix deposition and made collagen fibers more orderly in HS tissue vs. the effect from single transfection with wild-type or mutational FAK/Src. Glabridin, a chemical found to block FAK-Src complex formation in cancers, exhibited therapeutic effects on HS pathology probably through co-deactivation of FAK/Src which further resulted in FAK-Src de-association. This study suggests FAK-Src complex could serve as a potential molecular target, and FAK/Src double deactivation might be a novel strategy for HS therapy. PMID:27181267

  13. Coordinated expression of Pax-5 and FAK1 in metastasis.

    PubMed

    Crapoulet, Nicolas; O'Brien, Pierre; Ouellette, Rodney J; Robichaud, Gilles A

    2011-09-01

    The Pax-5 gene encodes a B-cell-specific activator protein (BSAP) that plays a key role in B lymphocyte differentiation and embryogenesis. The deregulation of this transcription factor is also linked to B cell malignancies and recently to other cancers. More specifically, the downstream effects of Pax-5 promote cell-cell interactions and mediate the activation of adhesion genes which result in an epithelial phenotypic behavior of human carcinoma cells. To gain a better understanding of Pax-5-mediated gene regulation, we studied available gene expression data in depth and identified several Pax-5 downstream targets. Among these, we found that Pax-5 activity is consistently inversely correlated with the expression of Focal Adhesion Kinase 1 (FAK1). FAK1 is known to enhance migration of cancer cells and promote metastatic dissemination to distant sites. Further analysis looking at genome wide profiling of Pax-5 DNAbinding points to both direct and indirect regulation of FAK1 expression by Pax-5 and its downstream targets. These findings suggest a key role for Pax-5 in phenotypic transitioning during metastasis through the regulation of FAK1 activity.

  14. Regionally selective activation of ERK and JNK in morphine paradoxical hyperalgesia: a step toward improving opioid pain therapy.

    PubMed

    Sanna, Maria Domenica; Ghelardini, Carla; Galeotti, Nicoletta

    2014-11-01

    In addition to analgesia, opioid agonists may increase pain sensitivity under different conditions varying dose and administration pattern. While opioid hyperalgesia induced by tolerance and withdrawal is largely studied, little is known on the mechanisms underlying ultra-low dose morphine hyperalgesia. This pronociceptive response appears to play an opposing role in morphine analgesia and might have clinical relevance. Ultra-low dose morphine elicited thermal hyperalgesia through activation of μ opioid receptors. To elucidate the intracellular mechanism of morphine nociceptive behaviour, we investigated the mitogen-activated protein kinase (MAPK), crucial pathways in pain hypersensitivity. The catalytic activity of extracellular signal-regulated kinase (ERK), p38, c-Jun-N-terminal kinase (JNK), upstream modulators and transcription factors was investigated in the mouse periaqueductal grey matter (PAG), thalamus and prefrontal cortex by western blotting. Ultra-low dose morphine intensively increased pERK1 contents in the PAG and cortex and, to a lesser extent, increased cortical ERK2 and JNK phosphorylation. No involvement of p38 was detected. Morphine exposure also increased phosphorylation of cortical c-Jun whereas levels of phosphorylated cAMP response element-binding protein (CREB) remained unmodified. Blockade of protein kinase C (PKC) prevented increases in phosphorylation showing a PKC-dependent mechanism of activation. Pharmacological inhibitors of PKC, ERK, and JNK activity prevented morphine hyperalgesia. No modulation of MAPK and transcription factors' activity was detected in the thalamus. These results support the concept that selective activation of ERK and JNK on descending pathways plays an important role in ultra-low dose morphine hyperalgesia. The modulation of these signalling processes might improve pain management with opiate analgesics.

  15. PIAS1-FAK Interaction Promotes the Survival and Progression of Non-Small Cell Lung Cancer.

    PubMed

    Constanzo, Jerfiz D; Tang, Ke-Jing; Rindhe, Smita; Melegari, Margherita; Liu, Hui; Tang, Ximing; Rodriguez-Canales, Jaime; Wistuba, Ignacio; Scaglioni, Pier Paolo

    2016-05-01

    The sequence of genomic alterations acquired by cancer cells during tumor progression and metastasis is poorly understood. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that integrates cytoskeleton remodeling, mitogenic signaling and cell survival. FAK has previously been reported to undergo nuclear localization during cell migration, cell differentiation and apoptosis. However, the mechanism behind FAK nuclear accumulation and its contribution to tumor progression has remained elusive. We report that amplification of FAK and the SUMO E3 ligase PIAS1 gene loci frequently co-occur in non-small cell lung cancer (NSCLC) cells, and that both gene products are enriched in a subset of primary NSCLCs. We demonstrate that endogenous FAK and PIAS1 proteins interact in the cytoplasm and the cell nucleus of NSCLC cells. Ectopic expression of PIAS1 promotes proteolytic cleavage of the FAK C-terminus, focal adhesion maturation and FAK nuclear localization. Silencing of PIAS1 deregulates focal adhesion turnover, increases susceptibility to apoptosis in vitro and impairs tumor xenograft formation in vivo. Nuclear FAK in turn stimulates gene transcription favoring DNA repair, cell metabolism and cytoskeleton regulation. Consistently, ablation of FAK by CRISPR/Cas9 editing, results in basal DNA damage, susceptibility to ionizing radiation and impaired oxidative phosphorylation. Our findings provide insight into a mechanism regulating FAK cytoplasm-nuclear distribution and demonstrate that FAK activity in the nucleus promotes NSCLC survival and progression by increasing cell-ECM interaction and DNA repair regulation.

  16. FAK deletion accelerates liver regeneration after two-thirds partial hepatectomy

    PubMed Central

    Shang, Na; Arteaga, Maribel; Chitsike, Lennox; Wang, Fang; Viswakarma, Navin; Breslin, Peter; Qiu, Wei

    2016-01-01

    Understanding the molecular mechanisms of liver regeneration is essential to improve the survival rate of patients after surgical resection of large amounts of liver tissue. Focal adhesion kinase (FAK) regulates different cellular functions, including cell survival, proliferation and cell migration. The role of FAK in liver regeneration remains unknown. In this study, we found that Fak is activated and induced during liver regeneration after two-thirds partial hepatectomy (PHx). We used mice with liver-specific deletion of Fak and investigated the role of Fak in liver regeneration in 2/3 PHx model (removal of 2/3 of the liver). We found that specific deletion of Fak accelerates liver regeneration. Fak deletion enhances hepatocyte proliferation prior to day 3 post-PHx but attenuates hepatocyte proliferation 3 days after PHx. Moreover, we demonstrated that the deletion of Fak in liver transiently increases EGFR activation by regulating the TNFα/HB-EGF axis during liver regeneration. Furthermore, we found more apoptosis in Fak-deficient mouse livers compared to WT mouse livers after PHx. Conclusion: Our data suggest that Fak is involved in the process of liver regeneration, and inhibition of FAK may be a promising strategy to accelerate liver regeneration in recipients after liver transplantation. PMID:27677358

  17. Focal Adhesion Targeting: The Critical Determinant of FAK Regulation and Substrate Phosphorylation

    PubMed Central

    Shen, Yu; Schaller, Michael D.

    1999-01-01

    The focal adhesion kinase (FAK) is discretely localized to focal adhesions via its C-terminal focal adhesion–targeting (FAT) sequence. FAK is regulated by integrin-dependent cell adhesion and can regulate tyrosine phosphorylation of downstream substrates, like paxillin. By the use of a mutational strategy, the regions of FAK that are required for cell adhesion–dependent regulation and for inducing tyrosine phosphorylation of paxillin were determined. The results show that the FAT sequence was the single region of FAK that was required for each function. Furthermore, the FAT sequence of FAK was replaced with a focal adhesion–targeting sequence from vinculin, and the resulting chimera exhibited cell adhesion–dependent tyrosine phosphorylation and could induce paxillin phosphorylation like wild-type FAK. These results suggest that subcellular localization is the major determinant of FAK function. PMID:10436008

  18. PKC isotype functions in T lymphocytes.

    PubMed

    Baier, G

    2007-01-01

    The main function of mature T cells is to recognize and respond to foreign antigens by a complex activation process involving differentiation of the resting cell to a proliferating lymphoblast actively secreting immunoregulatory lymphokines or displaying targeted cytotoxicity, ultimately leading to recruitment of other cell types and initiation of an effective immune response. In order to understand the physiology and pathophysiology of T lymphocytes, it is necessary to decode the biochemical processes that integrate signals from antigen, cytokine, integrin and death receptors. The principal upon which our work is based is to explore and identify gene products of distinct members of the AGC family of protein serine/threonine kinases as key players mediating cell growth regulation. Given the established important role of PKC theta as regulator of T cell fate and knowing that several other PKC isotypes are also expressed in T cells at a high level, we now summarize the physiological and non-redundant functions of PKC alpha, beta, delta, epsilon, zeta and theta isotypes in T cells. This review describes the current knowledge of the physiological and non-redundant functions of the PKC gene products in T cells.

  19. JNK pathway in osteosarcoma: pathogenesis and therapeutics.

    PubMed

    Li, Yu-Sheng; Deng, Zhen-Han; Zeng, Chao; Lei, Guang-Hua

    2016-10-01

    The c-Jun NH2-terminal kinase (JNK) is a member of the mitogen-activated protein kinase super family. JNK can phosphorylate a number of activator protein-1 components, activating several transcription factors, and thus, JNK signaling pathway is being involved in several carcinogenic mechanisms. In this study, we have reviewed the recent updates of the association of JNK pathway with osteosarcoma (OS), which is one of the most common and aggressive bone malignancies. In this review, we have explored the databases like PubMed, Google Scholar, MEDLINE, etc., and collected the most relevant papers of JNK signaling pathway involved in the pathogenesis and therapeutics of OS. Evidence showed that JNK is a master protein kinase that plays an important role in osteoblast proliferation, differentiation and apoptosis. Interesting reports showed that chemical JNK inhibitors reduce OS cell proliferation and metastasis. Many of the components of this pathway have now been identified and the application of JNK inhibitors has been proven to work in vivo in human and in animal models; however, JNK pathway has not been translated into clinical use. Therapeutic interventions of potent and selective inhibitors of JNK might provide promising therapeutic approaches for the treatment of OS, and could improve the survival rate and quality of life of OS patients.

  20. Evidence that Behavioral Phenotypes of Morphine in β-arr2−/− Mice Are Due to the Unmasking of JNK Signaling

    PubMed Central

    Mittal, Nitish; Tan, Miao; Egbuta, Onyemachi; Desai, Nina; Crawford, Cynthia; Xie, Cui-Wei; Evans, Christopher; Walwyn, Wendy

    2012-01-01

    The altered behavioral effects of morphine, but not most other mu agonists, in mice lacking β-arrestin 2, suggest that this scaffolding protein regulates the signaling cascade of this commonly used analgesic. One of the cascades that could be regulated by β-arrestin 2 is cJun-N-terminal kinase (JNK), which binds with β-arrestin 2 and modulates the analgesic effects of morphine. Using neurons lacking β-arrestin 2 (β-arr2−/−) to examine this interaction, we found that β-arr2−/− neurons show altered intracellular distribution of JNK and cJun, and that morphine, but not fentanyl, increased the nuclear localization of the phosphorylated, therefore activated, form of cJun, a JNK target in dorsal root ganglia neurons. This suggests that deleting β-arrestin 2 affects the JNK cascade. We therefore examined whether some of the behavioral phenotypes of mice lacking β-arrestin 2 could be a result of altered JNK signaling. Indeed, two different JNK inhibitors reversed the enhanced analgesic effect of morphine, a known phenotype of β-arr2−/− mice, to +/+ levels. Both the reduced locomotor effect of morphine and the psychomotor sensitization to repeated morphine administration in β-arr2−/− mice were also returned to +/+ levels by inhibiting JNK. In contrast, the behavioral effects of fentanyl were neither genotype-dependent nor affected by JNK inhibition. Furthermore, a PKC inhibitor had a similar effect as inhibiting JNK in reducing the enhanced analgesic effect of morphine in β-arr2−/− mice to +/+ levels. In summary, removing β-arrestin 2 reveals mu receptor activation of the JNK cascade in a ligand-specific manner explaining several behavioral phenotypes of β-arr2−/− mice. PMID:22491351

  1. Apelin-13 upregulates Egr-1 expression in rat vascular smooth muscle cells through the PI3K/Akt and PKC signaling pathways

    SciTech Connect

    Liu, Qi-Feng; Yu, Hong-Wei; Sun, Li-Li; You, Lu; Tao, Gui-Zhou; Qu, Bao-Ze

    2015-12-25

    Previous studies have shown that Apelin-13 upregulates early growth response factor-1 (Egr-1) via the extracellular signal-regulated protein kinase (ERK) signaling pathway. Apelin-13 induces proliferation and migration of vascular smooth muscle cells (VSMCs) as well as the upregulation of osteopontin (OPN) via the upregulation of Egr-1. This study was designed to further explore the activity of Apelin-13 in VSMCs by investigating members of the mitogen-activated protein kinase (MAPK) family, in particular Jun kinase (JNK) and p38 mitogen-activated protein kinase (P38). We also examined whether the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) and protein kinase C (PKC) signaling pathways were involved in the regulation of Egr-1 by Apelin-13. We treated rat aortic VSMCs with Apelin-13 and examined the expression of JNK, p-JNK, P38, and p-P38 to investigate whether Apelin-13-mediated increases in Egr-1 occurred through the JNK and P38 signaling pathways. We then pretreated VSMCs with the Gi protein inhibitor pertussis toxin (PTX) and the Gq inhibitor YM254890, added Apelin-13 and looked for changes in Egr-1 expression. Finally, we pretreated with the PI3K inhibitor LY294002 and the PKC inhibitor GF109203X, and treated with Apelin-13. Our results showed that JNK and P38 did not participate in Apelin-13-mediated increase in Egr-1. Instead, Apelin-13 upregulation of Egr-1 was mediated by a PTX-sensitive Gi protein. Apelin-13 did increase ERK phosphorylation through the PI3K/Akt and PKC signaling pathways, resulting in changes in Egr-1 expression. These data provide important targets for future studies to modulate vascular remodeling. - Highlights: • Apelin-13 mediates Egr-1 upregulation in vascular smooth muscle cells via ERK1/2. • The underlying mechanisms are unknown, but exclude Jnk or p38 pathway activation. • Apelin-13 binds to Gi, activating the PI3K/Akt and PKC signaling cascades. • Consequent ERK phosphorylation results in increased Egr-1

  2. IKKε inhibits PKC to promote Fascin-dependent actin bundling

    PubMed Central

    Ogura, Yosuke; Misaki, Kazuyo; Maeda, Takuya; Kimpara, Akiyo; Yonemura, Shigenobu; Hayashi, Shigeo

    2016-01-01

    Signaling molecules have pleiotropic functions and are activated by various extracellular stimuli. Protein kinase C (PKC) is activated by diverse receptors, and its dysregulation is associated with diseases including cancer. However, how the undesired activation of PKC is prevented during development remains poorly understood. We have previously shown that a protein kinase, IKKε, is active at the growing bristle tip and regulates actin bundle organization during Drosophila bristle morphogenesis. Here, we demonstrate that IKKε regulates the actin bundle localization of a dynamic actin cross-linker, Fascin. IKKε inhibits PKC, thereby protecting Fascin from inhibitory phosphorylation. Excess PKC activation is responsible for the actin bundle defects in IKKε-deficient bristles, whereas PKC is dispensable for bristle morphogenesis in wild-type bristles, indicating that PKC is repressed by IKKε in wild-type bristle cells. These results suggest that IKKε prevents excess activation of PKC during bristle morphogenesis. PMID:27578797

  3. Targeting FAK in human cancer: from finding to first clinical trials

    PubMed Central

    Golubovskaya, Vita M

    2014-01-01

    It is twenty years since Focal Adhesion Kinase (FAK) was found to be overexpressed in many types of human cancer. FAK plays an important role in adhesion, spreading, motility, invasion, metastasis, survival, angiogenesis, and recently has been found to play an important role as well in epithelial to mesenchymal transition (EMT), cancer stem cells and tumor microenvironment. FAK has kinase-dependent and kinase independent scaffolding, cytoplasmic and nuclear functions. Several years ago FAK was proposed as a potential therapeutic target; the first clinical trials were just reported, and they supported further studies of FAK as a promising therapeutic target. This review discusses the main functions of FAK in cancer, and specifically focuses on recent novel findings on the role of FAK in cancer stem cells, microenvironment, epithelial-to-mesenchymal transition, invasion, metastasis, and also highlight new approaches of targeting FAK and critically discuss challenges that lie ahead for its targeted therapeutics. The review provides a summary of translational approaches of FAK-targeted and combination therapies and outline perspectives and future directions of FAK research. PMID:24389213

  4. Identification of Novel Focal Adhesion Kinase Substrates: Role for FAK in NFκB Signaling

    PubMed Central

    Dwyer, Sheila Figel; Gao, Lingqiu; Gelman, Irwin H.

    2015-01-01

    Focal adhesion kinase (FAK) is a major signaling molecule which functions downstream of integrins or in conjunction with mitogenic signaling pathways. FAK is overexpressed and/or activated in many types of human tumors, in which it promotes cell adhesion, survival, migration and invasion. In addition to FAK's ability to regulate signaling through its scaffolding activities, FAK encodes an intrinsic kinase activity. Although some FAK substrates have been identified, a more comprehensive analysis of substrates is lacking. In this study, we use a protein microarray to screen the human proteome for FAK substrates. We confirm that several of the proteins identified are bona fide in vitro FAK substrates, including several factors which are known to regulate the NFκB pathway. Finally, we identify a role for FAK's kinase activity in both canonical and non-canonical NFκB signaling. Our screen therefore represents the first high throughput screen for FAK substrates and provides the basis for future in-depth analysis of the role of FAK's kinase activity in the processes of tumorigenesis. PMID:25798060

  5. FAK dimerization controls its kinase-dependent functions at focal adhesions

    PubMed Central

    Brami-Cherrier, Karen; Gervasi, Nicolas; Arsenieva, Diana; Walkiewicz, Katarzyna; Boutterin, Marie-Claude; Ortega, Alvaro; Leonard, Paul G; Seantier, Bastien; Gasmi, Laila; Bouceba, Tahar; Kadaré, Gress; Girault, Jean-Antoine; Arold, Stefan T

    2014-01-01

    Focal adhesion kinase (FAK) controls adhesion-dependent cell motility, survival, and proliferation. FAK has kinase-dependent and kinase-independent functions, both of which play major roles in embryogenesis and tumor invasiveness. The precise mechanisms of FAK activation are not known. Using x-ray crystallography, small angle x-ray scattering, and biochemical and functional analyses, we show that the key step for activation of FAK's kinase-dependent functions—autophosphorylation of tyrosine-397—requires site-specific dimerization of FAK. The dimers form via the association of the N-terminal FERM domain of FAK and are stabilized by an interaction between FERM and the C-terminal FAT domain. FAT binds to a basic motif on FERM that regulates co-activation and nuclear localization. FAK dimerization requires local enrichment, which occurs specifically at focal adhesions. Paxillin plays a dual role, by recruiting FAK to focal adhesions and by reinforcing the FAT:FERM interaction. Our results provide a structural and mechanistic framework to explain how FAK combines multiple stimuli into a site-specific function. The dimer interfaces we describe are promising targets for blocking FAK activation. PMID:24480479

  6. FAK and PAX-illin get involved in leukocyte diapedesis.

    PubMed

    Luscinskas, Francis W

    2012-02-01

    A major focus of researchers studying leukocyte recruitment has been to identify and understand how cell surface endothelial adhesion molecules, cell-to-cell junctional protein complexes, secreted chemokines and chemoattractants, and the vessel basement membrane structure organization coordinate the process of leukocyte recruitment. As research expands beyond the components initially identified as being necessary for leukocyte recruitment, attention has turned to the structures that regulate endothelial cell-to-matrix adhesion. In this issue of the European Journal of Immunology, Parsons et al. [Eur. J. Immunol. 2012. 42: 436-446] identify new players in the regulation of neutrophil diapedesis (transendothelial migration), namely the focal adhesion proteins, paxillin and focal adhesion kinase (FAK). While understudied, and indeed previously underappreciated, in leukocyte diapedesis, this Commentary discusses how the work by Parsons et al. implicates FAK and paxillin in the proximal (leukocyte rolling) and distal (diapedesis) steps of the multistep adhesion cascade of leukocyte recruitment.

  7. Kisspeptin-10 inhibits cell migration in vitro via a receptor-GSK3 beta-FAK feedback loop in HTR8SVneo cells.

    PubMed

    Roseweir, A K; Katz, A A; Millar, R P

    2012-05-01

    Kisspeptin inhibits cancer cell metastasis and placental trophoblast cell migration. Kisspeptin gene expression in the placenta and circulating kisspeptin levels change during normal pregnancy and they are altered in preeclampsia. We therefore assessed the effect of kisspeptin-10 on the in vitro migration of a human placental cell line derived from first trimester extravillious trophoblasts (HTR8SVneo). HTR8SVneo cells specifically bound 125I-Kisspeptin-10 but kisspeptin-10 did not induce inositol phosphate production. Cell migration was inhibited by kisspeptin-10 with a maximal inhibition at 100nM. The signaling pathways involved in inhibition of cell migration were examined. Treatment with kisspeptin-10 elicited phosphorylation of GSK3 beta at Ser9 (which inhibits activity), with a 3-fold increase at 5 min. Transient phosphorylation of ERK1/2 and p38MAPK peaked at 10min. Phosphorylation of focal adhesion kinase (FAK) at Tyr925 increased 3-fold at 10 min. Inhibition of GSK3 beta correlated with release of beta-catenin into the cytoplasm. These signaling events were differentially blocked by inhibitors of G(q/11), Src, EGFR, PI(3)K, PKC and MEK. The data suggest that kisspeptin/GPR54 EGF-receptor transactivation leads to phosphorylation of ERK1/2, causing activation of p90rsk which in turn inhibits GSK3 beta via Ser9 phosphorylation. Inactivation of GSK3 beta results in release of beta-catenin into the cytoplasm, affecting cell-cell adhesion and Tyr925 phosphorylation of FAK, which increases phosphorylation of ERK1/2 via RAS/Raf-1 creating a feedback loop to enhance the effects on migration. These findings indicate that kisspeptin-10 inhibits the migration of human placental trophoblast-derived HTR8SVneo cells by stimulating complex ERK1/2-p90rsk-GSK3 beta-FAK feedback interactions.

  8. Endothelial paxillin and focal adhesion kinase (FAK) play a critical role in neutrophil transmigration.

    PubMed

    Parsons, Sean A; Sharma, Ritu; Roccamatisi, Dawn L; Zhang, Hong; Petri, Björn; Kubes, Paul; Colarusso, Pina; Patel, Kamala D

    2012-02-01

    During an inflammatory response, endothelial cells undergo morphological changes to allow for the passage of neutrophils from the blood vessel to the site of injury or infection. Although endothelial cell junctions and the cytoskeleton undergo reorganization during inflammation, little is known about another class of cellular structures, the focal adhesions. In this study, we examined several focal adhesion proteins during an inflammatory response. We found that there was selective loss of paxillin and focal adhesion kinase (FAK) from focal adhesions in proximity to transmigrating neutrophils; in contrast the levels of the focal adhesion proteins β1-integrin and vinculin were unaffected. Paxillin was lost from focal adhesions during neutrophil transmigration both under static and flow conditions. Down-regulating endothelial paxillin with siRNA blocked neutrophil transmigration while having no effect on rolling or adhesion. As paxillin dynamics are regulated partly by FAK, the role of FAK in neutrophil transmigration was examined using two complementary methods. siRNA was used to down-regulate total FAK protein while dominant-negative, kinase-deficient FAK was expressed to block FAK signaling. Disruption of the FAK protein or FAK signaling decreased neutrophil transmigration. Collectively, these findings reveal a novel role for endothelial focal adhesion proteins paxillin and FAK in regulating neutrophil transmigration.

  9. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK) and Mitogen-Activated Protein Kinases (MAP Kinases) Signaling Pathway in Keratinocytes.

    PubMed

    Choi, Yun-Hee; Yang, Dong Joo; Kulkarni, Atul; Moh, Sang Hyun; Kim, Ki Woo

    2015-11-26

    Mycosporine-like amino acids (MAAs) are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS). In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH), Mycosporine-glycine (M-Gly), and Porphyra (P334) were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies.

  10. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK) and Mitogen-Activated Protein Kinases (MAP Kinases) Signaling Pathway in Keratinocytes

    PubMed Central

    Choi, Yun-Hee; Yang, Dong Joo; Kulkarni, Atul; Moh, Sang Hyun; Kim, Ki Woo

    2015-01-01

    Mycosporine-like amino acids (MAAs) are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS). In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH), Mycosporine-glycine (M-Gly), and Porphyra (P334) were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies. PMID:26703626

  11. FAK and HAS Inhibition Synergistically Decrease Colon Cancer Cell Viability and Affect Expression of Critical Genes

    PubMed Central

    Heffler, Melissa; Golubovskaya, Vita; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William; Dunn, Kelli B.

    2013-01-01

    Focal adhesion kinase (FAK), hyaluronan (HA), and hyaluronan synthase-3 (HAS3) have been implicated in cancer growth and progression. FAK inhibition with the small molecule inhibitor Y15 decreases colon cancer cell growth in vitro and in vivo. HAS3 inhibition in colon cancer cells decreases FAK expression and activation, and exogenous HA increases FAK activation. We sought to determine the genes affected by HAS and FAK inhibition and hypothesized that dual inhibition would synergistically inhibit viability. Y15 (FAK inhibitor) and the HAS inhibitor 4-methylumbelliferone (4-MU) decreased viability in a dose dependent manner; viability was further inhibited by treatment with Y15 and 4-MU in colon cancer cells. HAS inhibited cells treated with 2μM of Y15 showed significantly decreased viability compared to HAS scrambled cells treated with the same dose (p<0.05) demonstrating synergistic inhibition of viability with dual FAK/HAS inhibition. Microarray analysis showed more than 2-fold up- or down-regulation of 121 genes by HAS inhibition, and 696 genes by FAK inhibition (p<0.05) and revealed 29 common genes affected by both signaling. Among the genes affected by FAK or HAS3 inhibition were genes, playing role in apoptosis, cell cycle regulation, adhesion, transcription, heat-shock and WNT pathways. Thus, FAK or HAS inhibition decreases SW620 viability and affects several similar genes, which are involved in the regulation of tumor survival. Dual inhibition of FAK and HAS3 decreases viability to a greater degree than with either agent alone, and suggests that synergistic inhibition of colon cancer cell growth can result from affecting similar genetic pathways. PMID:22934709

  12. FAK and HAS inhibition synergistically decrease colon cancer cell viability and affect expression of critical genes.

    PubMed

    Heffler, Melissa; Golubovskaya, Vita M; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G; Dunn, Kelli B

    2013-05-01

    Focal adhesion kinase (FAK), hyaluronan (HA), and hyaluronan synthase-3 (HAS3) have been implicated in cancer growth and progression. FAK inhibition with the small molecule inhibitor Y15 decreases colon cancer cell growth in vitro and in vivo. HAS3 inhibition in colon cancer cells decreases FAK expression and activation, and exogenous HA increases FAK activation. We sought to determine the genes affected by HAS and FAK inhibition and hypothesized that dual inhibition would synergistically inhibit viability. Y15 (FAK inhibitor) and the HAS inhibitor 4-methylumbelliferone (4-MU) decreased viability in a dose dependent manner; viability was further inhibited by treatment with Y15 and 4-MU in colon cancer cells. HAS inhibited cells treated with 2 μM of Y15 showed significantly decreased viability compared to HAS scrambled cells treated with the same dose (p < 0.05) demonstrating synergistic inhibition of viability with dual FAK/HAS inhibition. Microarray analysis showed more than 2-fold up- or down-regulation of 121 genes by HAS inhibition, and 696 genes by FAK inhibition (p < 0.05) and revealed 29 common genes affected by both signaling. Among the genes affected by FAK or HAS3 inhibition were genes, playing role in apoptosis, cell cycle regulation, adhesion, transcription, heatshock and WNT pathways. Thus, FAK or HAS inhibition decreases SW620 viability and affects several similar genes, which are involved in the regulation of tumor survival. Dual inhibition of FAK and HAS3 decreases viability to a greater degree than with either agent alone, and suggests that synergistic inhibition of colon cancer cell growth can result from affecting similar genetic pathways.

  13. C/EBPalpha inactivation in FAK-overexpressed HL-60 cells impairs cell differentiation.

    PubMed

    Hashimoto, Ken-ichiro; Sonoda, Yoshiko; Yamakado, Masakazu; Funakoshi-Tago, Megumi; Yoshida, Naomi; Rokudai, Akiko; Aizu-Yokota, Eriko; Kasahara, Tadashi

    2006-07-01

    We previously demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as oxidative stress, ionizing radiation and TNF-receptor-induced ligand (TRAIL) compared with vector-transfected (HL-60/Vect) cells. Here, we show that HL-60/FAK cells are highly resistant to all-trans retinoic acid (ATRA)-induced differentiation, whereas original HL-60 or HL-60/Vect cells are sensitive. Treatment with ATRA at 1 muM for 5 days markedly inhibited the proliferation and increased the expression of differentiation markers (CD38, CD11b) in HL-60/Vect cells, but showed no such effect in HL-60/FAK cells. Electrophoretic mobility shift assay (EMSA) using an oligonucleotide for the c/EBP consensus binding sequence showed that c/EBPalpha was activated in ATRA-treated HL-60/Vect cells but not in HL-60/FAK cells, indicating that c/EBPalpha activation by ATRA was impaired in HL-60/FAK cells. In addition, the association of retinoblastoma protein (pRb) and c/EBPalpha after treatment with ATRA was seen in HL-60/Vect cells but not in HL-60/FAK cells. Further, hyperphosphorylation of pRb was observed in HL-60/FAK cells. Finally, the introduction of FAK siRNA into HL-60/FAK cells resulted in the recovery of sensitivity to ATRA-induced differentiation, confirming that the inhibition of HL-60/FAK differentiation resulted from both the induction of pRb hyperphosphorylation and the inhibition of association of pRb and c/EBPalpha.

  14. Regulation of Drosophila lifespan by JNK signaling

    PubMed Central

    Biteau, Benoit; Karpac, Jason; Hwangbo, DaeSung; Jasper, Heinrich

    2010-01-01

    Cellular responses to extrinsic and intrinsic insults have to be carefully regulated to properly coordinate cytoprotection, repair processes, cell proliferation and apoptosis. Stress signaling pathways, most prominently the Jun-N-terminal Kinase (JNK) pathway, are critical regulators of such cellular responses and have accordingly been implicated in the regulation of lifespan in various organisms. JNK signaling promotes cytoprotective gene expression, but also interacts with the Insulin signaling pathway to influence growth, metabolism, stress tolerance and regeneration. Here, we review recent studies in Drosophila that elucidate the tissue-specific and systemic consequences of JNK activation that ultimately impact lifespan of the organism. PMID:21111799

  15. The role of integrin-β/FAK in cyclic mechanical stimulation in MG-63 cells.

    PubMed

    Yang, Min; Xiao, Li-Wei; Liao, Er-Yuan; Wang, Qiao-Jing; Wang, Bei-Bei; Lei, Jia-Xuan

    2014-01-01

    This study aims to explore the function of Integrin-β/FAK in the mechanical signal transduction and the connection with downstream ERK signal pathways. Human osteosarcoma MG63 cell lines were used in this study. The effects of mechanical strain on the Integrin-β₁ expression, FAK and ERK signal pathway in Human osteosarcoma MG63 cells were detected using RT-PCR and Western-blotting methods. The localization of FAK in Human osteosarcoma MG63 cells were determined using immunofluorescent method. The interaction between Integrin-β₁ and FAK were detected by using co-immunoprecipitation method. The expression of Integrin-β₁ shows a notable bimodel distribution, mechanical strain stimulation can promote Integrin-β₁ expression and the phosphorylation of FAK and ERK, mechanical strain activated FAK and ERK mediated by Integrin-β₁. Integrin-β₁ may play an important role in osteoblast proliferation differentiation process, it might feel external strain stimulation through ECM composition and makes FAK phosphated through the interaction with FAK, thus causing a series of activation of signal molecules. Finally it reduces MAPK (ERK) activation and cellular responses to finish mechanical signal transduction.

  16. Fargesin exerts anti-inflammatory effects in THP-1 monocytes by suppressing PKC-dependent AP-1 and NF-ĸB signaling.

    PubMed

    Pham, Thu-Huyen; Kim, Man-Sub; Le, Minh-Quan; Song, Yong-Seok; Bak, Yesol; Ryu, Hyung-Won; Oh, Sei-Ryang; Yoon, Do-Young

    2017-01-15

    Fargesin is a lignan from Magnolia fargesii, an oriental medicine used in the treatment of nasal congestion and sinusitis. The anti-inflammatory properties of this compound have not been fully elucidated yet. This study focused on assessing the anti-inflammatory effects of fargesin on phorbal ester (PMA)-stimulated THP-1 human monocytes, and the molecular mechanisms underlying them. Cell viability was evaluated by MTS assay. Protein expression levels of inflammatory mediators were analyzed by Western blotting, ELISA, Immunofluorescence assay. mRNA levels were measured by Real-time PCR. Promoter activities were elucidated by Luciferase assay. It was found that pre-treatment with fargesin attenuated significantly the expression of two major inflammatory mediators, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Fargesin also inhibited the production of pro-inflammation cytokines (IL-1β, TNF-α) and chemokine (CCL-5). Besides, nuclear translocation of transcription factors nuclear factor-kappa B (NF-ĸB) and activator protein-1 (AP-1), which regulate multiple pro-inflammatory genes, was suppressed by fargesin in a PKC-dependent manner. Furthermore, among the mitogen-activated protein kinases (MAPKs), only c-Jun N-terminal kinase (JNK) was downregulated by fargesin in a PKC-dependent manner, and this reduction was involved in PMA-induced AP-1 and NF-ĸB nuclear translocation attenuation, demonstrated using a specific JNK inhibitor. Taken together, our results found that fargesin exhibits anti-inflammation effects on THP-1 cells via suppression of PKC pathway including downstream JNK, nuclear factors AP-1 and NF-ĸB. These results suggest that fargesin has anti-inflammatory properties with potential applications in drug development against inflammatory disorders. Copyright © 2016. Published by Elsevier GmbH.

  17. Arsenic alters vascular smooth muscle cell focal adhesion complexes leading to activation of FAK-src mediated pathways

    SciTech Connect

    Pysher, Michele D. Chen, Qin M.; Vaillancourt, Richard R.

    2008-09-01

    Chronic exposure to arsenic has been linked to tumorigenesis, cardiovascular disease, hypertension, atherosclerosis, and peripheral vascular disease; however, the molecular mechanisms underlying its pathological effects remain elusive. In this study, we investigated arsenic-induced alteration of focal adhesion protein complexes in normal, primary vascular smooth muscle cells. We demonstrate that exposure to environmentally relevant concentrations of arsenic (50 ppb As{sup 3+}) can alter focal adhesion protein co-association leading to activation of downstream pathways. Co-associated proteins were identified and quantitated via co-immunoprecipitation, SDS-PAGE, and Western blot analysis followed by scanning densitometry. Activation of MAPK pathways in total cell lysates was evaluated using phosphor-specific antibodies. In our model, arsenic treatment caused a sustained increase in FAK-src association and activation, and induced the formation of unique signaling complexes (beginning after 3-hour As{sup 3+} exposure and continuing throughout the 12-hour time course studied). The effects of these alterations were manifested as chronic stimulation of downstream PAK, ERK and JNK pathways. Past studies have demonstrated that these pathways are involved in cellular survival, growth, proliferation, and migration in VSMCs.

  18. Identification of a new JNK inhibitor targeting the JNK-JIP interaction site.

    PubMed

    Stebbins, John L; De, Surya K; Machleidt, Thomas; Becattini, Barbara; Vazquez, Jesus; Kuntzen, Christian; Chen, Li-Hsing; Cellitti, Jason F; Riel-Mehan, Megan; Emdadi, Aras; Solinas, Giovanni; Karin, Michael; Pellecchia, Maurizio

    2008-10-28

    JNK is a stress-activated protein kinase that modulates pathways implicated in a variety of disease states. JNK-interacting protein-1 (JIP1) is a scaffolding protein that enhances JNK signaling by creating a proximity effect between JNK and upstream kinases. A minimal peptide region derived from JIP1 is able to inhibit JNK activity both in vitro and in cell. We report here a series of small molecules JIP1 mimics that function as substrate competitive inhibitors of JNK. One such compound, BI-78D3, dose-dependently inhibits the phosphorylation of JNK substrates both in vitro and in cell. In animal studies, BI-78D3 not only blocks JNK dependent Con A-induced liver damage but also restores insulin sensitivity in mouse models of type 2 diabetes. Our findings open the way for the development of protein kinase inhibitors targeting substrate specific docking sites, rather than the highly conserved ATP binding sites. In view of its favorable inhibition profile, selectivity, and ability to function in the cellular milieu and in vivo, BI-78D3 represents not only a JNK inhibitor, but also a promising stepping stone toward the development of an innovative class of therapeutics.

  19. GSTpi modulates JNK activity through a direct interaction with JNK substrate, ATF2

    PubMed Central

    Thévenin, Anastasia F; Zony, Chati L; Bahnson, Brian J; Colman, Roberta F

    2011-01-01

    Human GSTpi, an important detoxification enzyme, has been shown to modulate the activity of JNKs by inhibiting apoptosis and by causing cell proliferation and tumor growth. In this work, we describe a detailed analysis of the interaction in vitro between GSTpi and JNK isoforms (both in their inactive and active, phosphorylated forms). The ability of active JNK1 or JNK2 to phosphorylate their substrate, ATF2, is inhibited by two naturally occurring GSTpi haplotypes (Ile105/Ala114, WT or haplotype A, and Val105/Val114, haplotype C). Haplotype C of GSTpi is a more potent inhibitor of JNK activity than haplotype A, yielding 75–80% and 25–45% inhibition, respectively. We show that GSTpi is not a substrate of JNK, as was earlier suggested by others. Through binding studies, we demonstrate that the interaction between GSTpi and phosphorylated, active JNKs is isoform specific, with JNK1 being the preferred isoform. In contrast, GSTpi does not interact with unphosphorylated, inactive JNKs unless a JNK substrate, ATF2, is present. We also demonstrate, for the first time, a direct interaction: between GSTpi and ATF2. GSTpi binds with similar affinity to active JNK + ATF2 and to ATF2 alone. Direct binding experiments between ATF2 and GSTpi, either alone or in the presence of glutathione analogs or phosphorylated ATF2, indicate that the xenobiotic portion of the GSTpi active site and the JNK binding domain of ATF2 are involved in this interaction. Competition between GSTpi and active JNK for the substrate ATF2 may be responsible for the inhibition of JNK catalysis by GSTpi. PMID:21384452

  20. Endothelial–cell FAK targeting sensitizes tumours to DNA–damaging therapy

    PubMed Central

    Tavora, Bernardo; Reynolds, Louise E.; Batista, Silvia; Demircioglu, Fevzi; Fernandez, Isabelle; Lechertier, Tanguy; Lees, Delphine M.; Wong, Ping–Pui; Alexopoulou, Annika; Elia, George; Clear, Andrew; Ledoux, Adeline; Hunter, Jill; Perkins, Neil; Gribben, John G.; Hodivala–Dilke, Kairbaan M.

    2015-01-01

    Chemoresistance is a serious limitation of cancer treatment1. Until recently, almost all the work done to study this limitation has been restricted to tumour cells2. Here we identify a novel molecular mechanism by which endothelial cells regulate chemosensitivity. We establish that specific targeting of focal adhesion kinase (FAK; also known as PTK2) in endothelial cells is sufficient to induce tumour-cell sensitization to DNA-damaging therapies and thus inhibit tumour growth in mice. The clinical relevance of this work is supported by our observations that low blood vessel FAK expression is associated with complete remission in human lymphoma. Our study shows that deletion of FAK in endothelial cells has no apparent effect on blood vessel function per se, but induces increased apoptosis and decreased proliferation within perivascular tumour-cell compartments of doxorubicin- and radiotherapy-treated mice. Mechanistically, we demonstrate that endothelial-cell FAK is required for DNA-damage-induced NF-κB activation in vivo and in vitro, and the production of cytokines from endothelial cells. Moreover, loss of endothelial-cell FAK reduces DNA-damage-induced cytokine production, thus enhancing chemosensitization of tumour cells to DNA-damaging therapies in vitro and in vivo. Overall, our data identify endothelial-cell FAK as a regulator of tumour chemosensitivity. Furthermore, we anticipate that this proof-of-principle data will be a starting point for the development of new possible strategies to regulate chemosensitization by targeting endothelial-cell FAK specifically. PMID:25079333

  1. Roles for focal adhesion kinase (FAK) in blastomere abscission and vesicle trafficking during cleavage in the sea urchin embryo

    PubMed Central

    Schumpert, Brenda; García, María Guadalupe; Wessel, Gary M.; Wordeman, Linda; Hille, Merrill B.

    2014-01-01

    Is focal adhesion kinase (FAK) needed for embryonic cleavage? FAK is expressed during early cleavage divisions of sea urchin embryos as determined by polyclonal antibodies to the Lytechinus variegatus protein. FAK is absent in eggs and zygotes and then cycles in abundance during the first cleavages after fertilization, and is maximal at anaphase. Such cycling is consistent with the occurrence of a destruction box in the N-terminal sequence of L. variegatus FAK and the behavior of cyclins in sea urchin eggs. To investigate whether FAK is needed during early cleavage, we interfered with its function by microinjecting eggs with FAK antisense morpholino oligonucleotides or with anti-FAK antibodies. Both treatments led to regression of the cleavage furrow. FAK knockdown with morpholino oligonucleotides or antibodies also resulted in an over-accumulation of endocytic vesicles. Thus, FAK could be restricting endocytosis or increasing exocytosis in localized areas important for abscission. FAK appears to be necessary for successful cleavage. These results are the first to document a functional role for FAK during embryonic cleavage. PMID:23313141

  2. A Calcium- and Diacylglycerol-Stimulated Protein Kinase C (PKC), Caenorhabditis elegans PKC-2, Links Thermal Signals to Learned Behavior by Acting in Sensory Neurons and Intestinal Cells.

    PubMed

    Land, Marianne; Rubin, Charles S

    2017-10-01

    Ca(2+)- and diacylglycerol (DAG)-activated protein kinase C (cPKC) promotes learning and behavioral plasticity. However, knowledge of in vivo regulation and exact functions of cPKCs that affect behavior is limited. We show that PKC-2, a Caenorhabditis elegans cPKC, is essential for a complex behavior, thermotaxis. C. elegans memorizes a nutrient-associated cultivation temperature (Tc ) and migrates along the Tc within a 17 to 25°C gradient. pkc-2 gene disruption abrogated thermotaxis; a PKC-2 transgene, driven by endogenous pkc-2 promoters, restored thermotaxis behavior in pkc-2(-/-) animals. Cell-specific manipulation of PKC-2 activity revealed that thermotaxis is controlled by cooperative PKC-2-mediated signaling in both AFD sensory neurons and intestinal cells. Cold-directed migration (cryophilic drive) precedes Tc tracking during thermotaxis. Analysis of temperature-directed behaviors elicited by persistent PKC-2 activation or inhibition in AFD (or intestine) disclosed that PKC-2 regulates initiation and duration of cryophilic drive. In AFD neurons, PKC-2 is a Ca(2+) sensor and signal amplifier that operates downstream from cyclic GMP-gated cation channels and distal guanylate cyclases. UNC-18, which regulates neurotransmitter and neuropeptide release from synaptic vesicles, is a critical PKC-2 effector in AFD. UNC-18 variants, created by mutating Ser(311) or Ser(322), disrupt thermotaxis and suppress PKC-2-dependent cryophilic migration. Copyright © 2017 American Society for Microbiology.

  3. FAK-inhibition opens the door to checkpoint immunotherapy in Pancreatic Cancer.

    PubMed

    Symeonides, Stefan N; Anderton, Stephen M; Serrels, Alan

    2017-01-01

    Immunotherapy has had remarkable success in the treatment of some cancer types. However, pancreatic cancer has remained largely refractory to immunotherapy, including immune checkpoint inhibitors. Recently, Jiang and colleagues identified a key role for FAK in regulating the composition of the fibrotic and immuno-suppressive pancreatic tumour niche, and showed that FAK inhibitors can be used in combination with immune checkpoint blockade and gemcitabine chemotherapy to significantly delay pancreatic tumour progression. This study further supports the use of FAK inhibitors in combination with immunotherapy.

  4. CCK causes PKD1 activation in pancreatic acini by signaling through PKC-δ and PKC-independent pathways

    PubMed Central

    Berna, Marc J.; Hoffmann, K. Martin; Tapia, Jose A.; Thill, Michelle; Pace, Andrea; Mantey, Samuel A.; Jensen, Robert T.

    2007-01-01

    Summary Protein kinase D1 (PKD1) is involved in cellular processes including protein secretion, proliferation and apoptosis. Studies suggest PKD1 is activated by various stimulants including gastrointestinal (GI) hormones/neurotransmitters and growth factors in a protein kinase C (PKC)-dependent pathway. However, little is known about the mechanisms of PKD1 activation in physiologic GI tissues. We explored PKD1 activation by GI hormones/neurotransmitters and growth factors and the mediators involved in rat pancreatic acini. Only hormones/neurotransmitters activating phospholipase C caused PKD1 phosphorylation (S916, S744/748). CCK activated PKD1 and caused a time- and dose-dependant increase in serine phosphorylation by activation of high- and low-affinity CCKA receptor states. Inhibition of CCK-stimulated increases in phospholipase C, PKC activity or intracellular calcium decreased PKD1 S916 phosphorylation by 56%, 62% and 96%, respectively. PKC inhibitors GF109203X/Go6976/Go6983/PKC-ζ pseudosubstrate caused a 62/43/49/0% inhibition of PKD1 S916 phosphorylation and an 87/13/82/0% inhibition of PKD1 S744/748 phosphorylation. Expression of dominant negative PKC-δ, but not PKC-ε, or treatment with PKC-δ translocation inhibitor caused marked inhibition of PKD phosphorylation. Inhibition of Src/PI3K/MAPK/tyrosine phosphorylation had no effect. In unstimulated cells, PKD1 was mostly located in the cytoplasm. CCK stimulated translocation of total and phosphorylated PKD1 to the membrane. These results demonstrate that CCKA receptor activation leads to PKD activation by signaling through PKC-dependent and PKC-independent pathways. PMID:17306383

  5. Antioxidant Therapy Alters Brain MAPK-JNK and BDNF Signaling Path-ways in Experimental Diabetes Mellitus.

    PubMed

    Réus, Gislaine Zilli; Bernardini Dos Santos, Maria Augusta; Abelaira, Helena Mendes; Maciel, Amanda Luis; Arent, Camila Orlandi; Matias, Beatriz Iladi; Bruchchen, Lívia; Ignácio, Zuleide Maria; Michels, Monique; Dal-Pizzol, Felipe; Carvalho, André Ferrer; Zugno, Alexandra Ioppi; Quevedo, João

    2016-01-01

    This study was designed to investigate the effects of treatment with the antioxidants N-acetylcysteine (NAC) and deferoxamine (DFX) in intracellular pathways in the brain of diabetic rats. To conduct this study we induced diabetes in Wistar rats with a single injection of alloxan, and afterwards rats were treated with NAC or DFX for 14 days. Following treatment completion, the immunocontent of c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase-38 (MAPK38), brain-derived neurotrophic factor (BDNF), and protein kinases A and C (PKA and PKC) were determined in the prefrontal cortex (PFC), hippocampus, amygdala and nucleus accumbens (NAc). DFX treatment increased JNK content in the PFC and NAc of diabetic rats. In the amygdala, JNK was increased in diabetics treated with saline or NAC. MAPK38 was decreased in the PFC of control and in diabetic rats treated with NAC or DFX; and in the NAc in all groups. PKA was decreased in the PFC with DFX treatment. In the amygdala, PKA content was increased in diabetic rats treated with either saline or NAC, compared to controls; and it was decreased in either NAC or DFX-treated groups, compared to saline-treated diabetic animals. In the NAc, PKA was increased in NAC-treated diabetic rats. PKC was increased in the amygdala of NAC-treated diabetic rats. In the PFC, the BDNF levels were decreased following treatment with DFX in diabetic rats. In the hippocampus of diabetic rats the BDNF levels were decreased. However, treatment with DFX reversed this effect. In the amygdala the BDNF increased with DFX in non-diabetic rats. In the NAc DFX treatment increased the BDNF levels in diabetic rats. In conclusion, both diabetes and treatment with antioxidants were able to alter intracellular pathways involved in the regulation of cell survival in a brain area and treatment-dependent fashion.

  6. Excretory-secretory products from Paragonimus westermani increase nitric oxide production in microglia in PKC-dependent and -independent manners.

    PubMed

    Jin, Youngnam; Choi, In Young; Kim, Chunsook; Hong, Suyoung; Kim, Won-Ki

    2009-10-01

    Excretory-secretory products (ESP) from helminthic parasites may play pivotal roles in the immune regulation in hosts. Previously, we reported that ESP produced from Paragonimus westermani induced morphological activation of microglial cells and markedly stimulated nitric oxide (NO) production via activation of mitogen-activated protein kinases (MAPKs). In the present study, we investigated the role of protein kinase C and protein kinase A in MAPKs-dependent NO production by ESP. We found that treatment with protein kinase C inhibitor Go6976 strongly inhibited the phosphorylation of p38 and JNK, but not ERK, of MAPKs and decreased the production of NO in ESP-stimulated microglial cells. Inhibition of ERK, p38 or PKC decreased the ESP-induced activation of NF-kappaB, an important transcription factor for iNOS expression. Furthermore, ESP increased the level of p-CREB in microglial cells. However, adenylyl cyclase activator (forskolin), adenylyl cyclase inhibitor (SQ22536), cAMP analogue (db-cAMP) or protein kinase A inhibitor (H89) was not able to change iNOS expression and NO production in ESP-treated microglial cells. It implies that the cAMP-PKA-CREB pathway is not implicated in the ESP-evoked NO production in microglial cells. Thus, our results indicate that ESP stimulates microglial expression of iNOS via both PKC-dependent and -independent MAPKs phosphorylation and NF-kappaB activation.

  7. The mTOR-FAK mechanotransduction signaling axis for focal adhesion maturation and cell proliferation

    PubMed Central

    Lee, Fan-Yen; Zhen, Yen-Yi; Yuen, Chun-Man; Fan, Raymond; Chen, Yen-Ta; Sheu, Jiunn-Jye; Chen, Yi-Ling; Wang, Ching-Jen; Sun, Cheuk-Kwan; Yip, Hon-Kan

    2017-01-01

    Background: Mechanotransduction (MTD) is an important physiopathological signalling pathway associated with cardiovascular disease such as hypertension. Phosphorylation of focal adhesion kinase (FAK) is a MTD-sensing protein. This study tested the hypothesis that mTOR-FAK MTD signaling axis was crucial for focal adhesion (FA) maturation and cell proliferation. Methods: Shock-wave was adopted as a tool for MTD and mTOR-FAK signaling. Results: After demonstrating a failure in FAK phosphorylation after microfilament depolymerization, we attempted to identify the upstream regulator out of three kinases known to be activated in pressure-stimulated MTD [i.e., GSK-3β, Akt, and mTORC1 (mammalian target of rapamycin complex 1)]. Of the three specific inhibitors, only rapamycin, an inhibitor of mTORC1, was found to inhibit FAK phosphorylation, suggesting that mTORC1 is the upstream regulator in shock-wave-elicited FAK phosphorylation. Moreover, mTOR and its readout protein S6K were found to be activated by shock-wave stimulation. On the other hand, microscopic examination revealed not only MTD-induced increase in the number of actin stress fibers, but also alternative subcellular localization of mTORC1 as vesicle-like inclusions on microfilaments. Besides, rapamycin was found to destruct the granular pattern of mTORC1, while dissociation between F-actin and mTORC1 was noted after cytochalasin D administration. Since mTORC1 and FAK are essential for cell proliferation, we performed proliferation assay for mesenchymal stem cell (MSC) with and without shock-wave administration/rapamycin treatment/FAK depletion. The results demonstrated significant enhancement of cell proliferation after shock-wave stimulation but remarkable suppression after rapamycin and siFAK treatment. Conclusion: Our findings suggest not only a co-ordinated regulation of FAK phosphorylation by mTORC1 and microfilaments, but also the participation of mTORC1-FAK signalling in MSC proliferation. PMID:28469768

  8. Merlin deficiency predicts for FAK inhibitor sensitivity: A synthetic lethal relationship

    PubMed Central

    Shapiro, Irina M.; Kolev, Vihren N.; Vidal, Christian M.; Kadariya, Yuwaraj; Ring, Jennifer E.; Wright, Quentin; Weaver, David T.; Menges, Craig; Padval, Mahesh; McClatchey, Andrea I.; Xu, Qunli; Testa, Joseph R.; Pachter, Jonathan A.

    2014-01-01

    The goal of targeted therapy is to match a selective drug with a genetic lesion that predicts for drug sensitivity. In a diverse panel of cancer cell lines, we found that the cells most sensitive to focal adhesion kinase (FAK) inhibition are deficient in the expression of the NF2 tumor suppressor gene product, Merlin. Merlin expression is often lost in malignant pleural mesothelioma (MPM), an asbestos-induced aggressive cancer with limited treatment options. Our data demonstrate that low Merlin expression predicts for increased sensitivity of MPM cells to a FAK inhibitor, VS-4718, in vitro and in tumor xenograft models. Disruption of MPM cell-cell or cell-extracellular matrix (ECM) contacts with blocking antibodies suggests that weak cell-cell adhesions in Merlin-negative MPM cells lead to their greater dependence on cell-ECM-induced FAK signaling. This provides one explanation of why Merlin-negative cells are vulnerable to FAK inhibitor treatment. Furthermore, we validated ALDH as a marker of cancer stem cells (CSCs) in MPM, a cell population thought to mediate tumor relapse after chemotherapy. Whereas pemetrexed and cisplatin, standard-of-care agents for MPM, enrich for CSCs, FAK inhibitor treatment preferentially eliminates these cells. These preclinical results provide the rationale for a clinical trial in MPM patients using a FAK inhibitor as a single agent after first-line chemotherapy. With this design, the FAK inhibitor could potentially induce a more durable clinical response due to reduction of CSCs along with a strong antitumor effect. Furthermore, our data suggest that patients with Merlin-negative tumors may especially benefit from FAK inhibitor treatment. PMID:24848258

  9. Irbesartan treatment up-regulates hepatic expression of PPARα and its target genes in obese Koletsky (fak/fak) rats: a link to amelioration of hypertriglyceridaemia

    PubMed Central

    Rong, X; Li, Y; Ebihara, K; Zhao, M; Kusakabe, T; Tomita, T; Murray, M; Nakao, K

    2010-01-01

    BACKGROUND AND PURPOSE Hypertriglyceridaemia is associated with an increased risk of cardiovascular disease. Irbesartan, a well-established angiotensin II type 1 receptor (AT1) blocker, improves hypertriglyceridaemia in rodents and humans but the underlying mechanism of action is unclear. EXPERIMENTAL APPROACH Male obese Koletsky (fak/fak) rats, which exhibit spontaneous hypertension and metabolic abnormalities, received irbesartan (40 mg·kg−1·day−1) or vehicle by oral gavage over 7 weeks. Adipocyte-derived hormones in plasma were measured by ELISA. Gene expression in liver and other tissues was assessed by real-time PCR and Western immunoblotting. KEY RESULTS In Koletsky (fak/fak) rats irbesartan lowered plasma concentrations of triglycerides and non-esterified fatty acids, and decreased plasma insulin concentrations and the homeostasis model assessment of insulin resistance index. However, this treatment did not affect food intake, body weight, epididymal white adipose tissue weight, adipocyte size and plasma leptin concentrations, although plasma adiponectin was decreased. Irbesartan up-regulated hepatic expression of mRNAs corresponding to peroxisome proliferator-activated receptor (PPAR)α and its target genes (carnitine palmitoyltransferase-1a, acyl-CoA oxidase and fatty acid translocase/CD36) that mediate hepatic fatty acid uptake and oxidation; the increase in hepatic PPARα expression was confirmed at the protein level. In contrast, irbesartan did not affect expression of adipose PPARγ and its downstream genes or hepatic genes that mediate fatty acid synthesis. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that irbesartan treatment up-regulates PPARα and several target genes in liver of obese spontaneously hypertensive Koletsky (fak/fak) rats and offers a novel insight into the lipid-lowering mechanism of irbesartan. PMID:20649581

  10. Regulation of FAK Activity by Tetraspan Proteins: Potential Clinical Implications in Cancer

    PubMed Central

    Gordon, Lynn; Wadehra, Madhuri

    2017-01-01

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that regulates multiple cell signaling pathways in both physiological and pathological conditions. Overexpression and activation of FAK is associated with many advanced stage cancers through promoting cancer cell tumorigenicity and progression as well as by regulating the tumor microenvironment. FAK has multiple binding partners through which FAK exerts its functions including RhoGEF, Src family, talin, cortactin, and paxilin. Over the last few years, it has been proposed that a novel group of four transmembrane proteins can interact with FAK and regulate its activity. These include select tetraspanins such as CD151 and CD9 as well as the GAS3 family members epithelial membrane protein-2 (EMP2) and peripheral myelin protein-22 (PMP22). In this review, we discuss the current knowledge of the interaction between FAK and tetraspan proteins in physiological and pathological conditions, with an emphasis on the potential of tetraspan family members as therapeutic targets in cancer. PMID:27279237

  11. Nanometer Scale Titanium Surface Texturing Are Detected by Signaling Pathways Involving Transient FAK and Src Activations

    PubMed Central

    Zambuzzi, Willian F.; Bonfante, Estevam A.; Jimbo, Ryo; Hayashi, Mariko; Andersson, Martin; Alves, Gutemberg; Takamori, Esther R.; Beltrão, Paulo J.; Coelho, Paulo G.; Granjeiro, José M.

    2014-01-01

    Background It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations. Methodology Four engineered titanium surfaces were used for the study: machined (M), dual acid-etched (DAA), resorbable media microblasted and acid-etched (MBAA), and acid-etch microblasted (AAMB). Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites. Principal Findings The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption. Conclusions It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces. PMID:24999733

  12. Nanometer scale titanium surface texturing are detected by signaling pathways involving transient FAK and Src activations.

    PubMed

    Zambuzzi, Willian F; Bonfante, Estevam A; Jimbo, Ryo; Hayashi, Mariko; Andersson, Martin; Alves, Gutemberg; Takamori, Esther R; Beltrão, Paulo J; Coelho, Paulo G; Granjeiro, José M

    2014-01-01

    It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations. Four engineered titanium surfaces were used for the study: machined (M), dual acid-etched (DAA), resorbable media microblasted and acid-etched (MBAA), and acid-etch microblasted (AAMB). Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites. The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption. It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces.

  13. Soft matrices downregulate FAK activity to promote growth of tumor-repopulating cells.

    PubMed

    Tan, Youhua; Wood, Adam Richard; Jia, Qiong; Zhou, Wenwen; Luo, Junyu; Yang, Fang; Chen, Junwei; Chen, Junjian; Sun, Jian; Seong, Jihye; Tajik, Arash; Singh, Rishi; Wang, Ning

    2017-01-29

    Tumor-repopulating cells (TRCs) are a tumorigenic sub-population of cancer cells that drives tumorigenesis. We have recently reported that soft fibrin matrices maintain TRC growth by promoting histone 3 lysine 9 (H3K9) demethylation and Sox2 expression and that Cdc42 expression influences H3K9 methylation. However, the underlying mechanisms of how soft matrices induce H3K9 demethylation remain elusive. Here we find that TRCs exhibit lower focal adhesion kinase (FAK) and H3K9 methylation levels in soft fibrin matrices than control melanoma cells on 2D rigid substrates. Silencing FAK in control melanoma cells decreases H3K9 methylation, whereas overexpressing FAK in tumor-repopulating cells enhances H3K9 methylation. Overexpressing Cdc42 or RhoA in the presence of FAK knockdown restores H3K9 methylation levels. Importantly, silencing FAK, Cdc42, or RhoA promotes Sox2 expression and proliferation of control melanoma cells in stiff fibrin matrices, whereas overexpressing each gene suppresses Sox2 expression and reduces growth of TRCs in soft but not in stiff fibrin matrices. Our findings suggest that low FAK mediated by soft fibrin matrices downregulates H3K9 methylation through reduction of Cdc42 and RhoA and promotes TRC growth.

  14. Modulation of cell spreading and migration by pp125FAK phosphorylation.

    PubMed Central

    Sankar, S.; Mahooti-Brooks, N.; Hu, G.; Madri, J. A.

    1995-01-01

    We provide evidence for both matrix-dependent and pp60v-src tyrosine kinase-dependent modulation of cell migration via tyrosine phosphorylation of pp125FAK, a focal adhesion kinase, thought to be involved in integrin-mediated signaling. Enhanced pp125FAK tyrosine phosphorylation and cell spreading was associated with decreased migration. Cells plated on type I collagen were less spread and exhibited lower levels of pp125FAK tyrosine phosphorylation and faster migration rates compared with cells on fibronectin that were well spread, which exhibited enhanced levels of pp125FAK tyrosine phosphorylation and slower migration rates. Inside-out signaling via expression of pp60v-src or its kinase-negative mutant caused a decrease in cell migration by changing the extent of pp125FAK tyrosine phosphorylation to above or below the levels obtained with control cells plated on fibronectin. Hence, pp125FAK tyrosine phosphorylation appears to play a role in the signaling cascade pathway involved in regulation of extracellular matrix-modulated, integrin-mediated cell migration. Images Figure 1 Figure 2 Figure 3 PMID:7677174

  15. Breast Cancer Malignant Processes are Regulated by Pax-5 Through the Disruption of FAK Signaling Pathways.

    PubMed

    Benzina, Sami; Harquail, Jason; Guerrette, Roxann; O'Brien, Pierre; Jean, Stéphanie; Crapoulet, Nicolas; Robichaud, Gilles A

    2016-01-01

    The study of genetic factors regulating breast cancer malignancy is a top priority to mitigate the morbidity and mortality associated with this disease. One of these factors, Pax-5, modulates cancer aggressiveness through the regulation of various components of the epithelial to mesenchymal transitioning (EMT) process. We have previously reported that Pax-5 expression profiles in cancer tissues inversely correlate with those of the Focal Adhesion Kinase (FAK), a potent activator of breast cancer malignancy. In this study, we set out to elucidate the molecular and regulatory relationship between Pax-5 and FAK in breast cancer processes. Interestingly, we found that Pax-5 mediated suppression of breast cancer cell migration is dependent of FAK activity. Our mechanistic examination revealed that Pax-5 inhibits FAK expression and activation. We also demonstrate that Pax-5 is a potent modulator of FAK repressors (p53 and miR-135b) and activator (NFκB) which results in the overall suppression of FAK-mediated signaling cascades. Altogether, our findings bring more insight to the molecular triggers regulating phenotypic transitioning process and signaling cascades leading to breast cancer progression.

  16. Breast Cancer Malignant Processes are Regulated by Pax-5 Through the Disruption of FAK Signaling Pathways

    PubMed Central

    Benzina, Sami; Harquail, Jason; Guerrette, Roxann; O'Brien, Pierre; Jean, Stéphanie; Crapoulet, Nicolas; Robichaud, Gilles A.

    2016-01-01

    The study of genetic factors regulating breast cancer malignancy is a top priority to mitigate the morbidity and mortality associated with this disease. One of these factors, Pax-5, modulates cancer aggressiveness through the regulation of various components of the epithelial to mesenchymal transitioning (EMT) process. We have previously reported that Pax-5 expression profiles in cancer tissues inversely correlate with those of the Focal Adhesion Kinase (FAK), a potent activator of breast cancer malignancy. In this study, we set out to elucidate the molecular and regulatory relationship between Pax-5 and FAK in breast cancer processes. Interestingly, we found that Pax-5 mediated suppression of breast cancer cell migration is dependent of FAK activity. Our mechanistic examination revealed that Pax-5 inhibits FAK expression and activation. We also demonstrate that Pax-5 is a potent modulator of FAK repressors (p53 and miR-135b) and activator (NFκB) which results in the overall suppression of FAK-mediated signaling cascades. Altogether, our findings bring more insight to the molecular triggers regulating phenotypic transitioning process and signaling cascades leading to breast cancer progression. PMID:28070224

  17. Arrestin-Dependent Activation of JNK Family Kinases

    PubMed Central

    Zhan, Xuanzhi; Kook, Seunghyi; Gurevich, Eugenia V.

    2015-01-01

    The activity of all mitogen-activated protein kinases (MAPKs) is stimulated via phosphorylation by upstream MAPK kinases (MAPKK), which are in their turn activated via phosphorylation by MAPKK kinases (MAPKKKs). The cells ensure the specificity of signaling in these cascades by employing a variety of scaffolding proteins that bind matching MAPKKKs, MAPKKs, and MAPKs. All four vertebrate arrestin subtypes bind JNK3, but only arrestin-3 serves as a scaffold, promoting JNK3 activation in intact cells. Arrestin-3-mediated JNK3 activation does not depend on arrestin-3 interaction with G protein-coupled receptors (GPCRs), as demonstrated by the ability of some arrestin mutants that cannot bind receptors to activate JNK3, whereas certain mutants with enhanced GPCR binding fail to promote JNK3 activation. Recent findings suggest that arrestin-3 directly binds both MAPKKs necessary for JNK activation and facilitates JNK3 phosphorylation at both Thr (by MKK4) and Tyr (by MKK7). JNK3 is expressed in a limited set of cell types, whereas JNK1 and JNK2 isoforms are as ubiquitous as arrestin-3. Recent study showed that arrestin-3 facilitates the activation of JNK1 and JNK2, scaffolding MKK4/7-JNK1/2/3 signaling complexes. In all cases, arrestin-3 acts by bringing the kinases together: JNK phosphorylation shows biphasic dependence on arrestin-3, being enhanced at lower and suppressed at supraoptimal concentrations. Thus, arrestin-3 regulates the activity of multiple JNK isoforms, suggesting that it might play a role in survival and apoptosis of all cell types. PMID:24292834

  18. Prognostic Value of Focal Adhesion Kinase (FAK) in Human Solid Carcinomas: A Meta-Analysis

    PubMed Central

    Ma, Li-Li; Tseng, Yu-Jen; Zhao, Nai-Qing; Chen, Shi-Yao

    2016-01-01

    Background Recently, the number of reports on focal adhesion kinase (FAK) as a vital therapeutic target in solid carcinomas has increased; however, the prognostic role of FAK status remains poorly understood. This study aims to evaluate the prognostic effect of FAK by means of a meta-analysis. Methods We performed a systematic literature search in order to examine the correlation between expression of FAK and overall survival(OS). The hazard ratio (HR) of OS was used to measure survival. A random-effects model was used to pool study statistics. Sensitivity and publication bias analyses were also conducted. Results Thirty eligible studies involving 4702 patients were included. The median expression rate of FAK was 54%. Meta-analysis of the HRs demonstrated that high FAK expression was associated with worse OS (average HR = 2.073, 95%confidence interval[CI]:1.712–2.510, p = 0.000). Regarding cancer type, FAK was associated with worse OS in gastric cancer (HR = 2.646,95% CI:1.743–4.017, p = 0.000), hepatocellular carcinoma (HR = 1.788,95% CI:1.228–2.602, p = 0.002), ovarian cancer (HR = 1.815, 95% CI: 1.193–2.762, p = 0.005), endometrial cancer (HR = 4.149, 95% CI:2.832–6.079, p = 0.000), gliomas (HR = 2.650, 95% CI: 1.205–5.829, p = 0.015), and squamous cell carcinoma (HR = 1,696, 95% CI: 1.030–2.793, p = 0.038). No association was found between HR and disease staging according to our meta-regression analysis. Conclusions Our study shows that high expression of FAK is associated with a worse OS in patients with carcinomas, but the association between FAK and prognosis varies according to cancer type. The value of FAK status in clinical prognosis in cancer needs further research. PMID:27637100

  19. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    SciTech Connect

    Hao, Hui-fang; Takaoka, Munenori; Bao, Xiao-hong; Wang, Zhi-gang; Tomono, Yasuko; Sakurama, Kazufumi; Ohara, Toshiaki; Fukazawa, Takuya; Yamatsuji, Tomoki; Fujiwara, Toshiyoshi; Naomoto, Yoshio

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. Black-Right-Pointing-Pointer TAE226 suppressed proliferation and migration, with a modest effect on adhesion. Black-Right-Pointing-Pointer Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. Black-Right-Pointing-Pointer TAE226 treatment suppressed the progression of peritoneal dissemination. Black-Right-Pointing-Pointer Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all of which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice. Taken

  20. pFAK-Y397 overexpression as both a prognostic and a predictive biomarker for patients with metastatic osteosarcoma

    PubMed Central

    Thanapprapasr, Kamolrat; Nartthanarung, Adisak; Thanapprapasr, Duangmani

    2017-01-01

    Focal adhesion kinase (FAK) is important for tumor cell survival and metastasis in various cancers. However, its expression and prognostic value in patients with metastatic osteosarcoma remain unknown. We investigated the expression of FAK and its phosphorylated form (pFAK-Y397) in osteosarcoma tissues from 53 patients by immunohistochemistry and evaluated their correlations with clinicopathologic characteristics and outcomes. The prognostic values were assessed using Kaplan-Meier survival and Cox regression analyses. Total FAK and pFAK-Y397 were overexpressed in 48 (90.6%) and 33 (62.3%) cases, respectively. pFAK-Y397 overexpression was correlated with poor histologic response after neoadjuvant chemotherapy in patients with osteosarcoma regardless of the presence of metastasis or not. Kaplan-Meier curve showed that patients with metastatic osteosarcoma with pFAK-Y397 overexpression had significantly worse overall survival (OS) than those with non-overexpression (P = 0.044). Multivariate Cox regression analysis confirmed pFAK-Y397 overexpression as an independent prognostic predictor for OS and post metastases OS (PMOS) (P = 0.017, P = 0.006, respectively). Age at diagnosis was also an independent indicator for PMOS (P = 0.003). However, total FAK expression was not correlated with any clinicopathologic characteristics or OS in patients with metastatic osteosarcoma. In conclusion, our findings identified FAK as a common aberrant protein overexpression in various subtypes of osteosarcoma. pFAK-Y397 overexpression can be used as a prognostic biomarker predicting poor OS for patients with metastatic osteosarcoma, and the expression of pFAK-Y397 differentiated good and poor responders to neoadjuvant chemotherapy. PMID:28846700

  1. Myc inhibits JNK-mediated cell death in vivo.

    PubMed

    Huang, Jiuhong; Feng, Yu; Chen, Xinhong; Li, Wenzhe; Xue, Lei

    2017-04-01

    The proto-oncogene Myc is well known for its roles in promoting cell growth, proliferation and apoptosis. However, in this study, we found from a genetic screen that Myc inhibits, rather than promotes, cell death triggered by c-Jun N-terminal kinase (JNK) signaling in Drosophila. Firstly, expression of Drosophila Myc (dMyc) suppresses, whereas loss of dMyc enhances, ectopically activated JNK signaling-induced cell death. Secondly, dMyc impedes physiologically activated JNK pathway-mediated cell death. Thirdly, loss of dMyc triggers JNK pathway activation and JNK-dependent cell death. Finally, the mammalian cMyc gene, when expressed in Drosophila, impedes activated JNK signaling-induced cell death. Thus, besides its well-studied apoptosis promoting function, Myc also antagonizes JNK-mediated cell death in Drosophila, and this function is likely conserved from fly to human.

  2. Stretch-induced cell proliferation is mediated by FAK-MAPK pathway.

    PubMed

    Wang, Ju Guang; Miyazu, Motoi; Xiang, Peng; Li, Shu Nong; Sokabe, Masahiro; Naruse, Keiji

    2005-04-29

    Previously we reported that a uni-axial cyclic stretch treatment of rat 3Y1 fibroblasts induced focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation (Wang et al., 2001) [Wang, J.G., Miyazu, M., Matsushita, E., Sokabe, M., Naruse, K., 2001. Uni-axial cyclic stretch induces focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation. Biochem. Biophys. Res. Comm. 288, 356-361]. In the present study, we investigated whether stretch-induced MAPK activation leads to proliferation of fibroblasts. 3Y1 fibroblasts were subjected to a uni-axial cyclic stretch treatment (1 Hz, 120% in length) and the bromodeoxyuridine (BrdU) incorporation was measured to access cell proliferation. BrdU incorporation increased in a time-dependent manner and became significant within 6 hours. To investigate the involvement of FAK, we transiently expressed FAK mutants that lacked tyrosine phosphorylation site (s) (F397Y, F925Y, F397/925Y). Transient expression of wild-type FAK or mock vector did not inhibit the stretch-induced BrdU incorporation, however, the FAK mutants significantly blocked BrdU incorporation. Treatment of the cells with MAPK inhibitors, PD98059 or SB203580, blocked extracellular signal-regulated kinase (ERK) phosphorylation and p38 MAPK phosphorylation, respectively, and also blocked stretch-induced BrdU incorporation. These results suggest that the stretch-induced FAK activation followed by MAPK activation plays an important role in the stretch-induced proliferation of 3Y1 fibroblasts.

  3. Combined PKC and MEK inhibition for treating metastatic uveal melanoma.

    PubMed

    Sagoo, M S; Harbour, J W; Stebbing, J; Bowcock, A M

    2014-09-25

    Uveal melanoma (UM) is the most common primary intraocular malignancy and the second most common form of melanoma. UM has a strong tendency for metastatic disease, and no effective treatments have yet been identified. Activating oncogenic mutations are commonly found in GNAQ and GNA11 in UM, and inhibiting key downstream effectors of the GNAQ/11 signaling pathway represents a rational therapeutic approach for treating metastatic UM. Chen et al., doi:10.1038/onc.2013.418, now confirm activation of the MAPK and PKC pathways as a result of GNAQ and GNA11 activating mutations in melanocytes, and they demonstrate that MAPK activation occurs downstream of PKC activation. PKC inhibitors disrupt MAPK signaling and block proliferation of GNAQ/11 mutant UM cell lines and slow the in vivo growth of xenografted UM tumors without inducing their shrinkage. However, a combination of PKC and MEK inhibition led to sustained MAPK pathway inhibition and tumor regression in vivo. Hence, the authors concluded that MEK and PKC inhibition is synergistic, with superior efficacy to treatment of GNAQ/GNA11 mutant UMs with either drug alone.

  4. Therapeutic effects of PKC activators in Alzheimer's disease transgenic mice

    PubMed Central

    Etcheberrigaray, René; Tan, Mathew; Dewachter, Ilse; Kuipéri, Cuno; Van der Auwera, Ingrid; Wera, Stefaan; Qiao, Lixin; Bank, Barry; Nelson, Thomas J.; Kozikowski, Alan P.; Van Leuven, Fred; Alkon, Daniel L.

    2004-01-01

    Alzheimer's disease (AD) characteristically presents with early memory loss. Regulation of K+ channels, calcium homeostasis, and protein kinase C (PKC) activation are molecular events that have been implicated during associative memory which are also altered or defective in AD. PKC is also involved in the processing of the amyloid precursor protein (APP), a central element in AD pathophysiology. In previous studies, we demonstrated that benzolactam (BL), a novel PKC activator, reversed K+ channels defects and enhanced secretion of APPα in AD cells. In this study we present data showing that another PKC activator, bryostatin 1, at subnanomolar concentrations dramatically enhances the secretion of the α-secretase product sAPPα in fibroblasts from AD patients. We also show that BL significantly increased the amount of sAPPα and reduced Aβ40 in the brains of APP[V717I] transgenic mice. In a more recently developed AD double-transgenic mouse, bryostatin was effective in reducing both brain Aβ40 and Aβ42. In addition, bryostatin ameliorated the rate of premature death and improved behavioral outcomes. Collectively, these data corroborate PKC and its activation as a potentially important means of ameliorating AD pathophysiology and perhaps cognitive impairment, thus offering a promising target for drug development. Because bryostatin 1 is devoid of tumor-promoting activity and is undergoing numerous clinical studies for cancer treatment in humans, it might be readily tested in patients as a potential therapeutic agent for Alzheimer's disease. PMID:15263077

  5. COMP-Ang1 Potentiates EPC Treatment of Ischemic Brain Injury by Enhancing Angiogenesis Through Activating AKT-mTOR Pathway and Promoting Vascular Migration Through Activating Tie2-FAK Pathway.

    PubMed

    Moon, Hyo Eun; Byun, Kyunghee; Park, Hyung Woo; Kim, Jin Hyun; Hur, Jin; Park, Joong Shin; Jun, Jong Kwan; Kim, Hyo-Soo; Paek, Seung Leal; Kim, In Keyoung; Hwang, Jae Ha; Kim, Jin Wook; Kim, Dong Gyu; Sung, Young Chul; Koh, Gou-Young; Song, Chang W; Lee, Bonghee; Paek, Sun Ha

    2015-03-01

    Successful recovery from brain ischemia is limited due to poor vascularization surrounding the ischemic zone. Cell therapy with strong angiogenic factors could be an effective strategy to rescue the ischemic brain. We investigated whether cartilage oligomeric matrix protein (COMP)-Ang1, a soluble, stable and potent Ang1 variant, enhances the angiogenesis of human cord blood derived endothelial progenitor cells (hCB-EPCs) for rescuing brain from ischemic injury. COMP-Ang1 markedly improved the tube formation of capillaries by EPCs and incorporation of EPCs into tube formation with human umbilical vein endothelial cells (HUVECs) upon incubation on matrigel in vitro. COMP-Ang1 stimulated the migration of EPCs more than HUVECs in a scratch wound migration assay. The transplanted EPCs and COMP-Ang1 were incorporated into the blood vessels and decreased the infarct volume in the rat ischemic brain. Molecular studies revealed that COMP-Ang1 induced an interaction between Tie2 and FAK, but AKT was separated from the Tie2-FAK-AKT complex in the EPC plasma membrane. Tie2-FAK increased pp38, pSAPK/JNK, and pERK-mediated MAPK activation and interacted with integrins ανβ3, α4, β1, finally leading to migration of EPCs. AKT recruited mTOR, SDF-1, and HIF-1α to induce angiogenesis. Taken together, it is concluded that COMP-Ang1 potentiates the angiogenesis of EPCs and enhances the vascular morphogenesis indicating that combination of EPCs with COMP-Ang1 may be a potentially effective regimen for ischemic brain injury salvage therapy.

  6. Somatic mutational analysis of FAK in breast cancer: A novel gain-of-function mutation due to deletion of exon 33

    SciTech Connect

    Fang, Xu-Qian; Liu, Xiang-Fan; Yao, Ling; Chen, Chang-Qiang; Gu, Zhi-Dong; Ni, Pei-Hua; Zheng, Xin-Min; Fan, Qi-Shi

    2014-01-10

    Highlights: •A novel FAK splicing mutation identified in breast tumor. •FAK-Del33 mutation promotes cell migration and invasion. •FAK-Del33 mutation regulates FAK/Src signal pathway. -- Abstract: Focal adhesion kinase (FAK) regulates cell adhesion, migration, proliferation, and survival. We identified a novel splicing mutant, FAK-Del33 (exon 33 deletion, KF437463), in both breast and thyroid cancers through colony sequencing. Considering the low proportion of mutant transcripts in samples, this mutation was detected by TaqMan-MGB probes based qPCR. In total, three in 21 paired breast tissues were identified with the FAK-Del33 mutation, and no mutations were found in the corresponding normal tissues. When introduced into a breast cell line through lentivirus infection, FAK-Del33 regulated cell motility and migration based on a wound healing assay. We demonstrated that the expression of Tyr397 (main auto-phosphorylation of FAK) was strongly increased in FAK-Del33 overexpressed breast tumor cells compared to wild-type following FAK/Src RTK signaling activation. These results suggest a novel and unique role of the FAK-Del33 mutation in FAK/Src signaling in breast cancer with significant implications for metastatic potential.

  7. Role of protein kinase C (PKC) in short- and long-term cellular responses: inhibition of agonist-mediated calcium transients and down-regulation of PKC

    SciTech Connect

    Fabbro, D.; Mazurek, N.; Borner, C.; Conscience, J.F.; Erne, P.

    1988-01-01

    Active tumor promoters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or membrane-diffusible synthetic diacylglycerols such as 1,2-dioctanoyl-sn-glycerol (DiC8), which specifically activate protein kinase C (PKC), inhibited the agonist-mediated rise in cytosolic calcium ((Ca2+)i) in a mast cell line (PB-3c) and human platelets. TPA inhibition of agonist-mediated calcium transient in platelets was readily reversed by the PKC inhibitor staurosporine. In contrast to DiCs, only active tumor promoters induced a time- and dose-dependent translocation of cytosolic PKC to membranes as determined both enzymatically or by immunoblotting. However, the concentration of TPA required to induce a half-maximal subcellular redistribution of immunodetectable PKC activity was an order of magnitude greater than the half-maximal dose required to inhibit the intracellular rise in (Ca2+)i. Thus, activation of PKC seems not to be exclusively coupled to its translocation to membranes, suggesting that translocation of PKC is mainly involved in the down-regulation of PKC. Down-regulation of immunoprecipitable PKC was studied in various human breast cancer cell lines that display differential growth inhibitory responses toward the tumor promoter. TPA induced translocation of (35S)methionine-prelabeled cytosolic 80 kDa PKC to membranes followed by complete degradation of the enzyme (t1/2 = 2 h) without affecting PKC synthesis. During prolonged TPA exposure, 20-80% of total 80 kDa PKC of control cells was still synthetized as a membrane-bound 74/80 kDa PKC doublet. Although both proteins lacked PKC activity and phorbol ester binding, they revealed structural similarity with the active 80 kDa PKC form of untreated cells.

  8. PKC-β as a therapeutic target in CLL: PKC inhibitor AEB071 demonstrates preclinical activity in CLL.

    PubMed

    El-Gamal, Dalia; Williams, Katie; LaFollette, Taylor D; Cannon, Matthew; Blachly, James S; Zhong, Yiming; Woyach, Jennifer A; Williams, Erich; Awan, Farrukh T; Jones, Jeffrey; Andritsos, Leslie; Maddocks, Kami; Wu, Chia-Hsien; Chen, Ching-Shih; Lehman, Amy; Zhang, Xiaoli; Lapalombella, Rosa; Byrd, John C

    2014-08-28

    Targeting B-cell receptor (BCR) signaling in chronic lymphocytic leukemia (CLL) has been successful with durable remissions observed with several targeted therapeutics. Protein kinase C-β (PKC-β) is immediately downstream of BCR and has been shown to be essential to CLL cell survival and proliferation in vivo. We therefore evaluated sotrastaurin (AEB071), an orally administered potent PKC inhibitor, on CLL cell survival both in vitro and in vivo. AEB071 shows selective cytotoxicity against B-CLL cells in a dose-dependent manner. Additionally, AEB071 attenuates BCR-mediated survival pathways, inhibits CpG-induced survival and proliferation of CLL cells in vitro, and effectively blocks microenvironment-mediated survival signaling pathways in primary CLL cells. Furthermore, AEB071 alters β-catenin expression, resulting in decreased downstream transcriptional genes as c-Myc, Cyclin D1, and CD44. Lastly, our preliminary in vivo studies indicate beneficial antitumor properties of AEB071 in CLL. Taken together, our results indicate that targeting PKC-β has the potential to disrupt signaling from the microenvironment contributing to CLL cell survival and potentially drug resistance. Future efforts targeting PKC with the PKC inhibitor AEB071 as monotherapy in clinical trials of relapsed and refractory CLL patients are warranted.

  9. Class 3 Semaphorin Mediates Dendrite Growth in Adult Newborn Neurons through Cdk5/FAK Pathway

    PubMed Central

    Sohn, Jae Ho; Tan, Terence; Song, Hongjun; Ming, Guo-li; Goh, Eyleen L. K.

    2013-01-01

    Class 3 semaphorins are well-known axonal guidance cues during the embryonic development of mammalian nervous system. However, their activity on postnatally differentiated neurons in neurogenic regions of adult brains has not been characterized. We found that silencing of semaphorin receptors neuropilins (NRP) 1 or 2 in neural progenitors at the adult mouse dentate gyrus resulted in newly differentiated neurons with shorter dendrites and simpler branching in vivo. Tyrosine phosphorylation (Tyr 397) and serine phosphorylation (Ser 732) of FAK were essential for these effects. Semaphorin 3A and 3F mediate serine phosphorylation of FAK through the activation of Cdk5. Silencing of either Cdk5 or FAK in newborn neurons phenocopied the defects in dendritic development seen upon silencing of NRP1 or NRP2. Furthermore, in vivo overexpression of Cdk5 or FAK rescued the dendritic phenotypes seen in NRP1 and NRP2 deficient neurons. These results point to a novel role for class 3 semaphorins in promoting dendritic growth and branching during adult hippocampal neurogenesis through the activation of Cdk5-FAK signaling pathway. PMID:23762397

  10. Class 3 semaphorin mediates dendrite growth in adult newborn neurons through Cdk5/FAK pathway.

    PubMed

    Ng, Teclise; Ryu, Jae Ryun; Sohn, Jae Ho; Tan, Terence; Song, Hongjun; Ming, Guo-Li; Goh, Eyleen L K

    2013-01-01

    Class 3 semaphorins are well-known axonal guidance cues during the embryonic development of mammalian nervous system. However, their activity on postnatally differentiated neurons in neurogenic regions of adult brains has not been characterized. We found that silencing of semaphorin receptors neuropilins (NRP) 1 or 2 in neural progenitors at the adult mouse dentate gyrus resulted in newly differentiated neurons with shorter dendrites and simpler branching in vivo. Tyrosine phosphorylation (Tyr 397) and serine phosphorylation (Ser 732) of FAK were essential for these effects. Semaphorin 3A and 3F mediate serine phosphorylation of FAK through the activation of Cdk5. Silencing of either Cdk5 or FAK in newborn neurons phenocopied the defects in dendritic development seen upon silencing of NRP1 or NRP2. Furthermore, in vivo overexpression of Cdk5 or FAK rescued the dendritic phenotypes seen in NRP1 and NRP2 deficient neurons. These results point to a novel role for class 3 semaphorins in promoting dendritic growth and branching during adult hippocampal neurogenesis through the activation of Cdk5-FAK signaling pathway.

  11. Synergism of FAK and tyrosine kinase inhibition in Ph+ B-ALL

    PubMed Central

    Churchman, Michelle L.; Richmond, Jennifer; Robbins, Alissa; Jones, Luke; Shapiro, Irina M.; Pachter, Jonathan A.; Weaver, David T.; Houghton, Peter J.; Smith, Malcolm A.; Lock, Richard B.

    2016-01-01

    BCR-ABL1+ B progenitor acute lymphoblastic leukemia (Ph+ B-ALL) is an aggressive disease that frequently responds poorly to currently available therapies. Alterations in IKZF1, which encodes the lymphoid transcription factor Ikaros, are present in over 80% of Ph+ ALL and are associated with a stem cell–like phenotype, aberrant adhesion molecule expression and signaling, leukemic cell adhesion to the bone marrow stem cell niche, and poor outcome. Here, we show that FAK1 is upregulated in Ph+ B-ALL with further overexpression in IKZF1-altered cells and that the FAK inhibitor VS-4718 potently inhibits aberrant FAK signaling and leukemic cell adhesion, potentiating responsiveness to tyrosine kinase inhibitors, inducing cure in vivo. Thus, targeting FAK with VS-4718 is an attractive approach to overcome the deleterious effects of FAK overexpression in Ph+ B-ALL, particularly in abrogating the adhesive phenotype induced by Ikaros alterations, and warrants evaluation in clinical trials for Ph+ B-ALL, regardless of IKZF1 status. PMID:27123491

  12. Basic fibroblast growth factor promotes melanocyte migration via increased expression of p125(FAK) on melanocytes.

    PubMed

    Wu, Ching-Shuang; Lan, Cheng-Che E; Chiou, Min-Hsi; Yu, Hsin-Su

    2006-01-01

    Vitiligo is an acquired pigmentary disorder characterized by depigmentation of skin and hair. Melanocyte migration is an important event in re-pigmentation of vitiligo. We have demonstrated that narrow-band ultraviolet B (UVB) irradiation stimulated cultured keratinocytes to release a significant amount of basic fibroblast growth factor (bFGF). Furthermore, narrow-band UVB enhanced migration of melanocytes via increased expression of phosphorylated focal adhesion kinase (p125(FAK)) on melanocytes. The aim of this study was to investigate the effect of recombinant human bFGF (rhbFGF) on melanocyte migration. The relationship between the expression of p125(FAK) and melanocyte migration induced by rhbFGF was also studied. Our results demonstrated that rhbFGF significantly enhanced migration of melanocytes and p125(FAK) expression on melanocytes. Herbimycin A, a potent p125(FAK) inhibitor, effectively abolished rhbFGF-induced melanocyte migration. The combined results indicated that p125(FAK) plays an important role in the signal transduction pathway of melanocyte migration induced by bFGF.

  13. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal

    PubMed Central

    Haemmerle, Monika; Bottsford-Miller, Justin; Pradeep, Sunila; Taylor, Morgan L.; Hansen, Jean M.; Dalton, Heather J.; Stone, Rebecca L.; Cho, Min Soon; Nick, Alpa M.; Nagaraja, Archana S.; Gutschner, Tony; Gharpure, Kshipra M.; Mangala, Lingegowda S.; Han, Hee Dong; Zand, Behrouz; Armaiz-Pena, Guillermo N.; Wu, Sherry Y.; Pecot, Chad V.; Burns, Alan R.; Lopez-Berestein, Gabriel; Afshar-Kharghan, Vahid; Sood, Anil K.

    2016-01-01

    Recent studies in patients with ovarian cancer suggest that tumor growth may be accelerated following cessation of antiangiogenesis therapy; however, the underlying mechanisms are not well understood. In this study, we aimed to compare the effects of therapy withdrawal to those of continuous treatment with various antiangiogenic agents. Cessation of therapy with pazopanib, bevacizumab, and the human and murine anti-VEGF antibody B20 was associated with substantial tumor growth in mouse models of ovarian cancer. Increased tumor growth was accompanied by tumor hypoxia, increased tumor angiogenesis, and vascular leakage. Moreover, we found hypoxia-induced ADP production and platelet infiltration into tumors after withdrawal of antiangiogenic therapy, and lowering platelet counts markedly inhibited tumor rebound after withdrawal of antiangiogenic therapy. Focal adhesion kinase (FAK) in platelets regulated their migration into the tumor microenvironment, and FAK-deficient platelets completely prevented the rebound tumor growth. Additionally, combined therapy with a FAK inhibitor and the antiangiogenic agents pazopanib and bevacizumab reduced tumor growth and inhibited negative effects following withdrawal of antiangiogenic therapy. In summary, these results suggest that FAK may be a unique target in situations in which antiangiogenic agents are withdrawn, and dual targeting of FAK and VEGF could have therapeutic implications for ovarian cancer management. PMID:27064283

  14. Tumor-secreted LOXL2 Activates Fibroblasts Through FAK Signaling

    PubMed Central

    Barker, Holly E.; Bird, Demelza; Lang, Georgina; Erler, Janine T.

    2013-01-01

    Cancer-associated fibroblasts enhance cancer progression when activated by tumor cells through mechanisms not yet fully understood. Blocking mammary tumor cell-derived lysyl oxidase-like 2 (LOXL2) significantly inhibited mammary tumor cell invasion and metastasis in transgenic and orthotopic mouse models. Here we discovered that tumor-derived LOXL2 directly activated stromal fibroblasts in the tumor microenvironment. Genetic manipulation or antibody inhibition of LOXL2 in orthotopically grown mammary tumors reduced the expression of α-smooth muscle actin (α-SMA). Using a marker for reticular fibroblasts, it was determined that expression of α-SMA was localized to fibroblasts recruited from the host tissue. This marker also revealed that the matrix present in tumors with reduced levels of LOXL2 was more scattered compared to control tumors which exhibited matrices with dense, parallel alignments. Importantly, in vitro assays revealed that tumor-derived LOXL2 and a recombinant LOXL2 protein induced fibroblast branching on collagen matrices, as well as increased fibroblast-mediated collagen contraction and invasion of fibroblasts through extracellular matrix (ECM). Moreover, LOXL2 induced the expression of α-SMA in fibroblasts grown on collagen matrices. Mechanistically, it was determined that LOXL2 activated fibroblasts through integrin-mediated FAK activation. These results indicate that inhibition of LOXL2 in tumors not only reduces tumor cell invasion but also attenuates the activation of host cells in the tumor microenvironment. Implications: These findings reveal new insight into the mechanisms of fibroblast activation, a novel function of LOXL2, and further highlight the importance of generating LOXL2-targeted therapies for the prevention of tumor progression and metastasis. PMID:24008674

  15. Usage of heparan sulfate, integrins, and FAK in HPV16 infection

    PubMed Central

    Abban, Cynthia Y.; Meneses, Patricio I.

    2010-01-01

    Human Papillomavirus Type 16 (HPV16) is the major causative agent of cervical cancer. Studies regarding the early binding and signaling molecules that play a significant role in infection are still lacking. The current study analyses the role of heparan sulfate, integrins, and the signaling molecule FAK in HPV16 infection of human adult keratinocytes cell line (HaCaTs). Our data demonstrate that infection requires the binding of viral particles to heparan sulfate followed by activation of focal adhesion kinase through an integrin. Infections were reduced in the presence of the FAK inhibitor, TAE226. TAE226 was observed to inhibit viral entry to the early endosome a known infectious route. These findings suggest that FAK can serve as a novel target for antiviral therapy. PMID:20441998

  16. JNK3 perpetuates metabolic stress induced by Aβ peptides.

    PubMed

    Yoon, Sung Ok; Park, Dong Ju; Ryu, Jae Cheon; Ozer, Hatice Gulcin; Tep, Chhavy; Shin, Yong Jae; Lim, Tae Hee; Pastorino, Lucia; Kunwar, Ajaya J; Walton, James C; Nagahara, Alan H; Lu, Kun Ping; Nelson, Randy J; Tuszynski, Mark H; Huang, Kun

    2012-09-06

    Although Aβ peptides are causative agents in Alzheimer's disease (AD), the underlying mechanisms are still elusive. We report that Aβ42 induces a translational block by activating AMPK, thereby inhibiting the mTOR pathway. This translational block leads to widespread ER stress, which activates JNK3. JNK3 in turn phosphorylates APP at T668, thereby facilitating its endocytosis and subsequent processing. In support, pharmacologically blocking translation results in a significant increase in Aβ42 in a JNK3-dependent manner. Thus, JNK3 activation, which is increased in human AD cases and a familial AD (FAD) mouse model, is integral to perpetuating Aβ42 production. Concomitantly, deletion of JNK3 from FAD mice results in a dramatic reduction in Aβ42 levels and overall plaque loads and increased neuronal number and improved cognition. This reveals AD as a metabolic disease that is under tight control by JNK3. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Fibronectin induces macrophage migration through a SFK-FAK/CSF-1R pathway.

    PubMed

    Digiacomo, Graziana; Tusa, Ignazia; Bacci, Marina; Cipolleschi, Maria Grazia; Dello Sbarba, Persio; Rovida, Elisabetta

    2017-07-04

    Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.

  18. Differential expression of the FAK family kinases in rheumatoid arthritis and osteoarthritis synovial tissues

    PubMed Central

    Shahrara, Shiva; Castro-Rueda, Hernan P; Haines, G Kenneth; Koch, Alisa E

    2007-01-01

    The focal adhesion kinase (FAK) family kinases, including FAK and proline-rich kinase 2 (Pyk)2, are the predominant mediators of integrin αvβ3 signaling events that play an important role in cell adhesion, osteoclast pathology, and angiogenesis, all processes important in rheumatoid arthritis (RA). Using immunohistochemical and western blot analysis, we studied the distribution of phospho (p)FAK, pPyk2, pSrc, pPaxillin and pPLCγ in the synovial tissue (ST) from patients with RA, osteoarthritis (OA) and normal donors (NDs) as well as in RA ST fibroblasts and peripheral blood differentiated macrophages (PB MΦs) treated with tumor necrosis factor-α (TNFα) or interleukin-1β (IL1β). RA and OA STs showed a greater percentage of pFAK on lining cells and MΦs compared with ND ST. RA ST fibroblasts expressed pFAK at baseline, which increased with TNFα or IL1β stimulation. Pyk2 and Src were phosphorylated more on RA versus OA and ND lining cells and MΦs. pPyk2 was expressed on RA ST fibrobasts but not in MΦs at baseline, however it was upregulated upon TNFα or IL1β activation in both cell types. pSrc was expressed in RA ST fibroblasts and MΦs at baseline and was further increased by TNFα or IL1β stimulation. pPaxillin and pPLCγ were upregulated in RA versus OA and ND lining cells and sublining MΦs. Activation of the FAK family signaling cascade on RA and OA lining cells may be responsible for cell adhesion and migration into the diseased STs. Therapies targeting this novel signaling pathway may be beneficial in RA. PMID:17963503

  19. Thrombin/Matrix Metalloproteinase-9-Dependent SK-N-SH Cell Migration is Mediated Through a PLC/PKC/MAPKs/NF-κB Cascade.

    PubMed

    Yang, Chien-Chung; Lin, Chih-Chung; Chien, Peter Tzu-Yu; Hsiao, Li-Der; Yang, Chuen-Mao

    2016-11-01

    Thrombin has been known to activate inflammatory genes including matrix metalloproteinases (MMPs). The elevated expression of MMP-9 has been observed in patients with neuroinflammatory diseases and may contribute to the pathology of brain diseases. However, the mechanisms underlying thrombin-induced MMP-9 expression in SK-N-SH cells remain unknown. The effects of thrombin on MMP-9 expression were examined in SK-N-SH cells by gelatin zymography, Western blot, real-time PCR, promoter activity assay, and cell migration assay. The detailed mechanisms were analyzed by using pharmacological inhibitors and small intefering RNA (siRNA) transfection. Here, we demonstrated that thrombin induced the expression of proform MMP-9 and migration of SK-N-SH cells, which were attenuated by pretreatment with the inhibitor of thrombin (PPACK), Gq (GPA2A), PC-PLC (D609), PI-PLC (ET-18-OCH3), nonselective protien kinase C (PKC, GF109203X), PKCα/βII (Gö6983), PKCδ (Rottlerin), p38 mitogen-activated protein kinases (MAPK) (SB202190), JNK1/2 (SP600125), or NF-κB (Bay11-7082 or Helenalin) and transfection with siRNA of Gq, PKCα, PKCβ, PKCδ, p38, JNK1/2, IKKα, IKKβ, or p65. Moreover, thrombin-stimulated PKCα/βII, PKCδ, p38 MAPK, JNK1/2, or p65 phosphorylation was abrogated by their respective inhibitor of PPACK, GPA2A, D609, ET-18-OCH3, Gö6983, Rottlerin, SB202190, SP600125, Bay11-7082, or Helenalin. Pretreatment with these inhibitors or transfection with MMP-9 siRNA also blocked thrombin-induced SK-N-SH cell migration. Our results show that thrombin stimulates a Gq/PLC/PKCs/p38 MAPK and JNK1/2 cascade, which in turn triggers NF-κB activation and ultimately induces MMP-9 expression and cell migration in SK-N-SH cells.

  20. Nuclear FAK and Runx1 Cooperate to Regulate IGFBP3, Cell-Cycle Progression, and Tumor Growth.

    PubMed

    Canel, Marta; Byron, Adam; Sims, Andrew H; Cartier, Jessy; Patel, Hitesh; Frame, Margaret C; Brunton, Valerie G; Serrels, Bryan; Serrels, Alan

    2017-10-01

    Nuclear focal adhesion kinase (FAK) is a potentially important regulator of gene expression in cancer, impacting both cellular function and the composition of the surrounding tumor microenvironment. Here, we report in a murine model of skin squamous cell carcinoma (SCC) that nuclear FAK regulates Runx1-dependent transcription of insulin-like growth factor binding protein 3 (IGFBP3), and that this regulates SCC cell-cycle progression and tumor growth in vivo Furthermore, we identified a novel molecular complex between FAK and Runx1 in the nucleus of SCC cells and showed that FAK interacted with a number of Runx1-regulatory proteins, including Sin3a and other epigenetic modifiers known to alter Runx1 transcriptional function through posttranslational modification. These findings provide important new insights into the role of FAK as a scaffolding protein in molecular complexes that regulate gene transcription. Cancer Res; 77(19); 5301-12. ©2017 AACR. ©2017 American Association for Cancer Research.

  1. cPKC regulates interphase nuclear size during Xenopus development

    PubMed Central

    Edens, Lisa J.

    2014-01-01

    Dramatic changes in cell and nuclear size occur during development and differentiation, and aberrant nuclear size is associated with many disease states. However, the mechanisms that regulate nuclear size are largely unknown. A robust system for investigating nuclear size is early Xenopus laevis development, during which reductions in nuclear size occur without changes in DNA content. To identify cellular factors that regulate nuclear size during development, we developed a novel nuclear resizing assay wherein nuclei assembled in Xenopus egg extract become smaller in the presence of cytoplasmic interphase extract isolated from post-gastrula Xenopus embryos. We show that nuclear shrinkage depends on conventional protein kinase C (cPKC). Increased nuclear cPKC localization and activity and decreased nuclear association of lamins mediate nuclear size reductions during development, and manipulating cPKC activity in vivo during interphase alters nuclear size in the embryo. We propose a model of steady-state nuclear size regulation whereby nuclear expansion is balanced by an active cPKC-dependent mechanism that reduces nuclear size. PMID:25135933

  2. Discovery of potent and selective covalent inhibitors of JNK

    PubMed Central

    Zhang, Tinghu; Inesta-Vaquera, Francisco; Niepel, Mario; Zhang, Jianming; Ficarro, Scott B.; Machleidt, Thomas; Xie, Ting; Marto, Jarrod A.; Kim, NamDoo; Sim, Taebo; Laughlin, John D; Park, Hajeung; LoGrasso, Philip V.; Patricelli, Matt; Nomanbhoy, Tyzoon K.; Sorger, Peter K.; Alessi, Dario R.; Gray, Nathanael S.

    2012-01-01

    The mitogen activated kinases JNK1/2/3 are key enzymes in signaling modules that transduce and integrate extracellular stimuli into coordinated cellular response. Here we report the discovery of the first irreversible inhibitors of JNK1/2/3. We describe two JNK3 co-crystal structures at 2.60 and 2.97 Å resolutions that show the compounds form covalent bonds with a conserved cysteine residue. JNK-IN-8 is a selective JNK inhibitor that inhibits phosphorylation of c-Jun, a direct substrate of JNK kinase, in cells exposed to sub-micromolar drug in a manner that depends on covalent modification of the conserved cysteine residue. Extensive biochemical, cellular and pathway-based profiling establish the selectivity of JNK-IN-8 for JNK and suggest that the compound will be broadly useful as a pharmacological probe of JNK-dependent signal transduction. Potential lead compounds have also been identified for kinases including IRAK1, PIK3C3, PIP4K2C, and PIP5K3. PMID:22284361

  3. Requirement of JNK1 for endothelial cell injury in atherogenesis

    PubMed Central

    Amini, Narges; Boyle, Joseph J.; Moers, Britta; Warboys, Christina M.; Malik, Talat H.; Zakkar, Mustafa; Francis, Sheila E.; Mason, Justin C.; Haskard, Dorian O.; Evans, Paul C.

    2014-01-01

    Objective The c-Jun N-terminal kinase (JNK) family regulates fundamental physiological processes including apoptosis and metabolism. Although JNK2 is known to promote foam cell formation during atherosclerosis, the potential role of JNK1 is uncertain. We examined the potential influence of JNK1 and its negative regulator, MAP kinase phosphatase-1 (MKP-1), on endothelial cell (EC) injury and early lesion formation using hypercholesterolemic LDLR−/− mice. Methods and results To assess the function of JNK1 in early atherogenesis, we measured EC apoptosis and lesion formation in LDLR−/− or LDLR−/−/JNK1−/− mice exposed to a high fat diet for 6 weeks. En face staining using antibodies that recognise active, cleaved caspase-3 (apoptosis) or using Sudan IV (lipid deposition) revealed that genetic deletion of JNK1 reduced EC apoptosis and lesion formation in hypercholesterolemic mice. By contrast, although EC apoptosis was enhanced in LDLR−/−/MKP-1−/− mice compared to LDLR−/− mice, lesion formation was unaltered. Conclusion We conclude that JNK1 is required for EC apoptosis and lipid deposition during early atherogenesis. Thus pharmacological inhibitors of JNK may reduce atherosclerosis by preventing EC injury as well as by influencing foam cell formation. PMID:24956536

  4. Autophosphorylation properties of inactive and active JNK2.

    PubMed

    Pimienta, Genaro; Ficarro, Scott B; Gutierrez, Gustavo J; Bhoumik, Anindita; Peters, Eric C; Ronai, Ze'ev; Pascual, Jaime

    2007-07-15

    The c-Jun N-terminal kinases (JNKs) are ubiquitous proteins that phosphorylate their substrates, such as transcription factors, in response to physical stress, cytokines or UV radiation. This leads to changes in gene expression, ensuing either cell cycle progression or apoptosis. Active phospho JNK1 is the main in vivo kinase component of the JNK cascade, whereas JNK2 is presumed not to participate as a kinase during JNK signalling. However, there is evidence that JNK isoforms interact functionally in vivo. Also, a recent chemical genetics investigation has confirmed that JNK transient activation leads to cellular proliferation, whereas a sustained one is pro-apoptotic. Here we investigate the phosphorylation pattern of JNK2, with protein biochemistry tools and tandem mass spectrometry. We choose to focus on JNK2 because of its reported constitutive activity in glioma cells. Our results indicate that purified JNK2 from transfected nonstressed 293T cells is a mixture of the mono-sites pThr183 and pTyr185 of its activation loop and of pThr386 along its unique C-terminal region. Upon UV stimulation, its phosphorylation stoichiometry is upregulated on the activation loop, generating a mixture of mono-pTyr185 and the expected dual-pThr183/pTyr185 species, with the pThr386 specie present but unaltered respect to the basal conditions.

  5. Locomotion in Lymphocytes is Altered by Differential PKC Isoform Expression

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    1999-01-01

    Lymphocyte locomotion is critical for proper elicitation of the immune response. Locomotion of immune cells via the interstitium is essential for optimal immune function during wound healing, inflammation and infection. There are conditions which alter lymphocyte locomotion and one of them is spaceflight. Lymphocyte locomotion is severely inhibited in true spaceflight (true microgravity) and in rotating wall vessel culture (modeled microgravity). When lymphocytes are activated prior to culture in modeled microgravity, locomotion is not inhibited and the levels are comparable to those of static cultured lymphocytes. When a phorbol ester (PMA) is used in modeled microgravity, lymphocyte locomotion is restored by 87%. This occurs regardless if PMA is added after culture in the rotating wall vessel or during culture. Inhibition of DNA synthesis also does not alter restoration of lymphocyte locomotion by PMA. PMA is a direct activator of (protein kinase C) PKC . When a calcium ionophore, ionomycin is used it does not possess any restorative properties towards locomotion either alone or collectively with PMA. Since PMA brings about restoration without help from calcium ionophores (ionomycin), it is infer-red that calcium independent PKC isoforms are involved. Changes were perceived in the protein levels of PKC 6 where levels of the protein were downregulated at 24,72 and 96 hours in untreated rotated cultures (modeled microgravity) compared to untreated static (1g) cultures. At 48 hours there is an increase in the levels of PKC & in the same experimental set up. Studies on transcriptional and translational patterns of calcium independent isoforms of PKC such as 8 and E are presented in this study.

  6. Locomotion in Lymphocytes is Altered by Differential PKC Isoform Expression

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    1999-01-01

    Lymphocyte locomotion is critical for proper elicitation of the immune response. Locomotion of immune cells via the interstitium is essential for optimal immune function during wound healing, inflammation and infection. There are conditions which alter lymphocyte locomotion and one of them is spaceflight. Lymphocyte locomotion is severely inhibited in true spaceflight (true microgravity) and in rotating wall vessel culture (modeled microgravity). When lymphocytes are activated prior to culture in modeled microgravity, locomotion is not inhibited and the levels are comparable to those of static cultured lymphocytes. When a phorbol ester (PMA) is used in modeled microgravity, lymphocyte locomotion is restored by 87%. This occurs regardless if PMA is added after culture in the rotating wall vessel or during culture. Inhibition of DNA synthesis also does not alter restoration of lymphocyte locomotion by PMA. PMA is a direct activator of (protein kinase C) PKC . When a calcium ionophore, ionomycin is used it does not possess any restorative properties towards locomotion either alone or collectively with PMA. Since PMA brings about restoration without help from calcium ionophores (ionomycin), it is infer-red that calcium independent PKC isoforms are involved. Changes were perceived in the protein levels of PKC 6 where levels of the protein were downregulated at 24,72 and 96 hours in untreated rotated cultures (modeled microgravity) compared to untreated static (1g) cultures. At 48 hours there is an increase in the levels of PKC & in the same experimental set up. Studies on transcriptional and translational patterns of calcium independent isoforms of PKC such as 8 and E are presented in this study.

  7. Tissue angiotensin II during progression or ventricular hypertrophy to heart failure in hypertensive rats; differential effects on PKC epsilon and PKC beta.

    PubMed

    Inagaki, Koichi; Iwanaga, Yoshitaka; Sarai, Nobuaki; Onozawa, Yoko; Takenaka, Hiroyuki; Mochly-Rosen, Daria; Kihara, Yasuki

    2002-10-01

    The protein kinase C (PKC) family has been implicated as second messengers in mechanosensitive modulation of cardiac hypertrophy. However, little information is available on the role of expression and activation of specific cardiac PKC isozymes during development of left ventricular hypertrophy (LVH) and failure (LVF). Dahl salt-sensitive rats fed an 8% salt diet developed systemic hypertension and concentric LVH at 11 weeks of age that is followed by left ventricle (LV) dilatation and global hypokinesis at 17 weeks. Among several PKC isozymes expressed in the LV myocardium, only PKC epsilon showed a 94% increase at the LVH stage. At the LVF stage, however, PKC epsilon returned to the control level, whereas PKC beta I and beta II increased by 158% and 155%, respectively. Hearts were studied at each stage using the Langendorff set-up, and a LV balloon was inflated to achieve an equivalent diastolic wall stress. Following mechanical stretch, PKC epsilon was significantly activated in LVH myocardium in which tissue angiotensin II levels were increased by 59%. Pre-treatment with valsartan, an AT(1)-receptor blocker, abolished the stretch-mediated PKC epsilon activation. Mechanical stretch no longer induced PKC epsilon activation in LVF. Chronic administration of valsartan blunted the progression of LVF and inhibited the increase in PKC beta. Mechanosensitive PKC epsilon activation is augmented and therefore may contribute to the development of compensatory hypertrophy. This effect was dependent on activation of tissue angiotensin II. However, this compensatory mechanism becomes inactive in LVF, where PKC beta may participate in the progression to cardiac dysfunction and LV remodeling.

  8. Nudel and FAK as Antagonizing Strength Modulators of Nascent Adhesions through Paxillin

    PubMed Central

    Li, Yan; Pan, Youdong; Zhang, Qiangge; Wang, Fubin; Chen, Jianfeng; Zhu, Xueliang

    2009-01-01

    Adhesion and detachment are coordinated critical steps during cell migration. Conceptually, efficient migration requires both effective stabilization of membrane protrusions at the leading edge via nascent adhesions and their successful persistence during retraction of the trailing side via disruption of focal adhesions. As nascent adhesions are much smaller in size than focal adhesions, they are expected to exhibit a stronger adhesivity in order to achieve the coordination between cell front and back. Here, we show that Nudel knockdown by interference RNA (RNAi) resulted in cell edge shrinkage due to poor adhesions of membrane protrusions. Nudel bound to paxillin, a scaffold protein of focal contacts, and colocalized with it in areas of active membrane protrusions, presumably at nascent adhesions. The Nudel-paxillin interaction was disrupted by focal adhesion kinase (FAK) in a paxillin-binding–dependent manner. Forced localization of Nudel in all focal contacts by fusing it to paxillin markedly strengthened their adhesivity, whereas overexpression of structurally activated FAK or any paxillin-binding FAK mutant lacking the N-terminal autoinhibitory domain caused cell edge shrinkage. These results suggest a novel mechanism for selective reinforcement of nascent adhesions via interplays of Nudel and FAK with paxillin to facilitate cell migration. PMID:19492042

  9. Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms

    PubMed Central

    Yang, Jianbo; Price, Matthew A.; Neudauer, Cheryl L.; Wilson, Christopher; Ferrone, Soldano; Xia, Hong; Iida, Joji; Simpson, Melanie A.; McCarthy, James B.

    2004-01-01

    Melanoma chondroitin sulfate proteoglycan (MCSP) is an early cell surface melanoma progression marker implicated in stimulating tumor cell proliferation, migration, and invasion. Focal adhesion kinase (FAK) plays a pivotal role in integrating growth factor and adhesion-related signaling pathways, facilitating cell spreading and migration. Extracellular signal–regulated kinase (ERK) 1 and 2, implicated in tumor growth and survival, has also been linked to clinical melanoma progression. We have cloned the MCSP core protein and expressed it in the MCSP-negative melanoma cell line WM1552C. Expression of MCSP enhances integrin-mediated cell spreading, FAK phosphorylation, and activation of ERK1/2. MCSP transfectants exhibit extensive MCSP-rich microspikes on adherent cells, where it also colocalizes with α4 integrin. Enhanced activation of FAK and ERK1/2 by MCSP appears to involve independent mechanisms because inhibition of FAK activation had no effect on ERK1/2 phosphorylation. These results indicate that MCSP may facilitate primary melanoma progression by enhancing the activation of key signaling pathways important for tumor invasion and growth. PMID:15210734

  10. Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms.

    PubMed

    Yang, Jianbo; Price, Matthew A; Neudauer, Cheryl L; Wilson, Christopher; Ferrone, Soldano; Xia, Hong; Iida, Joji; Simpson, Melanie A; McCarthy, James B

    2004-06-21

    Melanoma chondroitin sulfate proteoglycan (MCSP) is an early cell surface melanoma progression marker implicated in stimulating tumor cell proliferation, migration, and invasion. Focal adhesion kinase (FAK) plays a pivotal role in integrating growth factor and adhesion-related signaling pathways, facilitating cell spreading and migration. Extracellular signal-regulated kinase (ERK) 1 and 2, implicated in tumor growth and survival, has also been linked to clinical melanoma progression. We have cloned the MCSP core protein and expressed it in the MCSP-negative melanoma cell line WM1552C. Expression of MCSP enhances integrin-mediated cell spreading, FAK phosphorylation, and activation of ERK1/2. MCSP transfectants exhibit extensive MCSP-rich microspikes on adherent cells, where it also colocalizes with alpha4 integrin. Enhanced activation of FAK and ERK1/2 by MCSP appears to involve independent mechanisms because inhibition of FAK activation had no effect on ERK1/2 phosphorylation. These results indicate that MCSP may facilitate primary melanoma progression by enhancing the activation of key signaling pathways important for tumor invasion and growth.

  11. Pre-clinical characterization of PKC412, a multi-kinase inhibitor, against colorectal cancer cells

    PubMed Central

    Zhou, Yi-Chan; Shao, Yun; He, Xiao-Pu; Chen, Su-Rong; Wang, Dong-Dong; Qin, Li-Sen; Sun, Wei-Hao

    2016-01-01

    The potential effect of PKC412, a small molecular multi-kinase inhibitor, in colorectal cancer (CRC) cells was evaluated here. We showed that PKC412 was cytotoxic and anti-proliferative against CRC cell lines (HT-29, HCT-116, HT-15 and DLD-1) and primary CRC cells. PKC412 provoked caspase-dependent apoptotic death, and induced G2-M arrest in the CRC cells. AKT activation was inhibited by PKC412 in CRC cells. Reversely, expression of constitutively-active AKT1 (CA-AKT1) decreased the PKC412's cytotoxicity against HT-29 cells. We propose that Bcl-2 could be a primary resistance factor of PKC412. ABT-737, a Bcl-2 inhibitor, or Bcl-2 siRNA knockdown, dramatically potentiated PKC412's lethality against CRC cells. Forced Bcl-2 over-expression, on the other hand, attenuated PKC412's cytotoxicity. Significantly, PKC412 oral administration suppressed AKT activation and inhibited HT-29 tumor growth in nude mice. Mice survival was also improved with PKC412 administration. These results indicate that PKC412 may have potential value for CRC treatment. PMID:27780925

  12. Calpain-Mediated Proteolysis of Talin and FAK Regulates Adhesion Dynamics Necessary for Axon Guidance.

    PubMed

    Kerstein, Patrick C; Patel, Kevin M; Gomez, Timothy M

    2017-02-08

    Guidance of axons to their proper synaptic target sites requires spatially and temporally precise modulation of biochemical signals within growth cones. Ionic calcium (Ca(2+)) is an essential signal for axon guidance that mediates opposing effects on growth cone motility. The diverse effects of Ca(2+) arise from the precise localization of Ca(2+) signals into microdomains containing specific Ca(2+) effectors. For example, differences in the mechanical and chemical composition of the underlying substrata elicit local Ca(2+) signals within growth cone filopodia that regulate axon guidance through activation of the protease calpain. However, how calpain regulates growth cone motility remains unclear. Here, we identify the adhesion proteins talin and focal adhesion kinase (FAK) as proteolytic targets of calpain in Xenopus laevis spinal cord neurons both in vivo and in vitro Inhibition of calpain increases the localization of endogenous adhesion signaling to growth cone filopodia. Using live cell microscopy and specific calpain-resistant point-mutants of talin (L432G) and FAK (V744G), we find that calpain inhibits paxillin-based adhesion assembly through cleavage of talin and FAK, and adhesion disassembly through cleavage of FAK. Blocking calpain cleavage of talin and FAK inhibits repulsive turning from focal uncaging of Ca(2+) within filopodia. In addition, blocking calpain cleavage of talin and FAK in vivo promotes Rohon-Beard peripheral axon extension into the skin. These data demonstrate that filopodial Ca(2+) signals regulate axon outgrowth and guidance through calpain regulation of adhesion dynamics through specific cleavage of talin and FAK.SIGNIFICANCE STATEMENT The proper formation of neuronal networks requires accurate guidance of axons and dendrites during development by motile structures known as growth cones. Understanding the intracellular signaling mechanisms that govern growth cone motility will clarify how the nervous system develops and regenerates

  13. Ethanol and diolein stimulate PKC (protein kinase C) translocation in astroglial cells

    SciTech Connect

    Skwish, S. ); Shain, W. New York State Department of Health, Albany )

    1990-01-01

    Ethanol exposure stimulates taurine release from astroglial cells. To determine if ethanol mediates this release using protein kinase C (PKC), PKC activity was measured using LRM55 astroglial cells. When ethanol or diolein was applied to cells for 30 seconds, PKC activity was observed to decrease in the cytosol and increase in the membrane fraction of the cell while the whole cell activity remained unchanged. The membrane-associated activity increased by almost 100%. When ethanol and diolein were applied simultaneously, membrane-associated activity increased to become 3-5 times greater than when either PKC activator was applied alone. These changes in PKC activity parallel changes in taurine release observed when cells are exposed to ethanol and the PKC activator diolein. Ethanol-stimulated release may be associated with the translocation of PKC activity from the cytosol to the membrane.

  14. Neuroprotective Effects of the Absence of JNK1 or JNK3 Isoforms on Kainic Acid-Induced Temporal Lobe Epilepsy-Like Symptoms.

    PubMed

    de Lemos, Luisa; Junyent, Felix; Camins, Antoni; Castro-Torres, Rubén Darío; Folch, Jaume; Olloquequi, Jordi; Beas-Zarate, Carlos; Verdaguer, Ester; Auladell, Carme

    2017-06-29

    The activation of c-Jun-N-terminal kinases (JNK) pathway has been largely associated with the pathogenesis and the neuronal death that occur in neurodegenerative diseases. Altogether, this justifies why JNKs have become a focus of screens for new therapeutic strategies. The aim of the present study was to identify the role of the different JNK isoforms (JNK1, JNK2, and JNK3) in apoptosis and inflammation after induction of brain damage. To address this aim, we induced excitotoxicity in wild-type and JNK knockout mice (jnk1 (-/-) , jnk2 (-/-) , and jnk3 (-/-) ) via an intraperitoneal injection of kainic acid, an agonist of glutamic-kainate-receptors, that induce status epilepticus.Each group of animals was divided into two treatments: a single intraperitoneal dose of saline solution, used as a control, and a single intraperitoneal dose (30 mg/kg) of kainic acid. Our results reported a significant decrease in neuronal degeneration in the hippocampus of jnk1 (-/-) and jnk3 (-/-) mice after kainic acid treatment, together with reduced or unaltered expression of several apoptotic genes compared to WT treated mice. In addition, both jnk1 (-/-) and jnk3 (-/-) mice exhibited a reduction in glial reactivity, as shown by the lower expression of inflammatory genes and a reduction of JNK phosphorylation. In addition, in jnk3 (-/-) mice, the c-Jun phosphorylation was also diminished.Collectively, these findings provide compelling evidence that the absence of JNK1 or JNK3 isoforms confers neuroprotection against neuronal damage induced by KA and evidence, for the first time, the implication of JNK1 in excitotoxicity. Accordingly, JNK1 and/or JNK3 are promising targets for the prevention of cell death and inflammation during epileptogenesis.

  15. JNK signalling modulates intestinal homeostasis and tumourigenesis in mice

    PubMed Central

    Sancho, Rocio; Nateri, Abdolrahman S; de Vinuesa, Amaya Garcia; Aguilera, Cristina; Nye, Emma; Spencer-Dene, Bradley; Behrens, Axel

    2009-01-01

    Wnt signalling is a crucial signalling pathway controlling intestinal homeostasis and cancer. We show here that the JNK MAP kinase pathway and one of its most important substrates, the AP-1 transcription factor c-Jun, modulates Wnt signalling strength in the intestine. Transgenic gut-specific augmentation of JNK signalling stimulated progenitor cell proliferation and migration, resulting in increased villus length. In the crypt, c-Jun protein was highly expressed in progenitor cells and the absence of c-Jun resulted in decreased proliferation and villus length. In addition to several known c-Jun/AP-1 target genes, expression of Wnt target genes Axin2 and Lgr5 were stimulated by JNK activation, suggesting a cross talk of JNK to Wnt signalling. Expression of the Wnt pathway component TCF4 was controlled by JNK activity, and chromatin immunoprecipitation and reporter assays identified tcf4 as a direct c-Jun target gene. Consequently, increased JNK activity accelerated tumourigenesis in a model of colorectal carcinogenesis. As c-jun is a direct target of the TCF4/β-catenin complex, the control of tcf4 expression by JNK/c-Jun leads to a positive feedback loop that connects JNK and Wnt signalling. This mechanism regulates the physiological function of progenitor cells and oncogenic transformation. PMID:19521338

  16. Abnormal Cell Properties and Down-Regulated FAK-Src Complex Signaling in B Lymphoblasts of Autistic Subjects

    PubMed Central

    Wei, Hongen; Malik, Mazhar; Sheikh, Ashfaq M.; Merz, George; Ted Brown, W.; Li, Xiaohong

    2011-01-01

    Recent studies suggest that one of the major pathways to the pathogenesis of autism is reduced cell migration. Focal adhesion kinase (FAK) has an important role in neural migration, dendritic morphological characteristics, axonal branching, and synapse formation. The FAK-Src complex, activated by upstream reelin and integrin β1, can initiate a cascade of phosphorylation events to trigger multiple intracellular pathways, including mitogen-activated protein kinase–extracellular signal–regulated kinase and phosphatidylinositol 3-kinase–Akt signaling. In this study, by using B lymphoblasts as a model, we tested whether integrin β1 and FAK-Src signaling are abnormally regulated in autism and whether abnormal FAK-Src signaling leads to defects in B-lymphoblast adhesion, migration, proliferation, and IgG production. To our knowledge, for the first time, we show that protein expression levels of both integrin β1 and FAK are significantly decreased in autistic lymphoblasts and that Src protein expression and the phosphorylation of an active site (Y416) are also significantly decreased. We also found that lymphoblasts from autistic subjects exhibit significantly decreased migration, increased adhesion properties, and an impaired capacity for IgG production. The overexpression of FAK in autistic lymphoblasts countered the adhesion and migration defects. In addition, we demonstrate that FAK mediates its effect through the activation of Src, phosphatidylinositol 3-kinase–Akt, and mitogen-activated protein kinase signaling cascades and that paxillin is also likely involved in the regulation of adhesion and migration in autistic lymphoblasts. PMID:21703394

  17. Ambra1 spatially regulates Src activity and Src/FAK-mediated cancer cell invasion via trafficking networks

    PubMed Central

    Schoenherr, Christina; Byron, Adam; Sandilands, Emma; Paliashvili, Ketevan; Baillie, George S; Valacca, Cristina; Cecconi, Francesco; Serrels, Bryan; Frame, Margaret C

    2017-01-01

    Here, using mouse squamous cell carcinoma cells, we report a completely new function for the autophagy protein Ambra1 as the first described ‘spatial rheostat’ controlling the Src/FAK pathway. Ambra1 regulates the targeting of active phospho-Src away from focal adhesions into autophagic structures that cancer cells use to survive adhesion stress. Ambra1 binds to both FAK and Src in cancer cells. When FAK is present, Ambra1 is recruited to focal adhesions, promoting FAK-regulated cancer cell direction-sensing and invasion. However, when Ambra1 cannot bind to FAK, abnormally high levels of phospho-Src and phospho-FAK accumulate at focal adhesions, positively regulating adhesion and invasive migration. Spatial control of active Src requires the trafficking proteins Dynactin one and IFITM3, which we identified as Ambra1 binding partners by interaction proteomics. We conclude that Ambra1 is a core component of an intracellular trafficking network linked to tight spatial control of active Src and FAK levels, and so crucially regulates their cancer-associated biological outputs. DOI: http://dx.doi.org/10.7554/eLife.23172.001 PMID:28362576

  18. Ambra1 spatially regulates Src activity and Src/FAK-mediated cancer cell invasion via trafficking networks.

    PubMed

    Schoenherr, Christina; Byron, Adam; Sandilands, Emma; Paliashvili, Ketevan; Baillie, George S; Valacca, Cristina; Cecconi, Francesco; Serrels, Bryan; Frame, Margaret C

    2017-03-31

    Here, using mouse squamous cell carcinoma cells, we report a completely new function for the autophagy protein Ambra1 as the first described 'spatial rheostat' controlling the Src/FAK pathway. Ambra1 regulates the targeting of active phospho-Src away from focal adhesions into autophagic structures that cancer cells use to survive adhesion stress. Ambra1 binds to both FAK and Src in cancer cells. When FAK is present, Ambra1 is recruited to focal adhesions, promoting FAK-regulated cancer cell direction-sensing and invasion. However, when Ambra1 cannot bind to FAK, abnormally high levels of phospho-Src and phospho-FAK accumulate at focal adhesions, positively regulating adhesion and invasive migration. Spatial control of active Src requires the trafficking proteins Dynactin one and IFITM3, which we identified as Ambra1 binding partners by interaction proteomics. We conclude that Ambra1 is a core component of an intracellular trafficking network linked to tight spatial control of active Src and FAK levels, and so crucially regulates their cancer-associated biological outputs.

  19. Claudin-7 indirectly regulates the integrin/FAK signaling pathway in human colon cancer tissue.

    PubMed

    Ding, Lei; Wang, Liyong; Sui, Leiming; Zhao, Huanying; Xu, Xiaoxue; Li, Tengyan; Wang, Xiaonan; Li, Wenjing; Zhou, Ping; Kong, Lu

    2016-08-01

    The claudin family of proteins is integral to the structure and function of tight junctions. The role of claudin-7 (Cldn-7, CLDN7) in regulating the integrin/focal adhesion kinase (FAK)/ERK signaling pathway remains poorly understood. Therefore, we investigated differences in gene expression, primarily focusing on CLDN7 and integrin/FAK/ERK signaling pathway genes, between colon cancer and adjacent normal tissues. Quantitative real-time reverse transcription-PCR and immunohistochemistry were utilized to verify the results of mRNA and protein expression, respectively. In silico analysis was used to predict co-regulation between Cldn-7 and integrin/FAK/ERK signaling pathway components, and the STRING database was used to analyze protein-protein interaction pairs among these proteins. Meta-analysis of expression microarrays in The Cancer Genome Atlas (TCGA) database was used to identify significant correlations between Cldn-7 and components of predicted genes in the integrin/FAK/ERK signaling pathway. Our results showed marked cancer stage-specific decreases in the protein expression of Cldn-7, Gelsolin, MAPK1 and MAPK3 in colon cancer samples, and the observed changes for all proteins except Cldn-7 were in agreement with changes in the corresponding mRNA levels. Cldn-7 might indirectly regulate MAPK3 via KRT8 due to KRT8 co-expression with MAPK3 or CLDN7. Our bioinformatics methods supported the hypothesis that Cldn-7 does not directly regulate any genes in the integrin/FAK/ERK signaling pathway. These factors may participate in a common network that regulates cancer progression in which the MAPK pathway serves as the central node.

  20. Pharmacologic blockade of FAK autophosphorylation decreases human glioblastoma tumor growth and synergizes with temozolomide.

    PubMed

    Golubovskaya, Vita M; Huang, Grace; Ho, Baotran; Yemma, Michael; Morrison, Carl D; Lee, Jisook; Eliceiri, Brian P; Cance, William G

    2013-02-01

    Malignant gliomas are characterized by aggressive tumor growth with a mean survival of 15 to 18 months and frequently developed resistance to temozolomide. Therefore, strategies that sensitize glioma cells to temozolomide have a high translational impact. We have studied focal adhesion kinase (FAK), a tyrosine kinase and emerging therapeutic target that is known to be highly expressed and activated in glioma. In this report, we tested the FAK autophosphorylation inhibitor, Y15, in DBTRG and U87 glioblastoma cells. Y15 significantly decreased viability and clonogenicity in a dose-dependent manner, increased detachment in a dose- and time-dependent manner, caused apoptosis, and inhibited cell invasion in both cell lines. In addition, Y15 treatment decreased autophosphorylation of FAK in a dose-dependent manner and changed cell morphology by causing cell rounding in DBTRG and U87 cells. Administration of Y15 significantly decreased subcutaneous DBTRG tumor growth with decreased Y397-FAK autophosphorylation, activated caspase-3 and PARP. Y15 was administered in an orthotopic glioma model, leading to an increase in mouse survival. The combination of Y15 with temozolomide was more effective than either agent alone in decreasing viability and activating caspase-8 in DBTRG and U87 cells in vitro. In addition, the combination of Y15 and temozolomide synergistically blocked U87 brain tumor growth in vivo. Thus, pharmacologic blockade of FAK autophosphorylation with the oral administration of a small-molecule inhibitor Y15 has a potential to be an effective therapy approach for glioblastoma either alone or in combination with chemotherapy agents such as temozolomide.

  1. Targeting CXCR4 and FAK reverses doxorubicin resistance and suppresses invasion in non-small cell lung carcinoma.

    PubMed

    Dragoj, Miodrag; Milosevic, Zorica; Bankovic, Jasna; Tanic, Nikola; Pesic, Milica; Stankovic, Tijana

    2017-02-01

    Current high lung cancer mortality rates are mainly due to the occurrence of metastases and therapeutic resistance. Therefore, simultaneous targeting of these processes may be a valid approach for the treatment of this type of cancer. Here, we assessed relationships between CXC chemokine receptor type 4 (CXCR4) and focal adhesion kinase (FAK) gene expression levels and expression levels of the drug resistance-related genes ABCB1 and ABCC1, and tested the potential of CXCR4 and FAK inhibitors to reverse doxorubicin (DOX) resistance and to decrease the invasive capacity of non-small cell lung carcinoma (NSCLC) cells. qRT-PCR was used for gene expression analyses in primary lung tissue samples obtained from 30 NSCLC patients and the human NSCLC-derived cell lines NCI-H460, NCI-H460/R and COR-L23. MTT, flow cytometry, cell death and β-galactosidase activity assays were used to assess the in vitro impact of CXCR4 and FAK inhibitors on DOX sensitivity. In addition, invasion and gelatin degradation assays were used to assess the in vitro impact of the respective inhibitors on metastasis-related processes in combination with DOX treatment. We found that ABCB1 over-expression was significantly associated with CXCR4 and FAK over-expression, whereas ABCC1 over-expression was associated with increased FAK expression. We also found that CXCR4 and FAK inhibitors strongly synergized with DOX in reducing cell viability, arresting the cell cycle in the S or G2/M phases and inducing senescence. Additionally, we found that DOX enhanced the anti-invasive potential of CXCR4 and FAK inhibitors by reducing gelatin degradation and invasion. From our data we conclude that targeting of CXCR4 and FAK may overcome ABCB1 and ABCC1-dependent DOX resistance in NSCLC cells and that simultaneous treatment of these cells with DOX may potentiate the anti-invasive effects of CXCR4 and FAK inhibitors.

  2. Arrestin-3 binds c-Jun N-terminal kinase 1 (JNK1) and JNK2 and facilitates the activation of these ubiquitous JNK isoforms in cells via scaffolding.

    PubMed

    Kook, Seunghyi; Zhan, Xuanzhi; Kaoud, Tamer S; Dalby, Kevin N; Gurevich, Vsevolod V; Gurevich, Eugenia V

    2013-12-27

    Non-visual arrestins scaffold mitogen-activated protein kinase (MAPK) cascades. The c-Jun N-terminal kinases (JNKs) are members of MAPK family. Arrestin-3 has been shown to enhance the activation of JNK3, which is expressed mainly in neurons, heart, and testes, in contrast to ubiquitous JNK1 and JNK2. Although all JNKs are activated by MKK4 and MKK7, both of which bind arrestin-3, the ability of arrestin-3 to facilitate the activation of JNK1 and JNK2 has never been reported. Using purified proteins we found that arrestin-3 directly binds JNK1α1 and JNK2α2, interacting with the latter comparably to JNK3α2. Phosphorylation of purified JNK1α1 and JNK2α2 by MKK4 or MKK7 is increased by arrestin-3. Endogenous arrestin-3 interacted with endogenous JNK1/2 in different cell types. Arrestin-3 also enhanced phosphorylation of endogenous JNK1/2 in intact cells upon expression of upstream kinases ASK1, MKK4, or MKK7. We observed a biphasic effect of arrestin-3 concentrations on phosphorylation of JNK1α1 and JNK2α2 both in vitro and in vivo. Thus, arrestin-3 acts as a scaffold, facilitating JNK1α1 and JNK2α2 phosphorylation by MKK4 and MKK7 via bringing JNKs and their activators together. The data suggest that arrestin-3 modulates the activity of ubiquitous JNK1 and JNK2 in non-neuronal cells, impacting the signaling pathway that regulates their proliferation and survival.

  3. Interaction with AKAP79 modifies the cellular pharmacology of PKC.

    PubMed

    Hoshi, Naoto; Langeberg, Lorene K; Gould, Christine M; Newton, Alexandra C; Scott, John D

    2010-02-26

    A-kinase anchoring proteins (AKAPs) coordinate cell signaling events. AKAP79 brings together different combinations of enzyme binding partners to customize the regulation of effector proteins. In neurons, muscarinic agonists mobilize an AKAP79-anchored pool of PKC that phosphorylates the KCNQ2 subunit of the M channel. This inhibits potassium permeability to enhance neuronal excitability. Using a dual fluorescent imaging/patch-clamp technique, we visualized AKAP79-anchored PKC phosphorylation of the kinase activity reporter CKAR concurrently with electrophysiological changes in KCNQ2 channels to show that AKAP79 synchronizes both signaling events to optimize the attenuation of M currents. AKAP79 also protects PKC from certain ATP-competitive inhibitors. Related studies suggest that context-dependent protein-protein interactions alter the susceptibility of another protein kinase, PDK1, to ATP analog inhibitors. This implies that intracellular binding partners not only couple individual molecular events in a cell signaling process but can also change the pharmacological profile of certain protein kinases. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Differential and Conditional Activation of PKC-Isoforms Dictates Cardiac Adaptation during Physiological to Pathological Hypertrophy

    PubMed Central

    Naskar, Shaon; Datta, Kaberi; Mitra, Arkadeep; Pathak, Kanchan; Datta, Ritwik; Bansal, Trisha; Sarkar, Sagartirtha

    2014-01-01

    A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week male Balb/c mice (Mus musculus) models, by reverse transcriptase-PCR, western blot analysis and M-mode echocardiography for cardiac function analysis. PKC-δ was significantly induced during pathological hypertrophy while PKC-α was exclusively activated during physiological hypertrophy in our study. PKC-δ activation during pathological hypertrophy resulted in cardiomyocyte apoptosis leading to compromised cardiac function and on the other hand, activation of PKC-α during physiological hypertrophy promoted cardiomyocyte growth but down regulated cellular apoptotic load resulting in improved cardiac function. Reversal in PKC-isoform with induced activation of PKC-δ and simultaneous inhibition of phospho-PKC-α resulted in an efficient myocardium to deteriorate considerably resulting in compromised cardiac function during physiological hypertrophy via augmentation of apoptotic and fibrotic load. This is the first report where PKC-α and -δ have been shown to play crucial role in cardiac adaptation during physiological and pathological hypertrophy respectively thereby rendering compromised cardiac function to an otherwise efficient heart by conditional reversal of their activation. PMID:25116170

  5. Differential and conditional activation of PKC-isoforms dictates cardiac adaptation during physiological to pathological hypertrophy.

    PubMed

    Naskar, Shaon; Datta, Kaberi; Mitra, Arkadeep; Pathak, Kanchan; Datta, Ritwik; Bansal, Trisha; Sarkar, Sagartirtha

    2014-01-01

    A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week male Balb/c mice (Mus musculus) models, by reverse transcriptase-PCR, western blot analysis and M-mode echocardiography for cardiac function analysis. PKC-δ was significantly induced during pathological hypertrophy while PKC-α was exclusively activated during physiological hypertrophy in our study. PKC-δ activation during pathological hypertrophy resulted in cardiomyocyte apoptosis leading to compromised cardiac function and on the other hand, activation of PKC-α during physiological hypertrophy promoted cardiomyocyte growth but down regulated cellular apoptotic load resulting in improved cardiac function. Reversal in PKC-isoform with induced activation of PKC-δ and simultaneous inhibition of phospho-PKC-α resulted in an efficient myocardium to deteriorate considerably resulting in compromised cardiac function during physiological hypertrophy via augmentation of apoptotic and fibrotic load. This is the first report where PKC-α and -δ have been shown to play crucial role in cardiac adaptation during physiological and pathological hypertrophy respectively thereby rendering compromised cardiac function to an otherwise efficient heart by conditional reversal of their activation.

  6. Localized JNK signaling regulates organ size during development

    PubMed Central

    Willsey, Helen Rankin; Zheng, Xiaoyan; Carlos Pastor-Pareja, José; Willsey, A Jeremy; Beachy, Philip A; Xu, Tian

    2016-01-01

    A fundamental question of biology is what determines organ size. Despite demonstrations that factors within organs determine their sizes, intrinsic size control mechanisms remain elusive. Here we show that Drosophila wing size is regulated by JNK signaling during development. JNK is active in a stripe along the center of developing wings, and modulating JNK signaling within this stripe changes organ size. This JNK stripe influences proliferation in a non-canonical, Jun-independent manner by inhibiting the Hippo pathway. Localized JNK activity is established by Hedgehog signaling, where Ci elevates dTRAF1 expression. As the dTRAF1 homolog, TRAF4, is amplified in numerous cancers, these findings provide a new mechanism for how the Hedgehog pathway could contribute to tumorigenesis, and, more importantly, provides a new strategy for cancer therapies. Finally, modulation of JNK signaling centers in developing antennae and legs changes their sizes, suggesting a more generalizable role for JNK signaling in developmental organ size control. DOI: http://dx.doi.org/10.7554/eLife.11491.001 PMID:26974344

  7. Genetic inhibition of JNK3 ameliorates spinal muscular atrophy

    PubMed Central

    Genabai, Naresh K.; Ahmad, Saif; Zhang, Zhanying; Jiang, Xiaoting; Gabaldon, Cynthia A.; Gangwani, Laxman

    2015-01-01

    Mutation of the Survival Motor Neuron 1 (SMN1) gene causes spinal muscular atrophy (SMA), an autosomal recessive neurodegenerative disorder that occurs in early childhood. Degeneration of spinal motor neurons caused by SMN deficiency results in progressive muscle atrophy and death in SMA. The molecular mechanism underlying neurodegeneration in SMA is unknown. No treatment is available to prevent neurodegeneration and reduce the burden of illness in SMA. We report that the c-Jun NH2-terminal kinase (JNK) signaling pathway mediates neurodegeneration in SMA. The neuron-specific isoform JNK3 is required for neuron degeneration caused by SMN deficiency. JNK3 deficiency reduces degeneration of cultured neurons caused by low levels of SMN. Genetic inhibition of JNK pathway in vivo by Jnk3 knockout results in amelioration of SMA phenotype. JNK3 deficiency prevents the loss of spinal cord motor neurons, reduces muscle degeneration, improves muscle fiber thickness and muscle growth, improves motor function and overall growth and increases lifespan of mice with SMA that shows a systemic rescue of phenotype by a SMN-independent mechanism. JNK3 represents a potential (non-SMN) therapeutic target for the treatment of SMA. PMID:26423457

  8. Ca2+ oscillation induced by P2Y2 receptor activation and its regulation by a neuron-specific subtype of PKC (gammaPKC).

    PubMed

    Ashida, Noriaki; Ueyama, Takehiko; Rikitake, Kyoko; Shirai, Yasuhito; Eto, Mika; Kondoh, Takeshi; Kohmura, Eiji; Saito, Naoaki

    2008-12-03

    We found that stimulation of P2Y2 receptor (P2Y2R), which is endogenously expressed in CHO-K1 cells, induced intracellular calcium ([Ca2+]i) oscillation with a low frequency of 11.4 +/- 2.7 mHz. When CHO-K1 cells expressing GFP-tagged kinase-negative gammaPKC (gammaPKC-KN-GFP), which is a neuron-specific subtype of PKC, were stimulated with UDP, gammaPKC-KN-GFP, but not wild-type gammaPKC (gammaPKC-GFP) showed an oscillatory translocation. The oscillatory translocation of gammaPKC-KN-GFP corresponded with [Ca2+]i oscillation, which was not observed in the cells expressing gammaPKC-GFP. We examined the mechanism ofP2Y2R-induced [Ca2+]i oscillation pharmacologically. gammaPKC-KN-GFP oscillation was stopped by an extracellular Ca2+ chelator, EGTA, an antagonist of P2Y2R, Suramin, and store-operated calcium channel (SOC) inhibitors, SKF96365 and 2-ABP. Taken together, P2Y2R-induced [Ca2+]i oscillation in CHO-K1 cells is related with Ca2+ influx through SOC, whose function may be negatively regulated by gammaPKC. This [Ca2]i oscillation was distinct from that induced by metabotropic glutamate receptor 5 (mGluR5) stimulation in the frequency (72.3 +/- 5.3 mHz) and in the regulatory mechanism.

  9. Design, synthesis, and biological evaluation of novel FAK scaffold inhibitors targeting the FAK–VEGFR3 protein–protein interaction

    PubMed Central

    Kurenova, Elena V.; Magis, Andrew T.; Pandey, Ravindra K.; Cance, William G.

    2015-01-01

    Focal adhesion kinase (FAK) and vascular endothelial growth factor receptor 3 (VEGFR3) are tyrosine kinases, which function as key modulators of survival and metastasis signals in cancer cells. Previously, we reported that small molecule chlorpyramine hydrochloride (C4) specifically targets the interaction between FAK and VEGFR3 and exhibits anti-tumor efficacy. In this study, we designed and synthesized a series of 1 (C4) analogs on the basis of structure activity relationship and molecular modeling. The resulting new compounds were evaluated for their binding to the FAT domain of FAK and anti-cancer activity. Amongst all tested analogs, compound 29 augmented anti-proliferative activity in multiple cancer cell lines with stronger binding to the FAT domain of FAK and disrupted the FAK–VEGFR3 interaction. In conclusion, we hope that this work will contribute to further studies of more potent and selective FAK–VEGFR3 protein–protein interaction inhibitors. PMID:24780592

  10. Targeting JNK for therapeutic benefit: from junk to gold?

    PubMed

    Manning, Anthony M; Davis, Roger J

    2003-07-01

    The c-Jun NH(2)-terminal kinases (JNKs) phosphorylate and activate members of the activator protein-1 (AP-1) transcription factor family and other cellular factors implicated in regulating altered gene expression, cellular survival and proliferation in response to cytokines and growth factors, noxious stimuli and oncogenic transformation. Because these events are commonly associated with the pathogenesis of a number of human diseases, the potential of JNK inhibitors as therapeutics has attracted considerable interest. Here we discuss the evidence supporting the application of JNK inhibitors in inflammatory, vascular, neurodegenerative, metabolic and oncological diseases in humans, and describe the present status of drug discovery targeting JNK.

  11. A FAK/Src chimera with gain-of-function properties promotes formation of large peripheral adhesions associated with dynamic actin assembly.

    PubMed

    Siesser, Priscila M F; Meenderink, Leslie M; Ryzhova, Larisa; Michael, Kristin E; Dumbauld, David W; García, Andrés J; Kaverina, Irina; Hanks, Steven K

    2008-01-01

    Formation of a complex between the tyrosine kinases FAK and Src is a key integrin-mediated signaling event implicated in cell motility, survival, and proliferation. Past studies indicate that FAK functions in the complex primarily as a "scaffold," acting to recruit and activate Src within cell/matrix adhesions. To study the cellular impact of FAK-associated Src signaling we developed a novel gain-of-function approach that involves expressing a chimeric protein with the FAK kinase domain replaced by the Src kinase domain. This FAK/Src chimera is subject to adhesion-dependent activation and promotes tyrosine phosphorylation of p130Cas and paxillin to higher steady-state levels than is achieved by wild-type FAK. When expressed in FAK -/- mouse embryo fibroblasts, the FAK/Src chimera resulted in a striking cellular phenotype characterized by unusual large peripheral adhesions, enhanced adhesive strength, and greatly reduced motility. Live cell imaging of the chimera-expressing FAK -/- cells provided evidence that the large peripheral adhesions are associated with a dynamic actin assembly process that is sensitive to a Src-selective inhibitor. These findings suggest that FAK-associated Src kinase activity has the capacity to promote adhesion integrity and actin assembly.

  12. FAK Is Required for Schwann Cell Spreading on Immature Basal Lamina to Coordinate the Radial Sorting of Peripheral Axons with Myelination

    PubMed Central

    Grove, Matthew

    2014-01-01

    Without Focal Adhesion Kinase (FAK), developing murine Schwann cells (SCs) proliferate poorly, sort axons inefficiently, and cannot myelinate peripheral nerves. Here we show that FAK is required for the development of SCs when their basal lamina (BL) is fragmentary, but not when it is mature in vivo. Mutant SCs fail to spread on fragmentary BL during development in vivo, and this is phenocopied by SCs lacking functional FAK on low laminin (LN) in vitro. Furthermore, SCs without functional FAK initiate differentiation prematurely, both in vivo and in vitro. In contrast to their behavior on high levels of LN, SCs lacking functional FAK grown on low LN display reduced spreading, proliferation, and indicators of contractility (i.e., stress fibers, arcs, and focal adhesions) and are primed to differentiate. Growth of SCs lacking functional FAK on increasing LN concentrations in vitro revealed that differentiation is not regulated by G1 arrest but rather by cell spreading and the level of contractile actomyosin. The importance of FAK as a critical regulator of the specific response of developing SCs to fragmentary BL was supported by the ability of adult FAK mutant SCs to remyelinate demyelinated adult nerves on mature BL in vivo. We conclude that FAK promotes the spreading and actomyosin contractility of immature SCs on fragmentary BL, thus maintaining their proliferation, and preventing differentiation until they reach high density, thereby promoting radial sorting. Hence, FAK has a critical role in the response of SCs to limiting BL by promoting proliferation and preventing premature SC differentiation. PMID:25274820

  13. Vascular growth responses to chronic arterial occlusion are unaffected by myeloid specific focal adhesion kinase (FAK) deletion

    NASA Astrophysics Data System (ADS)

    Heuslein, Joshua L.; Murrell, Kelsey P.; Leiphart, Ryan J.; Llewellyn, Ryan A.; Meisner, Joshua K.; Price, Richard J.

    2016-05-01

    Arteriogenesis, or the lumenal expansion of pre-existing arterioles in the presence of an upstream occlusion, is a fundamental vascular growth response. Though alterations in shear stress stimulate arteriogenesis, the migration of monocytes into the perivascular space surrounding collateral arteries and their differentiation into macrophages is critical for this vascular growth response to occur. Focal adhesion kinase’s (FAK) role in regulating cell migration has recently been expanded to primary macrophages. We therefore investigated the effect of the myeloid-specific conditional deletion of FAK on vascular remodeling in the mouse femoral arterial ligation (FAL) model. Using laser Doppler perfusion imaging, whole mount imaging of vascular casted gracilis muscles, and immunostaining for CD31 in gastrocnemius muscles cross-sections, we found that there were no statistical differences in perfusion recovery, arteriogenesis, or angiogenesis 28 days after FAL. We therefore sought to determine FAK expression in different myeloid cell populations. We found that FAK is expressed at equally low levels in Ly6Chi and Ly6Clo blood monocytes, however expression is increased over 2-fold in bone marrow derived macrophages. Ultimately, these results suggest that FAK is not required for monocyte migration to the perivascular space and that vascular remodeling following arterial occlusion occurs independently of myeloid specific FAK.

  14. Oxidized LDL induces FAK-dependent RSK signaling to drive NF-κB activation and VCAM-1 expression.

    PubMed

    Yurdagul, Arif; Sulzmaier, Florian J; Chen, Xiao L; Pattillo, Christopher B; Schlaepfer, David D; Orr, A Wayne

    2016-04-15

    Oxidized low-density lipoprotein (oxLDL) accumulates early in atherosclerosis and promotes endothelial nuclear factor κB (NF-κB) activation, proinflammatory gene expression and monocyte adhesion. Like for other atherogenic factors, oxLDL-induced proinflammatory responses requires integrin-dependent focal adhesion kinase (FAK, also known as PTK2) signaling; however, the mechanism by which FAK mediates oxLDL-dependent NF-κB signaling has yet to be revealed. We now show that oxLDL induces NF-κB activation and VCAM-1 expression through FAK-dependent IκB kinase β (IKKβ, also known as IKBKB) activation. We further identify FAK-dependent activation of p90 ribosomal S6 kinase family proteins (RSK) as a crucial mediator of oxLDL-dependent IKKβ and NF-κB signaling, as inhibiting RSK blocks oxLDL-induced IKKβ and NF-κB activation, VCAM-1 expression and monocyte adhesion. Finally, transgenic mice containing a kinase-dead mutation in FAK specifically in the endothelial cells show reduced RSK activity, decreased VCAM-1 expression and reduced macrophage accumulation in regions of early atherosclerosis. Taken together, our data elucidates a new mechanism whereby oxLDL-induced endothelial FAK signaling drives an ERK-RSK pathway to activate IKKβ and NF-κB signaling and proinflammatory gene expression. © 2016. Published by The Company of Biologists Ltd.

  15. Antroquinonol Targets FAK-Signaling Pathway Suppressed Cell Migration, Invasion, and Tumor Growth of C6 Glioma

    PubMed Central

    Thiyagarajan, Varadharajan; Tsai, May-Jywan; Weng, Ching-Feng

    2015-01-01

    Focal adhesion kinase (FAK) is a non-receptor protein tyrosine that is overexpressed in many types of tumors and plays a pivotal role in multiple cell signaling pathways involved in cell survival, migration, and proliferation. This study attempts to determine the effect of synthesized antroquinonol on the modulation of FAK signaling pathways and explore their underlying mechanisms. Antroquinonol significantly inhibits cell viability with an MTT assay in both N18 neuroblastoma and C6 glioma cell lines, which exhibits sub G1 phase cell cycle, and further induction of apoptosis is confirmed by a TUNEL assay. Antroquinonol decreases anti-apoptotic proteins, whereas it increases p53 and pro-apoptotic proteins. Alterations of cell morphology are observed after treatment by atomic force microscopy. Molecular docking results reveal that antroquinonol has an H-bond with the Arg 86 residue of FAK. The protein levels of Src, pSrc, FAK, pFAK, Rac1, and cdc42 are decreased after antroquinonol treatment. Additionally, antroquinonol also regulates the expression of epithelial to mesenchymal transition (EMT) proteins. Furthermore, antroquinonol suppresses the C6 glioma growth in xenograft studies. Together, these results suggest that antroquinonol is a potential anti-tumorigenesis and anti-metastasis inhibitor of FAK. PMID:26517117

  16. Isoform-specific translocation of PKC isoforms in NIH3T3 cells by TPA

    SciTech Connect

    Kazi, Julhash U.; Soh, Jae-Won

    2007-12-14

    Protein kinase C (PKC), a multi-gene family of enzymes, plays key roles in the pathways of signal transduction, growth control and tumorigenesis. Variations in the intracellular localization of the individual isoforms are thought to be an important mechanism for the isoform-specific regulation of enzyme activity and substrate specificity. To provide a dynamic method of analyzing the localization of the specific isoforms of PKC in living cells, we generated fluorescent fusion proteins of the various PKC isoforms by using the green fluorescent protein (GFP) as a fluorescent marker at the carboxyl termini of these enzymes. The intracellular localization of the specific PKC isoforms was then examined by fluorescence microscopy after transient transfection of the respective PKC-GFP expression vector into NIH3T3 cells and subsequent TPA stimulation. We found that the specific isoforms of PKC display distinct localization patterns in untreated NIH3T3 cells. For example, PKC{alpha} is localized mainly in the cytoplasm while PKC{epsilon} is localized mainly in the Golgi apparatus. We also observed that PKC{alpha}, {beta}1, {beta}2, {gamma}, {delta}, {epsilon}, and {eta} translocate to the plasma membrane within 10 min of the start of TPA treatment, while the cellular localizations of PKC{zeta} and {iota} were not affected by TPA. Using a protein kinase inhibitor, we also showed that the kinase activity was not important for the translocation of PKC. These results suggest that specific PKC isoforms exert spatially distinct biological effects by virtue of their directed translocation to different intracellular sites.

  17. Pkc-Mediated Stimulation of Amphibian Cftr Depends on a Single Phosphorylation Consensus Site. Insertion of This Site Confers Pkc Sensitivity to Human Cftr

    PubMed Central

    Button, Brian; Reuss, Luis; Altenberg, Guillermo A.

    2001-01-01

    Mutations of the CFTR, a phosphorylation-regulated Cl− channel, cause cystic fibrosis. Activation of CFTR by PKA stimulation appears to be mediated by a complex interaction between several consensus phosphorylation sites in the regulatory domain (R domain). None of these sites has a critical role in this process. Here, we show that although endogenous phosphorylation by PKC is required for the effect of PKA on CFTR, stimulation of PKC by itself has only a minor effect on human CFTR. In contrast, CFTR from the amphibians Necturus maculosus and Xenopus laevis (XCFTR) can be activated to similar degrees by stimulation of either PKA or PKC. Furthermore, the activation of XCFTR by PKC is independent of the net charge of the R domain, and mutagenesis experiments indicate that a single site (Thr665) is required for the activation of XCFTR. Human CFTR lacks the PKC phosphorylation consensus site that includes Thr665, but insertion of an equivalent site results in a large activation upon PKC stimulation. These observations establish the presence of a novel mechanism of activation of CFTR by phosphorylation of the R domain, i.e., activation by PKC requires a single consensus phosphorylation site and is unrelated to the net charge of the R domain. PMID:11331356

  18. A pseudosubstrate of PKC inhibits the phorbol dibutyrate (PDBu) effect on permeabilized smooth muscle

    SciTech Connect

    Sullivan, T.S.; Wells, J.N. )

    1991-03-11

    Phorbol esters can induce contraction of vascular smooth muscle and potentiate calcium-induced contractions of permeabilized smooth muscle strips. The authors have used a synthetic peptide inhibitor based on residues 19-31 of PKC (PKC-I) to determine the importance of PKC in the PDBu potentiation of calcium-induced contractions in permeabilized coronary artery smooth muscle. Although peptides similar to PKC-I have been shown to also inhibit MLCK in vitro, MLCK was presumably not inhibited in our system since 30 {mu}M PKC-I alone did not alter the calcium-induced contractions. However, the potentiation of these contractions by 1 {mu}M PDBu was reduced by about 50% in the presence of 10 {mu}M PKC-I, and the potentiation was completely abolished by 30 {mu}M PKC-I. These data indicate that, in this system, PKC is not involved in calcium-induced contractions but that activation of PKC may be the mechanism by which PDBu potentiates calcium-induced contractions in permeabilized coronary artery smooth muscle.

  19. Regulation of aPKC activity by Nup358 dependent SUMO modification

    PubMed Central

    Yadav, Santosh Kumar; Magre, Indrasen; Singh, Aditi; Khuperkar, Deepak; Joseph, Jomon

    2016-01-01

    Atypical PKC (aPKC) family members are involved in regulation of diverse cellular processes, including cell polarization. aPKCs are known to be activated by phosphorylation of specific threonine residues in the activation loop and turn motif. They can also be stimulated by interaction with Cdc42~GTP-Par6 complex. Here we report that PKCζ, a member of the aPKC family, is activated by SUMOylation. We show that aPKC is endogenously modified by SUMO1 and the nucleoporin Nup358 acts as its SUMO E3 ligase. Results from in vitro SUMOylation and kinase assays showed that the modification enhances the kinase activity of PKCζ by ~10-fold. By monitoring the phosphorylation of Lethal giant larvae (Lgl), a downstream target of aPKC, we confirmed these findings in vivo. Consistent with the function of Nup358 as a SUMO E3 ligase for aPKC, depletion of Nup358 attenuated the extent of SUMOylation and the activity of aPKC. Moreover, overexpression of the C-terminal fragment of Nup358 that possesses the E3 ligase activity enhanced SUMOylation of endogenous aPKC and its kinase activity. Collectively, our studies reveal a role for Nup358-dependent SUMOylation in the regulation of aPKC activity and provide a framework for understanding the role of Nup358 in cell polarity. PMID:27682244

  20. DaPKC-dependent phosphorylation of Crumbs is required for epithelial cell polarity in Drosophila

    PubMed Central

    Sotillos, Sol; Díaz-Meco, María Teresa; Caminero, Eva; Moscat, Jorge; Campuzano, Sonsoles

    2004-01-01

    Both in Drosophila and vertebrate epithelial cells, the establishment of apicobasal polarity requires the apically localized, membrane-associated Par-3–Par-6–aPKC protein complex. In Drosophila, this complex colocalizes with the Crumbs–Stardust (Sdt)–Pals1-associated TJ protein (Patj) complex. Genetic and molecular analyses suggest a functional relationship between them. We show, by overexpression of a kinase-dead Drosophila atypical PKC (DaPKC), the requirement for the kinase activity of DaPKC to maintain the position of apical determinants and to restrict the localization of basolateral ones. We demonstrate a novel physical interaction between the apical complexes, via direct binding of DaPKC to both Crb and Patj, and identify Crumbs as a phosphorylation target of DaPKC. This phosphorylation of Crumbs is functionally significant. Thus, a nonphosphorylatable Crumbs protein behaves in vivo as a dominant negative. Moreover, the phenotypic effect of overexpressing wild-type Crumbs is suppressed by reducing DaPKC activity. These results provide a mechanistic framework for the functional interaction between the Par-3–Par-6–aPKC and Crumbs–Sdt–Patj complexes based in the posttranslational modification of Crb by DaPKC. PMID:15302858

  1. Structural Insights How PIP2 Imposes Preferred Binding Orientations of FAK at Lipid Membranes.

    PubMed

    Herzog, Florian A; Braun, Lukas; Schoen, Ingmar; Vogel, Viola

    2017-04-20

    Focal adhesion kinase (FAK) is a multidomain protein (FERM-kinase-FAT) with important signaling functions in the regulation of cell-substrate adhesions. Its inactive, autoinhibited form is recruited from the cytoplasm to the plasma membrane, where it becomes activated at PIP2 enriched regions. To elucidate the molecular basis of activation, we performed a systematic screening of binding orientations of FAK's autoinhibited FERM-kinase complex, as well as of the dissociated FERM and kinase domains alone, on model plasma membranes using coarse-grained scFix MARTINI simulations, partially corroborated by atomistic MD simulations. The proteins adopted many more different orientations than previously thought. The presence of PIP2 tuned and narrowed the complex map of competing interfacial orientations. The dissociated FERM domain most frequently interacted with the membrane through its autoinhibitory interface rather than with the "basic patch" residues. These findings suggest a PIP2-dependent activation mechanism in which membrane binding of the dissociated FERM domain competes with the rebinding of the kinase domain. This competition could promote FAK autophosphorylation on Y397 and subsequent Src binding. The orientation of peripheral proteins at membranes is crucial to understand cell adhesion processes and is furthermore required to exploit steered molecular dynamics to predict how tensile forces might switch their active states.

  2. Caffeine inhibits migration in glioma cells through the ROCK-FAK pathway.

    PubMed

    Chen, Ying; Chou, Wei-Chung; Ding, You-Ming; Wu, Ya-Chieh

    2014-01-01

    Glioma is the most malignant brain tumor that has the ability to migrate and invade the CNS. In this study, we investigated the signaling mechanism of caffeine on the migration of glioma cells. The effect of caffeine on cell migration was evaluated using Transwell and wound healing assays. The expression of the focal adhesion complex as it related to cell migration was assayed using Western blotting and immunostaining. Caffeine decreased the migration of rat C6 and human U87MG glioma cells and down-regulated the expression of phosphorylated focal adhesion kinase (p-FAK) and p-paxillin. Caffeine also decreased p-FAK staining at the edge of glioma cells and disassembled actin stress fibers. Additionally, caffeine elevated expression of phosphorylated myosin light chain (p-MLC), an effect that could be blocked by Y27632, a rho-associated protein kinase (ROCK) inhibitor, but not myosin light chain kinase inhibitor, ML-7. Y27632 also inhibited the caffeine-reduced expression of p-FAK and p-paxillin as well as cell migration. Caffeine decreased the migration of glioma cell through the ROCK-focal adhesion complex pathway; this mechanism may be useful as part of clinical therapy in the future. © 2014 S. Karger AG, Basel

  3. FAK and Src kinases are required for netrin-induced tyrosine phosphorylation of UNC5.

    PubMed

    Li, Weiquan; Aurandt, Jennifer; Jürgensen, Claudia; Jürgense, Claudia; Rao, Yi; Guan, Kun-Liang

    2006-01-01

    During neuronal development, netrin and its receptors UNC5 and DCC (deleted in colorectal cancer) guide axonal growth cones in navigating to their targets. Netrin also plays important roles in the regulation of cell migration, tissue morphogenesis and tumor growth. Here, we show that netrin induces UNC5 tyrosine phosphorylation and that this effect of netrin is dependent on its co-receptor DCC. UNC5 tyrosine phosphorylation is known to be important for netrin to induce cell migration and axonal repulsion. Src tyrosine kinase activity is required for netrin to stimulate UNC5 tyrosine phosphorylation in neurons and transfected cells. The SH2 domain of Src kinase directly interacts with the cytosolic domain of UNC5 in a tyrosine-phosphorylation-dependent manner. Furthermore, the tyrosine kinase focal adhesion kinase (FAK) is also involved in netrin-induced UNC5 tyrosine phosphorylation. Both Src and FAK can phosphorylate UNC5. Our data suggest a model in which netrin stimulates UNC5 tyrosine phosphorylation and signaling in a manner dependent on the co-receptor DCC, through the recruitment of Src and FAK kinases.

  4. PCTK3/CDK18 regulates cell migration and adhesion by negatively modulating FAK activity

    PubMed Central

    Matsuda, Shinya; Kawamoto, Kohei; Miyamoto, Kenji; Tsuji, Akihiko; Yuasa, Keizo

    2017-01-01

    PCTAIRE kinase 3 (PCTK3) is a member of the cyclin dependent kinase family, but its physiological function remains unknown. We previously reported that PCTK3-knockdown HEK293T cells showed actin accumulation at the leading edge, suggesting that PCTK3 is involved in the regulation of actin reorganization. In this study, we investigated the physiological function and downstream signal transduction molecules of PCTK3. PCTK3 knockdown in HEK293T cells increased cell motility and RhoA/Rho-associated kinase activity as compared with control cells. We also found that phosphorylation at residue Tyr-397 in focal adhesion kinase (FAK) was increased in PCTK3-knockdown cells. FAK phosphorylation at Tyr-397 was increased in response to fibronectin stimulation, whereas its phosphorylation was suppressed by PCTK3. In addition, excessive expression of PCTK3 led to the formation of filopodia during the early stages of cell adhesion in HeLa cells. These results indicate that PCTK3 controls actin cytoskeleton dynamics by negatively regulating the FAK/Rho signaling pathway. PMID:28361970

  5. CEACAM6 promotes tumor angiogenesis and vasculogenic mimicry in gastric cancer via FAK signaling.

    PubMed

    Zang, Mingde; Zhang, Yunqiang; Zhang, Baogui; Hu, Lei; Li, Jianfang; Fan, Zhiyuan; Wang, Hexiao; Su, Liping; Zhu, Zhenggang; Li, Chen; Yan, Chao; Gu, Qinlong; Liu, Bingya; Yan, Min

    2015-05-01

    CEACAM6 is a member of glycosylphosphatidylinositol-linked immunoglobulin superfamily that is implicated in a variety of human cancers. In our previous study, we reported that CEACAM6 was overexpressed in gastric cancer tissues and promoted cancer metastasis. The purpose of this study is to determine the role of CEACAM6 in tumor angiogenesis and mimicry formation. We found that overexpressed CEACAM6 promoted tubule formation dependent on HUVEC cells and vasculogenic mimicry formation of gastric cancer cells; opposing results were achieved in CEACAM6-silenced groups. Moreover, we found that mosaic vessels formed by HUVEC cells and gastric cancer cells were observed in vitro by 3D-culture assay. Overexpressed CEACAM6 in gastric cancer cells promoted tumor growth, VEGF expression and vasculogenic mimicry structures formation in vivo. In accordance with these observations, we found that phosphorylation of FAK and phosphorylation of paxillin were up-regulated in CEACAM6-overexpressing gastric cancer cells, and FAK inhibitor Y15 could reduce tubule and vasculogenic mimicry formation. These findings suggest that CEACAM6 promotes tumor angiogenesis and vasculogenic mimicry formation via FAK signaling in gastric cancer and CEACAM6 may be a new target for cancer anti-vascular treatment.

  6. CB₁ cannabinoid receptors promote maximal FAK catalytic activity by stimulating cooperative signaling between receptor tyrosine kinases and integrins in neuronal cells.

    PubMed

    Dalton, George D; Peterson, Lynda J; Howlett, Allyn C

    2013-08-01

    Tyrosine phosphorylation (Tyr-P) of focal adhesion kinase (FAK) regulates FAK activation. Phosphorylated FAK Tyr 397 binds Src family kinases (Src), which in turn directly phosphorylate FAK Tyr 576/577 to produce maximal FAK enzymatic activity. CB₁ cannabinoid receptors (CB₁) are abundantly expressed in the nervous system and influence FAK activation by presently unknown mechanisms. The current investigation determined that CB₁-stimulated maximal FAK catalytic activity is mediated by Gi/o proteins in N18TG2 neuronal cells, and that G12/13 regulation of Rac1 and RhoA occurs concomitantly. Immunoblotting analyses using antibodies against FAK phospho-Tyr 397 and phospho-Tyr 576/577 demonstrated that the time-course of CB₁-stimulated FAK 576/577 Tyr-P occurred in three phases: Phase I (0-2 min) maximal Tyr-P, Phase II (5-20 min) rapid decline in Tyr-P, and Phase III (>20 min) plateau in Tyr-P at submaximal levels. In contrast, FAK 397 Tyr-P was monophasic and significantly lower in magnitude. FAK 397 Tyr-P and Phase I FAK 576/577 Tyr-P involved protein tyrosine phosphatase (PTP1B and Shp1/Shp2)-mediated Src activation, Protein Kinase A (PKA) inhibition, and integrin activation. Phase I maximal FAK 576/577 Tyr-P also required cooperative signaling between receptor tyrosine kinases (RTKs) and integrins. The integrin antagonist RGDS peptide, Flk-1 vascular endothelial growth factor receptor (VEGFR) antagonist SU5416, and epidermal growth factor receptor (EGFR) antagonist AG 1478 blocked Phase I FAK 576/577 Tyr-P. CB₁ agonists failed to stimulate FAK Tyr-P in the absence of integrin activation upon suspension in serum-free culture media. In contrast, cells grown on the integrin ligands fibronectin and laminin displayed increased FAK 576/577 Tyr-P that was augmented by CB₁ agonists and blocked by the Src inhibitor PP2 and Flk-1 VEGFR antagonist SU5416. Taken together, these studies have identified a complex integrative pathway utilized by CB₁ to stimulate

  7. Complex modulation of the expression of PKC isoforms in the rat brain during chronic type 1 diabetes mellitus.

    PubMed

    Vetri, Francesco; Chavez, Rafael; Xu, Hao-Liang; Paisansathan, Chanannait; Pelligrino, Dale A

    2013-01-15

    We previously demonstrated that chronic hyperglycemia has a detrimental influence on neurovascular coupling in the brain-an effect linked to an alteration in the protein kinase C (PKC)-mediated phosphorylation pattern. Moreover, the activity of PKC was increased, in diabetic rat brain, in a tissue fraction composed primarily of the superficial glia limitans and pial vessels, but trended toward a decrease in cerebral cortical gray matter. However, that study did not examine the expression patterns of PKC isoforms in the rat brain. Thus, in a rat model of streptozotocin (STZ)-induced chronic type 1 diabetes mellitus (T1DM), and in non-diabetic (ND) controls, two hypotheses were addressed. First, chronic T1DM is accompanied by changes in the expression of PKC-α, βII, γ, δ, and ε Second, those changes differ when comparing cerebral cortex and glio-pial tissue. In addition, we analyzed the expression of a form of PKC-γ, phosphorylated on threonine 514 (pT514-PKC-γ), as well as the receptor for activated C kinase 1 (RACK1). The expression pattern of different PKC isoforms was altered in a complex and tissue-specific manner during chronic hyperglycemia. Notably, in the gray matter, PKC-α expression significantly decreased, while pT514-PKC-γ expression increased. However, PKC-βII, -γ, -δ, -ε, and RACK1 expressions did not change. Conversely, in glio-pial tissue, PKC-α and RACK1 were upregulated, whereas PKC-γ, pT514-PKC-γ, and PKC-ε were downregulated. PKC-βII, and PKC-δ, were unchanged. These findings suggest that the PKC activity increase previously seen in the glio-pial tissue of diabetic rats may be due to the selective upregulation of PKC-α, and ultimately lead to the impairment of neurovascular coupling.

  8. Inhibition of JNK promotes differentiation of epidermal keratinocytes.

    PubMed

    Gazel, Alix; Banno, Tomohiro; Walsh, Rebecca; Blumenberg, Miroslav

    2006-07-21

    In inflamed tissue, normal signal transduction pathways are altered by extracellular signals. For example, the JNK pathway is activated in psoriatic skin, which makes it an attractive target for treatment. To define comprehensively the JNK-regulated genes in human epidermal keratinocytes, we compared the transcriptional profiles of control and JNK inhibitor-treated keratinocytes, using DNA microarrays. We identified the differentially expressed genes 1, 4, 24, and 48 h after the treatment with SP600125. Surprisingly, the inhibition of JNK in keratinocyte cultures in vitro induces virtually all aspects of epidermal differentiation in vivo: transcription of cornification markers, inhibition of motility, withdrawal from the cell cycle, stratification, and even production of cornified envelopes. The inhibition of JNK also induces the production of enzymes of lipid and steroid metabolism, proteins of the diacylglycerol and inositol phosphate pathways, mitochondrial proteins, histones, and DNA repair enzymes, which have not been associated with differentiation previously. Simultaneously, basal cell markers, including integrins, hemidesmosome and extracellular matrix components, are suppressed. Promoter analysis of regulated genes finds that the binding sites for the forkhead family of transcription factors are over-represented in the SP600125-induced genes and c-Fos sites in the suppressed genes. The JNK-induced proliferation appears to be secondary to inhibition of differentiation. The results indicate that the inhibition of JNK in epidermal keratinocytes is sufficient to initiate their differentiation program and suggest that augmenting JNK activity could be used to delay cornification and enhance wound healing, whereas attenuating it could be a differentiation therapy-based approach for treating psoriasis.

  9. JNK signaling is needed to tolerate chromosomal instability

    PubMed Central

    Wong, Heidi W-S; Shaukat, Zeeshan; Wang, Jianbin; Saint, Robert; Gregory, Stephen L

    2014-01-01

    Chromosomal instability (CIN), as a common feature of tumors, represents a potential therapeutic target if ways can be found to specifically cause apoptosis in unstably dividing cells. We have previously shown that if signaling through the JNK pathway is reduced, apoptosis is triggered in models of chromosomal instability induced by loss of the spindle checkpoint. Here we identify components upstream and downstream of JNK that are able to mediate this effect, and test the involvement of p53 and DNA damage in causing apoptosis when JNK signaling is reduced in CIN cells. We show that cell cycle progression timing has a strong effect on the apoptosis seen when JNK signaling is reduced in genetically unstable cells: a shortened G2 phase enhances the apoptosis, while lengthening G2 rescues the JNK-deficient CIN cell death phenotype. Our findings suggest that chromosomal instability represents a significant stress to dividing cells, and that without JNK signaling, cells undergo apoptosis because they lack a timely and effective response to DNA damage. PMID:24335260

  10. Inhibition of PKC activity blocks the increase of ETB receptor expression in cerebral arteries

    PubMed Central

    Henriksson, Marie; Vikman, Petter; Stenman, Emelie; Beg, Saema; Edvinsson, Lars

    2006-01-01

    Background Previous studies have shown that there is a time-dependent upregulation of contractile endothelin B (ETB) receptors in middle cerebral arteries (MCA) after organ culture. This upregulation is dependent on mitogen-activated protein kinases and possibly protein kinase C (PKC). The aim of this study was to examine the effect of PKC inhibitors with different profiles on the upregulation of contractile ETB receptors in rat MCA. Artery segments were incubated for 24 hours at 37°C. To investigate involvement of PKC, inhibitors were added to the medium before incubation. The contractile endothelin-mediated responses were measured and real-time PCR was used to detect endothelin receptor mRNA levels. Furthermore, immunohistochemistry was used to demonstrate the ETB receptor protein distribution in the MCA and Western blot to measure which of the PKC subtypes that were affected by the inhibitors. Results The PKC inhibitors bisindolylmaleimide I, Ro-32-0432 and PKC inhibitor 20–28 attenuated the ETB receptor mediated contractions. Furthermore, Ro-32-0432 and bisindolylmaleimide I decreased ETB receptor mRNA levels while PKC inhibitor 20–28 reduced the amount of receptor protein on smooth muscle cells. PKC inhibitor 20–28 also decreased the protein levels of the five PKC subtypes studied (α, βI, γ, δ and ε). Conclusion The results show that PKC inhibitors are able to decrease the ETB receptor contraction and expression in MCA smooth muscle cells following organ culture. The PKC inhibitor 20–28 affects the protein levels, while Ro-32-0432 and bisindolylmaleimide I affect the mRNA levels, suggesting differences in activity profile. Since ETB receptor upregulation is seen in cerebral ischemia, the results of the present study provide a way to interfere with the vascular involvement in cerebral ischemia. PMID:17129394

  11. Abnormal cell properties and down-regulated FAK-Src complex signaling in B lymphoblasts of autistic subjects.

    PubMed

    Wei, Hongen; Malik, Mazhar; Sheikh, Ashfaq M; Merz, George; Ted Brown, W; Li, Xiaohong

    2011-07-01

    Recent studies suggest that one of the major pathways to the pathogenesis of autism is reduced cell migration. Focal adhesion kinase (FAK) has an important role in neural migration, dendritic morphological characteristics, axonal branching, and synapse formation. The FAK-Src complex, activated by upstream reelin and integrin β1, can initiate a cascade of phosphorylation events to trigger multiple intracellular pathways, including mitogen-activated protein kinase-extracellular signal-regulated kinase and phosphatidylinositol 3-kinase-Akt signaling. In this study, by using B lymphoblasts as a model, we tested whether integrin β1 and FAK-Src signaling are abnormally regulated in autism and whether abnormal FAK-Src signaling leads to defects in B-lymphoblast adhesion, migration, proliferation, and IgG production. To our knowledge, for the first time, we show that protein expression levels of both integrin β1 and FAK are significantly decreased in autistic lymphoblasts and that Src protein expression and the phosphorylation of an active site (Y416) are also significantly decreased. We also found that lymphoblasts from autistic subjects exhibit significantly decreased migration, increased adhesion properties, and an impaired capacity for IgG production. The overexpression of FAK in autistic lymphoblasts countered the adhesion and migration defects. In addition, we demonstrate that FAK mediates its effect through the activation of Src, phosphatidylinositol 3-kinase-Akt, and mitogen-activated protein kinase signaling cascades and that paxillin is also likely involved in the regulation of adhesion and migration in autistic lymphoblasts. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Effect of JNK inhibitor SP600125 on hair cell regeneration in zebrafish (Danio rerio) larvae

    PubMed Central

    Sun, Shaoyang; Wang, Xu; Li, Wenyan; Li, Huawei

    2016-01-01

    The c-Jun amino-terminal kinase (JNK) proteins are a subgroup of the mitogen-activated protein kinase family. They play a complex role in cell proliferation, survival, and apoptosis. Here, we report a novel role of JNK signalling in hair cell regeneration. We eliminated hair cells of 5-day post-fertilization zebrafish larvae using neomycin followed by JNK inhibition with SP600125. JNK inhibition strongly decreased the number of regenerated hair cells in response to neomycin damage. These changes were associated with reduced proliferation. JNK inhibition also increased cleaved caspase-3 activity and induced apoptosis in regenerating neuromasts. Finally, JNK inhibition with SP600125 decreased the expression of genes related to Wnt. Over-activation of the Wnt signalling pathway partly rescued the hair cell regeneration defects induced by JNK inhibition. Together, our findings provide novel insights into the function of JNK and show that JNK inhibition blocks hair cell regeneration by controlling the Wnt signalling pathway. PMID:27438150

  13. Regulation of the viability of Nf1 deficient cells by PKC isoforms.

    PubMed

    Zhou, Xiaodong; Shen, Ling; Parris, Toshima; Huang, Junchi; Yi, Bo; Helou, Khalil; Chen, Changyan

    2014-11-15

    Suppression of protein kinase C (PKC) is known to be synthetically lethal with ras mutations in various types of cancer cells. The studies also showed that blockade of PKC affected the viability of Nf1 deficient cells. Since PKC family consists of more than 10 isoforms, our study aimed at identifying which isoform(s) played the crucial role in sensitizing Nf1 deficient cells to apoptosis. Using genetic and chemical PKC inhibitors, we demonstrated that the concurrent inhibition of PKC α and β induced Nf1 deficient ST or 96.2 cells, but not SNF02.2 cells with a normal Nf1 or ST cells ectopically expressing Nf1 effective domain gene, to apoptosis. In this process, PKC δ in Nf1 deficient cells, but not in ST/Nf1 cells, was upregulated and translocated to the nucleus. Furthermore, caspase 3 was cleaved and cytochrome c was released to the cytosol. Thus, it appeared that PKC δ and α/β are the crucial components for sustaining the aberrant Ras signaling and further viability of Nf1 deficient cells. The abrogation of these two isoforms activated their opponent PKC δ for switching on the caspase 3-governed apoptotic machinery.

  14. Hedgehog-regulated atypical PKC promotes phosphorylation and activation of Smoothened and Cubitus interruptus in Drosophila

    PubMed Central

    Jiang, Kai; Liu, Yajuan; Fan, Junkai; Epperly, Garretson; Gao, Tianyan; Jiang, Jin; Jia, Jianhang

    2014-01-01

    Smoothened (Smo) is essential for transduction of the Hedgehog (Hh) signal in both insects and vertebrates. Cell surface/cilium accumulation of Smo is thought to play an important role in Hh signaling, but how the localization of Smo is controlled remains poorly understood. In this study, we demonstrate that atypical PKC (aPKC) regulates Smo phosphorylation and basolateral accumulation in Drosophila wings. Inactivation of aPKC by either RNAi or a mutation inhibits Smo basolateral accumulation and attenuates Hh target gene expression. In contrast, expression of constitutively active aPKC elevates basolateral accumulation of Smo and promotes Hh signaling. The aPKC-mediated phosphorylation of Smo at Ser680 promotes Ser683 phosphorylation by casein kinase 1 (CK1), and these phosphorylation events elevate Smo activity in vivo. Moreover, aPKC has an additional positive role in Hh signaling by regulating the activity of Cubitus interruptus (Ci) through phosphorylation of the Zn finger DNA-binding domain. Finally, the expression of aPKC is up-regulated by Hh signaling in a Ci-dependent manner. Our findings indicate a direct involvement of aPKC in Hh signaling beyond its role in cell polarity. PMID:25349414

  15. PKC in rat dorsal raphe nucleus plays a key role in sleep-wake regulation.

    PubMed

    Li, Sheng-Jie; Cui, Su-Ying; Zhang, Xue-Qiong; Yu, Bin; Sheng, Zhao-Fu; Huang, Yuan-Li; Cao, Qing; Xu, Ya-Ping; Lin, Zhi-Ge; Yang, Guang; Cui, Xiang-Yu; Zhang, Yong-He

    2015-12-03

    Studies suggest a tight relationship between protein kinase C (PKC) and circadian clock. However, the role of PKC in sleep-wake regulation remains unclear. The present study was conducted to investigate the role of PKC signaling in sleep-wake regulation in the rat. Our results showed that the phosphorylation level of PKC in dorsal raphe nucleus (DRN) was decreased after 6h sleep deprivation, while no alterations were found in ventrolateral preoptic nucleus (VLPO) or locus coeruleus (LC). Microinjection of a pan-PKC inhibitor, chelerythrine chloride (CHEL, 5 or 10nmol), into DRN of freely moving rats promoted non rapid eye movement sleep (NREMS) without influences on rapid eye movement sleep (REMS). Especially, CHEL application at 5nmol increased light sleep (LS) time while CHEL application at 10nmol increased slow wave sleep (SWS) time and percentage. On the other hand, microinjection of CaCl2 into DRN not only increased the phosphorylation level of PKC, but also reduced NREMS time, especially SWS time and percentage. While CHEL abolished the inhibitory effect of CaCl2 on NREMS and SWS. These data provide the first direct evidence that inhibition of intracellular PKC signaling in DRN could increase NREMS time including SWS time and percentage, while activation of PKC could suppress NREMS and reduce SWS time and percentage. These novel findings further our understanding of the basic cellular and molecular mechanisms of sleep-wake regulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Biochemical and Genetic Evidence for a SAP-PKC-θ Interaction Contributing to IL-4 Regulation

    PubMed Central

    Cannons, Jennifer L.; Wu, Julie Z.; Gomez-Rodriguez, Julio; Zhang, Jinyi; Dong, Baoxia; Liu, Yin; Shaw, Stephen; Siminovitch, Katherine A.; Schwartzberg, Pamela L.

    2012-01-01

    SAP, an adaptor molecule that recruits Fyn to the SLAM-family of immunomodulatory receptors, is mutated in X-linked lymphoproliferative disease. CD4+ T cells from SAP-deficient mice have defective TCR-induced IL-4 production and impaired T cell-mediated help for germinal center formation; however, the downstream intermediates contributing to these defects remain unclear. We previously found that SAP-deficient CD4+ T cells exhibit decreased PKC-θ recruitment upon TCR stimulation. We demonstrate here using GST-pulldowns and co-immunoprecipitation studies that SAP constitutively associates with PKC-θ in T cells. SAP-PKC-θ interactions required R78 of SAP, a residue previously implicated in Fyn recruitment, yet SAP’s interactions with PKC-θ occurred independent of phosphotyrosine binding and Fyn. Overexpression of SAP in T cells increased and sustained PKC-θ recruitment to the immune synapse and elevated IL-4 production in response to TCR plus SLAM-mediated stimulation. Moreover, PKC-θ, like SAP, was required for SLAM-mediated increases in IL-4 production and conversely, membrane-targeted PKC-θ mutants rescued IL-4 expression in SAP−/− CD4+ T cells, providing genetic evidence that PKC-θ is a critical component of SLAM/SAP-mediated pathways that influence TCR-driven IL-4 production. PMID:20668219

  17. Role of Calcium and PKC in Salivary Mucous Cell Exocrine Secretion

    PubMed Central

    Culp, D.J.; Zhang, Z.; Evans, R.L.

    2011-01-01

    Fluid and exocrine secretion of mucins by salivary mucous glands is regulated predominantly by parasympathetic activation of muscarinic receptors. A direct role for subsequent putative signaling steps, phospholipase C (PLC), increased intracellular calcium ([Ca2+]i), and isoforms of protein kinase C (PKC) in mediating muscarinic exocrine secretion has not been elucidated, and these are potential therapeutic targets to enhance mucin secretion in hyposalivary patients. We found that muscarinic-induced mucin secretion by rat sublingual tubulo-acini was dependent upon PLC activation and the subsequent increase in [Ca2+]i, and further identified a transient PKC-independent component of secretion dependent upon Ca2+ release from intracellular stores, whereas sustained secretion required entry of extracellular Ca2+. Interactions among carbachol, PKC inhibitors, phorbol 12-myristate 13-acetate, and thapsigargin to modulate [Ca2+]i implicated conventional PKC isoforms in mediating sustained secretion. With increasing times during carbachol perfusion of glands, in situ, PKC-α redistributed across glandular membrane compartments and underwent a rapid and persistent accumulation near the luminal borders of mucous cells. PKC-β1 displayed transient localization near luminal borders, whereas the novel PKCs, PKC-δ or PKC-ϵ, displayed little or no redistribution in mucous cells. Collective results implicate synergistic interactions between diacylglycerol (DAG) and increasing [Ca2+]i levels to activate cPKCs in mediating sustained muscarinic-induced secretion. PMID:21933938

  18. Novel protein kinase C inhibitors: synthesis and PKC inhibition of beta-substituted polythiophene derivatives.

    PubMed

    Xu, W C; Zhou, Q; Ashendel, C L; Chang, C T; Chang, C J

    1999-08-02

    A series of beta-substituted polythiophene derivatives was synthesized through palladium-catalyzed coupling reaction. Their structure-protein kinase C (PKC) inhibitory activity relationship was studied. The carboxaldehyde and hydroxymethyl derivatives of alpha-terthiophene were potent PKC inhibitors (IC50 = 10(-7) M).

  19. Tamoxifen inhibits tumor cell invasion and metastasis in mouse melanoma through suppression of PKC/MEK/ERK and PKC/PI3K/Akt pathways

    SciTech Connect

    Matsuoka, Hiroshi; Tsubaki, Masanobu; Yamazoe, Yuzuru; Ogaki, Mitsuhiko; Satou, Takao; Itoh, Tatsuki; Kusunoki, Takashi; Nishida, Shozo

    2009-07-15

    In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities of matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKC{alpha} and PKC{delta} phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.

  20. RANTES induces tyrosine kinase activity of stably complexed p125FAK and ZAP-70 in human T cells

    PubMed Central

    1996-01-01

    The chemokine RANTES is a chemoattractant and activating factor for T lymphocytes. Investigation of the signal transduction mechanisms induced by RANTES in T cells revealed tyrosine phosphorylation of multiple protein species with prominent bands at 70-85 and 120-130 kD. Immunoprecipitation and Western analyses revealed that a protein of 125 kD was identical to the focal adhesion kinase (FAK) pp125FAK. RANTES stimulated phosphorylation of FAK as early as 30 seconds and immunoblots using antiphosphotyrosine monoclonal antibodies revealed that there was consistent phosphorylation of a 68-70 kD species in the pp125FAK immunoprecipitates. Immunoblotting and kinase assays showed this to be two separate proteins, the tyrosine kinase zeta-associated protein (ZAP) 70, and the focal adhesion protein paxillin. These results indicate a potentially important role for RANTES in the generation of T cell focal adhesions and subsequent cell activation via a molecular complex containing FAK, ZAP-70, and paxillin. PMID:9064347

  1. Thyroid Hormone Controls Breast Cancer Cell Movement via Integrin αV/β3/SRC/FAK/PI3-Kinases.

    PubMed

    Flamini, Marina Inés; Uzair, Ivonne Denise; Pennacchio, Gisela Erika; Neira, Flavia Judith; Mondaca, Joselina Magali; Cuello-Carrión, Fernando Dario; Jahn, Graciela Alma; Simoncini, Tommaso; Sanchez, Angel Matías

    2017-02-01

    Thyroid hormones (TH) play a fundamental role in diverse processes, including cellular movement. Cell migration requires the integration of events that induce changes in cell structure towards the direction of migration. These actions are driven by actin remodeling and stabilized by the development of adhesion sites to extracellular matrix via transmembrane receptors linked to the actin cytoskeleton. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that promotes cell migration and invasion through the control of focal adhesion turnover. In this work, we demonstrate that the thyroid hormone triiodothyronine (T3) regulates actin remodeling and cell movement in breast cancer T-47D cells through the recruitment of FAK. T3 controls FAK phosphorylation and translocation at sites where focal adhesion complexes are assembled. This process is triggered via rapid signaling to integrin αV/β3, Src, phosphatidylinositol 3-OH kinase (PI3K), and FAK. In addition, we established a cellular model with different concentration of T3 levels: normal, absence, and excess in T-47D breast cancer cells. We found that the expression of Src, FAK, and PI3K remained at normal levels in the excess of T3 model, while it was significantly reduced in the absence model. In conclusion, these results suggest a novel role for T3 as an important modulator of cell migration, providing a starting point for the development of new therapeutic strategies for breast cancer treatment.

  2. Cross-Phosphorylation and Interaction between Src/FAK and MAPKAP5/PRAK in Early Focal Adhesions Controls Cell Motility

    PubMed Central

    Dwyer, Sheila Figel; Gelman, Irwin H

    2015-01-01

    P38-regulated and activated kinase (PRAK/MAPKAPK5) is a serine/threonine kinase which lies downstream of the p38 and ERK3/4 MAP kinase pathways. PRAK plays diverse roles in the processes of cell growth, nutrient starvation response, programmed cell death, senescence and motility. PRAK has been shown to both promote and inhibit cell motility in different contexts. The pro-motility functions of PRAK are attributed mainly to cytoskeletal rearrangement occurring downstream of its phosphorylated substrate HSP27; however, it was recently shown that PRAK is required for motility in endothelial cells upstream of Focal adhesion kinase (FAK). Along with Src, FAK functions as a mediator of motility signaling through the phosphorylation of substrates in focal adhesions. Here, we show that PRAK, initially identified as a FAK substrate in an in situ/ kinase overlay assay, is a Src substrate, the phosphorylation of which directs PRAK to focal adhesions. Focal adhesion localization of PRAK was not found to affect cell motility, however transient over expression of PRAK inhibited motility in HeLa cells. This effect requires PRAK kinase activity and proceeds through an impairment of FAK activation via phosphorylation on Y861. Our studies demonstrate for the first time that PRAK is regulated by tyrosine phosphorylation, localizes to focal adhesions, and interacts physically with and can phosphorylate FAK/Src. Further we provide a novel mechanism for the inhibition of motility downstream of PRAK. PMID:26042227

  3. MicroRNA-7 Inhibits Epithelial-to-Mesenchymal Transition and Metastasis of Breast Cancer Cells via Targeting FAK Expression

    PubMed Central

    Yuan, Yan; He, Yan; Wu, Xiaoli; Zhang, Weijie; Wu, Zhengsheng; Chen, Tingting; Wu, Wenyong; Lobie, Peter E.; Zhu, Tao

    2012-01-01

    Focal adhesion kinase (FAK) is an important mediator of extracellular matrix integrin signaling, cell motility, cell proliferation and cell survival. Increased FAK expression is observed in a variety of solid human tumors and increased FAK expression and activity frequently correlate with metastatic disease and poor prognosis. Herein we identify miR-7 as a direct regulator of FAK expression. miR-7 expression is decreased in malignant versus normal breast tissue and its expression correlates inversely with metastasis in human breast cancer patients. Forced expression of miR-7 produced increased E-CADHERIN and decreased FIBRONECTIN and VIMENTIN expression in breast cancer cells. The levels of miR-7 expression was positively correlated with E-CADHERIN mRNA and negatively correlated with VIMENTIN mRNA levels in breast cancer samples. Forced expression of miR-7 in aggressive breast cancer cell lines suppressed tumor cell monolayer proliferation, anchorage independent growth, three-dimensional growth in Matrigel, migration and invasion. Conversely, inhibition of miR-7 in the HBL-100 mammary epithelial cell line promoted cell proliferation and anchorage independent growth. Rescue of FAK expression reversed miR-7 suppression of migration and invasion. miR-7 also inhibited primary breast tumor development, local invasion and metastatic colonization of breast cancer xenografts. Thus, miR-7 expression is decreased in metastatic breast cancer, correlates with the level of epithelial differentiation of the tumor and inhibits metastatic progression. PMID:22876288

  4. Disruption of outer blood-retinal barrier by Toxoplasma gondii-infected monocytes is mediated by paracrinely activated FAK signaling.

    PubMed

    Song, Hyun Beom; Jun, Hyoung-Oh; Kim, Jin Hyoung; Lee, Young-Ha; Choi, Min-Ho; Kim, Jeong Hun

    2017-01-01

    Ocular toxoplasmosis is mediated by monocytes infected with Toxoplasma gondii that are disseminated to target organs. Although infected monocytes can easily access to outer blood-retinal barrier due to leaky choroidal vasculatures, not much is known about the effect of T. gondii-infected monocytes on outer blood-retinal barrier. We prepared human monocytes, THP-1, infected with T. gondii and human retinal pigment epithelial cells, ARPE-19, grown on transwells as an in vitro model of outer blood-retinal barrier. Exposure to infected monocytes resulted in disruption of tight junction protein, ZO-1, and decrease in transepithelial electrical resistance of retinal pigment epithelium. Supernatants alone separated from infected monocytes also decreased transepithelial electrical resistance and disrupted tight junction protein. Further investigation revealed that the supernatants could activate focal adhesion kinase (FAK) signaling in retinal pigment epithelium and the disruption was attenuated by FAK inhibitor. The disrupted barrier was partly restored by blocking CXCL8, a FAK activating factor secreted by infected monocytes. In this study, we demonstrated that monocytes infected with T. gondii can disrupt outer blood-retinal barrier, which is mediated by paracrinely activated FAK signaling. FAK signaling can be a target of therapeutic approach to prevent negative influence of infected monocytes on outer blood-retinal barrier.

  5. A Novel Mode for Integrin-mediated Signaling: Tethering Is Required for Phosphorylation of FAK Y397

    PubMed Central

    Shi, Qi; Boettiger, David

    2003-01-01

    The common model for integrin mediated signaling is based on integrin clustering and the potential for that clustering to recruit signaling molecules including FAK and src. The clustering model for transmembrane signaling originated with the analysis of the EGF receptor signaling and remains the predominant model. The roles for substrate-bound ligand and ligand occupancy in integrin-mediated signaling are less clear. A kinetic model was established using HT1080 cells in which there was a linear relationship between the strength of adhesion, the proportion of α5β1 integrin that could be chemically cross-linked, and the number of receptor-ligand bonds. This graded signal produced a similarly graded response measured by the level of specific phosphorylation of FAK Y397. FAK Y397 phosphorylation could also be induced by antibody bound to the substrate. In contrast, clustering of α5β1 on suspended cells with either antibody to β1 or by clustering of soluble ligand bound to α5β1 induced the phosphorylation of FAK Y861 but not Y397. There were no differences in signaling when activating antibodies were compared with blocking antibodies, presence or absence of ligand. Only tethering of α5β1 to the substrate was required for induction of FAK Y397 phosphorylation. PMID:12960434

  6. Co-targeting of FAK and MDM2 triggers additive anti-proliferative effects in mesothelioma via a coordinated reactivation of p53.

    PubMed

    Ou, Wen-Bin; Lu, Minmin; Eilers, Grant; Li, Hailong; Ding, Jiongyan; Meng, Xuli; Wu, Yuehong; He, Quan; Sheng, Qing; Zhou, Hai-Meng; Fletcher, Jonathan A

    2016-11-08

    Improved mesothelioma patient survival will require development of novel and more effective pharmacological interventions. TP53 genomic mutations are uncommon in mesothelioma, and recent data indicate that p53 remains functional, and therefore is a potential therapeutic target in these cancers. In addition, the tumour suppressor NF2 is inactivated by genomic mechanisms in more than 80% of mesothelioma, causing upregulation of FAK activity. Because FAK is a negative regulator of p53, NF2 regulation of FAK-p53-MDM2 signalling loops were evaluated. Interactions of FAK-p53 or NF2-FAK were evaluated by phosphotyrosine-p53 immunoaffinity purification and tandem mass spectrometry, and p53, FAK, and NF2 immunoprecipitations. Activation and/or expression of FAK, p53, and NF2 were also evaluated in mesotheliomas. Effects of combination MDM2 and FAK inhibitors/shRNAs were assessed by measuring mesothelioma cell viability/growth, expression of cell cycle checkpoints, and cell cycle alterations. We observed constitutive activation of FAK, a known negative regulator of p53, in each of 10 mesothelioma cell lines and each of nine mesothelioma surgical specimens, and FAK was associated with p53 in five of five mesothelioma cell lines. In four mesotheliomas with wild-type p53, FAK silencing by RNAi induced expression and phosphorylation of p53. However, FAK regulation of mesothelioma proliferation was not restricted to p53-dependent pathways, as demonstrated by immunoblots after FAK knockdown in JMN1B mesothelioma cells, which have mutant/inactivated p53, compared with four mesothelioma cell lines with nonmutant p53. Additive effects were obtained through a coordinated reactivation of p53, by FAK knockdown/inhibition and MDM2 inhibition, as demonstrated by immunoblots, cell viability, and cell-cycle analyses, showing increased p53 expression, apoptosis, anti-proliferative effects, and cell-cycle arrest, as compared with either intervention alone. Our results also indicate that NF2

  7. PKC delta-isoform translocation and enhancement of tonic contractions of gastrointestinal smooth muscle.

    PubMed

    Poole, Daniel P; Furness, John B

    2007-03-01

    PKC is involved in mediating the tonic component of gastrointestinal smooth muscle contraction in response to stimulation by agonists for G protein-coupled receptors. Here, we present pharmacological and immunohistochemical evidence indicating that a member of the novel PKC isoforms, PKC-delta, is involved in maintaining muscarinic receptor-coupled tonic contractions of the guinea pig ileum. The tonic component of carbachol-evoked contractions was enhanced by an activator of conventional and novel PKCs, phorbol 12,13-dibutyrate (PDBu; 200 nM or 1 microM), and by an activator of novel PKCs, ingenol 3,20-dibenzoate (IDB; 100 or 500 nM). Enhancement was unaffected by concentrations of bisindolylmaleimide I (BIM-I; 22 nM) that block conventional PKCs or by a PKC-epsilon-specific inhibitor peptide but was attenuated by higher doses of BIM-I (2.2 microM). Relevant proteins were localized at a cellular and subcellular level using confocal analysis. Immunohistochemical staining of the ileum showed that PKC-delta was exclusively expressed in smooth muscles distributed throughout the layers of the gut wall. PKC-epsilon immunoreactivity was prominent in enteric neurons but was largely absent from smooth muscle of the muscularis externa. Treatment with PDBu, IDB, or carbachol resulted in a time- and concentration-dependent translocation of PKC-delta from the cytoplasm to filamentous structures within smooth muscle cells. These were parallel to, but distinct from, actin filaments. The translocation of PKC-delta in response to carbachol was significantly reduced by scopolamine or calphostin C. The present study indicates that the tonic carbachol-induced contraction of the guinea pig ileum is mediated through a novel PKC, probably PKC-delta.

  8. MAP-kinase activity necessary for TGFbeta1-stimulated mesangial cell type I collagen expression requires adhesion-dependent phosphorylation of FAK tyrosine 397.

    PubMed

    Hayashida, Tomoko; Wu, Ming-Hua; Pierce, Amy; Poncelet, Anne-Christine; Varga, John; Schnaper, H William

    2007-12-01

    The signals mediating transforming growth factor beta (TGFbeta)-stimulated kidney fibrogenesis are poorly understood. We previously reported TGFbeta-stimulated, Smad-mediated collagen production by human kidney mesangial cells, and that ERK MAP kinase activity optimizes collagen expression and enhances phosphorylation of the Smad3 linker region. Furthermore, we showed that disrupting cytoskeletal integrity decreases type I collagen production. Focal adhesion kinase (FAK, PTK2) activity could integrate these findings. Adhesion-dependent FAK Y397 phosphorylation was detected basally, whereas FAK Y925 phosphorylation was TGFbeta1-dependent. By immunocytochemistry, TGFbeta1 stimulated the merging of phosphorylated FAK with the ends of thickening stress fibers. Cells cultured on poly-L-lysine (pLL) to promote integrin-independent attachment spread less than those on control substrate and failed to demonstrate focal adhesion (FA) engagement with F-actin. FAK Y397 phosphorylation and ERK activity were also decreased under these conditions. In cells with decreased FAK Y397 phosphorylation from either plating on pLL or overexpressing a FAK Y397F point mutant, serine phosphorylation of the Smad linker region, but not of the C-terminus, was reduced. Y397F and Y925F FAK point mutants inhibited TGFbeta-induced Elk-Gal activity, but only the Y397F mutant inhibited TGFbeta-stimulated collagen-promoter activity. The inhibition by the Y397F mutant or by culture on pLL was prevented by co-transfection of constitutively active ERK MAP kinase kinase (MEK), suggesting that FAK Y397 phosphorylation promotes collagen expression via ERK MAP kinase activity. Finally, Y397 FAK phosphorylation, and both C-terminal and linker-region Smad3 phosphorylation were detected in murine TGFbeta-dependent kidney fibrosis. Together, these data demonstrate adhesion-dependent FAK phosphorylation promoting TGFbeta-induced responses to regulate collagen production.

  9. FAK contributes to proteinuria in hypercholesterolaemic rats and modulates podocyte F-actin re-organization via activating p38 in response to ox-LDL.

    PubMed

    Hu, Mengsi; Fan, Minghua; Zhen, Junhui; Lin, Jiangong; Wang, Qun; Lv, Zhimei; Wang, Rong

    2017-03-01

    Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that regulates cell adhesion, proliferation and differentiation. In the present study, a rat model of high fat diet-induced hypercholesterolaemia was established to investigate the involvement of FAK in lipid disorder-related kidney diseases. We showed focal fusion of podocyte foot process that occurred at as early as 4 weeks in rats consuming high fat diet, preceding the onset of proteinuria when aberrant phosphorylation of FAK was found. These abnormalities were ameliorated by dietary intervention of TAE226, a reported inhibitor of FAK. FAK is also an adaptor protein initiating cascades of intracellular signals including c-Src, Rho GTPase and mitogen-activated protein kinase (MAPK). P38 MAPK belongs to the latter and is centrally involved in kidney diseases. Our cell culture data revealed oxidized low-density lipoprotein (ox-LDL) triggered hyper-phosphorylation of FAK and p38, ectopic expression of cellular markers (manifested as decreased WT1, podocin and NEPH1, and increased vimentin and mmp9), and re-arrangement of F-actin filaments with enhanced cell motility; these mutations were significantly rectified by FAK shRNA. Notably, pre-treatment of p38 inhibitor did not alter FAK activation, albeit its deletion of p38 hyper-activity and attenuation of cellular abnormalities, demonstrating that p38 acted as a downstream effector of FAK signalling and ox-LDL damaged podocytes in a FAK/p38-dependent manner. This was further identified by animal data that p38 activation was also abrogated by TAE226 treatment in hypercholesterolaemic rats, suggesting that FAK/p38 axis might also be involved in in vivo events. These findings provided a potential early mechanism of hypercholesterolaemia-related podocyte damage and proteinuria.

  10. JNK-dependent gene regulatory circuitry governs mesenchymal fate

    PubMed Central

    Sahu, Sanjeeb Kumar; Garding, Angela; Tiwari, Neha; Thakurela, Sudhir; Toedling, Joern; Gebhard, Susanne; Ortega, Felipe; Schmarowski, Nikolai; Berninger, Benedikt; Nitsch, Robert; Schmidt, Marcus; Tiwari, Vijay K

    2015-01-01

    The epithelial to mesenchymal transition (EMT) is a biological process in which cells lose cell–cell contacts and become motile. EMT is used during development, for example, in triggering neural crest migration, and in cancer metastasis. Despite progress, the dynamics of JNK signaling, its role in genomewide transcriptional reprogramming, and involved downstream effectors during EMT remain largely unknown. Here, we show that JNK is not required for initiation, but progression of phenotypic changes associated with EMT. Such dependency resulted from JNK-driven transcriptional reprogramming of critical EMT genes and involved changes in their chromatin state. Furthermore, we identified eight novel JNK-induced transcription factors that were required for proper EMT. Three of these factors were also highly expressed in invasive cancer cells where they function in gene regulation to maintain mesenchymal identity. These factors were also induced during neuronal development and function in neuronal migration in vivo. These comprehensive findings uncovered a kinetically distinct role for the JNK pathway in defining the transcriptome that underlies mesenchymal identity and revealed novel transcription factors that mediate these responses during development and disease. PMID:26157010

  11. Wallenda regulates JNK-mediated cell death in Drosophila

    PubMed Central

    Ma, X; Xu, W; Zhang, D; Yang, Y; Li, W; Xue, L

    2015-01-01

    The c-Jun N-terminal kinase (JNK) pathway plays essential roles in regulating a variety of cellular processes including proliferation, migration and survival. Previous genetic studies in Drosophila have identified numerous cell death regulating genes, providing new insights into the mechanisms for related diseases. Despite the known role of the small GTPase Rac1 in regulating cell death, the downstream components and underlying mechanism remain largely elusive. Here, we show that Rac1 promotes JNK-dependent cell death through Wallenda (Wnd). In addition, we find that Wnd triggers JNK activation and cell death via its kinase domain. Moreover, we show that both MKK4 and Hep are critical for Wnd-induced cell death. Furthermore, Wnd is essential for ectopic Egr- or Rho1-induced JNK activation and cell death. Finally, Wnd is physiologically required for loss of scribble-induced JNK-dependent cell death. Thus, our data suggest that wnd encodes a novel essential cell death regulator in Drosophila. PMID:25950467

  12. Heparin regulates B6FS cell motility through a FAK/actin cytoskeleton axis

    PubMed Central

    Voudouri, Kallirroi; Nikitovic, Dragana; Berdiaki, Aikaterini; Papachristou, Dionysios J.; Tsiaoussis, John; Spandidos, Demetrios A.; Tsatsakis, Aristides M.; Tzanakakis, George N.

    2016-01-01

    Soft tissue sarcomas are rare, heterogeneous tumors of mesenchymal origin with an aggressive behavior. Heparin is a mixture of heavily sulfated, linear glycosaminoglycan (GAG) chains, which participate in the regulation of various cell biological functions. Heparin is considered to have significant anticancer capabilities, although the mechanisms involved have not been fully defined. In the present study, the effects of unfractionated heparin (UFH) and low-molecular-weight heparin (LMWH) on B6FS fibrosarcoma cell motility were examined. Both preparations of heparin were shown to both enhance B6FS cell adhesion (p<0.01 and p<0.05), and migration (p<0.05), the maximal effect being evident at the concentration of 10 µg/ml. The utilization of FAK-deficient cells demonstrated that the participation of FAK was obligatory for heparin-dependent fibrosarcoma cell adhesion (p<0.05). The results of confocal microscopy indicated that heparin was taken up by the B6FS cells, and that UFH and LMWH induced F-actin polymerization. Heparitinase digestion demonstrated that the endogenous heparan sulfate (HS) chains did not affect the motility of the B6FS cells (p>0.05, not significant). In conclusion, both UFH and LMWH, through a FAK/actin cytoskeleton axis, promoted the adhesion and migration of B6FS fibrosarcoma cells. Thus, our findings indicate that the responsiveness of fibrosarcoma cells to the exogenous heparin/HS content of the cancer microenvironment may play a role in their ability to become mobile and metastasize. PMID:27572115

  13. PKA and PKC Are Required for Long-Term but Not Short-Term in Vivo Operant Memory in "Aplysia"

    ERIC Educational Resources Information Center

    Michel, Maximilian; Green, Charity L.; Lyons, Lisa C.

    2011-01-01

    We investigated the involvement of PKA and PKC signaling in a negatively reinforced operant learning paradigm in "Aplysia", learning that food is inedible (LFI). In vivo injection of PKA or PKC inhibitors blocked long-term LFI memory formation. Moreover, a persistent phase of PKA activity, although not PKC activity, was necessary for long-term…

  14. PKA and PKC Are Required for Long-Term but Not Short-Term in Vivo Operant Memory in "Aplysia"

    ERIC Educational Resources Information Center

    Michel, Maximilian; Green, Charity L.; Lyons, Lisa C.

    2011-01-01

    We investigated the involvement of PKA and PKC signaling in a negatively reinforced operant learning paradigm in "Aplysia", learning that food is inedible (LFI). In vivo injection of PKA or PKC inhibitors blocked long-term LFI memory formation. Moreover, a persistent phase of PKA activity, although not PKC activity, was necessary for long-term…

  15. Insulin and JNK: optimizing metabolic homeostasis and lifespan

    PubMed Central

    Karpac, Jason; Jasper, Heinrich

    2011-01-01

    Metabolic adaptation to environmental changes is crucial for the long-term survival of an organism. Signaling mechanisms that govern this adaptation thus influence lifespan. One such mechanism is the insulin/insulin-like growth factor signaling (IIS) pathway, a central regulator of metabolism in metazoans. Recent studies have identified the stress-responsive Jun-N-terminal kinase (JNK) pathway as a regulator of IIS signaling, providing a link between environmental challenges and metabolic regulation. JNK inhibits IIS activity and, thus, promotes lifespan extension and stress tolerance. Interestingly, this interaction is also at the center of age-related metabolic diseases. Here, we review recent advances illuminating the mechanisms of the JNK--IIS interaction and its implications for metabolic diseases and lifespan in metazoans. PMID:19251431

  16. Inhibition of the integrin/FAK signaling axis and c-Myc synergistically disrupts ovarian cancer malignancy

    PubMed Central

    Xu, B; Lefringhouse, J; Liu, Z; West, D; Baldwin, L A; Ou, C; Chen, L; Napier, D; Chaiswing, L; Brewer, L D; St. Clair, D; Thibault, O; van Nagell, J R; Zhou, B P; Drapkin, R; Huang, J-A; Lu, M L; Ueland, F R; Yang, X H

    2017-01-01

    Integrins, a family of heterodimeric receptors for extracellular matrix, are promising therapeutic targets for ovarian cancer, particularly high-grade serous-type (HGSOC), as they drive tumor cell attachment, migration, proliferation and survival by activating focal adhesion kinase (FAK)-dependent signaling. Owing to the potential off-target effects of FAK inhibitors, disruption of the integrin signaling axis remains to be a challenge. Here, we tackled this barrier by screening for inhibitors being functionally cooperative with small-molecule VS-6063, a phase II FAK inhibitor. From this screening, JQ1, a potent inhibitor of Myc oncogenic network, emerged as the most robust collaborator. Treatment with a combination of VS-6063 and JQ1 synergistically caused an arrest of tumor cells at the G2/M phase and a decrease in the XIAP-linked cell survival. Our subsequent mechanistic analyses indicate that this functional cooperation was strongly associated with the concomitant disruption of activation or expression of FAK and c-Myc as well as their downstream signaling through the PI3K/Akt pathway. In line with these observations, we detected a strong co-amplification or upregulation at genomic or protein level for FAK and c-Myc in a large portion of primary tumors in the TCGA or a local HGSOC patient cohort. Taken together, our results suggest that the integrin–FAK signaling axis and c-Myc synergistically drive cell proliferation, survival and oncogenic potential in HGSOC. As such, our study provides key genetic, functional and signaling bases for the small-molecule-based co-targeting of these two distinct oncogenic drivers as a new line of targeted therapy against human ovarian cancer. PMID:28134933

  17. PKC{alpha} expression regulated by Elk-1 and MZF-1 in human HCC cells

    SciTech Connect

    Hsieh, Y.-H.; Wu, T.-T.; Tsai, J.-H.; Huang, C.-Y.; Hsieh, Y.-S.; Liu, J.-Y. . E-mail: jyl@csmu.edu.tw

    2006-01-06

    Our previous study found that PKC{alpha} was highly expressed in the poor-differentiated human HCC cells and associated with cell migration and invasion. In this study, we further investigated the gene regulation of this enzyme. We showed that PKC{alpha} expression enhancement in the poor-differentiated human HCC cells was found neither by DNA amplification nor by increasing mRNA stability using differential PCR and mRNA decay assays. After screening seven transcription factors in the putative cis-acting regulatory elements of human PKC{alpha} promoters, only Elk-1 and MZF-1 antisense oligonucleotide showed a significant reduction in the PKC{alpha} mRNA level. They also reduced cell proliferation, cell migratory and invasive capabilities, and DNA binding activities in the PKC{alpha} promoter region. Over-expression assay confirmed that the PKC{alpha} expression may be modulated by these two factors at the transcriptional level. Therefore, these results may provide a novel mechanism for PKC{alpha} expression regulation in human HCC cells.

  18. PKC/MEK inhibitors suppress oxaliplatin-induced neuropathy and potentiate the antitumor effects.

    PubMed

    Tsubaki, Masanobu; Takeda, Tomoya; Tani, Tadahumi; Shimaoka, Hirotaka; Suzuyama, Naohiro; Sakamoto, Kotaro; Fujita, Arisa; Ogawa, Naoki; Itoh, Tatsuki; Imano, Motohiro; Funakami, Yoshinori; Ichida, Seiji; Satou, Takao; Nishida, Shozo

    2015-07-01

    Oxaliplatin is a key drug commonly used in colorectal cancer treatment. Despite high clinical efficacy, its therapeutic application is limited by common, dose-limiting occurrence of neuropathy. As usual symptomatic neuropathy treatments fail to improve the patients' condition, there is an urgent need to advance our understanding of the pathogenesis of neuropathy to propose effective therapy and ensure adequate pain management. Oxaliplatin-induced neuropathy was recently reported to be associated with protein kinase C (PKC) activation. It is unclear, however, whether PKC inhibition can prevent neuropathy. In our current studies, we found that a PKC inhibitor, tamoxifen, inhibited oxaliplatin-induced neuropathy via the PKC/extracellular signal-regulated kinase (ERK)/c-Fos pathway in lumbar spinal cords (lumbar segments 4-6). Additionally, tamoxifen was shown to act in synergy with oxaliplatin to inhibit growth in tumor cells-implanted mice. Moreover, mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, PD0325901, suppressed oxaliplatin-induced neuropathy and enhanced oxaliplatin efficacy. Our results indicate that oxaliplatin-induced neuropathy is associated with PKC/ERK/c-Fos pathway in lumbar spinal cord. Additionally, we demonstrate that disruption of this pathway by PKC and MEK inhibitors suppresses oxaliplatin-induced neuropathy, thereby suggesting that PKC and MEK inhibitors may be therapeutically useful in preventing oxaliplatin-induced neuropathy and could aid in combination antitumor pharmacotherapy. © 2014 UICC.

  19. Activation of PKC{beta}{sub II} and PKC{theta} is essential for LDL-induced cell proliferation of human aortic smooth muscle cells via Gi-mediated Erk1/2 activation and Egr-1 upregulation

    SciTech Connect

    Heo, Kyung-Sun; Kim, Dong-Uk; Kim, Lila; Nam, Miyoung; Baek, Seung-Tae; Park, Song-Kyu; Park, Youngwoo; Myung, Chang-Seon; Hwang, Sung-Ook Hoe, Kwang-Lae

    2008-03-28

    Native LDL may be a mitogenic stimulus of VSMC proliferation in lesions where endothelial disruption occurs. Recent studies have demonstrated that the mitogenic effects of LDL are accompanied by Erk1/2 activation via an unknown G-protein-coupled receptor (GPCR). In this article, we report that LDL translocated PKC{beta}{sub II} and PKC{theta} from cytosol to plasma membrane, and inhibition of PKC{beta}{sub II} and PKC{theta} decreased LDL effects via the deactivation of Erk1/2. Moreover, pertussis toxin, but not cholera toxin or heparin, inhibited LDL-induced translocation of PKC{beta}{sub II} and PKC{theta}, suggesting that Gi protein plays a role in LDL effects. Of LPA, S1P, and LDL, whose signaling is conveyed via Gi/o proteins, only LDL induced translocation of PKC{beta}{sub II} and PKC{theta}. Inhibition of PKC{beta}{sub II} or PKC{theta}, as well as of Erk1/2 and GPCR, decreases LDL-induced upregulation of Egr-1, which is critical for cell proliferation. This is the first report, to our knowledge, that the participation of PKC{theta} in VSMC proliferation is unique.

  20. Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations

    PubMed Central

    Chen, Xu; Wu, Qiuxia; Tan, Lujian; Porter, Dale; Jager, Martine J.; Emery, Caroline; Bastian, Boris C.

    2015-01-01

    Uveal melanoma (UM) is a genetically and biologically distinct type of melanoma, and once metastatic there is no effective treatment currently available. 80% of UMs harbor mutations in the Gαq family members GNAQ and GNA11. Understanding the effector pathways downstream of these oncoproteins is important to identify opportunities for targeted therapy. We report consistent activation of the protein kinase C (PKC) and MAPK pathways as a consequence of GNAQ or GNA11 mutation. PKC inhibition with AEB071 or AHT956 suppressed PKC and MAPK signalling and induced G1 arrest selectively in melanoma cell lines carrying GNAQ or GNA11 mutations. In contrast, treatment with two different MEK inhibitors, PD0325901 and MEK162, inhibited the proliferation of melanoma cell lines irrespective of their mutation status, indicating that in the context of GNAQ or GNA11 mutation, MAPK activation can be attributed to activated PKC. AEB071 significantly slowed the growth of tumors in an allograft model of GNAQQ209L transduced melanocytes, but did not induce tumor shrinkage. In vivo and in vitro studies showed that PKC inhibitors alone were unable to induce sustained suppression of MAP-kinase signaling. However, combinations of PKC and MEK inhibition, using either PD0325901 or MEK162, led to sustained MAP-kinase pathway inhibition and showed a strong synergistic effect in halting proliferation and in inducing apoptosis in vitro. Furthermore, combining PKC and MEK inhibition was efficacious in vivo, causing marked tumor regression in a uveal melanoma xenograft model. Our data identifies PKC as a rational therapeutic target for melanoma patients with GNAQ or GNA11 mutations, and demonstrates combined MEK and PKC inhibition is synergistic, with superior efficacy compared to treatment with either approach alone. PMID:24141786

  1. Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations.

    PubMed

    Chen, X; Wu, Q; Tan, L; Porter, D; Jager, M J; Emery, C; Bastian, B C

    2014-09-25

    Uveal melanoma (UM) is a genetically and biologically distinct type of melanoma, and once metastatic there is no effective treatment currently available. Eighty percent of UMs harbor mutations in the Gαq family members GNAQ and GNA11. Understanding the effector pathways downstream of these oncoproteins is important to identify opportunities for targeted therapy. We report consistent activation of the protein kinase C (PKC) and MAPK pathways as a consequence of GNAQ or GNA11 mutation. PKC inhibition with AEB071 or AHT956 suppressed PKC and MAPK signalling and induced G1 arrest selectively in melanoma cell lines carrying GNAQ or GNA11 mutations. In contrast, treatment with two different MEK inhibitors, PD0325901 and MEK162, inhibited the proliferation of melanoma cell lines irrespective of their mutation status, indicating that in the context of GNAQ or GNA11 mutation MAPK activation can be attributed to activated PKC. AEB071 significantly slowed the growth of tumors in an allograft model of GNAQ(Q209L)-transduced melanocytes, but did not induce tumor shrinkage. In vivo and in vitro studies showed that PKC inhibitors alone were unable to induce sustained suppression of MAP-kinase signaling. However, combinations of PKC and MEK inhibition, using either PD0325901or MEK162, led to sustained MAP-kinase pathway inhibition and showed a strong synergistic effect in halting proliferation and in inducing apoptosis in vitro. Furthermore, combining PKC and MEK inhibition was efficacious in vivo, causing marked tumor regression in a UM xenograft model. Our data identify PKC as a rational therapeutic target for melanoma patients with GNAQ or GNA11 mutations and demonstrate that combined MEK and PKC inhibition is synergistic, with superior efficacy compared to treatment with either approach alone.

  2. Lacrimal gland PKC isoforms are differentially involved in agonist-induced protein secretion.

    PubMed

    Zoukhri, D; Hodges, R R; Sergheraert, C; Toker, A; Dartt, D A

    1997-01-01

    In the present study, we have synthesized and N-myristoylated peptides derived from the pseudosubstrate sequences of protein kinase C (PKC)-alpha, -delta, and -epsilon [Myr-PKC-alpha-(15-28), Myr-PKC-delta-(142-153), and Myr-PKC-epsilon-(149-164)], three isoforms present in rat lacrimal gland, and a peptide derived from the sequence of the endogenous inhibitor of protein kinase A [Myr-PKI-(17-25)]. Lacrimal gland acini were preincubated for 60 min with the myristoylated peptides (10(-10) to 3 x 10(-7) M), then protein secretion was stimulated with a phorbol ester, phorbol 12,13-dibutyrate (10(-6) M); vasoactive intestinal peptide (10(-8) M); a cholinergic agonist, carbachol (10(-5) M); or an alpha 1-adrenergic agonist, phenylephrine (10(-4) M), for 20 min. In intact lacrimal gland acini, Myr-PKC-alpha-(15-28) inhibited phorbol 12,13-dibutyrate-induced protein secretion. This effect was not reproduced by the acetylated peptide or by the myristoylated PKI, which inhibited vasoactive intestinal peptide-induced protein secretion, a response mediated by protein kinase A. Carbachol-induced protein secretion was inhibited by all three peptides. In contrast, phenylephrine-induced protein secretion was inhibited only by Myr-PKC-epsilon-(149-164), whereas Myr-PKC-alpha-(15-28) and Myr-PKC-delta-(142-153) had a stimulatory effect. None of these myristoylated peptides affected the calcium increase evoked by cholinergic or alpha 1-adrenergic agonists. We concluded that phorbol ester- and receptor-induced protein secretion involve different PKC isoforms in lacrimal gland.

  3. Involvement of HDAC1 and the PI3K/PKC signaling pathways in NF-{kappa}B activation by the HDAC inhibitor apicidin

    SciTech Connect

    Kim, Yong Kee . E-mail: yksnbk@kwandong.ac.kr; Seo, Dong-Wan; Kang, Dong-Won; Lee, Hoi Young; Han, Jeung-Whan; Kim, Su-Nam . E-mail: snkim@kist.re.kr

    2006-09-08

    Histone deacetylase (HDAC) inhibitors are appreciated as one of promising anticancer drugs, but they exert differential responses depending on the cell type. We recently reported the critical role of NF-{kappa}B as a modulator in determining cell fate for apoptosis in response to an HDAC inhibitor. In this study, we investigate a possible signaling pathway required for NF-{kappa}B activation in response to the HDAC inhibitor apicidin. Treatment of HeLa cells with apicidin leads to an increase in transcriptional activity of NF-{kappa}B and the expression of its target genes, IL-8 and TNF-{alpha}. TNF-{alpha} expression by apicidin is induced at earlier time points than NF-{kappa}B activation or IL-8 expression. In addition, our data show that the early expression of TNF-{alpha} does not lead to activation of NF-{kappa}B, because disruption of TNF-{alpha} activity by a neutralizing antibody does not affect nuclear translocation of NF-{kappa}B, I{kappa}B{alpha} degradation or reporter gene activation by apicidin. However, this activation of NF-{kappa}B requires the PI3K and PKC signaling pathways, but not ERK or JNK. Furthermore, apicidin activation of NF-{kappa}B seems to result from HDAC1 inhibition, as evidenced by the observation that overexpression of HDAC1, but not HDAC2, 3 or 4, dramatically inhibits NF-{kappa}B reporter gene activity. Collectively, our results suggest that activation of NF-{kappa}B signaling by apicidin requires both the PI3K/PKC signaling pathways and HDAC1, and functions as a critical modulator in determining the cellular effect of apicidin.

  4. A synthetic isoflavone, DCMF, promotes human keratinocyte migration by activating Src/FAK signaling pathway.

    PubMed

    Sophors, Phorl; Kim, Young Mee; Seo, Ga Young; Huh, Jung-Sik; Lim, Yoongho; Koh, Dong Soo; Cho, Moonjae

    2016-04-01

    Flavonoids are plant secondary compounds with various pharmacological properties. We previously showed that one flavonoid, trimethoxyisoflavone (TMF), could promote wound healing by inducing keratinocyte migration. Here, we screened TMF derivatives for enhanced activity and identified one compound, 2',6 Dichloro-7-methoxyisoflavone (DCMF), as most effective at promoting migration in a scratch wound assay. Using the HaCaT keratinocyte cell line, we found DCMF treatment induced phosphorylation of both FAK and Src, and increased keratinocyte migration. DCMF-induced Src kinase could promote activation of ERK, AKT, and p38 signaling pathways, and DCMF-induced secretion of matrix metalloproteinase (MMP)-2 and MMP-9 and partial epithelial-mesenchymal transition (EMT), whereas Src inhibition abolished DCMF-induced EMT. Using an in vivo excisional wound model, we observed improved wound closure and re-epithelialization in DCMF-treated mice, as compared to controls. Collectively, our data demonstrate that DCMF induces cell migration and promotes wound healing through activation of Src/FAK, ERK, AKT, and p38 MAPK signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Epithelial Membrane Protein-2 Promotes Endometrial Tumor Formation through Activation of FAK and Src

    PubMed Central

    Fu, Maoyong; Rao, Rajiv; Sudhakar, Deepthi; Hogue, Claire P.; Rutta, Zach; Morales, Shawn; Gordon, Lynn K.; Braun, Jonathan; Goodglick, Lee; Wadehra, Madhuri

    2011-01-01

    Endometrial cancer is the most common gynecologic malignancy diagnosed among women in developed countries. One recent biomarker strongly associated with disease progression and survival is epithelial membrane protein-2 (EMP2), a tetraspan protein known to associate with and modify surface expression of certain integrin isoforms. In this study, we show using a xenograft model system that EMP2 expression is necessary for efficient endometrial tumor formation, and we have started to characterize the mechanism by which EMP2 contributes to this malignant phenotype. In endometrial cancer cells, the focal adhesion kinase (FAK)/Src pathway appears to regulate migration as measured through wound healing assays. Manipulation of EMP2 levels in endometrial cancer cells regulates the phosphorylation of FAK and Src, and promotes their distribution into lipid raft domains. Notably, cells with low levels of EMP2 fail to migrate and poorly form tumors in vivo. These findings reveal the pivotal role of EMP2 in endometrial cancer carcinogenesis, and suggest that the association of elevated EMP2 levels with endometrial cancer prognosis may be causally linked to its effect on integrin-mediated signaling. PMID:21637765

  6. Inhibition of FAK and VEGFR-3 Binding Decreases Tumorigenicity in Neuroblastoma

    PubMed Central

    Stewart, Jerry E.; Ma, Xiaojie; Megison, Michael; Nabers, Hugh; Cance, William G.; Kurenova, Elena V.; Beierle, Elizabeth A.

    2015-01-01

    Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumor development and progression. Vascular endothelial growth factor receptor-3 (VEGFR-3), another tyrosine kinase, has also been found to be important in the development of many human tumors including neuroblastoma. Recent reports have found that FAK and VEGFR-3 interact, and we have previously shown that both of these kinases interact in neuroblastoma. We have hypothesized that interruption of the FAK–VEGFR-3 interaction would lead to decreased neuroblastoma cell survival. In the current study, we examined the effects of a small molecule, chloropyramine hydrochloride (C4), designed to disrupt the FAK–VEGFR-3 interaction, upon cellular attachment, migration, and survival in two human neuroblastoma cell lines. We also utilized a murine xenograft model to study the impact of C4 upon tumor growth. In these studies, we showed that disruption of the FAK–VEGFR-3 interaction led to decreased cellular attachment, migration, and survival in vitro. In addition, treatment of murine xenografts with chloropyramine hydrochloride decreased neuroblastoma xenograft growth. Further, this molecule acted synergistically with standard chemotherapy to further decrease neuroblastoma xenograft growth. The findings from this current study help to further our understanding of the regulation of neuroblastoma tumorigenesis, and may provide novel therapeutic strategies and targets for neuroblastoma and other solid tumors of childhood. PMID:23868727

  7. MICA Expression Is Regulated by Cell Adhesion and Contact in a FAK/Src-Dependent Manner

    PubMed Central

    Moncayo, Gerald; Lin, Da; McCarthy, Michael T.; Watson, Aleksandra A.; O’Callaghan, Christopher A.

    2017-01-01

    MICA is a major ligand for the NKG2D immune receptor, which plays a key role in activating natural killer (NK) cells and cytotoxic T cells. We analyzed NKG2D ligand expression on a range of cell types and could demonstrate that MICA expression levels were closely linked to cellular growth mode. While the expression of other NKG2D ligands was largely independent of cell growth mode, MICA expression was mainly found on cells cultured as adherent cells. In addition, MICA surface expression was reduced through increase in cell–cell contact or loss of cell–matrix adherence. Furthermore, we found that the reduction in MICA expression was modulated by focal adhesion kinase (FAK)/Src signaling and associated with increased susceptibility to NK cell-mediated killing. While the mechanisms of tumor immune evasion are not fully understood, the reduction of MICA expression following loss of attachment poises a potential way by which metastasizing tumor cells avoid immune detection. The role of FAK/Src in this process indicates a potential therapeutic approach to modulate MICA expression and immune recognition of tumor cells during metastasis. PMID:28154561

  8. Tetrandrine inhibits migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes through down-regulating the expressions of Rac1, Cdc42, and RhoA GTPases and activation of the PI3K/Akt and JNK signaling pathways.

    PubMed

    Lv, Qi; Zhu, Xian-Yang; Xia, Yu-Feng; Dai, Yue; Wei, Zhi-Feng

    2015-11-01

    Tetrandrine (Tet), the main active constituent of Stephania tetrandra root, has been demonstrated to alleviate adjuvant-induced arthritis in rats. The present study was designed to investigate the effects of Tet on the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and explore the underlying mechanisms. By using cultures of primary FLS isolated from synoviums of RA patients and cell line MH7A, Tet (0.3, 1 μmol·L(-1)) was proven to significantly impede migration and invasion of RA-FLS, but not cell proliferation. Tet also greatly reduced the activation and expressions of matrix degrading enzymes MMP-2/9, the expression of F-actin and the activation of FAK, which controlled the morphologic changes in migration process of FLS. To identify the key signaling pathways by which Tet exerts anti-migration effect, the specific inhibitors of multiple signaling pathways LY294002, Triciribine, SP600125, U0126, SB203580, and PDTC (against PI3K, Akt, JNK, ERK, p38 MAPK and NF-κB-p65, respectively) were used. Among them, LY294002, Triciribine, and SP600125 were shown to obviously inhibit the migration of MH7A cells. Consistently, Tet was able to down-regulate the activation of Akt and JNK as demonstrated by Western blotting assay. Moreover, Tet could reduce the expressions of migration-related proteins Rho GTPases Rac1, Cdc42, and RhoA in MH7A cells. In conclusion, Tet can impede the migration and invasion of RA-FLS, which provides a plausible explanation for its protective effect on RA. The underlying mechanisms involve the reduction of the expressions of Rac1, Cdc42, and RhoA, inhibition of the activation of Akt and JNK, and subsequent down-regulation of activation and/or expressions of MMP-2/9, F-actin, and FAK.

  9. Live-imaging of PKC translocation in Sf9 cells and in aplysia sensory neurons.

    PubMed

    Farah, Carole A; Sossin, Wayne S

    2011-04-06

    Protein kinase Cs (PKCs) are serine threonine kinases that play a central role in regulating a wide variety of cellular processes such as cell growth and learning and memory. There are four known families of PKC isoforms in vertebrates: classical PKCs (α, βI, βII and γ), novel type I PKCs (ε and η), novel type II PKCs (δ and θ), and atypical PKCs (ζ and ι). The classical PKCs are activated by Ca(2+) and diacylclycerol (DAG), while the novel PKCs are activated by DAG, but are Ca(2+)-independent. The atypical PKCs are activated by neither Ca(2+) nor DAG. In Aplysia californica, our model system to study memory formation, there are three nervous system specific PKC isoforms one from each major class, namely the conventional PKC Apl I, the novel type I PKC Apl II and the atypical PKC Apl III. PKCs are lipid-activated kinases and thus activation of classical and novel PKCs in response to extracellular signals has been frequently correlated with PKC translocation from the cytoplasm to the plasma membrane. Therefore, visualizing PKC translocation in real time in live cells has become an invaluable tool for elucidating the signal transduction pathways that lead to PKC activation. For instance, this technique has allowed for us to establish that different isoforms of PKC translocate under different conditions to mediate distinct types of synaptic plasticity and that serotonin (5HT) activation of PKC Apl II requires production of both DAG and phosphatidic acid (PA) for translocation (1-2). Importantly, the ability to visualize the same neuron repeatedly has allowed us, for example, to measure desensitization of the PKC response in exquisite detail (3). In this video, we demonstrate each step of preparing Sf9 cell cultures, cultures of Aplysia sensory neurons have been described in another video article (4), expressing fluorescently tagged PKCs in Sf9 cells and in Aplysia sensory neurons and live-imaging of PKC translocation in response to different activators using

  10. Immunoreactivity of PKC gammalambda and RACK1 in baker's yeast, lobster and wheat germ.

    PubMed

    Kuo, W N; Jones, D L; Ku, T W; Weeks, K D; Jordon, P M; Dopson, N C

    1995-08-01

    Varied patterns of immunoreactive bands of protein kinase C gamma (PKC gamma) and receptor for activated C-kinase-1 (RACK1) were detected by analysis of Western blots in crude extracts of wheat germ, lobster tail meat, and three strains of baker's yeast. Anti-PKC lambda also reacted with wheat germ and yeast extracts, but failed to react with the lobster extract. The findings may implicate a regulatory role and an evolutionary conservation of these PKC isoenzymes and their receptor proteins in eukaryotes.

  11. MicroRNA-7 inhibits cell proliferation, migration and invasion in human non-small cell lung cancer cells by targeting FAK through ERK/MAPK signaling pathway

    PubMed Central

    Shi, Yu-Jia; Chen, Yi; Sun, Yun; Zhang, Qian; Song, Lei; Peng, Li-Ping

    2016-01-01

    Objective To investigate the effects of microRNA-7 (miR-7) on the proliferation, migration and invasion of non-small cell lung cancer NSCLC) cells by targeting FAK through ERK/MAPK signaling pathway. Methods NSCLC tissues and adjacent normal tissues were obtained from 160 NSCLC patients after operation. NSCLC cell lines (A549, H1299 and H1355) and a normal human fetal lung fibroblast cell line (MRC-5) were obtained. NSCLC cells were assigned into miR-7 inhibitors, miR-7 mimics, blank, miR-7 mimics control, miR-7 inhibitors control, FAK siRNA and miR-7 inhibitors + FAK siRNA groups. The expressions of miR-7 and FAK mRNA in tissues and cell lines were detected by qRT-PCR and Western-Blotting. Cell proliferation, migration and invasion were detected by MTT assay, wound scratch assay and Transwell assay. Results Compared with adjacent normal tissues, miR-7 expression was down-regulated, but the mRNA and protein expressions of FAK, ERK and MAPK were up-regulated. Compared with the blank and mimics control groups, miR-7 significantly increased but FAK, ERK and MAPK expressions decreased in miR-7 mimics and FAK siRNA groups. Cell proliferation, migration and invasion were inhibited in the miR-7 mimics and FAK siRNA groups, while opposite regarding miR-7 inhibitors group. Conclusion The miR-7 can inhibit the activation of ERK/MAPK signaling pathway by down-regulating FAK expression, thereby suppressing the proliferation, migration and invasion of NSCLC cells. The miR-7 and its target gene FAK may be novel targets for the diagnosis and treatment of NSCLC. PMID:27764812

  12. Long-term pioglitazone treatment augments insulin sensitivity and PKC-epsilon and PKC-theta activation in skeletal muscles in sucrose fed rats.

    PubMed

    Marková, I; Zídek, V; Musilová, A; Simáková, M; Mlejnek, P; Kazdová, L; Pravenec, M

    2010-01-01

    It has been suggested that thiazolidinediones (TZDs) ameliorate insulin resistance in muscle tissue by suppressing muscle lipid storage and the activity of novel protein kinase C (nPKC) isoforms. To test this hypothesis, we analyzed long-term metabolic effects of pioglitazone and the activation of nPKC-epsilon and -theta isoforms in an animal model of the metabolic syndrome, the spontaneously hypertensive rat (a congenic SHR strain with wild type Cd36 gene) fed a diet with 60 % sucrose from the age of 4 to 8 months. Compared to untreated controls, pioglitazone treatment was associated with significantly increased basal (809+/-36 vs 527+/-47 nmol glucose/g/2h, P<0.005) and insulin-stimulated glycogenesis (1321+/-62 vs 749+/-60 nmol glucose/g/2h, P<0.0001) in isolated gastrocnemius muscles despite increased concentrations of muscle triglycerides (3.83+/-0.33 vs 2.25+/-0.12 micromol/g, P<0.005). Pioglitazone-treated rats exhibited significantly increased membrane/total (cytosolic plus membrane) ratio of both PKC-epsilon and PKC-theta isoforms compared to untreated controls. These results suggest that amelioration of insulin resistance after long-term pioglitazone treatment is associated with increased activation of PKC-epsilon and -theta isoforms in spite of increased lipid concentration in skeletal muscles.

  13. Crosstalk between Wnt signaling and Phorbol ester-mediated PKC signaling in MCF-7 human breast cancer cells.

    PubMed

    Kim, Soyoung; Chun, So-Young; Kwon, Yun-Suk; Nam, Kyung-Soo

    2016-02-01

    Although many studies have implicated the crosstalk between the Wnt and PKC signaling pathways in tumor initiation and progression, the molecular roles of PKC isoforms in the Wnt signaling pathway remain poorly understood. In this study, we explored the contribution of PKC isoforms to canonical and noncanonical Wnt signaling pathway in mediating cell migration and an epithelial-mesenchymal transition (EMT). When MCF-7 cells were treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) for up to 3 weeks, the effect of TPA on Wnt signaling pathway was dramatically different depending on the exposure time. The short term exposure (3 days) of MCF-7 cells to TPA exhibited significant induction of Wnt5a expression, along with the enhanced expression of PKC-α, to promote cell migration, which suggested that activation of noncanonical Wnt signaling pathway is associated with PKC-α. However, the chronic exposure (3 weeks) of cells to TPA completely suppressed Wnt5a expression and the expression of PKC-η and PKC-δ, whereas the expression of Wnt3a and PKC-θ were up-regulated to activate the canonical Wnt signaling pathway. Moreover, the loss of epithelial markers, including E-cadherin and GATA-3, suggested that chronic exposure of TPA stimulates EMT. Taken together, our data suggest that PKC-θ positively regulates the canonical Wnt signaling pathway, and that PKC-η and PKC-δ negatively modulate this signaling pathway.

  14. JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis

    PubMed Central

    Tomlinson, V; Gudmundsdottir, K; Luong, P; Leung, K-Y; Knebel, A; Basu, S

    2010-01-01

    Yes-associated protein (YAP) regulates DNA damage and chemosensitivity, as well as functioning as a pro-growth, cell size regulator. For both of its roles, regulation by phosphorylation is crucial. We undertook an in vitro screen to identify novel YAP kinases to discover new signaling pathways to better understand YAP's function. We identified JNK1 and JNK2 as robust YAP kinases, as well as mapped multiple sites of phosphorylation. Using inhibitors and siRNA, we showed that JNK specifically phosphorylates endogenous YAP in a number of cell types. We show that YAP protects keratinocytes from UV irradiation but promotes UV-induced apoptosis in a squamous cell carcinoma. We defined the mechanism for this dual role to be YAP's ability to bind and stabilize the pro-proliferative ΔNp63α isoform in a JNK-dependent manner. Our report indicates that an evaluation of the expression of the different isoforms of p63 and p73 is crucial in determining YAP's function. PMID:21364637

  15. Sialic acid rescues repurified lipopolysaccharide-induced acute renal failure via inhibiting TLR4/PKC/gp91-mediated endoplasmic reticulum stress, apoptosis, autophagy, and pyroptosis signaling.

    PubMed

    Yang, Chih-Ching; Yao, Chien-An; Yang, Jyh-Chin; Chien, Chiang-Ting

    2014-09-01

    Lipopolysaccharides (LPS) through Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) activation induce systemic inflammation where oxidative damage plays a key role in multiple organ failure. Because of the neutralization of LPS toxicity by sialic acid (SA), we determined its effect and mechanisms on repurified LPS (rLPS)-evoked acute renal failure. We assessed the effect of intravenous SA (10 mg/kg body weight) on rLPS-induced renal injury in female Wistar rats by evaluating blood and kidney reactive oxygen species (ROS) responses, renal and systemic hemodynamics, renal function, histopathology, and molecular mechanisms. SA can interact with rLPS through a high binding affinity. rLPS dose- and time-dependently reduced arterial blood pressure, renal microcirculation and blood flow, and increased vascular resistance in the rats. rLPS enhanced monocyte/macrophage (ED-1) infiltration and ROS production and impaired kidneys by triggering p-IRE1α/p-JNK/CHOP/GRP78/ATF4-mediated endoplasmic reticulum (ER) stress, Bax/PARP-mediated apoptosis, Beclin-1/Atg5-Atg12/LC3-II-mediated autophagy, and caspase 1/IL-1β-mediated pyroptosis in the kidneys. SA treatment at 30 min, but not 60 min after rLPS stimulation, gp91 siRNA and protein kinase C-α (PKC) inhibitor efficiently rescued rLPS-induced acute renal failure via inhibition of TLR4/PKC/NADPH oxidase gp91-mediated ER stress, apoptosis, autophagy and pyroptosis in renal proximal tubular cells, and rat kidneys. In response to rLPS or IFNγ, the enhanced Atg5, FADD, LC3-II, and PARP expression can be inhibited by Atg5 siRNA. Albumin (10 mg/kg body weight) did not rescue rLPS-induced injury. In conclusion, early treatment (within 30 min) of SA attenuates rLPS-induced renal failure via the reduction in LPS toxicity and subsequently inhibiting rLPS-activated TLR4/PKC/gp91/ER stress/apoptosis/autophagy/pyroptosis signaling.

  16. Cortical Interneurons Require Jnk1 to Enter and Navigate the Developing Cerebral Cortex

    PubMed Central

    Myers, Abigail K.; Meechan, Daniel W.; Adney, Danielle R.

    2014-01-01

    Proper assembly of cortical circuitry relies on the correct migration of cortical interneurons from their place of birth in the ganglionic eminences to their place of terminal differentiation in the cerebral cortex. Although molecular mechanisms mediating cortical interneuron migration have been well studied, intracellular signals directing their migration are largely unknown. Here we illustrate a novel and essential role for c-Jun N-terminal kinase (JNK) signaling in guiding the pioneering population of cortical interneurons into the mouse cerebral cortex. Migrating cortical interneurons express Jnk proteins at the entrance to the cortical rudiment and have enriched expression of Jnk1 relative to noninterneuronal cortical cells. Pharmacological blockade of JNK signaling in ex vivo slice cultures resulted in dose-dependent and highly specific disruption of interneuron migration into the nascent cortex. Time-lapse imaging revealed that JNK-inhibited cortical interneurons advanced slowly and assumed aberrant migratory trajectories while traversing the cortical entry zone. In vivo analyses of JNK-deficient embryos supported our ex vivo pharmacological data. Deficits in interneuron migration were observed in Jnk1 but not Jnk2 single nulls, and those migratory deficits were further exacerbated when homozygous loss of Jnk1 was combined with heterozygous reduction of Jnk2. Finally, genetic ablation of Jnk1 and Jnk2 from cortical interneurons significantly perturbed migration in vivo, but not in vitro, suggesting JNK activity functions to direct their guidance rather than enhance their motility. These data suggest JNK signaling, predominantly mediated by interneuron expressed Jnk1, is required for guiding migration of cortical interneurons into and within the developing cerebral cortex. PMID:24899703

  17. Novel PKC-ζ to p47phox interaction is necessary for transformation from blebbishields

    PubMed Central

    Jinesh, Goodwin G.; Taoka, Rikiya; Zhang, Qiang; Gorantla, Siddharth; Kamat, Ashish M.

    2016-01-01

    Cancer stem cells are capable of transformation after apoptosis through the blebbishield emergency program. Reactive oxygen species (ROS) play an essential role in transformation. Understanding how ROS are linked to blebbishield-mediated transformation is necessary to develop efficient therapeutics that target the resurrection of cancer stem cells. Here we demonstrate that a novel PKC-ζ to p47phox interaction is required for ROS production in cancer cells. The combined use of the S6K inhibitor BI-D1870 with TNF-α inhibited the PKC-ζ to p47phox interaction, inhibited ROS production, degraded PKC-ζ, and activated caspases-3 and -8 to block transformation from blebbishields. BI-D1870 also inhibited transformation from cycloheximide-generated blebbishields. Thus ROS and the PKC-ζ to p47phox interaction are valid therapeutic targets to block transformation from blebbishields. PMID:27040869

  18. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    EPA Science Inventory

    Prolactin-Induced Tyrosine Phosphorylation, Activation and Receptor
    Association of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells.
    Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental Protection
    Agency, MD-72, Research Triangle Park, NC 27711, and

  19. ECE-1 influences prostate cancer cell invasion via ET-1-mediated FAK phosphorylation and ET-1-independent mechanisms.

    PubMed

    Whyteside, A R; Hinsley, E E; Lambert, L A; McDermott, P J; Turner, A J

    2010-08-01

    Plasma concentrations of the mitogenic peptide endothelin-1 (ET-1) are significantly elevated in men with metastatic prostate cancer (PC). ET-1 also contributes to the transition of hormonally regulated androgen-dependent PC to androgen-independent disease. ET-1 is generated from big-ET-1 by endothelin-converting enzyme (ECE-1). ECE-1 is present in PC cell lines and primary tissue and is elevated in primary malignant stromal cells compared with benign. siRNA or shRNA-mediated knockdown of endogenous ECE-1 in either the epithelial or stromal compartment significantly reduced PC cell (PC-3) invasion and migration. The re-addition of ET-1 only partially recovered the effect, suggesting ET-1-dependent and -independent functions for ECE-1 in pPC. The ET-1-independent effect of ECE-1 on PC invasion may be due to modulation of downstream signalling events. Addition of an ECE-1 specific inhibitor to PC-3 cells reduced phosphorylation of focal adhesion kinase (FAK), a signalling molecule known to play a role in PC. siRNA-mediated knockdown of ECE-1 resulted in a significant reduction in FAK phosphorylation. Accordingly, transient ECE-1 overexpression in PNT1-a cells increased FAK phosphorylation. In conclusion, ECE-1 influences PC cell invasion via both ET-1-mediated FAK phosphorylation and ET-1 independent mechanisms.

  20. The cysteine-cluster motif of c-Yes, Lyn and FAK as a suppressive module for the kinases.

    PubMed

    Rahman, Mohammad Aminur; Senga, Takeshi; Oo, Myat Lin; Hasegawa, Hitoki; Biswas, Md Helal Uddin; Mon, Naing Naing; Huang, Pengyu; Ito, Satoko; Yamamoto, Tadashi; Hamaguchi, Michinari

    2008-04-01

    The Src family of non-receptor protein tyrosine kinases plays a critical role in the progression of human cancers so that the development of its specific inhibitors is important as a therapeutic tool. We previously reported that cysteine residues in the cysteine-cluster (CC) motif of v-Src were critical for the kinase inactivation by the SH-alkylating agents such as N-(9-acridinyl) maleimide (NAM), whereas other cysteine residues were dispensable. We found similar CC-motifs in other Src-family kinases and a non-Src-family kinase, FAK. In this study, we explored the function of the CC-motif in Yes, Lyn and FAK. While Src has four cysteines in the CC-motif, c-Yes and Lyn have three and two of the four cysteines, respectively. Two conserved cysteines of the Src family kinases, corresponding to Cys487 and Cys498 of Src, were essential for the resistance to the inactivation of the kinase activity by NAM, whereas the first cysteine of c-Yes, which is absent in Lyn, was less important. FAK has similar CC-motifs with two cysteines and both cysteines were again essential for the resistance to the inactivation of the kinase activity by NAM. Taken together, modification of cysteine residues of the CC-motif causes a repressor effect on the catalytic activity of the Src family kinases and FAK.

  1. Phosphoproteomic Analysis Identifies Focal Adhesion Kinase 2 (FAK2) as a Potential Therapeutic Target for Tamoxifen Resistance in Breast Cancer.

    PubMed

    Wu, Xinyan; Zahari, Muhammad Saddiq; Renuse, Santosh; Nirujogi, Raja Sekhar; Kim, Min-Sik; Manda, Srikanth S; Stearns, Vered; Gabrielson, Edward; Sukumar, Saraswati; Pandey, Akhilesh

    2015-11-01

    Tamoxifen, an estrogen receptor-α (ER) antagonist, is an important agent for the treatment of breast cancer. However, this therapy is complicated by the fact that a substantial number of patients exhibit either de novo or acquired resistance. To characterize the signaling mechanisms underlying this resistance, we treated the MCF7 breast cancer cell line with tamoxifen for over six months and showed that this cell line acquired resistance to tamoxifen in vitro and in vivo. We performed SILAC-based quantitative phosphoproteomic profiling on the tamoxifen resistant and vehicle-treated sensitive cell lines to quantify the phosphorylation alterations associated with tamoxifen resistance. From >5600 unique phosphopeptides identified, 1529 peptides exhibited hyperphosphorylation and 409 peptides showed hypophosphorylation in the tamoxifen resistant cells. Gene set enrichment analysis revealed that focal adhesion pathway was one of the most enriched signaling pathways activated in tamoxifen resistant cells. Significantly, we showed that the focal adhesion kinase FAK2 was not only hyperphosphorylated but also transcriptionally up-regulated in tamoxifen resistant cells. FAK2 suppression by specific siRNA knockdown or a small molecule inhibitor repressed cellular proliferation in vitro and tumor formation in vivo. More importantly, our survival analysis revealed that high expression of FAK2 is significantly associated with shorter metastasis-free survival in estrogen receptor-positive breast cancer patients treated with tamoxifen. Our studies suggest that FAK2 is a potential therapeutic target for the management of hormone-refractory breast cancers.

  2. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    EPA Science Inventory

    Prolactin-Induced Tyrosine Phosphorylation, Activation and Receptor
    Association of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells.
    Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental Protection
    Agency, MD-72, Research Triangle Park, NC 27711, and

  3. Genetic and epigenetic silencing of SCARA5 may contribute to human hepatocellular carcinoma by activating FAK signaling

    PubMed Central

    Huang, Jian; Zheng, Da-Li; Qin, Feng-Song; Cheng, Na; Chen, Hui; Wan, Bing-Bing; Wang, Yu-Ping; Xiao, Hua-Sheng; Han, Ze-Guang

    2009-01-01

    The epigenetic silencing of tumor suppressor genes is a crucial event during carcinogenesis and metastasis. Here, in a human genome-wide survey, we identified scavenger receptor class A, member 5 (SCARA5) as a candidate tumor suppressor gene located on chromosome 8p. We found that SCARA5 expression was frequently downregulated as a result of promoter hypermethylation and allelic imbalance and was associated with vascular invasion in human hepatocellular carcinoma (HCC). Furthermore, SCARA5 knockdown via RNAi markedly enhanced HCC cell growth in vitro, colony formation in soft agar, and invasiveness, tumorigenicity, and lung metastasis in vivo. By contrast, SCARA5 overexpression suppressed these malignant behaviors. Interestingly, SCARA5 was found to physically associate with focal adhesion kinase (FAK) and inhibit the tyrosine phosphorylation cascade of the FAK-Src-Cas signaling pathway. Conversely, silencing SCARA5 stimulated the signaling pathway via increased phosphorylation of certain tyrosine residues of FAK, Src, and p130Cas; it was also associated with activation of MMP9, a tumor metastasis–associated enzyme. Taken together, these data suggest that the plasma membrane protein SCARA5 can contribute to HCC tumorigenesis and metastasis via activation of the FAK signaling pathway. PMID:20038795

  4. Phosphoproteomic Analysis Identifies Focal Adhesion Kinase 2 (FAK2) as a Potential Therapeutic Target for Tamoxifen Resistance in Breast Cancer*

    PubMed Central

    Wu, Xinyan; Zahari, Muhammad Saddiq; Renuse, Santosh; Nirujogi, Raja Sekhar; Kim, Min-Sik; Manda, Srikanth S.; Stearns, Vered; Gabrielson, Edward; Sukumar, Saraswati; Pandey, Akhilesh

    2015-01-01

    Tamoxifen, an estrogen receptor-α (ER) antagonist, is an important agent for the treatment of breast cancer. However, this therapy is complicated by the fact that a substantial number of patients exhibit either de novo or acquired resistance. To characterize the signaling mechanisms underlying this resistance, we treated the MCF7 breast cancer cell line with tamoxifen for over six months and showed that this cell line acquired resistance to tamoxifen in vitro and in vivo. We performed SILAC-based quantitative phosphoproteomic profiling on the tamoxifen resistant and vehicle-treated sensitive cell lines to quantify the phosphorylation alterations associated with tamoxifen resistance. From >5600 unique phosphopeptides identified, 1529 peptides exhibited hyperphosphorylation and 409 peptides showed hypophosphorylation in the tamoxifen resistant cells. Gene set enrichment analysis revealed that focal adhesion pathway was one of the most enriched signaling pathways activated in tamoxifen resistant cells. Significantly, we showed that the focal adhesion kinase FAK2 was not only hyperphosphorylated but also transcriptionally up-regulated in tamoxifen resistant cells. FAK2 suppression by specific siRNA knockdown or a small molecule inhibitor repressed cellular proliferation in vitro and tumor formation in vivo. More importantly, our survival analysis revealed that high expression of FAK2 is significantly associated with shorter metastasis-free survival in estrogen receptor-positive breast cancer patients treated with tamoxifen. Our studies suggest that FAK2 is a potential therapeutic target for the management of hormone-refractory breast cancers. PMID:26330541

  5. bFGF Promotes the Migration of Human Dermal Fibroblasts under Diabetic Conditions through Reactive Oxygen Species Production via the PI3K/Akt-Rac1- JNK Pathways

    PubMed Central

    Shi, Hongxue; Cheng, Yi; Ye, Jingjing; Cai, Pingtao; Zhang, Jinjing; Li, Rui; Yang, Ying; Wang, Zhouguang; Zhang, Hongyu; Lin, Cai; Lu, Xianghong; Jiang, Liping; Hu, Aiping; Zhu, Xinbo; Zeng, Qiqiang; Fu, Xiaobing; Li, Xiaokun; Xiao, Jian

    2015-01-01

    Fibroblasts play a pivotal role in the process of cutaneous wound repair, whereas their migratory ability under diabetic conditions is markedly reduced. In this study, we investigated the effect of basic fibroblast growth factor (bFGF) on human dermal fibroblast migration in a high-glucose environment. bFGF significantly increased dermal fibroblast migration by increasing the percentage of fibroblasts with a high polarity index and reorganizing F-actin. A significant increase in intracellular reactive oxygen species (ROS) was observed in dermal fibroblasts under diabetic conditions following bFGF treatment. The blockage of bFGF-induced ROS production by either the ROS scavenger N-acetyl-L-cysteine (NAC) or the NADPH oxidase inhibitor diphenylene iodonium chloride (DPI) almost completely neutralized the increased migration rate of dermal fibroblasts promoted by bFGF. Akt, Rac1 and JNK were rapidly activated by bFGF in dermal fibroblasts, and bFGF-induced ROS production and promoted dermal fibroblast migration were significantly attenuated when suppressed respectively. In addition, bFGF-induced increase in ROS production was indispensable for the activation of focal adhesion kinase (FAK) and paxillin. Therefore, our data suggested that bFGF promotes the migration of human dermal fibroblasts under diabetic conditions through increased ROS production via the PI3K/Akt-Rac1-JNK pathways. PMID:26078726

  6. Cooperativity Between Oncogenic PKC Epsilon and Pten Loss in Prostate Cancer Progression

    DTIC Science & Technology

    2016-10-01

    pathway that correlates with motility and metastasis. Based on our preliminary data, PKCε overexpression and Pten loss individually and synergically confer...AWARD NUMBER: W81XWH-14-1-0535 TITLE: Cooperativity Between Oncogenic PKC Epsilon and Pten Loss in Prostate Cancer Progression PRINCIPAL...Sep 2015 - 29 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cooperativity Between Oncogenic PKC Epsilon and Pten Loss in Prostate Cancer

  7. Ellagic acid inhibits PKC signaling by improving antioxidant defense system in murine T cell lymphoma.

    PubMed

    Mishra, Sudha; Vinayak, Manjula

    2014-07-01

    Antioxidants protect the cells from the damaging effects of reactive oxygen species (ROS). Production of ROS during cellular metabolism is balanced by their removal by antioxidants. Any condition leading to increased levels of ROS results in oxidative stress, which participates in multistage carcinogenesis by causing oxidative DNA damage, mutations in the proto-oncogenes and tumor suppressor genes. Antioxidant defense system is required to overcome the process of carcinogenesis generated by ROS. Antioxidant enzymes are major contributors to endogenous antioxidant defense system. Protein kinase C (PKC) is generally involved in cell proliferation and its over expression leads to abnormal tumor growth. Out of three classes of PKC, classical PKC is mainly involved in cell proliferation and tumor growth. Classical PKC initiates signaling pathway and leads to activation of a number of downstream protein via activation of NF-κB. Therefore any agent which can promotes the endogenous antioxidant defense system should be able to down regulate PKC and NF-κB activation and thus may be useful in reducing cancer progression. To investigate this hypothesis we have tested the effect of antioxidant ellagic acid on antioxidant enzymes and PKC signaling in Dalton's lymphoma bearing (DL) mice. DL mice were treated with three different doses of ellagic acid. The treatment significantly increases the activity and expression of antioxidant enzymes and down regulates the expression of classical isozymes of PKC as well as the activation of NF-κB, indicating that ellagic acid improves antioxidant defense system and PKC signaling via NF-κB which may contribute to its cancer preventive role.

  8. PKC{eta} is a negative regulator of AKT inhibiting the IGF-I induced proliferation

    SciTech Connect

    Shahaf, Galit; Rotem-Dai, Noa; Koifman, Gabriela; Raveh-Amit, Hadas; Frost, Sigal A.; Livneh, Etta

    2012-04-15

    The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKC{eta} isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKC{eta}-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKC{eta}-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKT Ser473. While PKC{eta} exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKC{eta} and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKC{eta} expression, suggesting that PKC{eta} acts through a different route to increase cell survival. Hence, our studies show that PKC{eta} provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.

  9. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis

    DOE PAGES

    Micheva-Viteva, Sofiya N.; Shou, Yulin; Ganguly, Kumkum; ...

    2017-06-07

    Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signalingmore » as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis, we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. As a result, identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective

  10. L1 stimulation of human glioma cell motility correlates with FAK activation.

    PubMed

    Yang, Muhua; Li, Yupei; Chilukuri, Kalyani; Brady, Owen A; Boulos, Magdy I; Kappes, John C; Galileo, Deni S

    2011-10-01

    The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass

  11. L1 stimulation of human glioma cell motility correlates with FAK activation

    PubMed Central

    Yang, Muhua; Li, Yupei; Chilukuri, Kalyani; Brady, Owen A.; Boulos, Magdy I.; Kappes, John C.

    2011-01-01

    The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass

  12. Induction of mitotic catastrophe by PKC inhibition in Nf1-deficient cells.

    PubMed

    Zhou, Xiaodong; Kim, Sung-Hoon; Shen, Ling; Lee, Hyo-Jung; Chen, Changyan

    2014-01-01

    Mutations of tumor suppressor Nf1 gene deregulate Ras-mediated signaling, which confers the predisposition for developing benign or malignant tumors. Inhibition of protein kinase C (PKC) was shown to be in synergy with aberrant Ras for the induction of apoptosis in various types of cancer cells. However, it has not been investigated whether loss of PKC is lethal for Nf1-deficient cells. In this study, using HMG (3-hydroxy-3-methylgutaryl, a PKC inhibitor), we demonstrate that the inhibition of PKC by HMG treatment triggered a persistently mitotic arrest, resulting in the occurrence of mitotic catastrophe in Nf1-deficient ST8814 cells. However, the introduction of the Nf1 effective domain gene into ST8814 cells abolished this mitotic crisis. In addition, HMG injection significantly attenuated the growth of the xenografted ST8814 tumors. Moreover, Chk1 was phosphorylated, accompanied with the persistent increase of cyclin B1 expression in HMG-treated ST8814 cells. The knockdown of Chk1 by the siRNA prevented the Nf1-deficient cells from undergoing HMG-mediated mitotic arrest as well as mitotic catastrophe. Thus, our data suggested that the suppression of PKC activates the Chk1-mediated mitotic exit checkpoint in Nf1-deficient cells, leading to the induction of apoptosis via mitotic catastrophe. Collectively, the study indicates that targeting PKC may be a potential option for developing new strategies to treat Nf1-deficiency-related diseases.

  13. A bidirectional antagonism between aPKC and Yurt regulates epithelial cell polarity

    PubMed Central

    Gamblin, Clémence L.; Hardy, Émilie J.-L.; Chartier, François J.-M.; Bisson, Nicolas

    2014-01-01

    During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells. PMID:24515345

  14. The roles of maternal Vangl2 and aPKC in Xenopus oocyte and embryo patterning

    PubMed Central

    Cha, Sang-Wook; Tadjuidje, Emmanuel; Wylie, Christopher; Heasman, Janet

    2011-01-01

    The Xenopus oocyte contains components of both the planar cell polarity and apical-basal polarity pathways, but their roles are not known. Here, we examine the distribution, interactions and functions of the maternal planar cell polarity core protein Vangl2 and the apical-basal complex component aPKC. We show that Vangl2 is distributed in animally enriched islands in the subcortical cytoplasm in full-grown oocytes, where it interacts with a post-Golgi v-SNARE protein, VAMP1, and acetylated microtubules. We find that Vangl2 is required for the stability of VAMP1 as well as for the maintenance of the stable microtubule architecture of the oocyte. We show that Vangl2 interacts with atypical PKC, and that both the acetylated microtubule cytoskeleton and the Vangl2-VAMP1 distribution are dependent on the presence of aPKC. We also demonstrate that aPKC and Vangl2 are required for the cell membrane asymmetry that is established during oocyte maturation, and for the asymmetrical distribution of maternal transcripts for the germ layer and dorsal/ventral determinants VegT and Wnt11. This study demonstrates the interaction and interdependence of Vangl2, VAMP1, aPKC and the stable microtubule cytoskeleton in the oocyte, shows that maternal Vangl2 and aPKC are required for specific oocyte asymmetries and vertebrate embryonic patterning, and points to the usefulness of the oocyte as a model to study the polarity problem. PMID:21813572

  15. Synapse formation changes the rules for desensitization of PKC translocation in Aplysia.

    PubMed

    Farah, Carole A; Naqib, Faisal; Weatherill, Daniel B; Pack, Christopher C; Sossin, Wayne S

    2015-02-01

    Protein kinase Cs (PKCs) are activated by translocating from the cytoplasm to the membrane. We have previously shown that serotonin-mediated translocation of PKC to the plasma membrane in Aplysia sensory neurons was subject to desensitization, a decrease in the ability of serotonin to induce translocation after previous application of serotonin. In Aplysia, changes in the strength of the sensory-motor neuron synapse are important for behavioral sensitization and PKC regulates a number of important aspects of this form of synaptic plasticity. We have previously suggested that the desensitization of PKC translocation in Aplysia sensory neurons may partially explain the differences between spaced and massed training, as spaced applications of serotonin, a cellular analog of spaced training, cause greater desensitization of PKC translocation than one massed application of serotonin, a cellular analog of massed training. Our previous studies were performed in isolated sensory neurons. In the present study, we monitored translocation of fluorescently-tagged PKC to the plasma membrane in living sensory neurons that were co-cultured with motor neurons to allow for synapse formation. We show that desensitization now becomes similar during spaced and massed applications of serotonin. We had previously modeled the signaling pathways that govern desensitization in isolated sensory neurons. We now modify this mathematical model to account for the changes observed in desensitization dynamics following synapse formation. Our study shows that synapse formation leads to significant changes in the molecular signaling networks that underlie desensitization of PKC translocation.

  16. Synthesis and biological activities of simplified analogs of the natural PKC ligands, bryostatin-1 and aplysiatoxin.

    PubMed

    Irie, Kazuhiro; Yanagita, Ryo C

    2014-04-01

    Protein kinase C (PKC) isozymes play central roles in signal transduction on the cell surface and could serve as promising therapeutic targets of intractable diseases like cancer, Alzheimer's disease, and acquired immunodeficiency syndrome (AIDS). Although natural PKC ligands like phorbol esters, ingenol esters, and teleocidins have the potential to become therapeutic leads, most of them are potent tumor promoters in mouse skin. By contrast, bryostatin-1 (bryo-1) isolated from marine bryozoan is a potent PKC activator with little tumor-promoting activity. Numerous investigations have suggested bryo-1 to be a promising therapeutic candidate for the above intractable diseases. However, there is a supply problem of bryo-1 both from natural sources and by organic synthesis. Recent approaches on the synthesis of bryo-1 have focused on its simplification, without decreasing the ability to activate PKC isozymes, to develop new medicinal leads. Another approach is to use the skeleton of natural PKC ligands to develop bryo-1 surrogates. We have recently identified 10-methyl-aplog-1 (26), a simplified analog of tumor-promoting aplysiatoxin (ATX), as a possible therapeutic lead for cancer. This review summarizes recent investigations on the simplification of natural PKC ligands, bryo-1 and ATX, to develop potential medicinal leads. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. DNA damage targets PKC{eta} to the nuclear membrane via its C1b domain

    SciTech Connect

    Tamarkin, Ana; Zurgil, Udi; Braiman, Alex; Hai, Naama; Krasnitsky, Ella; Maissel, Adva; Ben-Ari, Assaf; Yankelovich, Liat; Livneh, Etta

    2011-06-10

    Translocation to cellular membranes is one of the hallmarks of PKC activation, occurring as a result of the generation of lipid secondary messengers in target membrane compartments. The activation-induced translocation of PKCs and binding to membranes is largely directed by their regulatory domains. We have previously reported that PKC{eta}, a member of the novel subfamily and an epithelial specific isoform, is localized at the cytoplasm and ER/Golgi and is translocated to the plasma membrane and the nuclear envelope upon short-term activation by PMA. Here we show that PKC{eta} is shuttling between the cytoplasm and the nucleus and that upon etoposide induced DNA damage is tethered at the nuclear envelope. Although PKC{eta} expression and its phosphorylation on the hydrophobic motif (Ser675) are increased by etoposide, this phosphorylation is not required for its accumulation at the nuclear envelope. Moreover, we demonstrate that the C1b domain is sufficient for translocation to the nuclear envelope. We further show that, similar to full-length PKC{eta}, the C1b domain could also confer protection against etoposide-induced cell death. Our studies demonstrate translocation of PKC{eta} to the nuclear envelope, and suggest that its spatial regulation could be important for its cellular functions including effects on cell death.

  18. Induction of TRIM22 by IFN-γ Involves JAK and PC-PLC/PKC, but Not MAPKs and pI3K/Akt/mTOR Pathways.

    PubMed

    Gao, Bo; Xu, Wei; Wang, Yaxin; Zhong, Linmao; Xiong, Sidong

    2013-10-01

    Tripartite motif (TRIM) 22 plays an important role in interferons (IFNs)-mediated antiviral activity. We previously demonstrated that interferon regulatory factor-1 (IRF-1) played a central role in IFN-γ-induced TRIM22 expression via binding to a special cis-element named 5' extended IFN-stimulating response element (5'eISRE). In this study, we sought to identify the signaling pathways involved in TRIM22 induction by IFN-γ. By using various pharmacological inhibitors, it was found that the activity of tyrosine kinase and phosphatidylcholine-phospholipase C (PC-PLC), but not phosphatidylinositol-phospholipase C (PI-PLC) and phospholipase D (PLD), was required for IFN-γ-induced TRIM22 expression in HepG2 cells. Tyrosine kinase Janus kinase (JAK), not SRC and PYK2, played an indispensable role in TRIM22 induction. Inhibition of protein kinase C (PKC) activity also significantly attenuated IFN-γ induction of TRIM22. Although treatment with IFN-γ resulted in the stimulation of mitogen-activated protein kinases (MAPKs) (p38, ERK, and JNK) and pI3K/Akt/mTOR pathways in HepG2 cells, the inhibition of their activity did not affect IFN-γ-stimulated TRIM22 expression. Further studies showed that overexpression of JAK1 and PKCα activated TRIM22 promoter activity in a 5'eISRE-dependent manner, and inhibition of not only JAK but also PC-PLC/PKC pathways significantly attenuated IFN-γ-induced IRF-1 expression in HepG2 cells. Taken together, these data indicated that IFN-γ induced TRIM22 expression via activation of JAK and PC-PLC/PKC signaling pathways, which involved the cis-element 5'eISRE and the transactivator IRF-1.

  19. Role of Jnk1 in development of neural precursors revealed by iPSC modeling.

    PubMed

    Zhang, Qian; Mao, Jian; Zhang, Xiaoxi; Fu, Haifeng; Xia, Siyuan; Yin, Zhinan; Liu, Lin

    2016-09-20

    Jnk1-deficient mice manifest disrupted anterior commissure formation and loss of axonal and dendritic microtubule integrity. However, the mechanisms and the specific stages underlying the developmental defects remain to be elucidated. Here, we report the generation of Jnk1-deficient (Jnk1 KO) iPSCs from Jnk1 KO mouse tail-tip fibroblasts (TTFs) for modeling the neural disease development. The efficiency in the early induction of iPSCs was higher from Jnk1 KO fibroblasts than that of wild-type (WT) fibroblasts. These Jnk1 KO iPSCs exhibited pluripotent stem cell properties and had the ability of differentiation into general three embryonic germ layers in vitro and in vivo. However, Jnk1 KO iPSCs showed reduced capacity in neural differentiation in the spontaneous differentiation by embryoid body (EB) formation. Notably, by directed lineage differentiation, Jnk1 KO iPSCs specifically exhibited an impaired ability to differentiate into early stage neural precursors. Furthermore, the neuroepitheliums generated from Jnk1 KO iPSCs appeared smaller, indicative of neural stem cell developmental defects, as demonstrated by teratoma tests in vivo. These data suggest that Jnk1 deficiency inhibits the development of neural stem cells/precursors and provide insights to further understanding the complex pathogenic mechanisms of JNK1-related neural diseases.

  20. Role of Jnk1 in development of neural precursors revealed by iPSC modeling

    PubMed Central

    Zhang, Qian; Mao, Jian; Zhang, Xiaoxi; Fu, Haifeng; Xia, Siyuan; Yin, Zhinan; Liu, Lin

    2016-01-01

    Jnk1-deficient mice manifest disrupted anterior commissure formation and loss of axonal and dendritic microtubule integrity. However, the mechanisms and the specific stages underlying the developmental defects remain to be elucidated. Here, we report the generation of Jnk1-deficient (Jnk1 KO) iPSCs from Jnk1 KO mouse tail-tip fibroblasts (TTFs) for modeling the neural disease development. The efficiency in the early induction of iPSCs was higher from Jnk1 KO fibroblasts than that of wild-type (WT) fibroblasts. These Jnk1 KO iPSCs exhibited pluripotent stem cell properties and had the ability of differentiation into general three embryonic germ layers in vitro and in vivo. However, Jnk1 KO iPSCs showed reduced capacity in neural differentiation in the spontaneous differentiation by embryoid body (EB) formation. Notably, by directed lineage differentiation, Jnk1 KO iPSCs specifically exhibited an impaired ability to differentiate into early stage neural precursors. Furthermore, the neuroepitheliums generated from Jnk1 KO iPSCs appeared smaller, indicative of neural stem cell developmental defects, as demonstrated by teratoma tests in vivo. These data suggest that Jnk1 deficiency inhibits the development of neural stem cells/precursors and provide insights to further understanding the complex pathogenic mechanisms of JNK1-related neural diseases. PMID:27556303

  1. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    SciTech Connect

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li; Jiaojie, Zhou; Xiaoyi, Yan; Xiujun, Cai

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  2. Absence of catalytic domain in a putative protein kinase C (PkcA) suppresses tip dominance in Dictyostelium discoideum

    PubMed Central

    Mohamed, Wasima; Ray, Sibnath; Brazill, Derrick; Baskar, Ramamurthy

    2017-01-01

    A number of organisms possess several isoforms of protein kinase C but little is known about the significance of any specific isoform during embryogenesis and development. To address this we characterized a PKC ortholog (PkcA; DDB_G0288147) in Dictyostelium discoideum. pkcA expression switches from prestalk in mound to prespore in slug, indicating a dynamic expression pattern. Mutants lacking the catalytic domain of PkcA (pkcA−) did not exhibit tip dominance. A striking phenotype of pkcA− was the formation of an aggregate with a central hollow, and aggregates later fragmented to form small mounds, each becoming a fruiting body. Optical density wave patterns of cAMP in the late aggregates showed several cAMP wave generation centers. We attribute these defects in pkcA− to impaired cAMP signaling, altered cell motility and decreased expression of the cell adhesion molecules – CadA and CsaA. pkcA− slugs showed ectopic expression of ecmA in the prespore region. Further, the use of a PKC-specific inhibitor, GF109203X that inhibits the activity of catalytic domain phenocopied pkcA−. PMID:26183108

  3. Absence of catalytic domain in a putative protein kinase C (PkcA) suppresses tip dominance in Dictyostelium discoideum.

    PubMed

    Mohamed, Wasima; Ray, Sibnath; Brazill, Derrick; Baskar, Ramamurthy

    2015-09-01

    A number of organisms possess several isoforms of protein kinase C but little is known about the significance of any specific isoform during embryogenesis and development. To address this we characterized a PKC ortholog (PkcA; DDB_G0288147) in Dictyostelium discoideum. pkcA expression switches from prestalk in mound to prespore in slug, indicating a dynamic expression pattern. Mutants lacking the catalytic domain of PkcA (pkcA(-)) did not exhibit tip dominance. A striking phenotype of pkcA- was the formation of an aggregate with a central hollow, and aggregates later fragmented to form small mounds, each becoming a fruiting body. Optical density wave patterns of cAMP in the late aggregates showed several cAMP wave generation centers. We attribute these defects in pkcA(-) to impaired cAMP signaling, altered cell motility and decreased expression of the cell adhesion molecules - CadA and CsaA. pkcA(-) slugs showed ectopic expression of ecmA in the prespore region. Further, the use of a PKC-specific inhibitor, GF109203X that inhibits the activity of catalytic domain phenocopied pkcA(-).

  4. The adaptor protein Cindr regulates JNK activity to maintain epithelial sheet integrity.

    PubMed

    Yasin, Hannah W R; van Rensburg, Samuel H; Feiler, Christina E; Johnson, Ruth I

    2016-02-15

    Epithelia are essential barrier tissues that must be appropriately maintained for their correct function. To achieve this a plethora of protein interactions regulate epithelial cell number, structure and adhesion, and differentiation. Here we show that Cindr (the Drosophila Cin85 and Cd2ap ortholog) is required to maintain epithelial integrity. Reducing Cindr triggered cell delamination and movement. Most delaminating cells died. These behaviors were consistent with JNK activation previously associated with loss of epithelial integrity in response to ectopic oncogene activity. We confirmed a novel interaction between Cindr and Drosophila JNK (dJNK), which when perturbed caused inappropriate JNK signaling. Genetically reducing JNK signaling activity suppressed the effects of reducing Cindr. Furthermore, ectopic JNK signaling phenocopied loss of Cindr and was partially rescued by concomitant cindr over-expression. Thus, correct Cindr-dJNK stoichiometry is essential to maintain epithelial integrity and disturbing this balance may contribute to the pathogenesis of disease states, including cancer.

  5. Are CXCL13/CXCR5/FAK critical regulators of MSCs migration and differentiation?

    PubMed

    Zhang, Yan; Ma, Chunhui; Yu, Yinxian; Liu, Man; Yi, Chengqing

    2015-03-01

    Osteonecrosis of the femoral head is a common and challenging disease worldwide. The traditional treatments, such as core decompression procedure and joint replacement, are not satisfactory due to the limited outcome, repetitive surgery and cost. In recent years, autologous mesenchymal stem cells (MSCs) implantation into the femoral head has emerged as a promising method. The homing and differentiation of MSCs is determined by chemokines and their receptors, specific signals present in the micro-environment of the damaged tissue. CXCL13/CXCR5, highly expressed in the osteoblast and MSCs, are tissue specific and selectively migrate MSCs, thereafter triggering phosphorylation of focal adhesionkinase through mitogen-activated protein kinase pathway. Considering these characteristics, we hypothesize that CXCL13/CXCR5/FAK are critical signals in the trafficking and differentiation of MSCs.

  6. A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues

    PubMed Central

    Parsons, Linda M.; Grzeschik, Nicola A.; Amaratunga, Kasun; Burke, Peter; Quinn, Leonie M.; Richardson, Helena E.

    2017-01-01

    In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila “cell polarity” eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the “nutrient sensing” kinases Salt Inducible Kinase 2 and 3 (SIK2 and 3) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development. PMID:28611255

  7. A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues.

    PubMed

    Parsons, Linda M; Grzeschik, Nicola A; Amaratunga, Kasun; Burke, Peter; Quinn, Leonie M; Richardson, Helena E

    2017-08-07

    In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila "cell polarity" eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the "nutrient sensing" kinases Salt Inducible Kinase 2 and 3 (SIK2 and 3) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development. Copyright © 2017 Parsons et al.

  8. Aldehyde dehydrogenase 2 activation and coevolution of its εPKC-mediated phosphorylation sites.

    PubMed

    Nene, Aishwarya; Chen, Che-Hong; Disatnik, Marie-Hélène; Cruz, Leslie; Mochly-Rosen, Daria

    2017-01-05

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a key enzyme for the metabolism of many toxic aldehydes such as acetaldehyde, derived from alcohol drinking, and 4HNE, an oxidative stress-derived lipid peroxidation aldehyde. Post-translational enhancement of ALDH2 activity can be achieved by serine/threonine phosphorylation by epsilon protein kinase C (εPKC). Elevated ALDH2 is beneficial in reducing injury following myocardial infarction, stroke and other oxidative stress and aldehyde toxicity-related diseases. We have previously identified three εPKC phosphorylation sites, threonine 185 (T185), serine 279 (S279) and threonine 412 (T412), on ALDH2. Here we further characterized the role and contribution of each phosphorylation site to the enhancement of enzymatic activity by εPKC. Each individual phosphorylation site was mutated to a negatively charged amino acid, glutamate, to mimic a phosphorylation, or to a non-phosphorylatable amino acid, alanine. ALDH2 enzyme activities and protection against 4HNE inactivation were measured in the presence or absence of εPKC phosphorylation in vitro. Coevolution of ALDH2 and its εPKC phosphorylation sites was delineated by multiple sequence alignments among a diverse range of species and within the ALDH multigene family. We identified S279 as a critical εPKC phosphorylation site in the activation of ALDH2. The critical catalytic site, cysteine 302 (C302) of ALDH2 is susceptible to adduct formation by reactive aldehyde, 4HNE, which readily renders the enzyme inactive. We show that phosphomimetic mutations of T185E, S279E and T412E confer protection of ALDH2 against 4HNE-induced inactivation, indicating that phosphorylation on these three sites by εPKC likely also protects the enzyme against reactive aldehydes. Finally, we demonstrate that the three ALDH2 phosphorylation sites co-evolved with εPKC over a wide range of species. Alignment of 18 human ALDH isozymes, indicates that T185 and S279 are unique ALDH2, εPKC

  9. Identification of an Adamantyl Azaquinolone JNK Selective Inhibitor

    PubMed Central

    2012-01-01

    3-[4-((1S,2S,3R,5S,7S)-5-Hydroxyadamantan-2-ylcarbamoyl)benzyl]-4-oxo-1-phenyl-1,4-dihydro-[1,8]naphthyridine-2-carboxylic acid methyl ester (4) was identified as a novel, druglike and selective quinolone pan JNK inhibitor. In this communication, some of the structure–activity relationship of the azaquinolone analogues leading to 4 is discussed. The focus is on how changes at the amide functionality affected the biochemical potency, cellular potency, metabolic properties, and solubility of this class of JNK inhibitors. Optimization of these properties led to the identification of the adamantyl analogue, 4. 4 achieved proof of mechanism in both rat and mouse TNF-α challenge models. PMID:24900545

  10. High-molecular weight hyaluronan reduced renal PKC activation in genetically diabetic mice.

    PubMed

    Campo, Giuseppe M; Avenoso, Angela; Micali, Antonio; Nastasi, Giancarlo; Squadrito, Francesco; Altavilla, Domenica; Bitto, Alessandra; Polito, Francesca; Rinaldi, Maria Grazia; Calatroni, Alberto; D'Ascola, Angela; Campo, Salvatore

    2010-11-01

    The cluster determinant (CD44) seems to play a key role in tissues injured by diabetes type 2. CD44 stimulation activates the protein kinase C (PKC) family which in turn activates the transcriptional nuclear factor kappa B (NF-κB) responsible for the expression of the inflammation mediators such as tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-18 (IL-18), inducible nitric oxide synthase (iNOS), and matrix metalloproteinases (MMPs). Regulation of CD44 interaction with its ligands depends greatly upon PKC. We investigated the effect of the treatment with high-molecular weight hyaluronan (HA) on diabetic nephropathy in genetically diabetic mice. BKS.Cg-m+/+Lepr(db) mice had elevated plasma insulin from 15 days of age and high blood sugar levels at 4 weeks. The severe nephropathy that developed was characterized by a marked increased in CD44 receptors, protein kinase C betaI, betaII, and epsilon (PKC(βI), PKC(βII), and PKCε) mRNA expression and the related protein products in kidney tissue. High levels of mRNA and related protein levels were also detected in the damaged kidney for NF-κB, TNF-α, IL-6, IL-18, MMP-7, and iNOS. Chronic daily administration of high-molecular mass HA for 2 weeks significantly reduced CD44, PKC(βI), PKC(βII), and PKCα gene expression and the related protein production in kidney tissue and TNF-α, IL-6, IL-18, MMP-7, and iNOS expression and levels also decreased. Histological analysis confirmed the biochemical data. However, blood parameters of diabetes were unchanged. These results suggest that the CD44 and PKC play an important role in diabetes and interaction of high-molecular weight HA with these proteins may reduce inflammation and secondary pathologies due to this disease.

  11. Enhancement of potency and efficacy of NADA by PKC-mediated phosphorylation of vanilloid receptor.

    PubMed

    Premkumar, Louis S; Qi, Zhan-Heng; Van Buren, Jeremy; Raisinghani, Manish

    2004-03-01

    The search for an endogenous ligand for the vanilloid receptor (VR or TRPV1) has led to the identification of N-arachidonyl dopamine (NADA). This study investigates the role of protein kinase C (PKC)-mediated phosphorylation on NADA-induced membrane currents in Xenopus oocytes heterologously expressing TRPV1 and in dorsal root ganglion (DRG) neurons. In basal state, current induced by 10 microM NADA is 5-10% of the current induced by 1 microM capsaicin or protons at pH 5. However, PKC activator, phorbol 12,13-dibutyrate (PDBu) strongly potentiated ( approximately 15-fold) the NADA-induced current. Repeated application of NADA at short intervals potentiated its own response approximately fivefold in a PKC-dependent manner. PKC inhibitor, bisindolylmaleimide (BIM, 500 nM), a mutant TRPV1 (S800A/S502A), and maximal activation of PKC abolished the potentiation induced by repeated application of NADA. As a further confirmation that NADA could stimulate PKC, pretreatment with NADA potentiated the response of protons at pH 5 (approximately 20 fold), which was dramatically reduced in the mutant TRPV1. In DRG neurons, capsaicin (100 nM) induced a approximately 15 mV depolarization and initiated a train of action potentials compared with 1 microM NADA that produced a approximately 5 mV response. Pretreatment with PDBu induced significantly larger depolarization and potentiated NADA-induced current. Furthermore, exposure of NADA to the intracellular surface of the membrane-induced larger currents suggesting inaccessibility to the intracellular binding site might contribute to its weaker action. These results indicate that NADA is a potent agonist of VR when the receptor is in the PKC-mediated phosphorylation state.

  12. Black Ink of Activated Carbon Derived From Palm Kernel Cake (PKC)

    NASA Astrophysics Data System (ADS)

    Selamat, M. H.; Ahmad, A. H.

    2009-06-01

    Recycling the waste from natural plant to produce useful end products will benefit many industries and help preserve the environment. The research reported in this paper is an investigation on the use of the natural waste of palm kernel cake (PKC) to produce carbon residue as a black carbon for pigment source by using pyrolysis process. The activated carbons (AC) is produced in powder form using ball milling process. Rheological spectra in ink is one of quality control process in determining its performance properties. Findings from this study will help expand the scientific knowledge-base for black ink production and formulation base on PKC. Various inks with different weight percentage compositions of AC will be made and tested against its respective rheological properties in order to determine ideal ink printing system. The items in the formulation used comprised of organic and bio-waste materials with added additive to improve the quality of the black ink. Modified Polyurethane was used as binder. The binder's properties highlighted an ideal vehicle to be applied for good black ink opacity performance. The rheological behaviour is a general foundation for ink characterization where the wt% of AC-PKC resulted in different pseudoplastic behaviors, including the Newtonian behavior. The result found that Newtonian field was located in between 2 wt% and 10 wt% of AC-PKC composition with binder. Mass spectroscopy results shown that the carbon content in PKC is high and very suitable for black performance. In the ageing test, the pigment of PKC perform fairly according to the standard pigment of Black carbon (CB) of ferum oxide pigment. The contact angle for substrate's wettability of the ink system shown a good angle proven to be a water resistive coating on paper subtrates; an advantage of the PKC ink pigment performance.

  13. JNK1 and JNK2 regulate α-SMA in hepatic stellate cells during CCl4 -induced fibrosis in the rat liver.

    PubMed

    Hong, Il-Hwa; Park, Sang-Joon; Goo, Moon-Jung; Lee, Hye-Rim; Park, Jin-Kyu; Ki, Mi-Ran; Kim, Sang-Hyeob; Lee, Eun-Mi; Kim, Ah-Young; Jeong, Kyu-Shik

    2013-10-01

    Following liver injuries, hepatic stellate cells (HSCs) express α-SMA. Mitogen activated protein kinase (MAPK) signaling pathways mediate α-SMA expression in distinct cell types. However, the regulation of α-SMA expression by MAPKs in HSCs has been rarely studied. We aimed to study the role of MAPKs in the activation of HSCs during liver fibrosis. Liver fibrosis of rats was induced by carbon tetrachloride. HSC-T6 cells, murine embryonic fibroblasts, JNK1(-/-) and JNK2(-/-) cells were used for in vitro studies. Immunohistochemistry and immunoblot analysis were used. We have found that the expression of JNK and α-SMA co-localized in HSCs during liver fibrosis, but ERK and p38 expressed in macrophages. The expression of α-SMA was up-regulated by JNK1 and JNK2 in non-stress condition. Under TGF-β stimulation, however, the level α-SMA expression was increased by only JNK1, but not significantly changed by JNK2. We suggest that JNKs are responsible for α-SMA regulation, and especially JNK1 has a major role in up-regulation of α-SMA expression in HSCs under stress condition induced by TGF-β during liver fibrosis. © 2013 The Authors. Pathology International © 2013 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd.

  14. PKC-ι promotes glioblastoma cell survival by phosphorylating and inhibiting BAD through a phosphatidylinositol 3-kinase pathway.

    PubMed

    Desai, S; Pillai, P; Win-Piazza, H; Acevedo-Duncan, M

    2011-06-01

    The focus of this research was to investigate the role of protein kinase C-iota (PKC-ι) in regulation of Bad, a pro-apoptotic BH3-only molecule of the Bcl-2 family in glioblastoma. Robust expression of PKC-ι is a hallmark of human glioma and benign and malignant meningiomas. The results were obtained from the two human glial tumor derived cell lines, T98G and U87MG. In these cells, PKC-ι co-localized and directly associated with Bad, as shown by immunofluorescence, immunoprecipitation, and Western blotting. Furthermore, in-vitro kinase activity assay showed that PKC-ι directly phosphorylated Bad at phospho specific residues, Ser-112, Ser-136 and Ser-155 which in turn induced inactivation of Bad and disruption of Bad/Bcl-XL dimer. Knockdown of PKC-ι by siRNA exhibited a corresponding reduction in Bad phosphorylation suggesting that PKC-ι may be a Bad kinase. PKC-ι knockdown also induced apoptosis in both the cell lines. Since, PKC-ι is an essential downstream mediator of the PI (3)-kinase, we hypothesize that glioma cell survival is mediated via a PI (3)-kinase/PDK1/PKC-ι/Bad pathway. Treatment with PI (3)-kinase inhibitors Wortmannin and LY294002, as well as PDK1 siRNA, inhibited PKC-ι activity and subsequent phosphorylation of Bad suggesting that PKC-ι regulates the activity of Bad in a PI (3)-kinase dependent manner. Thus, our data suggest that glioma cell survival occurs through a novel PI (3)-kinase/PDK1/PKC-ι/BAD mediated pathway.

  15. JNK inhibition of VMAT2 contributes to rotenone-induced oxidative stress and dopamine neuron death

    PubMed Central

    Choi, Won-Seok; Kim, Hyung-Wook; Xia, Zhengui

    2014-01-01

    Treatment with rotenone, both in vitro and in vivo, is widely used to model dopamine neuron death in Parkinson’s disease upon exposure to environmental neurotoxicants and pesticides. Mechanisms underlying rotenone neurotoxicity are still being defined. Our recent studies suggest that rotenone-induced dopamine neuron death involves microtubule destabilization, which leads to accumulation of cytosolic dopamine and consequently reactive oxygen species (ROS). Furthermore, the c-Jun N-terminal protein kinase (JNK) is required for rotenone-induced dopamine neuron death. Here we report that the neural specific JNK3 isoform of the JNKs, but not JNK1 or JNK2, is responsible for this neuron death in primary cultured dopamine neurons. Treatment with taxol, a microtubule stabilizing agent, attenuates rotenone-induced phosphorylation and presumably activation of JNK. This suggests that JNK is activated by microtubule destabilization upon rotenone exposure. Moreover, rotenone inhibits VMAT2 activity but not VMAT2 protein levels. Significantly, treatment with SP600125, a pharmacological inhibitor of JNKs, attenuates rotenone inhibition of VMAT2. Furthermore, decreased VMAT2 activity following in vitro incubation of recombinant JNK3 protein with purified mesencephalic synaptic vesicles suggests that JNK3 can inhibit VMAT2 activity. Together with our previous findings, these results suggest that rotenone induces dopamine neuron death through a series of sequential events including microtubule destabilization, JNK3 activation, VMAT2 inhibition, accumulation of cytosolic dopamine, and generation of ROS. Our data identify JNK3 as a novel regulator of VMAT2 activity. PMID:25496994

  16. Efficient keratinocyte differentiation strictly depends on JNK-induced soluble factors in fibroblasts.

    PubMed

    Schumacher, Marion; Schuster, Christian; Rogon, Zbigniew M; Bauer, Tobias; Caushaj, Nevisa; Baars, Sebastian; Szabowski, Sibylle; Bauer, Christine; Schorpp-Kistner, Marina; Hess, Jochen; Holland-Cunz, Stefan; Wagner, Erwin F; Eils, Roland; Angel, Peter; Hartenstein, Bettina

    2014-05-01

    Previous studies demonstrated that fibroblast-derived and JUN-dependent soluble factors have a crucial role on keratinocyte proliferation and differentiation during cutaneous wound healing. Furthermore, mice with a deficiency in Jun N-terminal kinases (JNKs) , JNK1 or JNK2, showed impaired skin development and delayed wound closure. To decipher the role of dermal JNK in keratinocyte behavior during these processes, we used a heterologous coculture model combining primary human keratinocytes and murine fibroblasts. Although cocultured JNK1/JNK2-deficient fibroblasts did not affect keratinocyte proliferation, temporal monitoring of the transcriptome of differentiating keratinocytes revealed that efficient keratinocyte differentiation not only requires the support by fibroblast-derived soluble factors, but is also critically dependent on JNK1 and JNK2 signaling in these cells. Moreover, we showed that the repertoire of fibroblast transcripts encoding secreted proteins is severely disarranged upon loss of JNK under the coculture conditions applied. Finally, our data demonstrate that efficient keratinocyte terminal differentiation requires constant presence of JNK-dependent and fibroblast-derived soluble factors. Taken together, our results imply that mesenchymal JNK has a pivotal role in the paracrine cross talk between dermal fibroblasts and epidermal keratinocytes during wound healing.

  17. Toll pathway modulates TNF-induced JNK-dependent cell death in Drosophila

    PubMed Central

    Wu, Chenxi; Chen, Changyan; Dai, Jianli; Zhang, Fan; Chen, Yujun; Li, Wenzhe; Pastor-Pareja, José Carlos; Xue, Lei

    2015-01-01

    Signalling networks that control the life or death of a cell are of central interest in modern biology. While the defined roles of the c-Jun N-terminal kinase (JNK) pathway in regulating cell death have been well-established, additional factors that modulate JNK-mediated cell death have yet to be fully elucidated. To identify novel regulators of JNK-dependent cell death, we performed a dominant-modifier screen in Drosophila and found that the Toll pathway participates in JNK-mediated cell death. Loss of Toll signalling suppresses ectopically and physiologically activated JNK signalling-induced cell death. Our epistasis analysis suggests that the Toll pathway acts as a downstream modulator for JNK-dependent cell death. In addition, gain of JNK signalling results in Toll pathway activation, revealed by stimulated transcription of Drosomycin (Drs) and increased cytoplasm-to-nucleus translocation of Dorsal. Furthermore, the Spätzle (Spz) family ligands for the Toll receptor are transcriptionally upregulated by activated JNK signalling in a non-cell-autonomous manner, providing a molecular mechanism for JNK-induced Toll pathway activation. Finally, gain of Toll signalling exacerbates JNK-mediated cell death and promotes cell death independent of caspases. Thus, we have identified another important function for the evolutionarily conserved Toll pathway, in addition to its well-studied roles in embryonic dorso-ventral patterning and innate immunity. PMID:26202785

  18. Toll pathway modulates TNF-induced JNK-dependent cell death in Drosophila.

    PubMed

    Wu, Chenxi; Chen, Changyan; Dai, Jianli; Zhang, Fan; Chen, Yujun; Li, Wenzhe; Pastor-Pareja, José Carlos; Xue, Lei

    2015-07-01

    Signalling networks that control the life or death of a cell are of central interest in modern biology. While the defined roles of the c-Jun N-terminal kinase (JNK) pathway in regulating cell death have been well-established, additional factors that modulate JNK-mediated cell death have yet to be fully elucidated. To identify novel regulators of JNK-dependent cell death, we performed a dominant-modifier screen in Drosophila and found that the Toll pathway participates in JNK-mediated cell death. Loss of Toll signalling suppresses ectopically and physiologically activated JNK signalling-induced cell death. Our epistasis analysis suggests that the Toll pathway acts as a downstream modulator for JNK-dependent cell death. In addition, gain of JNK signalling results in Toll pathway activation, revealed by stimulated transcription of Drosomycin (Drs) and increased cytoplasm-to-nucleus translocation of Dorsal. Furthermore, the Spätzle (Spz) family ligands for the Toll receptor are transcriptionally upregulated by activated JNK signalling in a non-cell-autonomous manner, providing a molecular mechanism for JNK-induced Toll pathway activation. Finally, gain of Toll signalling exacerbates JNK-mediated cell death and promotes cell death independent of caspases. Thus, we have identified another important function for the evolutionarily conserved Toll pathway, in addition to its well-studied roles in embryonic dorso-ventral patterning and innate immunity.

  19. Hippo signaling promotes JNK-dependent cell migration

    PubMed Central

    Ma, Xianjue; Wang, Hongxiang; Ji, Jiansong; Xu, Wenyan; Sun, Yihao; Li, Wenzhe; Zhang, Xiaoping; Chen, Juxiang; Xue, Lei

    2017-01-01

    Overwhelming studies show that dysregulation of the Hippo pathway is positively correlated with cell proliferation, growth, and tumorigenesis. Paradoxically, the detailed molecular roles of the Hippo pathway in cell invasion remain debatable. Using a Drosophila invasion model in wing epithelium, we show herein that activated Hippo signaling promotes cell invasion and epithelial-mesenchymal transition through JNK, as inhibition of JNK signaling dramatically blocked Hippo pathway activation-induced matrix metalloproteinase 1 expression and cell invasion. Furthermore, we identify bantam-Rox8 modules as essential components downstream of Yorkie in mediating JNK-dependent cell invasion. Finally, we confirm that YAP (Yes-associated protein) expression negatively regulates TIA1 (Rox8 ortholog) expression and cell invasion in human cancer cells. Together, these findings provide molecular insights into Hippo pathway-mediated cell invasion and also raise a noteworthy concern in therapeutic interventions of Hippo-related cancers, as simply inhibiting Yorkie or YAP activity might paradoxically accelerate cell invasion and metastasis. PMID:28174264

  20. Structural Mechanisms of Allostery and Autoinhibition in JNK Family Kinases

    PubMed Central

    Laughlin, John D.; Nwachukwu, Jerome C.; Figuera-Losada, Mariana; Cherry, Lisa; Nettles, Kendall W.; LoGrasso, Philip V.

    2012-01-01

    SUMMARY c-Jun N-terminal (JNK) family kinases have a common peptide-docking site used by upstream activating kinases, substrates, scaffold proteins, and phosphatases, where the ensemble of bound proteins determines signaling output. Although there are many JNK structures, little is known about mechanisms of allosteric regulation between the catalytic and peptide-binding sites, and the activation loop, whose phosphorylation is required for catalytic activity. Here, we compare three structures of unliganded JNK3 bound to different peptides. These were compared as a class to structures that differ in binding of peptide, small molecule ligand, or conformation of the kinase activation loop. Peptide binding induced an inhibitory interlobe conformer that was reversed by alterations in the activation loop. Structure class analysis revealed the subtle structural mechanisms for allosteric signaling between the peptide-binding site and activation loop. Biochemical data from isothermal calorimetry, fluorescence energy transfer, and enzyme inhibition demonstrated affinity differences among the three peptides that were consistent with structural observations. PMID:23142346

  1. Synaptic and genomic responses to JNK and AP-1 signaling in Drosophila neurons

    PubMed Central

    Etter, Paul D; Narayanan, Radhakrishnan; Navratilova, Zaneta; Patel, Chirag; Bohmann, Dirk; Jasper, Heinrich; Ramaswami, Mani

    2005-01-01

    Background The transcription factor AP-1 positively controls synaptic plasticity at the Drosophila neuromuscular junction. Although in motor neurons, JNK has been shown to activate AP-1, a positive regulator of growth and strength at the larval NMJ, the consequences of JNK activation are poorly studied. In addition, the downstream transcriptional targets of JNK and AP-1 signaling in the Drosophila nervous system have yet to be identified. Here, we further investigated the role of JNK signaling at this model synapse employing an activated form of JNK-kinase; and using Serial Analysis of Gene Expression and oligonucleotide microarrays, searched for candidate early targets of JNK or AP-1 dependent transcription in neurons. Results Temporally-controlled JNK induction in postembryonic motor neurons triggers synaptic growth at the NMJ indicating a role in developmental plasticity rather than synaptogenesis. An unexpected observation that JNK activation also causes a reduction in transmitter release is inconsistent with JNK functioning solely through AP-1 and suggests an additional, yet-unidentified pathway for JNK signaling in motor neurons. SAGE profiling of mRNA expression helps define the neural transcriptome in Drosophila. Though many putative AP-1 and JNK target genes arose from the genomic screens, few were confirmed in subsequent validation experiments. One potentially important neuronal AP-1 target discovered, CG6044, was previously implicated in olfactory associative memory. In addition, 5 mRNAs regulated by RU486, a steroid used to trigger conditional gene expression were identified. Conclusion This study demonstrates a novel role for JNK signaling at the larval neuromuscular junction and provides a quantitative profile of gene transcription in Drosophila neurons. While identifying potential JNK/AP-1 targets it reveals the limitations of genome-wide analyses using complex tissues like the whole brain. PMID:15932641

  2. Anti-metastatic action of FAK inhibitor OXA-11 in combination with VEGFR-2 signaling blockade in pancreatic neuroendocrine tumors

    PubMed Central

    Moen, Ingrid; Gebre, Matthew; Alonso-Camino, Vanesa; Chen, Debbie; Epstein, David

    2015-01-01

    The present study sought to determine the anti-tumor effects of OXA-11, a potent, novel small-molecule amino pyrimidine inhibitor (1.2 pM biochemical IC50) of focal adhesion kinase (FAK). In studies of cancer cell lines, OXA-11 inhibited FAK phosphorylation at phospho-tyrosine 397 with a mechanistic IC50 of 1 nM in TOV21G tumor cells, which translated into functional suppression of proliferation in 3-dimensional culture with an EC50 of 9 nM. Studies of OXA-11 activity in TOV21G tumor-cell xenografts in mice revealed a pharmacodynamic EC50 of 1.8 nM, indicative of mechanistic inhibition of pFAK [Y397] in these tumors. OXA-11 inhibited TOV21G tumor growth in a dose-dependent manner and also potentiated effects of cisplatin on tumor cell proliferation and apoptosis in vitro and on tumor growth in mice. Studies of pancreatic neuroendocrine tumors in RIP-Tag2 transgenic mice revealed OXA-11 suppression of pFAK [Y397] and pFAK [Y861] in tumors and liver. OXA-11 given daily from age 14 to 17 weeks reduced tumor vascularity, invasion, and when given together with the anti-VEGFR-2 antibody DC101 reduced the incidence, abundance, and size of liver metastases. Liver micrometastases were found in 100 % of mice treated with vehicle, 84 % of mice treated with OXA-11, and 79 % of mice treated with DC101 (19–24 mice per group). In contrast, liver micrometastases were found in only 52 % of 21 mice treated with OXA-11 plus DC101, and those present were significantly smaller and less numerous. Together, these findings indicate that OXA-11 is a potent and selective inhibitor of FAK phosphorylation in vitro and in vivo. OXA-11 slows tumor growth, potentiates the anti-tumor actions of cisplatin and—when combined with VEGFR-2 blockade—reduces metastasis of pancreatic neuroendocrine tumors in RIP-Tag2 mice. PMID:26445848

  3. Tyrosine phosphorylation of focal adhesion kinase (p125FAK): regulation by cAMP and thrombin in mesangial cells.

    PubMed

    Troyer, D A; Bouton, A; Bedolla, R; Padilla, R

    1996-03-01

    Stress fibers, composed of actin filaments, converge upon and associate with a number of proteins, including focal adhesion kinase (p125FAK), and integrin receptors to form areas of close contact between cells and the extracellular matrix referred to as focal adhesions. Treatment of mesangial cells with cAMP-elevating agents causes a loss of focal adhesions, fragmentation of stress fibers, and decreased tyrosine phosphorylation of p125FAK. Thrombin reverses these effects of cAMP, and this model can be used to address some of the cellular mechanisms involved in regulating the loss and formation of focal adhesions. This study reports the effects of cAMP and thrombin on mesangial cell shape, distribution of actin, formation of stress fibers, and tyrosine phosphorylation of p125FAK. cAMP-treated cells display a condensed cell body with slender processes that traverse the area formerly covered by the cell. Addition of thrombin to these cells restores actin filaments (stress fibers) and increases tyrosine phosphorylation of p125FAK, and the cells resume a flattened morphology, even in the continued presence of cAMP-elevating agents. Peptides that mimic the tethered ligand portion of the thrombin receptor have the same effects on cell morphology and stress fiber formation as thrombin. In selected experiments, agents that disrupt either stress fibers (cytochalasin D) or microtubules (nocodazole; Sigma Chemical, St. Louis, MO) were used to examine the role of these cytoskeletal elements in thrombin-induced restoration of focal adhesions. Cytochalasin D blocked the ability of thrombin to restore focal adhesions and phosphorylate p125FAK. The effects of nocodazole, an agent that destabilizes microtubules (but which has no known receptor), are very similar to those of thrombin. The findings discussed in this study indicate that thrombin can modulate the formation of focal adhesions. The organization of stress fibers and microtubules is apparently intimately related to the

  4. Dap160/intersectin binds and activates aPKC to regulate cell polarity and cell cycle progression

    PubMed Central

    Chabu, Chiswili; Doe, Chris Q.

    2009-01-01

    The atypical protein kinase C (aPKC) is required for cell polarization of many cell types, and is upregulated in several human tumors. Despite its importance in cell polarity and growth control, relatively little is known about how aPKC activity is regulated. Here, we use a biochemical approach to identify Dynamin-associated protein 160 (Dap160; related to mammalian intersectin) as an aPKC-interacting protein in Drosophila. We show that Dap160 directly interacts with aPKC, stimulates aPKC activity in vitro and colocalizes with aPKC at the apical cortex of embryonic neuroblasts. In dap160 mutants, aPKC is delocalized from the neuroblast apical cortex and has reduced activity, based on its inability to displace known target proteins from the basal cortex. Both dap160 and aPKC mutants have fewer proliferating neuroblasts and a prolonged neuroblast cell cycle. We conclude that Dap160 positively regulates aPKC activity and localization to promote neuroblast cell polarity and cell cycle progression. PMID:18614576

  5. Investigating the Potential Signaling Pathways That Regulate Activation of the Novel PKC Downstream of Serotonin in Aplysia

    PubMed Central

    Farah, Carole A.; Rourke, Bryan; Shin, Unkyung; Ferguson, Larissa; Luna, María José

    2016-01-01

    Activation of the novel PKC Apl II in sensory neurons by serotonin (5HT) underlies the ability of 5HT to reverse synaptic depression, but the pathway from 5HT to PKC Apl II activation remains unclear. Here we find no evidence for the Aplysia-specific B receptors, or for adenylate cyclase activation, to translocate fluorescently-tagged PKC Apl II. Using an anti-PKC Apl II antibody, we monitor translocation of endogenous PKC Apl II and determine the dose response for PKC Apl II translocation, both in isolated sensory neurons and sensory neurons coupled with motor neurons. Using this assay, we confirm an important role for tyrosine kinase activation in 5HT mediated PKC Apl II translocation, but rule out roles for intracellular tyrosine kinases, epidermal growth factor (EGF) receptors and Trk kinases in this response. A partial inhibition of translocation by a fibroblast growth factor (FGF)-receptor inhibitor led us to clone the Aplysia FGF receptor. Since a number of related receptors have been recently characterized, we use bioinformatics to define the relationship between these receptors and find a single FGF receptor orthologue in Aplysia. However, expression of the FGF receptor did not affect translocation or allow it in motor neurons where 5HT does not normally cause PKC Apl II translocation. These results suggest that additional receptor tyrosine kinases (RTKs) or other molecules must also be involved in translocation of PKC Apl II. PMID:28002451

  6. Coordinated activation of mitochondrial respiration and exocytosis mediated by PKC signaling in pancreatic β cells.

    PubMed

    Santo-Domingo, Jaime; Chareyron, Isabelle; Dayon, Loïc; Núñez Galindo, Antonio; Cominetti, Ornella; Pilar Giner Giménez, María; De Marchi, Umberto; Canto, Carles; Kussmann, Martin; Wiederkehr, Andreas

    2017-03-01

    Mitochondria play a central role in pancreatic β-cell nutrient sensing by coupling their metabolism to plasma membrane excitability and insulin granule exocytosis. Whether non-nutrient secretagogues stimulate mitochondria as part of the molecular mechanism to promote insulin secretion is not known. Here, we show that PKC signaling, which is employed by many non-nutrient secretagogues, augments mitochondrial respiration in INS-1E (rat insulinoma cell line clone 1E) and human pancreatic β cells. The phorbol ester, phorbol 12-myristate 13-acetate, accelerates mitochondrial respiration at both resting and stimulatory glucose concentrations. A range of inhibitors of novel PKC isoforms prevent phorbol ester-induced respiration. Respiratory response was blocked by oligomycin that demonstrated PKC-dependent acceleration of mitochondrial ATP synthesis. Enhanced respiration was observed even when glycolysis was bypassed or fatty acid transport was blocked, which suggested that PKC regulates mitochondrial processes rather than upstream catabolic fluxes. A phosphoproteome study of phorbol ester-stimulated INS-1E cells maintained under resting (2.5 mM) glucose revealed a large number of phosphorylation sites that were altered during short-term activation of PKC signaling. The data set was enriched for proteins that are involved in gene expression, cytoskeleton remodeling, secretory vesicle transport, and exocytosis. Interactome analysis identified PKC, C-Raf, and ERK1/2 as the central phosphointeraction cluster. Prevention of ERK1/2 signaling by using a MEK1 inhibitor caused a marked decreased in phorbol 12-myristate 13-acetate-induced mitochondrial respiration. ERK1/2 signaling module therefore links PKC activation to downstream mitochondrial activation. We conclude that non-nutrient secretagogues act, in part, via PKC and downstream ERK1/2 signaling to stimulate mitochondrial energy production to compensate for energy expenditure that is linked to β-cell activation

  7. PKC-dependent activation of human K2P18.1 K+ channels

    PubMed Central

    Rahm, Ann-Kathrin; Gierten, Jakob; Kisselbach, Jana; Staudacher, Ingo; Staudacher, Kathrin; Schweizer, Patrick A; Becker, Rüdiger; Katus, Hugo A; Thomas, Dierk

    2012-01-01

    BACKGROUND AND PURPOSE Two-pore-domain K+ channels (K2P) mediate K+ background currents that modulate the membrane potential of excitable cells. K2P18.1 (TWIK-related spinal cord K+ channel) provides hyperpolarizing background currents in neurons. Recently, a dominant-negative loss-of-function mutation in K2P18.1 has been implicated in migraine, and activation of K2P18.1 channels was proposed as a therapeutic strategy. Here we elucidated the molecular mechanisms underlying PKC-dependent activation of K2P18.1 currents. EXPERIMENTAL APPROACH Human K2P18.1 channels were heterologously expressed in Xenopus laevis oocytes, and currents were recorded with the two-electrode voltage clamp technique. KEY RESULTS Stimulation of PKC using phorbol 12-myristate-13-acetate (PMA) activated the hK2P18.1 current by 3.1-fold in a concentration-dependent fashion. The inactive analogue 4α-PMA had no effect on channel activity. The specific PKC inhibitors bisindolylmaleimide I, Ro-32-0432 and chelerythrine reduced PMA-induced channel activation indicating that PKC is involved in this effect of PMA. Selective activation of conventional PKC isoforms with thymeleatoxin (100 nM) did not reproduce K2P18.1 channel activation. Current activation by PMA was not affected by pretreatment with CsA (calcineurin inhibitor) or KT 5720 (PKA inhibitor), ruling out a significant contribution of calcineurin or cross-talk with PKA to the PKC-dependent hK2P18.1 activation. Finally, mutation of putative PKC phosphorylation sites did not prevent PMA-induced K2P18.1 channel activation. CONCLUSIONS AND IMPLICATIONS We demonstrated that activation of hK2P18.1 (TRESK) by PMA is mediated by PKC stimulation. Hence, PKC-mediated activation of K2P18.1 background currents may serve as a novel molecular target for migraine treatment. PMID:22168364

  8. Role of JNK Translocation to Mitochondria Leading to Inhibition of Mitochondria Bioenergetics in Acetaminophen-induced Liver Injury*S⃞

    PubMed Central

    Hanawa, Naoko; Shinohara, Mie; Saberi, Behnam; Gaarde, William A.; Han, Derick; Kaplowitz, Neil

    2008-01-01

    Previously, we demonstrated JNK plays a central role in acetaminophen (APAP)-induced liver injury (Gunawan, B. K., Liu, Z. X., Han, D., Hanawa, N., Gaarde, W. A., and Kaplowitz, N. (2006) Gastroenterology 131, 165–178). In this study, we examine the mechanism involved in activating JNK and explore the downstream targets of JNK important in promoting APAP-induced liver injury in vivo. JNK inhibitor (SP600125) was observed to significantly protect against APAP-induced liver injury. Increased mitochondria-derived reactive oxygen species were implicated in APAP-induced JNK activation based on the following: 1) mitochondrial GSH depletion (maximal at 2 h) caused increased H2O2 release from mitochondria, which preceded JNK activation (maximal at 4 h); 2) treatment of isolated hepatocytes with H2O2 or inhibitors (e.g. antimycin) that cause increased H2O2 release from mitochondria-activated JNK. An important downstream target of JNK following activation was mitochondria based on the following: 1) JNK translocated to mitochondria following activation; 2) JNK inhibitor treatment partially protected against a decline in mitochondria respiration caused by APAP treatment; and 3) addition of purified active JNK to mitochondria isolated from mice treated with APAP plus JNK inhibitor (mitochondria with severe GSH depletion, covalent binding) directly inhibited respiration. Cyclosporin A blocked the inhibitory effect of JNK on mitochondria respiration, suggesting JNK was directly inducing mitochondrial permeability transition in isolated mitochondria from mice treated with APAP plus JNK inhibitor. Addition of JNK to mitochondria isolated from control mice did not affect respiration. Our results suggests that APAP-induced liver injury involves JNK activation, due to increased reactive oxygen species generated by GSH-depleted mitochondria, and translocation of activated JNK to mitochondria where JNK induces mitochondrial permeability transition and inhibits mitochondria

  9. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR-4 signal transduction pathway activation of FAK and MyD88

    PubMed Central

    Guo, Shuhong; Nighot, Meghali; Al-Sadi, Rana; Alhmoud, Tarik; Nighot, Prashant; Ma, Thomas Y.

    2015-01-01

    Gut-derived bacterial lipopolysaccharides (LPS) play an essential role in inducing intestinal and systemic inflammatory responses and have been implicated as a pathogenic factor of necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD). The defective intestinal tight junction (TJ) barrier has been shown to be an important factor contributing to the development of intestinal inflammation. LPS, at physiological concentrations, cause an increase in intestinal tight junction permeability (TJP) via a TLR-4 dependent process; however the intracellular mechanisms that mediate LPS regulation of intestinal TJP remain unclear. The aim of this study was to investigate the adaptor proteins and the signaling interactions that mediate LPS modulation of intestinal TJ barrier using an in-vitro and in-vivo model system. LPS caused a TLR-4 dependent activation of membrane-associated adaptor protein FAK in Caco-2 monolayers. LPS caused an activation of both MyD88-dependent and –independent pathways. SiRNA silencing of MyD88 prevented LPS-induced increase in TJP. LPS caused a MyD88-dependent activation of IRAK4. TLR-4, FAK and MyD88 were co-localized. SiRNA silencing of TLR-4 inhibited TLR-4 associated FAK activation; and FAK knockdown prevented MyD88 activation. In-vivo studies also confirmed that LPS-induced increase in mouse intestinal permeability was associated with FAK and MyD88 activation; knockdown of intestinal epithelial FAK prevented LPS-induced increase in intestinal permeability. Additionally, high dose LPS-induced intestinal inflammation was also dependent on TLR-4/FAK/MyD88 signal-transduction axis. Our data show for the first time that LPS-induced increase in intestinal TJP and intestinal inflammation was regulated by TLR-4 dependent activation of FAK-MyD88-IRAK4 signaling pathway. PMID:26466961

  10. ETV6-NTRK3 as a therapeutic target of small molecule inhibitor PKC412

    SciTech Connect

    Chi, Hoang Thanh; Ly, Bui Thi Kim; Kano, Yasuhiko; Tojo, Arinobu; Sato, Yuko

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer ETV6-NTRK3 is an oncogene with transformation activity in multiple cell lineages. Black-Right-Pointing-Pointer PKC412 could block ETV6-NTRK3 activation. Black-Right-Pointing-Pointer Loss of ETV6-NTRK3 phosphorylation leads to inactivation of its downstream signaling pathway. Black-Right-Pointing-Pointer Inhibition of ETV6-NTRK3 activation by PKC412 could be a novel strategy for the treatment. -- Abstract: The ETV6-NTRK3 (EN) fusion gene which encodes a chimeric tyrosine kinase was first identified by cloning of the t(12;15)(p13;q25) translocation in congenital fibrosarcoma (CFS). Since then, EN has been also found in congenital mesoblastic nephroma (CMN), secretory breast carcinoma (SBC) and acute myelogenous leukemia (AML). Using IMS-M2 and M0-91 cell lines harboring the EN fusion gene, and Ba/F3 cells stably transfected with EN, we demonstrated that PKC412, also known as midostaurin, is an inhibitor of EN. Inhibition of EN activity by PKC412 suppressed the activity of it downstream molecules leading to inhibition of cell proliferation and induction of apoptosis. Our data for the first time suggested that PKC412 could serve as therapeutic drug for treatment of patients with this fusion.

  11. Role of PKC isozymes in low-power light-stimulated proliferation of cultured skin cells

    NASA Astrophysics Data System (ADS)

    Grossman, Nili; Kleitman, Vered; Meller, Julia; Kaufmann, Roland; Akgun, Nermin; Ruck, Angelika; Livneh, Etta; Lubart, Rachel

    2000-11-01

    Exposure of cultured skin cells to low power visible light leads to a transiently stimulated proliferation. Facilitation of this response requires the presence of active PKC, elevation of intracellular calcium, and involves reactive oxygen species. In the present study, the role of PKC(alpha) and PCK(eta) was examined using paired murine fibroblasts, differing in the level of these isozymes expression. The ability of the cells to respond to low power UVA light or HeNe laser by stimulated proliferation was correlated with an active state or overexpression of PKC(alpha) , but not PKC(eta) . A parallel response was obtained in cells that were loaded with A1PcS4 before photosensitization. Whenever this latter treatment caused a light-stimulated inhibition, it was accompanied by the intracellular calcium and photosensitizer dynamics typical of the effect of PDT on rate epithelial cells. Accordingly, added antioxidants that suppressed light-stimulated proliferation also suppressed this light-stimulated inhibition. The model systems employed in this study are the first to demonstrate the specific effect of PKC isozymes on light-stimulated proliferation, in relation to oxidative stress, and indicate their dual role in light-tissue interaction.

  12. Increased IGFBP-1 phosphorylation in response to leucine deprivation is mediated by CK2 and PKC.

    PubMed

    Malkani, Niyati; Biggar, Kyle; Shehab, Majida Abu; Li, Shawn Shun-Cheng; Jansson, Thomas; Gupta, Madhulika B

    2016-04-15

    Insulin-like growth factor binding protein-1 (IGFBP-1), secreted by fetal liver, is a key regulator of IGF-I bioavailability and fetal growth. IGFBP-1 phosphorylation decreases IGF-I bioavailability and diminishes its growth-promoting effects. Growth-restricted fetuses have decreased levels of circulating essential amino acids. We recently showed that IGFBP-1 hyperphosphorylation (pSer101/119/169) in response to leucine deprivation is regulated via activation of the amino acid response (AAR) in HepG2 cells. Here we investigated nutrient-sensitive protein kinases CK2/PKC/PKA in mediating IGFBP-1 phosphorylation in leucine deprivation. We demonstrated that leucine deprivation stimulated CK2 activity (enzymatic assay) and induced IGFBP-1 phosphorylation (immunoblotting/MRM-MS). Inhibition (pharmacological/siRNA) of CK2/PKC, but not PKA, prevented IGFBP-1 hyperphosphorylation in leucine deprivation. PKC inhibition also prevented leucine deprivation-stimulated CK2 activity. Functionally, leucine deprivation decreased IGF-I-induced-IGF-1R autophosphorylation when CK2/PKC were not inhibited. Our data strongly support that PKC promotes leucine deprivation-induced IGFBP-1 hyperphosphorylation via CK2 activation, mechanistically linking decreased amino acid availability and reduced fetal growth.

  13. Slmb antagonises the aPKC/Par-6 complex to control oocyte and epithelial polarity.

    PubMed

    Morais-de-Sá, Eurico; Mukherjee, Avik; Lowe, Nick; St Johnston, Daniel

    2014-08-01

    The Drosophila anterior-posterior axis is specified when the posterior follicle cells signal to polarise the oocyte, leading to the anterior/lateral localisation of the Par-6/aPKC complex and the posterior recruitment of Par-1, which induces a microtubule reorganisation that localises bicoid and oskar mRNAs. Here we show that oocyte polarity requires Slmb, the substrate specificity subunit of the SCF E3 ubiquitin ligase that targets proteins for degradation. The Par-6/aPKC complex is ectopically localised to the posterior of slmb mutant oocytes, and Par-1 and oskar mRNA are mislocalised. Slmb appears to play a related role in epithelial follicle cells, as large slmb mutant clones disrupt epithelial organisation, whereas small clones show an expansion of the apical domain, with increased accumulation of apical polarity factors at the apical cortex. The levels of aPKC and Par-6 are significantly increased in slmb mutants, whereas Baz is slightly reduced. Thus, Slmb may induce the polarisation of the anterior-posterior axis of the oocyte by targeting the Par-6/aPKC complex for degradation at the oocyte posterior. Consistent with this, overexpression of the aPKC antagonist Lgl strongly rescues the polarity defects of slmb mutant germline clones. The role of Slmb in oocyte polarity raises an intriguing parallel with C. elegans axis formation, in which PAR-2 excludes the anterior PAR complex from the posterior cortex to induce polarity, but its function can be substituted by overexpressing Lgl.

  14. Increased IGFBP-1 phosphorylation in response to leucine deprivation is mediated by CK2 and PKC

    PubMed Central

    Malkani, Niyati; Biggar, Kyle; Shehab, Majida Abu; Li, Shawn; Jansson, Thomas; Gupta, Madhulika B.

    2016-01-01

    Insulin-like growth factor binding protein-1 (IGFBP-1), secreted by fetal liver, is a key regulator of IGF-I bioavailability and fetal growth. IGFBP-1 phosphorylation decreases IGF-I bioavailability and diminishes its growth-promoting effects. Growth-restricted fetuses have decreased levels of circulating essential amino acids. We recently showed that IGFBP-1 hyperphosphorylation (pSer101/119/169) in response to leucine deprivation is regulated via activation of the amino acid response (AAR) in HepG2 cells. Here we investigated nutrient-sensitive protein kinases CK2/PKC/PKA in mediating IGFBP-1 phosphorylation in leucine deprivation. We demonstrated that leucine deprivation stimulated CK2 activity (enzymatic assay) and induced IGFBP-1 phosphorylation (immunoblotting/MRM-MS). Inhibition (pharmacological/siRNA) of CK2/PKC, but not PKA, prevented IGFBP-1 hyperphosphorylation in leucine deprivation. PKC inhibition also prevented leucine deprivation-stimulated CK2 activity. Functionally, leucine deprivation decreased IGF-I-induced-IGF-1R autophosphorylation when CK2/PKC were not inhibited. Our data strongly support that PKC promotes leucine deprivation-induced IGFBP-1 hyperphosphorylation via CK2 activation, mechanistically linking decreased amino acid availability and reduced fetal growth. PMID:26733150

  15. PKC-Theta in Regulatory and Effector T-cell Functions

    PubMed Central

    Brezar, Vedran; Tu, Wen Juan; Seddiki, Nabila

    2015-01-01

    One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teffs) or regulatory (Tregs) T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of serine/threonine-specific protein Kinase C-theta (PKC-θ) to the immunological synapse (IS) is instrumental for the formation of signaling complexes, which ultimately lead to a transcriptional network in T cells. Recent studies demonstrated that major differences between Teffs and Tregs occurred at the IS where its formation induces altered signaling pathways in Tregs. These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKC-θ inhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and Tregs has been shown to be central in several diseases, it was not surprising that some studies revealed that PKC-θ plays a major role in the regulation of this balance. This review will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and how this protein can impact on the function of both Tregs and Teffs. PMID:26528291

  16. Stimulation of human monocytes with macrophage colony-stimulating factor induces a Grb2-mediated association of the focal adhesion kinase pp125FAK and dynamin.

    PubMed Central

    Kharbanda, S; Saleem, A; Yuan, Z; Emoto, Y; Prasad, K V; Kufe, D

    1995-01-01

    Macrophage colony-stimulating factor (M-CSF) is required for the growth and differentiation of mononuclear phagocytes. In the present studies using human monocytes, we show that M-CSF induces interaction of the Grb2 adaptor protein with the focal adhesion kinase pp125FAK. The results demonstrate that tyrosine-phosphorylated pp125FAK directly interacts with the SH2 domain of Grb2. The findings indicate that a pYENV site at Tyr-925 in pp125FAK is responsible for this interaction. We also demonstrate that the Grb2-FAK complex associates with the GTPase dynamin. Dynamin interacts with the SH3 domains of Grb2 and exhibits M-CSF-dependent tyrosine phosphorylation in association with pp125FAK. These findings suggest that M-CSF-induced signaling involves independent Grb2-mediated pathways, one leading to Ras activation and another involving pp125FAK and a GTPase implicated in receptor internalization. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7597091

  17. Crystal Structures of the FAK Kinase in Complex with TAE226 and Related bis-anilino Pyrimidine Inhibitors Reveal a Helical DFG Conformation

    SciTech Connect

    Lietha, D.; Eck, M

    2008-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase required for cell migration, proliferation and survival. FAK overexpression has been documented in diverse human cancers and is associated with a poor clinical outcome. Recently, a novel bis-anilino pyrimidine inhibitor, TAE226, was reported to efficiently inhibit FAK signaling, arrest tumor growth and invasion and prolong the life of mice with glioma or ovarian tumor implants. Here we describe the crystal structures of the FAK kinase bound to TAE226 and three related bis-anilino pyrimidine compounds. TAE226 induces a conformation of the N-terminal portion of the kinase activation loop that is only observed in FAK, but is distinct from the conformation in both the active and inactive states of the kinase. This conformation appears to require a glycine immediately N-terminal to the 'DFG motif', which adopts a helical conformation stabilized by interactions with TAE226. The presence of a glycine residue in this position contributes to the specificity of TAE226 and related compounds for FAK. Our work highlights the fact that kinases can access conformational space that is not necessarily utilized for their native catalytic regulation, and that such conformations can explain and be exploited for inhibitor specificity.

  18. BKCa promotes growth and metastasis of prostate cancer through facilitating the coupling between αvβ3 integrin and FAK

    PubMed Central

    Li, Na; Yi, Xiaomin; Yang, Yang; Guo, Fang; Liu, Wenchao; Xie, Xiaodong; Xie, Manjiang

    2016-01-01

    BKCa is a large conductance calcium activated potassium channel promoting prostate cancer cell proliferation, although the mechanism is not fully elucidated. In addition, whether BKCa is involved in metastasis of prostate cancer remains to be explored. Here, we report that BKCa is overexpressed in prostate cancer. BKCa expression positively correlates with Ki67 index and gleason score of prostate cancer. Upregulation of BKCa promoted proliferation, migration and invasion of prostate cancer cells. On the contrary, downregulation of BKCa inhibited growth and metastasis of prostate cancer cells both in vitro and in vivo. Moreover, the ion-conducting function of BKCa contributed moderately to prostate cancer proliferation and migration, although, this was not the primary mechanism. BKCa action was mainly mediated through forming a functional complex with αvβ3 integrin. The BKCa/αvβ3 integrin complex promoted FAK phosphorylation independent of the channel activity. Overexpression of BKCa enhanced its association with αvβ3 integrin and FAK which increased FAK phosphorylation. Conversely, disrupting the complex by downregulation of BKCa reduced FAK phosphorylation. Finally, blocking of αvβ3 integrin or p-FAK activity using LM609 or Y15 markedly abrogated BKCa-enhanced cell proliferation and migration. Taken together, these results suggest that targeting BKCa/αvβ3/FAK may inaugurate innovative approaches to inhibit prostate cancer growth and metastasis. PMID:27233075

  19. Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer

    PubMed Central

    Thakur, Ravi; Trivedi, Rachana; Rastogi, Namrata; Singh, Manisha; Mishra, Durga Prasad

    2015-01-01

    Cancer stem cells (CSCs) are responsible for aggressive tumor growth, metastasis and therapy resistance. In this study, we evaluated the effects of Shikonin (Shk) on breast cancer and found its anti-CSC potential. Shk treatment decreased the expression of various epithelial to mesenchymal transition (EMT) and CSC associated markers. Kinase profiling array and western blot analysis indicated that Shk inhibits STAT3, FAK and Src activation. Inhibition of these signaling proteins using standard inhibitors revealed that STAT3 inhibition affected CSCs properties more significantly than FAK or Src inhibition. We observed a significant decrease in cell migration upon FAK and Src inhibition and decrease in invasion upon inhibition of STAT3, FAK and Src. Combined inhibition of STAT3 with Src or FAK reduced the mammosphere formation, migration and invasion more significantly than the individual inhibitions. These observations indicated that the anti-breast cancer properties of Shk are due to its potential to inhibit multiple signaling proteins. Shk also reduced the activation and expression of STAT3, FAK and Src in vivo and reduced tumorigenicity, growth and metastasis of 4T1 cells. Collectively, this study underscores the translational relevance of using a single inhibitor (Shk) for compromising multiple tumor-associated signaling pathways to check cancer metastasis and stem cell load. PMID:25973915

  20. Activation of JNK/Bim/Bax pathway in UV-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Hui, Li; Zhang, Zhen-zhen

    2011-03-01

    Cell apoptosis induced by UV irradiation is a highly complex process in which different molecular signaling pathways are involved. JNK has been proposed as an important regulator in UV irradiation-induced apoptosis. However, the molecular mechanism through which JNK regulates apoptosis, especially how JNK activates Bax in response to UV irradiation is still controversial. In this study, using real-time single-cell analysis, we studied the machinery of Bax activation during UV-induced apoptosis. UV treatment resulted in a series of events: phosphorylation of JNK, mitochondrial translocation of Bim, and subsequent activation of Bax. The activation of Bim and Bax could be inhibited in the presence of SP600125 (a specific inhibitor of JNK), suggesting that UV irradiation activated the JNK/Bim/Bax pathway.

  1. Activation of c-Jun N-Terminal Kinase (JNK) during Mitosis in Retinal Progenitor Cells

    PubMed Central

    Ribas, Vinicius Toledo; Gonçalves, Bruno Souza; Linden, Rafael; Chiarini, Luciana Barreto

    2012-01-01

    Most studies of c-Jun N-terminal Kinase (JNK) activation in retinal tissue were done in the context of neurodegeneration. In this study, we investigated the behavior of JNK during mitosis of progenitor cells in the retina of newborn rats. Retinal explants from newborn rats were kept in vitro for 3 hours and under distinct treatments. Sections of retinal explants or freshly fixed retinal tissue were used to detect JNK phosphorylation by immunohistochemistry, and were examined through both fluorescence and confocal microscopy. Mitotic cells were identified by chromatin morphology, histone-H3 phosphorylation, and location in the retinal tissue. The subcellular localization of proteins was analyzed by double staining with both a DNA marker and an antibody to each protein. Phosphorylation of JNK was also examined by western blot. The results showed that in the retina of newborn rats (P1), JNK is phosphorylated during mitosis of progenitor cells, mainly during the early stages of mitosis. JNK1 and/or JNK2 were preferentially phosphorylated in mitotic cells. Inhibition of JNK induced cell cycle arrest, specifically in mitosis. Treatment with the JNK inhibitor decreased the number of cells in anaphase, but did not alter the number of cells in either prophase/prometaphase or metaphase. Moreover, cells with aberrant chromatin morphology were found after treatment with the JNK inhibitor. The data show, for the first time, that JNK is activated in mitotic progenitor cells of developing retinal tissue, suggesting a new role of JNK in the control of progenitor cell proliferation in the retina. PMID:22496813

  2. Activation of c-Jun N-terminal kinase (JNK) during mitosis in retinal progenitor cells.

    PubMed

    Ribas, Vinicius Toledo; Gonçalves, Bruno Souza; Linden, Rafael; Chiarini, Luciana Barreto

    2012-01-01

    Most studies of c-Jun N-terminal Kinase (JNK) activation in retinal tissue were done in the context of neurodegeneration. In this study, we investigated the behavior of JNK during mitosis of progenitor cells in the retina of newborn rats. Retinal explants from newborn rats were kept in vitro for 3 hours and under distinct treatments. Sections of retinal explants or freshly fixed retinal tissue were used to detect JNK phosphorylation by immunohistochemistry, and were examined through both fluorescence and confocal microscopy. Mitotic cells were identified by chromatin morphology, histone-H3 phosphorylation, and location in the retinal tissue. The subcellular localization of proteins was analyzed by double staining with both a DNA marker and an antibody to each protein. Phosphorylation of JNK was also examined by western blot. The results showed that in the retina of newborn rats (P1), JNK is phosphorylated during mitosis of progenitor cells, mainly during the early stages of mitosis. JNK1 and/or JNK2 were preferentially phosphorylated in mitotic cells. Inhibition of JNK induced cell cycle arrest, specifically in mitosis. Treatment with the JNK inhibitor decreased the number of cells in anaphase, but did not alter the number of cells in either prophase/prometaphase or metaphase. Moreover, cells with aberrant chromatin morphology were found after treatment with the JNK inhibitor. The data show, for the first time, that JNK is activated in mitotic progenitor cells of developing retinal tissue, suggesting a new role of JNK in the control of progenitor cell proliferation in the retina.

  3. c-Jun N-terminal kinase 3 (JNK3) Mediates Paraquat- and Rotenone-Induced Dopaminergic Neuron Death

    PubMed Central

    Choi, Won Seok; Abel, Glen; Klintworth, Heather; Flavell, Richard A.; Xia, Zhengui

    2011-01-01

    Mechanistic studies underlying dopaminergic neuron death may identify new drug targets for the treatment of Parkinson disease (PD). Epidemiological studies have linked pesticide exposure to increased risk for sporadic PD. Here, we investigated the role of c-Jun N-terminal kinase 3 (JNK3), a neural-specific JNK isoform, in dopaminergic neuron death induced by the pesticides rotenone and paraquat. The role of JNK3 was evaluated using RNA silencing and gene deletion to block JNK3 signaling. Using an antibody that recognizes all isoforms of activated JNKs, we found that paraquat and rotenone stimulate JNK phosphorylation in primary cultured dopaminergic neurons. In cultured neurons transfected with Jnk3-specific siRNA and in neurons from Jnk3−/− mice, JNK phosphorylation was nearly abolished, suggesting that JNK3 is the main JNK isoform activated in dopaminergic neurons by these pesticides. Paraquat- and rotenone-induced death of dopaminergic neurons was also significantly reduced by Jnk3 siRNA or Jnk3 gene deletion and deletion of the Jnk3 gene completely attenuated paraquat-induced dopaminergic neuron death and motor-deficits in vivo. Our data identify JNK3 as a common and critical mediator of dopaminergic neuron death induced by paraquat and rotenone, suggesting that it is a potential drug target for PD treatment. PMID:20418776

  4. Hypertensive encephalopathy and the blood-brain barrier: is deltaPKC a gatekeeper?

    PubMed

    Chou, Wen-Hai; Messing, Robert O

    2008-01-01

    Hypertensive encephalopathy is a life-threatening condition due to elevation of cerebral perfusion pressure beyond the limits of autoregulation. Breakdown of the blood-brain barrier (BBB) leads to cerebral edema and reduced blood flow. In this issue of the JCI, Mochly-Rosen and colleagues demonstrate a novel molecular strategy for preserving the BBB in a model of hypertension-induced encephalopathy (see the related article beginning on page 173). Using a rationally designed peptide inhibitor of deltaPKC, they stabilized the BBB and improved mortality in hypertensive rats. This study highlights the therapeutic potential of deltaPKC inhibitors in hypertensive encephalopathy and provides incentive to elucidate deltaPKC signaling pathways that mediate BBB dysfunction in other disease states.

  5. Hydrogen Sulfide Recruits Macrophage Migration by Integrin β1-Src-FAK/Pyk2-Rac Pathway in Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Miao, Lei; Xin, Xiaoming; Xin, Hong; Shen, Xiaoyan; Zhu, Yi-Zhun

    2016-03-01

    Myocardial infarction (MI) triggers an inflammatory reaction, in which macrophages are of key importance for tissue repairing. Infiltration and/or migration of macrophages into the infarct area early after MI is critical for infarct healing, vascularization, and cardiac function. Hydrogen sulfide (H2S) has been demonstrated to possess cardioprotective effects post MI and during the progress of cardiac remodeling. However, the specific molecular and cellular mechanisms involved in macrophage recruitment by H2S remain to be identified. In this study, the NaHS (exogenous sources of H2S) treatment exerted an increased infiltration of macrophages into the infarcted myocardium at early stage of MI cardiac tissues in both wild type (WT) and cystathionine-γ-lyase-knockout (CSE-KO) mice. And NaHS accelerated the migration of macrophage cells in vitro. While, the inhibitors not only significantly diminished the migratory ability in response to NaHS, but also blocked the activation of phospho-Src, -Pyk2, -FAK397, and -FAK925. Furthermore, NaHS induced the internalization of integrin β1 on macrophage surface, but, integrin β1 silencing inhibited macrophage migration and Src signaling activation. These results indicate that H2S may have the potential as an anti-infarct of MI by governing macrophage migration, which was achieved by accelerating internalization of integrin β1 and activating downstream Src-FAK/Pyk2-Rac pathway.

  6. Hydrogen Sulfide Recruits Macrophage Migration by Integrin β1-Src-FAK/Pyk2-Rac Pathway in Myocardial Infarction.

    PubMed

    Miao, Lei; Xin, Xiaoming; Xin, Hong; Shen, Xiaoyan; Zhu, Yi-Zhun

    2016-03-02

    Myocardial infarction (MI) triggers an inflammatory reaction, in which macrophages are of key importance for tissue repairing. Infiltration and/or migration of macrophages into the infarct area early after MI is critical for infarct healing, vascularization, and cardiac function. Hydrogen sulfide (H2S) has been demonstrated to possess cardioprotective effects post MI and during the progress of cardiac remodeling. However, the specific molecular and cellular mechanisms involved in macrophage recruitment by H2S remain to be identified. In this study, the NaHS (exogenous sources of H2S) treatment exerted an increased infiltration of macrophages into the infarcted myocardium at early stage of MI cardiac tissues in both wild type (WT) and cystathionine-γ-lyase-knockout (CSE-KO) mice. And NaHS accelerated the migration of macrophage cells in vitro. While, the inhibitors not only significantly diminished the migratory ability in response to NaHS, but also blocked the activation of phospho-Src, -Pyk2, -FAK(397), and -FAK(925). Furthermore, NaHS induced the internalization of integrin β1 on macrophage surface, but, integrin β1 silencing inhibited macrophage migration and Src signaling activation. These results indicate that H2S may have the potential as an anti-infarct of MI by governing macrophage migration, which was achieved by accelerating internalization of integrin β1 and activating downstream Src-FAK/Pyk2-Rac pathway.

  7. Cadmium affects focal adhesion kinase (FAK) in mesangial cells: involvement of CaMK-II and the actin cytoskeleton.

    PubMed

    Choong, Grace; Liu, Ying; Templeton, Douglas M

    2013-08-01

    The toxic metal ion cadmium (Cd(2+)) induces pleiotropic effects on cell death and survival, in part through effects on cell signaling mechanisms and cytoskeletal dynamics. Linking these phenomena appears to be calmodulin-dependent activation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II). Here we show that interference with the dynamics of the filamentous actin cytoskeleton, either by stabilization or destabilization, results in disruption of focal adhesions at the ends of organized actin structures, and in particular the loss of vinculin and focal adhesion kinase (FAK) from the contacts is a result. Low-level exposure of renal mesangial cells to CdCl2 disrupts the actin cytoskeleton and recapitulates the effects of manipulation of cytoskeletal dynamics with biological agents. Specifically, Cd(2+) treatment causes loss of vinculin and FAK from focal contacts, concomitant with cytoskeletal disruption, and preservation of cytoskeletal integrity with either a calmodulin antagonist or a CaMK-II inhibitor abrogates these effects of Cd(2+). Notably, inhibition of CaMK-II decreases the migration of FAK-phosphoTyr925 to a membrane-associated compartment where it is otherwise sequestered from focal adhesions in a Cd(2+)-dependent manner. These results add further insight into the mechanism of the CaMK-II-dependent effects of Cd(2+) on cellular function. Copyright © 2013 Wiley Periodicals, Inc.

  8. RhoA and Membrane Fluidity Mediates the Spatially Polarized Src/FAK Activation in Response to Shear Stress

    PubMed Central

    Liu, Bo; Lu, Shaoying; Hu, Ying-li; Liao, Xiaoling; Ouyang, Mingxing; Wang, Yingxiao

    2014-01-01

    While Src plays crucial roles in shear stress-induced cellular processes, little is known on the spatiotemporal pattern of high shear stress (HSS)-induced Src activation. HSS (65 dyn/cm2) was applied on bovine aortic endothelial cells to visualize the dynamic Src activation at subcellular levels utilizing a membrane-targeted Src biosensor (Kras-Src) based on fluorescence resonance energy transfer (FRET). A polarized Src activation was observed with higher activity at the side facing the flow, which was enhanced by a cytochalasin D-mediated disruption of actin filaments but inhibited by a benzyl alcohol-mediated enhancement of membrane fluidity. Further experiments revealed that HSS decreased RhoA activity, with a constitutively active RhoA mutant inhibiting while a negative RhoA mutant enhancing the HSS-induced Src polarity. Cytochalasin D can restore the polarity in cells expressing the active RhoA mutant. Further results indicate that HSS stimulates FAK activation with a spatial polarity similar to Src. The inhibition of Src by PP1, as well as the perturbation of RhoA activity and membrane fluidity, can block this HSS-induced FAK polarity. These results indicate that the HSS-induced Src and subsequently FAK polarity depends on the coordination between intracellular tension distribution regulated by RhoA, its related actin structures and the plasma membrane fluidity. PMID:25387906

  9. Adhesion to fibronectin promotes the activation of the p125FAK/Zap‐70 complex in human T cells

    PubMed Central

    Bearz, A; Tell, G; Formisano, S; Merluzzi, S; Colombatti, A; Pucillo, C

    1999-01-01

    The β1 integrins are a family of heterodimeric adhesion receptors involved in cell‐to‐cell contacts and cell‐to‐extracellular matrix interactions. Through their adhesive role, integrins participate in transduction of outside/inside signals and contribute to trigger a multitude of cellular events such as differentiation, cell activation, and motility. The fibronectin integrin receptors, α4β1 and α5β1, can function as costimulatory molecules in T‐cell receptor (TCR)‐dependent T‐cell activation. In the current study the Jurkat T‐cell line was used as a model system to investigate the TCR‐independent role of cell adhesion to fibronectin in the activation of Zap‐70, a central molecule in the signalling events in T cells. Upon adhesion to plastic immobilized fibronectin but not to bovine serum albumin (BSA) the phosphorylation of p125FAK, a protein kinase that localizes to focal adhesion sites, was induced. Moreover, clustering of fibronectin receptors led to the detection of a p125FAK/Zap‐70 complex. Finally, while the complex between fak‐B, another protein kinase localized to focal adhesion sites, and Zap‐70 was detected in cells plated either on BSA or on fibronectin, the formation of the p125FAK/Zap‐70 complex appeared specifically induced following fibronectin‐mediated integrin clustering. These data suggest the existence of a high degree of specificity when the members of the β1 integrin family mediate signalling pathways in T cells. PMID:10594689

  10. Investigations of FAK inhibitors: a combination of 3D-QSAR, docking, and molecular dynamics simulations studies.

    PubMed

    Cheng, Peng; Li, Jiaojiao; Wang, Juan; Zhang, Xiaoyun; Zhai, Honglin

    2017-05-31

    Focal adhesion kinase (FAK) is one kind of tyrosine kinases that modulates integrin and growth factor signaling pathways, which is a promising therapeutic target because of involving in cancer cell migration, proliferation, and survival. To investigate the mechanism between FAK and triazinic inhibitors and design high activity inhibitors, a molecular modeling integrated with 3D-QSAR, molecular docking, molecular dynamics simulations, and binding free energy calculations was performed. The optimum CoMFA and CoMSIA models showed good reliability and satisfactory predictability (with Q(2) = 0.663, R(2) = 0.987, [Formula: see text] = 0.921 and Q(2) = 0.670, R(2) = 0.981, [Formula: see text] = 0.953). Its contour maps could provide structural features to improve inhibitory activity. Furthermore, a good consistency between contour maps, docking, and molecular dynamics simulations strongly demonstrates that the molecular modeling is reliable. Based on it, we designed several new compounds and their inhibitory activities were validated by the molecular models. We expect our studies could bring new ideas to promote the development of novel inhibitors with higher inhibitory activity for FAK.

  11. HER2-induced metastasis is mediated by AKT/JNK/EMT signaling pathway in gastric cancer

    PubMed Central

    Choi, Yiseul; Ko, Young San; Park, Jinju; Choi, Youngsun; Kim, Younghoon; Pyo, Jung-Soo; Jang, Bo Gun; Hwang, Douk Ho; Kim, Woo Ho; Lee, Byung Lan

    2016-01-01

    AIM To investigated the relationships between HER2, c-Jun N-terminal kinase (JNK) and protein kinase B (AKT) with respect to metastatic potential of HER2-positive gastric cancer (GC) cells. METHODS Immunohistochemistry was performed on tissue array slides containing 423 human GC specimens. Using HER2-positve GC cell lines SNU-216 and NCI-N87, HER2 expression was silenced by RNA interference, and the activations of JNK and AKT were suppressed by SP600125 and LY294002, respectively. Transwell assay, Western blot, semi-quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining were used in cell culture experiments. RESULTS In GC specimens, HER2, JNK, and AKT activations were positively correlated with each other. In vitro analysis revealed a positive regulatory feedback loop between HER2 and JNK in GC cell lines and the role of JNK as a downstream effector of AKT in the HER2/AKT signaling pathway. JNK inhibition suppressed migratory capacity through reversing EMT and dual inhibition of JNK and AKT induced a more profound effect on cancer cell motility. CONCLUSION HER2, JNK and AKT in human GC specimens are positively associated with each other. JNK and AKT, downstream effectors of HER2, co-operatively contribute to the metastatic potential of HER2-positive GC cells. Thus, targeting of these two molecules in combination with HER2 downregulation may be a good approach to combat HER2-positive GC. PMID:27895401

  12. JNK2 downregulation promotes tumorigenesis and chemoresistance by decreasing p53 stability in bladder cancer

    PubMed Central

    Zhao, Yu; Qian, Chenchen; Wang, Liguo; Qi, Jun

    2016-01-01

    Bladder cancer is one of the most common malignancies of the urinary system, and the 5-year survival rate remains low. A comprehensive understanding of the carcinogenesis and progression of bladder cancer is urgently needed to advance treatment. c-Jun N-terminal kinase-2 (JNK2) exhibits both tumor promoter and tumor suppressor actions, depending on tumor type. Here, we analyzed the JNK2 function in bladder cancer. Using gene expression microarrays, we demonstrated that JNK2 mRNA is downregulated in an orthotopic rat model of bladder cancer. JNK2 protein levels were lower in rat and human bladder cancer tissues than in normal tissues, and the levels correlated with those of p53. Moreover, JNK2 phosphorylated p53 at Thr-81, thus protecting p53 from MDM2-induced proteasome degradation. Decreased expression of JNK2 in T24 cells conferred resistance to cell death induced by mitomycin C. Furthermore, lower JNK2 expression was associated with poorer overall survival among patients who underwent radical cystectomy. These results indicate that JNK2 acts as a tumor suppressor in bladder cancer, and that decreased JNK2 expression promotes bladder cancer tumorigenesis. PMID:27147566

  13. Role of JNK isoforms in the kainic acid experimental model of epilepsy and neurodegeneration.

    PubMed

    Auladell, Carme; de Lemos, Luisa; Verdaguer, Ester; Ettcheto, Miren; Busquets, Oriol; Lazarowski, Alberto; Beas-Zarate, Carlos; Olloquequi, Jordi; Folch, Jaume; Camins, Antoni

    2017-01-01

    Chemoconvulsants that induce status epilepticus in rodents have been widely used over the past decades due to their capacity to reproduce with high similarity neuropathological and electroencephalographic features observed in patients with temporal lobe epilepsy (TLE). Kainic acid  is one of the most used chemoconvulsants in experimental models. KA administration mainly induces neuronal loss in the hippocampus. We focused the present review inthe c-Jun N-terminal kinase-signaling pathway (JNK), since it has been shown to play a key role in the process of neuronal death following KA activation. Among the three isoforms of JNK (JNK1, JNK2, JNK3), JNK3 is widely localized in the majority of areas of the hippocampus, whereas JNK1 levels are located exclusively in the CA3 and CA4 areas and in dentate gyrus. Disruption of the gene encoding JNK3 in mice renders neuroprotection to KA, since these animals showed a reduction in seizure activity and a diminution in hippocampal neuronal apoptosis. In light of this, JNK3 could be a promising subcellular target for future therapeutic interventions in epilepsy.

  14. PKC-mediated cerebral vasoconstriction: Role of myosin light chain phosphorylation versus actin cytoskeleton reorganization.

    PubMed

    El-Yazbi, Ahmed F; Abd-Elrahman, Khaled S; Moreno-Dominguez, Alejandro

    2015-06-15

    Defective protein kinase C (PKC) signaling has been suggested to contribute to abnormal vascular contraction in disease conditions including hypertension and diabetes. Our previous work on agonist and pressure-induced cerebral vasoconstriction implicated PKC as a major contributor to force production in a myosin light chain (LC20) phosphorylation-independent manner. Here, we used phorbol dibutyrate to selectively induce a PKC-dependent constriction in rat middle cerebral arteries and delineate the relative contribution of different contractile mechanisms involved. Specifically, we employed an ultra-sensitive 3-step western blotting approach to detect changes in the content of phosphoproteins that regulate myosin light chain phosphatase (MLCP) activity, thin filament activation, and actin cytoskeleton reorganization. Data indicate that PKC activation evoked a greater constriction at a similar level of LC20 phosphorylation achieved by 5-HT. PDBu-evoked constriction persisted in the presence of Gö6976, a selective inhibitor of Ca(2+)-dependent PKC, and in the absence of extracellular Ca(2+). Biochemical evidence indicates that either + or - extracellular Ca(2+), PDBu (i) inhibits MLCP activity via the phosphorylation of myosin targeting subunit of myosin phosphatase (MYPT1) and C-kinase potentiated protein phosphatase-1 inhibitor (CPI-17), (ii) increases the phosphorylation of paxillin and heat shock protein 27 (HSP27), and reduces G-actin content, and (iii) does not change the phospho-content of the thin filament proteins, calponin and caldesmon. PDBu-induced constriction was more sensitive to disruption of actin cytoskeleton compared to inhibition of cross-bridge cycling. In conclusion, this study provided evidence for the pivotal contribution of cytoskeletal actin polymerization in force generation following PKC activation in cerebral resistance arteries. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Kibra and aPKC regulate starvation-induced autophagy in Drosophila

    SciTech Connect

    Jin, Ahrum; Neufeld, Thomas P.; Choe, Joonho

    2015-12-04

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apical membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. - Highlights: • Loss of Kibra causes defects in autophagosome formation and autophagic degradation. • Constitutively-active aPKCs negatively regulate autophagy. • Kibra interacts with aPKC in vitro and in vivo. • Kibra regulates autophagy downstream of aPKC.

  16. The interrelation between aPKC and glucose uptake in the skeletal muscle during contraction and insulin stimulation.

    PubMed

    Santos, J M; Benite-Ribeiro, S A; Queiroz, G; Duarte, J A

    2014-12-01

    Contraction and insulin increase glucose uptake in skeletal muscle. While the insulin pathway, better characterized, requires activation of phosphoinositide 3-kinase (PI3K) and atypical protein kinase (aPKC), muscle contraction seems to share insulin-activated components to increase glucose uptake. This study aimed to investigate the interrelation between the pathway involved in glucose uptake evoked by insulin and muscle contraction. Isolated muscle of rats was treated with solvent (control), insulin, wortmannin (PI3K inhibitor) and the combination of insulin plus wortmannin. After treatment, muscles were electrically stimulated (contracted) or remained at rest. Glucose transporter 4 (GLUT4) localization, glucose uptake and phospho-aPKC (aPKC activated form) were assessed. Muscle contraction and insulin increased glucose uptake in all conditions when compared with controls not stimulating an effect that was accompanied by an increase in GLUT4 and of phospho-aPKC at the muscle membrane. Contracted muscles treated with insulin did not show additive effects on glucose uptake or aPKC activity compared with the response when these stimuli were applied alone. Inhibition of PI3K blocked insulin effect on glucose uptake and aPKC but not in the contractile response. Thus, muscle contraction seems to stimulate aPKC and glucose uptake independently of PI3K. Therefore, aPKC may be a convergence point and a rate limit step in the pathway by which, insulin and contraction, increase glucose uptake in skeletal muscle.

  17. Phosphoproteomics profiling suggests a role for nuclear βΙPKC in transcription processes of undifferentiated murine embryonic stem cells.

    PubMed

    Costa-Junior, Helio Miranda; Garavello, Nicole Milaré; Duarte, Mariana Lemos; Berti, Denise Aparecida; Glaser, Talita; de Andrade, Alexander; Labate, Carlos A; Ferreira, André Teixeira da Silva; Perales, Jonas Enrique Aguilar; Xavier-Neto, José; Krieger, José Eduardo; Schechtman, Deborah

    2010-12-03

    Protein kinase C (PKC) plays a key role in embryonic stem cell (ESC) proliferation, self-renewal, and differentiation. However, the function of specific PKC isoenzymes have yet to be determined. Of the PKCs expressed in undifferentiated ESCs, βIPKC was the only isoenzyme abundantly expressed in the nuclei. To investigate the role of βΙPKC in these cells, we employed a phosphoproteomics strategy and used two classical (cPKC) peptide modulators and one βIPKC-specific inhibitor peptide. We identified 13 nuclear proteins that are direct or indirect βΙPKC substrates in undifferentiated ESCs. These proteins are known to be involved in regulating transcription, splicing, and chromatin remodeling during proliferation and differentiation. Inhibiting βΙPKC had no effect on DNA synthesis in undifferentiated ESCs. However, upon differentiation, many cells seized to express βΙPKC and βΙPKC was frequently found in the cytoplasm. Taken together, our results suggest that βIPKC takes part in the processes that maintain ESCs in their undifferentiated state.

  18. Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK.

    PubMed

    Carey, Shawn P; Goldblatt, Zachary E; Martin, Karen E; Romero, Bethsabe; Williams, Rebecca M; Reinhart-King, Cynthia A

    2016-08-08

    Cell migration within 3D interstitial microenvironments is sensitive to extracellular matrix (ECM) properties, but the mechanisms that regulate migration guidance by 3D matrix features remain unclear. To examine the mechanisms underlying the cell migration response to aligned ECM, which is prevalent at the tumor-stroma interface, we utilized time-lapse microscopy to compare the behavior of MDA-MB-231 breast adenocarcinoma cells within randomly organized and well-aligned 3D collagen ECM. We developed a novel experimental system in which cellular morphodynamics during initial 3D cell spreading served as a reductionist model for the complex process of matrix-directed 3D cell migration. Using this approach, we found that ECM alignment induced spatial anisotropy of cells' matrix probing by promoting protrusion frequency, persistence, and lengthening along the alignment axis and suppressing protrusion dynamics orthogonal to alignment. Preference for on-axis behaviors was dependent upon FAK and Rac1 signaling and translated across length and time scales such that cells within aligned ECM exhibited accelerated elongation, front-rear polarization, and migration relative to cells in random ECM. Together, these findings indicate that adhesive and protrusive signaling allow cells to respond to coordinated physical cues in the ECM, promoting migration efficiency and cell migration guidance by 3D matrix structure.

  19. Quantification of Myocyte Chemotaxis: A Role for FAK in Regulating Directional Motility

    PubMed Central

    Zajac, Britni; Hakim, Zeenat S.; Cameron, Morgan V.; Smithies, Oliver; Taylor, Joan M.

    2015-01-01

    Formation of a fully functional four-chambered heart involves an intricate and complex series of events that includes precise spatial–temporal regulation of cell specification, proliferation, and migration. The formation of the ventricular septum during mid-gestation ensures the unidirectional flow of blood, and is necessary for postnatal viability. Notably, a majority of all congenital malformations of the cardiovascular system in humans involve septal abnormalities which afflict 1 out of 100 newborn children in the United States. Thus, a clear understanding of the precise mechanisms involved in this morphogenetic event will undoubtedly reveal important therapeutic targets. The final step in valvuloseptal morphogenesis occurs, in part, by directed movement of flanking myocytes into the cushion mesenchyme. In order to identify the molecular mechanisms that regulate this critical myocyte function, we have developed two in vitro methodologies; a transwell assay to assess population changes in motility and a single-cell tracking assay to identify signals that drive the coordinated movement of these cells. These methods have proven effective to identify focal adhesion kinase (FAK) as an intracellular component that is critical for myocyte chemotaxis. PMID:22222526

  20. Cytochrome P4502E1, oxidative stress, JNK, and autophagy in acute alcohol-induced fatty liver.

    PubMed

    Yang, Lili; Wu, Defeng; Wang, Xiaodong; Cederbaum, Arthur I

    2012-09-01

    Binge alcohol drinking induces hepatic steatosis. Recent studies showed that chronic ethanol-induced fatty liver was, at least in part, CYP2E1 dependent. The mechanism of acute alcohol-induced steatosis and whether CYP2E1 plays any role are still unclear. Increasing oxidative stress by alcohol can activate the JNK MAP kinase signaling pathway, suggesting that JNK might be a target for prevention of alcohol-induced steatosis. We used CYP2E1 knockout (KO) mice, a JNK inhibitor, and JNK1 or JNK2 knockout mice to test the role of CYP2E1, JNK, and the individual role of JNK1 and JNK2 in acute alcohol-induced steatosis. In wild-type (WT) mice, acute alcohol activates CYP2E1 and increases oxidative stress, which reciprocally increases activation of the JNK signaling pathway. Acute alcohol-induced fatty liver and oxidative stress were blunted in CYP2E1 KO mice and by the JNK inhibitor in WT mice. The antioxidant N-acetylcysteine decreased the acute alcohol-induced oxidative stress, the activation of JNK, and the steatosis but not the activation of CYP2E1. Acute alcohol decreased autophagy and increased expression of SREBP, effects blocked by the JNK inhibitor. Acute alcohol-induced fatty liver was the same in JNK1 and JNK2 KO mice as in WT mice; thus either JNK1 or JNK2 per se is sufficient for induction of steatosis by acute alcohol. The results show that acute alcohol elevation of CYP2E1, oxidative stress, and activation of JNK interact to lower autophagy and increase lipogenic SREBP resulting in fatty liver.

  1. Targeting of FAK Ser910 by ERK5 and PP1δ in non-stimulated and phorbol ester-stimulated cells

    PubMed Central

    Villa-Moruzzi, Emma

    2007-01-01

    Ser910 of FAK (focal adhesion kinase) was phosphorylated in fibroblasts treated with the phorbol ester PMA and dephosphorylated by PP1δ (protein phosphatase 1δ), as indicated by shRNA (small-hairpin RNA) gene silencing. Ser910 of FAK was reported previously to be an ERK (extracellular-signal-regulated kinase) 1/2 target in cells treated with phorbol esters. In contrast, various approaches, including the use of the MEK (mitogen-activated protein kinase/ERK kinase) inhibitors UO126 and CI-1040 to inhibit ERK1/2 pointed to the involvement of ERK5. This hypothesis was confirmed by: (i) shRNA ERK5 gene silencing, which resulted in complete pSer910 loss in non-stimulated and PMA-stimulated cells; (ii) direct phosphorylation of recombinant FAK by ERK5; and (iii) ERK5 activation by PMA. PMA stimulation and ERK5 silencing in MDA-MB 231 and MDA-MB 361 breast cancer cells indicated Ser910 targeting by ERK5 also in these cells. Given the proximity of Ser910 to the FAT (focal adhesion targeting) regulatory domain of FAK, cell proliferation and morphology were investigated in FAK−/− cells expressing S910A mutant FAK. The cell growth rate decreased and exposure to PMA induced peculiar morphological changes in cells expressing S910A, with respect to wild-type FAK, suggesting a role for Ser910 in these processes. The present study indicates, for the first time, the phosphorylation of Ser910 of FAK by ERK5 and its dephosphorylation by PP1δ, and suggested a role for Ser910 in the control of cell shape and proliferation. PMID:17692050

  2. JNK1 Deficient Insulin-Producing Cells Are Protected against Interleukin-1β-Induced Apoptosis Associated with Abrogated Myc Expression.

    PubMed

    Prause, Michala; Mayer, Christopher Michael; Brorsson, Caroline; Frederiksen, Klaus Stensgaard; Billestrup, Nils; Størling, Joachim; Mandrup-Poulsen, Thomas

    2016-01-01

    The relative contributions of the JNK subtypes in inflammatory β-cell failure and apoptosis are unclear. The JNK protein family consists of JNK1, JNK2, and JNK3 subtypes, encompassing many different isoforms. INS-1 cells express JNK1α1, JNK1α2, JNK1β1, JNK1β2, JNK2α1, JNK2α2, JNK3α1, and JNK3α2 mRNA isoform transcripts translating into 46 and 54 kDa isoform JNK proteins. Utilizing Lentiviral mediated expression of shRNAs against JNK1, JNK2, or JNK3 in insulin-producing INS-1 cells, we investigated the role of individual JNK subtypes in IL-1β-induced β-cell apoptosis. JNK1 knockdown prevented IL-1β-induced INS-1 cell apoptosis associated with decreased 46 kDa isoform JNK protein phosphorylation and attenuated Myc expression. Transient knockdown of Myc also prevented IL-1β-induced apoptosis as well as caspase 3 cleavage. JNK2 shRNA potentiated IL-1β-induced apoptosis and caspase 3 cleavage, whereas JNK3 shRNA did not affect IL-1β-induced β-cell death compared to nonsense shRNA expressing INS-1 cells. In conclusion, JNK1 mediates INS-1 cell death associated with increased Myc expression. These findings underline the importance of differentiated targeting of JNK subtypes in the development of inflammatory β-cell failure and destruction.

  3. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease.

    PubMed

    Yao, Zhiwen; Yang, Wenhao; Gao, Zhiqiang; Jia, Peng

    2017-04-24

    Amyloid-β (Aβ) oligomers have been accepted as major neurotoxic agents in the therapy of Alzheimer's disease (AD). It has been shown that the activity of nicotinamide adenine dinucleotide (NAD+) is related with the decline of Aβ toxicity in AD. Nicotinamide mononucleotide (NMN), the important precursor of NAD+, is produced during the reaction of nicotinamide phosphoribosyl transferase (Nampt). This study aimed to figure out the potential therapeutic effects of NMN and its underlying mechanisms in APPswe/PS1dE9 (AD-Tg) mice. We found that NMN gave rise to a substantial improvement in behavioral measures of cognitive impairments compared to control AD-Tg mice. In addition, NMN treatment significantly decreased β-amyloid production, amyloid plaque burden, synaptic loss, and inflammatory responses in transgenic animals. Mechanistically, NMN effectively controlled JNK activation. Furthermore, NMN potently progressed nonamyloidogenic amyloid precursor protein (APP) and suppressed amyloidogenic APP by mediating the expression of APP cleavage secretase in AD-Tg mice. Based on our findings, it was suggested that NMN substantially decreases multiple AD-associated pathological characteristically at least partially by the inhibition of JNK activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC.

    PubMed

    Ren, L; Hong, S H; Cassavaugh, J; Osborne, T; Chou, A J; Kim, S Y; Gorlick, R; Hewitt, S M; Khanna, C

    2009-02-12

    Ezrin is a member of the ERM (ezrin, radixin, moesin) protein family and links F-actin to the cell membrane following phosphorylation. Ezrin has been associated with tumor progression and metastasis in several cancers including the pediatric solid tumors, osteosarcoma and rhabdomyosarcoma. In this study, we were surprised to find that ezrin was not constitutively phosphorylated but rather was dynamically regulated during metastatic progression in osteosarcoma. Metastatic osteosarcoma cells expressed phosphorylated ERM early after their arrival in the lung, and then late in progression, only at the invasive front of larger metastatic lesions. To pursue mechanisms for this regulation, we found that inhibitors of PKC (protein kinase C) blocked phosphorylation of ezrin, and that ezrin coimmunoprecipitated in cells with PKCalpha, PKCiota and PKCgamma. Furthermore, phosphorylated forms of ezrin and PKC had identical expression patterns at the invasive front of pulmonary metastatic lesions in murine and human patient samples. Finally, we showed that the promigratory effects of PKC were linked to ezrin phosphorylation. These data are the first to suggest a dynamic regulation of ezrin phosphorylation during metastasis and to connect the PKC family members with this regulation.

  5. Tyrosinase kinetics in epidermal melanocytes: analysis of DAG-PKC-dependent signaling pathway

    NASA Astrophysics Data System (ADS)

    Stolnitz, Mikhail M.; Peshkova, Anna Y.

    2001-05-01

    Tyrosinase is the key enzyme of melanogenesis with unusual enzyme kinetics. Protein kinase C plays an important role in regulating of tyrosinase activity. In the paper the mathematical model of PKC-DAG-dependent signal transduction pathway for UV-radiation is presented.

  6. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation

    PubMed Central

    Sun, Hao; Lu, Li; Zuo, Yong; Wang, Yan; Jiao, Yingfu; Zeng, Wei-Zheng; Huang, Chao; Zhu, Michael X.; Zamponi, Gerald W.; Zhou, Tong; Xu, Tian-Le; Cheng, Jinke; Li, Yong

    2014-01-01

    Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner, leading to reduced GlyR-mediated synaptic activity in cultured spinal cord neurons and the superficial dorsal horn of rat spinal cord slices. This effect requires SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of PKC, indicating that the crosstalk between KARs and GlyRs relies on the SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is involved in the kainate-induced GlyR endocytosis and thus plays an important role in the anti-homeostatic regulation between excitatory and inhibitory ligand-gated ion channels. Altogether, we have identified a SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may have important physiological implications for proper neuronal excitability. PMID:25236484

  7. PKC{delta}-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    SciTech Connect

    Greene, Michael W. . E-mail: michael.greene@bassett.org; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-10-27

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKC{delta} on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKC{delta}-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKC{delta} catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1.

  8. Saccharomyces Cerevisiae Hoc1, a Suppressor of Pkc1, Encodes a Putative Glycosyltransferase

    PubMed Central

    Neiman, A. M.; Mhaiskar, V.; Manus, V.; Galibert, F.; Dean, N.

    1997-01-01

    The Saccharomyces cerevisiae gene PKC1 encodes a protein kinase C isozyme that regulates cell wall synthesis. Here we describe the characterization of HOC1, a gene identified by its ability to suppress the cell lysis phenotype of pkc1-371 cells. The HOC1 gene (Homologous to OCH1) is predicted to encode a type II integral membrane protein that strongly resembles Och1p, an α-1,6-mannosyltransferase. Immunofluorescence studies localized Hoc1p to the Golgi apparatus. While overexpression of HOC1 rescued the pkc1-371 temperature-sensitive cell lysis phenotype, disruption of HOC1 lowered the restrictive temperature of the pkc1-371 allele. Disruption of HOC1 also resulted in hypersensitivity to Calcofluor White and hygromycin B, phenotypes characteristic of defects in cell wall integrity and protein glycosylation, respectively. The function of HOC1 appears to be distinct from that of OCH1. Taken together, these results suggest that HOC1 encodes a Golgi-localized putative mannosyltransferase required for the proper construction of the cell wall. PMID:9055074

  9. Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia

    PubMed Central

    Rolls, Melissa M.; Albertson, Roger; Shih, Hsin-Pei; Lee, Cheng-Yu; Doe, Chris Q.

    2003-01-01

    Cell polarity is essential for generating cell diversity and for the proper function of most differentiated cell types. In many organisms, cell polarity is regulated by the atypical protein kinase C (aPKC), Bazooka (Baz/Par3), and Par6 proteins. Here, we show that Drosophila aPKC zygotic null mutants survive to mid-larval stages, where they exhibit defects in neuroblast and epithelial cell polarity. Mutant neuroblasts lack apical localization of Par6 and Lgl, and fail to exclude Miranda from the apical cortex; yet, they show normal apical crescents of Baz/Par3, Pins, Inscuteable, and Discs large and normal spindle orientation. Mutant imaginal disc epithelia have defects in apical/basal cell polarity and tissue morphology. In addition, we show that aPKC mutants show reduced cell proliferation in both neuroblasts and epithelia, the opposite of the lethal giant larvae (lgl) tumor suppressor phenotype, and that reduced aPKC levels strongly suppress most lgl cell polarity and overproliferation phenotypes. PMID:14657233

  10. Bidirectional control of BK channel open probability by CAMKII and PKC in medial vestibular nucleus neurons

    PubMed Central

    van Welie, Ingrid

    2011-01-01

    Large conductance K+ (BK) channels are a key determinant of neuronal excitability. Medial vestibular nucleus (MVN) neurons regulate eye movements to ensure image stabilization during head movement, and changes in their intrinsic excitability may play a critical role in plasticity of the vestibulo-ocular reflex. Plasticity of intrinsic excitability in MVN neurons is mediated by kinases, and BK channels influence excitability, but whether endogenous BK channels are directly modulated by kinases is unknown. Double somatic patch-clamp recordings from MVN neurons revealed large conductance potassium channel openings during spontaneous action potential firing. These channels displayed Ca2+ and voltage dependence in excised patches, identifying them as BK channels. Recording isolated single channel currents at physiological temperature revealed a novel kinase-mediated bidirectional control in the range of voltages over which BK channels are activated. Application of activated Ca2+/calmodulin-dependent kinase II (CAMKII) increased BK channel open probability by shifting the voltage activation range towards more hyperpolarized potentials. An opposite shift in BK channel open probability was revealed by inhibition of phosphatases and was occluded by blockade of protein kinase C (PKC), suggesting that active PKC associated with BK channel complexes in patches was responsible for this effect. Accordingly, direct activation of endogenous PKC by PMA induced a decrease in BK open probability. BK channel activity affects excitability in MVN neurons and bidirectional control of BK channels by CAMKII, and PKC suggests that cellular signaling cascades engaged during plasticity may dynamically control excitability by regulating BK channel open probability. PMID:21307321

  11. Oxidative Stress Induces Mouse Follicular Granulosa Cells Apoptosis via JNK/FoxO1 Pathway

    PubMed Central

    Weng, Qiannan; Liu, Zequn; Li, Bojiang; Liu, Kaiqing; Wu, Wangjun; Liu, Honglin

    2016-01-01

    The c-Jun N-terminal protein kinase (JNK) plays an important role in the regulation of cell apoptosis. Forkhead box O (FoxO) transcription factors are involved in diverse biological processes, including cellular metabolism, cell apoptosis, and cell cycle. However, the JNK/FoxO1 pathway involved in the process of apoptosis induced by oxidative stress remains to be elucidated. Here, we demonstrated that the JNK activity significantly increased in response to oxidative stress in mouse follicular granulosa cells (MGCs). SP600125, a selective JNK inhibitor, attenuated the oxidative stress-induced MGCs apoptosis. Oxidative stress enhanced the FoxO1 nuclear translocation by activating the JNK activity. Moreover, JNK mediated the dissociation of FoxO1 from 14-3-3 proteins in MGCs after the treatment with H2O2. Finally, oxidative stress up-regulated the expression of FoxO1 via JNK mediation of FoxO1 self-regulation in MGCs. Taken together, our findings suggest that JNK/FoxO1 is involved in the regulation of oxidative stress-induced cell apoptosis in MGCs. PMID:27936150

  12. Protein kinase C in the wood frog, Rana sylvatica: reassessing the tissue-specific regulation of PKC isozymes during freezing

    PubMed Central

    Storey, Kenneth B.

    2014-01-01

    The wood frog, Rana sylvatica, survives whole-body freezing and thawing each winter. The extensive adaptations required at the biochemical level are facilitated by alterations to signaling pathways, including the insulin/Akt and AMPK pathways. Past studies investigating changing tissue-specific patterns of the second messenger IP3 in adapted frogs have suggested important roles for protein kinase C (PKC) in response to stress. In addition to their dependence on second messengers, phosphorylation of three PKC sites by upstream kinases (most notably PDK1) is needed for full PKC activation, according to widely-accepted models. The present study uses phospho-specific immunoblotting to investigate phosphorylation states of PKC—as they relate to distinct tissues, PKC isozymes, and phosphorylation sites—in control and frozen frogs. In contrast to past studies where second messengers of PKC increased during the freezing process, phosphorylation of PKC tended to generally decline in most tissues of frozen frogs. All PKC isozymes and specific phosphorylation sites detected by immunoblotting decreased in phosphorylation levels in hind leg skeletal muscle and hearts of frozen frogs. Most PKC isozymes and specific phosphorylation sites detected in livers and kidneys also declined; the only exceptions were the levels of isozymes/phosphorylation sites detected by the phospho-PKCα/βII (Thr638/641) antibody, which remained unchanged from control to frozen frogs. Changes in brains of frozen frogs were unique; no decreases were observed in the phosphorylation levels of any of the PKC isozymes and/or specific phosphorylation sites detected by immunoblotting. Rather, increases were observed for the levels of isozymes/phosphorylation sites detected by the phospho-PKCα/βII (Thr638/641), phospho-PKCδ (Thr505), and phospho-PKCθ (Thr538) antibodies; all other isozymes/phosphorylation sites detected in brain remained unchanged from control to frozen frogs. The results of this study

  13. TBP Is Differentially Regulated by c-Jun N-Terminal Kinase 1 (JNK1) and JNK2 through Elk-1, Controlling c-Jun Expression and Cell Proliferation▿

    PubMed Central

    Zhong, Shuping; Fromm, Jody; Johnson, Deborah L.

    2007-01-01

    Emerging evidence supports the idea that the c-Jun N-terminal kinases (JNKs) possess overlapping but distinct functions. The potential roles of the ubiquitously expressed JNK1 and JNK2 in regulating expression of the central transcription initiation factor, TATA-binding protein (TBP), were examined. Relative to wild-type fibroblasts, TBP was decreased in Jnk1−/− cells and increased in Jnk2−/− cells. Similarly, reduction of JNK1 in human hepatoma cells decreased TBP expression, whereas reduction of JNK2 enhanced it. JNK-mediated regulation of TBP expression occurs at the transcriptional level through their ability to target Elk-1, which directly regulates the TBP promoter in response to epidermal growth factor stimulation. JNK1 increases, whereas JNK2 decreases, the phosphorylation state of Elk-1, which differentially affects Elk-1 occupancy at a defined site within the TBP promoter. These JNK-mediated alterations in TBP expression, alone, serve to regulate c-Jun expression and fibroblast proliferation rates. These studies uncovered several new molecular events that distinguish the functions of JNK1 and JNK2 that are critical for their regulation of cellular proliferation. PMID:17074809

  14. Phosphorylation of synaptotagmin-1 controls a post-priming step in PKC-dependent presynaptic plasticity

    PubMed Central

    de Jong, Arthur P. H.; Meijer, Marieke; Saarloos, Ingrid; Cornelisse, Lennart Niels; Toonen, Ruud F. G.; Sørensen, Jakob B.; Verhage, Matthijs

    2016-01-01

    Presynaptic activation of the diacylglycerol (DAG)/protein kinase C (PKC) pathway is a central event in short-term synaptic plasticity. Two substrates, Munc13-1 and Munc18-1, are essential for DAG-induced potentiation of vesicle priming, but the role of most presynaptic PKC substrates is not understood. Here, we show that a mutation in synaptotagmin-1 (Syt1T112A), which prevents its PKC-dependent phosphorylation, abolishes DAG-induced potentiation of synaptic transmission in hippocampal neurons. This mutant also reduces potentiation of spontaneous release, but only if alternative Ca2+ sensors, Doc2A/B proteins, are absent. However, unlike mutations in Munc13-1 or Munc18-1 that prevent DAG-induced potentiation, the synaptotagmin-1 mutation does not affect paired-pulse facilitation. Furthermore, experiments to probe vesicle priming (recovery after train stimulation and dual application of hypertonic solutions) also reveal no abnormalities. Expression of synaptotagmin-2, which lacks a seven amino acid sequence that contains the phosphorylation site in synaptotagmin-1, or a synaptotagmin-1 variant with these seven residues removed (Syt1Δ109–116), supports normal DAG-induced potentiation. These data suggest that this seven residue sequence in synaptotagmin-1 situated in the linker between the transmembrane and C2A domains is inhibitory in the unphosphorylated state and becomes permissive of potentiation upon phosphorylation. We conclude that synaptotagmin-1 phosphorylation is an essential step in PKC-dependent potentiation of synaptic transmission, acting downstream of the two other essential DAG/PKC substrates, Munc13-1 and Munc18-1. PMID:27091977

  15. Phosphorylation of synaptotagmin-1 controls a post-priming step in PKC-dependent presynaptic plasticity.

    PubMed

    de Jong, Arthur P H; Meijer, Marieke; Saarloos, Ingrid; Cornelisse, Lennart Niels; Toonen, Ruud F G; Sørensen, Jakob B; Verhage, Matthijs

    2016-05-03

    Presynaptic activation of the diacylglycerol (DAG)/protein kinase C (PKC) pathway is a central event in short-term synaptic plasticity. Two substrates, Munc13-1 and Munc18-1, are essential for DAG-induced potentiation of vesicle priming, but the role of most presynaptic PKC substrates is not understood. Here, we show that a mutation in synaptotagmin-1 (Syt1(T112A)), which prevents its PKC-dependent phosphorylation, abolishes DAG-induced potentiation of synaptic transmission in hippocampal neurons. This mutant also reduces potentiation of spontaneous release, but only if alternative Ca(2+) sensors, Doc2A/B proteins, are absent. However, unlike mutations in Munc13-1 or Munc18-1 that prevent DAG-induced potentiation, the synaptotagmin-1 mutation does not affect paired-pulse facilitation. Furthermore, experiments to probe vesicle priming (recovery after train stimulation and dual application of hypertonic solutions) also reveal no abnormalities. Expression of synaptotagmin-2, which lacks a seven amino acid sequence that contains the phosphorylation site in synaptotagmin-1, or a synaptotagmin-1 variant with these seven residues removed (Syt1(Δ109-116)), supports normal DAG-induced potentiation. These data suggest that this seven residue sequence in synaptotagmin-1 situated in the linker between the transmembrane and C2A domains is inhibitory in the unphosphorylated state and becomes permissive of potentiation upon phosphorylation. We conclude that synaptotagmin-1 phosphorylation is an essential step in PKC-dependent potentiation of synaptic transmission, acting downstream of the two other essential DAG/PKC substrates, Munc13-1 and Munc18-1.

  16. Ellagic acid checks lymphoma promotion via regulation of PKC signaling pathway.

    PubMed

    Mishra, Sudha; Vinayak, Manjula

    2013-02-01

    Protein Kinase C (PKC) isozymes are key components involved in cell proliferation and their over activation leads to abnormal tumor growth. PKC follows signalling pathway by activation of downstream gene NF-kB and early transcription factor c-Myc. Over activation of NF-kB and c-Myc gene are also linked with unregulated proliferation of cancer cells. Therefore any agent which can inhibit the activation of Protein kinase C, NF-kB and c-Myc may be useful in reducing cancer progression. To investigate this hypothesis we have tested the effect of ellagic acid on these genes in Dalton's lymphoma bearing (DL). The role of ellagic acid was also tested in regulation of tumor suppressor gene Transforming growth factor-β1 (TGF-β1). DL mice were treated with three different doses (40, 60 and 80 mg/kg body weight) of ellagic acid. Ascites cells of mice were used for the experiments. Ellagic acid administration to DL mice decreased oxidative stress by reducing lipid peroxidation. Ellagic acid also down regulates the expression of classical isozymes of PKC i.e. PKCα, PKCβ, and PKCγ as well as activity of total PKC and NF-kB, indicating its antitumor action. The anticarcinogenic action of ellagic acid was also confirmed by up regulation of TGF-β1 and down regulation of c-Myc. Lymphoma prevention by ellagic acid is further supported by decrease in cell proliferation, cell viability, ascites fluid accumulation and increase in life span of DL mice. All these findings suggest that ellagic acid prevents the cancer progression by down regulation of PKC signaling pathway leading to cell proliferation.

  17. Prostaglandin E{sub 2} regulates melanocyte dendrite formation through activation of PKC{zeta}

    SciTech Connect

    Scott, Glynis Fricke, Alex; Fender, Anne; McClelland, Lindy; Jacobs, Stacey

    2007-11-01

    Prostaglandins are lipid signaling intermediates released by keratinocytes in response to ultraviolet irradiation (UVR) in the skin. The main prostaglandin released following UVR is PGE{sub 2}, a ligand for 4 related G-protein-coupled receptors (EP{sub 1}, EP{sub 2}, EP{sub 3} and EP{sub 4}). Our previous work established that PGE{sub 2} stimulates melanocyte dendrite formation through activation of the EP{sub 1} and EP{sub 3} receptors. The purpose of the present report is to define the signaling intermediates involved in EP{sub 1}- and EP{sub 3}-dependent dendrite formation in human melanocytes. We recently showed that activation of the atypical PKC{zeta} isoform stimulates melanocyte dendricity in response to treatment with lysophosphatidylcholine. We therefore examined the potential contribution of PKC{zeta} activation on EP{sub 1}- and EP{sub 3}-dependent dendrite formation in melanocytes. Stimulation of the EP{sub 1} and EP{sub 3} receptors by selective agonists activated PKC{zeta}, and inhibition of PKC{zeta} activation abrogated EP{sub 1}- and EP{sub 3}-receptor-mediated melanocyte dendricity. Because of the importance of Rho-GTP binding proteins in the regulation of melanocyte dendricity, we also examined the effect of EP{sub 1} and EP{sub 3} receptor activation on Rac and Rho activity. Neither Rac nor Rho was activated upon treatment with EP{sub 1,3}-receptor agonists. We show that melanocytes express only the EP{sub 3A1} isoform, but not the EP{sub 3B} receptor isoform, previously associated with Rho activation, consistent with a lack of Rho stimulation by EP{sub 3} agonists. Our data suggest that PKC{zeta} activation plays a predominant role in regulation of PGE{sub 2}-dependent melanocyte dendricity.

  18. Does PKC activation increase the homologous desensitization of μ opioid receptors?

    PubMed

    Arttamangkul, Seksiri; Birdsong, William; Williams, John T

    2015-01-01

    This study examined the role of agents known to activate PKC on morphine-induced desensitization of μ-opioid receptors (MOP receptors) in brain slices containing locus coeruleus neurons. Intracellular recordings were obtained from rat locus coeruleus neurons. Two measurements were used to characterize desensitization, the decline in hyperpolarization induced by application of a saturating concentration of agonist (acute desensitization) and the decrease in hyperpolarization induced by a subsaturating concentration of [Met](5) enkephalin (ME) following washout of the saturating concentration (sustained desensitization). Internalization of MOP receptors was studied in brain slices prepared from transgenic mice expressing Flag-MOP receptors. The subcellular distribution of activated PKC was examined using a novel fluorescent sensor of PKC in HEK293 cells. The phorbol esters (PMA and PDBu) and muscarine increased acute desensitization induced by a saturating concentration of morphine and ME. These effects were not sensitive to staurosporine. Staurosporine did not block the decline in hyperpolarization induced by muscarine. PDBu and muscarine did not affect sustained desensitization induced by ME nor did phorbol esters or muscarine change the trafficking of MOP receptors induced by morphine or ME. The distribution of activated PKC measured in HEK293 cells differed depending on which phorbol ester was applied. This study demonstrates a distinct difference in two measurements that are often used to evaluate desensitization. The measure of decline correlated well with the reduction in peak amplitudes caused by PKC activators implicating the modification of other factors rather than MOP receptors. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.

  19. The Polycomb group protein RING1B is overexpressed in ductal breast carcinoma and is required to sustain FAK steady state levels in breast cancer epithelial cells.

    PubMed

    Bosch, Almudena; Panoutsopoulou, Konstantina; Corominas, Josep Maria; Gimeno, Ramón; Moreno-Bueno, Gema; Martín-Caballero, Juan; Morales, Saleta; Lobato, Tania; Martínez-Romero, Carles; Farias, Eduardo F; Mayol, Xavier; Cano, Amparo; Hernández-Muñoz, Inmaculada

    2014-04-30

    In early stages of metastasis malignant cells must acquire phenotypic changes to enhance their migratory behavior and their ability to breach the matrix surrounding tumors and blood vessel walls. Epigenetic regulation of gene expression allows the acquisition of these features that, once tumoral cells have escape from the primary tumor, can be reverted. Here we report that the expression of the Polycomb epigenetic repressor Ring1B is enhanced in tumoral cells that invade the stroma in human ductal breast carcinoma and its expression is coincident with that of Fak in these tumors. Ring1B knockdown in breast cancer cell lines revealed that Ring1B is required to sustain Fak expression in basal conditions as well as in Tgfβ-treated cells. Functionally, endogenous Ring1B is required for cell migration and invasion in vitro and for in vivo invasion of the mammary fat pad by tumoral cells. Finally we identify p63 as a target of Ring1B to regulate Fak expression: Ring1B depletion results in enhanced p63 expression, which in turns represses Fak expression. Importantly, Fak downregulation upon Ring1B depletion is dependent on p63 expression. Our findings provide new insights in the biology of the breast carcinoma and open new avenues for breast cancer prognosis and therapy.

  20. Brain-derived neurotrophic factor induces migration of endothelial cells through a TrkB-ERK-integrin αVβ3-FAK cascade.

    PubMed

    Matsuda, Shinji; Fujita, Tsuyoshi; Kajiya, Mikihito; Takeda, Katsuhiro; Shiba, Hideki; Kawaguchi, Hiroyuki; Kurihara, Hidemi

    2012-05-01

    Brain-derived neurotrophic factor (BDNF) promotes the regeneration of periodontal tissue. Since angiogenesis is important for tissue regeneration, investigating effect of BDNF on endothelial cell function may help to reveal its mechanism, whereby, BDNF promotes periodontal tissue regeneration. In this study, we examined the influence of BDNF on migration in human microvascular endothelial cells (HMVECs), focusing on the effects on extracellular signal-regulated kinase (ERK), integrin α(V)β(3), and focal adhesion kinase (FAK). The migration of endothelial cells was assessed with a modified Boyden chamber and a wound healing assay. The expression of integrin α(V)β(3) and the phosphorylation of ERK and FAK were analyzed by immunoblotting and immunofluorescence microscopy. BDNF (25 ng/ml) induced cell migration. PD98059, an ERK inhibitor, K252a, a specific inhibitor for TrkB, a high affinity receptor of BDNF, and an anti-integrin α(V)β(3) antibody suppressed the BDNF-induced migration. BDNF increased the levels of integrin α(V)β(3) and phosphorylated ERK1/2 and FAK. The ERK inhibitor and TrkB inhibitor also reduced levels of integrin α(V)β(3) and phosphorylated FAK. We propose that BDNF stimulates endothelial cell migration by a process involving TrkB/ERK/integrin α(V)β(3)/FAK, and this may help to enhance the regeneration of periodontal tissue.

  1. Myocardin-related transcription factor A (MRTF-A) activity-dependent cell adhesion is correlated to focal adhesion kinase (FAK) activity.

    PubMed

    Kishi, Takayuki; Mayanagi, Taira; Iwabuchi, Sadahiro; Akasaka, Toshihide; Sobue, Kenji

    2016-11-01

    The regulation of cell-substrate adhesion is tightly linked to the malignant phenotype of tumor cells and plays a role in their migration, invasion, and metastasis. Focal adhesions (FAs) are dynamic adhesion structures that anchor the cell to the extracellular matrix. Myocardin-related transcription factors (MRTFs), co-regulators of the serum response factor (SRF), regulate expression of a set of genes encoding actin cytoskeletal/FA-related proteins. Here we demonstrated that the forced expression of a constitutively active MRTF-A (CA-MRTF-A) in B16F10 melanoma cells induced the up-regulation of actin cytoskeletal and FA proteins, resulting in FA reorganization and the suppression of cell migration. Expression of CA-MRTF-A markedly increased phosphorylation of focal adhesion kinase (FAK) and paxillin, which are important components for FA dynamics. Notably, FAK activation was triggered by the clustering of up-regulated integrins. Our results revealed that the MRTF-SRF-dependent regulation of cell migration requires both the up-regulation of actin cytoskeletal/FA proteins and the integrin-mediated regulation of FA components via the FAK/Src pathway. We also demonstrated that activation of the MRTF-dependent transcription correlates FAK activation in various tumor cells. The elucidation of the correlation between MRTF and FAK activities would be an effective therapeutic target in focus of tumor cell migration.

  2. SDF-1/CXCR4 axis induces human dental pulp stem cell migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways.

    PubMed

    Li, Mingwei; Sun, Xuefei; Ma, Liang; Jin, Lu; Zhang, Wenfei; Xiao, Min; Yu, Qing

    2017-01-09

    SDF-1 (stromal cell derived factor-1) has been found to be widely expressed during dental pulp inflammation, while hDPSCs (human dental pulp stem cells) contribute to the repair of dental pulp. We showed that the migration of hDPSCs was induced by SDF-1 in a concentration-dependent manner and could be inhibited with siCXCR4 (C-X-C chemokine receptor type 4) and siCDC42 (cell division control protein 42), as well as drug inhibitors such as AMD3100 (antagonist of CXCR4), LY294002 (inhibitor of PI3K) and PF573228 (inhibitor of FAK). It was also confirmed that SDF-1 regulated the phosphorylation of FAK (focal adhesion kinases) on cell membranes and the translocation of β-catenin into the cell nucleus. Subsequent experiments confirmed that the expression of CXCR4 and β-catenin and the phosphorylation of FAK, PI3K (phosphoinositide 3-kinase), Akt and GSK3β (glycogen synthase kinase-3β) were altered significantly with SDF-1 stimulation. FAK and PI3K worked in coordination during this process. Our findings provide direct evidence that SDF-1/CXCR4 axis induces hDPSCs migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways, implicating a novel mechanism of dental pulp repair and a possible application of SDF-1 for the treatment of pulpitis.

  3. SDF-1/CXCR4 axis induces human dental pulp stem cell migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways

    PubMed Central

    Li, Mingwei; Sun, Xuefei; Ma, Liang; Jin, Lu; Zhang, Wenfei; Xiao, Min; Yu, Qing

    2017-01-01

    SDF-1 (stromal cell derived factor-1) has been found to be widely expressed during dental pulp inflammation, while hDPSCs (human dental pulp stem cells) contribute to the repair of dental pulp. We showed that the migration of hDPSCs was induced by SDF-1 in a concentration-dependent manner and could be inhibited with siCXCR4 (C-X-C chemokine receptor type 4) and siCDC42 (cell division control protein 42), as well as drug inhibitors such as AMD3100 (antagonist of CXCR4), LY294002 (inhibitor of PI3K) and PF573228 (inhibitor of FAK). It was also confirmed that SDF-1 regulated the phosphorylation of FAK (focal adhesion kinases) on cell membranes and the translocation of β-catenin into the cell nucleus. Subsequent experiments confirmed that the expression of CXCR4 and β-catenin and the phosphorylation of FAK, PI3K (phosphoinositide 3-kinase), Akt and GSK3β (glycogen synthase kinase-3β) were altered significantly with SDF-1 stimulation. FAK and PI3K worked in coordination during this process. Our findings provide direct evidence that SDF-1/CXCR4 axis induces hDPSCs migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways, implicating a novel mechanism of dental pulp repair and a possible application of SDF-1 for the treatment of pulpitis. PMID:28067275

  4. Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells' migration and the associated FAK-Rho GTPases signalling pathways

    PubMed Central

    Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng

    2012-01-01

    Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiOx:H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiOx:H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events. PMID:21715399

  5. Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells' migration and the associated FAK-Rho GTPases signalling pathways.

    PubMed

    Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng

    2012-02-07

    Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiO(x):H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiO(x):H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events.

  6. FAK tyrosine 407 organized with integrin αVβ5 in Hs578Ts(i)8 advanced triple-negative breast cancer cells.

    PubMed

    Payan, Iliet; McDonnell, Susan; Torres, Haydee M; Steelant, Wim F A; Van Slambrouck, Séverine

    2016-05-01

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase known to promote cell migration and invasiveness. Overexpression and increased activity of FAK are closely associated with metastatic breast tumors and are linked to poor prognosis. This study discovered an inverse correlation between FAK activity and migratory and invasive behavior. We show decreased phosphorylation levels of FAK at tyrosine residues 397 and 861, and most prominently at Y407, in the more invasive Hs578Ts(i)8 subclone of the Hs578T breast cancer progression model. There is limited information available on FAK Y407, and here we demonstrate its presence in triple-negative breast cancer (TNBC) cell lines. Furthermore, our studies propose that localization of FAK Y407, rather than FAK expression and overall FAK Y407 phosphorylation levels, is crucial for the control of cell motility. FAK Y407 is found extensively at the cell periphery in focal adhesion-like structures at each end of actin stress fibers and organized with integrin αVβ5 receptors, linking the αVβ5 integrin-mediated migratory behavior of Hs578Ts(i)8 cells to FAK Y407. These data suggest that subcellular localization, next to expression and activity levels, are important for understanding TNBC progression. Such an approach opens new avenues for further studies and may provide novel insight for the classification of TNBC and facilitate the discovery of effective biomarkers for diagnosis and therapy of TNBC.

  7. Shockwaves increase T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation.

    PubMed

    Yu, Tiecheng; Junger, Wolfgang G; Yuan, Changji; Jin, An; Zhao, Yi; Zheng, Xueqing; Zeng, Yanjun; Liu, Jianguo

    2010-03-01

    Shockwaves elicited by transient pressure disturbances are used to treat musculoskeletal disorders. Previous research has shown that shockwave treatment affects T-cell function, enhancing T-cell proliferation and IL-2 expression by activating p38 mitogen-activated protein kinase (MAPK) signaling. Here we investigated the signaling pathway by which shockwaves mediate p38 MAPK phosphorylation. We found that shockwaves at an intensity of 0.18 mJ/mm(2) induce the release of extracellular ATP from human Jurkat T-cells at least in part by affecting cell viability. ATP released into the extracellular space stimulates P2X7-type purinergic receptors that induce the activation of p38 MAPK and of focal adhesion kinase (FAK) by phosphorylation on residues Tyr397 and Tyr576/577. Elimination of released ATP with apyrase or inhibition of P2X7 receptors with the antagonists KN-62 or suramin significantly weakens FAK phosphorylation, p38 MAPK activation, IL-2 expression, and T-cell proliferation. Conversely, addition of exogenous ATP causes phosphorylation of FAK and p38 MAPK. Silencing of FAK expression also reduces these cell responses to shockwave treatment. We conclude that shockwaves enhance p38 MAPK activation, IL-2 expression, and T-cell proliferation via the release of cellular ATP and feedback mechanisms that involve P2X7 receptor activation and FAK phosphorylation.

  8. The CXCL10/CXCR3 axis promotes cardiac microvascular endothelial cell migration via the p38/FAK pathway in a proliferation-independent manner.

    PubMed

    Xia, Jing-Bo; Mao, Cheng-Zhou; Chen, Zhuo-Ying; Liu, Guang-Hui; Wu, Hai-Yan; Zhou, Deng-Cheng; Park, Kyu-Sang; Zhao, Hui; Kim, Soo-Ki; Cai, Dong-Qing; Qi, Xu-Feng

    2016-04-01

    CXCL10 is a chemokine with potent chemotactic activity for immune and non-immune cells expressing its receptor CXCR3. Previous studies have demonstrated that CXCL10 is involved in myocardial infarction. However, the role of CXCL10 in cardiac microvascular endothelial cell (CMEC) regulation and related mechanisms remains unclear. In this study, we investigated the effects of CXCL10 on the CMEC migration and explored its potential molecular mechanism by wound healing, cell proliferation and viability analysis. Furthermore, migration-related signaling pathways, including FAK, Erk, p38 and Smad, were examined by Western blotting. We found that CXCL10 significantly promotes CMEC migration under normal conditions and during hypoxia/ischemia. However, no significant differences in CMEC proliferation and viability were observed with or without CXCL10 treatment. CXCL10-mediated CMEC migration was greatly blocked by treatment with an anti-CXCR3 antibody. Although CXCL10 treatment promoted phosphorylation and activation of the FAK, Erk, and p38 pathways during hypoxia/ischemia, CXCL10-mediated CMEC migration was significantly blocked by p38 and FAK inhibitors, but not by an Erk inhibitor. Furthermore, CXCL10-mediated FAK activation was suppressed by the p38 inhibitor. These findings indicated that the CXCL10/CXCR3 pathway promotes the migration of CMECs under normal conditions and during hypoxia/ischemia in a proliferation-independent manner, at least in part, through regulation of the p38/FAK pathways.

  9. The Polycomb group protein RING1B is overexpressed in ductal breast carcinoma and is required to sustain FAK steady state levels in breast cancer epithelial cells

    PubMed Central

    Bosch, Almudena; Panoutsopoulou, Konstantina; Corominas, Josep Maria; Gimeno, Ramón; Moreno-Bueno, Gema; Martín-Caballero, Juan; Morales, Saleta; Lobato, Tania; Martínez-Romero, Carles; Farias, Eduardo F.; Mayol, Xavier; Cano, Amparo; Hernández-Muáoz, Inmaculada

    2014-01-01

    In early stages of metastasis malignant cells must acquire phenotypic changes to enhance their migratory behavior and their ability to breach the matrix surrounding tumors and blood vessel walls. Epigenetic regulation of gene expression allows the acquisition of these features that, once tumoral cells have escape from the primary tumor, can be reverted. Here we report that the expression of the Polycomb epigenetic repressor Ring1B is enhanced in tumoral cells that invade the stroma in human ductal breast carcinoma and its expression is coincident with that of Fak in these tumors. Ring1B knockdown in breast cancer cell lines revealed that Ring1B is required to sustain Fak expression in basal conditions as well as in Tgfβ-treated cells. Functionally, endogenous Ring1B is required for cell migration and invasion in vitro and for in vivo invasion of the mammary fat pad by tumoral cells. Finally we identify p63 as a target of Ring1B to regulate Fak expression: Ring1B depletion results in enhanced p63 expression, which in turns represses Fak expression. Importantly, Fak downregulation upon Ring1B depletion is dependent on p63 expression. Our findings provide new insights in the biology of the breast carcinoma and open new avenues for breast cancer prognosis and therapy. PMID:24742605

  10. A conserved motif in JNK/p38-specific MAPK phosphatases as a determinant for JNK1 recognition and inactivation

    PubMed Central

    Liu, Xin; Zhang, Chen-Song; Lu, Chang; Lin, Sheng-Cai; Wu, Jia-Wei; Wang, Zhi-Xin

    2016-01-01

    Mitogen-activated protein kinases (MAPKs), important in a large array of signalling pathways, are tightly controlled by a cascade of protein kinases and by MAPK phosphatases (MKPs). MAPK signalling efficiency and specificity is modulated by protein–protein interactions between individual MAPKs and the docking motifs in cognate binding partners. Two types of docking interactions have been identified: D-motif-mediated interaction and FXF-docking interaction. Here we report the crystal structure of JNK1 bound to the catalytic domain of MKP7 at 2.4-Å resolution, providing high-resolution structural insight into the FXF-docking interaction. The 285FNFL288 segment in MKP7 directly binds to a hydrophobic site on JNK1 that is near the MAPK insertion and helix αG. Biochemical studies further reveal that this highly conserved structural motif is present in all members of the MKP family, and the interaction mode is universal and critical for the MKP-MAPK recognition and biological function. PMID:26988444

  11. JNK inhibition of VMAT2 contributes to rotenone-induced oxidative stress and dopamine neuron death.

    PubMed

    Choi, Won-Seok; Kim, Hyung-Wook; Xia, Zhengui

    2015-02-03

    Treatment with rotenone, both in vitro and in vivo, is widely used to model dopamine neuron death in Parkinson's disease upon exposure to environmental neurotoxicants and pesticides. Mechanisms underlying rotenone neurotoxicity are still being defined. Our recent studies suggest that rotenone-induced dopamine neuron death involves microtubule destabilization, which leads to accumulation of cytosolic dopamine and consequently reactive oxygen species (ROS). Furthermore, the c-Jun N-terminal protein kinase (JNK) is required for rotenone-induced dopamine neuron death. Here we report that the neural specific JNK3 isoform of the JNKs, but not JNK1 or JNK2, is responsible for this neuron death in primary cultured dopamine neurons. Treatment with taxol, a microtubule stabilizing agent, attenuates rotenone-induced phosphorylation and presumably activation of JNK. This suggests that JNK is activated by microtubule destabilization upon rotenone exposure. Moreover, rotenone inhibits VMAT2 activity but not VMAT2 protein levels. Significantly, treatment with SP600125, a pharmacological inhibitor of JNKs, attenuates rotenone inhibition of VMAT2. Furthermore, decreased VMAT2 activity following in vitro incubation of recombinant JNK3 protein with purified mesencephalic synaptic vesicles suggests that JNK3 can inhibit VMAT2 activity. Together with our previous findings, these results suggest that rotenone induces dopamine neuron death through a series of sequential events including microtubule destabilization, JNK3 activation, VMAT2 inhibition, accumulation of cytosolic dopamine, and generation of ROS. Our data identify JNK3 as a novel regulator of VMAT2 activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Inhibition of JNK Sensitizes Hypoxic Colon Cancer Cells to DNA-Damaging Agents.

    PubMed

    Vasilevskaya, Irina A; Selvakumaran, Muthu; Hierro, Lucia Cabal; Goldstein, Sara R; Winkler, Jeffrey D; O'Dwyer, Peter J

    2015-09-15

    We showed previously that in HT29 colon cancer cells, modulation of hypoxia-induced stress signaling affects oxaliplatin cytotoxicity. To further study the significance of hypoxia-induced signaling through JNK, we set out to investigate how modulation of kinase activities influences cellular responses of hypoxic colon cancer cells to cytotoxic drugs. In a panel of cell lines, we investigated effects of pharmacologic and molecular inhibition of JNK on sensitivity to oxaliplatin, SN-38, and 5-FU. Combination studies for the drugs and JNK inhibitor CC-401 were carried out in vitro and in vivo. Hypoxia-induced JNK activation was associated with resistance to oxaliplatin. CC-401 in combination with chemotherapy demonstrates synergism in colon cancer cell lines, although synergy is not always hypoxia specific. A more detailed analysis focused on HT29 and SW620 (responsive), and HCT116 (nonresponsive) lines. In HT29 and SW620 cells, CC-401 treatment results in greater DNA damage in the sensitive cells. In vivo, potentiation of bevacizumab, oxaliplatin, and the combination by JNK inhibition was confirmed in HT29-derived mouse xenografts, in which tumor growth delay was greater in the presence of CC-401. Finally, stable introduction of a dominant negative JNK1, but not JNK2, construct into HT29 cells rendered them more sensitive to oxaliplatin under hypoxia, suggesting differing input of JNK isoforms in cellular responses to chemotherapy. These findings demonstrate that signaling through JNK is a determinant of response to therapy in colon cancer models, and support the testing of JNK inhibition to sensitize colon tumors in the clinic. ©2015 American Association for Cancer Research.

  13. Asthmatic airway smooth muscle CXCL10 production: mitogen-activated protein kinase JNK involvement

    PubMed Central

    Alrashdan, Yazan A.; Alkhouri, Hatem; Chen, Emily; Lalor, Daniel J.; Poniris, Maree; Henness, Sheridan; Brightling, Christopher E.; Burgess, Janette K.; Armour, Carol L.; Ammit, Alaina J.

    2012-01-01

    CXCL10 (IP10) is involved in mast cell migration to airway smooth muscle (ASM) bundles in asthma. We aimed to investigate the role of cytokine-induced MAPK activation in CXCL10 production by ASM cells from people with and without asthma. Confluent growth-arrested ASM cells were treated with inhibitors of the MAPKs ERK, p38, and JNK and transcription factor NF-κB, or vehicle, and stimulated with IL-1β, TNF-α, or IFN-γ, alone or combined (cytomix). CXCL10 mRNA and protein, JNK, NF-κB p65 phosphorylation, and Iκ-Bα protein degradation were assessed using real-time PCR, ELISA, and immunoblotting, respectively. Cytomix, IL-1β, and TNF-α induced CXCL10 mRNA expression more rapidly in asthmatic than nonasthmatic ASM cells. IL-1β and/or TNF-α combined with IFN-γ synergistically increased asthmatic ASM cell CXCL10 release. Inhibitor effects were similar in asthmatic and nonasthmatic cells, but cytomix-induced release was least affected, with only JNK and NF-κB inhibitors halving it. Notably, JNK phosphorylation was markedly less in asthmatic compared with nonasthmatic cells. However, in both, the JNK inhibitor SP600125 reduced JNK phosphorylation and CXCL10 mRNA levels but did not affect CXCL10 mRNA stability or Iκ-Bα degradation. Together, the JNK and NF-κB inhibitors completely inhibited their CXCL10 release. We concluded that, in asthmatic compared with nonasthmatic ASM cells, JNK activation was reduced and CXCL10 gene expression was more rapid following cytomix stimulation. However, in both, JNK activation did not regulate early events leading to NF-κB activation. Thus JNK and NF-κB provide independent therapeutic targets for limiting CXCL10 production and mast cell migration to the ASM in asthma. PMID:22387292

  14. JNK in spinal cord facilitates bone cancer pain in rats through modulation of CXCL1.

    PubMed

    Wang, Zhong-liang; Du, Ting-ting; Zhang, Rui-guang

    2016-02-01

    In patients with advanced cancer, cancer-induced bone pain (CIBP) is a severe and common problem that is difficult to manage and explain. As c-Jun N-terminal kinase (JNK) and chemokine (C-X-C motif) ligand 1 (CXCL1) have been shown to participate in several chronic pain processes, we investigated the role of JNK and CXCL1 in CIBP and the relationship between them. A rat bone cancer pain model was established by intramedullary injection of Walker 256 rat gland mammary carcinoma cells into the left tibia of Sprague-Dawley rats. As a result, intramedullary injection of Walker 256 carcinoma cells induced significant bone destruction and persistent pain. Both phosphorylated JNK1 (pJNK1) and pJNK2 showed time-dependent increases in the ipsilateral spinal cord from day 7 to day 18 after tumor injection. Inhibition of JNK activation by intrathecal administration of SP600125, a selective pJNK inhibitor, attenuated mechanical allodynia and heat hyperalgesia caused by tumor inoculation. Tumor cell inoculation also induced robust CXCL1 upregulation in the ipsilateral spinal cord on day 18 after tumor injection. Inhibition of CXCL1 by intrathecal administration of CXCL1 neutralizing antibody showed a stable analgesic effect. Intrathecal administration of SP600125 reduced CXCL1 increase in the spinal cord, whereas inhibition of CXCL1 in the spinal cord showed no influence on JNK activation. Taken together, these results suggested that JNK activation in spinal cord contributed to the maintenance of CIBP, which may act through modulation of CXCL1. Inhibition of the pJNK/CXCL1 pathway may provide a new choice for treatment of CIBP.

  15. Expression and regulation of c-Jun N-terminal kinase (JNK) in endometrial cells in vivo and in vitro.

    PubMed

    Kizilay, Gulnur; Cakmak, Hakan; Yen, Chih-Feng; Atabekoglu, Cem; Arici, Aydin; Kayisli, Umit Ali

    2008-10-01

    JNK(c-Jun N-terminal kinase) is one of the main types of mitogen-activated protein kinases. JNK modulates inflammation and apoptosis in response to stress. Our hypothesis is that temporal and spatial changes in JNK activity regulate inflammation in human endometrium and that fluctuation in estrogen and progesterone levels may play a role in JNK activation. Therefore, we aimed to determine total-(t-) and active-(phosphorylated, p-) JNK expression in endometrial tissues in vivo by immunohistochemistry, and in vitro by immunocytochemistry and Western blot analysis. Immunohistochemistry revealed moderate cytoplasmic and nuclear t-JNK immunoreactivity, and mostly nuclear p-JNK immunoreactivity throughout the menstrual cycle and early pregnancy. The highest p- and t-JNK immunoreactivity was detected in late secretory phase (P < 0.05). We observed that endometrial stromal cell (ESC)s showed a significant increase in p-JNK expression following 48 h of estrogen combined with progesterone (E(2) + P(4)) withdrawal from the culture conditions, compared to control and non-withdrawal groups (P < 0.05). Upon treatment with JNK inhibitor SP600125, we observed a significantly decreased interleukin (IL)-8 level (P < 0.05) in the presence and absence of E(2). These results demonstrate that JNK expression increases during the late secretory phase when the inflammatory response is highest. Inhibition of IL-8 expression by SP600125 suggests that JNK is involved in regulation of proinflammatory mediators of endometrium.

  16. A cell-death-defying factor, anamorsin mediates cell growth through inactivation of PKC and p38MAPK

    SciTech Connect

    Saito, Yuri; Shibayama, Hirohiko; Tanaka, Hirokazu; Tanimura, Akira; Kanakura, Yuzuru

    2011-02-11

    Research highlights: {yields} Anamorsin (AM) (also called CIAPIN-1) is a cell-death-defying factor. {yields} Biological mechanisms of AM functions have not been elucidated yet. {yields} PKC{theta} , PKC{delta} and p38MAPK were more phosphorylated in AM deficient MEF cells. {yields} AM may negatively regulates PKCs and p38MAPK in MEF cells. -- Abstract: Anamorsin (AM) plays crucial roles in hematopoiesis and embryogenesis. AM deficient (AM KO) mice die during late gestation; AM KO embryos are anemic and very small compared to wild type (WT) embryos. To determine which signaling pathways AM utilizes for these functions, we used murine embryonic fibroblast (MEF) cells generated from E-14.5 AM KO or WT embryos. Proliferation of AM KO MEF cells was markedly retarded, and PKC{theta}, PKC{delta}, and p38MAPK were more highly phosphorylated in AM KO MEF cells. Expression of cyclinD1, the target molecule of p38MAPK, was down-regulated in AM KO MEF cells. p38MAPK inhibitor as well as PKC inhibitor restored expression of cyclinD1 and cell growth in AM KO MEF cells. These data suggest that PKC{theta}, PKC{delta}, and p38MAPK activation lead to cell cycle retardation in AM KO MEF cells, and that AM may negatively regulate novel PKCs and p38MAPK in MEF cells.

  17. PKC δ mediates pro-inflammatory responses in a mouse model of caerulein-induced acute pancreatitis.

    PubMed

    Ramnath, Raina Devi; Sun, Jia; Bhatia, Madhav

    2010-10-01

    Acute pancreatitis is an inflammatory disorder of the pancreas. Protein kinase C (PKC) δ plays an important role in mediating chemokine production in mouse pancreatic acinar cells. This study aims to investigate the role of PKC δ in the pathogenesis of acute pancreatitis and to explore the mechanisms through which PKC δ mediates pro-inflammatory signaling. Acute pancreatitis was induced in mice by ten hourly intraperitoneal injections of caerulein. PKC δ translocation inhibitor peptide (δV1-1) at a dose of 1.0 mg/kg or Tat (carrier peptide) at a dose of 1.0 mg/kg was administered to mice either 1 h before or 1 h after the first caerulein injection. One hour after the last caerulein injection, the mice were killed and pancreas, lungs, and blood were collected. Prophylactic and therapeutic treatment with δV1-1 attenuated caerulein-induced plasma amylase levels and pancreatic edema. Treatment with δV1-1 decreased myeloperoxidase activity and monocyte chemotactic protein-1 levels in both pancreas and plasma. PKC δ mediated acute pancreatitis by activating pancreatic nuclear factor κB, activator protein-1, and mitogen-activated protein kinases. Moreover, blockade of PKC δ attenuated lung myeloperoxidase activity and edema. Histological examination of pancreatic and lung sections confirmed protection against acute pancreatitis. Treatment with Tat had no protective effect on acute pancreatitis. Blockade of PKC δ represents a promising prophylactic and/or therapeutic tool for the treatment of acute pancreatitis.

  18. Contribution of PKC to the maintenance of 5-HT-induced short-term facilitation at sensorimotor synapses of Aplysia.

    PubMed

    Zhou, Lian; Baxter, Douglas A; Byrne, John H

    2014-10-15

    Aplysia sensorimotor synapses provide a useful model system for analyzing molecular processes that contribute to heterosynaptic plasticity. For example, previous studies demonstrated that multiple kinase cascades contribute to serotonin (5-HT)-induced short-term synaptic facilitation (STF), including protein kinase A (PKA) and protein kinase C (PKC). Moreover, the contribution of each kinase is believed to depend on the state of the synapse (e.g., depressed or nondepressed) and the time after application of 5-HT. Here, a previously unappreciated role for PKC-dependent processes was revealed to underlie the maintenance of STF at relatively nondepressed synapses. This PKC dependence was revealed when the synapse was stimulated repeatedly after application of 5-HT. The contributions of the PKA and PKC pathways were examined by blocking adenylyl cyclase-coupled 5-HT receptors with methiothepin and by blocking PKC with chelerythrine. STF was assessed 20 s after 5-HT application. The effects of PKC were consistent with enhanced mobilization of transmitter, as assessed by application of hypertonic sucrose solutions to measure the readily releasable pool of vesicles and recovery of the readily releasable pool after depletion. A computational model of transmitter release demonstrated that a PKC-dependent mobilization process was sufficient to explain the maintenance of STF at nondepressed synapses and the facilitation of depressed synapses.

  19. Activated niacin receptor HCA2 inhibits chemoattractant-mediated macrophage migration via Gβγ/PKC/ERK1/2 pathway and heterologous receptor desensitization

    PubMed Central

    Shi, Ying; Lai, Xiangru; Ye, Lingyan; Chen, Keqiang; Cao, Zheng; Gong, Wanghua; Jin, Lili; Wang, Chunyan; Liu, Mingyong; Liao, Yuan; Wang, Ji Ming; Zhou, Naiming

    2017-01-01

    The niacin receptor HCA2 is implicated in controlling inflammatory host responses with yet poorly understood mechanistic basis. We previously reported that HCA2 in A431 epithelial cells transduced Gβγ-protein kinase C- and Gβγ-metalloproteinase/EGFR-dependent MAPK/ERK signaling cascades. Here, we investigated the role of HCA2 in macrophage-mediated inflammation and the underlying mechanisms. We found that proinflammatory stimulants LPS, IL-6 and IL-1β up-regulated the expression of HCA2 on macrophages. Niacin significantly inhibited macrophage chemotaxis in response to chemoattractants fMLF and CCL2 by disrupting polarized distribution of F-actin and Gβ protein. Niacin showed a selected additive effect on chemoattractant-induced activation of ERK1/2, JNK and PI3K pathways, but only the MEK inhibitor UO126 reduced niacin-mediated inhibition of macrophage chemotaxis, while activation of ERK1/2 by EGF alone did not inhibit fMLF-mediated migration of HEK293T cells co-expressing HCA2 and fMLF receptor FPR1. In addition, niacin induced heterologous desensitization and internalization of FPR1. Furthermore, niacin rescued mice from septic shock by diminishing inflammatory symptoms and the effect was abrogated in HCA2−/− mice. These results suggest that Gβγ/PKC-dependent ERK1/2 activation and heterologous desensitization of chemoattractant receptors are involved in the inhibition of chemoattractant-induced migration of macrophages by niacin. Thus, HCA2 plays a critical role in host protection against pro-inflammatory insults. PMID:28186140

  20. The synthetic genetic network around PKC1 identifies novel modulators and components of protein kinase C signaling in Saccharomyces cerevisiae.

    PubMed

    Krause, Sue A; Xu, Hong; Gray, Joseph V

    2008-11-01

    Budding yeast Saccharomyces cerevisiae contains one protein kinase C (PKC) isozyme encoded by the essential gene PKC1. Pkc1 is activated by the small GTPase Rho1 and plays a central role in the cell wall integrity (CWI) signaling pathway. This pathway acts primarily to remodel the cell surface throughout the normal life cycle and upon various environmental stresses. The pathway is heavily branched, with multiple nonessential branches feeding into and out of the central essential Rho1-Pkc1 module. In an attempt to identify novel components and modifiers of CWI signaling, we determined the synthetic lethal genetic network around PKC1 by using dominant-negative synthetic genetic array analysis. The resulting mutants are hypersensitive to lowered Pkc1 activity. The corresponding 21 nonessential genes are closely related to CWI function: 14 behave in a chemical-genetic epistasis test as acting in the pathway, and 6 of these genes encode known components. Twelve of the 21 null mutants display elevated CWI reporter activity, consistent with the idea that the pathway is activated by and compensates for loss of the gene products. Four of the 21 mutants display low CWI reporter activity, consistent with the idea that the pathway is compromised in these mutants. One of the latter group of mutants lacks Ack1(Ydl203c), an uncharacterized SEL-1 domain-containing protein that we find modulates pathway activity. Epistasis analysis places Ack1 upstream of Pkc1 in the CWI pathway and dependent on the upstream Rho1 GTP exchange factors Rom2 and Tus1. Overall, the synthetic genetic network around PKC1 directly and efficiently identifies known and novel components of PKC signaling in yeast.

  1. Altered expression of atypical PKC and Ryk in the spinal cord of a mouse model of amyotrophic lateral sclerosis

    PubMed Central

    Tury, Anna; Tolentino, Kristine; Zou, Yimin

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive paralysis due to the selective death of motor neurons of unknown causes. Increasing evidence indicates that Wnt signaling is altered in ALS. In this study, we focused on two non-canonical Wnt signaling components, atypical PKC (aPKC) and a Wnt receptor, Ryk, in a mouse model of ALS, SOD1 (G93A). aPKC mediates Wnt signaling to regulate growth cone guidance, axon differentiation and cell survival. Ryk is a Wnt repulsive receptor that regulates axon guidance and inhibits regeneration after spinal cord injury. aPKC expression was increased in motor neurons of the lumbar spinal cord in SOD1 (G93A) mice at different stages. Interestingly, aPKC was colocalized with SOD1 in motor neuron cell bodies and extracellular aggregates, and aPKC-containing extracellular aggregates increased with disease progression. Biochemical fractionation showed that aPKC protein level was increased in the detergent-insoluble protein fraction in SOD1 (G93A) mice at late stage but decreased in the detergent-soluble fraction at symptomatic stage. These results suggest that aPKC may be sequestered in SOD1 aggregates, impairing its ability to protect motor neurons from death. Ryk expression was also increased in the motor neurons and the white matter in the ventral lumbar spinal cord of mutant SOD1 mice with a peak at early stage. These observations indicate that Wnt/aPKC and Wnt/Ryk signaling are altered in SOD1 (G93A) mice, suggesting that changed Wnt signaling may contribute to neurodegeneration in ALS. PMID:24123880

  2. αvβ5 Integrin/FAK/PGC-1α Pathway Confers Protective Effects on Retinal Pigment Epithelium

    PubMed Central

    Roggia, Murilo F.; Ueta, Takashi

    2015-01-01

    Purpose To elucidate the mechanism of the induction of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) by photoreceptor outer segments (POS) and its effects on retinal pigment epithelium (RPE). Methods PGC-1α upregulation by POS was confirmed in ARPE-19 cells and in RPE ex vivo. To elucidate the mechanism, siRNAs against β5 integrin, CD36, Mer tyrosine kinase (MerTK), and Atg5, blocking antibodies against CD36 and MerTK, and a specific inhibitor for focal adhesion kinase (FAK) were used. We examined the effect of POS-induced PGC-1α upregulation on the levels of reactive oxygen species (ROS), mitochondrial biogenesis, senescence-associated β-galactosidase (SA-β-gal) after H2O2 treatment, and lysosomal activity. Lysosomal activity was evaluated through transcriptional factor EB and its target genes, and the activity of cathepsin D. Lipid metabolism after POS treatment was assessed using Oil Red O and BODIPY C11. RPE phenotypes of PGC-1α-deficient mice were examined. Results POS-induced PGC-1α upregulation was suppressed by siRNA against β5 integrin and a FAK inhibitor. siRNAs and blocking antibodies against CD36 and MerTK enhanced the effect of POS on PGC-1α. The upregulation of PGC-1α increased the levels of mRNA for antioxidant enzymes and stimulated mitochondrial biogenesis, decreased ROS levels, and reduced SA-β-gal staining in H2O2-treated ARPE-19 cells. PGC-1α was critical for lysosomal activity and lipid metabolism after POS treatment. PGC-1α-deficient mice demonstrated an accumulation of type 2 lysosomes in RPE, thickening of Bruch’s membrane, and poor choriocapillaris vasculature. Conclusions The binding, but not the internalization of POS confers protective effects on RPE cells through the αvβ5 integrin/FAK/PGC-1α pathway. PMID:26244551

  3. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera)

    PubMed Central

    Snell, Terry W.; Johnston, Rachel K.; Rabeneck, Brett; Zipperer, Cody; Teat, Stephanie

    2014-01-01

    The TOR kinase pathway is central in modulating aging in a variety of animal models. The target of rapamycin (TOR) integrates a complex network of signals from growth conditions, nutrient availability, energy status, and physiological stresses and matches an organism’s growth rate to the resource environment. Important problems remaining are to identify the pathways that interact with TOR and characterize them as additive or synergistic. One of the most versatile stress sensors in metazoans is the Jun-N-terminal Kinase (JNK) signalling pathway. JNK is an evolutionarily conserved stress-activated protein kinase that is induced by a range of stressors, including UV irradiation, reactive oxygen species, DNA damage, heat, and bacterial antigens. JNK is thought to interact with the TOR pathway, but its effects on TOR are poorly understood. We used the rotifer Brachionus manjavacas as a model animal to probe the regulation of TOR and JNK pathways and explore their interaction. The effect of various chemical inhibitors was examined in life table and stressor challenge experiments. A survey of 12 inhibitors revealed two, rapamycin and JNK inhibitor, that significantly extended lifespan of B. manjavacas. At 1 μM concentration, exposure to rapamycin or JNK inhibitor extended mean rotifer lifespan by 35% and maximum lifespan by 37%. Exposure to both rapamycin and JNK inhibitor simultaneously extended mean rotifer lifespan 65% more than either alone. Exposure to a combination of rapamycin and JNK inhibitors conveyed greater protection to starvation, UV and osmotic stress than either inhibitor alone. RNAi knockdown of TOR and JNK gene expression was investigated for its ability to extend rotifer lifespan. RNAi knockdown of the TOR gene resulted in 29% extension of mean lifespan compared to control and knockdown of the JNK gene resulted in 51% mean lifespan extension. In addition to lifespan, we quantified mitochondria activity using the fluorescent marker Mitotracker and

  4. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera).

    PubMed

    Snell, Terry W; Johnston, Rachel K; Rabeneck, Brett; Zipperer, Cody; Teat, Stephanie

    2014-04-01

    The TOR kinase pathway is central in modulating aging in a variety of animal models. The target of rapamycin (TOR) integrates a complex network of signals from growth conditions, nutrient availability, energy status, and physiological stresses and matches an organism's growth rate to the resource environment. Important remaining problems are the identification of the pathways that interact with TOR and their characterization as additive or synergistic. One of the most versatile stress sensors in metazoans is the Jun-N-terminal kinase (JNK) signaling pathway. JNK is an evolutionarily conserved stress-activated protein kinase that is induced by a range of stressors, including UV irradiation, reactive oxygen species, DNA damage, heat, and bacterial antigens. JNK is thought to interact with the TOR pathway, but its effects on TOR are poorly understood. We used the rotifer Brachionus manjavacas as a model animal to probe the regulation of TOR and JNK pathways and explore their interaction. The effect of various chemical inhibitors was examined in life table and stressor challenge experiments. A survey of 12 inhibitors revealed two, rapamycin and JNK inhibitor, that significantly extended lifespan of B. manjavacas. At 1 μM concentration, exposure to rapamycin or JNK inhibitor extended mean rotifer lifespan by 35% and maximum lifespan by 37%. Exposure to both rapamycin and JNK inhibitor simultaneously extended mean rotifer lifespan by 65% more than either alone. Exposure to a combination of rapamycin and JNK inhibitors conveyed greater protection to starvation, UV and osmotic stress than either inhibitor alone. RNAi knockdown of TOR and JNK gene expression was investigated for its ability to extend rotifer lifespan. RNAi knockdown of the TOR gene resulted in 29% extension of the mean lifespan compared to control and knockdown of the JNK gene resulted in 51% mean lifespan extension. In addition to the lifespan, we quantified mitochondria activity using the fluorescent

  5. Hypoxic preconditioning protects cardiomyocytes against hypoxia/reoxygenation-induced cell apoptosis via sphingosine kinase 2 and FAK/AKT pathway.

    PubMed

    Zhang, Ruxin; Li, Ling; Yuan, Li; Zhao, Min

    2016-02-01

    Previous studies have demonstrated that hypoxic preconditioning (HPC) alleviates hypoxia/reoxygenation (H/R) injury. However, the impact and mechanism involved were not fully understood. This study aimed to evaluate the effect of HPC on H/R injury in cardiomyocytes and investigate the molecular mechanisms involved. In our study, primary neonatal rat cardiomyocytes were isolated and characterized by immunofluorescence staining. We established H/R models in vitro to mimic ischemia/reperfusion (I/R) injury in vivo. Primary cardiomyocytes were exposed to HPC and then subjected to H/R. SphK2 expression was determined by quantitative real-time PCR and Western blotting. Cell apoptosis was measured by Hoechst staining. H9c2 cells were transfected with SphK2 siRNA or pcDNA3.1-SphK2 plasmid. The transfection efficiency was evaluated 48h post-transfection. After H/R, cell apoptosis rate was determined by Annexin V-FITC/PI and caspase-3/-9 activity was measured. The activation of FAK/AKT pathway was evaluated by Western blotting. Our results showed that HPC significantly increased SphK2 expression in primary cardiomyocytes under normal or H/R condition and protected against H/R-induced cell apoptosis, whereas SphK2 inhibitor K145 abolished the cardioprotective effect of HPC. HPC markedly reduced the cell apoptosis rate of H9c2, decreased the activities of caspase-3 and -9 and increased p-FAK and p-AKT levels, which were reversed by SphK2 knockdown. Additionally, SphK2 overexpression exerted a similar effect with HPC on cell apoptosis and FAK/AKT. Inhibition of H9c2 cell apoptosis induced by HPC and SphK2 overexpression was abolished by PI3K/AKT inhibitor LY294002. These results indicate that HPC may protect cardiomyocytes against H/R injury via SphK2 and the downstream FAK/AKT signaling pathway. Our findings provided important evidences for the protective role of HPC in ameliorating myocardial H/R injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. c-Jun N-terminal kinase (JNK)-mediated modulation of brain mitochondria function: new target proteins for JNK signalling in mitochondrion-dependent apoptosis.

    PubMed Central

    Schroeter, Hagen; Boyd, Clinton S; Ahmed, Ruhi; Spencer, Jeremy P E; Duncan, Roger F; Rice-Evans, Catherine; Cadenas, Enrique

    2003-01-01

    The molecular mechanisms underlying the initiation and control of the release of cytochrome c during mitochondrion-dependent apoptosis are thought to involve the phosphorylation of mitochondrial Bcl-2 and Bcl-x(L). Although the c-Jun N-terminal kinase (JNK) has been proposed to mediate the phosphorylation of Bcl-2/Bcl-x(L) the mechanisms linking the modification of these proteins and the release of cytochrome c remain to be elucidated. This study was aimed at establishing interdependency between JNK signalling and mitochondrial apoptosis. Using an experimental model consisting of isolated, bioenergetically competent rat brain mitochondria, these studies show that (i) JNK catalysed the phosphorylation of Bcl-2 and Bcl-x(L) as well as other mitochondrial proteins, as shown by two-dimensional isoelectric focusing/SDS/PAGE; (ii) JNK-induced cytochrome c release, in a process independent of the permeability transition of the inner mitochondrial membrane (imPT) and insensitive to cyclosporin A; (iii) JNK mediated a partial collapse of the mitochondrial inner-membrane potential (Deltapsim) in an imPT- and cyclosporin A-independent manner; and (iv) JNK was unable to induce imPT/swelling and did not act as a co-inducer, but as an inhibitor of Ca-induced imPT. The results are discussed with regard to the functional link between the Deltapsim and factors influencing the permeability transition of the inner and outer mitochondrial membranes. Taken together, JNK-dependent phosphorylation of mitochondrial proteins including, but not limited to, Bcl-2/Bcl-x(L) may represent a potential of the modulation of mitochondrial function during apoptosis. PMID:12614194

  7. Anti-invasive effects of CXCR4 and FAK inhibitors in non-small cell lung carcinomas with mutually inactivated p53 and PTEN tumor suppressors.

    PubMed

    Dragoj, Miodrag; Bankovic, Jasna; Sereti, Evangelia; Stojanov, Sofija Jovanovic; Dimas, Konstantinos; Pesic, Milica; Stankovic, Tijana

    2017-07-22

    Non-small cell lung carcinoma (NSCLC) is the most common type of lung cancer. At the time of diagnosis, a large percentage of NSCLC patients have already developed metastasis, responsible for extremely high mortality rates. CXCR4 receptor and focal adhesion kinase (FAK) are known to regulate such invasive cancer behavior. Their expression is downregulated by p53 and PTEN tumor suppressors which are commonly co-inactivated in NSCLC patients and contribute to metastasis. Therefore, targeting CXCR4 or FAK seems to be a promising strategy in suppressing metastatic spread of p53/PTEN deficient NSCLCs. In this study, we first examined the invasive characteristics of NSCLC cells with suppressed p53 and PTEN activity using wound healing, gelatin degradation and invasion assays. Further, changes in the expression of CXCR4 and FAK were evaluated by RT-qPCR and Western Blot analysis. Finally, we tested the ability of CXCR4 and FAK inhibitors (WZ811 and PF-573228, respectively) to suppress the migratory and invasive potential of p53/PTEN deficient NSCLC cells, in vitro and in vivo using metastatic models of human NSCLC. Our results showed that cells with mutually inactive p53 and PTEN have significantly increased invasive potential associated with hyperactivation of CXCR4 and FAK signaling pathways. Treatments with WZ811 and PF-573228 inhibitors significantly reduced migratory and invasive capacity in vitro and showed a trend of improved survival in vivo. Accordingly, we demonstrated that p53/PTEN deficient NSCLCs have extremely invasive phenotype and provided a rationale for the use of CXCR4 or FAK inhibitors for the suppression of NSCLC dissemination.

  8. Down-Regulation of Gli Transcription Factor Leads to the Inhibition of Migration and Invasion of Ovarian Cancer Cells via Integrin β4-Mediated FAK Signaling

    PubMed Central

    Chen, Qi; Xu, Rong; Zeng, Chunyan; Lu, Quqin; Huang, Dengliang; Shi, Chao; Zhang, Weilong; Deng, Libin; Yan, Runwei; Rao, Hai; Gao, Guolan; Luo, Shiwen

    2014-01-01

    Background Recent evidence suggests that aberrant activation of Hedgehog (Hh) signaling by Gli transcription factors is characteristic of a variety of aggressive human carcinomas including ovarian cancer. Therefore, chemotherapeutic agents that inhibit activation of Gli transcription factors have emerged as promising novel therapeutic drugs for ovarian cancer. Results In this study, we show that activation of Hh signaling promoted cellular migration and invasion, whereas blockade of Hh signaling with GANT61 suppressed cellular migration and invasion in ovarian cancer cells. After treatment with GANT61, cDNA microarray analyses revealed changes in many genes such as Integrin β4 subunit (ITGB4), focal adhesion kinase (FAK), etc. Furthermore, ITGB4 expression was up-regulated by Sonic Hedgehog (Shh) ligand and down-regulated by Hh signaling inhibitor. The Shh-mediated ovarian cell migration and invasion was blocked by neutralizing antibodies to ITGB4. In addition, phosphorylations of FAK were increased by Shh and decreased by Hh signaling inhibitor. Inhibition of Gli1 expression using siRNA mimicked the effects of GANT61 treatment, supporting the specificity of GANT61. Further investigations showed that activation of FAK was required for Shh-mediated cell migration and invasion. Finally, we found that down-regulation of Gli reduced the expression of ITGB4 and the phosphorylated FAK, resulting in the inhibition of tumor growth in vivo. Conclusions The Hh signaling pathway induces cell migration and invasion through ITGB4-mediated activation of FAK in ovarian cancer. Our findings suggest that the diminishment of crosstalk between phosphorylated FAK and ITGB4 due to the down-regulation of Gli family transcription factors might play a pivotal role for inhibiting ovarian cancer progression. PMID:24533083

  9. Interleukin-6 Induces Vascular Endothelial Growth Factor-C Expression via Src-FAK-STAT3 Signaling in Lymphatic Endothelial Cells

    PubMed Central

    Huang, Shiu-Wen; Ou, George; Hsu, Ya-Fen; Hsu, Ming-Jen

    2016-01-01

    Elevated serum interleukin-6 (IL-6) levels correlates with tumor grade and poor prognosis in cancer patients. IL-6 has been shown to promote tumor lymphangiogenesis through vascular endothelial growth factor-C (VEGF-C) induction in tumor cells. We recently showed that IL-6 also induced VEGF-C expression in lymphatic endothelial cells (LECs). However, the signaling mechanisms involved in IL-6-induces VEGF-C induction in LECs remain incompletely understood. In this study, we explored the causal role of focal adhesion kinase (FAK) in inducing VEGF-C expression in IL-6-stimulated murine LECs (SV-LECs). FAK signaling blockade by NSC 667249 (a FAK inhibitor) attenuated IL-6-induced VEGF-C expression and VEGF-C promoter-luciferase activities. IL-6’s enhancing effects of increasing FAK, ERK1/2, p38MAPK, C/EBPβ, p65 and STAT3 phosphorylation as well as C/EBPβ-, κB- and STAT3-luciferase activities were reduced in the presence of NSC 667249. STAT3 knockdown by STAT3 siRNA abrogated IL-6’s actions in elevating VEGF-C mRNA and protein levels. Moreover, Src-FAK signaling blockade reduced IL-6’s enhancing effects of increasing STAT3 binding to the VEGF-C promoter region, cell migration and endothelial tube formation of SV-LECs. Together these results suggest that IL-6 increases VEGF-C induction and lymphangiogenesis may involve, at least in part, Src-FAK-STAT3 cascade in LECs. PMID:27383632

  10. Small-molecule inhibitors of FGFR, integrins and FAK selectively decrease L1CAM-stimulated glioblastoma cell motility and proliferation.

    PubMed

    Anderson, Hannah J; Galileo, Deni S

    2016-06-01

    The cell adhesion/recognition protein L1CAM (L1; CD171) has previously been shown to act through integrin, focal adhesion kinase (FAK) and fibroblast growth factor receptor (FGFR) signaling pathways to increase the motility and proliferation of glioblastoma cells in an autocrine/paracrine manner. Here, we investigated the effects of clinically relevant small-molecule inhibitors of the integrin, FAK and FGFR signaling pathways on glioblastoma-derived cells to determine their effectiveness and selectivity for diminishing L1-mediated stimulation. The effects of the FGFR inhibitor PD173074, the FAK inhibitors PF431396 and Y15 and the αvβ3/αvβ5 integrin inhibitor cilengitide were assessed in L1-positive and L1-negative variants of the human glioblastoma-derived cell lines T98G and U-118 MG. Their motility and proliferation were quantified using time-lapse microscopy and DNA content/cell cycle analyses, respectively. The application of all four inhibitors resulted in reductions in L1-mediated motility and proliferation rates of L1-positive glioblastoma-derived cells, down to the level of L1-negative cells when used at nanomolar concentrations, whereas no or much smaller reductions in these rates were obtained in L1-negative cells. In addition, we found that single inhibitor treatment resulted in maximum effects (i.e., combinations of FAK or integrin inhibitors with the FGFR inhibitor were rarely more effective). These results suggest that FAK may act as a point of convergence between the integrin and FGFR signaling pathways stimulated by L1 in these cells. We here show for the first time that small-molecule inhibitors of FGFR, integrins and FAK effectively and selectively abolish L1-stimulated migration and proliferation of glioblastoma-derived cells. Our results suggest that these inhibitors have the potential to reduce the aggressiveness of high-grade gliomas expressing L1.

  11. Sab (SH3BP5), a novel mitochondria-localized JNK-interacting protein.

    PubMed

    Wiltshire, C; Gillespie, D A F; May, G H W

    2004-12-01

    The JNK (c-Jun N-terminal kinase) pathway is activated by diverse stresses and can have an effect on a number of different cellular processes. Protein-protein interactions are critical for efficient signalling from JNK to multiple targets; through a screen for interacting proteins, we identified a novel JNK-interacting protein, Sab (SH3BP5). Sab has previously been found to interact with the Src homology 3 domain of Bruton's tyrosine kinase; however, the interaction with JNK occurs through a mitogen-activated protein KIM (kinase interaction motif) in a region distinct from the Bruton's tyrosine kinase-binding domain. As with c-Jun, the presence of this KIM is essential for Sab to act as a JNK substrate. Interestingly, Sab is associated with the mitochondria and co-localizes with a portion of active JNK after stress treatment. The present study and previously reported work may suggest a possible role for Sab in targeting JNK to this subcellular compartment and/or mediating crosstalk between different signal-transduction pathways.

  12. JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death

    PubMed Central

    Win, S; Than, T A; Fernandez-Checa, J C; Kaplowitz, N

    2014-01-01

    Our aim was to better understand the mechanism and importance of sustained c-Jun N-terminal kinase (JNK) activation in endoplasmic reticulum (ER) stress and effects of ER stress on mitochondria by determining the role of mitochondrial JNK binding protein, Sab. Tunicamycin or brefeldin A induced a rapid and marked decline in basal mitochondrial respiration and reserve-capacity followed by delayed mitochondrial-mediated apoptosis. Knockdown of mitochondrial Sab prevented ER stress-induced sustained JNK activation, impaired respiration, and apoptosis, but did not alter the magnitude or time course of activation of ER stress pathways. P-JNK plus adenosine 5′-triphosphate (ATP) added to isolated liver mitochondria promoted superoxide production, which was amplified by addition of calcium and inhibited by a blocking peptide corresponding to the JNK binding site on Sab (KIM1). This peptide also blocked tunicamycin-induced inhibition of cellular respiration. In conclusion, ER stress triggers an interaction of JNK with mitochondrial Sab, which leads to impaired respiration and increased mitochondrial reactive oxygen species, sustaining JNK activation culminating in apoptosis. PMID:24407242

  13. JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death.

    PubMed

    Win, S; Than, T A; Fernandez-Checa, J C; Kaplowitz, N

    2014-01-09

    Our aim was to better understand the mechanism and importance of sustained c-Jun N-terminal kinase (JNK) activation in endoplasmic reticulum (ER) stress and effects of ER stress on mitochondria by determining the role of mitochondrial JNK binding protein, Sab. Tunicamycin or brefeldin A induced a rapid and marked decline in basal mitochondrial respiration and reserve-capacity followed by delayed mitochondrial-mediated apoptosis. Knockdown of mitochondrial Sab prevented ER stress-induced sustained JNK activation, impaired respiration, and apoptosis, but did not alter the magnitude or time course of activation of ER stress pathways. P-JNK plus adenosine 5'-triphosphate (ATP) added to isolated liver mitochondria promoted superoxide production, which was amplified by addition of calcium and inhibited by a blocking peptide corresponding to the JNK binding site on Sab (KIM1). This peptide also blocked tunicamycin-induced inhibition of cellular respiration. In conclusion, ER stress triggers an interaction of JNK with mitochondrial Sab, which leads to impaired respiration and increased mitochondrial reactive oxygen species, sustaining JNK activation culminating in apoptosis.

  14. ATF3 acts as a rheostat to control JNK signalling during intestinal regeneration

    PubMed Central

    Zhou, Jun; Edgar, Bruce A.; Boutros, Michael

    2017-01-01

    Epithelial barrier function is maintained by coordination of cell proliferation and cell loss, whereas barrier dysfunction can lead to disease and organismal death. JNK signalling is a conserved stress signalling pathway activated by bacterial infection and tissue damage, often leading to apoptotic cell death and compensatory cell proliferation. Here we show that the stress inducible transcription factor ATF3 restricts JNK activity in the Drosophila midgut. ATF3 regulates JNK-dependent apoptosis and regeneration through the transcriptional regulation of the JNK antagonist, Raw. Enterocyte-specific ATF3 inactivation increases JNK activity and sensitivity to infection, a phenotype that can be rescued by Raw overexpression or JNK suppression. ATF3 depletion enhances intestinal regeneration triggered by infection, but does not compensate for the loss of enterocytes and ATF3-depleted flies succumb to infection due to intestinal barrier dysfunction. In sum, we provide a mechanism to explain how an ATF3-Raw module controls JNK signalling to maintain normal intestinal barrier function during acute infection. PMID:28272390

  15. Drosophila DOCK family protein sponge regulates the JNK pathway during thorax development.

    PubMed

    Morishita, Kazushige; Ozasa, Fumito; Eguchi, Koichi; Yoshioka, Yasuhide; Yoshida, Hideki; Hiai, Hiroshi; Yamaguchi, Masamitsu

    2014-01-01

    The dedicator of cytokinesis (DOCK) family proteins that are conserved in a wide variety of species are known as DOCK1-DOCK11 in mammals. The Sponge (Spg) is a Drosophila counterpart to the mammalian DOCK3. Specific knockdown of spg by pannir-GAL4 or apterous-GAL4 driver in wing discs induced split thorax phenotype in adults. Reduction of the Drosophila c-Jun N-terminal kinase (JNK), basket (bsk) gene dose enhanced the spg knockdown-induced phenotype. Conversely, overexpression of bsk suppressed the split thorax phenotype. Monitoring JNK activity in the wing imaginal discs by immunostaining with anti-phosphorylated JNK (anti-pJNK) antibody together with examination of lacZ expression in a puckered-lacZ enhancer trap line revealed the strong reduction of the JNK activity in the spg knockdown clones. This was further confirmed by Western immunoblot analysis of extracts from wing discs of spg knockdown fly with anti-pJNK antibody. Furthermore, the Duolink in situ Proximity Ligation Assay method detected interaction signals between Spg and Rac1 in the wing discs. Taken together, these results indicate Spg positively regulates JNK pathway that is required for thorax development and the regulation is mediated by interaction with Rac1.

  16. JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression.

    PubMed

    Zhao, Xueqiang; Guo, Yahui; Jiang, Changying; Chang, Qing; Zhang, Shilei; Luo, Tianming; Zhang, Bin; Jia, Xinming; Hung, Mien-Chie; Dong, Chen; Lin, Xin

    2017-03-01

    Opportunistic fungal infections are a leading cause of death among immune-compromised patients, and there is a pressing need to develop new antifungal therapeutic agents because of toxicity and resistance to the antifungal drugs currently in use. Although C-type lectin receptor- and Toll-like receptor-induced signaling pathways are key activators of host antifungal immunity, little is known about the mechanisms that negatively regulate host immune responses to a fungal infection. Here we found that JNK1 activation suppresses antifungal immunity in mice. We showed that JNK1-deficient mice had a significantly higher survival rate than wild-type control mice in response to Candida albicans infection, and the expression of JNK1 in hematopoietic innate immune cells was critical for this effect. JNK1 deficiency leads to significantly higher induction of CD23, a novel C-type lectin receptor, through NFATc1-mediated regulation of the CD23 gene promoter. Blocking either CD23 upregulation or CD23-dependent nitric oxide production eliminated the enhanced antifungal response found in JNK1-deficient mice. Notably, JNK inhibitors exerted potent antifungal therapeutic effects in both mouse and human cells infected with C. albicans, indicating that JNK1 may be a therapeutic target for treating fungal infection.

  17. Excitotoxicity through Ca2+-permeable AMPA receptors requires Ca2+-dependent JNK activation

    PubMed Central

    Vieira, M.; Fernandes, J.; Burgeiro, A.; Thomas, G.M.; Huganir, R.L.; Duarte, C.B.; Carvalho, A.L.; Santos, A.E.

    2010-01-01

    The GluA4-containing Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (Ca-AMPARs) were previously shown to mediate excitotoxicity through mechanisms involving the activator protein-1 (AP-1), a c-Jun N-terminal kinase (JNK) substrate. To further investigate JNK involvement in excitotoxic pathways coupled to Ca-AMPARs we used HEK293 cells expressing GluA4-containing Ca-AMPARs (HEK-GluA4). Cell death induced by overstimulation of Ca-AMPARs was mediated, at least in part, by JNK. Importantly, JNK activation downstream of these receptors was dependent on the extracellular Ca2+ concentration. In our quest for a molecular link between Ca-AMPARs and the JNK pathway we found that the JNK interacting protein-1 (JIP-1) interacts with the GluA4 subunit of AMPARs through the N-terminal domain. In vivo, the excitotoxin kainate promoted the association between GluA4 and JIP-1 in the rat hippocampus. Taken together, our results show that the JNK pathway is activated by Ca-AMPARs upon excitotoxic stimulation and suggest that JIP-1 may contribute to the propagation of the excitotoxic signal. PMID:20708684

  18. Adipose-specific inactivation of JNK alleviates atherosclerosis in apoE-deficient mice.

    PubMed

    Kwok, Kelvin H M; Cheng, Kenneth K Y; Hoo, Ruby L C; Ye, Dewei; Xu, Aimin; Lam, Karen S L

    2016-11-01

    Both atherosclerosis and obesity, an independent atherosclerotic risk factor, are associated with enhanced systemic inflammation. Obesity is also characterized by increased adipose tissue inflammation. However, the molecular mechanism underlying the accelerated atherosclerosis in obesity remains unclear. In obesity, activation of c-Jun N-terminal kinase (JNK) contributes to adipose tissue inflammation. The present study investigated whether the suppression of fat inflammation through adipose-specific JNK inactivation could protect against atherosclerosis in mice. ApoE(-/-) mice were cross-bred with transgenic mice with adipose-specific expression of a dominant negative form of JNK (dnJNK) to generate apoE(-/-)/dnJNK (ADJ) mice. ADJ mice treated with a high-fat-high-cholesterol diet exhibited significant attenuations of visceral fat and systemic inflammation without changes in lipid or glucose metabolism, and were protected against atherosclerosis, when compared with apoE(-/-) mice. Lean apoE(-/-) mice that received transplantation of visceral fat from obese wild-type donor mice for 4 weeks showed exacerbated systemic inflammation and atherosclerotic plaque formation. Conversely, apoE(-/-) recipients carrying a visceral fat graft from obese dnJNK donors were protected against enhanced systemic inflammation and atherogenesis. The beneficial effects of adipose-specific JNK inactivation on atherogenesis in apoE(-/-) recipients were significantly compromised by continuous infusion of recombinant adipocyte-fatty acid-binding protein (A-FABP), previously shown to interact with JNK via a positive feedback loop to modulate inflammatory responses. Together these data suggested that enhanced atherosclerosis in obesity can be attributed, at least in part, to a distant cross-talk between visceral fat and the vasculature, mediated by the release of proinflammatory cytokines, such as A-FABP, from the inflamed visceral adipose tissue with JNK activation. © 2016 The Author

  19. cAMP-dependent proteolysis of GATA-6 is linked to JNK-signaling pathway

    SciTech Connect

    Ushijima, Hironori; Maeda, Masatomo

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A JNK inhibitor SP600125 inhibited cAMP-dependent proteolysis of GATA-6. Black-Right-Pointing-Pointer Effect of a JNK activator anisomycin on the proteolysis was examined. Black-Right-Pointing-Pointer Anisomycin stimulated the export of nuclear GATA-6 into the cytoplasm. Black-Right-Pointing-Pointer JNK activated the CRM1 mediated nuclear export of GATA-6. Black-Right-Pointing-Pointer JNK further stimulated slowly the degradation of GATA-6 by cytoplasmic proteasomes. -- Abstract: A JNK inhibitor SP600125 inhibited cAMP-dependent proteolysis of GATA-6 by proteasomes around its IC50. We further examined the effects of SP600125 on the degradation of GATA-6 in detail, since an activator of JNK (anisomycin) is available. Interestingly, anisomycin immediately stimulated the export of nuclear GATA-6 into the cytoplasm, and then the cytoplasmic content of GATA-6 decreased slowly through degradation by proteasomes. Such an effect of anisomycin was inhibited by SP600125, indicating that the observed phenomenon might be linked to the JNK signaling pathway. The inhibitory effect of SP600125 could not be ascribed to the inhibition of PKA, since phosphorylation of CREB occurred in the presence of dbcAMP and SP600125. The nuclear export of GATA-6 was inhibited by leptomycin B, suggesting that CRM1-mediated export could be activated by anisomycin. Furthermore, it seems likely that the JNK activated by anisomycin may stimulate not only the nuclear export of GATA-6 through CRM1 but also the degradation of GATA-6 by cytoplasmic proteasomes. In contrast, A-kinase might activate only the latter process through JNK.

  20. Increased levels of cerebrospinal fluid JNK3 associated with amyloid pathology: links to cognitive decline

    PubMed Central

    Gourmaud, Sarah; Paquet, Claire; Dumurgier, Julien; Pace, Clarisse; Bouras, Constantin; Gray, Françoise; Laplanche, Jean-Louis; Meurs, Eliane F.; Mouton-Liger, François; Hugon, Jacques

    2015-01-01

    Background Alzheimer disease is characterized by cognitive decline, senile plaques of β-amyloid (Aβ) peptides, neurofibrillary tangles composed of hyperphosphorylated τ proteins and neuronal loss. Aβ and τ are useful markers in the cerebrospinal fluid (CSF). C-Jun N-terminal kinases (JNKs) are serine-threonine protein kinases activated by phosphorylation and involved in neuronal death. Methods In this study, Western blots, enzyme-linked immunosorbent assay and histological approaches were used to assess the concentrations of Aβ, τ and JNK isoforms in postmortem brain tissue samples (10 Alzheimer disease and 10 control) and in CSF samples from 30 living patients with Alzheimer disease and 27 controls with neurologic disease excluding Alzheimer disease. Patients with Alzheimer disease were followed for 1–3 years and assessed using Mini–Mental State Examination scores. Results The biochemical and morphological results showed a significant increase of JNK3 and phosphorylated JNK levels in patients with Alzheimer disease, and JNK3 levels correlated with Aβ42 levels. Confocal microscopy revealed that JNK3 was associated with Aβ in senile plaques. The JNK3 levels in the CSF were significantly elevated in patients with Alzheimer disease and correlated statistically with the rate of cognitive decline in a mixed linear model. Limitations The study involved different samples grouped into 3 small cohorts. Evaluation of JNK3 in CSF was possible only with immunoblot analysis. Conclusion We found that JNK3 levels are increased in brain tissue and CSF from patients with Alzheimer disease. The finding that increased JNK3 levels in CSF could reflect the rate of cognitive decline is new and merits further investigation. PMID:25455349

  1. Integrin-Dependent Activation of the JNK Signaling Pathway by Mechanical Stress

    PubMed Central

    Kanger, Johannes S.; Subramaniam, Vinod; Martin-Blanco, Enrique

    2011-01-01

    Mechanical force is known to modulate the activity of the Jun N-terminal kinase (JNK) signaling cascade. However, the effect of mechanical stresses on JNK signaling activation has previously only been analyzed by in vitro detection methods. It still remains unknown how living cells activate the JNK signaling cascade in response to mechanical stress and what its functions are in stretched cells. We assessed in real-time the activity of the JNK pathway in Drosophila cells by Fluorescence Lifetime Imaging Microscopy (FLIM), using an intramolecular phosphorylation-dependent dJun-FRET (Fluorescence Resonance Energy Transfer) biosensor. We found that quantitative FRET-FLIM analysis and confocal microscopy revealed sustained dJun-FRET biosensor activation and stable morphology changes in response to mechanical stretch for Drosophila S2R+ cells. Further, these cells plated on different substrates showed distinct levels of JNK activity that associate with differences in cell morphology, integrin expression and focal adhesion organization. These data imply that alterations in the cytoskeleton and matrix attachments may act as regulators of JNK signaling, and that JNK activity might feed back to modulate the cytoskeleton and cell adhesion. We found that this dynamic system is highly plastic; at rest, integrins at focal adhesions and talin are key factors suppressing JNK activity, while multidirectional static stretch leads to integrin-dependent, and probably talin-independent, Jun sensor activation. Further, our data suggest that JNK activity has to coordinate with other signaling elements for the regulation of the cytoskeleton and cell shape remodeling associated with stretch. PMID:22180774

  2. Protective effect of resveratrol against nigrostriatal pathway injury in striatum via JNK pathway.

    PubMed

    Li, Dan; Liu, Nan; Zhao, Liang; Tong, Lei; Kawano, Hitoshi; Yan, Hong-Jing; Li, Hong-Peng

    2017-01-01

    Nigrostriatal pathway injury is one of the traumatic brain injury models that usually lead to neurological dysfunction or neuron necrosis. Resveratrol-induced benefits have recently been demonstrated in several models of neuronal degeneration diseases. However, the protective properties of resveratrol against neurodegeneration have not been explored definitely. Thus, we employ the nigrostriatal pathway injury model to mimic the insults on the brain. Resveratrol decreased the p-ERK expression and increased the p-JNK expression compared to the DMSO group, but not alter the p38 MAPK proteins around the lesion site by Western blot. Prior to the injury, mice were infused with resveratrol intracerebroventricularly with or without JNK-IN-8, a specific c-JNK pathway inhibitor for JNK1, JNK2 and JNK4. The study assessed modified improved neurological function score (mNSS) and beam/walking test, the level of inflammatory cytokines IL-1β, IL-6 and TNF-α, and striatal expression of Bax and Bcl-2 proteins associated with neuronal apoptosis. The results revealed that resveratrol exerted a neuroprotective effect as shown by the improved mNSS and beam latency, anti-inflammatory effects as indicated by the decreased level of IL-1β, TNF-α and IL-6. Furthermore, resveratrol up-regulated the protein expression of p-JNK and Bcl-2, down-regulated the expression of Bax and the number of Fluoro-Jade C (FJC) positive neurons. However, these advantages of resveratrol were abolished by JNK-IN-8 treatment. Overall, we demonstrated that resveratrol treatment attenuates the nigrostriatal pathway injury-induced neuronal apoptosis and inflammation via activation of c-JNK signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Activation of JNK by Epac is independent of its activity as a Rap guanine nucleotide exchanger.

    PubMed

    Hochbaum, Daniel; Tanos, Tamara; Ribeiro-Neto, Fernando; Altschuler, Daniel; Coso, Omar A

    2003-09-05

    Guanine nucleotide exchange factors (GEFs) and their associated GTP-binding proteins (G-proteins) are key regulatory elements in the signal transduction machinery that relays information from the extracellular environment into specific intracellular responses. Among them, the MAPK cascades represent ubiquitous downstream effector pathways. We have previously described that, analogous to the Ras-dependent activation of the Erk-1/2 pathway, members of the Rho family of small G-proteins activate the JNK cascade when GTP is loaded by their corresponding GEFs. Searching for novel regulators of JNK activity we have identified Epac (exchange protein activated by cAMP) as a strong activator of JNK-1. Epac is a member of a growing family of GEFs that specifically display exchange activity on the Rap subfamily of Ras small G-proteins. We report here that while Epac activates the JNK severalfold, a constitutively active (G12V) mutant of Rap1b does not, suggesting that Rap-GTP is not sufficient to transduce Epac-dependent JNK activation. Moreover, Epac signaling to the JNKs was not blocked by inactivation of endogenous Rap, suggesting that Rap activation is not necessary for this response. Consistent with these observations, domain deletion mutant analysis shows that the catalytic GEF domain is dispensable for Epac-mediated activation of JNK. These studies identified a region overlapping the Ras exchange motif domain as critical for JNK activation. Consistent with this, an isolated Ras exchange motif domain from Epac is sufficient to activate JNK. We conclude that Epac signals to the JNK cascade through a new mechanism that does not involve its canonical catalytic action, i.e. Rap-specific GDP/GTP exchange. This represents not only a novel way to activate the JNKs but also a yet undescribed mechanism of downstream signaling by Epac.

  4. SAPKgamma/JNK1 and SAPKalpha/JNK2 mRNA transcripts are expressed in early gestation human placenta and mouse eggs, preimplantation embryos, and trophoblast stem cells.

    PubMed

    Zhong, Wenjing; Sun, Tong; Wang, Q Tian; Wang, Yingchun; Xie, Yufen; Johnson, Anthony; Leach, Richard; Puscheck, Elizabeth E; Rappolee, Daniel A

    2004-10-01

    To test early-gestation human placenta, a human trophoblast cell line, mouse eggs, preimplantation embryos, and a mouse trophoblast cell line for the expression of mRNA transcripts for stress-activated protein kinase/c-Jun N-terminal kinase (SAPKgamma/JNK1, SAPKalpha/JNK2, and SAPKbeta/JNK3). Whole RNA was isolated from the tissue sources listed above and control tissues, and reverse transcription-polymerase chain reaction (RT-PCR) was performed to assay for the qualitative and semiquantitative presence of SAPKgamma/JNK1, SAPKalpha/JNK2, and SAPKbeta/JNK3. None. None. None. The presence and magnitude of amplimer amounts in gels or gene hybridization on Affymetrix cDNA arrays of RT-PCR products of reactions for SAPKgamma/JNK1, SAPKalpha/JNK2, and SAPKbeta/JNK3. SAPKgamma/JNK1 and SAPKalpha/JNK2 mRNA transcripts are present in early-gestation human placenta, a human trophoblast cell line, mouse eggs, preimplantation embryos, and a mouse trophoblast cell line at levels similar to positive control levels. SAPKalpha/JNK2 is expressed at the highest level of the three transcripts in the family. SAPKbeta/JNK3 is present at levels that are 1/100-1/1,000 those of the positive control and in some cases at the apparent level of the negative control (previously measured by the less-sensitive Northern blot analysis). Analysis with an Affymetrix cDNA array suggested that SAPKalpha/JNK2 and 38 kDa mitogen-activated protein kinase had the highest mRNA expression measured for each of three family members. Mitotic placental trophoblast cell lines and primary conceptus/embryo samples containing early placental trophoblasts express SAPKalpha/JNK2 at higher levels than SAPKgamma/JNK1, but not (only low background levels of) SAPKbeta/JNK3 mRNA transcripts. This suggests that SAPKgamma/JNK1 and SAPKalpha/JNK2 may be important mediators of stress-induced responses in early implanting conceptuses that could mediate embryo loss.

  5. Design and synthesis of disubstituted thiophene and thiazole based inhibitors of JNK

    SciTech Connect

    Hom, Roy K.; Bowers, Simeon; Sealy, Jennifer M.; Truong, Anh P.; Probst, Gary D.; Neitzel, Martin L.; Neitz, R. Jeffrey; Fang, Larry; Brogley, Louis; Wu, Jing; Konradi, Andrei W.; Sham, Hing L.; Tóth, Gergely; Pan, Hu; Yao, Nanhua; Artis, Dean R.; Quinn, Kevin; Sauer, John-Michael; Powell, Kyle; Ren, Zhao; Bard, Frédérique; Yednock, Ted A.; Griswold-Prenner, Irene

    2012-02-28

    From high throughput screening, we discovered compound 1, the prototype for a series of disubstituted thiophene inhibitors of JNK which is selective towards closely related MAP kinases p38 and Erk2. Herein we describe the evolution of these compounds to a novel class of thiophene and thiazole JNK inhibitors that retain favorable solubility, permeability, and P-gp properties for development as CNS agents for treatment of neurodegeneration. Compound 61 demonstrated JNK3 IC{sub 50} = 77 nM and retained the excellent broad kinase selectivity observed for the series.

  6. The participation of NMDA receptors, PKC, and MAPK in Lymnaea memory extinction.

    PubMed

    Rosenegger, David; Lukowiak, Ken

    2013-02-01

    The aerial respiratory behavior of Lymnaea can be operantly conditioned to form a long-term memory (LTM) that will persist for >24h. LTM formation is dependent on altered gene activity and new protein synthesis, with the N-methyl-D-aspartate (NMDA) receptors, mitogen activated protein kinase (MAPK), and protein kinase C (PKC) pathways playing a critical role. LTM can also undergo extinction, whereby the original memory is temporarily masked by a new memory. Here we investigate if the formation of an extinction memory uses similar molecular pathways to those required for LTM formation. We find that the formation of the extinction memory can be blocked by inhibitors of NMDA receptors, PKC, and MAPK suggesting that extinction memory formation uses similar mechanisms to that of 'normal' memory formation.

  7. PKC and AMPK regulation of Kv1.5 potassium channels

    PubMed Central

    Andersen, Martin Nybo; Skibsbye, Lasse; Tang, Chuyi; Petersen, Frederic; MacAulay, Nanna; Rasmussen, Hanne Borger; Jespersen, Thomas

    2015-01-01

    The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid rectifier K+ current (IKur), is regulated through several pathways. Here we investigate if Kv1.5 surface expression is controlled by the 2 kinases PKC and AMPK, using Xenopus oocytes, MDCK cells and atrial derived HL-1 cells. By confocal microscopy combined with electrophysiology we demonstrate that PKC activation reduces Kv1.5 current, through a decrease in membrane expressed channels. AMPK activation was found to decrease the membrane expression in MDCK cells, but not in HL-1 cells and was furthermore shown to be dependent on co-expression of Nedd4–2 in Xenopus oocytes. These results indicate that Kv1.5 channels are regulated by both kinases, although through different molecular mechanisms in different cell systems. PMID:26043299

  8. Tivantinib (ARQ-197) exhibits anti-tumor activity with down-regulation of FAK in oral squamous cell carcinoma

    SciTech Connect

    Xi, Wei-Hong; Yang, Li-Yun; Cao, Zhong-Yi; Qian, Yong

    2015-02-20

    Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and the 5 years survival rate of the patients is about 60% in the USA, due to acquired chemotherapeutic resistance and metastasis of the disease. In this study, we found that tivantinib, a selective MET inhibitor, suppresses OCSS cell proliferation and colony formation, however, anti-tumor activities induced by tivantinib are independent of the inhibition of MET signaling pathway. In addition, tivantinib cause G2/M cell cycle arrest and caspases-dependent apoptosis in OSCC cell lines. We also found that tivantinib dose-dependently suppressed the activation and expression of FAK. In all, these data suggested that tivantinib may be developed as a chemotherapeutic agent to effectively treat certain cancers including OSCC. - Highlights: • Tivantinib suppresses OSCC cell growth independent of the inhibition of HGF/MET signaling pathway. • Tivantinib blocks cell cycle and induces caspases-mediated apoptosis. • Tivantinib elicits its anti-tumor activity with the inhibition of FAK signaling pathway.

  9. Alterations in Ovarian Cancer Cell Adhesion Drive Taxol Resistance by Increasing Microtubule Dynamics in a FAK-dependent Manner

    PubMed Central

    McGrail, Daniel J.; Khambhati, Niti N.; Qi, Mark X.; Patel, Krishan S.; Ravikumar, Nithin; Brandenburg, Chandler P.; Dawson, Michelle R.

    2015-01-01

    Chemorefractory ovarian cancer patients show extremely poor prognosis. Microtubule-stabilizing Taxol (paclitaxel) is a first-line treatment against ovarian cancer. Despite the close interplay between microtubules and cell adhesion, it remains unknown if chemoresistance alters the way cells adhere to their extracellular environment, a process critical for cancer metastasis. To investigate this, we isolated Taxol-resistant populations of OVCAR3 and SKOV3 ovarian cancer cell lines. Though Taxol-resistant cells neither effluxed more drug nor gained resistance to other chemotherapeutics, they did display increased microtubule dynamics. These changes in microtubule dynamics coincided with faster attachment rates and decreased adhesion strength, which correlated with increased surface β1-integrin expression and decreased focal adhesion formation, respectively. Adhesion strength correlated best with Taxol-sensitivity, and was found to be independent of microtubule polymerization but dependent on focal adhesion kinase (FAK), which was up-regulated in Taxol-resistant cells. FAK inhibition also decreased microtubule dynamics to equal levels in both populations, indicating alterations in adhesive signaling are up-stream of microtubule dynamics. Taken together, this work demonstrates that Taxol-resistance dramatically alters how ovarian cancer cells adhere to their extracellular environment causing down-stream increases in microtubule dynamics, providing a therapeutic target that may improve prognosis by not only recovering drug sensitivity, but also decreasing metastasis. PMID:25886093

  10. Alterations in ovarian cancer cell adhesion drive taxol resistance by increasing microtubule dynamics in a FAK-dependent manner.

    PubMed

    McGrail, Daniel J; Khambhati, Niti N; Qi, Mark X; Patel, Krishan S; Ravikumar, Nithin; Brandenburg, Chandler P; Dawson, Michelle R

    2015-04-17

    Chemorefractory ovarian cancer patients show extremely poor prognosis. Microtubule-stabilizing Taxol (paclitaxel) is a first-line treatment against ovarian cancer. Despite the close interplay between microtubules and cell adhesion, it remains unknown if chemoresistance alters the way cells adhere to their extracellular environment, a process critical for cancer metastasis. To investigate this, we isolated Taxol-resistant populations of OVCAR3 and SKOV3 ovarian cancer cell lines. Though Taxol-resistant cells neither effluxed more drug nor gained resistance to other chemotherapeutics, they did display increased microtubule dynamics. These changes in microtubule dynamics coincided with faster attachment rates and decreased adhesion strength, which correlated with increased surface β1-integrin expression and decreased focal adhesion formation, respectively. Adhesion strength correlated best with Taxol-sensitivity, and was found to be independent of microtubule polymerization but dependent on focal adhesion kinase (FAK), which was up-regulated in Taxol-resistant cells. FAK inhibition also decreased microtubule dynamics to equal levels in both populations, indicating alterations in adhesive signaling are up-stream of microtubule dynamics. Taken together, this work demonstrates that Taxol-resistance dramatically alters how ovarian cancer cells adhere to their extracellular environment causing down-stream increases in microtubule dynamics, providing a therapeutic target that may improve prognosis by not only recovering drug sensitivity, but also decreasing metastasis.

  11. NG2 expression in microglial cells affects the expression of neurotrophic and proinflammatory factors by regulating FAK phosphorylation

    PubMed Central

    Zhu, Lie; Su, Qing; Jie, Xiang; Liu, Antang; Wang, Hui; He, Beiping; Jiang, Hua

    2016-01-01

    Neural/glial antigen 2 (NG2), a chondroitin sulfate proteoglycan, is significantly upregulated in a subset of glial cells in the facial motor nucleus (FMN) following CNS injury. NG2 is reported to promote the resulting inflammatory reaction, however, the mechanism by which NG2 mediates these effects is yet to be determined. In this study, we examined the changes in NG2 expressing microglial cells in the FMN in response to facial nerve axotomy (FNA) in mice. Our findings indicated that NG2 expression was progressively induced and upregulated specifically in the ipsilateral facial nucleus following FNA. To further investigate the effects of NG2 expression, in vivo studies in NG2-knockout mice and in vitro studies in rat microglial cells transfected with NG2 shRNAs were performed. Abolition of NG2 expression both in vitro and in vivo resulted in increased expression of neurotrophic factors (nerve growth factor and glial derived neurotrophic factor), decreased expression of inflammatory mediators (tumor necrosis factor-α and interleukin-1β) and decreased apoptosis in the ipsilateral facial nucleus in response to FNA. Furthermore, we demonstrated the role of FAK in these NG2-induced effects. Taken together, our findings suggest that NG2 expression mediates inflammatory reactions and neurodegeneration in microglial cells in response to CNS injury, potentially by regulating FAK phosphorylation. PMID:27306838

  12. Tauroursodeoxycholic acid exerts anticholestatic effects by a cooperative cPKC alpha-/PKA-dependent mechanism in rat liver.

    PubMed

    Wimmer, R; Hohenester, S; Pusl, T; Denk, G U; Rust, C; Beuers, U

    2008-10-01

    Ursodeoxycholic acid (UDCA) exerts anticholestatic effects in part by protein kinase C (PKC)-dependent mechanisms. Its taurine conjugate, TUDCA, is a cPKC alpha agonist. We tested whether protein kinase A (PKA) might contribute to the anticholestatic action of TUDCA via cooperative cPKC alpha-/PKA-dependent mechanisms in taurolithocholic acid (TLCA)-induced cholestasis. In perfused rat liver, bile flow was determined gravimetrically, organic anion secretion spectrophotometrically, lactate dehydrogenase (LDH) release enzymatically, cAMP response-element binding protein (CREB) phosphorylation by immunoblotting, and cAMP by immunoassay. PKC/PKA inhibitors were tested radiochemically. In vitro phosphorylation of the conjugate export pump, Mrp2/Abcc2, was studied in rat hepatocytes and human Hep-G2 hepatoma cells. In livers treated with TLCA (10 micromol/l)+TUDCA (25 micromol/l), combined inhibition of cPKC by the cPKC-selective inhibitor Gö6976 (100 nmol/l) or the non-selective PKC inhibitor staurosporine (10 nmol/l) and of PKA by H89 (100 nmol/l) reduced bile flow by 36% (p<0.05) and 48% (p<0.01), and secretion of the Mrp2/Abcc2 substrate, 2,4-dinitrophenyl-S-glutathione, by 31% (p<0.05) and 41% (p<0.01), respectively; bile flow was unaffected in control livers or livers treated with TUDCA only or TLCA+taurocholic acid. Inhibition of cPKC or PKA alone did not affect the anticholestatic action of TUDCA. Hepatic cAMP levels and CREB phosphorylation as readout of PKA activity were unaffected by the bile acids tested, suggesting a permissive effect of PKA for the anticholestatic action of TUDCA. Rat and human hepatocellular Mrp2 were phosphorylated by phorbol ester pretreatment and recombinant cPKC alpha, nPKC epsilon, and PKA, respectively, in a staurosporine-sensitive manner. UDCA conjugates exert their anticholestatic action in bile acid-induced cholestasis in part via cooperative post-translational cPKC alpha-/PKA-dependent mechanisms. Hepatocellular Mrp2 may be one

  13. A novel and selective inhibitor of PKC ζ potently inhibits human breast cancer metastasis in vitro and in mice.

    PubMed

    Wu, Jing; Liu, Shuye; Fan, Zhijuan; Zhang, Lei; Tian, Yaqiong; Yang, Rui

    2016-06-01

    Cell motility and chemotaxis play pivotal roles in the process of tumor development and metastasis. Protein kinase C ζ (PKC ζ) mediates epidermal growth factor (EGF)-stimulated chemotactic signaling pathway through regulating cytoskeleton rearrangement and cell adhesion. The purpose of this study was to develop anti-PKC ζ therapeutics for breast cancer metastasis. In this study, a novel and high-efficient PKC ζ inhibitor named PKCZI195.17 was screened out through a substrate-specific strategy. MTT assay was used to determine the cell viability of human breast cancer MDA-MB-231, MDA-MB-435, and MCF-7 cells while under PKCZI195.17 treatment. Wound-healing, chemotaxis, and Matrigel invasion assays were performed to detect the effects of PKCZI195.17 on breast cancer cells migration and invasion. Adhesion, actin polymerization, and Western blotting were performed to detect the effects of PKCZI195.17 on cells adhesion and actin polymerization, and explore the downsteam signaling mechanisms involved in PKC ζ inhibition. MDA-MB-231 xenograft was used to measure the in vivo anti-metastasis efficacy of PKCZI195.17. The compound PKCZI195.17 selectively inhibited PKC ζ kinase activity since it failed to inhibit PKC α, PKC β, PKC δ, PKC η, AKT2, as well as FGFR2 activity. PKCZI195.17 significantly impaired spontaneous migration, chemotaxis, and invasion of human breast cancer MDA-MB-231, MDA-MB-435, and MCF-7 cells, while PKCZI195.17 did not obviously inhibited cells viability. PKCZI195.17 also inhibited cells adhesion and actin polymerization through attenuating the phosphorylations of integrin β1, LIMK, and cofilin, which might be the downstream effectors of PKC ζ-mediated chemotaxis in MDA-MB-231 cells. Furthermore, PKCZI195.17 suppressed the breast cancer metastasis and increased the survival time of breast tumor-bearing mice. In summary, PKCZI195.17 was a PKC ζ-specific inhibitor which dampened cancer cell migration and metastasis and may serve as a novel

  14. High concentration of glucose inhibits glomerular endothelial eNOS through a PKC mechanism.

    PubMed

    Chu, Shaoyou; Bohlen, H Glenn

    2004-09-01

    Kidney glomeruli are important targets of diabetic nephropathy. We hypothesized a high concentration of glucose could suppress glomerular endothelial nitric oxide synthase (eNOS) by a protein kinase C (PKC) mechanism, as has been found in other tissues. Mouse kidney slices (150-200 microm) were bathed in Hanks' solution with 100 microM L-arginine and exposed to either 5 or 20-30 mM D-glucose. Immunofluorescence identified only eNOS in normal mouse glomeruli. Measurements of glomerular NO concentration with NO-sensitive fluorescent dye (4,5-diaminofluorescein diacetate) using confocal microscopy and NO-sensitive microelectrodes verified that resting glomeruli had active production of NO that was inhibited by N(G)-nitro-L-arginine methyl ester. High-concentration (20-30 mM) D-glucose inhibited 60-70% of the NO production within 15-30 min; L-glucose at the same concentration did not have any effect. Inhibition of PKC-beta with 100 nM ruboxistaurin prevented eNOS suppression in high-glucose media. Activation of PKC with 100 nM phorbol ester also suppressed the glomerular NO concentration. We concluded that eNOS in the renal glomerular capillary endothelial cells is suppressed by activity of PKC at high-glucose concentrations comparable to those in diabetic animals and humans. The consequence is a rapid decline in the generation of NO in the glomerular endothelial cells in the presence of a high concentration of glucose.

  15. C-Fos Regulation by the MAPK and PKC Pathways in Intervertebral Disc Cells

    PubMed Central

    Yokoyama, Katsuya; Hiyama, Akihiko; Arai, Fumiyuki; Nukaga, Tadashi; Sakai, Daisuke; Mochida, Joji

    2013-01-01

    Background The gene encoding c-fos is an important factor in the pathogenesis of joint disease in patients with osteoarthritis. However, it is unknown whether the signal mechanism of c-fos acts in intervertebral disc (IVD) cells. We investigated whether c-fos is activated in relation to mitogen-activated protein kinases (MAPKs) and the protein kinase C (PKC) pathway in nucleus pulposus (NP) cells. Methodology/Results Reverse transcription-polymerase chain reaction and western blotting analyses were used to measure the expression of c-fos in rat IVD cells. Transfections were performed to determine the effects of c-fos on target gene activity. The effect of c-fos protein expression was examined in transfection experiments and in a 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide cell viability assay. Phorbol 12-myristate 13-acetate (PMA), the most commonly used phorbol ester, binds to and activates protein kinase C (PKC), causing a wide range of effects in cells and tissues. PMA induced the expression of c-fos gene transcription and protein expression, and led to activation of the MAPK pathways in NP cells. The c-fos promoter was suppressed completely in the presence of the MAPK inhibitor PD98059, an inhibitor of the MEK/ERK kinase cascade, but not in the presence of SKF86002, SB202190, or SP600125. The effects of the PKC pathway on the transcriptional activity of the c-fos were evaluated. PKCγ and PKCδ suppressed the promoter activity of c-fos. Treatment with c-fos inhibited aggrecan and Col2 promoter activities and the expression of these genes in NP cells. Conclusions This study demonstrated, for the first time, that the MAPK and PKC pathways had opposing effects on the regulation of c-fos in NP cells. Thus, the expression of c-fos can be suppressed in the extracellular matrix of NP cells. PMID:24023832

  16. Local control of TRPV4 channels by AKAP150-targeted PKC in arterial smooth muscle

    PubMed Central

    Mercado, Jose; Baylie, Rachael; Navedo, Manuel F.; Yuan, Can; Scott, John D.; Nelson, Mark T.

    2014-01-01

    Transient receptor potential vanilloid 4 (TRPV4) channels are Ca2+-permeable, nonselective cation channels expressed in multiple tissues, including smooth muscle. Although TRPV4 channels play a key role in regulating vascular tone, the mechanisms controlling Ca2+ influx through these channels in arterial myocytes are poorly understood. Here, we tested the hypothesis that in arterial myocytes the anchoring protein AKAP150 and protein kinase C (PKC) play a critical role in the regulation of TRPV4 channels during angiotensin II (AngII) signaling. Super-resolution imaging revealed that TRPV4 channels are gathered into puncta of variable sizes along the sarcolemma of arterial myocytes. Recordings of Ca2+ entry via single TRPV4 channels (“TRPV4 sparklets”) suggested that basal TRPV4 sparklet activity was low. However, Ca2+ entry during elementary TRPV4 sparklets was ∼100-fold greater than that during L-type CaV1.2 channel sparklets. Application of the TRPV4 channel agonist GSK1016790A or the vasoconstrictor AngII increased the activity of TRPV4 sparklets in specific regions of the cells. PKC and AKAP150 were required for AngII-induced increases in TRPV4 sparklet activity. AKAP150 and TRPV4 channel interactions were dynamic; activation of AngII signaling increased the proximity of AKAP150 and TRPV4 puncta in arterial myocytes. Furthermore, local stimulation of diacylglycerol and PKC signaling by laser activation of a light-sensitive Gq-coupled receptor (opto-α1AR) resulted in TRPV4-mediated Ca2+ influx. We propose that AKAP150, PKC, and TRPV4 channels form dynamic subcellular signaling domains that control Ca2+ influx into arterial myocytes. PMID:24778429

  17. Interleukin-1β-induced barrier dysfunction is signaled through PKC-θ in human brain microvascular endothelium.

    PubMed

    Rigor, Robert R; Beard, Richard S; Litovka, Olesya P; Yuan, Sarah Y

    2012-05-15

    Blood-brain barrier dysfunction is a serious consequence of inflammatory brain diseases, cerebral infections, and trauma. The proinflammatory cytokine interleukin (IL)-1β is central to neuroinflammation and contributes to brain microvascular leakage and edema formation. Although it is well known that IL-1β exposure directly induces hyperpermeability in brain microvascular endothelium, the molecular mechanisms mediating this response are not completely understood. In the present study, we found that exposure of the human brain microvascular endothelium to IL-1β triggered activation of novel PKC isoforms δ, μ, and θ, followed by decreased transendothelial electrical resistance (TER). The IL-1β-induced decrease in TER was prevented by small hairpin RNA silencing of PKC-θ or by treatment with the isoform-selective PKC inhibitor Gö6976 but not by PKC inhibitors that are selective for all PKC isoforms other than PKC-θ. Decreased TER coincided with increased phosphorylation of regulatory myosin light chain and with increased proapoptotic signaling indicated by decreased uptake of mitotracker red in response to IL-1β treatment. However, neither of these observed effects were prevented by Gö6976 treatment, indicating lack of causality with respect to decreased TER. Instead, our data indicated that the mechanism of decreased TER involves PKC-θ-dependent phosphorylation of the tight junction protein zona occludens (ZO)-1. Because IL-1β is a central inflammatory mediator, our interpretation is that inhibition of PKC-θ or inhibition of ZO-1 phosphorylation could be viable strategies for preventing blood-brain barrier dysfunction under a variety of neuroinflammatory conditions.

  18. Effects of the PKC inhibitors chelerythrine and bisindolylmaleimide I (GF 109203X) on delayed rectifier K+ currents.

    PubMed

    Harmati, Gábor; Papp, Ferenc; Szentandrássy, Norbert; Bárándi, László; Ruzsnavszky, Ferenc; Horváth, Balázs; Bányász, Tamás; Magyar, János; Panyi, György; Krasznai, Zoltán; Nánási, Péter P

    2011-02-01

    Protein kinase C (PKC) inhibitors are useful tools for studying PKC-dependent regulation of ion channels. For this purpose, high PKC specificity is a basic requirement excluding any direct interaction between the PKC inhibitor and the ion channel. In the present study, the effects of two frequently applied PKC inhibitors, chelerythine and bisindolylmaleimide I, were studied on the rapid and slow components of the delayed rectifier K(+) current (I(Kr) and I(Ks)) in canine ventricular cardiomyocytes and on the human ether-à-go-go-related gene (hERG) channels expressed in human embryonic kidney (HEK) cells. The whole cell version of the patch clamp technique was used in all experiments. Chelerythrine and bisindolylmaleimide I (both 1 μM) suppressed I(Kr) in canine ventricular cells. This inhibition developed rapidly, suggesting a direct drug-channel interaction. In HEK cells heterologously expressing hERG channels, chelerythrine and bisindolylmaleimide I blocked hERG current in a concentration-dependent manner, having EC(50) values of 0.11 ± 0.01 and 0.76 ± 0.04 μM, respectively. Both chelerythrine and bisindolylmaleimide I strongly modified gating kinetics of hERG--voltage dependence of activation was shifted towards more negative voltages and activation was accelerated. Deactivation was slowed by bisindolylmaleimide I but not by chelerythrine. I(Ks) was not significantly altered by bisindolylmaleimide I and chelerythrine. No significant effect of 0.1 μM bisindolylmaleimide I or 0.1 μM PMA (PKC activator) was observed on I(Kr) arguing against significant contribution of PKC to regulation of I(Kr). It is concluded that neither chelerythrine nor bisindolylmaleimide I is suitable for selective PKC blockade due to their direct blocking actions on the hERG channel.

  19. Twins/PP2A regulates aPKC to control neuroblast cell polarity and self-renewal

    PubMed Central

    Chabu, Chiswili; Doe, Chris Q.

    2009-01-01

    Asymmetric cell division is a mechanism for generating cell diversity as well as maintaining stem cell homeostasis in both Drosophila and mammals. In Drosophila, larval neuroblasts are stem cell-like progenitors that divide asymmetrically to generate neurons of the adult brain. Mitotic neuroblasts localize atypical protein kinase C (aPKC) to their apical cortex. Cortical aPKC excludes cortical localization of Miranda and its cargo proteins Prospero and Brain tumor, resulting in their partitioning into the differentiating, smaller ganglion mother cell (GMC) where they are required for neuronal differentiation. In addition to aPKC, the kinases Aurora-A and Polo also regulate neuroblast self-renewal, but the phosphatases involved in neuroblast self-renewal have not been identified. Here we report that aPKC is in a protein complex in vivo with Twins, a Drosophila B-type protein phosphatase 2A (PP2A) subunit, and that Twins and the catalytic subunit of PP2A, called Microtubule star (Mts), are detected in larval neuroblasts. Both Twins and Mts are required to exclude aPKC from the basal neuroblast cortex: twins mutant brains, twins mutant single neuroblast mutant clones, or mts dominant negative single neuroblast clones all show ectopic basal cortical localization of aPKC. Consistent with ectopic basal aPKC is the appearance of supernumerary neuroblasts in twins mutant brains or twins mutant clones. We conclude that Twins/PP2A is required to maintain aPKC at the apical cortex of mitotic neuroblasts, keeping it out of the differentiating GMC, and thereby maintaining neuroblast homeostasis. PMID:19374896

  20. Role of the Chemokine MCP-1 in Sensitization of PKC-Mediated Apoptosis in Prostate Cancer Cells

    DTIC Science & Technology

    2009-02-01

    cells of hairy cell leukemia . Am. J. Pathol. 170: 745-754 (2007). 14. Kampfer S, Windegger M, Hochholdinger F, Schwaiger W, Pestell RG, Baier G...0119 TITLE: Role of the chemokine MCP-1 in sensitization of PKC-mediated apoptosis in prostate cancer cells ...of 5a. CONTRACT NUMBER PKC-mediated apoptosis in prostate cancer cells b. GRANT NUMBER W81XWH-07-1-0119 5c. PROGRAM ELEMENT

  1. Lysophosphatidic acid upregulates connective tissue growth factor expression in osteoblasts through the GPCR/PKC and PKA pathways.

    PubMed

    Yu, Zi-Li; Li, Dian-Qi; Huang, Xiang-Yu; Xing, Xin; Yu, Ru-Qing; Li, Zhi; Li, Zu-Bing

    2016-02-01

    Lysophosphatidic acid (LPA) is an efficient, bioactive phospholipid involved in various biological processes. In this study, LPA-induced connective tissue growth factor (CTGF/CCN2) expression and the underlying mechanisms were investigated using the MC3T3-E1 cell line. The MC3T3-E1 cells were stimulated with an inhibitor of LPA receptors, an activator and inhibitor of protein kinase C (PKC) and protein kinase A (PKA) for indicated periods of time. RT-qPCR and western blot analyses were used to measure the expression levels of CCN2. Immunofluorescence staining was used to observe the translocation of PKC. The mRNA expression level of CCN2 was increased following stimulation of the cells with LPA; LPA transiently induced the mRNA expression of CCN2; maximum expression levels were observed 2 h following stimulation with LPA. This increase was accompanied by CCN2 protein synthesis. LPA receptor1/3 was inhibited by Ki16425, a specific inhibitor of LPA1/3; as a result, the LPA-induced increase in CCN2 expression was abrogated. LPA also induced the membrane translocation of PKC and enhanced PKC activity in the osteoblasts. Pre-treatment of the osteoblasts with staurosporine prevented the increase in CCN2 expression by induced by LPA, and the activation of PKC by phorbol 12-myristate 13-acetate (PMA) enhanced CCN2 expression, indicating that the PKC pathway is involved in the LPA-induced increase in CCN2 expression. The interference of PKA signaling also led to the induction of CCN2 expresion by LPA. These data indicate that LPA increases CCN2 expression through the activation of PKC and PKA. Thus, the regulatory functions of the PKC and PKA pathways are implicated in the LPA-induced increase in CCN2 expression.

  2. Munc18-1 redistributes in nerve terminals in an activity- and PKC-dependent manner.

    PubMed

    Cijsouw, Tony; Weber, Jens P; Broeke, Jurjen H; Broek, Jantine A C; Schut, Desiree; Kroon, Tim; Saarloos, Ingrid; Verhage, Matthijs; Toonen, Ruud F

    2014-03-03

    Munc18-1 is a soluble protein essential for synaptic transmission. To investigate the dynamics of endogenous Munc18-1 in neurons, we created a mouse model expressing fluorescently tagged Munc18-1 from the endogenous munc18-1 locus. We show using fluorescence recovery after photobleaching in hippocampal neurons that the majority of Munc18-1 trafficked through axons and targeted to synapses via lateral diffusion together with syntaxin-1. Munc18-1 was strongly expressed at presynaptic terminals, with individual synapses showing a large variation in expression. Axon-synapse exchange rates of Munc18-1 were high: during stimulation, Munc18-1 rapidly dispersed from synapses and reclustered within minutes. Munc18-1 reclustering was independent of syntaxin-1, but required calcium influx and protein kinase C (PKC) activity. Importantly, a PKC-insensitive Munc18-1 mutant did not recluster. We show that synaptic Munc18-1 levels correlate with synaptic strength, and that synapses that recruit more Munc18-1 after stimulation have a larger releasable vesicle pool. Hence, PKC-dependent dynamic control of Munc18-1 levels enables individual synapses to tune their output during periods of activity.

  3. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation

    PubMed Central

    Shigeto, Makoto; Ramracheya, Reshma; Tarasov, Andrei I.; Cha, Chae Young; Chibalina, Margarita V.; Hastoy, Benoit; Philippaert, Koenraad; Reinbothe, Thomas; Rorsman, Nils; Salehi, Albert; Sones, William R.; Vergari, Elisa; Weston, Cathryn; Gorelik, Julia; Katsura, Masashi; Nikolaev, Viacheslav O.; Vennekens, Rudi; Zaccolo, Manuela; Galione, Antony; Johnson, Paul R.V.; Kaku, Kohei; Ladds, Graham; Rorsman, Patrik

    2015-01-01

    Strategies aimed at mimicking or enhancing the action of the incretin hormone glucagon-like peptide 1 (GLP-1) therapeutically improve glucose-stimulated insulin secretion (GSIS); however, it is not clear whether GLP-1 directly drives insulin secretion in pancreatic islets. Here, we examined the mechanisms by which GLP-1 stimulates insulin secretion in mouse and human islets. We found that GLP-1 enhances GSIS at a half-maximal effective concentration of 0.4 pM. Moreover, we determined that GLP-1 activates PLC, which increases submembrane diacylglycerol and thereby activates PKC, resulting in membrane depolarization and increased action potential firing and subsequent stimulation of insulin secretion. The depolarizing effect of GLP-1 on electrical activity was mimicked by the PKC activator PMA, occurred without activation of PKA, and persisted in the presence of PKA inhibitors, the KATP channel blocker tolbutamide, and the L-type Ca2+ channel blocker isradipine; however, depolarization was abolished by lowering extracellular Na+. The PKC-dependent effect of GLP-1 on membrane potential and electrical activity was mediated by activation of Na+-permeable TRPM4 and TRPM5 channels by mobilization of intracellular Ca2+ from thapsigargin-sensitive Ca2+ stores. Concordantly, GLP-1 effects were negligible in Trpm4 or Trpm5 KO islets. These data provide important insight into the therapeutic action of GLP-1 and suggest that circulating levels of this hormone directly stimulate insulin secretion by β cells. PMID:26571400

  4. Munc18-1 redistributes in nerve terminals in an activity- and PKC-dependent manner

    PubMed Central

    Cijsouw, Tony; Weber, Jens P.; Broeke, Jurjen H.; Broek, Jantine A.C.; Schut, Desiree; Kroon, Tim; Saarloos, Ingrid

    2014-01-01

    Munc18-1 is a soluble protein essential for synaptic transmission. To investigate the dynamics of endogenous Munc18-1 in neurons, we created a mouse model expressing fluorescently tagged Munc18-1 from the endogenous munc18-1 locus. We show using fluorescence recovery after photobleaching in hippocampal neurons that the majority of Munc18-1 trafficked through axons and targeted to synapses via lateral diffusion together with syntaxin-1. Munc18-1 was strongly expressed at presynaptic terminals, with individual synapses showing a large variation in expression. Axon–synapse exchange rates of Munc18-1 were high: during stimulation, Munc18-1 rapidly dispersed from synapses and reclustered within minutes. Munc18-1 reclustering was independent of syntaxin-1, but required calcium influx and protein kinase C (PKC) activity. Importantly, a PKC-insensitive Munc18-1 mutant did not recluster. We show that synaptic Munc18-1 levels correlate with synaptic strength, and that synapses that recruit more Munc18-1 after stimulation have a larger releasable vesicle pool. Hence, PKC-dependent dynamic control of Munc18-1 levels enables individual synapses to tune their output during periods of activity. PMID:24590174

  5. PKC delta and tissue transglutaminase are novel inhibitors of autophagy in pancreatic cancer cells.

    PubMed

    Ozpolat, Bulent; Akar, Ugur; Mehta, Kapil; Lopez-Berestein, Gabriel

    2007-01-01

    Apoptosis (type I) and autophagy (type II) are both highly regulated forms of programmed cell death and play crucial roles in physiological processes such as the development, homeostasis and selective, moderate to massive elimination of cells, if needed. Accumulating evidence suggests that cancer cells, including pancreatic cancer cells, in general tend to have reduced autophagy relative to their normal counterparts and premalignant lesions, supporting the contention that defective autophagy provides resistance to metabolic stress such as hypoxia, acidity and chemotherapeutics, promotes tumor cell survival and plays a role in the process of tumorigenesis. However, the mechanisms underlying the reduced capability of undergoing autophagy in pancreatic cancer remain elusive. In a recent study, we demonstrated a novel mechanism for regulation of autophagy in pancreatic ductal carcinoma cells. We found that protein kinase C-delta (PKC delta) constitutively suppresses autophagy through induction of tissue transglutaminase (TG2). Inhibition of PKC delta/TG2 signaling resulted in significant autophagic cell death that was mediated by Beclin 1. Elevated expression of TG2 in pancreatic cancer cells has been implicated in the development of drug resistance, metastatic phenotype and poor patient prognosis. In conclusion, our data suggest a novel role of PKC delta/TG2 in regulation of autophagy, and that TG2 may serve as an excellent therapeutic target in pancreatic cancer cells.

  6. LeY oligosaccharide upregulates DAG/PKC signaling pathway in the human endometrial cells.

    PubMed

    Li, Yali; Ma, Keli; Sun, Ping; Liu, Shuai; Qin, Huamin; Zhu, Zhengmei; Wang, Xiaoqi; Yan, Qiu

    2009-11-01

    LeY oligosaccharide is stage specifically expressed by the embryo and uterine endometrium, and it plays important roles in embryo implantation. In addition to participating in the recognition and adhesion on fetal-maternal interface, LeY potentially regulates the expression of some implantation-related factors. However, it remains elusive whether it can mediate the involved signaling pathway. In this study, agarose-LeY beads were used to mimic the embryos, and the effects of LeY oligosaccharide on DAG/PKC signaling pathway was studied in human endometrial epithelial cells. Results showed that LeY could significantly trigger the activation of cPKCalpha and cPKCbeta2, and their translocation from the cytosol to the plasma membrane. The cellular DAG content was also upregulated, and the activation of PLCgamma1 was promoted. On the contrary, DAG/PKC signaling pathway was significantly inhibited when anti-LeY antibody was used after confirmation of LeY expression in human endometrial epithelial cells by immunohistochemistry and flow cytometry. These results suggest that LeY oligosaccharide acts as a signal molecule to modulate DAG/PKC signaling pathway.

  7. Polycystin-1 promotes PKC{alpha}-mediated NF-{kappa}B activation in kidney cells

    SciTech Connect

    Banzi, Manuela; Aguiari, Gianluca; Trimi, Viky; Mangolini, Alessandra; Pinton, Paolo; Witzgall, Ralph; Rizzuto, Rosario; Senno, Laura del . E-mail: sen@unife.it

    2006-11-17

    Polycystin-1 (PC1), the PKD1 gene product, is a membrane receptor which regulates many cell functions, including cell proliferation and apoptosis, both typically increased in cyst lining cells in autosomal dominant polycystic kidney disease. Here we show that PC1 upregulates the NF-{kappa}B signalling pathway in kidney cells to prevent cell death. Human embryonic kidney cell lines (HEK293{sup CTT}), stably expressing a PC1 cytoplasmic terminal tail (CTT), presented increased NF-{kappa}B nuclear levels and NF-{kappa}B-mediated luciferase promoter activity. This, consistently, was reduced in HEK293 cells in which the endogenous PC1 was depleted by RNA interference. CTT-dependent NF-{kappa}B promoter activation was mediated by PKC{alpha} because it was blocked by its specific inhibitor Ro-320432. Furthermore, it was observed that apoptosis, which was increased in PC1-depleted cells, was reduced in HEK293{sup CTT} cells and in porcine kidney LtTA cells expressing a doxycycline-regulated CTT. Staurosporine, a PKC inhibitor, and parthenolide, a NF-{kappa}B inhibitor, significantly reduced the CTT-dependent antiapoptotic effect. These data reveal, therefore, a novel pathway by which polycystin-1 activates a PKC{alpha}-mediated NF-{kappa}B signalling and cell survival.

  8. Keratins control intercellular adhesion involving PKC-α–mediated desmoplakin phosphorylation

    PubMed Central

    Kröger, Cornelia; Loschke, Fanny; Schwarz, Nicole; Windoffer, Reinhard; Leube, Rudolf E.

    2013-01-01

    Maintenance of epithelial cell adhesion is crucial for epidermal morphogenesis and homeostasis and relies predominantly on the interaction of keratins with desmosomes. Although the importance of desmosomes to epidermal coherence and keratin organization is well established, the significance of keratins in desmosome organization has not been fully resolved. Here, we report that keratinocytes lacking all keratins show elevated, PKC-α–mediated desmoplakin phosphorylation and subsequent destabilization of desmosomes. We find that PKC-α activity is regulated by Rack1–keratin interaction. Without keratins, desmosomes assemble but are endocytosed at accelerated rates, rendering epithelial sheets highly susceptible to mechanical stress. Re-expression of the keratin pair K5/14, inhibition of PKC-α activity, or blocking of endocytosis reconstituted both desmosome localization at the plasma membrane and epithelial adhesion. Our findings identify a hitherto unknown mechanism by which keratins control intercellular adhesion, with potential implications for tumor invasion and keratinopathies, settings in which diminished cell adhesion facilitates tissue fragility and neoplastic growth. PMID:23690176

  9. CGX1037 is a novel PKC isoform delta selective inhibitor in platelets

    PubMed Central

    BHAVANASI, DHEERAJ; KOSTYAK, JOHN C.; SWINDLE, JOHN; KILPATRICK, LAURIE E.; KUNAPULI, SATYA P.

    2014-01-01

    Platelets upon activation change their shape, aggregate and secrete alpha and dense granule contents among which ADP acts as a feedback activator. Different Protein Kinase C (PKC) isoforms have specific non-redundant roles in mediating platelet responses including secretion and thrombus formation. Murine platelets lacking specific PKC isoforms have been used to evaluate the isoform specific functions. Novel PKC isoform δ has been shown to play an important role in some pathological processes. Lack of specific inhibitors for PKCδ has restricted analysis of its role in various cells. The current study was carried out to evaluate a novel small molecule PKCδ inhibitor, CGX1037 in platelets. Platelet aggregation, dense granule secretion and western blotting experiments were performed to evaluate CGX1037. In human platelets, CGX1037 inhibited PAR4-mediated phosphorylation on PKD2, a PKCδ-specific substrate. Pretreatment of human or murine platelets with CGX1037 inhibited PAR4-mediated dense granule secretion whereas it potentiated GPVI-mediated dense granule secretion similar to the responses observed in murine platelets lacking PKCδ Furthermore, pre-treatment of platelets from PKCδ−/− mice with CGX1037 had no significant additive effect on platelet responses suggesting the specificity of CGX1037. Hence, we show that CGX1037 is a selective small molecule inhibitor of PKCδ in platelets. PMID:24433221

  10. Spike timing-dependent long-term potentiation in ventral tegmental area dopamine cells requires PKC.

    PubMed

    Luu, Percy; Malenka, Robert C

    2008-07-01

    Long-term potentiation (LTP) of excitatory synapses on ventral tegmental area (VTA) dopamine (DA) cells is thought to play an important role in mediating some of the behavioral effects of drugs of abuse yet little is known about its underlying mechanisms. We find that spike timing-dependent LTP (STD LTP) in VTA DA cells is absent in slices prepared from mice previously administered cocaine, suggesting that cocaine-induced LTP and STD LTP share underlying mechanisms. This form of STD LTP is dependent on NMDA receptor (NMDAR) activation and a rise in postsynaptic calcium but surprisingly was not affected by an inhibitor of calcium/calmodulin-dependent protein kinase II (CaMKII). It was blocked by antagonists of conventional isoforms of PKC, whereas activation of protein kinase C (PKC) using a phorbol ester enhanced synaptic strength. These results suggest that NMDAR-mediated activation of PKC, but not CaMKII, is a critical trigger for LTP in VTA DA cells.

  11. Numb controls E-cadherin endocytosis through p120 catenin with aPKC

    PubMed Central

    Sato, Kazuhide; Watanabe, Takashi; Wang, Shujie; Kakeno, Mai; Matsuzawa, Kenji; Matsui, Toshinori; Yokoi, Keiko; Murase, Kiyoko; Sugiyama, Ikuko; Ozawa, Masayuki; Kaibuchi, Kozo

    2011-01-01

    Cadherin trafficking controls tissue morphogenesis and cell polarity. The endocytic adaptor Numb participates in apicobasal polarity by acting on intercellular adhesions in epithelial cells. However, it remains largely unknown how Numb controls cadherin-based adhesion. Here, we found that Numb directly interacted with p120 catenin (p120), which is known to interact with E-cadherin and prevent its internalization. Numb accumulated at intercellular adhesion sites and the apical membrane in epithelial cells. Depletion of Numb impaired E-cadherin internalization, whereas depletion of p120 accelerated internalization. Expression of the Numb-binding fragment of p120 inhibited E-cadherin internalization in a dominant-negative fashion, indicating that Numb interacts with the E-cadherin/p120 complex and promotes E-cadherin endocytosis. Impairment of Numb induced mislocalization of E-cadherin from the lateral membrane to the apical membrane. Atypical protein kinase C (aPKC), a member of the PAR complex, phosphorylated Numb and inhibited its association with p120 and α-adaptin. Depletion or inhibition of aPKC accelerated E-cadherin internalization. Wild-type Numb restored E-cadherin internalization in the Numb-depleted cells, whereas a phosphomimetic mutant or a mutant with defective α-adaptin-binding ability did not restore the internalization. Thus, we propose that aPKC phosphorylates Numb to prevent its binding to p120 and α-adaptin, thereby attenuating E-cadherin endocytosis to maintain apicobasal polarity. PMID:21775625

  12. Design, synthesis, and evaluation of potent bryostatin analogs that modulate PKC translocation selectivity.

    PubMed

    Wender, Paul A; Baryza, Jeremy L; Brenner, Stacey E; DeChristopher, Brian A; Loy, Brian A; Schrier, Adam J; Verma, Vishal A

    2011-04-26

    Modern methods for the identification of therapeutic leads include chemical or virtual screening of compound libraries. Nature's library represents a vast and diverse source of leads, often exhibiting exquisite biological activities. However, the advancement of natural product leads into the clinic is often impeded by their scarcity, complexity, and nonoptimal properties or efficacy as well as the challenges associated with their synthesis or modification. Function-oriented synthesis represents a strategy to address these issues through the design of simpler and therefore synthetically more accessible analogs that incorporate the activity-determining features of the natural product leads. This study illustrates the application of this strategy to the design and synthesis of functional analogs of the bryostatin marine natural products. It is specifically directed at exploring the activity-determining role of bryostatin A-ring functionality on PKC affinity and selectivity. The resultant functional analogs, which were prepared by a flexible, modular synthetic strategy, exhibit excellent affinity to PKC and differential isoform selectivity. These and related studies provide the basic information needed for the design of simplified and thus synthetically more accessible functional analogs that target PKC isoforms, major targets of therapeutic interest.

  13. Design, synthesis, and evaluation of potent bryostatin analogs that modulate PKC translocation selectivity

    PubMed Central

    Wender, Paul A.; Baryza, Jeremy L.; Brenner, Stacey E.; DeChristopher, Brian A.; Loy, Brian A.; Schrier, Adam J.; Verma, Vishal A.

    2011-01-01

    Modern methods for the identification of therapeutic leads include chemical or virtual screening of compound libraries. Nature’s library represents a vast and diverse source of leads, often exhibiting exquisite biological activities. However, the advancement of natural product leads into the clinic is often impeded by their scarcity, complexity, and nonoptimal properties or efficacy as well as the challenges associated with their synthesis or modification. Function-oriented synthesis represents a strategy to address these issues through the design of simpler and therefore synthetically more accessible analogs that incorporate the activity-determining features of the natural product leads. This study illustrates the application of this strategy to the design and synthesis of functional analogs of the bryostatin marine natural products. It is specifically directed at exploring the activity-determining role of bryostatin A-ring functionality on PKC affinity and selectivity. The resultant functional analogs, which were prepared by a flexible, modular synthetic strategy, exhibit excellent affinity to PKC and differential isoform selectivity. These and related studies provide the basic information needed for the design of simplified and thus synthetically more accessible functional analogs that target PKC isoforms, major targets of therapeutic interest. PMID:21415363

  14. PKC-mediated potentiation of morphine analgesia by St. John's Wort in rodents and humans.

    PubMed

    Galeotti, Nicoletta; Farzad, Mersedeh; Bianchi, Enrica; Ghelardini, Carla

    2014-01-01

    Our purpose was to combine the use of morphine with clinically available inhibitors of protein kinase C (PKC), finally potentiating morphine analgesia in humans. Thermal tests were performed in rodents and humans previously administered with acute or chronic morphine combined or not with increasing doses of the PKC-blocker St. John's Wort (SJW) or its main component hypericin. Phosphorylation of the γ subunit of PKC enzyme was assayed by western blotting in the periaqueductal grey matter (PAG) from rodents co-administered with morphine and hypericin and was prevented in rodent PAG by SJW or hypericin co-administration with morphine, inducing a potentiation of morphine analgesia in thermal pain. The score of pain assessment in healthy volunteers were decreased by 40% when morphine was co-administered with SJW at a dose largely below those used to obtain an antidepressant or analgesic effect in both rodents and humans. The SJW/hypericin potentiating effect lasted in time and preserved morphine analgesia in tolerant mice. Our findings indicate that, in clinical practice, SJW could reduce the dose of morphine obtaining the same analgesic effect. Therefore, SJW and one of its main components, hypericin, appear ideal to potentiate morphine-induced analgesia.

  15. Removal of Potential Phosphorylation Sites does not Alter Creatine Transporter Response to PKC or Substrate Availability.

    PubMed

    Santacruz, Lucia; Darrabie, Marcus D; Mishra, Rajashree; Jacobs, Danny O

    2015-01-01

    Creatine, Phosphocreatine, and creatine kinases, constitute an energy shuttle that links ATP production in mitochondria with cellular consumption sites. Myocytes and neurons cannot synthesize creatine and depend on uptake across the cell membrane by a specialized transporter to maintain intracellular creatine levels. Although recent studies have improved our understanding of creatine transport in cardiomyocytes, the structural elements underlying the creatine transporter protein regulation and the relevant intracellular signaling processes are unknown. The effects of pharmacological activation of kinases or phosphatases on creatine transport in cardiomyocytes in culture were evaluated. Putative phosphorylation sites in the creatine transporter protein were identified by bioinformatics analyses, and ablated using site-directed mutagenesis. Mutant transporter function and their responses to pharmacological PKC activation or changes in creatine availability in the extracellular environment, were evaluated. PKC activation decreases creatine transport in cardiomyocytes in culture. Elimination of high probability potential phosphorylation sites did not abrogate responses to PKC activation or substrate availability. Modulation of creatine transport in cardiomyocytes is a complex process where phosphorylation at predicted sites in the creatine transporter protein does not significantly alter activity. Instead, non-classical structural elements in the creatine transporter and/or interactions with regulatory subunits may modulate its activity. © 2015 S. Karger AG, Basel.

  16. Munc18-1 is a dynamically regulated PKC target during short-term enhancement of transmitter release

    PubMed Central

    Genç, Özgür; Kochubey, Olexiy; Toonen, Ruud F; Verhage, Matthijs; Schneggenburger, Ralf

    2014-01-01

    Transmitter release at synapses is regulated by preceding neuronal activity, which can give rise to short-term enhancement of release like post-tetanic potentiation (PTP). Diacylglycerol (DAG) and Protein-kinase C (PKC) signaling in the nerve terminal have been widely implicated in the short-term modulation of transmitter release, but the target protein of PKC phosphorylation during short-term enhancement has remained unknown. Here, we use a gene-replacement strategy at the calyx of Held, a large CNS model synapse that expresses robust PTP, to study the molecular mechanisms of PTP. We find that two PKC phosphorylation sites of Munc18-1 are critically important for PTP, which identifies the presynaptic target protein for the action of PKC during PTP. Pharmacological experiments show that a phosphatase normally limits the duration of PTP, and that PTP is initiated by the action of a ‘conventional’ PKC isoform. Thus, a dynamic PKC phosphorylation/de-phosphorylation cycle of Munc18-1 drives short-term enhancement of transmitter release during PTP. DOI: http://dx.doi.org/10.7554/eLife.01715.001 PMID:24520164

  17. Munc18-1 is a dynamically regulated PKC target during short-term enhancement of transmitter release.

    PubMed

    Genc, Ozgür; Kochubey, Olexiy; Toonen, Ruud F; Verhage, Matthijs; Schneggenburger, Ralf

    2014-02-11

    Transmitter release at synapses is regulated by preceding neuronal activity, which can give rise to short-term enhancement of release like post-tetanic potentiation (PTP). Diacylglycerol (DAG) and Protein-kinase C (PKC) signaling in the nerve terminal have been widely implicated in the short-term modulation of transmitter release, but the target protein of PKC phosphorylation during short-term enhancement has remained unknown. Here, we use a gene-replacement strategy at the calyx of Held, a large CNS model synapse that expresses robust PTP, to study the molecular mechanisms of PTP. We find that two PKC phosphorylation sites of Munc18-1 are critically important for PTP, which identifies the presynaptic target protein for the action of PKC during PTP. Pharmacological experiments show that a phosphatase normally limits the duration of PTP, and that PTP is initiated by the action of a 'conventional' PKC isoform. Thus, a dynamic PKC phosphorylation/de-phosphorylation cycle of Munc18-1 drives short-term enhancement of transmitter release during PTP. DOI: http://dx.doi.org/10.7554/eLife.01715.001.

  18. Autophosphorylation of the C2 domain inhibits translocation of the novel protein kinase C (nPKC) Apl II.

    PubMed

    Farah, Carole A; Lindeman, Amanda A; Siu, Vincent; Gupta, Micaela Das; Sossin, Wayne S

    2012-11-01

    Protein kinase Cs (PKCs) are critical signaling molecules controlled by complex regulatory pathways. Herein, we describe an important regulatory role for C2 domain phosphorylation. Novel PKCs (nPKCs) contain an N-terminal C2 domain that cannot bind to calcium. Previously, we described an autophosphorylation site in the Aplysia novel PKC Apl II that increased the binding of the C2 domain to lipids. In this study, we show that the function of this phosphorylation is to inhibit PKC translocation. Indeed, a phosphomimetic serine-glutamic acid mutation reduced translocation of PKC Apl II while blocking phosphorylation with a serine-alanine mutation enhanced translocation and led to the persistence of the kinase at the membrane longer after the end of the stimulation. Consistent with a role for autophosphorylation in regulating kinase translocation, inhibiting PKC activity using bisindolymaleimide 1 increased physiological translocation of PKC Apl II, whereas inhibiting phosphatase activity using calyculin A inhibited physiological translocation of PKC Apl II in neurons. Our results suggest a major role for autophosphorylation-dependent regulation of translocation.

  19. aPKC phosphorylates JAM-A at Ser285 to promote cell contact maturation and tight junction formation.

    PubMed

    Iden, Sandra; Misselwitz, Steve; Peddibhotla, Swetha S D; Tuncay, Hüseyin; Rehder, Daniela; Gerke, Volker; Robenek, Horst; Suzuki, Atsushi; Ebnet, Klaus

    2012-03-05

    The PAR-3-atypical protein kinase C (aPKC)-PAR-6 complex has been implicated in the development of apicobasal polarity and the formation of tight junctions (TJs) in vertebrate epithelial cells. It is recruited by junctional adhesion molecule A (JAM-A) to primordial junctions where aPKC is activated by Rho family small guanosine triphosphatases. In this paper, we show that aPKC can interact directly with JAM-A in a PAR-3-independent manner. Upon recruitment to primordial junctions, aPKC phosphorylates JAM-A at S285 to promote the maturation of immature cell-cell contacts. In fully polarized cells, S285-phosphorylated JAM-A is localized exclusively at the TJs, and S285 phosphorylation of JAM-A is required for the development of a functional epithelial barrier. Protein phosphatase 2A dephosphorylates JAM-A at S285, suggesting that it antagonizes the activity of aPKC. Expression of nonphosphorylatable JAM-A/S285A interferes with single lumen specification during cyst development in three-dimensional culture. Our data suggest that aPKC phosphorylates JAM-A at S285 to regulate cell-cell contact maturation, TJ formation, and single lumen specification.

  20. Two amino acid sequences direct Aspergillus nidulans protein kinase C (PkcA) localization to hyphal apices and septation sites.

    PubMed

    Jackson-Hayes, Loretta; Hill, Terry W; Loprete, Darlene M; DelBove, Claire E; Shapiro, Justin A; Henley, Jordan L; Dawodu, Omolola O

    2015-01-01

    The Aspergillus nidulans ortholog of protein kinase C (pkcA) is involved in the organism's putative cell wall integrity (CWI) pathway, and PkcA also is highly localized at growing tips and forming septa. In the present work we identify the regions within PkcA that are responsible for its localization to hyphal tips and septation sites. To this end, we used serially truncated pkcA constructs and expressed them as green fluorescent protein (GFP) chimeras and identified two regions that direct PkcA localization. The first region is a 10 amino-acid sequence near the carboxyl end of the C2 domain that is required for localization to hyphal tips. Proteins containing this sequence also localize to septation sites. A second region between C2 and C1B (encompassing C1A) is sufficient for localization to septation sites but not to hyphal tips. We also report that localization to hyphal tips and septation sites alone is not sufficient for truncated constructs to complement hypersensitivity to the cell wall compromising agent calcofluor white in a strain bearing a mutation in the pkcA gene. Taken together, these results suggest that localization and stress response might be independent.

  1. Structure-based modelling, scoring, screening, and in vitro kinase assay of anesthetic pkc inhibitors against a natural medicine library.

    PubMed

    Shi, B X; Chen, F R; Sun, X

    2017-02-01

    Protein kinase C (PKC) is an intracellular effector of the inositol phosphate-mediated signal transduction pathway. Evidence is emerging that certain general anaesthetics can influence the activity of PKC by interacting with the regulatory domain of the enzyme, and targeting PKC kinase domain is considered as a strategy to modulate the anaesthetic effects. Here, an integrated method was used to perform virtual screening against a large library of natural compounds for the discovery of new and potent PKC modulators. A number of hits were identified and their inhibitory activity against PKC kinase domain was measured by using a standard kinase assay protocol. Three and five compounds were determined to have high and moderate activities with IC50 values at nanomolar and micromolar levels, respectively. These compounds can be considered as promising lead molecular entities to develop efficacious anaesthetic modulators. Structural examination revealed a variety of nonbonded interactions such as hydrogen bonds, cation-π contacts, and hydrophobic forces across the complex interface of PKC with the identified compounds. This study helps to establish an integrative approach to rational kinase inhibitor discovery by efficiently exploiting various existing natural products.

  2. Targeting aPKC disables oncogenic signaling by both the EGFR and the proinflammatory cytokine TNFα in glioblastoma

    PubMed Central

    Perry, Anthony S.; Rushing, Elisabeth J.; Mandell, Edward K.; Dietrich, Justin D.; Errasti, Andrea E.; Gibbs, Daniel; Berens, Michael E.; Loftus, Joseph C.; Hulme, Christopher; Yang, Weiwei; Lu, Zhimin; Aldape, Kenneth; Sanai, Nader; Rothlin, Carla V.; Ghosh, Sourav

    2015-01-01

    Grade IV glioblastoma is characterized by increased kinase activity of epidermal growth factor receptor (EGFR); however, EGFR kinase inhibitors have failed to improve survival in individuals with this cancer because resistance to these drugs often develops. We showed that tumor necrosis factor–α (TNFα) produced in the glioblastoma microenvironment activated atypical protein kinase C (aPKC), thereby producing resistance to EGFR kinase inhibitors. Additionally, we identified that aPKC was required both for paracrine TNFα-dependent activation of the transcription factor nuclear factor κB (NF-κB) and for tumor cell–intrinsic receptor tyrosine kinase signaling. Targeting aPKC decreased tumor growth in mouse models of glioblastoma, including models of EGFR kinase inhibitor–resistant glioblastoma. Furthermore, aPKC abundance and activity were increased in human glioblastoma tumor cells, and high aPKC abundance correlated with poor prognosis. Thus, targeting aPKC might provide an improved molecular approach for glioblastoma therapy. PMID:25118327

  3. Posttetanic potentiation critically depends on an enhanced Ca2+ sensitivity of vesicle fusion mediated by presynaptic PKC

    PubMed Central

    Korogod, Natalya; Lou, Xuelin; Schneggenburger, Ralf

    2007-01-01

    Activity-dependent enhancement of transmitter release is a common form of presynaptic plasticity, but the underlying signaling mechanisms have remained largely unknown, perhaps because of the inaccessibility of most CNS nerve terminals. Here we investigated the signaling steps that underlie posttetanic potentiation (PTP), a form of presynaptic plasticity found at many CNS synapses. Direct whole-cell recordings from the large calyx of Held nerve terminals with the perforated patch-clamp technique showed that PTP was not mediated by changes in the presynaptic action potential waveform. Ca2+ imaging revealed a slight increase of the presynaptic Ca2+ transient during PTP (≈15%), which, however, was too small to explain a large part of PTP. The presynaptic PKC pathway was critically involved in PTP because (i) PTP was occluded by activation of PKC with phorbol esters, and (ii) PTP was largely (by approximately two-thirds) blocked by the PKC inhibitors, Ro31-8220 or bisindolylmaleimide. Activation of PKC during PTP most likely acts directly on the presynaptic release machinery, because in presynaptic Ca2+ uncaging experiments, activation of PKC by phorbol ester greatly increased the Ca2+ sensitivity of vesicle fusion in a Ro31-8220-sensitive manner (≈300% with small Ca2+ uncaging stimuli), but only slightly increased presynaptic voltage-gated Ca2+ currents (≈15%). We conclude that a PKC-dependent increase in the Ca2+ sensitivity of vesicle fusion is a key step in the enhancement of transmitter release during PTP. PMID:17884983

  4. EphrinB2 controls vessel pruning through STAT1-JNK3 signaling

    PubMed Central

    Salvucci, Ombretta; Ohnuki, Hidetaka; Maric, Dragan; Hou, Xu; Li, Xuri; Yoon, Sung Ok; Segarra, Marta; Eberhart, Charles G.; Acker-Palmer, Amparo; Tosato, Giovanna

    2015-01-01

    Angiogenesis produces primitive vascular networks that need pruning to yield hierarchically organized and functional vessels. Despite the critical importance of vessel pruning to vessel patterning and function, the mechanisms regulating this process are not clear. Here we show that EphrinB2, a well-known player in angiogenesis, is an essential regulator of endothelial cell death and vessel pruning. This regulation depends upon phosphotyrosine-EphrinB2 signaling repressing JNK3 activity via STAT1. JNK3 activation causes endothelial cell death. In the absence of JNK3, hyaloid vessel physiological pruning is impaired, associated with abnormal persistence of hyaloid vessels, defective retinal vasculature and microphthalmia. This syndrome closely resembles human persistent hyperplastic primary vitreus (PHPV), attributed to failed involution of hyaloid vessels. Our results provide evidence that EphrinB2/STAT1/JNK3 signaling is essential for vessel pruning, and that defects in this pathway may contribute to PHPV. PMID:25807892

  5. The Lysosome Rupture-activated TAK1-JNK Pathway Regulates NLRP3 Inflammasome Activation*

    PubMed Central

    Okada, Masahiro; Matsuzawa, Atsushi; Yoshimura, Akihiko; Ichijo, Hidenori

    2014-01-01

    Lysosome rupture triggers NLRP3 inflammasome activation in macrophages. However, the underlying mechanism is not fully understood. Here we showed that the TAK1-JNK pathway, a MAPK signaling pathway, is activated through lysosome rupture and that this activation is necessary for the complete activation of the NLRP3 inflammasome through the oligomerization of an adapter protein, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). We also revealed that the activation of the TAK1-JNK pathway is sustained through Ca2+ ions and that calcium/calmodulin-dependent protein kinase type II functions upstream of the TAK1-JNK pathway and specifically regulates lysosome rupture-induced NLRP3 inflammasome activation. These data suggest a novel role for the TAK1-JNK pathway as a critical regulator of NLRP3 inflammasome activation. PMID:25288801

  6. BLNK required for coupling Syk to PLC gamma 2 and Rac1-JNK in B cells.

    PubMed

    Ishiai, M; Kurosaki, M; Pappu, R; Okawa, K; Ronko, I; Fu, C; Shibata, M; Iwamatsu, A; Chan, A C; Kurosaki, T

    1999-01-01

    Signaling through the B cell receptor (BCR) is essential for B cell function and development. Despite the key role of Syk in BCR signaling, little is known about the mechanism by which Syk transmits downstream effectors. BLNK (B cell LiNKer protein), a substrate for Syk, is now shown to be essential in activating phospholipase C (PLC)gamma 2 and JNK. The BCR-induced PLC gamma 2 activation, but not the JNK activation, was restored by introduction of PLC gamma 2 membrane-associated form into BLNK-deficient B cells. As JNK activation requires both Rac1 and PLC gamma 2, our results suggest that BLNK regulates the Rac1-JNK pathway, in addition to modulating PLC gamma 2 localization.

  7. SKK4, a novel activator of stress-activated protein kinase-1 (SAPK1/JNK).

    PubMed

    Lawler, S; Cuenda, A; Goedert, M; Cohen, P

    1997-09-01

    A cDNA was cloned and expressed that encodes human stress-activated protein kinase kinase-4 (SKK4), a novel MAP kinase kinase family member whose mRNA is widely expressed in human tissues. SKK4 activated SAPK1/JNK in vitro, but not SAPK2a/p38, SAPK2b/p38beta, SAPK3/ERK6 or SAPK4. It appears to be the mammalian homologue of HEP, an activator of SAPK1/JNK in Drosophila. In human epithelial KB cells SKK4 and SKK1/MKK4 (another activator of SAPK1/JNK) were both activated by stressful stimuli, but only SKK4 was activated by proinflammatory cytokines. The identification of SKK4 explains why the major SAPK1/JNK activator detected in many mammalian cell extracts is chromatographically separable from SKK1/MKK4.

  8. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut

    PubMed Central

    Biteau, Benoît; Hochmuth, Christine E.; Jasper, Heinrich

    2011-01-01

    Metazoans employ cytoprotective and regenerative strategies to maintain tissue homeostasis. Understanding the coordination of these strategies is critical to develop accurate models for aging and associated diseases. Here we show that cytoprotective Jun-N-terminal Kinase (JNK) signaling influences regeneration in the Drosophila gut by directing proliferation of intestinal stem cells (ISCs). Interestingly, this function of JNK contributes to the loss of tissue homeostasis in old and stressed intestines by promoting the accumulation of mis-differentiated ISC daughter cells. Ectopic Delta/Notch signaling in these cells causes their abnormal differentiation, but also limits JNK-induced proliferation. Protective JNK signaling, and control of cell proliferation and differentiation by Delta/Notch signaling thus have to be carefully balanced to ensure tissue homeostasis. Our findings suggest that this balance is lost in old animals, increasing the potential for neoplastic transformation. PMID:18940735

  9. Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development

    PubMed Central

    Ramo, Kasmir; Sugamura, Koichi; Craige, Siobhan; Keaney, John F; Davis, Roger J

    2016-01-01

    Arterial occlusive diseases are major causes of morbidity and mortality. Blood flow to the affected tissue must be restored quickly if viability and function are to be preserved. We report that disruption of the mixed-lineage protein kinase (MLK) - cJun NH2-terminal kinase (JNK) signaling pathway in endothelial cells causes severe blockade of blood flow and failure to recover in the murine femoral artery ligation model of hindlimb ischemia. We show that the MLK-JNK pathway is required for the formation of native collateral arteries that can restore circulation following arterial occlusion. Disruption of the MLK-JNK pathway causes decreased Dll4/Notch signaling, excessive sprouting angiogenesis, and defects in developmental vascular morphogenesis. Our analysis demonstrates that the MLK-JNK signaling pathway is a key regulatory mechanism that protects against ischemia in arterial occlusive disease. DOI: http://dx.doi.org/10.7554/eLife.18414.001 PMID:27504807

  10. Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway

    PubMed Central

    Vernia, Santiago; Cavanagh-Kyros, Julie; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Davis, Roger J.

    2013-01-01

    The cJun N-terminal kinase (JNK) signaling pathway is a key mediator of metabolic stress responses caused by consuming a high-fat diet, including the development of obesity. To test the role of JNK, we examined diet-induced obesity in mice with targeted ablation of Jnk genes in the anterior pituitary gland. These mice exhibited an increase in the pituitary expression of thyroid-stimulating hormone (TSH), an increase in the blood concentration of thyroid hormone (T4), increased energy expenditure, and markedly reduced obesity compared with control mice. The increased amount of pituitary TSH was caused by reduced expression of type 2 iodothyronine deiodinase (Dio2), a gene that is required for T4-mediated negative feedback regulation of TSH expression. These data establish a molecular mechanism that accounts for the regulation of energy expenditure and the development of obesity by the JNK signaling pathway. PMID:24186979

  11. Role of the JNK Pathway in Varicella-Zoster Virus Lytic Infection and Reactivation.

    PubMed

    Kurapati, Sravya; Sadaoka, Tomohiko; Rajbhandari, Labchan; Jagdish, Balaji; Shukla, Priya; Ali, Mir A; Kim, Yong Jun; Lee, Gabsang; Cohen, Jeffrey I; Venkatesan, Arun

    2017-09-01

    Mechanisms of neuronal infection by varicella-zoster virus (VZV) have been challenging to study due to the relatively strict human tropism of the virus and the paucity of tractable experimental models. Cellular mitogen-activated protein kinases (MAPKs) have been shown to play a role in VZV infection of nonneuronal cells, with distinct consequences for infectivity in different cell types. Here, we utilize several human neuronal culture systems to investigate the role of one such MAPK, the c-Jun N-terminal kinase (JNK), in VZV lytic infection and reactivation. We find that the JNK pathway is specifically activated following infection of human embryonic stem cell-derived neurons and that this activation of JNK is essential for efficient viral protein expression and replication. Inhibition of the JNK pathway blocked viral replication in a manner distinct from that of acyclovir, and an acyclovir-resistant VZV isolate was as sensitive to the effects of JNK inhibition as an acyclovir-sensitive VZV isolate in neurons. Moreover, in a microfluidic-based human neuronal model of viral latency and reactivation, we found that inhibition of the JNK pathway resulted in a marked reduction in reactivation of VZV. Finally, we utilized a novel technique to efficiently generate cells expressing markers of human sensory neurons from neural crest cells and established a critical role for the JNK pathway in infection of these cells. In summary, the JNK pathway plays an important role in lytic infection and reactivation of VZV in physiologically relevant cell types and may provide an alternative target for antiviral therapy.IMPORTANCE Varicella-zoster virus (VZV) has infected over 90% of people worldwide. While primary infection leads to the typically self-limiting condition of chickenpox, the virus can remain dormant in the nervous system and may reactivate later in life, leading to shingles or inflammatory diseases of the nervous system and eye with potentially severe consequences. Here

  12. Hyperactivated JNK is a therapeutic target in pVHL-deficient renal cell carcinoma.

    PubMed

    An, Jiabin; Liu, Huiren; Magyar, Clara E; Guo, Yanchuan; Veena, Mysore S; Srivatsan, Eri S; Huang, Jiaoti; Rettig, Matthew B

    2013-02-15

    Clear cell renal cell carcinomas (RCC), the major histologic subtype of RCC accounting for more than 80% of cases, are typified by biallelic inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene. Although accumulation of hypoxia-inducible factor alpha (HIF-α) is the most well-studied effect of VHL inactivation, direct inhibition of HIFα or restoration of wild-type pVHL protein expression has not proved readily feasible, given the limitations associated with pharmacologic targeting of transcription factors (i.e., HIF-α) and gene replacement therapy of tumor suppressor genes (i.e., VHL). Here, we have established that phosphorylated c-Jun, a substrate of the c-Jun-NH(2)-kinase (JNK), is selectively activated in clear cell RCC patient specimens. Using multiple isogenic cell lines, we show that HIF-α-independent JNK hyperactivation is unique to the pVHL-deficient state. Importantly, pVHL-deficient RCCs are dependent upon JNK activity for in vitro and in vivo growth. A multistep signaling pathway that links pVHL loss to JNK activation involves the formation of a CARD9/BCL10/TRAF6 complex as a proximal signal to sequentially stimulate TAK1 (MAPKKK), MKK4 (MAPKK), and JNK (MAPK). JNK stimulates c-Jun phosphorylation, activation, and dimerization with c-Fos to form a transcriptionally competent AP1 complex that drives transcription of the Twist gene and induces epithelial-mesenchymal transition. Thus, JNK represents a novel molecular target that is selectively activated in and drives the growth of pVHL-deficient clear cell RCCs. These findings can serve as the preclinical foundation for directed efforts to characterize potent pharmacologic inhibitors of the JNK pathway for clinical translation.

  13. c-Jun localizes to the nucleus independent of its phosphorylation by and interaction with JNK and vice versa promotes nuclear accumulation of JNK

    SciTech Connect

    Schreck, Ilona; Al-Rawi, Marco; Mingot, Jose-Manuel; Scholl, Christine; Diefenbacher, Markus Elmar; O'Donnell, Paul; Bohmann, Dirk; Weiss, Carsten

    2011-04-22

    Highlights: {yields} HSP70, Ku70 and 80 as well as importin 8 are novel interactors of c-Jun. {yields} Nuclear accumulation of c-Jun does not require its functions as a transcription factor. {yields} Nuclear accumulation of c-Jun does not require the interaction with its kinase JNK. {yields} Nuclear accumulation of JNK is regulated by interaction with c-Jun. -- Abstract: In order to activate gene expression, transcription factors such as c-Jun have to reside in the nucleus. The abundance of c-Jun in the nucleus correlates with the activity of its target genes. As a consequence of excessive c-Jun activation, cells undergo apoptosis or changes in differentiation whereas decreased c-Jun function can reduce proliferation. In the present study we addressed how nuclear accumulation of the transcription factor c-Jun is regulated. First, we analyzed which functions of c-Jun are required for efficient nuclear accumulation. Mutants of c-Jun deficient in dimerization or DNA-binding show no defect in nuclear transport. Furthermore, c-Jun import into the nucleus of living cells occurred when the c-Jun phosphorylation sites were mutated as well in cells that lack the major c-Jun kinase, JNK, suggesting that c-Jun transport into the nucleus does not require JNK signaling. Conversely, however, binding of c-Jun seemed to enhance nuclear accumulation of JNK. In order to identify proteins that might be relevant for the nuclear translocation of c-Jun we searched for novel binding partners by a proteomic approach. In addition to the heat shock protein HSP70 and the DNA damage repair factors Ku70 and 80, we isolated human importin 8 as a novel interactor of c-Jun. Interaction of Imp 8 with c-Jun in human cells was confirmed by co-immunoprecipitation experiments. Nuclear accumulation of c-Jun does not require its functions as a transcription factor or the interaction with its kinase JNK. Interestingly, nuclear accumulation of JNK is regulated by interaction with c-Jun. Unraveling the

  14. Aryl-hydrocarbon receptor-dependent alteration of FAK/RhoA in the inhibition of HUVEC motility by 3-methylcholanthrene.

    PubMed

    Chang, Chih-Cheng; Tsai, Shih-Ying; Lin, Heng; Li, Hsiao-Fen; Lee, Yi-Hsuan; Chou, Ying; Jen, Chih-Yu; Juan, Shu-Hui

    2009-10-01

    We previously demonstrated the antiproliferative and antiangiogenic effects of 3-methylcholanthrene (3MC), an aryl-hydrocarbon receptor (AhR) agonist, in human umbilical vascular endothelial cells (HUVECs). Herein, we unraveled its molecular mechanisms in inhibiting HUVEC motility. 3MC down-regulated FAK, but up-regulated RhoA, which was rescued by AhR knockdown. It led us to identify novel AhR binding sites in the FAK/RhoA promoters. Additionally, 3MC increased RhoA activity via suppression of a negative feedback pathway of FAK/p190RhoGAP. With an increase in membrane-bound RhoA, subsequent stress fiber and focal adhesion complex formation was observed in 3MC-treated cells, and this was reversed by a RhoA inhibitor and AhR antagonists. Notably, these compounds significantly reversed 3MC-mediated anti-migration in a transwell assay. The in vitro findings were further confirmed using an animal model of Matrigel formation in Balb/c mice. Collectively, AhR's genomic regulation of FAK/RhoA, together with RhoA activation, is ascribable to the anti-migration effect of 3MC in HUVECs.

  15. Synthesis, biological evaluation, and molecular docking studies of novel 1,3,4-oxadiazole derivatives possessing benzotriazole moiety as FAK inhibitors with anticancer activity.

    PubMed

    Zhang, Shuai; Luo, Yin; He, Liang-Qiang; Liu, Zhi-Jun; Jiang, Ai-Qin; Yang, Yong-Hua; Zhu, Hai-Liang

    2013-07-01

    1,3,4-Oxadiazole derivatives have drawn continuing interest over the years because of their varied biological activities. In order to search for novel anticancer agents, we designed and synthesized a series of new 1,3,4-oxadiazole derivatives containing benzotriazole moiety as potential focal adhesion kinase (FAK) inhibitors. All the synthesized compounds were firstly reported. Among the compounds, compound 4 shows the most potent inhibitory activity against MCF-7 and HT29 cell lines with IC50 values of 5.68 μg/ml and 10.21 μg/ml, respectively. Besides, all the compounds were assayed for FAK inhibitory activity using the TRAP-PCR-ELISA assay. The results showed compound 4 exhibited the most potent FAK inhibitory activity with IC50 values of 1.2±0.3 μM. Docking simulation by positioning compound 4 into the FAK structure active site was performed to explore the possible binding mode. Apoptosis which was analyzed by flow cytometry, demonstrated that compound 4 induced apoptosis against MCF-7 cells. Therefore, compound 4 may be a potential anticancer agent against MCF-7 cancer cell.

  16. Anti-tumor effect in human breast cancer by TAE226, a dual inhibitor for FAK and IGF-IR in vitro and in vivo

    SciTech Connect

    Kurio, Naito; Shimo, Tsuyoshi; Fukazawa, Takuya; Takaoka, Munenori; Okui, Tatsuo; Hassan, Nur Mohammad Monsur; Honami, Tatsuki; Hatakeyama, Shinji; Ikeda, Masahiko; Naomoto, Yoshio; Sasaki, Akira

    2011-05-01

    Focal adhesion kinase (FAK) is a 125-kDa non-receptor type tyrosine kinase that localizes to focal adhesions. FAK overexpression is frequently found in invasive and metastatic cancers of the breast, colon, thyroid, and prostate, but its role in osteolytic metastasis is not well understood. In this study, we have analyzed anti-tumor effects of the novel FAK Tyr{sup 397} inhibitor TAE226 against bone metastasis in breast cancer by using TAE226. Oral administration of TAE226 in mice significantly decreased bone metastasis and osteoclasts involved which were induced by MDA-MB-231 breast cancer cells and increased the survival rate of the mouse models of bone metastasis. TAE226 also suppressed the growth of subcutaneous tumors in vivo and the proliferation and migration of MDA-MB-231 cells in vitro. Significantly, TAE226 inhibited the osteoclast formation in murine pre-osteoclastic RAW264.7 cells, and actin ring and pit formation in mature osteoclasts. Moreover, TAE226 inhibited the receptor activator for nuclear factor {kappa} B Ligand (RANKL) gene expression induced by parathyroid hormone-related protein (PTHrP) in bone stromal ST2 cells and blood free calcium concentration induced by PTHrP administration in vivo. These findings suggest that FAK was critically involved in osteolytic metastasis and activated in tumors, pre-osteoclasts, mature osteoclasts, and bone stromal cells and TAE226 can be effectively used for the treatment of cancer induced bone metastasis and other bone diseases.

  17. Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy via the FAK/STAT1 signaling pathway.

    PubMed

    Zhang, Lei; Zou, Wen

    2015-12-01

    Integrin β1 (ITGB1) is frequently upregulated in ovarian cancer, and promotes ovarian tumorigenesis and cancer progression. However, the effects of ITGB1 inhibition on ovarian cancer progression and anticancer therapy remain to be elucidated. The results of the present study indicated that ITGB1 was upregulated in HO‑8910 and HO‑8910PM ovarian cancer cell lines, and knockdown of ITGB1 using short hairpin RNA markedly increased tumor cell apoptosis, decreased tumor cell adhesion and migration, and reduced tumor cell invasion by suppressing matrix metalloproteinase (MMP)‑2 and MMP‑9 expression. Furthermore, the results of the present study provided evidence regarding the role of ITGB1 inhibition in bevacizumab anticancer therapy. The activation of signal transducer and activator of transcription 1 (STAT1) by focal adhesion kinase (FAK) is involved in integrin‑mediated cell migration and adhesion. In the present study, the expression levels of FAK were markedly upregulated in ovarian cancer. The adherence and migratory potentials of ovarian cancer cells were significantly reduced when the FAK/STAT1 signaling pathway was inhibited by fludarabine. The results of the present study demonstrated that ITGB1 inhibition effectively reduced tumorigenesis and disease exacerbation, and contributed to bevacizumab anticancer therapy via the FAK/STAT1 signaling pathway, suggesting that inhibition of ITGB1 is a potential novel therapeutic strategy for ovarian carcinogenesis.

  18. JNK1 regulates histone acetylation in trigeminal neurons following chemical stimulation.

    PubMed

    Wu, Jing; Zhang, Xuan; Nauta, Haring J; Lin, Qing; Li, Junfa; Fang, Li

    2008-11-28

    Trigeminal nerve fibers in nasal and oral cavities are sensitive to various environmental hazardous stimuli, which trigger many neurotoxic problems such as chronic migraine headache and trigeminal irritated disorders. However, the role of JNK kinase cascade and its epigenetic modulation of histone remodeling in trigeminal ganglion (TG) neurons activated by environmental neurotoxins remains unknown. Here we investigated the role of JNK/c-Jun cascade in the regulation of acetylation of H3 histone in TG neurons following in vitro stimulation by a neuro-inflammatory agent, mustard oil (MO). We found that MO stimulation elicited JNK/c-Jun pathway significantly by enhancing phospho-JNK1, phospho-c-Jun expression, and c-Jun activity, which were correlated with an elevated acetylated H3 histone in TG neurons. However, increases in phospho-c-Jun and c-Jun activity were significantly blocked by a JNK inhibitor, SP600125. We also found that altered H3 histone remodeling, assessed by H3 acetylation in triggered TG neurons, was reduced by SP600125. The study suggests that the activated JNK signaling in regulation of histone remodeling may contribute to neuro-epigentic changes in peripheral sensory neurons following environmental neurotoxic exposure.

  19. Ultra Fine Particles from Diesel Engines Induce Vascular Oxidative Stress via JNK Activation

    PubMed Central

    Li, Rongsong; Ning, Zhi; Cui, Jeffery; Khalsa, Bhavraj; Ai, Lisong; Takabe, Wakako; Beebe, Tyler; Majumdar, Rohit; Sioutas, Constantinos; Hsiai, Tzung

    2011-01-01

    Exposure of particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultra fine particles (UFP) from diesel vehicle engines have been shown to be pro-atherogenic in apoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induced vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intra-cellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O2·-) production in human aortic endothelial cells (HAEC). Flow cytometry (FACS) showed that UFP increased MitoSOX Red intensity specific for mitochondrial superoxide. Protein carbonyl content is increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated hemeoxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pre-treatment with antioxidant, N-acetyl cysteine (NAC), significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP stimulated O2·- production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation play an important role in UFP-induced oxidative stress and stress response gene expression. PMID:19154785

  20. Ultrafine particles from diesel engines induce vascular oxidative stress via JNK activation.

    PubMed

    Li, Rongsong; Ning, Zhi; Cui, Jeffery; Khalsa, Bhavraj; Ai, Lisong; Takabe, Wakako; Beebe, Tyler; Majumdar, Rohit; Sioutas, Constantinos; Hsiai, Tzung

    2009-03-15

    Exposure to particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultrafine particles (UFP) from diesel vehicle engines have been shown to be proatherogenic in ApoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induce vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intracellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O(2)(-)) production in human aortic endothelial cells (HAEC). Flow cytometry showed that UFP increased MitoSOX red intensity specific for mitochondrial superoxide. Protein carbonyl content was increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated heme oxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pretreatment with the antioxidant N-acetylcysteine significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with the JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP-stimulated O(2)(-) production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation plays an important role in UFP-induced oxidative stress and stress response gene expression.

  1. Progressive age-associated activation of JNK associates with conduction disruption in the aged atrium.

    PubMed

    Jones, Sandra A; Lancaster, Matthew K

    2015-03-01

    Connexin43 (Cx43) is critical for maintaining electrical conduction across atrial muscle. During progressive ageing atrial conduction slows associating with increasing susceptibility to arrhythmias. Changes in Cx43 protein expression, or its phosphorylation status, can instigate changes in the conduction of the cardiac action potential. This study investigated whether increased levels of activated c-jun N-terminal kinase (JNK) is responsible for the decline of Cx43 during ageing. Right atria from guinea pigs aged between 1 day and 38 months of age were examined. The area of the intercalated disc increased with age concurrent with a 75% decline in C43 protein expression. An age-dependent increase in activated-JNK correlated with a rise in phosphorylated Cx43, but also slowing of action potential conduction velocity across the atria from 0.38±0.01 m/s at 1 month of age to 0.30±0.01 m/s at 38 months. The JNK activator anisomycin increased activated JNK in myocytes and reduced Cx43 protein expression simulating ageing. The JNK inhibitor SP600125, was found to eradicate almost all trace of Cx43 protein. We conclude that in vivo activation of JNK increases with age leading to the loss of Cx43 protein resulting in impaired conduction and contributing to the increasing risk of atrial arrhythmias with advancing age.

  2. Antioxidant NAC and AMPA/KA receptor antagonist DNQX inhibited JNK3 activation following global ischemia in rat hippocampus.

    PubMed

    Tian, Hui; Zhang, Guangyi; Li, Hongchun; Zhang, Quanguang

    2003-06-01

    c-Jun N-terminal kinase-3 (JNK3), the only neural-specific isoform, may play an important role in excitotoxicity and neuronal injury. To analyze the variation of JNK3 activation, levels of phospho-JNK3 were measured at various time points of ischemia and selected time points of reperfusion, respectively. Our study illustrated that JNK3 was rapidly activated and translocated from cytosol to nucleus during ischemia. During reperfusion, two peaks of JNK3 activation occurred at 30 min and 3 days, respectively. To further define the mechanism of JNK3 activation, antioxidant N-acetylcysteine (NAC), alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate (KA) receptor antagonist 6,7-dinitro-quinoxaline-2,3(1H,4H)-dione (DNQX), N-methyl-D-aspartate (NMDA) receptor antagonist ketamine and L-type voltage-gated Ca(2+) channel (L-VGCC) antagonist nifedipine were given to the rats 20 min prior to ischemia. The results showed that NAC obviously inhibited JNK3 activation during the early reperfusion, whereas DNQX preferably attenuated JNK3 activation during the latter reperfusion. Ketamine and nifedipine had no significant effects on JNK3 activation during reperfusion. Consequently, reactive oxygen species (ROS) and AMPA/KA receptor were closely associated with JNK3 activation following global ischemia.

  3. c-Jun N-terminal kinase (JNK) is involved in immune defense against bacterial infection in Crassostrea hongkongensis.

    PubMed

    Qu, Fufa; Xiang, Zhiming; Xiao, Shu; Wang, Fuxuan; Li, Jun; Zhang, Yang; Zhang, Yuehuan; Qin, Yanping; Yu, Ziniu

    2017-02-01

    c-Jun N-terminal kinase (JNK) is a universal and essential subgroup of the mitogen-activated protein kinase (MAPK) superfamily, which is highly conserved from yeast to mammals and functions in a variety of physiological and pathological processes. In this study, we report the first oyster JNK gene homolog (ChJNK) and its biological functions in the Hong Kong oyster Crassostrea hongkongensis. The ChJNK protein consists of 383 amino acids and contains a conserved serine/threonine protein kinase (S_TKc) domain with a typical TPY motif. Phylogenetic analysis revealed that ChJNK shared a close evolutionary relationship with Crassostrea gigas JNK. Quantitative RT-PCR analyses revealed broad expression patterns of ChJNK mRNA in various adult tissues and different embryonic and larval stages of C. hongkongensis. When exposed to Vibrio alginolyticus or Staphylococcus haemolyticus, ChJNK mRNA expression levels were significantly up-regulated in the hemocytes and gills in a time-dependent manner. Additionally, subcellular localization studies that ChJNK is a cytoplasm-localized protein, and that its overexpression could significantly enhance the transcriptional activities of AP-1-Luc in HEK293T cells. In summary, this study provided the first experimental demonstration that oysters possess a functional JNK that participates in host defense against bacterial infection in C. hongkongensis.

  4. Cordycepin promotes apoptosis by modulating the ERK-JNK signaling pathway via DUSP5 in renal cancer cells

    PubMed Central

    Hwang, Jung-Hoo; Joo, Jong Cheon; Kim, Dae Joon; Jo, Eunbi; Yoo, Hwa-Seung; Lee, Kyung-Bok; Park, Soo Jung; Jang, Ik-Soon

    2016-01-01

    Constitutive activation of extracellular signal regulated kinase (ERK)-Jun NH2-terminal kinase (JNK) signaling commonly occurs in tumors. The activation of ERK promotes cell proliferation, whereas that of JNK induces cell apoptosis. However, the apoptotic mechanism of ERK-JNK signaling in cancer is not well understood. Recently, we identified that apoptosis and activation of the JNK signaling pathway were induced after cordycepin treatment in human renal cancer, suggesting that JNK signaling might contribute to TK-10 cell apoptosis. We investigated the apoptotic effects of cordycepin by evaluating the activation of the ERK-JNK signaling pathway in renal cancer TK-10 cells. We found that cordycepin downregulated ERK and DUSP5, upregulated phosphorylated-JNK (p-JNK), and induced apoptosis. Moreover, we showed that siRNA-mediated inhibition of ERK downregulated DUSP5, whereas ERK overexpression upregulated DUSP5, and that DUSP5 knockdown by siRNA upregulated p-JNK. The JNK-specific inhibitor SP600125 upregulated nuclear translocation of β-catenin, and downregulated Dickkopf-1 (Dkk1), which has been shown to be a potent inhibitor of Wnt signaling. Dkk1 knockdown by siRNA upregulated nuclear β-catenin, suggesting the involvement of the Wnt/β-catenin signaling pathway. DUSP5 overexpression in TK-10 cells decreased p-JNK and increased nuclear β-catenin. The decreased Bax activation markedly protected against cordycepin-induced apoptosis. Bax subfamily proteins induced apoptosis through caspase-3. Taken together, we show that JNK signaling activation by cordycepin mediated ERK inhibition, which might have induced Bax translocation and caspase-3 activation via regulation of DUSP5 in TK-10 cells, thereby promoting the apoptosis of TK-10 cells. Targeting ERK-JNK signaling via the apoptotic effects of cordycepin could be a potential therapeutic strategy to treat renal cancer. PMID:27648363

  5. Ang II-AT2R increases mesenchymal stem cell migration by signaling through the FAK and RhoA/Cdc42 pathways in vitro.

    PubMed

    Xu, Xiu-Ping; He, Hong-Li; Hu, Shu-Ling; Han, Ji-Bin; Huang, Li-Li; Xu, Jing-Yuan; Xie, Jian-Feng; Liu, Ai-Ran; Yang, Yi; Qiu, Hai-Bo

    2017-07-12

    Mesenchymal stem cells (MSCs) migrate via the bloodstream to sites of injury and are possibly attracted by inflammatory factors. As a proinflammatory mediator, angiotensin II (Ang II) reportedly enhances the migration of various cell types by signaling via the Ang II receptor in vitro. However, few studies have focused on the effects of Ang II on MSC migration and the underlying mechanisms. Human bone marrow MSCs migration was measured using wound healing and Boyden chamber migration assays after treatments with different concentrations of Ang II, an AT1R antagonist (Losartan), and/or an AT2R antagonist (PD-123319). To exclude the effect of proliferation on MSC migration, we measured MSC proliferation after stimulation with the same concentration of Ang II. Additionally, we employed the focal adhesion kinase (FAK) inhibitor PF-573228, RhoA inhibitor C3 transferase, Rac1 inhibitor NSC23766, or Cdc42 inhibitor ML141 to investigate the role of cell adhesion proteins and the Rho-GTPase protein family (RhoA, Rac1, and Cdc42) in Ang II-mediated MSC migration. Cell adhesion proteins (FAK, Talin, and Vinculin) were detected by western blot analysis. The Rho-GTPase family protein activities were assessed by G-LISA and F-actin levels, which reflect actin cytoskeletal organization, were detected by using immunofluorescence. Human bone marrow MSCs constitutively expressed AT1R and AT2R. Additionally, Ang II increased MSC migration in an AT2R-dependent manner. Notably, Ang II-enhanced migration was not mediated by Ang II-mediated cell proliferation. Interestingly, Ang II-enhanced migration was mediated by FAK activation, which was critical for the formation of focal contacts, as evidenced by increased Talin and Vinculin expression. Moreover, RhoA and Cdc42 were activated by FAK to increase cytoskeletal organization, thus promoting cell contraction. Furthermore, FAK, Talin, and Vinculin activation and F-actin reorganization in response to Ang II were prevented by PD-123319 but

  6. Cigarette smoke-induced lung endothelial apoptosis and emphysema is associated with impairment of FAK and eIF2α

    PubMed Central

    Sakhatskyy, Pavlo; Gabino Miranda, Gustavo Andres; Newton, Julie; Lee, Chun Geun; Choudhary, Gaurav; Vang, Alexander; Rounds, Sharon; Lu, Qing

    2014-01-01

    Lung endothelial cell (EC) apoptosis has been implicated in the pathogenesis of emphysema. However, the mechanism underlying cigarette smoke (CS)-induced lung EC apoptosis and emphysema is not well defined. We have previously shown that cigarette smoke extract (CSE) decreased focal adhesion kinase (FAK) activity via oxidative stress in cultured lung EC. In this study, we compared FAK activation in the lungs of highly susceptible AKR mice and mildly susceptible C57BL/6 mice after exposure to CS for three weeks. We found that three weeks of CS exposure caused mild emphysema and increased lung EC apoptosis in AKR mice (room air: 12.8±5.6%; CS: 30.7±3.7%), but not in C57BL/6 mice (room air: 0±0%; CS: 3.5±1.7%). Correlated with increased lung EC apoptosis and early onset of emphysema, FAK activity was reduced in the lungs of AKR mice, but not in C57BL/6 mice. Additionally, inhibition of FAK caused lung EC apoptosis, whereas over-expression of FAK prevented CSE-induced lung EC apoptosis. These results suggest that FAK inhibition may contribute to CS-induced lung EC apoptosis and emphysema. Unfolded protein response (UPR) and autophagy have been shown to be activated by CS exposure in lung epithelial cells. In this study, we noted that CSE activated UPR and autophagy in cultured lung EC, as indicated by enhanced eIF2α phosphorylation and elevated levels of GRP78 and LC3B-II. However, eIF2α phosphorylation was significantly reduced by three-weeks of CS exposure in the lungs of AKR mice, but not of C57BL/6 mice. Markers for autophagy activation were not significantly altered in the lungs of either AKR or C57BL/6 mice. These results suggest that CS-induced impairment of eIF2α signaling may increase the susceptibility to lung EC apoptosis and emphysema. Taken together, our data suggest that inhibition of eIF2α and FAK signaling may play an important role in CS-induced lung EC apoptosis and emphysema. PMID:24853558

  7. Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion

    PubMed Central

    Shanware, Naval P.; Bray, Kevin; Eng, Christina H.; Wang, Fang; Follettie, Maximillian; Myers, Jeremy; Fantin, Valeria R.; Abraham, Robert T.

    2014-01-01

    The non-essential amino acid, glutamine, exerts pleiotropic effects on cell metabolism, signalling and stress resistance. Here we demonstrate that short-term glutamine restriction triggers an endoplasmic reticulum (ER) stress response that leads to production of the pro-inflammatory chemokine, interleukin-8 (IL-8). Glutamine deprivation-induced ER stress triggers colocalization of autophagosomes, lysosomes and the Golgi into a subcellular structure whose integrity is essential for IL-8 secretion. The stimulatory effect of glutamine restriction on IL-8 production is attributable to depletion of tricarboxylic acid cycle intermediates. The protein kinase, mTOR, is also colocalized with the lysosomal membrane clusters induced by glutamine deprivation, and inhibition of mTORC1 activity abolishes both endomembrane reorganization and IL-8 secretion. Activated mTORC1 elicits IL8 gene expression via the activation of an IRE1-JNK signalling cascade. Treatment of cells with a glutaminase inhibitor phenocopies glutamine restriction, suggesting that these results will be relevant to the clinical development of glutamine metabolism inhibitors as anticancer agents. PMID:25254627

  8. Synthesis, biological evaluation, and molecular dynamics (MD) simulation studies of three novel F-18 labeled and focal adhesion kinase (FAK) targeted 5-bromo pyrimidines as radiotracers for tumor.

    PubMed

    Fang, Yu; Wang, Dawei; Xu, Xingyu; Liu, Jianping; Wu, Aiqin; Li, Xiang; Xue, Qianqian; Wang, Huan; Wang, Hang; Zhang, Huabei

    2017-02-15

    Focal adhesion kinase (FAK) is considered as an attractive target for oncology. A series of F-18 labeled 5-bromo-N(2)-(4-(2-fluoro-pegylated (FPEG))-3,5-dimethoxyphenyl)-N(4)-(4-methoxyphenyl)pyrimidine-2,4-diamine derivatives were prepared and evaluated as the FAK targeted radiotracers for the early diagnoses of tumor. For the study of the FAK targeted drug molecules, this was the first attempt to develop the tumor diagnostic imaging agents on the radiopharmaceutical level. They inhibited the activity of FAK with IC50 in the range of 91.4-425.7 nM, and among which the result of the [(19)F]2 was relatively good and had a modest IC50 of 91.4 nM. The [(19)F]2 was also profiled in vitro against some other kinds of cancer-related kinases (including two kinds of non-receptor tyrosine kinase: PYK2 and JAK2, and three kinds of receptor tyrosine kinase: IGF-1R, EGFR and PDGFRβ). It displayed 25.2 folds selectivity against PYK2, 35.1 folds selectivity against EGFR, and more than 100 folds selectivity against IGF-1R, JAK2 and PDGFRβ. For the biodistribution in S180 bearing mice, the corresponding [(18)F]2 were also relatively good, with modest tumor uptake of 5.47 ± 0.19 and 5.80 ± 0.06 %ID/g at 15 and 30 min post-injection, respectively. Furthermore, its tumor/muscle, tumor/bone and tumor/blood ratio at 15 min post-injection were 3.16, 2.53 and 4.52, respectively. And its tumor/muscle, tumor/bone and tumor/blood ratio at 30