Science.gov

Sample records for jnk-mediated interleukin-2 mrna

  1. Recombinant interleukin 2 regulates levels of c-myc mRNA in a cloned murine T lymphocyte.

    PubMed Central

    Reed, J C; Sabath, D E; Hoover, R G; Prystowsky, M B

    1985-01-01

    The cellular oncogene c-myc has been implicated in the regulation of growth of normal and neoplastic cells. Recently, it was suggested that c-myc gene expression may control the G0----G1-phase transition in normal lymphocytes that were stimulated to enter the cell cycle by the lectin concanavalin A (ConA). Here we describe the effects of purified recombinant interleukin 2 (rIL2) and of ConA on levels of c-myc mRNA in the noncytolytic murine T-cell clone L2. In contrast to resting (G0) primary cultures of lymphocytes, quiescent L2 cells have a higher RNA content than resting splenocytes and express receptors for interleukin 2 (IL2). Resting L2 cells are therefore best regarded as early G1-phase cells. Purified rIL2 was found to stimulate the rapid accumulation of c-myc mRNA in L2 cells. Levels of c-myc mRNA became maximal within 1 h and declined gradually thereafter. In contrast, ConA induced slower accumulation of c-myc mRNA in L2 cells, with increased levels of c-myc mRNA becoming detectable 4 to 8 h after stimulation. Experiments with the protein synthesis inhibitor cycloheximide demonstrated that the increase in levels of c-myc mRNA that were induced by ConA was a direct effect of this lectin and not secondary to IL2 production. Cyclosporin A, an immunosuppressive agent, markedly reduced the accumulation of c-myc mRNA that was induced by ConA but only slightly diminished the accumulation of c-myc mRNA that was induced by rIL2. Taken together, these data provide evidence that (i) c-myc gene expression can be regulated by at least two distinct pathways in T lymphocytes, only one of which is sensitive to cyclosporine A, and (ii) the accumulation of c-myc mRNA can be induced in T cells by IL2 during the G1 phase of the cell cycle. Images PMID:3879814

  2. Detection of three nonsense mutations and one missense mutation in the interleukin-2 receptor [gamma] chain gene in SCIDX1 that differently affect the mRNA processing

    SciTech Connect

    Markiewicz, S.; Fischer, A.; Saint Basile, G. de ); Subtil, A.; Dautry-Varsat, A. )

    1994-05-01

    The interleukin-2 receptor [gamma] (IL-2R[gamma]) chain gene encodes a 64-kDa protein that not only composes the high-affinity form of the IL-2 binding receptor in association with the 2R [alpha] and [beta] chains, but also participates in at least the IL-4 and IL-7 receptor complexes. Mutations in this gene have recently been shown to cause X-linked severe combined immunodeficiency (SCIDX1). This disease of the immune system results from an early block of T lymphocyte and natural killer (NK) cell differentiation, which leads to a severe cellular and humoral immune defect that is lethal unless treated by bone marrow transplantation. Analysis of the IL-2R[gamma] gene in SCIDX1 patients has revealed the presence of heterogeneous mutations principally located in the extracellular domain of the molecule. We report here three intraexonic mutations and one deletion in the IL-2R[gamma] gene in four SCIDX1 patients. These mutations appear to differentially affect RNA processing, either by decreasing IL-2R[gamma] mRNA level or by the skipping of a constitutive exon. 16 refs., 1 fig.

  3. Generation of Interleukin-2 Receptor Gamma Gene Knockout Pigs from Somatic Cells Genetically Modified by Zinc Finger Nuclease-Encoding mRNA

    PubMed Central

    Watanabe, Masahito; Nakano, Kazuaki; Matsunari, Hitomi; Matsuda, Taisuke; Maehara, Miki; Kanai, Takahiro; Kobayashi, Mirina; Matsumura, Yukina; Sakai, Rieko; Kuramoto, Momoko; Hayashida, Gota; Asano, Yoshinori; Takayanagi, Shuko; Arai, Yoshikazu; Umeyama, Kazuhiro; Nagaya, Masaki; Hanazono, Yutaka; Nagashima, Hiroshi

    2013-01-01

    Zinc finger nuclease (ZFN) is a powerful tool for genome editing. ZFN-encoding plasmid DNA expression systems have been recently employed for the generation of gene knockout (KO) pigs, although one major limitation of this technology is the use of potentially harmful genome-integrating plasmid DNAs. Here we describe a simple, non-integrating strategy for generating KO pigs using ZFN-encoding mRNA. The interleukin-2 receptor gamma (IL2RG) gene was knocked out in porcine fetal fibroblasts using ZFN-encoding mRNAs, and IL2RG KO pigs were subsequently generated using these KO cells through somatic cell nuclear transfer (SCNT). The resulting IL2RG KO pigs completely lacked a thymus and were deficient in T and NK cells, similar to human X-linked SCID patients. Our findings demonstrate that the combination of ZFN-encoding mRNAs and SCNT provides a simple robust method for producing KO pigs without genomic integration. PMID:24130776

  4. Human immunodeficiency virus type 1 envelope glycoprotein gp120 produces immune defects in CD4+ T lymphocytes by inhibiting interleukin 2 mRNA.

    PubMed Central

    Oyaizu, N; Chirmule, N; Kalyanaraman, V S; Hall, W W; Pahwa, R; Shuster, M; Pahwa, S

    1990-01-01

    Envelope glycoprotein gp120 of human immunodeficiency virus type 1 (HIV-1) is known to inhibit T-cell function, but little is known about the mechanisms of this immunosuppression. Pretreatment of a CD4+ tetanus toxoid-specific T-cell clone with soluble gp120 was found to exert a dose-dependent inhibition of soluble antigen-driven or anti-CD3 monoclonal antibody-driven proliferative response, interleukin 2 (IL-2) production, and surface IL-2 receptor (IL-2R) alpha-chain expression, all of which were reversed by the addition of exogenous IL-2. mRNA for the gene encoding IL-2 was suppressed by treatment with gp120, but IL-2R gene transcription was not inhibited. Bypass activation of the T-cell clone with phorbol 12-myristate 13-acetate plus ionomycin was unaffected by gp120 pretreatment. Thus, gp120-CD4 interaction interferes with an essential role of the CD4 molecule in signal transduction through the CD3-antigen receptor (Ti) complex. Such a mechanism of gp120-induced immunosuppression, if operative in vivo, could contribute to the depressed specific immune responses associated with HIV infection. Images PMID:2315327

  5. Activation of PI3K/Akt pathway limits JNK-mediated apoptosis during EV71 infection.

    PubMed

    Zhang, Hua; Li, Fengqi; Pan, Ziye; Wu, Zhijun; Wang, Yanhong; Cui, Yudong

    2014-11-01

    Apoptosis is frequently induced to inhibit virus replication during infection of Enterovirus 71 (EV71). On the contrary, anti-apoptotic pathway, such as PI3K/Akt pathway, is simultaneously exploited by EV71 to accomplish the viral life cycle. The relationship by which EV71-induced apoptosis and PI3K/Akt signaling pathway remains to be elucidated. In this study, we demonstrated that EV71 infection altered Bax conformation and triggered its redistribution from the cytosol to mitochondria in RD cells. Subsequently, cytochrome c was released from mitochondria to cytosol. We also found that c-Jun NH2-terminal kinase (JNK) was activated during EV71 infection. The JNK specific inhibitor significantly inhibited Bax activation and cytochrome c release, suggesting that EV71-induced apoptosis was involved into a JNK-dependent manner. Meanwhile, EV71-induced Akt phosphorylation involved a PI3K-dependent mechanism. Inhibition of the PI3K/Akt pathway enhanced JNK phosphorylation and the JNK-mediated apoptosis upon EV71 infection. Moreover, PI3K/Akt pathway phosphorylated apoptosis signal-regulating kinase 1 (ASK1) and negatively regulated the ASK1 activity. Knockdown of ASK1 significantly decreased JNK phosphorylation, which implied that ASK1 phosphorylation by Akt inhibited ASK1-mediated JNK activation. Collectively, these data reveal that activation of the PI3K/Akt pathway limits JNK-mediated apoptosis by phosphorylating and inactivating ASK1 during EV71 infection.

  6. A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy

    PubMed Central

    He, Weiyang; Wang, Qiong; Srinivasan, Balasubramanian; Xu, Jennings; Padilla, Mabel T.; Li, Zi; Wang, Xia; Liu, Yushi; Gou, Xin; Shen, Han-Ming; Xing, Chengguo; Lin, Yong

    2014-01-01

    Killing cancer cells through the induction of apoptosis is one of the main mechanisms of chemotherapy. However, numerous cancer cells have primary or acquired apoptosis resistance, resulting in chemoresistance. In this study, using a novel chalcone derivative chalcone-24 (Chal-24), we identified a novel anticancer mechanism through autophagy-mediated necroptosis (RIP1- and RIP3-dependent necrosis). Chal-24 potently killed different cancer cells with induction of necrotic cellular morphology while causing no detectable caspase activation. Blocking the necroptosis pathway with either necrostatin-1 or by knockdown of RIP1 and RIP3 effectively blocked the cytotoxicity of Chal-24, suggesting that Chal-24-induced cell death is associated with necroptosis. Chal-24 robustly activated JNK and ERK and blockage of which effectively suppressed Chal-24-induced cytotoxicity. In addition, Chal-24 strongly induced autophagy that is dependent on JNK-mediated phosphorylation of Bcl-2 and Bcl-xL and dissociation of Bcl-2 or Bcl-xL from Beclin1. Importantly, suppression of autophagy, with either pharmacological inhibitors or siRNAs targeting the essential autophagy components ATG7 and Beclin1, effectively attenuated Chal-24-induced cell death. Furthermore, we found that autophagy activation resulted in c-IAP1 and c-IAP2 degradation and formation of the Ripoptosome that contributes to necroptosis. These results thus establish a novel mechanism for killing cancer cells that involves autophagy-mediated necroptosis, which may be employed for overcoming chemoresistance. PMID:23831571

  7. Dexamethasone inhibits human interleukin 2 but not interleukin 2 receptor gene expression in vitro at the level of nuclear transcription.

    PubMed Central

    Boumpas, D T; Anastassiou, E D; Older, S A; Tsokos, G C; Nelson, D L; Balow, J E

    1991-01-01

    Glucocorticosteroids have an inhibitory effect on the expression of interleukin 2 (IL-2) and interleukin 2 receptor (IL-2R) genes. To determine the mechanisms of this inhibition, human T lymphocytes were stimulated with mitogens in the presence of dexamethasone. Nuclear transcription run-off assays showed that high doses of dexamethasone inhibited the transcription of the IL-2 gene but not that of the IL-2R gene. Post-transcriptionally, high doses of dexamethasone (10(-4) M) were required to inhibit IL-2R mRNA levels by 50%, whereas lower doses (10(-6) M) inhibited by greater than 70% the accumulation of IL-2 mRNA. IL-2 mRNA half-life decreased in the presence of dexamethasone (10(-6) M) by approximately 50%. At the protein product level, dexamethasone inhibited both IL-2 production, as well as cell surface and soluble forms of IL-2R. IL-2R gene expression was inhibited for at least 72 h after exposure of cells to dexamethasone. In the presence of exogenous IL-2, dexamethasone failed to exert a significant effect on the production of IL-2R protein. These data indicate that dexamethasone has a greater effect on the expression of the IL-2 gene than on the IL-2R gene. Dexamethasone both inhibits transcription of the IL-2 gene and decreases the stability of IL-2 mRNA. The effect of dexamethasone on the IL-2R gene is post-transcriptional and may result indirectly from decreased IL-2 production. Images PMID:2022743

  8. Nobiletin inhibits human osteosarcoma cells metastasis by blocking ERK and JNK-mediated MMPs expression.

    PubMed

    Cheng, Hsin-Lin; Hsieh, Ming-Ju; Yang, Jia-Sin; Lin, Chiao-Wen; Lue, Ko-Haung; Lu, Ko-Hsiu; Yang, Shun-Fa

    2016-06-01

    Nobiletin, a polymethoxyflavone, has a few pharmacological activities, including anti-inflammation and anti-cancer effects. However, its effect on human osteosarcoma progression remains uninvestigated. Therefore, we examined the effectiveness of nobiletin against cellular metastasis of human osteosarcoma and the underlying mechanisms. Nobiletin, up to 100 μM without cytotoxicity, significantly decreased motility, migration and invasion as well as enzymatic activities, protein levels and mRNA expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in U2OS and HOS cells. In addition to inhibition of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), the inhibitory effect of nobiletin on the DNA-binding activity of the transcription factor nuclear factor-kappa B (NF-κB), cAMP response element-binding protein (CREB), and specificity protein 1 (SP-1) in U2OS and HOS cells. Co-treatment with ERK and JNK inhibitors and nobiletin further reduced U2OS cells migration and invasion. These results indicated that nobiletin inhibits human osteosarcoma U2OS and HOS cells motility, migration and invasion by down-regulating MMP-2 and MMP-9 expressions via ERK and JNK pathways and through the inactivation of downstream NF-κB, CREB, and SP-1. Nobiletin has the potential to serve as an anti-metastatic agent for treating osteosarcoma.

  9. Nobiletin inhibits human osteosarcoma cells metastasis by blocking ERK and JNK-mediated MMPs expression

    PubMed Central

    Cheng, Hsin-Lin; Hsieh, Ming-Ju; Yang, Jia-Sin; Lin, Chiao-Wen; Lue, Ko-Haung; Lu, Ko-Hsiu; Yang, Shun-Fa

    2016-01-01

    Nobiletin, a polymethoxyflavone, has a few pharmacological activities, including anti-inflammation and anti-cancer effects. However, its effect on human osteosarcoma progression remains uninvestigated. Therefore, we examined the effectiveness of nobiletin against cellular metastasis of human osteosarcoma and the underlying mechanisms. Nobiletin, up to 100 μM without cytotoxicity, significantly decreased motility, migration and invasion as well as enzymatic activities, protein levels and mRNA expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in U2OS and HOS cells. In addition to inhibition of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), the inhibitory effect of nobiletin on the DNA-binding activity of the transcription factor nuclear factor-kappa B (NF-κB), cAMP response element-binding protein (CREB), and specificity protein 1 (SP-1) in U2OS and HOS cells. Co-treatment with ERK and JNK inhibitors and nobiletin further reduced U2OS cells migration and invasion. These results indicated that nobiletin inhibits human osteosarcoma U2OS and HOS cells motility, migration and invasion by down-regulating MMP-2 and MMP-9 expressions via ERK and JNK pathways and through the inactivation of downstream NF-κB, CREB, and SP-1. Nobiletin has the potential to serve as an anti-metastatic agent for treating osteosarcoma. PMID:27144433

  10. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways

    SciTech Connect

    Nguyen Ngoc, Tam Dan; Son, Young-Ok; Lim, Shin-Saeng; Shi, Xianglin; Kim, Jong-Ghee; Heo, Jung Sun; Choe, Youngji; Jeon, Young-Mi; Lee, Jeong-Chae

    2012-03-15

    Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G{sub 2}/M phase. The addition of NaF induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45α. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-α or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways. -- Highlights: ► The mode of NaF-induced cell death and the mechanisms involved were examined. ► NaF induced mainly apoptotic death of mouse embryonic stem cells (mESCs). ► NaF induced mitochondrial-mediated and caspase-dependent apoptosis. ► JNK- and p53-mediated pathways are involved in NaF-mediated apoptosis in the cells. ► ROS are the up-stream effector in NaF-mediated activation of JNK and p53 in mESCs.

  11. Acute scurvy during treatment with interleukin-2.

    PubMed

    Alexandrescu, D T; Dasanu, C A; Kauffman, C L

    2009-10-01

    The association of vitamin C deficiency with nutritional factors is commonly recognized. However, an acute form of scurvy can occur in patients with an acute systemic inflammatory response, which is produced by sepsis, medications, cancer or acute inflammation. The frequency of acute hypovitaminosis C in hospitalized patients is higher than previously recognized. We report the occurrence of acute signs and symptoms of scurvy (perifollicular petechiae, erythema, gingivitis and bleeding) in a patient hospitalized for treatment of metastatic renal-cell carcinoma with high-dose interleukin-2. Concomitantly, serum vitamin C levels decreased to below normal. Better diets and longer lifespan may result a lower frequency of acute scurvy and a higher frequency of scurvy associated with systemic inflammatory responses. Therefore, increased awareness of this condition can lead to early recognition of the cutaneous signs of acute scurvy in hospitalized patients with acute illnesses or in receipt of biological agents, and prevent subsequent morbidity such as bleeding, anaemia, impaired immune defences, oedema or neurological symptoms.

  12. The interleukin-2-deficient mouse model.

    PubMed

    Barmeyer, C; Horak, I; Zeitz, M; Fromm, M; Schulzke, J D

    Interleukin-2-deficient (IL-2(-/-)) mice develop colitis with striking clinical and morphological similarities to ulcerative colitis. Since transport and barrier properties are impaired in ulcerative colitis, we studied transport and barrier functions in IL-2(-/-) mice in order to gain insight for the first time into the general pathomechanisms of disturbed transport and barrier function of the intestine during inflammation. Alternating current impedance analysis was used to determine tissue conductance in the inflamed proximal colon of IL-2(-/-) mice and to discriminate between pure epithelial and subepithelial conductance. Surprisingly, epithelial conductance was not increased but diminished in IL-2(-/-) mice compared to controls (20.2 +/- 1.3 versus 28.8 +/- 2.8 mS/cm(2)). Concomitantly, conductance of the subepithelial tissue layers was decreased in IL-2(-/-) mice as a result of edema and infiltration with inflammatory cells. In the distal colon, electrogenic Na(+) transport (J(Na)) mediated by the epithelial Na(+) channel (ENaC) was measured 8 h after stimulation with 3.10(-9) M aldosterone in vitro as the drop in I(SC) (short circuit current) after addition of 10(-4) M amiloride. In controls, J(Na) was 6.9 +/- 0.9 micromol x h(-1) x cm(-2), whereas it was abolished in IL-2(-/-) mice. In conclusion, the inflamed colon of IL-2(-/-) mice exhibits a severe disturbance in Na(+) uptake via the ENaC in the absence of a barrier defect. Thus, reduced expression of active absorptive transport and not a barrier defect is responsible for the diarrhea in this model of intestinal inflammation. This makes this model suitable for studying the general pathomechanisms of the inflammatory downregulation of intestinal transport proteins.

  13. Soluble interleukin-2 receptor α and interleukin-2 serum levels in patients with basal cell carcinoma

    PubMed Central

    Bien, Ewa; Zablotna, Monika; Sokolowska-Wojdylo, Malgorzata; Sikorska, Monika; Lange, Magdalena; Nowicki, Roman

    2016-01-01

    Introduction Basal cell carcinoma (BCC) is an immunogenic neoplasm and the imbalance in Th1/Th2 cytokines expression seems to play the major role in pathogenesis and clinical behaviour of the tumour. Aim To investigate the association of soluble interleukin 2α receptor (sIL-2Rα) and interleukin-2 (IL-2) serum concentrations with BCC. Material and methods The study involved 110 individuals with BCC and 60 healthy age- and sex-matched volunteers. Serum levels of sIL-2Rα and IL-2 were measured using ELISA test. Results We found significantly (p = 0.027) increased sIL-2Rα serum levels in BCC patients, in comparison to healthy controls. Statistically (p = 0.04) higher sIL-2Rα levels were observed in patients with more advanced tumours. Serum levels of sIL-2Rα showed a significant linear (r = 0.24, p = 0.018) correlation with tumour size. The average IL-2 serum levels in BCC patients were statistically (p = 0.039) decreased compared to controls. Significantly (p = 0.0454) lower median IL-2 levels were observed in patients with more advanced tumours. A negative correlation between sIL-2Rα and IL-2 serum concentrations was revealed (r = –0.22; p = 0.027). Conclusions Our results testify to the importance of the IL-2/sIL-2Rα signalling pathway in pathogenesis of BCC, suggesting that IL-2 and sIL-2Rα might be considered as potential markers of disease and targets for immunotherapy in BCC patients. PMID:27605896

  14. Soluble interleukin-2 receptor α and interleukin-2 serum levels in patients with basal cell carcinoma

    PubMed Central

    Bien, Ewa; Zablotna, Monika; Sokolowska-Wojdylo, Malgorzata; Sikorska, Monika; Lange, Magdalena; Nowicki, Roman

    2016-01-01

    Introduction Basal cell carcinoma (BCC) is an immunogenic neoplasm and the imbalance in Th1/Th2 cytokines expression seems to play the major role in pathogenesis and clinical behaviour of the tumour. Aim To investigate the association of soluble interleukin 2α receptor (sIL-2Rα) and interleukin-2 (IL-2) serum concentrations with BCC. Material and methods The study involved 110 individuals with BCC and 60 healthy age- and sex-matched volunteers. Serum levels of sIL-2Rα and IL-2 were measured using ELISA test. Results We found significantly (p = 0.027) increased sIL-2Rα serum levels in BCC patients, in comparison to healthy controls. Statistically (p = 0.04) higher sIL-2Rα levels were observed in patients with more advanced tumours. Serum levels of sIL-2Rα showed a significant linear (r = 0.24, p = 0.018) correlation with tumour size. The average IL-2 serum levels in BCC patients were statistically (p = 0.039) decreased compared to controls. Significantly (p = 0.0454) lower median IL-2 levels were observed in patients with more advanced tumours. A negative correlation between sIL-2Rα and IL-2 serum concentrations was revealed (r = –0.22; p = 0.027). Conclusions Our results testify to the importance of the IL-2/sIL-2Rα signalling pathway in pathogenesis of BCC, suggesting that IL-2 and sIL-2Rα might be considered as potential markers of disease and targets for immunotherapy in BCC patients.

  15. Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes

    SciTech Connect

    Latchoumycandane, Calivarathan; Seah, Quee Ming; Tan, Rachel C.H.; Sattabongkot, Jetsumon; Beerheide, Walter; Boelsterli, Urs A. . E-mail: phcbua@nus.edu.sg

    2006-11-15

    Leflunomide, a disease-modifying anti-rheumatic drug, protects against T-cell-mediated liver injury by poorly understood mechanisms. The active metabolite of leflunomide, A77 1726 (teriflunomide) has been shown to inhibit stress-activated protein kinases (JNK pathway), which are key regulators of mitochondria-mediated cell death. Therefore, we hypothesized that leflunomide may protect from drugs that induce the mitochondrial permeability transition (mPT) by blocking the JNK signaling pathway. To this end, we exposed cultured immortalized human hepatocytes (HC-04) to the standard protoxicant drug acetaminophen (APAP), which induces CsA-sensitive mPT-mediated cell death. We determined the effects of leflunomide on the extent of APAP-induced hepatocyte injury and the upstream JNK-mediated mitochondrial signaling pathways. We found that leflunomide or A77 1726 concentration-dependently protected hepatocytes from APAP (1 mM)-induced mitochondrial permeabilization and lethal cell injury. This was not due to proximal inhibition of CYP-catalyzed APAP bioactivation to its thiol-reactive metabolite. Instead, we demonstrate that leflunomide (20 {mu}M) inhibited the APAP-induced early (3 h) activation (phosphorylation) of JNK1/2, thus inhibiting phosphorylation of the anti-apoptotic protein Bcl-2 and preventing P-Bcl-2-mediated induction of the mPT. This greatly attenuated mitochondrial cytochrome c release, which we used as a marker for mitochondrial permeabilization. The specific JNK2 inhibitor SP600125 similarly protected from APAP-induced cell death. In conclusion, these findings are consistent with our hypothesis that leflunomide protects from protoxicant-induced hepatocyte injury by inhibiting JNK signaling and preventing mPT induction.

  16. c-Jun N-terminal kinase (JNK)-mediated modulation of brain mitochondria function: new target proteins for JNK signalling in mitochondrion-dependent apoptosis.

    PubMed Central

    Schroeter, Hagen; Boyd, Clinton S; Ahmed, Ruhi; Spencer, Jeremy P E; Duncan, Roger F; Rice-Evans, Catherine; Cadenas, Enrique

    2003-01-01

    The molecular mechanisms underlying the initiation and control of the release of cytochrome c during mitochondrion-dependent apoptosis are thought to involve the phosphorylation of mitochondrial Bcl-2 and Bcl-x(L). Although the c-Jun N-terminal kinase (JNK) has been proposed to mediate the phosphorylation of Bcl-2/Bcl-x(L) the mechanisms linking the modification of these proteins and the release of cytochrome c remain to be elucidated. This study was aimed at establishing interdependency between JNK signalling and mitochondrial apoptosis. Using an experimental model consisting of isolated, bioenergetically competent rat brain mitochondria, these studies show that (i) JNK catalysed the phosphorylation of Bcl-2 and Bcl-x(L) as well as other mitochondrial proteins, as shown by two-dimensional isoelectric focusing/SDS/PAGE; (ii) JNK-induced cytochrome c release, in a process independent of the permeability transition of the inner mitochondrial membrane (imPT) and insensitive to cyclosporin A; (iii) JNK mediated a partial collapse of the mitochondrial inner-membrane potential (Deltapsim) in an imPT- and cyclosporin A-independent manner; and (iv) JNK was unable to induce imPT/swelling and did not act as a co-inducer, but as an inhibitor of Ca-induced imPT. The results are discussed with regard to the functional link between the Deltapsim and factors influencing the permeability transition of the inner and outer mitochondrial membranes. Taken together, JNK-dependent phosphorylation of mitochondrial proteins including, but not limited to, Bcl-2/Bcl-x(L) may represent a potential of the modulation of mitochondrial function during apoptosis. PMID:12614194

  17. Ginsenoside Rb3 protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of JNK-mediated NF-κB pathway: a mouse cardiomyocyte model.

    PubMed

    Ma, Lijia; Liu, Huimin; Xie, Zulong; Yang, Shuang; Xu, Wei; Hou, Jingbo; Yu, Bo

    2014-01-01

    Ginsenoside Rb3 is extracted from the plant Panax ginseng and plays important roles in cardiovascular diseases, including myocardial ischemia-reperfusion (I/R) injury. NF-κB is an important transcription factor involved in I/R injury. However, the underlying mechanism of ginsenoside Rb3 in myocardial I/R injury remains poorly understood. In the current study, a model of myocardial I/R injury was induced via oxygen and glucose deprivation (OGD) followed by reperfusion (OGD-Rep) in mouse cardiac myoblast H9c2 cells. Our data demonstrate that ginsenoside Rb3 suppresses OGD-Rep-induced cell apoptosis by the suppression of ROS generation. By detecting the NF-κB signaling pathway, we discover that the protective effect of ginsenoside Rb3 on the OGD-Rep injury is closely related to the inhibition of NF-κB activity. Ginsenoside Rb3 inhibits the upregulation of phospho-IκB-α and nuclear translocation of NF-κB subunit p65 which are induced by ORD-Rep injury. In addition, the extract also inhibits the OGD-Rep-induced increase in the expression of inflammation-related factors, such as IL-6, TNF-α, monocyte chemotactic protein-1 (MCP-1), MMP-2 and MMP-9. However, LPS treatment alleviates the protective roles of ginsenoside Rb3 and activates the NF-κB pathway. Finally, the upstream factors of NF-κB were analyzed, including the Akt/Foxo3a and MAPK signaling pathways. We find that ginsenoside Rb3 pretreatment only decreases the phosphorylation of JNK induced by OGD-Rep injury, an indicator of the MAPK pathway. Importantly, an inhibitor of phospho-JNK, SP600125, protects against OGD-Rep induced apoptosis and inhibited NF-κB signaling pathway, similar to the roles of ginsenoside Rb3. Taken together, our results demonstrate that the protective effect of ginsenoside Rb3 on the OGD-Rep injury is attributed to the inhibition of JNK-mediated NF-κB activation, suggesting that ginsenoside Rb3 has the potential to serve as a novel therapeutic agent for myocardial I/R injury. PMID

  18. Interleukin-2 therapy reverses some immunosuppressive effects of skeletal unloading

    NASA Technical Reports Server (NTRS)

    Armstrong, Jason W.; Balch, Signe; Chapes, Stephen K.

    1994-01-01

    Using antiorthostatic suspension, we characterized hematopoietic changes that may be responsible for the detrimental effect of skeletal unloading on macrophage development. Skeletally unloaded mice had suppressed macrophage development in unloaded and loaded bones, which indicated a systemic effect. Bone marrow cells from unloaded mice secreted less macrophage colony-stimulating factor and interleukin-6 than control mice. Additionally, T-lymphocyte proliferation was reduced after skeletal unloading. We show that polyethylene glycol-interleukin-2 therapy reversed the effects of skeletal unloading on macrophage development and cell proliferation.

  19. Interleukin-2 dependent cytotoxic T-cell clones

    SciTech Connect

    Palladino, M.

    1987-07-28

    A method is described of stimulating production of the lymphokines ..cap alpha..-interferon and ..beta..-interferon by interleukin-2 dependent cytotoxic cultured T-cell lines comprising administering to a T-cell line selected from the group consisting of T-cell lines CTLL-RP (CRL 8201), CTLL-R8 (CRL 8202), CTLL-R9 (CRL 8203), CTLL-R11 (CRL 8204), and CTLL-R12 (CRL 8205). An amount of an antigen selected from the group consists of Newcastle Disease Virus and Sendai Virus sufficient to cause stimulation of production of the lymphokines.

  20. Interleukin-2 gene transfer into human transitional cell carcinoma of the urinary bladder

    PubMed Central

    Milella, M; Jacobelli, J; Cavallo, F; Guarini, A; Velotti, F; Frati, L; Foà, R; Forni, G; Santoni, A

    1999-01-01

    Transitional cell carcinoma of the bladder is one of the human cancers most responsive to immunotherapy, and local interleukin-2 (IL-2) production appears to be an important requirement for immunotherapy to be effective. In this study, we engineered two human bladder cancer cell lines (RT112 and EJ) to constitutively release human IL-2 by retroviral vector-mediated gene transfer. Following infection and selection, stable and consistent production of biologically active IL-2 was demonstrated at both the mRNA and the protein level. Morphology, in vitro growth rate and proliferation, as well as other cytokine gene mRNA or membrane adhesion receptor expression, were not altered in IL-2 transduced cells as compared to their parental or control vector-infected counterparts. Moreover, IL-2 engineered cells lost their tumorigenicity into nu/nu mice and the mechanism of rejection appeared to involve multiple host effector cell populations, among which a prominent role was played by neutrophils and radiosensitive cells. These findings may offer support to the development of an IL-2-based gene therapy approach to human bladder cancer. 1999 Cancer Research Campaign PMID:10070868

  1. Multiple cerebral lesions complicating therapy with interleukin-2.

    PubMed

    Karp, B I; Yang, J C; Khorsand, M; Wood, R; Merigan, T C

    1996-08-01

    We reviewed the records and radiologic studies of eight patients who developed new focal neurologic abnormalities while receiving interleukin-2 (IL2)-based immunotherapy for malignancy or HIV infection. Initial confusion and delirium in the patients evolved into coma, ataxia, hemiparesis, seizures, and cortical syndromes including aphasia, apraxia, and cortical blindness. Imaging studies showed multiple white and gray matter lesions with a predilection for the occipital poles, centrum semiovale, and cerebellum. After cessation of IL2 treatment, seven patients improved to normal or near-normal neurologic function paralleled by resolution of the lesions on scans. One patient improved only minimally. Possible etiologies for the lesions include an IL2-induced cerebral vasculopathy, a direct toxic effect of IL2, or immunologically mediated damage.

  2. [Interleukin 2 revival: a revisited model and new therapeutic applications].

    PubMed

    Jacques, Yannick; Mortier, Erwan

    2016-01-01

    Interleukin-2, a cytokine identified as T-cell growth factor, has long been regarded as central to the development and effector activities of immune responses. Several gene knockout mouse studies and observations in humans, however, have undermined that vision, and the discovery of regulatory T cells showed that IL-2, in contrast to the accepted dogma, has the essential function of promoting (1) homeostasis and (2) the function of these T regulator cells the which, limit the action of the effector cells, in particular to prevent the autoimmune reaction drifts. This new paradigm has major implications on the use of IL-2 in therapy, and creates new strategies to manipulate the Teffectors/Tregulators balance. PMID:27406772

  3. Effect of spaceflight on lymphocyte proliferation and interleukin-2 production

    NASA Technical Reports Server (NTRS)

    Nash, Patricia V.; Konstantinova, Irina V.; Fuchs, Boris B.; Rakhmilevich, Alexandr L.; Lesniak, A. T.; Mastro, Andrea M.

    1992-01-01

    In this study, inguinal lymp node lymphocytes from rats flown on the Cosmos 2044 mission were tested for proliferation and interleukin-2 (IL-2) production. Cells cultured with mitogenic lectins, phorbol ester, and calcium ionophore, or T-cell mitogen and lymphokine, were assayed for DNA synthesis by (H-3) thymidine incorporation. Lymphocytes incubated with a T-cell mitogen alone also were tested for IL-2 production. Proliferation of lymphocytes from flight rats was not significantly different from controls for any of the mitogens tested. Furthermore, lymph node lymphocytes from control and flown rats produced similar amounts of IL-23. Thus microgravity may act on lymphocytes in a tissue-specific manner, a new finding that could impact on the evaluation of spaceflight effects on immunocompetence.

  4. Enhancement of interleukin-2 immunotherapy with L-arginine.

    PubMed

    Lieberman, M D; Nishioka, K; Redmond, H P; Daly, J M

    1992-02-01

    Nutrient substrates have been shown to enhance cell-mediated immunity, but their role as adjuvants to immunotherapy has not been previously determined. This study evaluated L-arginine as an essential substrate for optimal generation of lymphokine-activated killer (LAK) cells. This experiment also assessed supplemental dietary L-arginine as a means to potentiate the host antitumor response to interleukin-2 (IL-2) in a murine neuroblastoma (NRB) model. A/J mice received 1% arginine or isonitrogenous 1.7% glycine in addition to a regular diet 14 days before subcutaneous inoculation with C1300 NRB cells. Twenty-four hours later, animals received low (1 x 10(6) U/kg three times a day) or high (3 x 10(6) U/kg three times a day) doses of IL-2 or saline intraperitoneally for 4 days. On days 4 and 10 post-C1300 NRB inoculation, mice were killed for assessment of natural killer cell and tumor specific cytotoxicity. Remaining animals were followed for tumor incidence, tumor growth, and duration of host survival. Interleukin-2 therapy in mice receiving dietary arginine compared with those receiving glycine resulted in significantly augmented natural killer cell cytotoxicity (day 4) and generation of specific tumoricidal mechanisms (day 10). The addition of dietary arginine to low-dose IL-2 therapy significantly diminished C1300 NRB engraftment (p less than 0.05) and growth (p less than 0.001) and prolonged the duration of host survival (p less than 0.05) compared with the glycine treatment group. In vitro studies demonstrated that L-arginine is an essential substrate for optimal generation of LAK cells. Thus, supplemental dietary L-arginine enhances lymphocyte cytotoxic mechanisms and potentiates IL-2 immunotherapy.

  5. Human Interleukin-2 and Hen Egg White Lysozyme: Screening for Bacteriolytic Activity against Various Bacterial Cells

    PubMed Central

    Levashov, P. A.; Ovchinnikova, E. D.; Morozova, O. A.; Matolygina, D. A.; Osipova, H. E.; Cherdyntseva, T. A.; Savin, S. S.; Zakharova, G. S.; Alekseeva, A. A.; Belogurova, N. G.; Smirnov, S. A.; Tishkov, V. I.; Levashov, A. V.

    2016-01-01

    The bacteriolytic activity of interleukin-2 and hen egg white lysozyme against 34 different species of microorganisms has been studied. It was found that 6 species of microorganisms are lysed in the presence of interleukin-2. All interleukin-2-sensitive microorganisms belong either to the Enterobacteriaceae, Bacillaceae, or the Lactobacillaceae family. It was also found that 12 species of microorganisms are lysed in the presence of lysozyme, and 16 species of microorganisms are lysed in the presence of sodium dodecyl sulfate (SDS). The bacteriolytic activity of interleukin-2 and lysozyme was studied at various pH values. PMID:27099789

  6. Human Interleukin-2 and Hen Egg White Lysozyme: Screening for Bacteriolytic Activity against Various Bacterial Cells.

    PubMed

    Levashov, P A; Ovchinnikova, E D; Morozova, O A; Matolygina, D A; Osipova, H E; Cherdyntseva, T A; Savin, S S; Zakharova, G S; Alekseeva, A A; Belogurova, N G; Smirnov, S A; Tishkov, V I; Levashov, A V

    2016-01-01

    The bacteriolytic activity of interleukin-2 and hen egg white lysozyme against 34 different species of microorganisms has been studied. It was found that 6 species of microorganisms are lysed in the presence of interleukin-2. All interleukin-2-sensitive microorganisms belong either to the Enterobacteriaceae, Bacillaceae, or the Lactobacillaceae family. It was also found that 12 species of microorganisms are lysed in the presence of lysozyme, and 16 species of microorganisms are lysed in the presence of sodium dodecyl sulfate (SDS). The bacteriolytic activity of interleukin-2 and lysozyme was studied at various pH values.

  7. Erythropoietin and interleukin-2 activate distinct JAK kinase family members.

    PubMed Central

    Barber, D L; D'Andrea, A D

    1994-01-01

    The erythropoietin (EPO) receptor and the interleukin-2 (IL-2) receptor beta-chain subunit are members of the cytokine receptor superfamily. They have conserved primary amino acid sequences in their cytoplasmic domains and activate phosphorylation of common substrates, suggesting common biochemical signaling mechanisms. We have generated a cell line, CTLL-EPO-R, that contains functional cell surface receptors for both EPO and IL-2. CTLL-EPO-R cells demonstrated similar growth kinetics in EPO and IL-2. Stimulation with EPO resulted in the rapid, dose-dependent tyrosine phosphorylation of JAK2. In contrast, stimulation with IL-2 or the related cytokine IL-4 resulted in the rapid, dose-dependent tyrosine phosphorylation of JAK1 and an additional 116-kDa protein. This 116-kDa protein was itself immunoreactive with a polyclonal antiserum raised against JAK2 and appears to be a novel member of the JAK kinase family. Immune complex kinase assays confirmed that IL-2 and IL-4 activated JAK1 and EPO activated JAK2. These results demonstrate that multiple biochemical pathways are capable of conferring a mitogenic signal in CTLL-EPO-R cells and that the EPO and IL-2 receptors interact with distinct JAK kinase family members within the same cellular background. Images PMID:7935373

  8. Intravenous ascorbic acid as an adjuvant to interleukin-2 immunotherapy

    PubMed Central

    2014-01-01

    Interleukin-2 (IL-2) therapy has been demonstrated to induce responses in 10-20% of advanced melanoma and renal cell carcinoma patients, which translates into durable remissions in up to half of the responsers. Unfortunately the use of IL-2 has been associated with severe toxicity and death. It has been previously observed and reported that IL-2 therapy causes a major drop in circulating levels of ascorbic acid (AA). The IL-2 induced toxicity shares many features with sepsis such as capillary leakage, systemic complement activation, and a relatively non-specific rise in inflammatory mediators such as TNF-alpha, C-reactive protein, and in advanced cases organ failure. Animal models and clinical studies have shown rapid depletion of AA in conditions of sepsis and amelioration associated with administration of AA (JTM 9:1-7, 2011). In contrast to other approaches to dealing with IL-2 toxicity, which may also interfere with therapeutic effects, AA possesses the added advantage of having direct antitumor activity through cytotoxic mechanisms and suppression of angiogenesis. Here we present a scientific rationale to support the assessment of intravenous AA as an adjuvant to decrease IL-2 mediated toxicity and possibly increase treatment efficacy. PMID:24884532

  9. Interleukin 2 activates extracellular signal-regulated protein kinase 2

    PubMed Central

    1993-01-01

    Interleukin 2 (IL-2) stimulated activation of the 42-kD extracellular signal-regulated kinase 2 (Erk2) in murine IL-3-dependent cells, expressing either high or intermediate affinity IL-2 receptors. Activation was both rapid, occurring within 5 min of IL-2 addition, and prolonged, remaining elevated for 30 min. Activation of Erk2 appeared to be necessary for IL-2 stimulation of proliferation, as deletion of a region of the cytoplasmic domain of the IL-2 receptor beta chain, essential for IL-2 stimulation of proliferation, abolished Erk2 activation by IL-2. Furthermore, cells that had been deprived of cytokine for 24 h were then refractory to IL-2 stimulation of both Erk2 activity and proliferation. However, elevation of Erk2 activity was not sufficient to stimulate proliferation, as protein kinase C activation stimulated Erk2 activity but not DNA synthesis. Also, cells exposed to IL-2 in the presence of rapamycin showed full Erk2 activation but not DNA synthesis. These data suggest that IL-2 must stimulate both Erk2 activity and a further pathway(s) to trigger cell proliferation. PMID:8376945

  10. Interleukin-2 carbohydrate recognition modulates CTLL-2 cell proliferation.

    PubMed

    Fukushima, K; Yamashita, K

    2001-03-01

    Interleukin-2 (IL-2) specifically recognizes high-mannose type glycans with five or six mannosyl residues. To determine whether the carbohydrate recognition activity of IL-2 contributes to its physiological activity, the inhibitory effects of high-mannose type glycans on IL-2-dependent CTLL-2 cell proliferation were investigated. Man(5)GlcNAc(2)Asn added to CTLL-2 cell cultures inhibited not only phosphorylation of tyrosine kinases but also IL-2-dependent cell proliferation. We found that a complex of IL-2, IL-2 receptor alpha, beta, gamma subunits, and tyrosine kinases was formed in rhIL-2-stimulated CTLL-2 cells. Among the components of this complex, only the IL-2 receptor alpha subunit was stained with Galanthus nivalis agglutinin which specifically recognizes high-mannose type glycans. This staining was diminished after digestion of the glycans with endo-beta-N-acetylglucosaminidase H or D, suggesting that at least a N-glycan containing Man(5)GlcNAc(2) is linked to the extracellular portion of the IL-2 receptor alpha subunit. Our findings indicate that IL-2 binds the IL-2 receptor alpha subunit through Man(5)GlcNAc(2) and a specific peptide sequence on the surface of CTLL-2 cells. When IL-2 binds to the IL-2Ralpha subunit, this may trigger formation of the high affinity complex of IL-2-IL-2Ralpha, -beta, and -gamma subunits, leading to cellular signaling.

  11. Interleukin 2 receptor beta chain expressed in an oligodendroglioma line binds interleukin 2 and delivers growth signal.

    PubMed Central

    Okamoto, Y; Minamoto, S; Shimizu, K; Mogami, H; Taniguchi, T

    1990-01-01

    Interleukin 2 (IL-2) is a potent growth factor for T lymphocytes, playing a crucial role in the immune response. In view of the considerable evidence that the immunoregulatory cytokines (or lymphokines) also play a role in the growth and differentiation of cells in the central nervous system (CNS), we examined the operation of the IL-2 system in a cell line of CNS origin by expressing a cDNA encoding the beta chain of the human IL-2 receptor (IL-2R beta, a 75-kDa protein). When the cDNA was expressed in a human oligodendroglioma cell line, ONS-21, the IL-2R beta bound IL-2 with an affinity similar to that in lymphoid cells (Kd, approximately 2 nM). Furthermore, cell proliferation ([3H]thymidine incorporation) was stimulated by IL-2. These results demonstrate that the same cytokine receptor is functional in cells of the immune system and CNS and point to a molecular mechanism that is similar for growth-signal transduction between lymphoid and neural cells but that may be different in other cells, such as fibroblasts. Images PMID:2395860

  12. Interleukin-2 activation of cytotoxic cells in postmastectomy seroma.

    PubMed

    Gercel-Taylor, C; Hoffman, J P; Taylor, D D; Owens, K J; Eisenberg, B L

    1996-02-15

    Lymphocytes were isolated from breast seroma fluids and used to study the mechanism of activation of cytotoxic lymphocytes and possible role of immunological potentiation following surgery in breast cancer patients. Single or serial samples were obtained from patients who had undergone mastectomy or lumpectomy with axillary node dissection. Lymphocytes were activated with rIL-2 (interleukin-2) and their cytotoxic activity was studied against Daudi and K562 cells and against a breast tumor line (SKBr-3). All of the patients (21/21) responded to IL-2 stimulation by significant activation of cytotoxic activity. The unstimulated cytotoxic activity of these cells against NK targets was low with less than 10% specific release in cytotoxicity assays. In simultaneous experiments, autologous seroma fluid was included during activation of lymphocytes to study possible regulatory molecules that may be present. In 17/21 patients, the presence of their seroma fluid, during the activation period, enhanced or did not effect the cytotoxic potential of their lymphocytes; inhibition was observed when seroma fluids from 4/21 patients were included. Analysis of the cytotoxic population derived from combined IL-2 and seroma treatments indicates the presence of cells with increased expression of CD56, and CD2, as well as in some cases CD16 expression. Cytotoxic lymphocytes derived from IL-2 and seroma treatments appeared to be more effective killers. Modulation of CD2 expression with seroma alone appeared to result in the generation of this highly cytotoxic population. This study demonstrates the role of CD2 expression in the effectiveness of LAK cell killing and also potential benefit of an immunotherapeutic approach to the postoperative treatment of carcinoma of the breast.

  13. Myelostimulatory activity of recombinant human interleukin-2 in mice

    SciTech Connect

    Talmadge, J.E.; Schneider, M.; Keller, J.; Ruscetti, F.; Longo, D.; Pennington, R.; Bowersox, O.; Tribble, H.

    1989-05-01

    In a series of studies designed to extend our understanding of interleukin-2 (IL-2) and to study the effect of biologic response modifiers on bone marrow, we observed that administering recombinant human (rH) IL-2 to normal mice resulted in an increase in the frequency of colony-forming units-culture (CFU-C) in bone marrow. In addition, rH IL-2 was able to accelerate host recovery from cyclophosphamide (CTX)- or radiation-induced bone marrow depression and peripheral blood leukopenia. Not only can rH IL-2 accelerate, in a dose-dependent manner, the return of bone marrow, peripheral blood cellularity, and CFU-C frequency to normal levels following cytoreduction by CTX or irradiation, but it also significantly increases CFU-C frequency to greater than normal levels. Furthermore, rH IL-2 can significantly prolong survival of animals receiving a lethal dose of irradiation or CTX. Thus, multiple mechanisms are responsible for the synergistic therapeutic activity associated with rH IL-2 and CTX. rH IL-2 does not act only as an immunomodulatory agent in the presence or absence of suppressor T cells, but also accelerates host recovery from cytoreductive agents, resulting in decreased leukopenia and perhaps resistances to secondary infection. Thus, rH IL-2 plus chemotherapy may increase therapeutic activity against neoplastic disease, not only by adding immune stimulation to the direct antitumor effect of the drug but also by allowing delivery of higher, more effective doses of chemotherapy.

  14. Interleukin-2/Anti-Interleukin-2 Immune Complex Expands Regulatory T Cells and Reduces Angiotensin II-Induced Aortic Stiffening.

    PubMed

    Majeed, Beenish; Tawinwung, Supannikar; Eberson, Lance S; Secomb, Timothy W; Larmonier, Nicolas; Larson, Douglas F

    2014-01-01

    Adaptive immune function is implicated in the pathogenesis of vascular disease. Inhibition of T-lymphocyte function has been shown to reduce hypertension, target-organ damage, and vascular stiffness. To study the role of immune inhibitory cells, CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs), on vascular stiffness, we stimulated the proliferation of Treg lymphocytes in vivo using a novel cytokine immune complex of Interleukin-2 (IL-2) and anti-IL-2 monoclonal antibody clone JES6-1 (mAbCD25). Three-month-old male C57BL/6J mice were treated with IL-2/mAbCD25 concomitantly with continuous infusion of angiotensin type 1 receptor agonist, [Val(5)]angiotensin II. Our results indicate that the IL-2/mAbCD25 complex effectively induced Treg phenotype expansion by 5-fold in the spleens with minimal effects on total CD4(+) and CD8(+) T-lymphocyte numbers. The IL-2/mAbCD25 complex inhibited angiotensin II-mediated aortic collagen remodeling and the resulting stiffening, analyzed with in vivo pulse wave velocity and effective Young's modulus. Furthermore, the IL-2/mAbCD25 complex suppressed angiotensin II-mediated Th17 responses in the lymphoid organs and reduced gene expression of IL-17 as well as T cell and macrophage infiltrates in the aortic tissue. This study provides data that support the protective roles of Tregs in vascular stiffening and highlights the use of the IL-2/mAbCD25 complex as a new potential therapy in angiotensin II-related vascular diseases. PMID:25258681

  15. ent-kaurane diterpenoids from Croton tonkinensis induce apoptosis in colorectal cancer cells through the phosphorylation of JNK mediated by reactive oxygen species and dual-specificity JNK kinase MKK4.

    PubMed

    Thuong, Phuong Thien; Khoi, Nguyen Minh; Ohta, Saho; Shiota, Shinichiro; Kanta, Hironori; Takeuchi, Kenji; Ito, Fumiaki

    2014-01-01

    To search for new chemotherapeutic agents to treat colorectal cancer, we isolated a number of natural ent-kaurane diterpenoids from the plant Croton tonkinensis. Among them, only CeKDs with the 15-oxo-16-ene moiety induced the apoptosis of colorectal cancer cell lines Caco-2 and LS180. The active CeKD induced the activation of ERK and JNK, but the inactive ones induced that of ERK, but not that of JNK. It thus appears that JNK seemed to play an important role in the apoptotic activity of the active compounds. The dualspecificity JNK kinase MKK4 was activated in both colorectal cancer cells treated with the active CeKD, but MKK7 was not activated. Further, the active CeKD, but not the inactive one, enhanced the generation of intracellular reactive oxygen species (ROS) in both cells. CeKD-induced cell apoptosis and ROS generation, as well as JNK activation, were inhibited by the antioxidant N-acetyl-L-cysteine. These findings suggest that ROS stimulated the phosphorylation of JNK mediated by MKK4 and played a critical role in CeKD-induced apoptosis in colorectal cancer cells.

  16. Renal toxicity mediated by continuous infusion of recombinant interleukin-2.

    PubMed

    Ponce, P; Cruz, J; Travassos, J; Moreira, P; Oliveira, J; Melo-Gomes, E; Gouveia, J

    1993-01-01

    Interleukin-2 (IL-2), a potent lymphokine with antitumoral activity, was used in continuous intravenous infusion for 5 days (18,000,000 IU/m2/day) in 9 treatment cycles in 5 patients with metastatic colorectal carcinoma. During the infusion, patients received aggressive fluid replacement titrated by invasive hemodynamic monitoring, aiming at a stable central volemia. Body weight went up an average of 4.5 kg in 5 days, mean arterial blood pressure dropped slightly from day 1 to day 5 (105.4 +/- 11.6 to 86.1 +/- 12.5 mm Hg, p < 0.05), systemic vascular resistance decreased from 1304.7 +/- 242.1 to 871.7 +/- 237.2 dyn/s/cm-5 (p < 0.05), with stable pulmonary capillary wedge pressure, cardiac output and central venous pressure. The urinary output significantly dropped from 1.9 +/- 1.2 to 0.2 +/- 0.1 ml/min (p < 0.05) with very significant rises in serum creatinine from 76.0 +/- 28.3 to 242.2 +/- 144.9 mumol/l (0.86 +/- 0.32 to 2.47 +/- 1.64 mg/dl) and N-acetyl-beta-D-glucosaminidase urinary activity from 4.97 +/- 5.0 to 23.0 +/- 12.1 U/l, and significant decrement of creatinine clearance (1.86 +/- 0.65 to 0.29 +/- 0.27 ml/s or 111.5 +/- 38.9 to 17.1 +/- 16.6 ml/min) and urinary sodium (113.8 +/- 78.3 to 9.0 +/- 6.7 mmol/l). Urine sediment evolved from normal at day 1 to 9.0 +/- 3.7 epithelial cells/mm3 and 6.9 +/- 3.6 brown casts/mm3 (p = 0.001). We concluded that cancer treatment with IL-2 in continuous infusion, even with stable hemodynamics, induces an acute renal failure in most patients treated.

  17. Interleukin-2 in neuroblastoma: clinical perspectives based on biological studies.

    PubMed

    Rueda, F; Martí, F; Pardo, N; Badell, I; Peiró, M; Bertran, E; Villén, E; García, J; Cubells, J

    1996-10-01

    Stage IV neuroblastoma (NB) is a disease with a poor prognosis. Chemotherapeutical intensification and hematological rescue with autologous bone marrow transplantation (ABMT) achieve some complete remissions (CR), but most patients relapse during the first year. Immunotherapy could be an alternative in this situation of high risk of relapse due to residual disease and ABMT-related immunodepression. Ten stage IV NB patients in CR or very good partial remission have been treated with recurrent 5-day cycles of high doses of Interleukin-2 (IL2) after ABMT throughout one year (usually 5-6 cycles). Natural killer (NK) and lymphokine-activated killer (LAK) cytotoxic activities, as well as phenotype and number of circulating NK cells were determined, before and after each course of IL2 treatment. The effects promoted by IL2 varied during treatment: early cycles of IL2 induced a great extent of cell expansion, mainly on CD3-/CD16-/CD56+bright and CD8+dim cell phenotypes; conversely, late courses of IL2 promoted higher NK cytotoxic activity but a lesser increase on circulating NK cells. The induction of LAK activity did not significantly differ from early and late IL2 treatments. Clinical results are still inconclusive due to the small number of patients. The median follow-up of patients treated with IL2 is 24 months and the disease free survival (DFS) probability is 0.80 +/- 0.12 vs 0.16 +/- 0.15 from a historical control with identical treatment, but in the absence of IL2 treatment (p < 0.005). IL2 treatment-related toxicity was mild and no interruption of the treatment was required. Extremely accurate hydric control was carried out to avoid, as much as possible, the consequences of vascular leak syndrome, one of the most important toxic effects of IL2 treatment. The results presented here suggest an evolution of NK activity during IL2 treatment after ABMT, which should be taken into account for the designing of new immunotherapeutical protocols and opens a promising

  18. Soluble interleukin-2 receptor in patients with glomerular diseases.

    PubMed Central

    Chen, H. S.; Wu, M. S.; Yen, T. S.; Chen, W. Y.

    1995-01-01

    In this study, we measured the soluble interleukin-2 receptor (sIL-2R) level to evaluate the cellular immune status in 61 patients with different types of glomerular diseases; 40 healthy volunteers were used as control. All patients with glomerular diseases had levels of serum sIL-2R significantly higher than those of the controls (766 +/- 59 vs 280 +/- 23 U/ml; p < 0.05). Even patients with normal renal function still had higher serum sIL-2R levels than the controls, no matter to which subgroups they belonged (primary glomerulonephritis, lupus nephritis or diabetic nephropathy). Serum sIL-2R levels were similar among the three subgroups. The serum levels of sIL-2R correlated well with age and were significantly higher in older patients, although this was not observed in the control group. Serum sIL-2R levels were significantly higher in patients with active urinary sediment and in patients with impaired renal function and showed a significant negative correlation with creatinine clearance (r = -0.56; p < 0.05). Although urinary and serum sIL-2R levels were quite well correlated, (r = 0.35; p < 0.05), the urinary levels of sIL-2R did not differ in patients with different disease activity or different renal functions although they had a significant correlation with 24-hour urinary protein (r = 0.39; p < 0.05). Patients with nephrotic syndrome also had higher urinary sIL-2R levels than other patients (529 +/- 106 vs 280 +/- 31 U/ml; p < 0.05). We conclude that greater T-cell activation might contribute to the pathogenesis of different glomerulonephritis entities, and serum levels of sIL-2R can serve as a useful clinical marker of glomerulonephritis activity. Renal function influenced the serum levels of sIL-2R significantly. This factor must be considered when we interpret the data. Urinary sIL-2R levels did not reflect the disease activity as well. This might be due to the secondary influence of the extent of the glomerular protein leak. Further investigation is

  19. Molecular basis for developmental changes in interleukin-2 gene inducibility.

    PubMed Central

    Chen, D; Rothenberg, E V

    1993-01-01

    At least three stages in the intrathymic development of pre-T cells are demarcated by differences in the competence to express the interleukin-2 (IL-2) gene as an acute response to stimulation. IL-2 inducibility appears to be acquired relatively early, prior to T-cell receptor (TcR) gene rearrangement. It is then abrogated during the stage when cells are subject to positive and negative selection, i.e., the fate determination processes that select cells for maturation or death. IL-2 inducibility finally reappears in mature classes of thymocytes that have undergone positive selection. To provide a basis for a molecular explanation of these developmental transitions, we have examined the representation in different thymocyte subsets of a set of DNA-binding proteins implicated in IL-2 gene regulation. As the DNA-binding activities of many factors are elicited only by inductive stimuli, the cells were cultured in the presence or absence of the calcium ionophore A23187 and phorbol ester. Our results separate these factors into four regulatory classes: (i) constitutive factors, such as Oct-1 and probably Sp1, that are expressed in thymocytes at all stages; (ii) inducible factors, such as NF-kappa B and complexes binding to the region of a CD28 response element, that can be activated in all thymocytes, including those cells (CD4+ CD8+ TcRlow) that can undergo selection; (iii) inducible factors, such as NF-AT and AP-1, that can be activated in mature (CD4+ CD8- TcRhigh) and immature (CD4- CD8- TcR-) thymocytes alike but not in the transitional stages when the cells (CD4+ CD8+ TcRlow) are subject to selection; and (iv) a factor containing CREB, which can be activated in thymocytes of all developmental stages by culture but does not require specific induction. These results verify that inducible transcription factors are targets of intrathymic developmental change. They also identify NF-AT and AP-1 as factors that are particularly sensitive to the mechanism altering

  20. Deficient interleukin 2 dependent proliferation pathway in T lymphocytes from active and inactive ulcerative colitis patients.

    PubMed Central

    Manzano, L; Alvarez-Mon, M; Vargas, J A; Girón, J A; Abreu, L; Fernández-Corugedo, A; Román, L I; Albarran, F; Durántez, A

    1994-01-01

    There is increasing evidence that ulcerative colitis is associated with an abnormality of the immune system. Although the aetiology remains unknown, it has been suggested that the immune system of these patients is implicated in the pathogenesis of their disease. T cell function was investigated in ulcerative colitis patients and defective phytohaemagglutinin induced T cell mitogenesis was found. The DNA synthesis induced by stimulation with phorbol esters plus ionophore (ionomycin), however, was normal. These changes cannot be ascribed to either decreased interleukin 2 synthesis or to a defective interleukin 2 receptor expression after cellular activation. Moreover, this defective proliferative response of the T lymphocytes was observed even in the presence of saturated concentrations of exogenous interleukin 2. These results emphasise that the interleukin 2 dependent proliferation pathway is deficient in T lymphocytes from ulcerative colitis patients. PMID:8063224

  1. The interleukin 2 gene is expressed in the syncytiotrophoblast of the human placenta

    SciTech Connect

    Boehm, K.D.; Kelley, M.F.; Ilan, J.; Ilan, J. )

    1989-01-01

    The lymphokine interleukin 2 is an important immune system regulatory glycopolypeptide. It is produced by antigen- or mitogen-stimulated T lymphocytes and is required for the proliferation or clonal expansion of activated T lymphocytes. In this report, it is demonstrated by RNA transfer blot hybridization that the poly(A){sup +} RNA population of the human placenta contains a 0.85-kilobase RNA transcript that specifically hybridizes to a human interleukin 2 cDNA probe. By using hybridization histochemistry in situ, it is further shown that interleukin 2 RNA transcripts are localized, primarily, to the syncytial (syncytiotrophoblast) layer of the human placenta. Possible roles for syncytiotrophoblast-produced interleukin 2 are suggested and discussed.

  2. Influence of schedule of interleukin 2 administration on therapy with interleukin 2 and lymphokine activated killer cells.

    PubMed

    Thompson, J A; Lee, D J; Lindgren, C G; Benz, L A; Collins, C; Shuman, W P; Levitt, D; Fefer, A

    1989-01-01

    The purpose of this study was to compare the toxicity, immunomodulatory changes, and antitumor efficacy of interleukin 2 (IL-2) and lymphokine activated killer (LAK) cell therapy with two durations of IL-2 infusion. Patients with progressive melanoma, non-Hodgkin's lymphoma, renal carcinoma, or colon carcinoma received IL-2 at 3 X 10(6) units/m2/day on days 1-5 and 13-17, either by bolus injection every 8 h (q8h) or by continuous i.v. (CIV) administration. Peripheral blood mononuclear cells were harvested by leukapheresis on days 8, 9, and 10, were incubated in vitro for 5 days for generation of LAK cells, and were infused on days 13, 14, and 15. The first 11 patients were treated with IL-2 q8h, and the subsequent 13 patients were treated by CIV infusion. Toxicity consisted primarily of fever, chills, emesis, diarrhea, weight gain, and edema but did not require intensive care unit support and did not differ significantly between treatment groups. IL-2-induced lymphocytosis on day 8 was higher with CIV than with q8h administration with a mean lymphocyte count/microliter of 5610 +/- 700 (SE) versus 3300 +/- 500. Immunomodulatory changes observed on days 8 and 20 were also greater with CIV IL-2 and included an increase in peripheral blood mononuclear cell IL-2 receptor expression as well as a marked rise in the number of Leu-11+ and Leu-19+ peripheral blood mononuclear cells. The total leukapheresis yield per patient and total number of LAK cells infused per patient were higher with CIV than q8h administration, with 49.8 +/- 4.9 X 10(9) versus 39.4 +/- 5.4 X 10(9) and 42.6 +/- 5.0 X 10(9) versus 34.0 +/- 5.4 X 10(9), respectively. The cells infused displayed phenotypic evidence of activation and exhibited marked lytic reactivity to Daudi, Raji, and HT-144 targets. One complete and one minimal response were observed in 2 of 8 patients with metastatic renal cell carcinoma who received CIV IL-2 and LAK cells. The results show that IL-2 is more biologically active by CIV

  3. Opposite effects of interleukin-4 on memory T helper cell development depend on interleukin-2.

    PubMed

    Bemer, V; Motta, I; Perret, R; Truffa-Bachi, P

    1996-01-01

    We previously reported that cyclosporin A (CSA) promotes the generation of T helper memory cells during antigenic priming of murine spleen cells in vitro. More recently, we have demonstrated that interleukin-2 (IL2) has a downmodulating effect on T helper memory cell generation. The present data address the role of the other T cell growth factor, IL4, upon induction of these cells. The data presented here show that IL4 can interfere with this process: addition of rIL4 to immunosuppressed priming cultures leads to a considerable decrease in the helper activity of the recovered cells. However, in standard cultures, in which IL2 is normally produced, no effect of IL4 on T helper memory cell generation was found. Addition of IL4 has important consequences for cytokines produced upon antigenic restimulation. In standard cultures, IL4 primes for cells expressing high levels of IL2 and IL4 mRNA. Strikingly, in immunosuppressed priming cultures, IL4 counterbalances the CSA-induced blockade of the IFN gamma gene. Taken together, our results suggest that the unique role of IL4 is to drive T helper memory precursors into an IL4 production differentiation pathway. However, IL4 has a downmodulating effect on memory T helper cell induction when IL2 is not produced. These results confirm that synergy between IL2 and IL4 is mandatory for the directive role of IL4 upon IL4-producing cells. Furthermore, the finding that IL4 promotes the induction of IFN gamma in a CSA-resistant pathway represents a new tool for analysis of regulation of the IFN gamma gene.

  4. Chemokine gene expression in the murine renal cell carcinoma, RENCA, following treatment in vivo with interferon-alpha and interleukin-2.

    PubMed Central

    Sonouchi, K.; Hamilton, T. A.; Tannenbaum, C. S.; Tubbs, R. R.; Bukowski, R.; Finke, J. H.

    1994-01-01

    The expression of three chemoattractant cytokine (chemokine) messenger (m)RNAs in the murine renal cell carcinoma (RENCA) from mice treated with a combination of interferon-alpha (IFN-alpha) and interleukin-2 was examined and related to tumor infiltration by inflammatory leukocytes. Using a semi-quantitative reverse transcriptase polymerase chain reaction assay, mRNAs encoding the KC, JE, and IP-10 genes were all elevated in tumor tissue from mice treated systemically with IFN-alpha/interleukin-2 for 4 days. Similarly, the mRNA for tumor necrosis factor-alpha (TNF-alpha) was also increased in tumors from treated as compared to control animals. The same tumors showed a significant increase in Mac-1+ leukocytes, which correlated well with the increase in chemokine and TNF-alpha gene expression. The renal cell carcinoma tumor itself may be responsible for the expression of chemokine genes in the tumor bed following cytokine therapy. Cultures of freshly explanted RENCA cells expressed significant levels of chemokine mRNAs when stimulated in vitro with IFN alpha, IFN gamma, and/or interleukin-2, demonstrating that this tumor cell has potential for expression of these genes in vivo. In contrast, TNF-alpha expression was not detected in cultured tumor cells. Thus TNF-alpha may be expressed by infiltrating monocytes following exposure to recombinant cytokine therapy. Images Figure 1 Figure 2 Figure 4 PMID:8160774

  5. Interleukin 2-regulated in vitro antibody production following a single spinal manipulative treatment in normal subjects

    PubMed Central

    2010-01-01

    Background Our recent investigations have demonstrated that cell cultures from subjects, who received a single spinal manipulative treatment in the upper thoracic spine, show increased capacity for the production of the key immunoregulatory cytokine, interleukin-2. However, it has not been determined if such changes influence the response of the immune effector cells. Thus, the purpose of the present study was to determine whether, in the same subjects, spinal manipulation-related augmentation of the in vitro interleukin-2 synthesis is associated with the modulation of interleukin 2-dependent and/or interleukin-2-induced humoral immune response (antibody synthesis). Methods A total of seventy-four age and sex-matched healthy asymptomatic subjects were studied. The subjects were assigned randomly to: venipuncture control (n = 22), spinal manipulative treatment without cavitation (n = 25) or spinal manipulative treatment associated with cavitation (n = 27) groups. Heparinized blood samples were obtained from the subjects before (baseline) and then at 20 minutes and 2 hours post-treatment. Immunoglobulin (antibody) synthesis was induced in cultures of peripheral blood mononuclear cells by stimulation with conventional pokeweed mitogen or by application of human recombinant interleukin-2. Determinations of the levels of immunoglobulin G and immunoglobulin M production in culture supernatants were performed by specific immunoassays. Results The baseline levels of immunoglobulin synthesis induced by pokeweed mitogen or human recombinant interleukin-2 stimulation were comparable in all groups. No significant changes in the production of pokeweed mitogen-induced immunoglobulins were observed during the post-treatment period in any of the study groups. In contrast, the production of interleukin-2 -induced immunoglobulin G and immunoglobulin M was significantly increased in cultures from subjects treated with spinal manipulation. At 20 min post-manipulation, immunoglobulin G

  6. Human fusion proteins between interleukin 2 and IgM heavy chain are cytotoxic for cells expressing the interleukin 2 receptor.

    PubMed Central

    Vié, H; Gauthier, T; Breathnach, R; Bonneville, M; Godard, A; Dietrich, J; Karam, G; Gesnel, M C; Peyrat, M A; Jacques, Y

    1992-01-01

    We have constructed a hybrid cDNA coding for a fusion protein between human interleukin 2 and a truncated heavy chain from human immunoglobulin M. The protein encoded by this cDNA contains the entire interleukin 2 sequence including its signal peptide, fused at its C terminus to domains 2 to 4 of the immunoglobulin heavy-chain constant region. Cells transfected with the hybrid cDNA secrete multimeric forms of the fusion protein, which bind specifically to cells bearing high-affinity interleukin 2 receptors. This binding leads either to T-cell proliferation or, if complement is added, to T-cell death. Multimeric forms of the fusion protein with a molecular mass above 500 kDa mediate complement-dependent lysis but trigger proliferation inefficiently when compared with forms with a low molecular mass (< 500 kDa). In contrast, the latter efficiently mediate T-cell proliferation without inducing complement-dependent lysis. The high molecular mass fusion proteins could thus constitute valuable tools for specific immunosuppression in humans. Images PMID:1454817

  7. In Vitro Interleukin-1 and 2 Production and Interleukin 2 Receptor Expression in the Rhesus Monkey

    NASA Technical Reports Server (NTRS)

    Schmitt, Didier A.; Sonnenfeld, Gerald; Husson, David; Tkaczuk, Jean; Andre, Eric; Schaffar, Laurance

    1996-01-01

    Anti-human monoclonal antibodies were used to detect and quantify interleukins-1 and 2 and interleukin-2 receptor expression in peripheral blood mononuclear cells from a rhesus monkey. Interleukin-1 production could be induced by phorbol esters (PMA) and was potentiated by phytohemagglutinin (PHA). Interleukin-2 secretion could also be induced by the combination of PHA and PMA, but only weakly with PHA alone. Interleukin-2 receptor expression was present in a subpopulation of unstimulated lymphocytes and could be enhanced by PHA or PMA. These data show once again that the rhesus monkey immune system is cross-reactive with the human one and that rhesus macaque could be a good model to study interleukin therapy.

  8. Influence of exogenous interleukin-2 concentration on the isolation of human immunodeficiency virus.

    PubMed

    Zöllner, B; Feucht, H H; Hamann, A; Laufs, R

    1995-01-01

    A significant increase (P = 0.015) in the HIV isolation rate from plasma samples was achieved by use of 10 U/ml exogenous interleukin-2 compared to 20 U/ml. The sensitivity rose from 0% to 29% in patients negative for p24 core antigen (P = 0.031) and from 71% to 86% in patients positive for p24 core antigen in plasma (P > 0.05). Titration of infectious HIV revealed that 10 U/ml interleukin-2 is the optimal concentration to isolate low numbers of infectious particles of HIV.

  9. A cyclooxygenase metabolite of anandamide causes inhibition of interleukin-2 secretion in murine splenocytes.

    PubMed

    Rockwell, Cheryl E; Kaminski, Norbert E

    2004-11-01

    Arachidonyl ethanolamine, which is commonly known as anandamide, was the first endogenous compound to be identified that binds to the cannabinoid receptors. Anandamide mimics many of the physiological effects of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), including hypothermia, antinociception, immobility, catalepsy, and immune modulation. In the present studies, we show that anandamide caused a concentration-dependent inhibition of interleukin-2 in primary splenocytes. The CB1 and CB2 antagonists, SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorphenyl)-4-methyl-H-pyrazole-3 carboxyamidehydrochloride] and SR144528 [N-[(1S)-endo-1,3,3,-trimethylbicyclo[2,2,1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide], when used in combination, did not antagonize the inhibition of interleukin-2 by anandamide. Additionally, neither UCM707 [N-(3-furanylmethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide], the inhibitor of the putative anandamide membrane transporter (AMT), nor methyl arachidonoyl fluorophosphonate (MAFP), the inhibitor of fatty acid amidohydrolase (FAAH), were able to affect the inhibitory activity of anandamide upon interleukin-2. Interestingly, arachidonic acid caused a concentration-dependent inhibition of interleukin-2 secretion (IC(50) = 10.3 microM), which was similar to that of structurally related anandamide (IC(50) = 11.4 microM). The inhibition of interleukin-2 by anandamide and arachidonic acid was partially reversed by pretreatment with the nonspecific cyclooxygenase inhibitors, flurbiprofen and piroxicam. Moreover, NS398 [N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide], a cyclooxygenase-2-specific inhibitor, also attenuated the inhibitory effects of anandamide and arachidonic acid upon interleukin-2 secretion. Finally, pretreatment with a peroxisome proliferator-activated receptor gamma (PPARgamma)-specific antagonist, T0070907 [2-chloro-5-nitro-N-4-pyridinyl-benzamide], partially antagonized

  10. Interleukin-2 treatment of tumor patients can expand regulatory T cells.

    PubMed

    Beyer, Marc

    2012-10-01

    Augmented numbers of regulatory T cells contribute to the overall immunosuppression in tumor patients. Interleukin-2 has been widely used in the clinics in anticancer therapy, yet evidence has accumulated that the major drawback, limiting clinical efficacy, is the expansion of regulatory T cells, which aggravates immunosuppression.

  11. 77 FR 22283 - Availability of an Environmental Assessment for Field Testing Feline Interleukin-2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... Animal and Plant Health Inspection Service Availability of an Environmental Assessment for Field Testing Feline Interleukin-2 Immunomodulator, Live Canarypox Vector AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice. SUMMARY: We are advising the public that the Animal and Plant...

  12. Single cell tuning of Myc expression by antigen receptor signal strength and interleukin-2 in T lymphocytes.

    PubMed

    Preston, Gavin C; Sinclair, Linda V; Kaskar, Aneesa; Hukelmann, Jens L; Navarro, Maria N; Ferrero, Isabel; MacDonald, H Robson; Cowling, Victoria H; Cantrell, Doreen A

    2015-08-01

    Myc controls the metabolic reprogramming that supports effector T cell differentiation. The expression of Myc is regulated by the T cell antigen receptor (TCR) and pro-inflammatory cytokines such as interleukin-2 (IL-2). We now show that the TCR is a digital switch for Myc mRNA and protein expression that allows the strength of the antigen stimulus to determine the frequency of T cells that express Myc. IL-2 signalling strength also directs Myc expression but in an analogue process that fine-tunes Myc quantity in individual cells via post-transcriptional control of Myc protein. Fine-tuning Myc matters and is possible as Myc protein has a very short half-life in T cells due to its constant phosphorylation by glycogen synthase kinase 3 (GSK3) and subsequent proteasomal degradation. We show that Myc only accumulates in T cells exhibiting high levels of amino acid uptake allowing T cells to match Myc expression to biosynthetic demands. The combination of digital and analogue processes allows tight control of Myc expression at the population and single cell level during immune responses. PMID:26136212

  13. Influence of human T-cell leukemia virus type I tax and rex on interleukin-2 gene expression.

    PubMed Central

    McGuire, K L; Curtiss, V E; Larson, E L; Haseltine, W A

    1993-01-01

    The X region of human T-cell leukemia virus type I (HTLV-I) encodes two proteins that regulate viral gene expression. The tax protein is the product of the transactivator gene and has been shown to up-regulate the expression of some cellular genes controlling T-cell replication, including that of the interleukin-2 (IL-2) T-cell growth hormone and the alpha chain of its receptor (IL-2R). Several studies have shown that tax transactivation of the IL-2R alpha-chain promoter is mediated by binding sites for the transcriptional activator NF-kappa B, and this mechanism has also been implicated in the tax activation of IL-2 promoter activity. The rex gene product of HTLV-I regulates viral protein production by influencing mRNA expression and has been implicated in the stabilization of IL-2R alpha-chain mRNA. In the present studies, the ability of the tax and rex proteins to transactivate IL-2 gene expression has been reinvestigated. The ability of the tax protein to transactivate IL-2 promoter activity appears, at least in part, to be mediated by the recognition sequence for a DNA-binding complex known as CD28RC. Consistent with this hypothesis is the observation that tax-mediated activation of IL-2 gene expression is resistant to the immunosuppressive affects of cyclosporin A, a property postulated for the CD28RC binding complex. Unexpectedly, this tax-mediated up-regulation of IL-2 expression is synergized by the presence of the rex protein. These findings demonstrate that transactivation of IL-2 gene expression by tax is augmented by mechanisms distinct from NF-kappa B and raise the possibility that rex, as well as tax, contributes to the oncogenic capability of HTLV-I by altering the expression of the IL-2 gene in T cells infected with this retrovirus. Images PMID:8382312

  14. Human Immune Disorder Arising from Mutation of the α Chain of the Interleukin-2 Receptor

    NASA Astrophysics Data System (ADS)

    Sharfe, Nigel; Dadi, Harjit K.; Shahar, Michal; Roifman, Chaim M.

    1997-04-01

    Profound cellular immunodeficiency occurs as the result of mutations in proteins involved in both the differentiation and function of mature lymphoid cells. We describe here a novel human immune aberration arising from a truncation mutation of the interleukin-2 receptor α chain (CD25), a subunit of the tripartite high-affinity receptor for interleukin 2. This immunodeficiency is characterized by decreased numbers of peripheral T cells displaying abnormal proliferation but normal B cell development. Extensive lymphocytic infiltration of tissues, including lung, liver, gut, and bone, is observed, accompanied by tissue atrophy and inflammation. Although mature T cells are present, the absence of CD25 does affect the differentiation of thymocytes. While displaying normal development of CD2, CD3, CD4, and CD8 expression, CD25-deficient cortical thymocytes do not express CD1, and furthermore they fail to normally down-regulate levels of the anti-apoptotic protein bcl-2.

  15. Buffalo (Bubalus bubalis) interleukin-2: sequence analysis reveals high nucleotide and amino acid identity with interleukin-2 of cattle and other ruminants.

    PubMed

    Sreekumar, E; Premraj, A; Saravanakumar, M; Rasool, T J

    2002-08-01

    A 4400-bp genomic sequence and a 332-bp truncated cDNA sequence of the interleukin-2 (IL-2) gene of Indian water buffalo (Bubalus bubalis) were amplified by polymerase chain reaction and cloned. The coding sequence of the buffalo IL-2 gene was assembled from the 5' end of the genomic clone and the truncated cDNA clone. This sequence had 98.5% nucleotide identity and 98% amino acid identity with cattle IL-2. Three amino acid substitutions were observed at positions 63, 124 and 135. Comparison of the predicted protein structure of buffalo IL-2 with that of human and cattle IL-2 did not reveal significant differences. The putative amino acids responsible for IL-2 receptor binding were conserved in buffalo, cattle and human IL-2. The amino acid sequence of buffalo IL-2 also showed very high identity with that of other ruminants, indicating functional cross-reactivity.

  16. Inhibition of G-Protein βγ Signaling Enhances T Cell Receptor-Stimulated Interleukin 2 Transcription in CD4+ T Helper Cells

    PubMed Central

    Yost, Evan A.; Hynes, Thomas R.; Hartle, Cassandra M.; Ott, Braden J.; Berlot, Catherine H.

    2015-01-01

    G-protein-coupled receptor (GPCR) signaling modulates the expression of cytokines that are drug targets for immune disorders. However, although GPCRs are common targets for other diseases, there are few GPCR-based pharmaceuticals for inflammation. The purpose of this study was to determine whether targeting G-protein βγ (Gβγ) complexes could provide a useful new approach for modulating interleukin 2 (IL-2) levels in CD4+ T helper cells. Gallein, a small molecule inhibitor of Gβγ, increased levels of T cell receptor (TCR)-stimulated IL-2 mRNA in primary human naïve and memory CD4+ T helper cells and in Jurkat human CD4+ leukemia T cells. Gβ1 and Gβ2 mRNA accounted for >99% of Gβ mRNA, and small interfering RNA (siRNA)-mediated silencing of Gβ1 but not Gβ2 enhanced TCR-stimulated IL-2 mRNA increases. Blocking Gβγ enhanced TCR-stimulated increases in IL-2 transcription without affecting IL-2 mRNA stability. Blocking Gβγ also enhanced TCR-stimulated increases in nuclear localization of nuclear factor of activated T cells 1 (NFAT1), NFAT transcriptional activity, and levels of intracellular Ca2+. Potentiation of IL-2 transcription required continuous Gβγ inhibition during at least two days of TCR stimulation, suggesting that induction or repression of additional signaling proteins during T cell activation and differentiation might be involved. The potentiation of TCR-stimulated IL-2 transcription that results from blocking Gβγ in CD4+ T helper cells could have applications for autoimmune diseases. PMID:25629163

  17. Inhibition of G-protein βγ signaling enhances T cell receptor-stimulated interleukin 2 transcription in CD4+ T helper cells.

    PubMed

    Yost, Evan A; Hynes, Thomas R; Hartle, Cassandra M; Ott, Braden J; Berlot, Catherine H

    2015-01-01

    G-protein-coupled receptor (GPCR) signaling modulates the expression of cytokines that are drug targets for immune disorders. However, although GPCRs are common targets for other diseases, there are few GPCR-based pharmaceuticals for inflammation. The purpose of this study was to determine whether targeting G-protein βγ (Gβγ) complexes could provide a useful new approach for modulating interleukin 2 (IL-2) levels in CD4+ T helper cells. Gallein, a small molecule inhibitor of Gβγ, increased levels of T cell receptor (TCR)-stimulated IL-2 mRNA in primary human naïve and memory CD4+ T helper cells and in Jurkat human CD4+ leukemia T cells. Gβ1 and Gβ2 mRNA accounted for >99% of Gβ mRNA, and small interfering RNA (siRNA)-mediated silencing of Gβ1 but not Gβ2 enhanced TCR-stimulated IL-2 mRNA increases. Blocking Gβγ enhanced TCR-stimulated increases in IL-2 transcription without affecting IL-2 mRNA stability. Blocking Gβγ also enhanced TCR-stimulated increases in nuclear localization of nuclear factor of activated T cells 1 (NFAT1), NFAT transcriptional activity, and levels of intracellular Ca2+. Potentiation of IL-2 transcription required continuous Gβγ inhibition during at least two days of TCR stimulation, suggesting that induction or repression of additional signaling proteins during T cell activation and differentiation might be involved. The potentiation of TCR-stimulated IL-2 transcription that results from blocking Gβγ in CD4+ T helper cells could have applications for autoimmune diseases.

  18. Pinocchio cells: morphologically atypical immunologically heterogeneous lymphocytes induced by treatment with interleukin 2.

    PubMed

    Paciucci, P A; Chesa, P G; Fierro, M T; Gordon, R; Konefal, R G; Glidewell, O; Holland, J F

    1988-12-01

    We describe a novel cell type, the Pinocchio cell, that appears in the peripheral blood of all patients receiving treatment with interleukin 2, up to 20,000 cells/microliter. This cell is characterized by a prominent and granular proboscis with which it attaches to tumor cells and mediates tumor cell lysis. Pinocchio cells are immunologically heterogeneous and express antigens of both T and NK cells; Pinocchio cells are adherent in culture and are more cytolytic than non-adherent cells against NK-sensitive and resistant tumor cells. Incubation of normal whole human blood for 1 h induces Pinocchio morphology of mononuclear white blood cells.

  19. In vivo administration of interleukin-2 protects susceptible mice from Theiler's virus persistence.

    PubMed Central

    Larsson-Sciard, E L; Dethlefs, S; Brahic, M

    1997-01-01

    In vivo administration of interleukin-2 (IL-2)-secreting tumor cells results in complete protection against persistent infection by Theiler's murine encephalomyelitis virus (TMEV) in susceptible DBA/2 mice. The IL-2-mediated protection was found to depend on the inoculum size as well as the timing of IL-2 administration. IL-2-treated and TMEV-infected mice displayed a three- to fourfold relative increase in virus-specific cytotoxic T-lymphocyte (CTL) precursors. Thus, we postulate that the persistence of TMEV infection in susceptible mice reflects limited numbers of relevant CTL precursors and their time course of induction and activation. PMID:8985419

  20. l-Arginine modulates neonatal lymphocyte proliferation through an interleukin-2 independent pathway

    PubMed Central

    Yu, Hong-Ren; Kuo, Ho-Chang; Huang, Li-Tung; Chen, Chih-Cheng; Tain, You-Lin; Sheen, Jiunn-Ming; Tiao, Mao-Meng; Huang, Hsin-Chun; Yang, Kuender D; Ou, Chia-Yo; Hsu, Te-Yao

    2014-01-01

    In cases of arginine depletion, lymphocyte proliferation, cytokine production and CD3ζ chain expression are all diminished. In addition to myeloid suppressor cells, polymorphonuclear cells (PMN) also exert T-cell immune suppressive effects through arginase-induced l-arginine depletion, especially during pregnancy. In this study, we investigated how arginase/l-arginine modulates neonatal lymphocyte proliferation. Results showed that the neonatal plasma l-arginine level was lower than in adults (48·1 ± 11·3 versus 86·5 ± 14·6 μm; P = 0·003). Neonatal PMN had a greater abundance of arginase I protein than adult PMN. Both transcriptional regulation and post-transcriptional regulation were responsible for the higher arginase I expression of neonatal PMN. Exogenous l-arginine enhanced neonate lymphocyte proliferation but not that of adult cells. The RNA-binding protein HuR was important but was not the only modulation factor in l-arginine-regulated neonatal T-cell proliferation. l-Arginine-mediated neonatal lymphocyte proliferation could not be blocked by interleukin-2 receptor blocking antibodies. These results suggest that the altered arginase/l-arginine cascade may be one of the mechanisms that contribute to altered neonatal immune responses. Exogenous l-arginine could enhance neonate lymphocyte proliferation through an interleukin-2-independent pathway. PMID:24697328

  1. Serum soluble interleukin-2 receptor level as a prognostic indicator in gastric cancer.

    PubMed Central

    Nakata, B.; Chung, K. H.; Kato, Y.; Yamashita, Y.; Inui, A.; Arimoto, Y.; Maeda, K.; Onoda, N.; Sawada, T.; Sowa, M.

    1998-01-01

    T lymphocytes, activated by interleukin 2 during an anti-tumour response, release soluble interleukin 2 receptors (sIL-2R) into the bloodstream. We analysed the prognostic value of the serum sIL-2R level in gastric cancer. Serum concentration of sIL-2R in 96 gastric cancer patients and 100 healthy control subjects' was measured by enzyme-linked immunosorbent assay. All survivors were followed for more than 50 months. Serum sIL-2R level was considered with respect to prognosis, clinicopathological factors, other tumour markers and peripheral blood cell count. Stage III and IV patients had significantly higher sIL-2R levels than lower stage patients and control subjects. Stage III and IV gastric cancer patients were divided into 'high' and 'low' slL-2R groups based upon the control subjects' serum sIL-2R mean value plus one standard deviation. The high group had a significantly worse prognosis than the low group, although clinicopathological features and treatments were similar. Multivariate analysis demonstrated that the serum sIL-2R level is an independent indicator. The sIL-2R level did not correlate with carbohydrate antigen 19-9, however it did correlate with carcinoembryonic antigen (r = 0.22) and with numbers of peripheral blood monocytes (r = 0.54). In conclusion, serum sIL-2R may predict the outcome of gastric cancer patients with stage III or IV disease. PMID:9667652

  2. Thyroiditis after treatment with interleukin-2 and interferon alpha-2a.

    PubMed Central

    Pichert, G.; Jost, L. M.; Zöbeli, L.; Odermatt, B.; Pedia, G.; Stahel, R. A.

    1990-01-01

    Serial thyroid functions studies were carried out in patients with melanoma and renal cell carcinoma treated with interleukin-2 (3 MU m-2 by continuous infusion days 1-4) and interferon alpha-2a (6 MU m-2 subcutaneously on days 1 and 4), both given on alternate weeks. The results on eight patients who completed at least three cycles of treatment are described. Four patients developed thyroid dysfunction with a hyperthyroid phase of 2 weeks followed by a hypothyroid phase ranging from 12 to 24 weeks. Two patients became clinically symptomatic and required treatment. Fine-needle aspirates of the thyroid were obtained in three patients with thyroid dysfunction. The cytology revealed a mixed cellular infiltrate with lymphocytes and histiocytes, and immunocytochemical staining showed strong HLA-DR expression of all thyrocytes, both suggestive of an autoimmune thyroiditis. One patient with thyroiditis developed anti-thyroglobulin antibodies, the serology of all other patients was normal. Patients with thyroid dysfunction tended to have higher in vivo stimulated lytic activity of peripheral mononuclear blood cells and had significantly higher levels of CD16 positive blood cells as compared to euthyroid patients. The possibility of autoimmune thyroiditis should be anticipated in future trails combining interleukin-2 and interferon alpha-2a. Images Figure 2 Figure 3 PMID:2390468

  3. Influence of behavioural lateralization on interleukin-2 and interleukin-6 gene expression in dogs before and after immunization with rabies vaccine.

    PubMed

    Quaranta, Angelo; Siniscalchi, Marcello; Albrizio, Maria; Volpe, Sara; Buonavoglia, Canio; Vallortigara, Giorgio

    2008-01-25

    Evidence in several species, including dogs, has been collected demonstrating that the brain hemispheres modulate the immune system in an asymmetrical way. To study the interactions between immune response and lateralization, three groups of mixed breed dogs were selected on the basis of their performance in a paw preference test involving removal of a piece of sticky tape from the snout. The expression of interleukin-2 (IL-2) and interleukin-6 (IL-6) genes was measured in left-pawed, right-pawed and ambidextrous dogs before and after immunization treatment with a rabies vaccine. The results revealed a relationship between the mRNA expression of IL-2 and IL-6 genes and the direction of behavioural lateralization. Under basal conditions, IL-2 and IL-6 gene expression was higher in left-pawed dogs than in right-pawed and ambidextrous dogs. After the vaccine administration, decreasing levels of IL-2 and IL-6 gene expression were observed in left-pawed and right-pawed dogs, but not in ambidextrous dogs. These findings represent the first evidence that brain lateralization may influence the immune system in dogs by the modulation of mRNA gene expression of cytokines such as IL-2 and IL-6, which have been recognized as key immune-regulatory proteins.

  4. Deciphering the molecular bases of the biological effects of antibodies against Interleukin-2: a versatile platform for fine epitope mapping.

    PubMed

    Rojas, Gertrudis; Pupo, Amaury; Leon, Kalet; Avellanet, Janet; Carmenate, Tania; Sidhu, Sachdev

    2013-01-01

    Elucidating the network of interactions established by Interleukin-2 is a key step to understanding its role as a master regulator of the immune system. Binding of this cytokine by specific antibodies gives rise to different classes of immune complexes that boost or inhibit immune responses. The molecular bases of such functional dichotomy are likely related to the nature of the recognized epitopes, making it necessary to perform fine epitope mapping studies. The current work was aimed at developing a versatile platform to do so. This was accomplished by display of human and mouse Interleukin-2 on filamentous phages, together with extensive mutagenesis of both antigens and high throughput screening of binding properties of more than 200 variants. Detailed molecular pictures of the epitopes were thus delineated for four antibodies against either human or mouse Interleukin-2, which refined and, in some cases, modified the conclusions derived from previous mapping studies with peptide libraries. Overlapping surface patches on mouse Interleukin-2 that also coincide with the predicted interface between the cytokine and its receptor alpha chain were shown to be recognized by two monoclonal antibodies that promote enhancement of immune responses, shedding new light on the structural bases of their biological activity. Our strategy was powerful enough to reveal multiple binding details and could be used to map the epitopes recognized by other antibodies and to explore additional interactions involving Interleukin-2 and related cytokines, thus contributing to our understanding of the complex structure-function relationships within the immune system.

  5. Constitutive secretion of soluble interleukin-2 receptor by human T cell lymphoma xenografted into SCID mice. Correlation of tumor volume with concentration of tumor-derived soluble interleukin-2 receptor in body fluids of the host mice.

    PubMed Central

    Wasik, M. A.; Sioutos, N.; Tuttle, M.; Butmarc, J. R.; Kaplan, W. D.; Kadin, M. E.

    1994-01-01

    Increased serum concentration of soluble alpha-chain receptor for interleukin-2 (sIL-2R) has been noted in patients with a variety of inflammatory conditions and lymphoid malignancies including T cell leukemia and lymphoma. Elevated sIL-2R serum levels seen in lymphoid malignancies appear to correlate with the clinical stage of disease. However, because sIL-2R is produced by normal activated lymphocytes, it has been uncertain whether serum sIL-2R in such conditions is derived from tumor cells or normal immune cells responding to the tumor. To address this question, we used a model of human (CD30+) anaplastic, large T cell lymphoma transplanted into immunodeficient SCID mice. Reverse transcription polymerase chain reaction of tumor RNA showed that the tumor, designated mJB6, contains mRNA for alpha-chain of human IL-2R. Furthermore, 15 to 25% of tumor cells stained with anti-human IL-2R alpha-chain mAb. Solid phase ELISA analysis of serum samples from mice bearing mJB6 lymphoma showed high concentrations of human sIL-2R. None of the control mice without lymphoma or with human nonlymphoid tumors (prostatic carcinoma, ovarian carcinoma, and glioblastoma multiforme) showed detectable human sIL-2R. The sIL-2R serum titers of mJB6-bearing mice correlated strongly with tumor volume (P < 0.0001). Tumors as small as 0.4 to 0.8 mm3 could be detected by this method. The sensitivity of sIL-2R ELISA exceeded at least 150 times the sensitivity of conventional radioisotopic tumor detection. Total resection of mJB6 tumors resulted in complete clearance of sIL-2R from the murine serum within 48 hours with a half-life of 6 hours. Accordingly, partial resection led to a significant decrease in sIL-2R followed by gradual increase with tumor regrowth. sIL-2R was also detected in the urine of mJB6-transplanted mice. As in serum, urine concentrations of sIL-2R were proportional to tumor mass (P < 0.02). Based on these findings we postulate that malignant cells are a major source of serum

  6. Interleukin-2 receptor signaling: at the interface between tolerance and immunity.

    PubMed

    Malek, Thomas R; Castro, Iris

    2010-08-27

    Interleukin-2 receptor (IL-2R) signaling regulates tolerance and immunity. Here, we review recent work concerning the structure, signaling, and function of the IL-2R, emphasizing the contribution of IL-2 for T cell-dependent activity in vivo. IL-2R signaling influences two discrete aspects of immune responses by CD8(+) T cells, terminal differentiation of effector cells in primary responses, and aspects of memory recall responses. IL-2 also delivers essential signals for thymic development of regulatory T (Treg) cells and later to promote their homeostasis and function. Each of these outcomes on T effector and Treg cells requires distinct amounts of IL-2R signaling, with low IL-2R signaling sufficient for many key aspects of Treg cells. Thus, tolerance is readily maintained and favored with limited IL-2.

  7. Interleukin-2 Receptor Signaling: At the Interface between Tolerance and Immunity

    PubMed Central

    Malek, Thomas R.; Castro, Iris

    2010-01-01

    Interleukin-2 receptor (IL-2R) signaling regulates tolerance and immunity. Here, we review recent work concerning the structure, signaling, and function of the IL-2R, emphasizing the contribution of IL-2 for T cell-dependent activity in vivo. IL-2R signaling influences two discrete aspects of immune responses by CD8+ T cells, terminal differentiation of effector cells in primary responses, and aspects of memory recall responses. IL-2 also delivers essential signals for thymic development of regulatory T (Treg) cells and later to promote their homeostasis and function. Each of these outcomes on T effector and Treg cells requires distinct amounts of IL-2R signaling, with low IL-2R signaling sufficient for many key aspects of Treg cells. Thus, tolerance is readily maintained and favored with limited IL-2. PMID:20732639

  8. Interleukin 2 immunotherapy in children with neuroblastoma after high-dose chemotherapy and autologous bone marrow transplantation.

    PubMed

    Favrot, M C; Michon, J; Floret, D; Cochat, C; Negrier, S; Mathiot, C; Coze, C; Zucker, J M; Franks, C R; Bouffet, E

    1990-01-01

    Four children with persistent neuroblastoma after marrow ablative chemoradiotherapy and autologous bone marrow transplantation received continuous infusion of recombinant interleukin 2, 75 to 120 days after the graft. Recombinant interleukin 2 therapy did not induce any major or nonreversible toxicity, hematological toxicity in particular. One patient entered complete remission for 9 months and a second patient had a long-lasting normalization of urinary catecholamine metabolites with more than 50% regression of bone marrow metastases (8 months). In three children, recombinant interleukin 2 and a second patient entered complete remission for 9 months therapy was followed by major increase and activation of circulating natural killer cells which amounted to 80% of the circulating mononuclear cells.

  9. NK-lysin, a novel effector peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity.

    PubMed Central

    Andersson, M; Gunne, H; Agerberth, B; Boman, A; Bergman, T; Sillard, R; Jörnvall, H; Mutt, V; Olsson, B; Wigzell, H

    1995-01-01

    A 78 residue antimicrobial, basic peptide, NK-lysin, with three intrachain disulfide bonds was purified from pig small intestine and characterized. A corresponding clone was isolated from a porcine bone marrow cDNA library. The 780 bp DNA sequence had a reading frame of 129 amino acids which corresponded to NK-lysin. The clone was used to show that stimulation with human interleukin-2 induced synthesis of NK-lysin-specific mRNA in a lymphocyte fraction enriched for T and NK cells. Lower levels of mRNA were detected in tissues known to contain T and NK cells, such as small intestine, spleen and colon. Interleukin-2 also induced both proliferation of the lymphocyte fraction and cytolytic function in these cells. Immunostaining showed that NK-lysin was present in cells positive for CD8, CD2 and CD4. NK-lysin showed high anti-bacterial activity against Escherichia coli and Bacillus megaterium and moderate activity against Acinetobacter calcoaceticus and Streptococcus pyogenes. The peptide showed a marked lytic activity against an NK-sensitive mouse tumour cell line, YAC-1, but it did not lyse red blood cells. The amino acid sequence of NK-lysin exhibits 33% identity with a putative human preproprotein, NKG5, of unknown function but derived from a cDNA clone of activated NK cells. We suggest that NK-lysin is a new effector molecule of cytotoxic T and NK cells. Images PMID:7737114

  10. Augmentation of antibody dependent cell mediated cytotoxicity following in vivo therapy with recombinant interleukin 2.

    PubMed

    Hank, J A; Robinson, R R; Surfus, J; Mueller, B M; Reisfeld, R A; Cheung, N K; Sondel, P M

    1990-09-01

    Monoclonal antibodies (mAB) with tumor specificity are able to enhance the immunological specificity of interleukin 2 (IL-2)-activated lymphokine activated killer (LAK) cells. Antibodies may also be used to broaden the range of tumor types susceptible to immune mediated cytotoxicity by the activated LAK cells. In these studies, mAB with relative tumor specificity were used to target immunologically activated effector cells in an in vitro antibody dependent cell mediated cytotoxicity (ADCC) assay. The mAB included: 3F8 and 14.G2a, which are both specific for neuroblastoma and melanoma and recognize ganglioside GD2, and mAB ING-1, a mouse-human chimeric antibody with constant regions from human IgG1 and kappa chains and variable regions from a mouse mAB that binds to a broad range of human adenocarcinomas. Each of these mAB was able to mediate ADCC with fresh effector cells and antibody binding targets. When peripheral blood mononuclear cells were obtained from cancer patients prior to and following in vivo therapy with interleukin 2, a significant increase was noted in ADCC activity by peripheral blood mononuclear cells obtained following IL-2 therapy. Inclusion of IL-2 in the medium during the cytotoxic assay with mAB further boosted ADCC. The total activity seen was often greater than the sum of the independent LAK activity and standard ADCC activity. The cells responsible for this ADCC had the CD16+ Fc receptor. Combining IL-2 with mAB in clinical tumor therapy may lead to a wider range of tumor types being responsive to immunotherapy and may also enhance the efficacy of therapy by specifically targeting activated effector cells to tumor cells recognized by mAB. Our results provide strong support for the testing of these hypotheses in clinical trials by combining in vivo treatment with IL-2 and mAB able to mediate ADCC.

  11. Soluble Interleukin 2 Receptor Levels, Temperament and Character in Formerly Depressed Suicide Attempters Compared with Normal Controls

    ERIC Educational Resources Information Center

    Rothenhausler, Hans-Bernd; Stepan, Alexandra; Kapfhammer, Hans-Peter

    2006-01-01

    An imbalance of the immune system and mixed personality profiles in suicide attempters have been reported. As suicidal behavior is common in patients with psychiatric disorders within the spectrum of depressive features, in this study we measured soluble interleukin-2 receptor concentrations in plasma (sIL-2R) and investigated temperament and…

  12. Genetically engineered Newcastle disease virus expressing interleukin-2 and TNF-related apoptosis-inducing ligand for cancer therapy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant Newcastle disease virus (rNDV) has shown oncolytic therapeutic efficacy in preclinical studies and are currently in clinical trials. In this study, we have evaluated the possibility to enhance the cancer therapeutic potential of NDV by means of inserting both interleukin-2 (IL-2) and tu...

  13. Membrane protrusion powers clathrin-independent endocytosis of interleukin-2 receptor.

    PubMed

    Basquin, Cyril; Trichet, Michaël; Vihinen, Helena; Malardé, Valérie; Lagache, Thibault; Ripoll, Léa; Jokitalo, Eija; Olivo-Marin, Jean-Christophe; Gautreau, Alexis; Sauvonnet, Nathalie

    2015-08-13

    Endocytosis controls many functions including nutrient uptake, cell division, migration and signal transduction. A clathrin- and caveolin-independent endocytosis pathway is used by important physiological cargos, including interleukin-2 receptors (IL-2R). However, this process lacks morphological and dynamic data. Our electron microscopy (EM) and tomography studies reveal that IL-2R-pits and vesicles are initiated at the base of protrusions. We identify the WAVE complex as a specific endocytic actor. The WAVE complex interacts with IL-2R, via a WAVE-interacting receptor sequence (WIRS) present in the receptor polypeptide, and allows for receptor clustering close to membrane protrusions. In addition, using total internal reflection fluorescent microscopy (TIRF) and automated analysis we demonstrate that two timely distinct bursts of actin polymerization are required during IL-2R uptake, promoted first by the WAVE complex and then by N-WASP. Finally, our data reveal that dynamin acts as a transition controller for the recruitment of Arp2/3 activators required for IL-2R endocytosis. Altogether, our work identifies the spatio-temporal specific role of factors initiating clathrin-independent endocytosis by a unique mechanism that does not depend on the deformation of a flat membrane, but rather on that of membrane protrusions.

  14. Characterization of antigen receptor response elements within the interleukin-2 enhancer.

    PubMed Central

    Durand, D B; Shaw, J P; Bush, M R; Replogle, R E; Belagaje, R; Crabtree, G R

    1988-01-01

    T-cell activation and induction of interleukin-2 (IL-2) expression in human T lymphocytes require both interaction of foreign antigen with the T-cell antigen receptor and protein kinase C (PKC) stimulation. Agents such as phorbol 12-myristate 13-acetate (PMA) that stimulate PKC augment the effects of antigen but are not sufficient for IL-2 activation. By analysis of deletion mutants, we identified three DNA sequences extending from -73 to -89, -217 to -255, and -263 to -279, designated IL-2 sites A, D, and E, respectively, that are required for maximal induction of IL-2 expression. One of these regions, site E, interacted with a protein (NF-IL-2E) present only in the nuclei of cells which have been stimulated. The other two sequences interacted with a protein (NF-IL-2A) that is constitutively expressed in T cells. When multiple tandem copies of either the E site or the A site were placed upstream of the gamma-fibrinogen promoter, they activated expression via this promoter in response to signals initiated at the antigen receptor but not following PMA stimulation. For this reason, we denoted them antigen receptor response elements. The uncoupling of antigen receptor and PKC requirements in these studies indicates that these signal pathways are, at least in part, distinct and integrated at the level of the gene. Images PMID:3260003

  15. Soluble interleukin-2 receptor in Crohn's disease: relation of serum concentrations to disease activity.

    PubMed

    Crabtree, J E; Juby, L D; Heatley, R V; Lobo, A J; Bullimore, D W; Axon, A T

    1990-09-01

    Serum concentrations of soluble interleukin-2 receptor (sIL-2R) were measured as a marker of immune activation in a group of 30 patients with Crohn's disease. sIL-2R concentrations were determined by enzyme linked immunosorbent assay during periods of active and inactive disease and correlated with standard parameters of disease activity. Serum concentrations of sIL-2R were significantly raised in patients with active Crohn's disease compared with patients with inactive disease (p less than 0.001) and control subjects. There was a significant correlation between serum sIL-2R concentrations and disease activity as assessed by the Harvey-Bradshaw index (r = 0.42, p less than 0.01), platelet numbers (r = 0.49, p less than 0.01), and orosomucoid (r = 0.47, p less than 0.01), alpha 1 antitrypsin (r = 0.44, p less than 0.01), and C reactive protein concentrations (r = 0.48, p less than 0.001) but not with the erythrocyte sedimentation rate. Measurement of serum sIL-2R concentration is a simple and useful laboratory means of assessing disease activity. Raised concentrations in patients with active Crohn's disease is further evidence for in vivo immune activation occurring in this disease.

  16. Interleukin 2 promotes growth and cytolytic activity in human T3+4-8- thymocytes.

    PubMed Central

    de la Hera, A; Toribio, M L; Marquez, C; Martinez, C

    1985-01-01

    Human thymocytes bearing T3 but neither T4 nor T8 antigens (T3+4-8- cells) were obtained after negative selection of thymocytes, either fresh or cultured in medium containing recombinant interleukin 2 (IL-2), by treatment with Na1/34, OKT4A and B9.4 monoclonal antibodies (which recognize T6, T4, and T8 antigens, respectively) and complement. Quantitative flow cytometry showed a 98% pure population of T3+4-8- lymphocytes, which included proliferating cells. The growth and maturation requirements of these thymocytes were characterized and related to the T3-receptor complex and IL-2 pathways, thought to be used by mature lymphocytes. The results show that addition of recombinant IL-2 promotes, in a dose-dependent way, proliferation and acquisition of effector functions by cultured T3+4-8- thymocytes, the growth being inhibitable by monoclonal antibody 33B73 (anti-Tac). Furthermore, cytolytic activity of T3+4-8- cells induced by recombinant IL-2 is specifically blocked by monoclonal antibody OKT3, showing that it operates via the T3-receptor complex and does not require either T4 or T8 molecules. The finding of in vitro responsiveness to recombinant IL-2 in T3+4-8- thymocytes suggests a role of IL-2 in the growth and maturation of cells committed to the T-cell lineage, during intrathymic differentiation, prior to expression of T4 and T8 molecules. PMID:3929254

  17. Pharmacokinetics of recombinant interleukin-2 in children with malignancies: a Pediatric Oncology Group study.

    PubMed

    Pais, R C; Ingrim, N B; Garcia, M L; Abdel-Mageed, A; McKolanis, J; Ingrim, M E; Hnath, R S; Ziegler, K; Ragab, A H

    1990-10-01

    To develop effective interleukin-2 (IL-2) protocols for pediatric malignancies, it is important to define IL-2 pharmacokinetics in children. In a phase I trial, we studied IL-2 pharmacokinetics in seven children, aged 6-18, five with leukemia, one with neuroblastoma, and one with rhabdomyosarcoma. IL-2 was administered as a 15-min i.v. infusion of either 1 X 10(6) CU/m2/dose or 3 X 10(6) CU/m2/dose (every Monday, Wednesday, and Friday for 3 weeks). IL-2 levels were determined using an IL-2-dependent murine T lymphocyte cell line bioassay. Peak IL-2 levels of 120-426 and 330-740 CU/ml were achieved after the lower and higher doses, respectively. Pediatric IL-2 kinetics resembled data reported for adults, fitting a two-compartment model (least-squares-regression technique), with an alpha half-life of 14.0 +/- 5.6 min (range, 6.3-23.1) and a beta half-life of 51.4 +/- 10.7 min (range, 33.0-66.0). The volume of distribution approximated total extracellular fluid (mean, 0.18 L/kg). Further clinical trials are needed to identify which pediatric malignancies are sensitive to immunotherapy and to establish the optimal treatment regimens.

  18. Immunomodulatory effects of human neuroblastoma cells transduced with a retroviral vector encoding interleukin-2.

    PubMed

    Leimig, T; Foreman, N; Rill, D; Coze, C; Holladay, M; Brenner, M

    1994-12-01

    We have investigated whether retroviral mediated transfer of the IL-2 gene renders human neuroblastoma cells immunogenic, justifying their use in a clinical tumor immunization study. Fourteen neuroblastoma cell lines were established from patients with disseminated neuroblastoma and transduced with the vector G1Ncvl2, which contains the neomycin phosphotransferase gene and the cDNA of the human interleukin-2 gene. Clones secreting > 150 pg/10(6) cells/24 h of IL-2 were selected for further study. Secretion of IL-2 was maintained for at least 3 weeks in nonselective media, implying that production of the cytokine would continue under in vivo conditions. Co-culture of IL-2 transduced cell lines with patient lymphocytes induced potent cytotoxic activity against both transduced and parental neuroblastoma cell lines. This activity was HLA unrestricted, and predominantly mediated by CD16+ or CD56+ and CD8- lymphocytes. These data form the preclinical justification for our current immunization protocol for patients with relapsed or resistant neuroblastoma.

  19. Interleukin-2-Dependent Allergen-Specific Tissue-Resident Memory Cells Drive Asthma.

    PubMed

    Hondowicz, Brian D; An, Dowon; Schenkel, Jason M; Kim, Karen S; Steach, Holly R; Krishnamurty, Akshay T; Keitany, Gladys J; Garza, Esteban N; Fraser, Kathryn A; Moon, James J; Altemeier, William A; Masopust, David; Pepper, Marion

    2016-01-19

    Exposure to inhaled allergens generates T helper 2 (Th2) CD4(+) T cells that contribute to episodes of inflammation associated with asthma. Little is known about allergen-specific Th2 memory cells and their contribution to airway inflammation. We generated reagents to understand how endogenous CD4(+) T cells specific for a house dust mite (HDM) allergen form and function. After allergen exposure, HDM-specific memory cells persisted as central memory cells in the lymphoid organs and tissue-resident memory cells in the lung. Experimental blockade of lymphocyte migration demonstrated that lung-resident cells were sufficient to induce airway hyper-responsiveness, which depended upon CD4(+) T cells. Investigation into the differentiation of pathogenic Trm cells revealed that interleukin-2 (IL-2) signaling was required for residency and directed a program of tissue homing migrational cues. These studies thus identify IL-2-dependent resident Th2 memory cells as drivers of lung allergic responses.

  20. Membrane protrusion powers clathrin-independent endocytosis of interleukin-2 receptor

    PubMed Central

    Basquin, Cyril; Trichet, Michaël; Vihinen, Helena; Malardé, Valérie; Lagache, Thibault; Ripoll, Léa; Jokitalo, Eija; Olivo-Marin, Jean-Christophe; Gautreau, Alexis; Sauvonnet, Nathalie

    2015-01-01

    Endocytosis controls many functions including nutrient uptake, cell division, migration and signal transduction. A clathrin- and caveolin-independent endocytosis pathway is used by important physiological cargos, including interleukin-2 receptors (IL-2R). However, this process lacks morphological and dynamic data. Our electron microscopy (EM) and tomography studies reveal that IL-2R-pits and vesicles are initiated at the base of protrusions. We identify the WAVE complex as a specific endocytic actor. The WAVE complex interacts with IL-2R, via a WAVE-interacting receptor sequence (WIRS) present in the receptor polypeptide, and allows for receptor clustering close to membrane protrusions. In addition, using total internal reflection fluorescent microscopy (TIRF) and automated analysis we demonstrate that two timely distinct bursts of actin polymerization are required during IL-2R uptake, promoted first by the WAVE complex and then by N-WASP. Finally, our data reveal that dynamin acts as a transition controller for the recruitment of Arp2/3 activators required for IL-2R endocytosis. Altogether, our work identifies the spatio-temporal specific role of factors initiating clathrin-independent endocytosis by a unique mechanism that does not depend on the deformation of a flat membrane, but rather on that of membrane protrusions. PMID:26124312

  1. Interleukin-2 is Present in Human Blood Vessels and Released in Biologically Active Form by Heparanase

    PubMed Central

    Miller, John D.; Clabaugh, Suzanne E.; Smith, Deandra R.; Stevens, R. B.; Wrenshall, Lucile E.

    2011-01-01

    Interleukin-2 is a multifaceted cytokine with both immunostimulatory and immunosuppressive properties. Our laboratory recently demonstrated that the availability of IL-2 is regulated, in part, by association with perlecan, a heparan sulfate proteoglycan. Given the abundance of perlecan in blood vessels, we asked whether IL-2 is present in vessel walls. Our results indicate that IL-2 is associated with endothelial and smooth muscle cells within the human arterial wall. This IL-2 is released by heparanase, and promotes the proliferation of an IL-2 dependent cell line. Given the presence of IL-2 in human arteries, we asked whether the large vessels of IL-2 deficient mice were normal. The aortas of IL-2 deficient mice exhibited a loss of smooth muscle cells, suggesting that IL-2 may contribute to their survival. In their entirety, these results suggest a here-to-fore unrecognized role of IL-2 in vascular biology, and have significant implications for both the immune and cardiovascular systems. PMID:21606942

  2. Interleukin 2 enhances natural killer cell activity through induction of gamma interferon.

    PubMed Central

    Weigent, D A; Stanton, G J; Johnson, H M

    1983-01-01

    Highly purified interleukin 2 (IL 2), free of interferon activity, enhanced natural killer (NK) cell activity against tumor cells in mouse spleen cell cultures and in human peripheral lymphocyte cultures in a manner similar to that of interferon (IFN). We determined that IL 2 enhanced NK activity indirectly in a cascade manner by the induction of gamma IFN (IFN-gamma) in the cultures, which actually mediated the enhanced killing. Accordingly, lymphocyte cultures treated with IL 2 alone produced 10 to 100 U of IFN per ml in 6 to 24 h of culture. The IFN was typed as IFN-gamma by specific antibodies. Specific antibodies either to natural IFN-gamma or to a synthetic peptide corresponding to the human IFN-gamma N-terminal amino acids, when added to cultures treated with IL 2, completely blocked IL 2 enhancement of NK cell activity for both the mouse and human systems. IL 2-induced proliferation was not affected by the antibodies. Thus, the enhancement of NK cell activity by IL 2 is completely mediated by IL 2-induced IFN-gamma. The findings clearly indicate a cascade effect whereby one lymphokine (IL 2) induces the production of another. The latter lymphokine (IFN-gamma) then mediates an important biological effect (natural killing). PMID:6411624

  3. Fusokine interleukin-2/interleukin-18, a novel potent innate and adaptive immune stimulator with decreased toxicity.

    PubMed

    Acres, Bruce; Gantzer, Murielle; Remy, Christelle; Futin, Nicolas; Accart, Nathalie; Chaloin, Olivier; Hoebeke, Johan; Balloul, Jean-Marc; Paul, Stéphane

    2005-10-15

    To redress the immune imbalances created by pathologies such as cancer, it would be beneficial to create novel cytokine molecules, which combine desired cytokine activities with reduced toxicities. Due to their divergent but complementary activities, it is of interest to combine interleukin-2 (IL-2) and IL-18 into one recombinant molecule for immunotherapy. Evaluation of a fusokine protein that combines murine IL-2/IL-18 shows that it is stable, maintains IL-2 and IL-18 bioactivities, has notably reduced IL-2 associated toxicities, and has a novel lymphocyte-stimulating activity. An adeno-viral expression system was used to explore the biology of this "fusokine". Inclusion of the IL-18 prosequence (proIL-18) increases the expression, secretion, and potency of this fusokine. In vivo gene transfer experiments show that Ad-IL-2/proIL-18 dramatically outdoes Ad-IL-2, Ad-proIL-18, or the combination of both, by inducing high rates of tumor rejection in several murine models. Both innate and adaptive effector mechanisms are required for this antitumor activity. PMID:16230419

  4. Transcriptional Activation of the Interleukin-2 Promoter by Hepatitis C Virus Core Protein

    PubMed Central

    Bergqvist, Anders; Rice, Charles M.

    2001-01-01

    Most patients infected with hepatitis C virus (HCV) become chronic carriers. Viruses that efficiently establish persistent infections must have effective ways of evading host defenses. In the case of HCV, little is known about how chronic infections are established or maintained. Besides hepatocytes, several reports suggest that HCV can infect T and B lymphocytes. Since T cells are essential for viral clearance, direct or indirect effects of HCV on T-cell function could influence the outcome of infection. Given that T-cell growth and differentiation require the cytokine interleukin 2 (IL-2), we asked whether HCV might modulate synthesis of IL-2. Portions of the HCV polyprotein were expressed in Jurkat cells under a variety of conditions. We found that the highly conserved HCV core protein, in combination with other stimuli, was able to dramatically activate transcription from the IL-2 promoter. The carboxy-terminal hydrophobic portion of the core protein was required for this activity. Activation was dependent on nuclear factor of activated T cells (NFAT), occurred in cells deficient in the tyrosine kinase p56lck, and could be blocked by addition of cyclosporin A and by depletion of calcium. These results suggest that the HCV core protein can activate transcription of the IL-2 promoter through the NFAT pathway. This novel activity may have consequences for T-cell development and establishment of persistent infections. PMID:11134290

  5. Treatment Outcome of Low-dose Interleukin-2 Therapy in Patients with Metastatic Renal Cell Carcinoma.

    PubMed

    Takezawa, Yuta; Izumi, Kouji; Shimura, Yusuke; Aerken, Maolake; Natsagdorji, Ariunbold; Iijima, Masashi; Shigehara, Kazuyoshi; Nohara, Takahiro; Narimoto, Kazutaka; Kadono, Yoshifumi; Kitagawa, Yasuhide; Konaka, Hiroyuki; Mizokami, Atsushi

    2016-09-01

    Renal cell carcinoma (RCC) is one of the most fatal urological malignancies. Approximately 30% of patients with RCC have metastasis at initial diagnosis and another 30% have metastasis after radical nephrectomy. Immunotherapy using interferon-α (IFN-α) and interleukin-2 (IL-2) has been the main treatment for metastatic RCC (mRCC) patients, with this therapy being still occasionally recommended. The aims of this study were to evaluate the efficacy of low-dose IL-2 and to investigate the prognosis of the patients. Study subjects included 37 patients who were clinically diagnosed with mRCC and received low-dose IL-2 therapy between December 1999 and October 2014. We investigated the relationship between prognosis and clinical features. The median overall survival (OS), that was calculated from the first use of cytokine therapy, was 19.8 months, while the median progression-free survival (PFS) was 3.82 months. PFS was prolonged in patients who received IL-2 as first-line therapy or second-line therapy following IFN-α therapy. IL-2 therapy should be used as a first- or second-line therapy following IFN-α therapy. IL-2 may have a lower response if it is used after molecular-targeted therapy or other treatments. PMID:27630356

  6. A novel and simple type of liposome carrier for recombinant interleukin-2.

    PubMed

    Kanaoka, E; Takahashi, K; Yoshikawa, T; Jizomoto, H; Nishihara, Y; Hirano, K

    2001-03-01

    The strong interaction between recombinant interleukin-2 (IL-2) and liposome was characterized and its possible application to drug-delivery control considered. The liposomes were prepared with egg phosphatidylcholine, distearoyl-phosphatidylglycerol (DSPG), dipalmitoyl-phosphatidylcholine, dipalmitoyl-phosphatidylglycerol or distearoyl-phosphatidylcholine (DSPC). Small and hydrophobic liposomes were selected, which were composed of saturated and long-fatty-acid-chain phospholipids. When the composition and the mixture ratio of IL-2 and the liposomewere optimized, morethan 95% ofthe lyophilized IL-2 (Imunace, 350000 JRU) was adsorbed consistently onto the DSPC-DSPG liposome (molar ratio, 10:1; 25 micromol mL(-1); 30 nm in size). Merely mixing IL-2 lyophilized with liposome suspension is convenient pharmaceutically. After intravenous administration to mice, liposomal IL-2 was eliminated half as slowly from the systemic circulation as free IL-2, with more than 13 and 18 times more IL-2 being delivered to the liver and spleen, respectively. After subcutaneous administration of liposomal IL-2 to mice, the mean residence time of IL-2 in the systemic circulation was 8 times that of free IL-2. These results show that IL-2 consistently adsorbs onto the surface of liposomes after optimization of its composition and mixing ratio. Intravenous and subcutaneous administration to mice demonstrates the gradual release of IL-2. Further trials are warranted using these liposomes. PMID:11291744

  7. Activation of endothelium by immunotherapy with interleukin-2 in patients with malignant disorders.

    PubMed

    Locker, G J; Kapiotis, S; Veitl, M; Mader, R M; Stoiser, B; Kofler, J; Sieder, A E; Rainer, H; Steger, G G; Mannhalter, C; Wagner, O F

    1999-06-01

    Treatment with intravenous recombinant human interleukin-2 (rh IL-2) is frequently accompanied by the capillary leak syndrome and disturbances of the coagulation system. Although the exact mechanisms are still not fully understood, the involvement of the endothelium is proven. This investigation aimed to elucidate more precisely the role of the endothelium in the generation of IL-2-based side-effects. In nine tumour patients receiving intravenous rh IL-2, parameters characterizing endothelial cell activation as well as activation of the coagulation system were evaluated. A significant increase of the circulating endothelial leucocyte adhesion molecule-1 (cELAM-1) and the vasoconstrictor peptide endothelin-1 (ET-1) was observed (P<0.05), indicating activation of endothelial cells. The simultaneous increase of tissue-plasminogen activator and plasminogen activator inhibitor type-1 during therapy (P<0.05) corroborated this observation. A decrease in platelet count parallelled by an increase of fibrin degradation products, the prolongation of partial thromboplastin time, and the decrease of fibrinogen (P<0.05) suggested the development of disseminated intravascular coagulation (DIC), induced by activated endothelium and intensified by transient hepatic failure. We concluded that activation of the endothelium mediated by IL-2 was accompanied by a loss of endothelial integrity and capillary leak. The activated endothelium can trigger DIC via activation of the coagulation cascade. The increased ET-1 might act as an endogenous counter-regulator of the disadvantageous haemodynamic side-effects induced by IL-2.

  8. Antibodies to interleukin 2. Effects on immune responses in vitro and in vivo

    PubMed Central

    1984-01-01

    Antibodies to highly purified mouse interleukin 2 (IL-2) were raised in rabbits; a 1:500 dilution of antiserum completely blocked the in vitro mitogenic effect of 10(-9) M IL-2. The antisera functioned effectively to immunoprecipitate biosynthetically labeled IL-2 and the purified immunoglobulins were useful in the construction of affinity columns for the adsorption and one-step immunopurification of IL-2. The antibodies were apparently specific for IL-2 among the lymphokines, they did not block the biological effects of IL-1, IL-3, gamma-IFN, B cell stimulating factor(s), and cytotoxic T cell differentiation factor(s). When anti-IL-2 was added to the in vitro reactions, it blocked mixed leukocyte reactions (MLR) and associated lymphocyte proliferation, the in vitro generation of cytotoxic T cells, and antibody formation as assessed by erythrocyte-specific plaque-forming cells (PFC). When injected into mice, anti-IL-2 antibodies also reduced the formation of cytotoxic lymphocytes in response to allogeneic cells, suggesting that endogenous IL-2 participates in such reactions in vivo. Taken together, the results indicate that these IL-2 antibodies will be useful adjuncts in the analysis of immune response both in vivo and in vitro. PMID:6236276

  9. Activation of CD4+ T lymphocytes form interleukin 2-deficient mice by costimulatory B7 molecules.

    PubMed Central

    Razi-Wolf, Z; Höllander, G A; Reiser, H

    1996-01-01

    Interleukin 2 (IL-2)-deficient (IL-2-/-) mice develop hemolytic anemia and chronic inflammatory bowel disease. Importantly, the induction of disease in IL-2-deficient mice is critically dependent on CD4+ T cells. We have studied the requirements of T cells from IL-2-deficient mice for costimulation with B7 antigens. Stable B7-1 or B7-2 chinese hamster ovary (CHO) cell transfectants could synergize with anti-CD3 monoclonal antibody (mAb) to induce the proliferation of CD4+ T cells from IL-2-/- mutant mice. Further mechanistic studies established that B7-induced activation resulted in surface expression of the alpha chain of the IL-2 receptor. B7-induced proliferation occurred independently of IL-4 and was largely independent of the common gamma chain of the IL-2, IL-4, IL-7, IL-9, and IL-15 receptors. Finally, anti-B7-2 but not anti-B7-1 mAb was able to inhibit the activation of IL-2-/- T cells induced by anti-CD3 mAb in the presence of syngeneic antigen-presenting cells. The results of our experiments indicate that IL-2-/- CD4+ T cells remain responsive to B7 stimulation and raise the possibility that B7 antagonists have a role in the prevention/treatment of inflammatory bowel disease. Images Fig. 3 PMID:8610140

  10. Delivery of methoxymorpholinyl doxorubicin by interleukin 2-activated NK cells: effect in mice bearing hepatic metastases

    PubMed Central

    Quintieri, L; Rosato, A; Amboldi, N; Vizler, C; Ballinari, D; Zanovello, P; Collavo, D

    1999-01-01

    The possibility of using interleukin 2 (IL-2)-activated natural killer cells (A-NK) to carry methoxymorpholinyl doxorubicin (MMDX; PNU 152243) to liver-infiltrating tumours was explored in mice bearing 2-day established M5076 reticulum cell sarcoma hepatic metastases. In vitro, MMDX was 5.5-fold more potent than doxorubicin against M5076 tumour cells. MMDX uptake by A-NK cells correlated linearly with drug concentration in the incubation medium [correlation coefficient (r) = 0.999]; furthermore, as MMDX incorporation was readily reproducible in different experiments, the amount of drug delivered by A-NK cells could be modulated. In vivo experiments showed that intravenous (i.v.) injection of MMDX-loaded A-NK cells exerted a greater therapeutic effect than equivalent or even higher doses of free drug. The increase in lifespan (ILS) following A-NK cell delivery of 53 μg kg−1 MMDX, a dosage that is ineffective when administered in free form, was similar to that observed in response to 92 μg kg−1 free drug, a dosage close to the 10% lethal dose (ILS 42% vs. 38% respectively). These results correlated with pharmacokinetic studies showing that MMDX encapsulation in A-NK cells strongly modifies its organ distribution and targets it to tissues in which IL-2 activated lymphocytes are preferentially entrapped after i.v. injection. © 1999 Cancer Research Campaign PMID:10098738

  11. Annexin A6 regulates interleukin-2-mediated T-cell proliferation.

    PubMed

    Cornely, Rhea; Pollock, Abigail H; Rentero, Carles; Norris, Sarah E; Alvarez-Guaita, Anna; Grewal, Thomas; Mitchell, Todd; Enrich, Carlos; Moss, Stephen E; Parton, Robert G; Rossy, Jérémie; Gaus, Katharina

    2016-07-01

    Annexin A6 (AnxA6) has been implicated in cell signalling by contributing to the organisation of the plasma membrane. Here we examined whether AnxA6 regulates signalling and proliferation in T cells. We used a contact hypersensitivity model to immune challenge wild-type (WT) and AnxA6(-/-) mice and found that the in vivo proliferation of CD4(+) T cells, but not CD8(+) T cells, was impaired in AnxA6(-/-) relative to WT mice. However, T-cell migration and signalling through the T-cell receptor ex vivo was similar between T cells isolated from AnxA6(-/-) and WT mice. In contrast, interleukin-2 (IL-2) signalling was reduced in AnxA6(-/-) compared with WT T cells. Further, AnxA6-deficient T cells had reduced membrane order and cholesterol levels. Taken together, our data suggest that AnxA6 regulates IL-2 homeostasis and sensitivity in T cells by sustaining a lipid raft-like membrane environment. PMID:26853809

  12. Only high-affinity receptors for interleukin 2 mediate internalization of ligand

    SciTech Connect

    Weissman, A.M.; Harford, J.B.; Svetlik, P.B.; Leonard, W.L.; Depper, J.M.; Waldmann, T.A.; Greene, W.C.; Klausner, R.D.

    1986-03-01

    Interleukin 2 (IL-2) receptors are expressed on activated T cells and in select T-cell leukemias. Recently, it has been demonstrated that at least two classes of receptor for IL-2 exist with markedly different affinities for ligand. All known biological actions of IL-2 have been correlated with occupancy of high-affinity sites; the function of the low-affinity sites remains unknown. Receptor-mediated endocytosis is the primary means of internalization of cell-surface receptors and their ligands. The internalization of IL-2 bound to high- and low-affinity receptor sites was studied in a human T-cell lymphotrophic virus type 1 (HTLV-1)-infected human T-cell leukemia cell line and in a cloned murine cytotoxic T-cell line (CTLL). Internalization of IL-2 occurred only when bound to high-affinity sites. In addition, an anti-receptor antibody (anti-Tac), which binds equally well to high- and low-affinity sites, demonstrated no detectable internalization. The implications of these findings as they relate to IL-2 receptor structure and function are discussed.

  13. Soluble interleukin 2 receptors are released from activated human lymphoid cells in vitro

    SciTech Connect

    Rubin, L.A.; Kurman, C.C.; Fritz, M.E.; Biddison, W.E.; Boutin, B.; Yarchoan, R.; Nelson, D.L.

    1985-11-01

    With the use of an enzyme-linked immunoabsorbent assay to measure soluble human interleukin 2 receptors (IL 2R), certain human T cell leukemia virus I (HTLV I)-positive T cell lines were found to spontaneously release large quantities of IL 2R into culture supernatants. This was not found with HTLV I-negative and IL 2 independent T cell lines, and only one of seven B cell-derived lines examined produced small amounts of IL 2R. In addition to this constitutive production of soluble IL 2R by certain cell lines, normal human peripheral blood mononuclear cells (PBMC) could be induced to release soluble IL 2R by plant lectins, the murine monoclonal antibody OKT3, tetanus toxoid, and allogeneic cells. Such activated cells also expressed cellular IL 2R measurable in detergent solubilized cell extracts. The generation of cellular and supernatant IL 2R was: dependent on cellular activation, rapid, radioresistant (3000 rad), and inhibited by cycloheximide treatment. NaDodSO4-polyacrylamide gel electrophoresis analysis of soluble IL 2R demonstrated molecules of apparent Mr = 35,000 to 40,000, and 45,000 to 50,000, respectively, somewhat smaller than the mature surface receptor on these cells. The release of soluble IL 2R appears to be a characteristic marker of T lymphocyte activation and might serve an immunoregulatory function during both normal and abnormal cell growth and differentiation.

  14. Interleukin 2 and interferon-gamma augment anticolon antibody dependent cellular cytotoxicity in ulcerative colitis.

    PubMed Central

    Hibi, T; Ohara, M; Watanabe, M; Kanai, T; Takaishi, H; Hayashi, A; Hosoda, Y; Ogata, H; Iwao, Y; Aiso, S

    1993-01-01

    In vitro effects of cytokines and therapeutic drugs on antibody dependent cellular cytotoxicity (ADCC) mediated by anticolon antibody were investigated in serum samples from patients with ulcerative colitis. A 51Cr release assay was used to examine ADCC activity with the colon cancer cell line, colo 205, as the target and peripheral blood mononuclear cells as the effector. High ADCC activity was shown in 13 of 32 (41%) patients with ulcerative colitis. This ADCC activity was inhibited by protein A treatment of the serum samples. Interleukin 2 (IL2) activated effector cells could enhance ADCC activity, but interferon-gamma (IFN-gamma) or tumour necrosis factor-alpha (TNF-alpha) had no effect on the cytotoxic activity of effector cells. Treatment of target cells with IFN-gamma increased the vulnerability of these cells to ADCC with a large increase of intercellular adhesion molecule-1 (ICAM-1) expression on their surface. Monoclonal antibodies to ICAM-1 inhibited this IFN-gamma enhanced ADCC activity. Interestingly, prednisolone (PSL) reduced ADCC activity, but sulphasalazine (SASP) or 5-aminosalicylic acid (5-ASA) did not. These results suggest that IL2 and IFN-gamma could enhance colonic epithelial cell injury mediated by the ADCC mechanism in ulcerative colitis and that ADCC enhanced by cytokines is restored by PSL treatment. PMID:8100205

  15. Nilotinib combined with interleukin-2 mediates antitumor and immunological effects in a B16 melanoma model.

    PubMed

    Geisler, K; Reischer, A; Kroeger, I; Jacobs, B; Meinhardt, K; Bauer, R; Ryffel, B; Mackensen, A; Ullrich, E

    2014-05-01

    The immune system contributes to tumor cell killing which can be enhanced by cancer chemotherapeutics and immune modulatory pharmaceuticals such as tyrosine kinase inhibitors (TKIs). Recently, the beneficial effect of natural killer (NK) cells was demonstrated when combining interleukin-2 (IL-2) with the TKI imatinib. The aim of the present study was to address the antitumor and immunological effects of recently approved TKIs. Therefore, we focused on the comparison of the efficacy between imatinib and nilotinib in combination with IL-2 in a murine B16F10 melanoma model. Both TKIs possessed antitumor activity in vivo. However, the combination of nilotinib and IL-2 showed a superior outcome. Importantly, both the use of immunodeficient Rag2γc-/- mice, which lack T-lymphocytes, B-lymphocytes and NK cells, as well as NK cell-depletion in C57Bl/6 mice reduced the therapeutic effect of nilotinib. Flow cytometry revealed a significant increase in the IFN-γ-producing CD27+ NK cell subpopulation following treatment with nilotinib and IL-2. Furthermore, the therapeutic antitumor effect of nilotinib/IL-2 was completely lost in IFN-γ-/- mice. In summary, we suggest that nilotinib combined with IL-2 confers high antitumor activity involving the subset of IFN-γ-producing CD27+ NK cells. These new insights are of high importance for the understanding and development of immunotherapeutic protocols using TKIs.

  16. Interleukin-2-dependent control of disease development in spontaneously diabetic BB rats.

    PubMed Central

    Zielasek, J; Burkart, V; Naylor, P; Goldstein, A; Kiesel, U; Kolb, H

    1990-01-01

    Long-term treatment with recombinant interleukin-2 (IL-2) of diabetes-prone BB rats had contrasting effects in two different BB rat sublines. Diabetes development was enhanced in the subline with a low intrinsic diabetes risk and suppressed in the subline with a high diabetes risk. IL-2 treatment started between 35 and 42 days of age and lasted for 3 months. In subline 1, diabetes incidence increased from 23% to 53% (P less than 0.01), in subline 2 it decreased from 73% to 32% (P less than 0.01). The two sublines differed in serum levels of factors controlling IL-2 synthesis and activity. Mean IL-2 inhibitory activity was higher in subline 2 (between 140% and 290% of levels in subline 1, P less than 0.01). Conversely, mean concentrations of thymosin alpha 1 and beta 4 were higher in subline 1 (between 140% and 200% of levels in subline 2, P less than 0.01). Thus the two sublines differ in their response to exogenous IL-2 and also in serum levels of mediators affecting availability of IL-2. We conclude that an internal network of hormonal factors, including IL-2, contributes to the control of diabetes development in the BB rat. Images Figure 2 PMID:2307481

  17. The protein pheromone Er-1 of the ciliate Euplotes raikovi stimulates human T-cell activity: Involvement of interleukin-2 system

    SciTech Connect

    Cervia, Davide; Catalani, Elisabetta; Belardinelli, Maria Cristina; Perrotta, Cristiana; Picchietti, Simona; Alimenti, Claudio; Casini, Giovanni; Fausto, Anna Maria; Vallesi, Adriana

    2013-02-01

    Water-soluble protein signals (pheromones) of the ciliate Euplotes have been supposed to be functional precursors of growth factors and cytokines that regulate cell–cell interaction in multi-cellular eukaryotes. This work provides evidence that native preparations of the Euplotes raikovi pheromone Er-1 (a helical protein of 40 amino acids) specifically increases viability, DNA synthesis, proliferation, and the production of interferon-γ, tumor necrosis factor-α, interleukin (IL)-1β, IL-2, and IL-13 in human Jurkat T-cells. Also, Er-1 significantly decreases the mRNA levels of the β and γ subunits of IL-2 receptor (IL-2R), while the mRNA levels of the α subunit appeared to be not affected. Jurkat T-cell treatments with Er-1 induced the down-regulation of the IL-2Rα subunit by a reversible and time-dependent endocytosis, and increased the levels of phosphorylation of the extracellular signal-regulated kinases (ERK). The cell-type specificity of these effects was supported by the finding that Er-1, although unable to directly influence the growth of human glioma U-373 cells, induced Jurkat cells to synthesize and release factors that, in turn, inhibited the U-373 cell proliferation. Overall, these findings imply that Er-1 coupling to IL-2R and ERK immuno-enhances T-cell activity, and that this effect likely translates to an inhibition of glioma cell growth. -- Highlights: ► Euplotes pheromone Er-1 increases the growth of human Jurkat T-cells. ► Er-1 increases the T-cell production of specific cytokines. ► Er-1 activates interleukin-2 receptor and extracellular signal-regulated kinases. ► The immuno-enhancing effect of Er-1 on Jurkat cells translates to an inhibition of human glioma cell growth.

  18. Interleukin-2 gene-modified allogeneic tumor cells for treatment of relapsed neuroblastoma.

    PubMed

    Bowman, L C; Grossmann, M; Rill, D; Brown, M; Zhong, W Y; Alexander, B; Leimig, T; Coustan-Smith, E; Campana, D; Jenkins, J; Woods, D; Brenner, M

    1998-06-10

    Tumor cells that have been genetically modified to express immunostimulatory genes will induce effective antitumor responses in a range of syngeneic animal models. For human applications, transduced autologous tumor cell lines are often difficult or impossible to prepare, so that there are strong incentives for substituting a standardized allogeneic tumor cell line. However, such lines may be inferior immunogens if they differ from host tumors in the antigens they express. We have evaluated the safety, immunostimulatory, and antitumor activity of an interleukin-2-secreting allogeneic neuroblastoma cell line in 12 children with relapsed stage IV neuroblastoma. They received two to four subcutaneous injections of cells in a dose-escalating schedule, up to a maximum of 10(8) cells per injection. There was induration and pruritus at the injection site, and skin biopsies revealed mild panniculitis with CD3+ cells surrounding scanty residual tumor cells. There was a limited but significant peripheral monocytosis. No patient showed any increase in direct cytotoxic effector function against the immunizing cell line, but 3 patients had a rise in the frequency of neuroblastoma-reactive cytotoxic T lymphocyte precursor cells. One child had > 90% tumor response (PR), 7 had stable disease, and 4 had progressive disease in response to vaccine alone. Although these results offer some encouragement for the continued pursuit of allogeneic vaccine strategies in human cancer, the antitumor immune responses we observed are inferior to those obtained in an earlier immunization study using autologous neuroblastoma cells. Hence, we suggest that this earlier approach remains preferable, its difficulties notwithstanding.

  19. Immunological evaluation of pediatric cancer patients receiving recombinant interleukin-2 in a phase I trial.

    PubMed

    Truitt, R L; Piaskowski, V; Kirchner, P; McOlash, L; Camitta, B M; Casper, J T

    1992-05-01

    Immunological evaluations were performed on 14 pediatric cancer patients who received human recombinant interleukin-2 (rIL-2) as a bolus intravenous infusion every 8 h for 5 consecutive days in a phase I trial. Three-to-four patients were treated at dose levels of 10, 30, 60, and 100 x 10(3) Cetus U/kg. Six of the patients had stage D neuroblastoma; the remainder had other solid tumors or leukemias. Infusion of rIL-2 was associated with a rapid margination of IL-2-responsive cells followed by demargination and heightened proliferative and cytotoxic activity after therapy was completed. The predominant phenotypic change in circulating peripheral blood mononuclear cells (PBMC) was an increase in CD2 expression by CD56+ natural killer (NK) cells. Appearance of CD2+ CD56+ cells in the circulation correlated with increased lymphokine-activated killer (LAK) cell activity as defined by the ability to kill NK-resistant Daudi tumor cells in vitro. Sustained LAK activity appeared to be dependent on the bioavailability of rIL-2 in vivo as well as in vitro. After rIL-2 therapy, PBMC that were highly responsive to rIL-2 (activated and "poised" LAK cells) persisted for at least 72 h. In the patients tested, increased lysis of autologous and/or allogeneic, histologically similar tumor cell lines was also observed after therapy. The immunoenhancing effects of rIL-2 occurred even at the lower doses used in this study. However, an objective tumor response was not observed in any of the patients.

  20. Protein-calorie malnutrition inhibits antitumor response to interleukin-2 immunotherapy.

    PubMed

    Lieberman, M D; Reynolds, J; Goldfine, J; Shou, J; Daly, J M

    1990-08-01

    The efficacy of systemic interleukin-2 (IL-2) immunotherapy is dependent on a competent host immune response. This study demonstrated that protein-calorie malnutrition (PCM) inhibited the generation of an antitumor response to IL-2. A/J mice received an isocaloric diet of 2.5% or 24% casein 8 weeks before inoculation with C1300 neuroblastoma cells. Three weeks later lymphocytes from tumor-bearing mice were harvested for determination of cytotoxic T-lymphocyte generation and natural killer cell cytotoxicity. PCM produced a significant reduction in total body weight (p less than 0.001) and serum albumin concentration (p less than 0.001). PCM inhibited generation of cytotoxic T lymphocytes (p less than 0.001), T-lymphocyte response in mixed lymphocyte reaction (p less than 0.001), and in vitro activation of natural killer cell cytotoxicity with IL-2 (p less than 0.001). A second experiment was performed to evaluate whether the in vitro deficits in tumor-specific and natural immunity in the animal model of PCM would diminish the efficacy of systemic high-dose IL-2 (3 x 10(6) units/kg three times daily for 5 days). The mean percent inhibition of C1300 growth with IL-2 was only 15% in mice with PCM compared with 60% in well-nourished mice (p less than 0.01). Median host survival time was greater in well-nourished animals (55 days) compared with animals with PCM (39 days) that received IL-2 (p less than 0.05). These data suggest that nutritional status is a critically important variable in tumoricidal response to systemic IL-2.

  1. Modulation of cellular immune responses in mice with disseminated histoplasmosis by recombinant interleukin-2.

    PubMed Central

    Deepe, G S; Taylor, C L; Harris, J E; Bullock, W E

    1986-01-01

    Depression of the cellular immune responses in mice with disseminated histoplasmosis is associated with deficient production of interleukin-2 (IL-2) by splenocytes. Therefore, we examined whether a highly purified preparation of IL-2, recombinant human IL-2 (rIL-2), could modify the cellular immune responses in infected mice and whether this lymphokine could alter the severity of histoplasmosis in animals. Exogenous rIL-2, at concentrations of up to 1,000 U/ml, failed to augment the proliferative responses to concanavalin A by unfractionated splenocytes or splenic T cells from mice infected for 1 week. In addition, rIL-2 did not modulate the plaque-forming cell response to sheep erythrocytes by splenocytes from these same mice. However, at week 3, rIL-2 in concentrations ranging from 10 to 1,000 U/ml considerably augmented the proliferative response to concanavalin A and plaque-forming cell response to sheep erythrocytes by splenocytes from infected mice. Kinetics studies demonstrated that rIL-2 exerted maximal immunoregulatory activity when added on day 0 or 1 to cultures of splenocytes. In vivo administration of rIL-2, 200 to 20,000 U/day, for 10 days to normal and 3-week-infected mice did not alter the proliferative activity of splenocytes to concanavalin A; 200,000 U of rIL-2 per day actually depressed the proliferative responses of splenocytes from normal and infected mice. In vivo, rIL-2 did not modify delayed-type hypersensitivity responses to sheep erythrocytes or to histoplasmin by normal and infected mice. Moreover, treatment with rIL-2 in vivo did not reduce the number of Histoplasma CFU in spleens of mice. Thus, despite the immunoenhancing effect of rIL-2 in vitro, this lymphokine failed to exert similar effects in vivo. PMID:3487507

  2. Conditional survival of metastatic renal cell carcinoma patients treated with high-dose interleukin-2

    PubMed Central

    Gill, David M; Stenehjem, David D; Parikh, Kinjal; Merriman, Joseph; Sendilnathan, Arun; Agarwal, Archana M; Hahn, Andrew W; Gupta, Sumati; Tantravahi, Srinivas Kiran; Samlowski, Wolfram E; Agarwal, Neeraj

    2016-01-01

    Conditional survival (CS) is a clinically useful prediction measure which adjusts a patient’s prognosis based on their duration of survival since initiation of therapy. CS has been described in numerous malignancies, and recently described in patients with metastatic renal cell carcinoma (mRCC) who received vascular endothelial growth factor tyrosine kinase inhibitor (VEGFTKI) therapy. However, CS has been not reported in the context of mRCC treated with high-dose interleukin-2 therapy (HDIL-2). A total of 176 patients with histologically confirmed metastatic clear cell RCC (mccRCC) treated with HDIL-2 at the University of Utah Huntsman Cancer Institute from 1988–2012 were evaluated. Using the Heng/IMDC model, they were stratified by performance status and prognostic risk groups. Two-year CS was defined as the probability of surviving an additional two years from initiation of HDIL-2 to 18 months after the start of HDIL-2 at three-month intervals. The median overall survival (OS) was 19.9 months. Stratifying patients into favourable (n = 35; 20%), intermediate (n = 110; 63%), and poor (n = 31; 18%) prognostic groups resulted in median OS of 47.5 (HR 0.57, 95% CI 0.35–0.88, p = 0.0106 versus intermediate), 19.6 (HR 0.33, 95% CI 0.10–0.33, p < 0.0001 versus poor), and 8.8 (HR 5.34, 95% CI 3.00–9.62, p < 0.0001 versus favourable) months respectively. Two-year overall CS increased from 43% at therapy initiation to 100% at 18 months. These results have significant ramifications in prognostication. Furthermore, it is important when counseling patients with mccRCC who have completed treatment with HDIL-2 and are in active follow-up. PMID:27729941

  3. Evidence for a role for the phosphotyrosine-binding domain of Shc in interleukin 2 signaling.

    PubMed Central

    Ravichandran, K S; Igras, V; Shoelson, S E; Fesik, S W; Burakoff, S J

    1996-01-01

    Stimulation via the T-cell growth factor interleukin 2 (IL-2) leads to tyrosine phosphorylation of Shc, the interaction of Shc with Grb2, and the Ras GTP/GDP exchange factor, mSOS. Shc also coprecipitates with the IL-2 receptor (IL-2R), and therefore, may link IL-2R to Ras activation. We have further characterized the Shc-IL-2R interaction and have made the following observations. (i) Among the two phosphotyrosine-interaction domains present in Shc, the phosphotyrosine-binding (PTB) domain, rather than its SH2 domain, interacts with the tyrosine-phosphorylated IL-2R beta chain. Moreover, the Shc-PTB domain binds a phosphopeptide derived from the IL-2R beta chain (corresponding to residues surrounding Y338, SCFTNQGpYFF) with high affinity. (ii) In vivo, mutant IL-2R beta chains lacking the acidic region of IL-2Rbeta (which contains Y338) fail to phosphorylate Shc. Furthermore, when wild type or mutant Shc proteins that lack the PTB domain were expressed in the IL-2-dependent CTLL-20 cell line, an intact Shc-PTB domain was required for Shc phosphorylation by the IL-2R, which provides further support for a Shc-PTB-IL-2R interaction in vivo. (iii) PTB and SH2 domains of Shc associate with different proteins in IL-2- and T-cell-receptor-stimulated lysates, suggesting that Shc, through the concurrent use of its two different phosphotyrosine-binding domains, could assemble multiple protein complexes. Taken together, our in vivo and in vitro observations suggest that the PTB domain of Shc interacts with Y338 of the IL-2R and provide evidence for a functional role for the Shc-PTB domain in IL-2 signaling. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8643566

  4. Effect of anti-interleukin 2 monoclonal antibody treatment on the survival of rat cardiac allograft

    SciTech Connect

    Sakagami, K.; Ohsaki, T.; Ohnishi, T.; Saito, S.; Matsuoka, J.; Orita, K.

    1989-03-01

    The effect of anti-interleukin 2 monoclonal antibody (anti-IL2 MoAb) and the accumulation of intravenously administered /sup 125/I-labeled anti-IL2 MoAb were examined in heterotopic rat cardiac allografts. Mouse anti-human recombinant IL2 MoAb was obtained by the hybridoma technique. The anti-IL2 MoAb, termed 8H-10, was an IgG2a which inhibited IL2-driven (/sup 3/H)TdR incorporation in cytolytic T lymphocyte line cells at a dilution of 2(6). 8H-10 was injected iv at a dose of 200 micrograms/day for 8 consecutive days, beginning on the day of transplantation. Hearts from F344 rats (RT11v1) were transplanted into ACI recipient rats (RT1av1). The mean survival time was 7.6 +/- 0.8 days in untreated controls, 9.0 +/- 1.2 days in additional controls treated with mouse anti-sheep red blood cell monoclonal antibody, and 25.3 +/- 18.4 days in the anti-IL2 MoAb (8H-10)-treated group (P less than 0.05). Furthermore, the accumulation of intravenously administered 125I-labeled anti-IL2 MoAb (8H-10) was specifically seen in the grafted heart. In conclusion, these results suggest that IL2 may play an important role in allograft rejection and that anti-IL2 MoAb may serve as a useful immunosuppressive agent in clinical transplantation.

  5. Cyclotides Suppress Human T-Lymphocyte Proliferation by an Interleukin 2-Dependent Mechanism

    PubMed Central

    Gründemann, Carsten; Thell, Kathrin; Lengen, Karin; Garcia-Käufer, Manuel; Huang, Yen-Hua; Huber, Roman; Craik, David J.; Schabbauer, Gernot; Gruber, Christian W.

    2013-01-01

    Cyclotides are a diverse and abundant group of ribosomally synthesized plant peptides containing a unique cyclic cystine-knotted topology that confers them with remarkable stability. Kalata B1, a representative member of this family of mini-proteins, has been found to inhibit the proliferation of human peripheral blood mononuclear cells. Analysis of T-cell proliferation upon treatment with chemically synthesized kalata B1 mutants revealed a region comprising inter-cysteine loops 1 and 2 of the cyclotide framework to be important for biological activity. Cytokine signaling analysis using an ‘active’ kalata B1 mutant [T20K], and the reference drug cyclosporin A (CsA) demonstrated that treatment of activated T-lymphocytes with these compounds decreased the expression of the interleukin-2 (IL-2) surface receptor as well as IL-2 cytokine secretion and IL-2 gene expression, whereas the ‘inactive’ kalata B1 mutant [V10K] did not cause any effects. The anti-proliferative activity of [T20K] kalata B1 was antagonized by addition of exogenous IL-2. Furthermore, treatment with [T20K] kalata B1 led to an initial reduction of the effector function, as indicated by the reduced IFN-γ and TNF-α production, but the levels of both cytokines stabilized over time and returned to their normal levels. On the other hand, the degranulation activity remained reduced. This indicated that cyclotides interfere with T-cell polyfunctionality and arrest the proliferation of immune-competent cells through inhibiting IL-2 biology at more than one site. The results open new avenues to utilize native and synthetically-optimized cyclotides for applications in immune-related disorders and as immunosuppressant peptides. PMID:23840803

  6. Systemic Administration of Interleukin 2 Enhances the Therapeutic Efficacy of Dendritic Cell-Based Tumor Vaccines

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Fields, R. C.; Giedlin, M.; Mule, J. J.

    1999-03-01

    We have reported previously that murine bone marrow-derived dendritic cells (DC) pulsed with whole tumor lysates can mediate potent antitumor immune responses both in vitro and in vivo. Because successful therapy was dependent on host immune T cells, we have now evaluated whether the systemic administration of the T cell stimulatory/growth promoting cytokine interleukin-2 (IL-2) could enhance tumor lysate-pulsed DC-based immunizations to further promote protective immunity toward, and therapeutic rejection of, syngeneic murine tumors. In three separate approaches using a weakly immunogenic sarcoma (MCA-207), the systemic administration of non-toxic doses of recombinant IL-2 (20,000 and 40,000 IU/dose) was capable of mediating significant increases in the potency of DC-based immunizations. IL-2 could augment the efficacy of tumor lysate-pulsed DC to induce protective immunity to lethal tumor challenge as well as enhance splenic cytotoxic T lymphocyte activity and interferon-γ production in these treated mice. Moreover, treatment with the combination of tumor lysate-pulsed DC and IL-2 could also mediate regressions of established pulmonary 3-day micrometastases and 7-day macrometastases as well as established 14- and 28-day s.c. tumors, leading to either significant cure rates or prolongation in overall survival. Collectively, these findings show that nontoxic doses of recombinant IL-2 can potentiate the antitumor effects of tumor lysate-pulsed DC in vivo and provide preclinical rationale for the use of IL-2 in DC-based vaccine strategies in patients with advanced cancer.

  7. Modulations of histamine release from mast cells by interleukin-2 is affected by nedocromil sodium.

    PubMed

    Rubinchik, E; Norris, A; Levi-Schaffer, F

    1995-07-01

    We have previously demonstrated that histamine release from immunologically activated mast cells (MC) is enhanced by their preincubation (1 h) with interleukin-2(IL-2), and that IL-2 induces slow-chronic histamine release by MC in long-term cultures (6 days). In the present study we assessed whether nedocromil sodium can interfere with IL-2 modulation of MC histamine release. IL-2 enhancing effects nedocromil sodium activity were studied in cocultures of rat peritoneal MC with 3T3 fibroblasts (MC/3T3). MC/3T3 were preincubated for 1 h with IL-2 (50 micrograms/ml) and activated with either rabbit anti-rat IgE or compound 48/80. In chronic experiments MC/3T3 were long-term (5-6 days) incubated with IL-2 (50 micrograms/ml). Nedocromil sodium was used at 10(-5) M. MC activation both when added during the preincubation period (no tachyphylaxis was present) and when added together with the MC activators (30-50% inhibition). Washing out IL-2 before addition of the anti-IgE antibodies did not affect its histamine-release enhancing activity. Removal of nedocromil sodium before addition of the stimulus completely abrogated its effect. Continuous presence of IL-2 in the culture medium enhanced spontaneous histamine release by 37% and this effect was completely abolished in the presence of nedocromil sodium. Furthermore, nedocromil sodium decreased MC basal histamine release by 23% in long-term cocultures. Since IL-2 is known to be elevated in some pathological conditions, our results show that nedocromil sodium inhibits MC activation in an in vitro system which may represent a close resemblance to the in vivo allergic response.

  8. HLA association with response and toxicity in melanoma patients treated with interleukin 2-based immunotherapy.

    PubMed

    Marincola, F M; Venzon, D; White, D; Rubin, J T; Lotze, M T; Simonis, T B; Balkissoon, J; Rosenberg, S A; Parkinson, D R

    1992-12-01

    Peripheral blood lymphocytes from 146 patients with metastatic melanoma undergoing interleukin 2 (IL-2)-based immunotherapy were characterized for HLA A, B, Cw, DR, DQw, and DRw specificities. Patients had been enrolled into sequential treatment protocols with either IL-2 alone (28) or in combination with tumor-infiltrating lymphocytes (TILs) (86), alpha-interferon (26), lymphokine-activated killer cells (16), radiation therapy (7), cyclophosphamide (3), tumor necrosis factor (1), and interleukin 4 (1) for a total of 168 courses of therapy. HLA phenotype was then correlated with response rate and toxicity to IL-2. We noted: (a) a significant difference in the frequency of A11 (20.5% versus 10.2%; P < 0.05) allele between melanoma patients and the North American Caucasian population; (b) a significantly higher frequency of A11 phenotype among responders (40.5%) than in the melanoma patient population (20.5%; P < 0.01), which was even more obvious among patients responding to TIL therapy (47.4% versus 22.1%; P < 0.05); within TIL patients, responders also had an increased frequency of A19 (42.1% versus 25.6%; P < 0.05); (c) a correlation between the number of TILs received and response rate (P < 0.005); and (d) an association between DR4 haplotype and decreased tolerance to IL-2 among the patients receiving TILs (P = 0.01). These results suggest that, in melanoma patients, some HLA Class I specificities may predict for a greater likelihood of response to IL-2-based therapy, while HLA Class II phenotype correlates with tolerance to the combination of TIL and IL-2 therapy. PMID:1423301

  9. Association between two interleukin-2 gene polymorphisms and cancer susceptibility: a meta-analysis

    PubMed Central

    Zhang, Meng; Tan, Xiuxiu; Huang, Junjie; Xie, Lijuan; Wang, Hao; Shi, Jizhou; Lu, Wei; Lv, Zhaojie; Mei, Hongbing; Liang, Chaozhao

    2016-01-01

    Background Several epidemiological studies have illustrated that polymorphisms in interleukin-2 (IL-2) were associated with diverse cancer types. However, recently published statistics were inconsistent and inconclusive. Therefore, the current meta-analysis was performed to elaborate the effects of IL-2 polymorphisms (rs2069762 and rs2069763) on cancer susceptibility. Material and methods A total of 5,601 cancer cases and 7,809 controls from 21 published case–control studies were enrolled in our meta-analysis. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association between IL-2 polymorphisms and cancer susceptibility. Results Our study demonstrated an increased susceptibility to cancer in rs2069762 (G vs T: OR =1.268, 95% CI =1.113–1.445; GG vs TT: OR =1.801, 95% CI =1.289–2.516; GT vs TT: OR =1.250, 95% CI =1.061–1.473; GG + GT vs TT: OR =1.329, 95% CI =1.118–1.579; GG vs GT + TT: OR =1.536, 95% CI =1.162–2.030). In the subgroup analysis, increased susceptibility to cancer was identified in the hospital-based group and PHWE<0.05 (P-value of the Hardy–Weinberg equilibrium [HWE]) group. In addition, a positive association with cancer susceptibility was observed among both Chinese and non-Chinese. However, no relationship was detected between the rs2069763 polymorphism of IL-2 and cancer susceptibility. Conclusion To conclude, rs2069762 polymorphism of IL-2 contributed to an increased susceptibility to cancer, whereas no association was identified between rs2069763 polymorphism and cancer susceptibility. Further detailed studies are warranted to confirm our findings. PMID:27143914

  10. Interleukin-2 induces activation of coagulation and fibrinolysis: resemblance to the changes seen during experimental endotoxaemia.

    PubMed

    Baars, J W; de Boer, J P; Wagstaff, J; Roem, D; Eerenberg-Belmer, A J; Nauta, J; Pinedo, H M; Hack, C E

    1992-10-01

    The administration of Interleukin-2 (IL-2) causes the release or generation of other cytokines such as tumour necrosis factor (TNF) which, by disturbing the anticoagulant properties of the endothelium, may induce a procoagulant state in patients receiving this drug. We therefore evaluated the effects of IL-2 on coagulation and fibrinolysis in 14 patients receiving 12 or 18 x 10(6) IU/m2/d of IL-2 given as a 15 min infusion for 5 d. Blood samples were drawn at short intervals after the first IL-2 infusion. The parameters were analysed by way of analysis for repeated measures (F tests rather than t tests). During the first day, thrombin-antithrombin (TAT) complexes started to increase 2 h after the IL-2 infusion, reaching peak levels at 4 h (n = 14; 11.2 +/- 6.4 micrograms/l v 49.8 +/- 49.2 micrograms/l, P < 0.01). Plasma alpha 2 antiplasmin (PAP) complexes showed a similar pattern rising from a mean baseline value of 17.5 +/- 7.6 nmol/l to 66.8 +/- 47.7 nmol at 4 h (P < 0.01). In four patients the peak of PAP preceeded that of TAT. Tissue plasminogen activator (tPA) rose from a mean baseline value of 4.9 +/- 3.7 micrograms/l to 26.3 +/- 13.5 micrograms/l at 4 h (P < 0.01). Plasminogen-activator-inhibitor-1 (PAI-1) levels increased from 59 +/- 35 micrograms/l to 113 +/- 39 micrograms/l at 6 h (P < 0.01). tPA PAI-1 complexes increased from 0.15 +/- 0.07 to 0.69 +/- 0.21 nmol/l at 6 h (P < 0.01). Our study indicates that IL-2 activates the coagulation and fibrinolytic systems in vivo. The changes resemble the perturbations observed after endotoxin/TNF administration. These abnormalities may play a role in the side-effects induced by IL-2 therapy.

  11. The activation of polymorphonuclear neutrophils and the complement system during immunotherapy with recombinant interleukin-2.

    PubMed

    Baars, J W; Hack, C E; Wagstaff, J; Eerenberg-Belmer, A J; Wolbink, G J; Thijs, L G; Strack van Schijndel, R J; van der Vall, H L; Pinedo, H M

    1992-01-01

    The toxicity due to interleukin-2 (IL-2) strongly resembles the clinical picture seen during septic shock. In septic shock activation of polymorphonuclear neutrophils (PMN) and the complement system contribute significantly to the pathophysiology of the condition. We therefore investigated whether similar events contributed to the toxicity observed with IL-2. Four patients received seven cycles of escalating dose IL-2 (18.0 to 72.0 X 10(6) IU m-2 day-1) and 16 were treated with 20 cycles of fixed dose IL-2 (12.0 or 18.0 X 10(6) IU m-2 day-1). Toxicity, as judged by hypotension (P = less than 0.005) and capillary leakage (fall in serum albumin 18.2 vs 4.0 gm l-1; P = less than 0.0005 and weight gain 4.0 vs 1.2 kg; P = less than 0.025) were worse with the esc. dose protocol. PMN became activated following IL-2 with mean peak elastase/alpha 1-antitrypsin (E alpha 1 A) and lactoferrin values of 212 (SEM = 37) and 534 (SEM = 92) ng ml-1 respectively occurring 6 h after the IL-2. Peak values for the esc. dose IL-2 group being generally higher than 500 ng ml-1. Activation of the complement cascade was evidenced by a dose dependent elevation of peak C3a values (fixed dose 9.1 (SEM = 0.6); esc. dose 25.7 (SEM = 6.33); P = less than 0.005) on day 5 of IL-2. There was a significant correlation between C3a levels and the degree of hypotention during the first 24 h after IL-2 (r = 0.91) and parameters of capillary leakage such as weight gain and fall in serum albumin (r = 0.71). These data suggest that activation of PMN initiates endothelial cell damage which subsequently leads to activation of the complement cascade. This latter system then contributes to the haemodynamic changes and capillary leakage seen in IL-2 treated patients.

  12. Therapy with interleukin-2 induces the systemic release of phospholipase-A2.

    PubMed

    Wolbink, G J; Schalkwijk, C; Baars, J W; Wagstaff, J; van den Bosch, H; Hack, C E

    1995-11-01

    Therapy with interleukin-2 (IL-2) induces remissions in some forms of cancer. This treatment however, is accompanied by side-effects which, in part, may be mediated by the formation of eicosanoids and platelet-activating factor. We investigated the systemic release of phospholipase A2 (PLA2), a rate-limiting enzyme in the formation of these lipid mediators, in patients receiving IL-2. In a pilot study of 4 patients we observed an increase in PLA2 activity in serial plasma samples obtained during the first day after a bolus infusion of IL-2, which increase closely correlated with that of antigen levels of secretory phospholipase A2 (sPLA2) as measured by enzyme-linked immunosorbent assay (r = 0.92; P < 0.001). In 20 patients, receiving 12 x 10(6)-18 x 10(6) IU IL-2/m2, we then investigated the course of antigenic levels of sPLA2 in relation to those of the cytokines tumour necrosis factor alpha (TNF) and interleukin-6 (IL-6) (both cytokines may induce sPLA2 in vivo). From 4 h on, sPLA2 levels significantly increased, reaching a peak 24 h after the IL-2 infusion. Subsequent IL-2 infusions even induced a further increase of sPLA2. This increase of sPLA2 was presumably not due to a direct effect of IL-2 on, for example, hepatocytes, since this cytokine, in contrast to IL-1, IL-6, TNF and interferon gamma, was not able to induce the synthesis of sPLA2 by Hep G2 cells in vitro. Consistent with this, plasma levels of TNF and IL-6 in the patients rose, reaching peak levels before a zenith of sPLA2 occurred, i.e. at 2 h and 4 h after the start of the IL-2 infusion respectively. sPLA2 levels significantly correlated with the development of the side-effects increase in body weight (r = 0.49; P < 0.0001) and decrease in mean arterial blood pressure (r = 0.40; P < 0.0001). Moreover, maximum sPLA2 levels induced by IL-2 were higher in patients who had progressive disease after therapy than in patients who had stable disease or a partial response.

  13. Induction of hepatitis by JNK-mediated expression of TNFα

    PubMed Central

    Das, Madhumita; Sabio, Guadalupe; Jiang, Feng; Rincón, Mercedes; Flavell, Richard A.; Davis, Roger J.

    2009-01-01

    The cJun NH2-terminal kinase (JNK) signaling pathway has been implicated in the development of tumor necrosis factor (TNF) -dependent hepatitis. Indeed, JNK may play a critical role in hepatocytes during TNF-stimulated cell death in vivo. To test this hypothesis, we examined the phenotype of mice with compound disruption of the Jnk1 and Jnk2 genes. Mice with loss of JNK1/2 expression in hepatocytes exhibited no defects in the development of hepatitis compared with control mice. In contrast, mice with loss of JNK1/2 in the hematopoietic compartment exhibited a profound defect in hepatitis that was associated with markedly reduced expression of TNFα. Together, these data indicate that JNK is required for TNFα expression, but JNK is not required for TNFα-stimulated death of hepatocytes. Indeed, TNFα-induced similar hepatic damage in mice with hepatocyte-specific JNK1/2-deficiency and control mice. These observations confirm a role for JNK in the development of hepatitis, but identify hematopoietic cells as the site of the essential function of JNK. PMID:19167327

  14. [The description of a new cellular type, Pinocchio cells, induced during the treatment of solid tumors with interleukin-2].

    PubMed

    Rosell, R; Millá, F; Carles, J; Batlle, M; Ribelles, N; Juncà, J

    1990-10-13

    Three patients with renal adenocarcinoma and one with metastatic malignant melanoma were treated with continuous intravenous infusion of 18 x 10(6) IU/m2/day interleukin-2 during 5 days per week (2 weeks). Overall 60% of the calculated dose was administered owing to the development of severe toxicity. Among the hematological effects, eosinophilia was found in all patients, which was more marked 15-20 days after therapy was started. In addition, 15% of atypical lymphocytes were found in peripheral blood. These cells, denominated Pinocchio cells, show a cytoplasmatic prolongation with azurophilic granulation. Their cytochemical study disclosed a marked positivity for acid phosphatase and alpha-naphthyl acetate esterase, and a variable positivity for dipeptidyl-amino peptidase (DAP IV). The immunophenotype revealed that is a T lineage cell population, basically CD 3+, with small or absent positivity for the monoclonal CD 19 antibody. The presence of Pinocchio cells, which are effector cells mediating tumor destruction by an apoptosis mechanism, is related to the administered dose of interleukin-2.

  15. T-cell hybridoma specific for a cytochrome c peptide: specific antigen binding and interleukin 2 production.

    PubMed Central

    Carel, S; Bron, C; Corradin, G

    1983-01-01

    T-cell hybridomas were obtained after fusion of BW 5147 thymoma and long-term cultured T cells specific for cytochrome c peptide 66-80 derivatized with a 2,4-dinitroaminophenyl (DNAP) group. The resulting hybridomas were selected for their capacity to specifically bind to soluble radiolabeled peptide antigen. One T-cell hybrid was positive for antigen binding. This hybrid T cell exhibits surface phenotypic markers of the parent antigen-specific T cells. The binding could be inhibited either by an excess of unlabeled homologous antigen or by cytochrome c peptide 11-25 derivatized with a 2-nitrophenylsulfenyl group. Several other peptide antigens tested failed to inhibit binding of the radioactive peptide. This suggests that a specific amino acid sequence, modified by a DNAP group, is the antigenic structure recognized by the putative T-cell receptor. In addition, direct interaction of DNAP-66-80 peptide with the hybridoma cell line induced production of the T-cell growth factor interleukin 2. Furthermore, supernatants derived from syngeneic macrophages pulsed with the relevant peptide also induced the antigen-specific hybridoma to produce interleukin 2. Images PMID:6192442

  16. NF45/ILF2 tissue expression, promoter analysis, and interleukin-2 transactivating function

    SciTech Connect

    Zhao Guohua; Shi Lingfang; Qiu Daoming; Hu Hong; Kao, Peter N. . E-mail: peterkao@stanford.edu

    2005-05-01

    NF45/ILF2 associates with NF90/ILF3 in the nucleus and regulates IL-2 gene transcription at the antigen receptor response element (ARRE)/NF-AT DNA target sequence (P.N. Kao, L. Chen, G. Brock, J. Ng, A.J. Smith, B. Corthesy, J. Biol. Chem. 269 (1994) 20691-20699). NF45 is widely expressed in normal tissues, especially testis, brain, and kidney, with a predominantly nuclear distribution. NF45 mRNA expression is increased in lymphoma and leukemia cell lines. The human and murine NF45 proteins differ only by substitution of valine by isoleucine at amino acid 142. Fluorescence in situ hybridization localized the human NF45 gene to chromosome 1q21.3, and mouse NF45 gene to chromosome 3F1. Promoter analysis of 2.5 kB of the murine NF45 gene reveals that significant activation is conferred by factors, possible including NF-Y, that bind to the CCAAT-box sequence. The function of human NF45 in regulating IL-2 gene expression was characterized in Jurkat T-cells stably transfected with plasmids directing expression of NF45 cDNA in sense or antisense orientations. NF45 sense expression increased IL-2 luciferase reporter gene activity 120-fold, and IL-2 protein expression 2-fold compared to control cells. NF45 is a highly conserved, regulated transcriptional activator, and one target gene is IL-2.

  17. Combining Fas mutation with interleukin-2 deficiency prevents Colitis and Lupus: implicating interleukin-2 for auto-reactive T cell expansion and Fas ligand for colon epithelial cell death.

    PubMed

    Xiao, Sheng; Sung, Sun-Sang J; Fu, Shu Man; Ju, Shyr-Te

    2003-12-26

    Both the lpr gene defect and interleukin 2-targeted mutation (IL-2 KO) in mice are lethal. Interestingly, mice bearing both mutations live significantly longer than mice with either of the single mutant genes, approximating the life span of normal controls. They do not display the major disease phenotypes of lpr and IL-2 KO mice. Systemic autoimmune response, the accumulation of the abnormal CD4-CD8-B220+ double-negative T cells, kidney disease pathology, anemia, colon damage, and lethality are prevented. Our data indicate that IL-2 is mandatory for the expansion of auto-reactive T cells in lpr mice and that CD95 (Fas) is the critical target for the development of anemia and ulcerative colitis in IL-2 KO mice in which CD178 (FasL) on intraepithelial T cells is the major effector responsible for colon damage and lethality.

  18. Intratumoral injection of an adenovirus expressing interleukin 2 induces regression and immunity in a murine breast cancer model.

    PubMed Central

    Addison, C L; Braciak, T; Ralston, R; Muller, W J; Gauldie, J; Graham, F L

    1995-01-01

    Rodent tumor cells engineered to secrete cytokines such as interleukin 2 (IL-2) or IL-4 are rejected by syngeneic recipients due to an enhanced antitumor host immune response. An adenovirus vector (AdCAIL-2) containing the human IL-2 gene has been constructed and shown to direct secretion of high levels of human IL-2 in infected tumor cells. AdCAIL-2 induces regression of tumors in a transgenic mouse model of mammary adenocarcinoma following intratumoral injection. Elimination of existing tumors in this way results in immunity against a second challenge with tumor cells. These findings suggest that adenovirus vectors expressing cytokines may form the basis for highly effective immunotherapies of human cancers. PMID:7667323

  19. Interleukin 2 (IL 2) inhibitor in rheumatoid synovial fluid: Correlation with prognosis and soluble IL 2 receptor levels

    SciTech Connect

    Miossec, P.; Elhamiani, M.; Chichehian, B.; D'Angeac, A.D.; Sany, J.; Hirn, M. )

    1990-03-01

    A soluble activity inhibiting over 50% of the CTLL-2 cell line response to recombinant human interleukin 2 (IL 2) was found in 17 of 29 (59%) rheumatoid synovial fluids. To study the prognosis value of this activity, 16 rheumatoid synovial fluids were collected before a radiation synovectomy of the knee with 7 mCi of 90Y. Patients with a good clinical result after the synovectomy had a lower IL 2 inhibitory activity than those with a bad or incomplete result (P less than 0.01). Levels of inhibitory activity and of soluble IL 2 receptors were correlated with each other and with the response of the synovitis to the radiation synovectomy. These results extend the clinical usefulness of soluble IL 2 receptor measurements and indicate a correlation between the immune activation of the rheumatoid synovitis and its clinical activity.

  20. A recombinant antibody-interleukin 2 fusion protein suppresses growth of hepatic human neuroblastoma metastases in severe combined immunodeficiency mice.

    PubMed

    Sabzevari, H; Gillies, S D; Mueller, B M; Pancook, J D; Reisfeld, R A

    1994-09-27

    A genetically engineered fusion protein consisting of a human/mouse chimeric anti-ganglioside GD2 antibody (ch14.18) and recombinant human interleukin 2 (rhIL-2) was tested for its ability to target rhIL-2 to tumor sites and stimulate immune effector cells sufficiently to achieve effective tumor cell lysis in vivo. The ch14.18-IL-2 fusion protein proved more effective than equivalent doses of rhIL-2 in suppressing dissemination and growth of human neuroblastoma in an experimental hepatic metastases model of scid (severe combined immunodeficiency) mice reconstituted with human lymphokine-activated killer cells. The ch14.18-IL-2 fusion protein was also more proficient than equivalent doses of rhIL-2 in prolonging the life-span of these animals. This recombinant antibody-cytokine fusion protein may prove useful for future treatment of GD2-expressing human tumors in an adjuvant setting.

  1. Systemic interleukin-2 therapy in children with progressive neuroblastoma after high dose chemotherapy and bone marrow transplantation.

    PubMed

    Favrot, M C; Floret, D; Negrier, S; Cochat, P; Bouffet, E; Zhou, D C; Franks, C R; Bijman, T; Brunat-Mentigny, M; Philip, I

    1989-09-01

    Two children with active metastatic neuroblastoma after high dose chemotherapy and bone marrow transplantation (BMT) received a high dose continuous infusion of interleukin-2 (IL2) 120 days after an autologous BMT for patient 1 and 90 days after an allogeneic non T cell-depleted BMT for patient 2. Usual side effects of IL2 therapy were observed without life-threatening complications or any major hematological toxicity. The reactivation of graft-versus-host disease during IL2 infusion in patient 2 was the major BM-related complication but it improved with IL2 interruption and corticosteroids. IL2 induced a complete remission (9+ months) in patient 1 with the disappearance of bone metastases and local tumor but patient 2 progressed after cessation of therapy. Patient 1 presented with a large excess of circulating NK cells in the period after autologous BMT and IL2 induced a preferential outgrowth of this lymphocyte subset.

  2. Lung-protective effects of the metalloporphyrinic peroxynitrite decomposition catalyst WW-85 in interleukin-2 induced toxicity.

    PubMed

    Maybauer, Dirk M; Maybauer, Marc O; Szabó, Csaba; Westphal, Martin; Traber, Lillian D; Enkhbaatar, Perenlei; Murthy, Kanneganti G K; Nakano, Yoshimitsu; Salzman, Andrew L; Herndon, David N; Traber, Daniel L

    2008-12-19

    Recombinant interleukin-2 (IL-2) therapy for malignancy is associated with a pulmonary vascular leakage syndrome (VLS) similar to that seen in sepsis. We investigated the possibility that the IL-2-induced VLS may be associated with the release of peroxynitrite (ONOO(-)), and used a model of IL-2-induced VLS in sheep to test the effects of the ONOO(-) decomposition catalyst WW-85. Eighteen sheep were chronically instrumented and randomly divided into three groups (n=6 per group): sham: lactated Ringer's solution, control: IL-2, and treatment: IL-2 and WW-85. Treatment with WW-85 significantly improved lung transvascular fluid flux, decreased lipid peroxidation, limited iNOS as well as PAR intensity, prevented tachycardia, and attenuated the increase in core body temperature resulting from IL-2 treatment. These findings suggest that ONOO(-) plays a pivotal role in the pathology of IL-2-induced pulmonary VLS, and that WW-85 may become a useful treatment option. PMID:18951875

  3. The Toxicity and Benefit of Various Dosing Strategies for Interleukin-2 in Metastatic Melanoma and Renal Cell Carcinoma.

    PubMed

    Pachella, Laura A; Madsen, Lydia T; Dains, Joyce E

    2015-01-01

    Interleukin-2 (IL-2) therapy has been used with success in curing meta-static renal cell carcinoma and melanoma in a small minority of patients. However, the benefits can be accompanied by severe toxicity. This review of the literature discusses varying doses of IL-2 and their associated re-sponse rates and the toxicities associated with treatment. The review also explores the maximally beneficial dose with the most tolerable side effects. Although the higher-dose regimens with a more frequent dosing schedule produce higher-grade toxicity, they were found to deliver the most durable and complete responses. It is recommended to use a higher-dose regimen (720,000 IU/kg every 8 hours for a maximum of 15 doses) and provide sup-portive care for toxicity, so patients can have maximal benefit from therapy. PMID:26557408

  4. Expression of the human interleukin-2 receptor gamma chain in insect cells using a baculovirus expression vector.

    PubMed

    Raivio, E; Oetken, C; Oker-Blom, C; Engberg, C; Akerman, K; Lindqvist, C

    1995-04-01

    The gene encoding the gamma-chain of the human Interleukin-2 receptor was expressed in lepidopteran insect cells using the baculovirus expression vector system. The corresponding gene was inserted under the polyhedrin promoter of the Autographa californica nuclear polyhedrosis virus and expressed in the Spodoptera frugiperda insect cell line Sf9 during viral infection. The recombinant receptor protein was identified by immunoblotting in cell lysates, prepared from insect cells infected with the recombinant virus. At 40 h post infection the corresponding protein was detected as two major bands with apparent molecular weights of 50-60 kDa using a rabbit anti-human IL-2R gamma-receptor specific antiserum. Metabolic labelling with [35S]-methionine and SDS-PAGE analysis of the recombinant baculovirus infected insect cells verified the immunoblotting data. The expressed IL-2R gamma- protein could also be determined on the surface of infected insect cells by flow cytometer analysis. PMID:7899821

  5. [Experimental study on the optimal treatment schedule for combination of BRM (immunostimulators, cultured killer cells or interleukin-2) and chemotherapy].

    PubMed

    Kan, N; Okino, T; Satoh, K; Mise, K; Teramura, Y; Yamasaki, S; Harada, T; Ohgaki, K; Tobe, T

    1990-08-01

    In the present study we tried to reevaluate the optimal combination timing in the experimental treatment with BRM and chemotherapeutic agents. BALB/c mice with advanced malignant ascites tumor (MOPC 104 E) were treated with cyclophosphamide (CPA, 2 mg/kg) and BRM such as immunostimulator (OK-432, Lentinan or Bestatin), interleukin-2 (IL 2) or cultured killer cells. The survival of mice was prolonged when immunostimulators were given before CPA. However, no combined effect was seen when immunostimulators were administered after CPA. Treatment with cultured killer cells and in vivo IL 2 after immunochemotherapy (immunostimulator followed by CPA) was the most effective protocol in which immunostimulator, chemotherapy, killer cells and IL 2 respectively seemed to induce, regulate, supplement and amplify anti-tumor effector cells.

  6. Effect of vanadium on the subset and proliferation of peripheral blood T cells, and serum interleukin-2 content in broilers.

    PubMed

    Cui, Wei; Cui, Heng-Min; Peng, Xi; Zuo, Zhicai; Liu, Xiaodong; Wu, Bangyuan

    2011-06-01

    The purpose of this 42-day study was to investigate the effects of dietary excess vanadium on immune function by determining changes of the subsets and proliferation function of peripheral blood T cells. Four hundred twenty 1-day-old avian broilers were divided into six groups and fed on a corn-soybean basal diet as control diet or the same diet amended to contain 5, 15, 30, 45, and 60 ppm vanadium supplied as ammonium metavanadate. In comparison with those of the control group, the percentages of CD (3) (+) , CD (3) (+) CD (4) (+) , and CD (3) (+) CD (8) (+) were decreased in 45 and 60 ppm groups from 14 to 42 days of age, and the percentages of CD (3) (+) and CD (3) (+) CD (4) (+) were increased in 5 ppm group at 42 days of age. The CD (4) (+) /CD (8) (+) ratio was increased in 45 and 60 ppm groups at 28 days of age. Meanwhile, the proliferation function of peripheral blood T cell were decreased in 30, 45, and 60 ppm groups from 14 to 42 days of age. Also, the serum interleukin-2 contents were decreased in 45 and 60 ppm groups from 14 to 42 days of age and increased in 5 ppm group at 28 days of age. Histopathologically, hypocellularity appeared in the thymus in 45 and 60 ppm groups. It was concluded that dietary vanadium in excess of 30 ppm reduced the percentages of peripheral blood T-cell subsets and the proliferation function and serum interleukin-2 contents. The cellular immune function was finally impaired in broilers.

  7. Efficacy of Anti-Interleukin-2 Receptor Antibody (Daclizumab) in Reducing the Incidence of Acute Rejection After Renal Transplantation

    PubMed Central

    Saghafi, Hossein; Rahbar, Khosrow; Nobakht Haghighi, Ali; Qoreishi, Mohammad; Safdari, Farshad

    2012-01-01

    Background Acute rejection remains a major problem in renal transplantation and represents one of the most important causes of chronic allograft dysfunction and late graft loss. Daclizumab is a genetically engineered human IgG1 monoclonal antibody that binds specifically to the α chain of the interleukin-2 receptor, and may thus reduce the risk of rejection after renal transplantation. Objectives The aim of this study was to examine the effect of daclizumab induction therapy combined with a triple immunosuppressive protocol including prednisolone,cyclosporine microemulsion (CsA), and mycophenolate mofetil (MMF), in reducing the incidence of acute rejection in recipients of living unrelated donor kidneys. Patients and Methods In this historical cohort study, 43 adult recipients of their first kidney allograft received daclizumab (three 1 mg/kg doses administered every 2 weeks) with triple immunosuppressive therapy (steroids, CsA, and MMF). This group was compared to 43 first-time graft recipients who received maintenance triple immunosuppressive therapy comprising steroids, CsA, and MMF. The end point was the incidence of biopsy confirmed acute rejection within 6 months after transplantation. Results At 6 months, 5 (11.6%) of the patients in the daclizumab group had biopsy-proven rejections, as compared to 14 (32.5%) in the control group (P = 0.017). The sex and the age of recipients had no impact on the incidence of acute rejection episodes in the two groups. Conclusions Adding interleukin-2 receptor antibody (daclizumab) to maintenance triple immunosuppressive therapy (prednisolone, CsA, and MMF) reduces the incidence of acute rejection episodes at 6 months in first-time transplant recipients of living unrelated donor. PMID:23573470

  8. mRNA imprinting

    PubMed Central

    2011-01-01

    Following its synthesis in the nucleus, mRNA undergoes various stages that are critical for the proper synthesis, localization and possibly functionality of its encoded protein. Recently, we have shown that two RNA polymerase II (Pol II) subunits, Rpb4p and Rpb7p, associate with the nascent transcript co-transcriptionally. This “mRNA imprinting” lasts throughout the mRNA lifetime and is required for proper regulation of all major stages that the mRNA undergoes. Other possible cases of co-transcriptional imprinting are discussed. Since mRNAs can be transported from the synthesizing cell to other cells, we propose that mRNA imprinting can also affect the phenotype of the recipient cells. This can be viewed as “mRNA-based epigenetics.” PMID:21686103

  9. Expression of chicken interleukin-2 by a highly virulent strain of Newcastle disease virus leads to decreased systemic viral load but does not significantly affect mortality in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In mammals, interleukin 2 (IL-2) has been shown to decrease replication or attenuate pathogenicity of numerous viral pathogens by activating natural killer cells (NK), cytotoxic T lymphocytes, and expanding subsets of memory cells. In chickens, IL-2 has been shown to activate T cells, and as such i...

  10. Immunomodulatory therapy with thymopentin and indomethacin. Successful restoration of interleukin-2 synthesis in patients undergoing major surgery.

    PubMed Central

    Faist, E; Markewitz, A; Fuchs, D; Lang, S; Zarius, S; Schildberg, F W; Wachter, H; Reichart, B

    1991-01-01

    Prostaglandin E2 (PGE2)-mediated monocyte (M phi) suppressor activity and inadequate T-helper cell function represent the mechanistic keystones of trauma-induced impairment of cell-mediated immunity (CMI). In a prospective randomized trial, the immunorestorative potential of a combined therapy with the thymomimetic substance Thymopentin (TP-5; Timunox, Cilag GMBH, Sulzbach, FRG) and the cyclooxygenase inhibitor indomethacin (Indo) in 60 patients (mean age, 63 +/- 2 years) undergoing open heart surgery was studied. Perioperative immunologic screening was carried out on days -2, 3, 1, 5, and 7 and included the in vivo delayed type hypersensitivity (DTH) skin response, phenotyping for peripheral blood mononuclear cell (PBMC)-specific and nonspecific induction of lymphoproliferative responses, in vitro interleukin-2 (IL-2) synthesis, as well as the serum concentration of D-erythro-Neopterin (NPT) and of gamma interferon (gamma-IFN). The study protocol comprised three groups (n = 20): PA (Indo 150 mg administered intravenously on days 0 to 5), PB (TP-5 administered subcutaneously on days 0, 2, 4, and Indo), and PC (control). In contrast to PC, significant immunorestoration could be demonstrated in PB, as DTH scores on day 7, as well as proliferative responses in cell cultures were not depressed after operation (p less than 0.05). Cell-surface receptor expression for the CD3+, CD4+, and IL-2 receptor-positive (IL-2R+) lymphocyte subpopulations following surgery was reduced to 75% of baseline values in PC, while in PB, receptor protection for CD4+ and IL-2R+ subpopulations (more than 15% above baseline) was observed. Interleukin-2 synthesis (average baseline value, 0.7 + 0.08 U/mL) in cell cultures of PC was massively suppressed, with lymphokine concentrations in the supernatants never more than 0.27 +/- 0.05 U/mL. In PA cultures, IL-2 synthesis was impaired as well but not as precipitously as in PC. In contrast, in PB cultures, the average IL-2 production on consecutive

  11. Hypomorphic MGAT5 polymorphisms promote multiple sclerosis cooperatively with MGAT1 and interleukin-2 and 7 receptor variants

    PubMed Central

    Li, Carey F.; Zhou, Raymond W.; Mkhikian, Haik; Newton, Barbara L.; Yu, Zhaoxia; Demetriou, Michael

    2014-01-01

    Deficiency of the Golgi N-glycan branching enzyme Mgat5 in mice promotes T cell hyperactivity, endocytosis of CTLA-4 and autoimmunity, including a spontaneous multiple sclerosis (MS)-like disease. Multiple genetic and environmental MS risk factors lower N-glycan branching in T cells. These include variants in interleukin-2 receptor-α (IL2RA), interleukin-7 receptor-α (IL7RA), and MGAT1, a Golgi branching enzyme upstream of MGAT5, as well as vitamin D3 deficiency and Golgi substrate metabolism. Here we describe linked intronic variants of MGAT5 that are associated with reduced N-glycan branching, CTLA-4 surface expression and MS (p = 5.79 × 10−9, n = 7,741), the latter additive with the MGAT1, IL2RA and IL7RA MS risk variants (p = 1.76 × 10−9, OR = 0.67−1.83, n = 3,518). PMID:23351704

  12. Oral tacrolimus oil formulations for enhanced lymphatic delivery and efficient inhibition of T-cell's interleukin-2 production.

    PubMed

    Yoshida, Takayuki; Nakanishi, Kiyo; Yoshioka, Tatsunobu; Tsutsui, Yuuki; Maeda, Atsushi; Kondo, Hiromu; Sako, Kazuhiro

    2016-03-01

    Oral oil formulations have been reported to deliver drugs into the lymph. Lymphatic delivery of immunomodulatory drugs can more efficiently expose the drugs to T-cells in lymph, consequently induce higher efficacy and lower side effects. In this study, effects of tacrolimus oral oil formulations on drug blood exposure, and on inhibition of T-cell's interleukin-2 (IL-2) production were investigated in rats. Oil formulations (sunflower oil, cacao butter, medium chain triglyceride, and palm oil) dissolving tacrolimus showed lower drug blood concentration than a solid dispersion formulation (SDF). The sunflower oil, and cacao butter formulations suppressed drug blood exposure to 50% of the SDF, and inhibited T-cell's IL-2 production similar to the SDF. In vitro digestion tests indicated that slower digestion of the oils might reduce amount and rate of tacrolimus blood absorption. The cacao butter formulations showed 3.0 times more rapid tacrolimus absorption to lymphatic fluid than the SDF. Ratio of the rate constants of absorption into lymph to that into blood was higher in oil formulations (15 times in cacao butter, 15 times sunflower oil, and 3.5 times palm oil) than in the SDF. These results indicated that the oral oil formulations might be suitable for reduced tacrolimus blood concentration for low systemic side effects, and keep high lymph concentration for high efficacy in organ transplantation patients. PMID:26748381

  13. Epigenetic repression of interleukin 2 expression in senescent CD4+ T cells during chronic HIV type 1 infection.

    PubMed

    Nakayama-Hosoya, Kaori; Ishida, Takaomi; Youngblood, Ben; Nakamura, Hitomi; Hosoya, Noriaki; Koga, Michiko; Koibuchi, Tomohiko; Iwamoto, Aikichi; Kawana-Tachikawa, Ai

    2015-01-01

    The molecular mechanisms for IL2 gene-specific dysregulation during chronic human immunodeficiency virus type 1 (HIV-1) infection are unknown. Here, we investigated the role of DNA methylation in suppressing interleukin 2 (IL-2) expression in memory CD4(+) T cells during chronic HIV-1 infection. We observed that CpG sites in the IL2 promoter of CD4(+) T cells were fully methylated in naive CD4(+) T cells and significantly demethylated in the memory populations. Interestingly, we found that the memory cells that had a terminally differentiated phenotype and expressed CD57 had increased IL2 promoter methylation relative to less differentiated memory cells in healthy individuals. Importantly, early effector memory subsets from HIV-1-infected subjects expressed high levels of CD57 and were highly methylated at the IL2 locus. Furthermore, the increased CD57 expression on memory CD4(+) T cells was inversely correlated with IL-2 production. These data suggest that DNA methylation at the IL2 locus in CD4(+) T cells is coupled to immunosenescence and plays a critical role in the broad dysfunction that occurs in polyclonal T cells during HIV-1 infection.

  14. Influence of tunicamycin, sialidase, and cholera toxin on gangliosides and T-lymphocyte responses to interleukin 2

    SciTech Connect

    Semmes, O.J.; Bailey, J.M.; Merritt, W.D.

    1986-05-01

    The authors have shown that gangliosides inhibit interleukin 2 (IL 2)-dependent proliferation of murine T cells. Tunicamycin (TM), sialidase, and cholera toxin-..beta.. subunit (..beta..-CT) are known modulators of cell surface glycoconjugates. To test the possible role of endogenous gangliosides in T cell responses to IL-2, the effect of these agents on ganglioside expression and cell proliferation was studied. Gangliosides were labelled for 24 hrs with /sup 3/H-glucosamine/galactose in the presence of IL-2 and purified sialidase, TM or ..beta..-CT. Gangliosides were isolated and the species separated by TLC. Alternatively, proliferation was assayed by /sup 3/H-thymidine uptake after 48 hrs culture. TM treatment at a concentration (10 ..mu..g/ml) that completely inhibited proliferation resulted in a 86% reduction of incorporation of saccharide precursors into gangliosides compared to a 50% reduction into proteins. Sialidase treatment (0.1 IU/ml) resulted in a 70% inhibition of proliferation and 30% reduction of radiolabel into gangliosides, of which 3 species were specifically reduced. ..beta..-CT, which binds to GM/sub 1/ and to a lesser extent GD/sub 1a/, caused a 50% reduction in proliferation response at 35 units/ml. The results support the hypothesis that gangliosides are involved in IL-2-dependent proliferation.

  15. Characterization of surface interleukin-2 receptor expression on gated populations of peripheral blood mononuclear cells from manatees, Trichechus manatus latirostris.

    PubMed

    Sweat, J M; Johnson, C M; Marikar, Y; Gibbs, E P

    2005-12-15

    An in vitro system to determine surface interleukin-2 receptor (IL-2R) expression on mitogen-stimulated peripheral blood mononuclear cells (PBMC) from free-ranging manatees, Trichechus manatus latirostris was developed. Human recombinant IL-2, conjugated with a fluorescein dye was used in conjunction with flow cytometric analysis to determine changes in surface expression of IL-2R at sequential times over a 48-h period of in vitro stimulation. Surface expression of IL-2R was detected on manatee PBMC, which also cross-reacted with an anti-feline pan T-cell marker. An expression index (EI) was calculated by comparing mitogen-activated and non-activated PBMC. Based on side- and forward-scatter properties, flow cytometric analysis showed an increase in the number of larger, more granular "lymphoblasts" following concanavalin A (Con A) stimulation. The appearance of lymphoblasts was correlated with an increase in their surface expression of IL-2 receptors. Surface IL-2R expression, in Con A-stimulated PBMC, was detected at 16 h, peaked at 24-36 h, and began to decrease by 48 h. Characterization of the IL-2R expression should provide additional information on the health status of manatees, and the effect of their sub lethal exposure to brevetoxin.

  16. Adenoviral Delivery of Tumor Necrosis Factor-α and Interleukin-2 Enables Successful Adoptive Cell Therapy of Immunosuppressive Melanoma.

    PubMed

    Siurala, Mikko; Havunen, Riikka; Saha, Dipongkor; Lumen, Dave; Airaksinen, Anu J; Tähtinen, Siri; Cervera-Carrascon, Víctor; Bramante, Simona; Parviainen, Suvi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2016-08-01

    Adoptive T-cell transfer is a promising treatment approach for metastatic cancer, but efficacy in solid tumors has only been achieved with toxic pre- and postconditioning regimens. Thus, adoptive T-cell therapies would benefit from complementary modalities that enable their full potential without excessive toxicity. We aimed to improve the efficacy and safety of adoptive T-cell transfer by using adenoviral vectors for direct delivery of immunomodulatory murine cytokines into B16.OVA melanoma tumors with concomitant T-cell receptor transgenic OT-I T-cell transfer. Armed adenoviruses expressed high local and low systemic levels of cytokine when injected into B16.OVA tumors, suggesting safety of virus-mediated cytokine delivery. Antitumor efficacy was significantly enhanced with adenoviruses coding for murine interleukin-2 (mIL-2) and tumor necrosis factor-α (mTNFα) when compared with T-cell transfer alone or viruses alone. Further improvement in efficacy was achieved with a triple combination of mIL-2, mTNFα, and OT-I T-cells. Mechanistic studies suggest that mIL-2 has an important role in activating T-cells at the tumor, while mTNFα induces chemokine expression. Furthermore, adenovirus treatments enhanced tumor-infiltration of OT-I T-cells as demonstrated by SPECT/CT imaging of (111)In-labeled cells. Our results suggest the utility of cytokine-coding adenoviruses for improving the efficacy of adoptive T-cell therapies.

  17. Thrombotic thrombocytopenic purpura/hemolytic uremic syndrome associated with high-dose interleukin-2 for the treatment of metastatic melanoma.

    PubMed

    Alexandrescu, Doru T; Maddukuri, Prasad; Wiernik, Peter H; Dutcher, Janice P

    2005-01-01

    Various drugs have been associated with the development of thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS). Among the biologic agents, alpha-interferon therapy, used for treatment of hepatitis B and chronic myelogenous leukemia, has been associated with TTP in a few recent reports. The authors report the first case of TTP/HUS occurring in a metastatic melanoma patient receiving treatment with high-dose interleukin-2 (IL-2). A 57-year-old patient with malignant melanoma presented with seizures 3 days after completing the first week of high-dose IL-2, and the characteristic hematologic picture revealed TTP/HUS. This occurrence is unlikely to be explained by the association with malignant melanoma, which was not presenting with widespread visceral disease at the time of the occurrence, or by the use of other medications. Similar cytokine release profiles are encountered in TTP, HUS caused by Shiga toxin-1, HUS caused by E. coli O157, after IL-2 or IL-2-containing biochemotherapy, as well as in TTP caused by interferon-alpha. This cytokine profile could reflect a common cause, or just the presence of similar pathways involved. PMID:15725958

  18. Interferon-Beta combined with interleukin-2 restores human natural cytotoxicity impaired in vitro by ionizing radiations.

    PubMed

    Franzese, Ornella; Tricarico, Maria; Starace, Giuseppe; Pepponi, Rita; Bonmassar, Laura; Cottarelli, Andrea; Fuggetta, Maria Pia

    2013-06-01

    It is well known that ionizing radiations induce a marked downregulation of antigen-dependent and natural immunity for a prolonged period of time. This is due, at least in part, to radiation-induced apoptosis of different lymphocyte subpopulations, including natural killer (NK) cells. Aim of this study was to investigate the capability of Beta Interferon (β-IFN) and Interleukin-2 (IL2), alone or in combination, to restore the functional activity of the natural immune system. Mononuclear cells (MNCs) obtained from intact or in vitro irradiated human peripheral blood were treated in vitro with β-IFN immediately before or at the end of the 4-day treatment with IL2. Time-course analysis was performed on the NK activity, the total number and the apoptotic fraction of CD16+ and CD56+ cells, the 2 main NK effector cell subpopulations. The results indicate that radiation-induced impairment of natural cytotoxicity of MNC could be successfully antagonized by the β-IFN+IL2 combination, mainly when exposure to β-IFN preceded IL2 treatment. This radioprotective effect is paralleled by lower levels of radiation-induced apoptosis and increased expression of the antiapoptotic Bcl-2 protein. Since natural immunity can play a significant role in antitumor host's resistance, these results could provide the rational basis for a cytokine-based pharmacological strategy able to restore immune responsiveness and to afford possible therapeutic benefits in cancer patients undergoing radiotherapy.

  19. Increased interleukin-2 serum levels were associated with psychopathological symptoms and cognitive deficits in treatment-resistant schizophrenia.

    PubMed

    Tan, Yunlong; Li, Yanli; Tan, Shuping; Wang, Zhiren; Yang, Fu-De; Cao, Bo; Zunta-Soares, Giovana B; Soares, Jair C; Zhang, Xiang Yang

    2015-12-01

    Accumulating evidence showed that interleukin-2 (IL-2) may be involved in the pathophysiology of schizophrenia. Increased IL-2 levels have been found in the serum of schizophrenia patients with mixed results. In the present study, we assessed serum IL-2 levels in a large group of 160 schizophrenia patients compared to 60 healthy control subjects matched for age and gender. The schizophrenia symptomatology was assessed by the Positive and Negative Syndrome Scale (PANSS), and serum IL-2 levels were measured by sandwich ELISA. The results showed that IL-2 levels were significantly higher in chronic patients with schizophrenia than in healthy control subjects (p<0.001). Correlation analysis revealed a significantly negative association between IL-2 levels and the PANSS cognitive and positive subscales (both p<0.01). Stepwise multiple regression analyses confirmed IL-2 as the influencing factor for the cognitive and positive subscales of the PANSS. Our findings suggested that increased IL-2 may be involved in the cognitive impairments and psychopathology of chronic schizophrenia.

  20. NFATc2 recruits cJun homodimers to an NFAT site to synergistically activate interleukin-2 transcription.

    PubMed

    Walters, Ryan D; Drullinger, Linda F; Kugel, Jennifer F; Goodrich, James A

    2013-11-01

    Transcription of interleukin-2 (IL-2), a pivotal cytokine in the mammalian immune response, is induced by NFAT and AP-1 transcriptional activators in stimulated T cells. NFATc2 and cJun drive high levels of synergistic human IL-2 transcription, which requires a unique interaction between the C-terminal activation domain of NFATc2 and cJun homodimers. Here we studied the mechanism by which this interaction contributes to synergistic activation of IL-2 transcription. We found that NFATc2 can recruit cJun homodimers to the -45 NFAT element, which lacks a neighboring AP-1 site. The bZip domain of cJun is sufficient to interact with the C-terminal activation domain of NFATc2 in the absence of DNA and this interaction is inhibited by AP-1 DNA. When the -45 NFAT site was replaced by either an NFAT/AP-1 composite site or a single AP-1 site the specificity for cJun homodimers in synergistically activating IL-2 transcription was lost, and cJun/cFos heterodimers strongly activated transcription. These studies support a model in which IL-2 transcriptional synergy is mediated by the unique recruitment of a cJun homodimer to the -45 NFAT site by NFATc2, where it acts as a co-activator for IL-2 transcription.

  1. Lysis of neuroblastoma cell lines by human natural killer cells activated by interleukin-2 and interleukin-12.

    PubMed

    Rossi, A R; Pericle, F; Rashleigh, S; Janiec, J; Djeu, J Y

    1994-03-01

    Neuroblastoma is the most common extracranial, solid tumor in children. Despite intensive chemotherapy and bone marrow transplantation, the 5-year projected survival rate is 20% to 25%. In vitro studies have shown enhanced natural killer cell (NK) lysis of tumor cells after exposure of NK cells to interleukin-2 (IL-2). In vivo studies have demonstrated similar immunologic effects but have also revealed severe toxicities associated with the use of IL-2. IL-12 is a newly described cytokine that has several properties, including the ability to act synergistically with IL-2 in generating lymphokine-activated killer cells (LAK) against known tumor targets. We investigated the role of IL-12 in the generation of peripheral blood mononuclear cell (PBMC) lysis of neuroblastoma cell lines. PBMC were activated with IL-12 alone and in combination with IL-2. Whereas IL-12 alone produced only modest enhancement of NK cell cytotoxicity, the combination of IL-2 and IL-12 was most effective in activating NK cell lysis of neuroblastoma cell lines. Further, we showed that large granular lymphocytes were the effector cells involved in target cell lysis. Finally, the CD18 molecule was shown to be critical in the lysis of neuroblastoma cells by activated PBMC.

  2. Natural killer cell-mediated eradication of neuroblastoma metastases to bone marrow by targeted interleukin-2 therapy.

    PubMed

    Lode, H N; Xiang, R; Dreier, T; Varki, N M; Gillies, S D; Reisfeld, R A

    1998-03-01

    Targeted interleukin-2 (IL-2) therapy with a genetically engineered antidisialoganglioside GD2 antibody-IL-2 fusion protein induced a cell-mediated antitumor response that effectively eradicated established bone marrow and liver metastases in a syngeneic model of neuroblastoma. The mechanism involved is exclusively natural killer (NK) cell-dependent, because NK-cell deficiency abrogated the antitumor effect. In contrast, the fusion protein remained completely effective in the T-cell-deficient mice or immunocompetent mice depleted of CD8+ T cells in vivo. A strong stimulation of NK-cell activity was also shown in vitro. Immunohistology of the leukocytic infiltrate of livers from treated mice revealed a strong staining for NK cells but not for CD8+ T cells. The therapeutic effect of the fusion protein was increased when combined with NK-cell-stimulating agents, such as poly I:C or recombinant mouse interferon-gamma. In conclusion, these data show that targeted delivery of cytokines to the tumor microenvironment offers a new strategy to elicit an effective cellular immune response mediated by NK cells against metastatic neuroblastoma. This therapeutic effect may have general clinical implications for the treatment of patients with minimal residual disease who suffer from T-cell suppression after high-dose chemotherapy but are not deficient in NK cells.

  3. Activation protein 1-dependent transcriptional activation of interleukin 2 gene by Ca2+/calmodulin kinase type IV/Gr

    PubMed Central

    1996-01-01

    The Ca2+/calmodulin-dependent protein kinase (CaMK) type IV/Gr is selectively expressed in T lymphocytes and is activated after signaling via the T cell antigen receptor (TCR), indicating that it mediates some of the Ca(2+)-dependent transcriptional events that follow TCR engagement. Here we show that CaMKIV/Gr induces the transcription factor activation protein 1 (AP-1) alone or in synergy with T cell mitogens and with the p21ras oncoprotein. CaMKIV/ Gr signaling is associated with transcriptional activation of c-fos but is independent of p21ras or calcineurin. AP-1 is an integral component of the nuclear factor of activated T cells (NFAT) transcriptional complex, which is required for interleukin 2 gene expression in T cells. We demonstrate that CaMKIV/Gr reconstitutes the capacity of the cytosolic component of NFAT to direct transcription from NFAT sites in non-T cells. These results reveal a central role for CaMKIV/Gr as a Ca(2+)-regulated activator of gene transcription in T lymphocytes. PMID:8691123

  4. 4-Fluoro-3-nitrophenyl grafted gold electrode based platform for label free electrochemical detection of interleukin-2 protein.

    PubMed

    Arya, Sunil K; Park, Mi Kyoung

    2014-11-15

    A new platform based on 4-Fluoro-3-nitrophenyl (FNP) grafted gold disk electrode prepared via electrochemical reduction of 4-fluoro-3-nitrobenzene diazonium ion has been developed and utilized for biosensor fabrication. Anti-interleukin-2 (anti-IL2) antibody has been covalently immobilized onto FNP/Au surface and utilized for label free electrochemical impedance based detection of cytokine IL2. FNP acts as a bridge (cross-linker) between gold surface and anti-IL2, where fluoro group of FNP undergoes nucleophilic substitution by amino group of biomolecule and results in its covalent immobilization. The immobilization process and fabricated electrode have been characterized using contact angle (CA) measurements, cyclic voltammetry (CV) and electrochemical impedance (EIS) technique. CV studies show that FNP grafted surface provides conductive surface for anti-IL2 immobilization. The EIS response of studies as a function of IL2 concentrations exhibits a detection in linear range from 1 pg ml(-1) to 10 ng ml(-1) with minimum detectable concentration of 1 pg ml(-1). The electrode has been found to be selective against other cytokine molecules.

  5. Use of interleukin-2 for management of natalizumab-associated progressive multifocal leukoencephalopathy: case report and review of literature

    PubMed Central

    Dubey, Divyanshu; Zhang, Yinan; Graves, Donna; DeSena, Allen D.; Frohman, Elliot; Greenberg, Benjamin

    2015-01-01

    A 51-year-old woman with relapsing–remitting multiple sclerosis (RRMS) and 3-year history of natalizumab use developed expressive aphasia. A brain magnetic resonance image (MRI) showed left frontotemporal and right parietal lesion with mild contrast enhancement and cerebrospinal fluid (CSF) was positive for John Cunningham virus (JCV) by polymerase chain reaction (PCR). The patient received five cycles of plasmapheresis followed by intravenous immunoglobulin. Despite this intervention, her speech deteriorated and she developed right hemiparesis. Upon referral to our institution, CSF quantitative JCV PCR was notable for 834 copies/ml. The patient was given an initial dose of 50,000 units of interleukin-2 (IL-2) subcutaneously (SQ) followed by 1 million units IL-2 SQ daily. Due to concern for immune reconstitution inflammatory syndrome (IRIS), the patient also received intravenous methylprednisone weekly. The regimen was tolerated well by the patient with no severe adverse effects. Clinically, the patient showed some improvement, and became more responsive and regained right lower extremity antigravity strength. After 12 weeks of IL-2 therapy, JCV quantitative PCR was notable for 31 copies/ml and the patient was more responsive. Due to persistence of JCV, IL-2 therapy was changed to mefloquine. At follow up after 6 months, the patient showed no clinical deterioration. PMID:27134676

  6. Use of interleukin-2 for management of natalizumab-associated progressive multifocal leukoencephalopathy: case report and review of literature.

    PubMed

    Dubey, Divyanshu; Zhang, Yinan; Graves, Donna; DeSena, Allen D; Frohman, Elliot; Greenberg, Benjamin

    2016-05-01

    A 51-year-old woman with relapsing-remitting multiple sclerosis (RRMS) and 3-year history of natalizumab use developed expressive aphasia. A brain magnetic resonance image (MRI) showed left frontotemporal and right parietal lesion with mild contrast enhancement and cerebrospinal fluid (CSF) was positive for John Cunningham virus (JCV) by polymerase chain reaction (PCR). The patient received five cycles of plasmapheresis followed by intravenous immunoglobulin. Despite this intervention, her speech deteriorated and she developed right hemiparesis. Upon referral to our institution, CSF quantitative JCV PCR was notable for 834 copies/ml. The patient was given an initial dose of 50,000 units of interleukin-2 (IL-2) subcutaneously (SQ) followed by 1 million units IL-2 SQ daily. Due to concern for immune reconstitution inflammatory syndrome (IRIS), the patient also received intravenous methylprednisone weekly. The regimen was tolerated well by the patient with no severe adverse effects. Clinically, the patient showed some improvement, and became more responsive and regained right lower extremity antigravity strength. After 12 weeks of IL-2 therapy, JCV quantitative PCR was notable for 31 copies/ml and the patient was more responsive. Due to persistence of JCV, IL-2 therapy was changed to mefloquine. At follow up after 6 months, the patient showed no clinical deterioration.

  7. Effect of interleukin-2 treatment combined with magnetic fluid hyperthermia on Lewis lung cancer-bearing mice

    PubMed Central

    HU, RUNLEI; MA, SHENGLIN; KE, XIANFU; JIANG, HONG; WEI, DONGSHAN; WANG, WEI

    2016-01-01

    The present study aimed to investigate the therapeutic effect of interleukin-2 (IL-2) treatment combined with magnetic fluid hyperthermia (MFH) on Lewis lung cancer-bearing mice. Magnetic fluids were prepared in vitro and directly injected into the tumors in the mice, which were subjected to an alternating magnetic field. The temperature in the tumor reached 43°C and was maintained by controlling the strength of magnetic field for 30 min. Twenty-four hours later, IL-2 was injected directly into the tumors. Mice were divided into four groups: Group I (control), II (MFH), III (IL-2) and IV (IL-2+MFH). The tumor grew gradually in groups II and IV (both P<0.05) compared to the control group. Histological analysis showed that the tumor cells underwent apoptosis and necrosis. Immunohistochemistry results demonstrated that heat-shock protein 70 and cluster of differentiation (CD) 8-positive and CD4-positive T cells were strongly expressed following hypothermia. Therefore, the present study provided evidence that IL-2 treatment combined with MFH improves the therapeutic effect on lung cancer-bearing mice. PMID:26870335

  8. Two mutational hotspots in the interleukin-2 receptor {gamma} chain gene causing human X-linked severe combined immunodeficiency

    SciTech Connect

    Pepper, A.E.; Puck, J.M.; Buckley, R.H.

    1995-09-01

    Human severe combined immunodeficiency (SCID), a syndrome of profoundly impaired cellular and humoral immunity, is most commonly caused by mutations in the X-linked gene for interleukin-2 (IL-2) receptor {gamma} chain (IL2RG). For mutational analysis of IL2RG in males with SCID, SSCP screening was followed by DNA sequencing. Of 40 IL2RG mutations found in unrelated SCID patients, 6 were point mutations at the CpG dinucleotide at cDNA 690-691, encoding amino acid R226. This residue lies in the extracellular domain of the protein in a region not previously recognized to be significantly conserved in the cytokine receptor gene family, 11 amino acids upstream from the highly conserved WSXWS motif. Three additional instances of mutation at another CpG dinucleotide at cDNA 879 produced a premature termination signal in the intracellular domain of IL2RG, resulting in loss of the SH2-homologous intracellular domain known to be essential for signaling from the IL-2 receptor complex. Mutations at these two hotspots constitute >20% of the X-linked SCID mutations found by our group and a similar proportion of all reported IL2RG mutations. 41 refs., 5 figs., 1 tab.

  9. Subcutaneous administration of interleukin 2 and interferon-alpha-2b in advanced renal cell carcinoma: a confirmatory study.

    PubMed Central

    Facendola, G.; Locatelli, M. C.; Pizzocaro, G.; Piva, L.; Pegoraro, C.; Pallavicini, E. B.; Signaroldi, A.; Meregalli, M.; Lombardi, F.; Beretta, G. D.

    1995-01-01

    Recent clinical studies have suggested that the combination of subcutaneous recombinant human interleukin 2 (rIL-2) and interferon alpha (rIFN-alpha) is especially promising in advanced renal cell carcinoma. We assessed the safety, activity and toxicity of home therapy with these two agents in 50 patients. Each treatment cycle consisted of a 2 day pulse phase, with 9 x 10(6) IU m-2 of rIL-2 being given subcutaneously every 12 h, followed by a 6 week maintenance phase during which rIL-2 1.8 x 10(6) IU m-2 was administered subcutaneously every 12 h on days 1-5 and rIFN-alpha 2b 5 x 10(6) IU m-2 once a day on days 1, 3 and 5. Objective responses (CR+PR) occurred in 9/50 (18%) patients, six of whom (12%) achieved a complete response. Disease stabilisation was observed in 17 cases (34%) and 18 patients progressed during therapy. In the other six cases, treatment was interrupted early for toxicity or patient refusal. One patient died of myocardial infarction during the second cycle. The overall median survival was 12 months. Home therapy with subcutaneous rIL-2 + rIFN-alpha 2b proved to be active, feasible and moderately toxic, but serious adverse events can sometimes occur. PMID:8519672

  10. Normal gamma interferon (IFN-. gamma. ) and decreased interleukin-2 (IL-2) production by copper-deficient mice

    SciTech Connect

    Lukasewycz, O.A.; Prohaska, J.R. )

    1991-03-15

    The production of both interleukin-2 (IL-2) and gamma interferon (IFN-{gamma}) was determined in lymphocyte preparations from spleens of copper-deficient ({minus}Cu) and copper adequate control (+Cu) mice. Swiss albino mice were fed a diet low in copper. The +Cu mice drank water with copper added, while {minus}Cu mice drank deionized water. Compared to +Cu controls, {minus}Cu mice had lower hematocrits, reduced levels of liver Cu, low plasma ceruloplasmin activity, and higher levels of liver iron. Production of IL-2 was assessed by the response of an IL-2-dependent cell line (CTLL) to serial dilutions of Con A-stimulated splenic lymphocyte culture supernatants. IFN-{gamma} levels were determined in these same supernatants by an enzyme-linked immunosorbant assay. Analysis indicated that IL-2 production by splenic lymphocytes from {minus}Cu mice was only 62% of the mean +Cu value. IFN-{gamma} levels of {minus}Cu and +Cu splenic lymphocytes, on the other hand, were equivalent. These data indicate differential effects of copper deficiency on two distinct lymphokines elaborated by the same murine T-help subpopulation, T{sub H}1.

  11. Molecular cloning and phylogenetic analysis of beluga whale (Delphinapterus leucas) and grey seal (Halichoerus grypus) interleukin 2.

    PubMed

    St-Laurent, G; Béliveau, C; Archambault, D

    1999-03-01

    Interleukin 2 (IL-2) is a lymphokine produced by activated T helper lymphocytes which exerts immunoregulatory effects on a variety of immune cells, including T cells, activated B cells, natural killer cells, and lymphokine-activated killer cells. In this study, we cloned and determined the entire beluga whale (Delphinapterus leucas) and grey seal (Halichoerus grypus) IL-2-encoding cDNA sequences, and analysed their genetic relationships with those from several mammalian species obtained from the Genbank Database. The encoding nucleic acid sequences of beluga whale and grey seal IL-2 were 465 and 468 bp in length, respectively. The identity levels of IL-2 nucleic and deduced amino acid sequences from the beluga whale and grey seal with those from the other mammalian species, ranged from 59.9% to 89.5%, and 52.9% to 77.3%, and from 61.1% to 93.2%, and 58.7% to 88.4%, respectively. Phylogenetic analysis based on both nucleic and amino acid sequences showed that the beluga whale IL-2 was closely related to that of the ruminant species, which includes the bovine, while the grey seal IL-2 was closely related to that of the canine.

  12. Therapeutic efficacy of Bifidobacterium longum-mediated human interleukin-2 with endostatin or TRAIL in transplanted tumors in mice.

    PubMed

    Yin, Yan; Kou, Lei; Wang, Jian-Jun; Xu, Gen-Xing

    2012-03-01

    Interleukin-2 (IL-2), as an important cytokine in immune response, has been demonstrated to have therapeutic activity in several cancer models. In our previous study, we showed that the pBV22210 vector containing a chloramphenicol resistance gene and the cryptic plasmid, pMB1, from the Bifidobacterium longum (B. longum) strain could stably replicate and did not significantly affect the biological characteristics of B. longum. In this study, B. longum was transfected by electroporation with pBV22210 containing IL-2 (B. longum-pBV22210-IL-2), its growth curve was determined, and its inhibitory effect on tumor xenografts in mice was examined. The results showed that B. longum-pBV22210-IL-2 reduced the tumor size and prolonged the survival time of H22 tumor-bearing mice. In addition, when cyclophosphamide (CTX), B. longum-pBV22210-endostatin, or B. longum-pBV22210-TRAIL was combined with B. longum-pBV22210-IL-2, the antitumor effect was significantly enhanced. The survival times of the mice in the combination groups of B. longum-pBV22210-endostatin or B. longum-pBV22210-TRAIL were longer than those of the mice in the B. longum-pBV22210-IL-2 alone group. However, when CTX was added, the survival times of the mice showed no statistically significant difference compared with those of the mice in the dextrose-saline solution group. These results suggest that B. longum-pBV22210-IL-2 has potent antitumor effects that could be enhanced when combined with chemotherapeutic drugs or other antitumor genes.

  13. Interleukin 2 secretion by lectin-activated human blood lymphocytes is markedly augmented by vascular endothelial cells

    SciTech Connect

    Guinan, E.C.; Pober, J.S.

    1986-03-01

    Since the initial interaction (and possible activation) of a blood borne T lymphocyte involves contact with the endothelial lining of the vasculature at the site of an immune response, the authors have examined the effect of cultured human endothelial cells (HEC) upon polyclonal T cell activation. Addition of 10/sup 4/ HEC to 10/sup 4/-10/sup 5/ peripheral blood lymphocytes (PBL) stimulated with phytohemagglutinin (PHA, 0.3-10 ..mu..g/ml) leads to marked augmentation of interleukin 2 (IL-2) production. The relative increase in IL-2 (mean of 3 expts. +/- SEM) is present at 24 h (5.8 fold +/- 1.5) and become more marked at 48 h (12.6 fold +/- 3.5) and 72 h (18.5 fold +/- 3.7). This relative enhancement is greater for HEC added to 10/sup 4/ than 10/sup 5/ PBL and is also greater when 10/sup 4/ rather than 2 x 10/sup 3/ HEC are added to a given number of PBL. This increased IL-2 concentration has two biological consequences. First, at suboptimal PHA doses or at low PBL number, PBL proliferation as measured by /sup 3/H-thymidine incorporation is increased up to two fold. Second, the phenotype of the proliferating cells appears altered, including a decrease in mean density of IL-2 receptor. The authors hypothesize that such modulation of the concentration of locally produced IL-2 may play a key role in the nature of an immune response, influencing both its magnitude and the functional profile of the activated and amplified effector cells.

  14. Effect of IL-2-Bax, a novel interleukin-2-receptor-targeted chimeric protein, on bleomycin lung injury1

    PubMed Central

    Segel, Michael J; Aqeilan, Rami; Zilka, Keren; Lorberboum-Galski, Haya; Wallach-Dayan, Shulamit B; Conner, Michael W; Christensen, Thomas G; Breuer, Raphael

    2005-01-01

    The role of lymphocytes in the pathogenesis of lung fibrosis is not clear, but the weight of the evidence supports a pro-fibrotic effect for lymphocytes. The high-affinity interleukin-2 receptor (haIL-2R) is expressed on activated, but not quiescent, T lymphocytes. This selective expression of haIL-2R provides the basis for therapeutic strategies that target IL-2R-expressing cells. We hypothesized that elimination of activated lymphocytes by IL-2R-targeted chimeric proteins might ameliorate lung fibrosis. We investigated the effects of IL-2-Bax, a novel apoptosis-inducing IL-2R-targeted chimeric protein, on bleomycin-induced lung injury in mice. Treatment groups included (i) a single intratracheal instillation of bleomycin and twice-daily intraperitoneal injections of IL-2-Bax; (ii) intratracheal bleomycin and intraperitoneal IL-2-PE664Glu, an older-generation chimeric protein; (iii) intratracheal bleomycin/intraperitoneal PBS; (iv) intratracheal saline/intraperitoneal PBS. Lung injury was evaluated 14 days after intratracheal instillation by cell count in bronchoalveolar lavage (BAL) fluid, semi-quantitative and quantitative histomorphological measurements and by biochemical analysis of lung hydroxyproline. Bleomycin induced a BAL lymphocytosis that was significantly attenuated by IL-2-Bax and IL-2-PE664Glu. However, morphometric parameters and lung hydroxyproline were unaffected by the chimeric proteins. These results show that IL-2-Bax reduces the lymphocytic infiltration of the lungs in response to bleomycin, but this effect is not accompanied by a decrease in lung fibrosis. PMID:16191100

  15. Immunotherapy with low-dose recombinant interleukin 2 after high-dose chemotherapy and autologous stem cell transplantation in neuroblastoma.

    PubMed

    Pession, A; Prete, A; Locatelli, F; Pierinelli, S; Pession, A L; Maccario, R; Magrini, E; De Bernardi, B; Paolucci, P; Paolucci, G

    1998-08-01

    The purpose of this study was to evaluate in a phase I-II trial whether low doses of recombinant human interleukin 2 (rHuIL-2) over a prolonged period of time are safe and effective in eradicating or controlling minimal residual disease in children with neuroblastoma given high-dose chemotherapy (HDCT) and autologous stem cell transplantation (ASCT). From January 1992 to July 1996, 17 consecutive patients, with either stage IV or relapsed neuroblastoma, were enrolled. Patients received rHuIL-2 after a median time interval (min-max) of 105 days (56-153) after HDCT and ASCT. The protocol consisted of 2 'priming' courses of rHuIL-2 at escalating doses administered intravenously at 72-h intervals, followed by 'maintenance' with 11 monthly and six bimonthly boosting 5-day courses administered subcutaneously on an outpatient basis. At April 1997, 7 out of the 17 patients had completed the treatment schedule, four had discontinued treatment because of toxicity and four because of relapse; the remaining two patients are still on treatment, having completed 15 courses. Expansion of T lymphocytes, together with an increase in both natural killer cells and in activated T lymphocytes was evidenced. After a median (min-max) follow-up time of 30 (16-64) months, 12 out of 17 patients are alive and well. Two patients relapsed and died 14 and 35 months after transplant. Three patients are alive after having relapsed at 41, 21 and 13 months. The actuarial 2-year event-free survival and overall survival are 67% and 92% respectively. Intermittent administration of low doses of rHuIL-2 given for a long period of time is well tolerated and seems capable of controlling minimal residual disease after HDCT and ASCT in children with high-risk neuroblastoma.

  16. In vivo cytokine responses to interleukin-2 immunotherapy after autologous stem cell transplantation in children with solid tumors.

    PubMed

    Bönig, H; Laws, H J; Wundes, A; Verheyen, J; Hannen, M; Kim, Y M; Banning, U; Nürnberger, W; Körholz, D

    2000-07-01

    The potent immunostimulatory cytokine interleukin-2 (IL-2) has been extensively investigated for its potential to induce anti-tumor immunity in a number of tumor models. Only recently the complex interplay of mutually suppressive or supportive cytokines of the IL-2-induced network of cytokines has been better characterized. The aim of this study was to assess which of these in vitro findings are reproducible in vivo in recipients of stem cell transplants (SCT), since in these patients long- lasting impairments in cytokine inducibility have been described. We have therefore studied the kinetics of putative modulators and mediators of IL-2-induced immune activation, namely IL-1beta, IL-4, IL-5, IL-10, IL-12, soluble Fas ligand (sFasL), and GM-CSF during IL-2 therapy. All patients were children or adolescents suffering from solid tumors with poor prognosis who received three 5-day courses of high-dose intravenous IL-2 as an adjuvant to their radio-chemotherapy and autologous SCT. While IL-1beta, IL-4 and IL-12 were not, and sFasL was only mildly affected by the IL-2 therapy, we observed a consistent and early rise of IL-10, IL-5, and GM-CSF. These increases were rapidly reversible after discontinuation of IL-2 therapy. The inducibility of IL-10, IL-5 and GM-CSF was more pronounced with increasing time from the SCT, and in the third cycle reached an order of magnitude as in high-dose IL-2 patients without SCT. Together with the abundant in vitro data, these findings may help devise a combination immunotherapy permitting stronger anti-tumor effects, but lesser adverse effects.

  17. Eradication of Human Hepatic and Pulmonary Melanoma Metastases in SCID Mice by Antibody--Interleukin 2 Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Becker, Jurgen C.; Pancook, James D.; Gillies, Stephen D.; Mendelsohn, John; Reisfeld, Ralph A.

    1996-04-01

    Antibody--cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody--interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cγ 1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumorspecific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumorspecific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.

  18. Enhanced protease cleavage efficiency on the glucagon-fused interleukin-2 by the addition of synthetic oligopeptides.

    PubMed

    Kim, Sung-Woo; Kim, Jae-Bum; Lee, Weon Sup; Jung, Woo-Hyuk; Ryu, Ji-Myung; Jang, Hyung-Wook; Jo, Young-Bae; Jung, Joon-Ki; Kim, Jung-Hoe

    2007-09-01

    Human interleukin-2 (hIL-2) was produced as a recombinant fusion protein (G3.IL-2/HF) consisting of three tandem-arranged human glucagon molecules (G3) and hIL-2. For the recovery of hIL-2, a factor Xa (FXa) cleavage sequence was introduced next to the N-terminus of hIL-2. Cleavage efficiency on this recombinant protein construct was very low because its recognition sequence was sterically hindered within the G3.IL-2/HF molecule and hence FXa access to the cleavage site was insufficient. We therefore introduced various synthetic oligopeptides upstream from the FXa cleavage site as a means to change substrate conformation and thereby increase cleavage efficiency. Among these oligopeptides, acidic or nucleophilic constructs were the most effective for the FXa-mediated cleavage of the fusion protein. In addition, insertion of various oligopeptides into the G3.IL-2/HF molecule varied the solubility of each construct depending on their physical properties. Consequently, the G3.IL-2/DF construct showed the highest final hIL-2 yields via FXa-mediated removal of the fusion partner. Lastly, we confirmed that cleavage efficiency was greatly increased but native hIL-2 was cleaved internally by non-specific cleavage when the acidic oligopeptide D4 (DDDD) was introduced upstream of the EK cleavage site within G3.IL-2/HE molecule. The G3.IL-2/HE molecule was shown to be an inefficient substrate to EK in a previous report (Biotechnol. Bioprocess Eng. (2000) 5, 13-16).

  19. Human and Mouse CD8+CD25+FOXP3+ Regulatory T Cells at Steady State and during Interleukin-2 Therapy

    PubMed Central

    Churlaud, Guillaume; Pitoiset, Fabien; Jebbawi, Fadi; Lorenzon, Roberta; Bellier, Bertrand; Rosenzwajg, Michelle; Klatzmann, David

    2015-01-01

    In addition to CD4+ regulatory T cells (Tregs), CD8+ suppressor T cells are emerging as an important subset of regulatory T cells. Diverse populations of CD8+ T cells with suppressive activities have been described. Among them, a small population of CD8+CD25+FOXP3+ T cells is found both in mice and humans. In contrast to thymic-derived CD4+CD25+FOXP3+ Tregs, their origin and their role in the pathophysiology of autoimmune diseases (AIDs) are less understood. We report here the number, phenotype, and function of CD8+ Tregs cells in mice and humans, at the steady state and in response to low-dose interleukin-2 (IL-2). CD8+ Tregs represent approximately 0.4 and 0.1% of peripheral blood T cells in healthy humans and mice, respectively. In mice, their frequencies are quite similar in lymph nodes (LNs) and the spleen, but two to threefold higher in Peyer patches and mesenteric LNs. CD8+ Tregs express low levels of CD127. CD8+ Tregs express more activation or proliferation markers such as CTLA-4, ICOS, and Ki-67 than other CD8+ T cells. In vitro, they suppress effector T cell proliferation as well as or even better than CD4+ Tregs. Owing to constitutive expression of CD25, CD8+ Tregs are 20- to 40-fold more sensitive to in vitro IL-2 stimulation than CD8+ effector T cells, but 2–4 times less than CD4+ Tregs. Nevertheless, low-dose IL-2 dramatically expands and activates CD8+ Tregs even more than CD4+ Tregs, in mice and humans. Further studies are warranted to fully appreciate the clinical relevance of CD8+ Tregs in AIDs and the efficacy of IL-2 treatment. PMID:25926835

  20. Genetically modified murine adipose-derived mesenchymal stem cells producing interleukin-2 favor B16F10 melanoma cell proliferation.

    PubMed

    Bahrambeigi, Vahid; Ahmadi, Nafiseh; Salehi, Rasoul; Javanmard, Shaghayegh Haghjooy

    2015-01-01

    Adipose-derived mesenchymal stem cells (ADSCs) are attractive tools for cancer gene therapy due to their intrinsic tropism to the tumor environment. Interleukin-2 (IL2) is recognized as a key regulatory molecule, which enhances the activity and growth of the immune effector cell function. High-Dose IL2 Therapy is an option for treatment of malignant melanoma but has frequent, often serious and sometimes life-threatening side effects. Here we investigated the effect of genetically modified ADSCs (GM-ADSCs) expressing IL2 in immunocompetent mouse models of subcutaneous and lung metastatic melanoma. Prior to in vivo studies, we demonstrated that IL2 produced by GM-ADSCs may act as a growth factor for melanoma cells due to the increased viability and reduced apoptosis of melanoma cells after in vitro treatment. Subcutaneous co-injection of IL2-expressing ADSCs with melanoma cells significantly enhanced the melanoma tumor growth. Furthermore, histological analysis of subcutaneous tumors for IL2 and Melan-A (a melanocytic differentiation marker) confirmed that most of cells in melanoma/IL2-ADSC co-injected tumors are melanoma cells, not IL2-ADSCs. In pulmonary metastases model, melanoma cells were injected intravenously and 10 days later mice were treated by systematical injection of GM-ADSCs. Intravenously injected IL2-ADSCs engrafted into melanoma lung tumors but were unable to reduce melanoma lung metastases. Besides, administered IL2-ADSCs significantly reduced systemic CD4+ cells and did not impact the total survival of lung metastases melanoma bearing mice. In conclusion, this study showed that IL2-producing ADSCs can favor B16F10 melanoma cell proliferation. Therefore, therapies utilizing IL2 have to be taken into careful consideration.

  1. Interleukin-2 signalling is modulated by a labile disulfide bond in the CD132 chain of its receptor

    PubMed Central

    Metcalfe, Clive; Cresswell, Peter; Barclay, A. Neil

    2012-01-01

    Certain disulfide bonds present in leucocyte membrane proteins are labile and can be reduced in inflammation. This can cause structural changes that result in downstream functional effects, for example, in integrin activation. Recent studies have shown that a wide range of membrane proteins have labile disulfide bonds including CD132, the common gamma chain of the receptors for several cytokines including interleukin-2 and interleukin-4 (IL-2 and IL-4). The Cys183–Cys232 disulfide bond in mouse CD132 is susceptible to reduction by enzymes such as thioredoxin (TRX), gamma interferon-inducible lysosomal thiolreductase and protein disulfide isomerase, which are commonly secreted during immune activation. The Cys183–Cys232 disulfide bond is also reduced in an in vivo lipopolysaccharide (LPS)-induced acute model of inflammation. Conditions that lead to the reduction of the Cys183–Cys232 disulfide bond in CD132 inhibit proliferation of an IL-2-dependent T cell clone and concomitant inhibition of the STAT-5 signalling pathway. The same reducing conditions had no effect on the proliferation of an IL-2-independent T cell clone, nor did they reduce disulfide bonds in IL-2 itself. We postulate that reduction of the Cys183–Cys232 disulfide in CD132 inhibits IL-2 binding to the receptor complex. Published data show that the Cys183–Cys232 disulfide bond is exposed at the surface of CD132 and in close contact with IL-2 and IL-4 in their respective receptor complexes. In addition, mutants in these Cys residues in human CD132 lead to immunodeficiency and loss of IL-2 binding. These results have wider implications for the regulation of cytokine receptors in general, as their activity can be modulated by a ‘redox regulator’ mechanism caused by the changes in the redox environment that occur during inflammation and activation of the immune system. PMID:22645657

  2. Necrotizing enterocolitis as an adverse effect of recombinant interleukin-2 and Ch14.18 in maintenance therapy for high-risk neuroblastoma.

    PubMed

    Levy, Gabriel; Bonnevalle, Michel; Rocourt, Nathalie; Sudour, Hélène; Defachelles, Anne-Sophie

    2015-05-01

    Recombinant interleukin-2 is used with ch14.18/CHO to improve the cytotoxic activity of NK lymphocytes against neoplastic cells. The efficacy of this treatment is limited by its potential side effects. We report an unusual case of necrotizing enterocolitis associated with the administration of interleukin-2 and ch14.18/CHO in maintenance therapy for localized NMyc amplified neuroblastoma (NBL). This case highlights the potentially significant toxicity of this immunotherapy that is currently being tested in the high-risk NBL-1.5 protocol. Further, short-term, medium-term, and long-term follow-up in this patient population will be warranted to judge the potential benefit of this treatment versus the short-term, medium-term, and long-term side effects in a patient population with an outcome that is better than that of stage 4 NBL patients.

  3. Flow cytometric analysis of expression of interleukin-2 receptor beta chain (p70-75) on various leukemic cells

    SciTech Connect

    Hoshino, S.; Oshimi, K.; Tsudo, M.; Miyasaka, M.; Teramura, M.; Masuda, M.; Motoji, T.; Mizoguchi, H. )

    1990-08-15

    We analyzed the expression of the interleukin-2 receptor (IL-2R) beta chain (p70-75) on various leukemic cells from 44 patients by flow cytometric analysis using the IL-2R beta chain-specific monoclonal antibody, designated Mik-beta 1. Flow cytometric analysis demonstrated the expression of the IL-2R beta chain on granular lymphocytes (GLs) from all eight patients with granular lymphocyte proliferative disorders (GLPDs), on adult T-cell leukemia (ATL) cells from all three patients with ATL, and on T-cell acute lymphoblastic leukemia (T-ALL) cells from one of three patients with T-ALL. Although GLs from all the GLPD patients expressed the IL-2R beta chain alone and not the IL-2R alpha chain (Tac-antigen: p55), ATL and T-ALL cells expressing the beta chain coexpressed the alpha chain. In two of seven patients with common ALL (cALL) and in both patients with B-cell chronic lymphocytic leukemia, the leukemic cells expressed the alpha chain alone. Neither the alpha chain nor the beta chain was expressed on leukemic cells from the remaining 28 patients, including all 18 patients with acute nonlymphocytic leukemia, five of seven patients with cALL, all three patients with multiple myeloma, and two of three patients with T-ALL. These results indicate that three different forms of IL-2R chain expression exist on leukemic cells: the alpha chain alone; the beta chain alone; and both the alpha and beta chains. To examine whether the results obtained by flow cytometric analysis actually reflect functional aspects of the expressed IL-2Rs, we studied the specific binding of 125I-labeled IL-2 (125I-IL-2) to leukemic cells in 18 of the 44 patients. In addition, we performed 125I-IL-2 crosslinking studies in seven patients. The results of IL-2R expression of both 125I-IL-2 binding assay and crosslinking studies were in agreement with those obtained by flow cytometric analysis.

  4. Induction of immunity in peripheral tissues combined with intracerebral transplantation of interleukin-2-producing cells eliminates established brain tumors.

    PubMed

    Iwadate, Y; Yamaura, A; Sato, Y; Sakiyama, S; Tagawa, M

    2001-12-15

    Cytokine gene therapy for the induction of potent immune responses against central nervous system tumors has proven to have significant potential. However, this strategy needs improvement in the process of antigen presentation and/or insufficient recruitment of immunocompetent cells to achieve successful eradication of established brain tumors. We investigated the therapeutic potential of induced systemic immunity in peripheral tissues combined with interleukin-2 (IL-2) production in the vicinity of brain tumors to treat established brain tumors. Sequential magnetic resonance image monitoring showed that the combinatory therapy consisting of intracerebral (i.c.) transplantation of IL-2-producing rat gliosarcoma 9L (9L/IL-2) cells and s.c. vaccination using irradiated 9L or 9L/IL-2 cells could cure 9L-bearing rats, whereas either the i.c. injection of 9L/IL-2 cells or the s.c. vaccination produced little or marginal antitumor effects, respectively. Xenogeneic murine neuroblastoma cells secreting IL-2 could substitute for 9L/IL-2 cells, producing significant antitumor effects in the vaccinated rats. Tumor-specific cytotoxic activity was induced in the vaccinated rats but not fully in the rats treated only with i.c. injection of 9L/IL-2 cells. Immunohistochemical analysis revealed that a number of CD4(+) and CD8(+) T cells infiltrated into the brain tumors which were treated with the combinatory therapy. The level of cell infiltration was similar to that found in s.c. 9L/IL-2 tumors which were subsequently rejected. In contrast, the brain tumors treated with either i.c. transplantation of 9L/IL-2 cells or the s.c. vaccination showed only moderate infiltration of T cells. The combinatory strategy, i.c. grafting of IL-2-producing cells, and s.c. immunization of irradiated whole tumor cell vaccine, is, thus, effective for recruiting activated T cells into the brain tumor site and could be a potential therapy for brain tumors.

  5. Longitudinal survey in an endemic region of plasma soluble interleukin-2 receptor and antibody levels in Plasmodium falciparum malaria.

    PubMed Central

    Chumpitazi, B F; Peyron, F; Simon, J; Boudin, C; Sheick-Zakiuddin, I; Picot, S; Ambroise-Thomas, P

    1990-01-01

    A survey involving 81 individuals living in Dafinso and Vallée du Kou no. 4 (near Bobo-Dioulasso), Burkina Faso, was performed in June 1987, August to September 1987, and January 1988, respectively, at the beginning of, during, and after the transmission season of malaria. The clinical longitudinal study during the transmission period allowed us to define three different groups in terms of both age and occurrence of malaria attack (5,000 Plasmodium falciparum per mm3 of blood and axillary fever of greater than 37.7 degrees C) as follows: group 1, persons less than or equal to 15 years old who had at least one malaria attack during the transmission period; group 2, individuals less than or equal to 15 years old who did not have any malaria attacks; and group 3, individuals considered to be protected (adults greater than 15 years old with no malaria attacks). Soluble interleukin-2 receptor (sIL-2R) levels were found to be significantly increased (P less than 0.001) in the first two groups (1,047 +/- 481 U/ml [mean +/- standard deviation]) as compared with the adult group (605 +/- 307 U/ml). Considering all the groups, no significant difference was observed between observation periods. Levels of sIL-2R were inversely correlated (r = -0.39, n = 237, P less than 0.01) with age (range, 4 to 67 years). Negative correlations were also noticed between the levels of sIL-2R and those of antibodies to somatic antigen of P. falciparum (immunoglobulin G [IgG] class [r = -0.33, n = 237, P less than 0.01] and IgM class [r = -0.20, n = 237, P less than 0.05]). IgG antibody levels to somatic antigen were correlated with age, but IgM antibody levels to somatic antigen were not. The possible role played by sIL-2R in effector mechanisms against malaria is discussed. PMID:2199518

  6. Lectin interactions with the Jurkat leukemic T-cell line: quantitative binding studies and interleukin-2 production

    SciTech Connect

    Dupuis, G.; Bastin, B.

    1988-03-01

    Phytohemagglutinin (PHA), concanavalin A (Con A), pea lectin, and wheat germ agglutinin (WGA) have been used to investigate their binding properties to Jurkat 77 6.8 leukemic human T cells and their ability to induce these cells to produce interleukin-2 (IL-2). Binding studies showed that the Jurkat cells fixed 0.82 +/- 0.11 microgram pea lectin, 2.02 +/- 0.17 micrograms Con A, 1.85 +/- 0.07 micrograms PHA and 8.88 +/- 0.61 micrograms WGA. Scatchard plots were linear, indicating that the binding process was homogeneous with respect to the binding constant. PHA and Con A bound with the highest affinity (Kass (apparent) approximately equal to 9 x 10(9) M-1), followed by pea lectin and WGA (Kass (apparent) approximately equal to 3 x 10(9) M-1). The number of lectin binding sites was in agreement with the results of saturation experiments. We also evaluated the effect of the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the binding process. Results show that there were no gross alterations in the value of (apparent) Kass in the case of PHA and WGA. In contrast, the presence of TPA decreased the affinity of Con A and modified the Scatchard profile for pea lectin, which was curvilinear with a concavity turned upward. In this case, data were (apparent) K1 = 17.7 x 10(9) M-1 (high-affinity sites) and (apparent) K2 = 2.6 x 10(9) M-1 (low-affinity sites). The four lectins shared the ability to stimulate Jurkat 77 6.8 cells to secrete IL-2. Optimal lectin concentrations were 20 micrograms/ml (PHA) and 50 micrograms/ml (WGA and Con A). Pea lectin failed to display a dose-response relationship, and IL-2 production increased proportionally with lectin concentration. Con A was the most efficient stimulator (250 U/ml), followed by WGA (160 U/ml) and PHA (108 U/ml).

  7. Soluble interleukin-2 receptor is a thyroid hormone-dependent early-response marker in the treatment of thyrotoxicosis.

    PubMed Central

    Smallridge, R C; Tsokos, G C; Burman, K D; Porter, L; Cranston, T; Sfikakis, P P; Solomon, B L

    1997-01-01

    Thyrotoxic patients exhibit increased levels of immune activation molecules (soluble interleukin-2 receptor [sIL-2R], intercellular adhesion molecule-1 [ICAM-1], and endothelial-leukocyte adhesion molecule-1 [ELAM-1]) in serum, although the clinical significance of these measurements remains unclear. In a randomized 4-week study, we have recently shown that in the treatment of hyperthyroidism, the combination of cholestyramine and methimazole (MMI) resulted in faster lowering of serum thyroid-hormone levels than did MMI alone. Stored serial serum samples from patients participating in this randomized treatment trial were analyzed for sIL-2R, soluble ICAM-1 (sICAM-1), and soluble ELAM-1 (sELAM-1). The levels of all three molecules were elevated in patients with hyperthyroidism. Although the levels of sICAM-1 and sELAM-1 remained elevated through the 4-week follow-up period in both groups of patients, the sIL-2R levels (normal levels, 1.0 to 4.2 ng/ml) decreased significantly in the 10 patients who received cholestyramine in addition to MMI (week 0, 14.2 +/- 1.5 ng/ml; week 2, 10.8 +/- 1.2 ng/ml; week 4, 8.9 +/- 1.5 ng/ml). In eight patients who received MMI alone, sIL-2R decreased less rapidly (week 0, 12.3 +/- 1.4 ng/ml; week 2, 12.3 +/- 1.3 ng/ml; week 4, 10.9 +/- 1.3 ng/ml). sICAM-1 and sELAM-1 were elevated at baseline but did not decrease during therapy. In the former group, free thyroxine and free triiodothyronine decreased faster. These data show that levels of sIL-2R in serum, but not those of sICAM-1 and sELAM-1, may be of clinical use in the early follow-up evaluation of medically treated patients. PMID:9302209

  8. Blocking the interleukin 2 (IL2)-induced systemic autophagic syndrome promotes profound antitumor effects and limits toxicity.

    PubMed

    Lotze, Michael T; Buchser, William J; Liang, Xiaoyan

    2012-08-01

    Cancer is the leading cause of death in the United States in those dying under the age of 85. Although cancer is increasingly controlled as a chronic disease, true cures of patients with metastatic epithelial malignancies have rarely been obtained with currently available systemic therapies. For example, administration of high-dose recombinant interleukin 2 (IL2), enhancing cytolytic immune cell proliferation and delivery, promotes complete antitumor responses in < 10% of treated individuals. Means to reduce the toxicity, attributed to a cytokine storm and an associated "systemic autophagic syndrome" as well as enhance efficacy and increase the potential set of malignancies in which it is applied (currently patients with renal cancer and melanoma) would be of great interest. IL2 promotes both T-cell and NK cell induction of immune cell-mediated autophagy (iC-MA) in tumor targets. We have demonstrated that HMGB1 is detected at high levels in the serum of IL2-treated mice with translocation to the cytoplasm from the nucleus in the liver, consistent with HMGB1's release in response to stress, and ability to sustain autophagy. Limiting autophagy in mice with coadministration of chloroquine (CQ) diminishes serum levels of HMGB1, cytokines (IFNG and IL6 but not IL18), and autophagic flux, attenuating weight gain, enhancing DC, T-cell and NK cell numbers, and promoting long-term tumor control in a murine hepatic metastases model. Autophagy (programmed cell survival) is a metabolic process associated with promotion of late cancer growth. In tumor cell lines, CQ treatment limits ATP production through inhibition of oxidative phosphorylation and promotion of apoptosis. CQ increases autophagic vacuoles and LC3-II levels in tumor cells, associated with increased annexin V(+)/PI(-) cells, cleaved-PARP, cleaved-CASP3, and cytochrome c release from mitochondria. These observations, limiting toxicity and prolonging antitumor effects, with a combination of IL2 and autophagy

  9. Interleukin-2 transcription is regulated in vivo at the level of coordinated binding of both constitutive and regulated factors.

    PubMed Central

    Garrity, P A; Chen, D; Rothenberg, E V; Wold, B J

    1994-01-01

    Interleukin-2 (IL-2) transcription is developmentally restricted to T cells and physiologically dependent on specific stimuli such as antigen recognition. Prior studies have shown that this stringent two-tiered regulation is mediated through a transcriptional promoter/enhancer DNA segment which is composed of diverse recognition elements. Factors binding to some of these elements are present constitutively in many cell types, while others are signal dependent, T cell specific, or both. This raises several questions about the molecular mechanism by which IL-2 expression is regulated. Is the developmental commitment of T cells reflected molecularly by stable interaction between available factors and the IL-2 enhancer prior to signal-dependent induction? At which level, factor binding to DNA or factor activity once bound, are individual regulatory elements within the native enhancer regulated? By what mechanism is developmental and physiological specificity enforced, given the participation of many relatively nonspecific elements? To answer these questions, we have used in vivo footprinting to determine and compare patterns of protein-DNA interactions at the native IL-2 locus in cell environments, including EL4 T-lymphoma cells and 32D clone 5 premast cells, which express differing subsets of IL-2 DNA-binding factors. We also used the immunosuppressant cyclosporin A as a pharmacological agent to further dissect the roles played by cyclosporin A-sensitive factors in the assembly and maintenance of protein-DNA complexes. Occupancy of all site types was observed exclusively in T cells and then only upon excitation of signal transduction pathways. This was true even though partially overlapping subsets of IL-2-binding activities were shown to be present in 32D clone 5 premast cells. This observation was especially striking in 32D cells because, upon signal stimulation, they mobilized a substantial set of IL-2 DNA-binding activities, as measured by in vitro assays using

  10. Adoptive immunotherapy of human pancreatic cancer with lymphokine-activated killer cells and interleukin-2 in a nude mouse model

    SciTech Connect

    Marincola, F.M.; Da Pozzo, L.F.; Drucker, B.J.; Holder, W.D. Jr. )

    1990-11-01

    A pancreatic cancer cell line was grown in orthotopic and heterotopic positions in young Swiss/NIH nude mice, which were tested with adoptive immunotherapy. Mice were injected with 1 x 10(7) human cancer cells in the subcutaneous tissue and duodenal lobe of the pancreas. The mice were randomly divided into four groups: group IA (LAK + IL-2) (N = 25) received 2 X 10(7) human lymphokine-activated killer (LAK) cells from normal donors by tail vein injection followed by 10,000 units of human recombinant interleukin-2 (IL-2) given intraperitoneally every 12 hours for 28 days; group IB (IL-2) (N = 27) was given the same dose of IL-2 alone; group IC (RPMI-1640) (N = 18) received a placebo consisting of 1 ml of RPMI-1640 intraperitoneally every 12 hours; and group ID (LAK) (N = 14) received 2 X 10(7) LAK cells but no IL-2. Toxicity was significantly higher in group IB, with a mortality rate of 45.5% (10/22 animals) versus a 0% mortality (0/25) in group IA. None of the group IA or IB animals died of pancreatic cancer during the experiment. The animals that did not receive IL-2 died before 28 days in 14.2% of group IC and in 16.7% of group ID. The area under the growth curve of subcutaneous tumors during the course of treatment and the pancreatic tumor weight at the end of treatment were compared in each group. Subcutaneous tumors had a reduced rate of growth in group IA animals compared to all the other treatments. Pancreatic tumor growth was slowed in group IA. The animals treated with IL-2 alone (group IB) showed some slowing of tumor growth that was intermediate between group IA, group IC, and group ID. A similar experiment was done with irradiated (375 rad) mice. Nine nude mice with tumors were treated with LAK + IL-2 (group IIA), eight received IL-2 alone (group IIB), and seven received placebo (group IIC).

  11. Recombinant Interleukin-2 in Patients Aged Younger Than 60 Years With Acute Myeloid Leukemia in First Complete Remission

    PubMed Central

    Kolitz, Jonathan E.; George, Stephen L.; Benson, Don M.; Maharry, Kati; Marcucci, Guido; Vij, Ravi; Powell, Bayard L.; Allen, Steven L.; DeAngelo, Daniel J.; Shea, Thomas C.; Stock, Wendy; Bakan, Courtney E.; Hars, Vera; Hoke, Eva; Bloomfield, Clara D.; Caligiuri, Michael A.; Larson, Richard A.

    2014-01-01

    BACKGROUND Recombinant interleukin-2 (rIL-2) induces cellular cytotoxicity against leukemia blasts. Patients with acute myeloid leukemia (AML) in first complete remission (CR) may harbor minimal residual disease that is susceptible to rIL-2–activated effector cells. METHODS In the Cancer and Leukemia Group B (CALGB) 19808 study, patients with AML in first CR were randomly assigned after all planned chemotherapy to receive a 90-day course of subcutaneously administered rIL-2 or no further therapy. The primary objective was to compare disease-free survival (DFS) between the 2 treatment arms. A total of 534 patients achieved a CR, 214 of whom were randomized. Six courses of low-dose daily rIL-2 were given for the expansion of cytotoxic effector cells, each followed by 3-day high-dose boluses given to trigger cytotoxicity against minimal residual disease. RESULTS On the protocol-specified intention-to-treat analysis, the hazards ratio for DFS was 0.75 (95% confidence interval, 0.52–1.09; P =.13); the 5-year DFS rate was 42% in the observation arm and 53% in the rIL-2 treatment arm. The hazards ratio for overall survival (OS) was 0.88 (95% confidence interval, 0.54–1.23; P =.34); the 5-year OS rate was 58% for the observation arm and 63% for the rIL-2 treatment arm. Twenty-five of the 107 patients randomized to treatment with rIL-2 either refused or were unable to initiate therapy and 30 patients did not complete their assigned therapy. However, significant toxicities were not commonly observed. The trial design did not anticipate the difficulties patients would encounter with protocol compliance. CONCLUSIONS The efficacy of immunotherapy with rIL-2 administered after intensive postremission treatment was not assessed as planned because of unexpected refusals by patients and/or their physicians to comply with protocol-directed therapy. Neither DFS nor OS was found to be significantly improved. PMID:24382782

  12. Biodistribution of an anti-interleukin 2 receptor monoclonal antibody in rat recipients of a heart allograft, and its use as a rejection marker in gamma scintigraphy

    SciTech Connect

    Thedrez, P.; Paineau, J.; Jacques, Y.; Chatal, J.F.; Pelegrin, A.; Bouchaud, C.; Soulillou, J.P. )

    1989-09-01

    Anti-interleukin-2 receptor monoclonal antibodies have been shown to prevent allograft rejection. This paper reports on the biodistribution of a mouse MoAb directed at the 55 Kd alpha chain of rat interleukin-2 receptor (IL2-R) during allograft rejection. Only a low percentage (approximately 1%) of intact 125I-labeled MoAb was detected in the rejected graft, and irrelevant control IgG1 was found at a similar level. This suggests that most of the injected intact MoAb bound to graft tissue via its monomorphic Fc segment. In contrast, OX39 F(ab')2 fragments showed a preferential localization in the rejected allograft and did not bind to the LEW-to-LEW syngeneic heart graft. Irrelevant F(ab')2 did not concentrate in the allogeneic graft. Accordingly, F(ab')2 fragments from OX39 or irrelevant MoAb were used for gamma-scintigraphy on allograft recipients together with biodistribution studies. Results show that scintigraphy was able to detect allograft accumulation of 131I OX39 F(ab')2, whereas no imaging was obtained when OX39 F(ab')2 was used in the syngeneic combination or when irrelevant 131-IgG1 F(ab')2 was given to allograft recipients. This method, applied to the clinical situation, could be of interest for detection of early graft rejection episodes by immunoscintigraphy using reagents specific for activation determinants on lymphocyte membranes, such as anti-interleukin-2 receptor MoAb.

  13. An Anti-Interleukin-2 Receptor Drug Attenuates T- Helper 1 Lymphocytes-Mediated Inflammation in an Acute Model of Endotoxin-Induced Uveitis

    PubMed Central

    Navea, Amparo; Almansa, Inmaculada; Muriach, María; Bosch-Morell, Francisco

    2014-01-01

    The aim of the present study was to evaluate the anti-inflammatory efficacy of Daclizumab, an anti-interleukin-2 receptor drug, in an experimental uveitis model upon a subcutaneous injection of lipopolysaccharide into Lewis rats, a valuable model for ocular acute inflammatory processes. The integrity of the blood-aqueous barrier was assessed 24 h after endotoxin-induced uveitis by evaluating two parameters: cell count and protein concentration in aqueous humors. The histopathology of all the ocular structures (cornea, lens, sclera, choroid, retina, uvea, and anterior and posterior chambers) was also considered. Enzyme-linked immunosorbent assays of the aqueous humor samples were performed to quantify the levels of the different chemokine and cytokine proteins. Similarly, a biochemical analysis of oxidative stress-related markers was also assessed. The inflammation observed in the anterior chamber of the eyes when Daclizumab was administered with endotoxin was largely prevented since the aqueous humor protein concentration substantially lowered concomitantly with a significant reduction in the uveal and vitreous histopathological grading. Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon-γ, also significantly reduced with related anti-oxidant systems recovery. Daclizumab treatment in endotoxin-induced uveitis reduced Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon gamma, by about 60–70% and presented a preventive role in endotoxin-induced oxidative stress. This antioxidant protective effect of Daclizumab may be related to several of the observed Daclizumab effects in our study, including IL-6 cytokine regulatory properties and a substantial concomitant drop in INFγ. Concurrently, Daclizumab treatment triggered a significant reduction in both the uveal histopathological grading and protein concentration in aqueous humors, but not in cellular infiltration. PMID:24595020

  14. Sputum Mycobacterium tuberculosis mRNA as a marker of bacteriologic clearance in response to antituberculosis therapy.

    PubMed

    Li, L; Mahan, C S; Palaci, M; Horter, L; Loeffelholz, L; Johnson, J L; Dietze, R; Debanne, S M; Joloba, M L; Okwera, A; Boom, W H; Eisenach, K D

    2010-01-01

    mRNA is a marker of cell viability. Quantifying Mycobacterium tuberculosis mRNA in sputum is a promising tool for monitoring response to antituberculosis therapy and evaluating the efficacy of individual drugs. mRNA levels were measured in sputum specimens from patients with tuberculosis (TB) receiving monotherapy in an early bactericidal activity study of fluoroquinolones and in those receiving a standard rifampin-based regimen in an interleukin-2 (IL-2) trial. In the early bactericidal activity study, sputum for quantitative culture and mRNA analysis was collected for 2 days before and daily during 7 days of study drug administration. In the IL-2 trial, sputum was collected for quantitative culture, Bactec 460 liquid culture, and mRNA analysis throughout the intensive treatment phase. RNA was isolated from digested sputum and tested in quantitative reverse transcription-PCR assays for several gene targets. mRNA for the glyoxylate cycle enzyme isocitrate lyase declined at similar rates in patients receiving isoniazid, gatifloxicin, levofloxacin, and moxifloxacin monotherapy. Isocitrate lyase mRNA correlated highly with CFU in sputum prior to therapy and during 7 days of monotherapy in all treatment arms. Isocitrate lyase mRNA was detectable in sputum of culture-positive TB patients receiving a rifampin-based regimen for 1 month. At 2 months, sputum for isocitrate mRNA correlated more closely with growth in liquid culture than did growth on solid culture medium. Data suggest that isocitrate lyase mRNA is a reliable marker of M. tuberculosis viability.

  15. In vivo electroporation of plasmids encoding GM-CSF or interleukin-2 into existing B16 melanomas combined with electrochemotherapy induces long-term antitumour immunity.

    PubMed

    Heller, L; Pottinger, C; Jaroszeski, M J; Gilbert, R; Heller, R

    2000-12-01

    When cancer cells, including melanoma cells, are genetically altered to secrete cytokines, irradiated and injected into subjects, long-term antitumour immunity is induced. Optimally, existing melanomas induced to produce cytokines in vivo could stimulate this same immune response. Although in vivo electroporation enhances plasmid expression, electroporation of plasmids encoding granulocyte-monocyte colony stimulating factor (GM-CSF) and interleukin-2 (IL2) into B16 mouse melanomas did not significantly alter tumour growth at the concentration tested. Electrochemotherapy, which causes short-term, complete regressions of treated tumour but no resistance to challenge, was combined with plasmid delivery. The combination treatment resulted in the induction of long-term immunity to recurrence and resistance to challenge in up to 25% of mice. PMID:11198480

  16. Molecular Characteristics of CTA056, a Novel Interleukin-2-Inducible T-Cell Kinase Inhibitor that Selectively Targets Malignant T Cells and Modulates Oncomirs

    PubMed Central

    Guo, Wenchang; Liu, Ruiwu; Ono, Yoko; Ma, Ai-Hong; Martinez, Anthony; Sanchez, Eduardo; Wang, Yan; Huang, Wenzhe; Mazloom, Anisha; Li, Jixian; Ning, Jinying; Maverakis, Emanual; Lam, Kit S.

    2012-01-01

    Interleukin-2-inducible T-cell kinase (Itk) is a member of the Btk (Bruton's tyrosine kinase) family of tyrosine kinases. Itk plays an important role in normal T-cell functions and in the pathophysiology of both autoimmune diseases and T-cell malignancies. Here, we describe the initial characterization of a selective inhibitor, 7-benzyl-1-(3-(piperidin-1-yl)propyl)-2-(4-(pyridin-4-yl)phenyl)-1H-imidazo[4,5-g]quinoxalin-6(5H)-one (CTA056), that was developed through screening a 9600-compound combinatorial solution phase library, followed by molecular modeling, and extensive structure-activity relationship studies. CTA056 exhibits the highest inhibitory effects toward Itk, followed by Btk and endothelial and epithelial tyrosine kinase. Among the 41 cancer cell lines analyzed, CTA056 selectively targets acute lymphoblastic T-cell leukemia and cutaneous T-cell lymphoma. Normal T cells are minimally affected. Incubation of Jurkat and MOLT-4 cells with CTA056 resulted in the inhibition of the phosphorylation of Itk and its effectors including PLC-γ, Akt, and extracellular signal-regulated kinase, as well as the decreased secretion of targeted genes such as interleukin-2 and interferon-γ. Jurkat cells also underwent apoptosis in a dose-dependent manner when incubated with CTA056. The potent apoptosis-inducing potential of CTA056 is reflected by the significant modulation of microRNAs involved in survival pathways and oncogenesis. The in vitro cytotoxic effect on malignant T cells is further validated in a xenograft model. The selective expression and activation of Itk in malignant T cells, as well as the specificity of CTA056 for Itk, make this molecule a potential therapeutic agent for the treatment of T-cell leukemia and lymphoma. PMID:22899868

  17. B-cell surface antigen B7 provides a costimulatory signal that induces T cells to proliferate and secrete interleukin 2.

    PubMed Central

    Gimmi, C D; Freeman, G J; Gribben, J G; Sugita, K; Freedman, A S; Morimoto, C; Nadler, L M

    1991-01-01

    Occupancy of the T-cell receptor complex does not appear to be a sufficient stimulus to induce a T-cell-mediated immune response. Increasing evidence suggests that cognate cell-cell interaction between an activated T cell and an antigen-presenting cell may provide such a stimulus. A candidate T-cell surface molecule for this costimulatory signal is the T-cell-restricted CD28 antigen. Following crosslinking with anti-CD28 mAb, suboptimally stimulated CD28+ T cells show increased proliferation and markedly increased secretion of a subset of lymphokines. Recently, the B-cell surface activation antigen B7 was shown to be a natural ligand for the CD28 molecule, and both B7 and CD28 are members of the immunoglobulin superfamily. Here we report that B7-transfected CHO cells can induce suboptimally activated CD28+ T cells to proliferate and secrete high levels of interleukin 2. The response is identical whether T cells are submitogenically stimulated with either phorbol myristate acetate or anti-CD3 to activate the T cells. This response is specific and can be totally abrogated with anti-B7 monoclonal antibody. As has previously been observed for anti-CD28 monoclonal antibody, B7 ligation induced secretion of interleukin 2 but not interleukin 4. We have previously demonstrated that B7 expression is restricted to activated B lymphocytes and interferon gamma-activated monocytes. Since these two cellular populations are involved in antigen presentation as well as cognate interaction with T lymphocytes, B7 is likely to represent a central constimulatory signal that is capable of amplifying an immune response. PMID:1650475

  18. mRNA transcript therapy.

    PubMed

    Weissman, Drew

    2015-02-01

    mRNA is the central molecule of all forms of life. It is generally accepted that current life on Earth descended from an RNA world. mRNA, after its first therapeutic description in 1992, has recently come into increased focus as a method to deliver genetic information. The recent solution to the two main difficulties in using mRNA as a therapeutic, immune stimulation and potency, has provided the basis for a wide range of applications. While mRNA-based cancer immunotherapies have been in clinical trials for a few years, novel approaches; including, in vivo delivery of mRNA to replace or supplement proteins, mRNA-based generation of pluripotent stem cells, or genome engineering using mRNA-encoded meganucleases are beginning to be realized. This review presents the current state of mRNA drug technologies and potential applications, as well as discussing the challenges and prospects in mRNA development and drug discovery. PMID:25359562

  19. Effect of targeted ovarian cancer therapy using amniotic fluid mesenchymal stem cells transfected with enhanced green fluorescent protein-human interleukin-2 in vivo

    PubMed Central

    YOU, QI; YAO, YUAN; ZHANG, YUANLONG; FU, SONGBIN; DU, MEI; ZHANG, GUANGMEI

    2015-01-01

    The aim of the present study was to investigate the effect of using amniotic fluid mesenchymal stem cells (AF-MSCs) in targeted ovarian cancer therapy in vivo. AF-MSCs were isolated from human second trimester AF and a plasmid, enhanced green fluorescent protein-human interleukin-2 (pEGFP-hIL-2) was formed. The plasmid was stably transfected into the AF-MSCs and the cells were intravenously injected into ovarian cancer nude mice models. Following stable transfection of the vector, tumor formation, and the expression and activity of hIL-2 were investigated, and microscopic pathological examinations of the tumor were performed. It was found that AF-MSCs exhibited high motility during migration in vivo, and the vector, pEGFP-hIL-2 can be stably transfected into AF-MSCs. Following stable transfection, this type of stem cell is able to successfully transport the therapeutic gene, IL-2, migrate to the ovarian cancer tumor site to secrete the functional IL-2 and treat the tumor. Thus, AF-MSCs may serve as transporters for therapeutic genes targeting ovarian tumor sites and, therefore, be involved in the treatment of tumors. PMID:26179662

  20. A pilot study to evaluate the effects of C1 esterase inhibitor on the toxicity of high-dose interleukin 2.

    PubMed

    Ogilvie, A C; Baars, J W; Eerenberg, A J; Hack, C E; Pinedo, H M; Thijs, L G; Wagstaff, J

    1994-03-01

    In a pilot study six patients received 4 days' treatment with interleukin 2 (IL-2) [cumulative dose (CD) 264 +/- 26 x 10(6) IU m-2] and C1 esterase inhibitor (C1-INH) (loading dose 2,000 U, followed by 500-1,000 U twice daily). Toxicity was compared with that in patients given 4 days' treatment with standard (CD 66 +/- 12 x 10(6) IU m-2) or escalating-dose (CD 99 +/- 8 x 10(6) IU m-2) IL-2. IL-2-induced hypotension was equivalent and complement activation was less after IL-2 + C1-INH (C3a = 10.5 +/- 3.2 nmol l-1) than following standard (14.1 +/- 8.4 nmol l-1) or escalating-dose (18.3 +/- 2.9 nmol l-1) IL-2. This study demonstrates that C1-INH administration during IL-2 treatment is safe and warrants further study to evaluate its ability to ameliorate IL-2-induced toxicity.

  1. Interleukin-2 induces tyrosine phosphorylation of the vav proto-oncogene product in human T cells: lack of requirement for the tyrosine kinase lck.

    PubMed Central

    Evans, G A; Howard, O M; Erwin, R; Farrar, W L

    1993-01-01

    The haematopoietic protein, p95vav, has been shown to be a tyrosine kinase substrate and to have tyrosine kinase-modulated guanine-nucleotide-releasing-factor activity. This implies a function in the control of ras or ras-like proteins. Because ras activation has been shown to be a downstream event following stimulation of the interleukin-2 (IL-2) receptor, we investigated the possibility that vav was involved in IL-2 signal transduction pathways, using human T cells as a model. We found rapid tyrosine phosphorylation of vav in response to IL-2 within 1 min, with maximum increase of phosphorylation of 5-fold occurring by 5 min after treatment in normal human T cells. IL-2 stimulation of the human T-cell line YT and a subclone of the YT cell line (YTlck-) that does not express message for the src-family kinase p56lck also results in a rapid rate of tyrosine phosphorylation of vav of more than 5-fold by 5 min. These results suggest that vav may play an important role in IL-2-stimulated signal transduction and that there is not a strict requirement for the tyrosine kinase p56lck. Images Figure 1 Figure 3 Figure 4 PMID:7690544

  2. Optimization protein productivity of human interleukin-2 through codon usage, gene copy number and intracellular tRNA concentration in CHO cells.

    PubMed

    Ou, Kua-Chun; Wang, Chih-Yang; Liu, Kuan-Ting; Chen, Yi-Ling; Chen, Yi-Chen; Lai, Ming-Derg; Yen, Meng-Chi

    2014-11-14

    Transfer RNA (tRNA) abundance is one of the critical factors for the enhancement of protein productivity in prokaryotic and eukaryotic hosts. Gene copy number of tRNA and tRNA codon usage bias are generally used to match tRNA abundance of protein-expressing hosts and to optimize the codons of recombinant proteins. Because sufficient concentration of intracellular tRNA and optimized codons of recombinant proteins enhanced translation efficiency, we hypothesized that sufficient supplement of host's tRNA improved protein productivity in mammalian cells. First, the small tRNA sequencing results of CHO-K1 cells showed moderate positive correlation with gene copy number and codon usage bias. Modification of human interleukin-2 (IL-2) through codons with high gene copy number and high codon usage bias (IL-2 HH, modified on Leu, Thr, Glu) significantly increased protein productivity in CHO-K1 cells. In contrast, modification through codons with relatively high gene copy number and low codon usage bias (IL-2 HL, modified on Ala, Thr, Val), or relatively low gene copy number and low codon usage bias (IL-2 LH, modified on Ala, Thr, Val) did not increase IL-2 productivity significantly. Furthermore, supplement of the alanine tRNA or threonine tRNA increased IL-2 productivity of IL-2 HL. In summary, we revealed a potential strategy to enhance productivity of recombinant proteins, which may be applied in production of protein drug or design of DNA vaccine.

  3. Intracytoplasmic phosphorylation sites of Tac antigen (p55) are not essential for the conformation, function, and regulation of the human interleukin 2 receptor.

    PubMed Central

    Hatakeyama, M; Minamoto, S; Taniguchi, T

    1986-01-01

    Tac antigen, the receptor for human interleukin 2 (IL-2), contains in its intracytoplasmic region a serine residue (Ser-247) that is seemingly the predominant site of protein kinase C-mediated phosphorylation. A number of studies on growth factor receptors have suggested the importance of phosphorylation in receptor structure, function, and regulation. In this study, we generated site-directed mutations in the Tac antigen cDNA to generate mutant receptors in which Ser-247 or Thr-250, a probable site of minor phosphorylation, was replaced with another amino acid that is not accessible to phosphorylation. Study of the expression of these mutant genes in a T-lymphoid cell line has provided no evidence as to the essential role of the above-mentioned residues in determining the degree of receptor affinity, its ability for signal transduction, and phorbol ester-mediated regulation of the receptor. Our results strongly suggest the existence of an IL-2 receptor "complex" in which the Tac antigen is associated with another molecule(s) that is involved in receptor structure, function, and regulation. PMID:3099287

  4. Enhancement of CD4+ T-cell-dependent interleukin-2 production in vitro by murine alveolar macrophages: the role of leukotriene B4.

    PubMed Central

    Marcinkiewicz, J; Grabowska, A; Bryniarski, K; Chain, B M

    1997-01-01

    Local tissue macrophages are known to play a key role in regulation of adaptive immune responses, often by inhibition of T-cell activation and proliferation. In this study, we compare the influence of alveolar and peritoneal macrophages on T-cell-dependent interleukin-2 (IL-2) release. Alveolar macrophages, in contrast to peritoneal macrophages, enhance IL-2 release. Assay of a panel of potential macrophage-derived mediators indicated that activated alveolar macrophages stimulated greater release of IL-1 beta, tumour necrosis factor-alpha and, especially, leukotriene B4 (> 100 times) than activated peritoneal macrophages. Inhibition of prostaglandin synthesis by alveolar macrophages further enhanced the production of IL-2, while inhibition of leukotriene synthesis abolished the enhancement. The addition of exogenous prostaglandin E2 inhibited IL-2 release, while exogenous leukotriene B4 enhanced IL-2 release. When added simultaneously, the two compounds antagonized each other's activity. In conclusion, this study confirms that alveolar macrophages enhance IL-2 secretion, and suggests that this enhancement may be due at least in part to the very high rates of production of leukotriene B4. The overall influence of macrophage populations on T cells in vivo will reflect the complex balance between the multiple mediators produced within the local tissue microenvironment. PMID:9301525

  5. Expression of the mouse interleukin-2 receptor gamma chain in insect cells using a baculovirus expression vector--comparison with the human common gamma chain.

    PubMed

    Stenroos, K; West, A; Raivio, E; Lindqvist, C

    1997-02-01

    The gene encoding the gamma-chain of the mouse Interleukin-2 receptor was expressed in lepidopteran insect cells using the baculovirus expression vector system. The corresponding gene was inserted under the polyhedrin promoter of the Autographa californica nuclear polyhedrosis virus and expressed in the Spodoptera frugiperda insect cell line Sf9 during viral infection. The recombinant receptor protein was identified by immunoblotting in cell lysates prepared from insect cells infected with the produced recombinant virus VL1392-mIL-2R gamma. Kinetic analysis demonstrated that the corresponding protein could be detected as an approximately 50 kDa protein already at 24 h post-infection. Intrinsic labelling with [35S]-methionine/cysteine and SDS-PAGE analysis of the recombinant baculovirus infected insect cells verified the immunoblotting data. The expressed IL-2R gamma protein could also be determined on the surface of infected insect cells by flow cytometric analysis. Comparison of the molecular weights between baculovirus expressed human and mouse IL-2R gamma chains indicated differences in the glycosylation pattern despite similar numbers of N-linked glycosylation sites. PMID:9042425

  6. Aerosol Delivery of Interleukin-2 in Combination with Adoptive Transfer of Natural Killer Cells for the Treatment of Lung Metastasis: Methodology and Effect.

    PubMed

    Kiany, Simin; Gordon, Nancy

    2016-01-01

    Natural killer (NK) cells are a subtype of lymphocytes with a major role as a host defense mechanism against tumor cells. Allogeneic NK cell therapy is being used as an alternative promising therapy for many different cancers. Interleukin-2 (IL-2) is a critical cytokine for NK cell proliferation, survival, and effector functions. Cytokine support is essential to activate, expand, and increase the life span of NK cells. Aerosol delivery of IL-2 in combination with adoptive transfer of NK cells offers a reasonable approach for the treatment of lung metastases as it avoids the deleterious side effects of systemic IL-2. Using a human OS mouse model, we demonstrated the efficacy of this approach. Combination therapy of aerosol IL-2 with NK cells resulted in a better therapeutic effect against OS lung metastases as compared with each therapy alone. Aerosol IL-2 selectively increased infiltration, retention, and proliferation of infused NK cells in the lung, and there was no local inflammation or toxicity in the lungs or any other organ. Our results demonstrate that delivery of IL-2 via the aerosol route offers a feasible and innovative approach to enhance the immunotherapeutic effect of NK cells against pulmonary metastases. In the following chapter, we describe the methodology and effect of this innovative therapeutic approach. PMID:27177675

  7. Cyclosporin A suppresses the expression of the interleukin 2 gene by inhibiting the binding of lymphocyte-specific factors to the IL-2 enhancer.

    PubMed Central

    Randak, C; Brabletz, T; Hergenröther, M; Sobotta, I; Serfling, E

    1990-01-01

    Cyclosporin A (CsA), a powerful immunosuppressive drug, inhibits the synthesis of lymphokines in T lymphocytes at the level of gene transcription. Using protein extracts from El4 lymphoma cells we show that the binding of lymphocyte-specific factors interacting with the two so-called purine boxes (Pu-boxes) of the interleukin 2 (IL-2) enhancer are missing in CsA-treated cells. The CsA-sensitive factors are newly synthesized upon induction. The most prominent factor consists of 45 kd polypeptides and contacts both Pu-boxes at the two central G residues within the identical core sequence AAGAGGAAAA. The CsA-mediated suppression of factor binding to the Pu-boxes correlates well with functional studies in which the inducible, T cell-restricted proto-enhancer activity of Pu-boxes was selectively repressed by CsA. These observations support the conclusion that the suppression of factor binding to the Pu-boxes by CsA impairs the activity of IL-2 and of further lymphokine genes, thereby inhibiting the synthesis of lymphokines in T lymphocytes. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2369902

  8. Successful immunotherapy of natural killer-resistant established pulmonary melanoma metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin 2

    PubMed Central

    1984-01-01

    In previous in vitro studies, we have shown that murine splenocytes or cancer patient lymphocytes incubated in IL-2 become lytic for fresh syngeneic or autologous tumors. We have now performed the adoptive transfer of such lymphokine-activated killer (LAK) cells in a murine B16 metastasis model to test their in vivo efficacy. 1 X 10(8) LAK cells, infused intravenously into C57BL/6 mice with established B16 pulmonary metastases, led to a marked decreased in the number of lung nodules and improved survival. LAK cells administered 3 d after amputation of a tumor-bearing limb also decreased the incidence of spontaneous pulmonary metastases. LAK cells generated from tumor-bearer splenocytes had effects equivalent to those from normal animals, and this antimetastatic effect of the LAK cells did not require the prior administration of cyclophosphamide or other immunosuppressants. Fresh or unstimulated splenocytes had no effect. The antitumor effectors and precursors in vivo and in vitro were Thy-1+. The lymphokine required for the activation appeared to be interleukin 2 (IL-2), since incubation in partially purified supernatants from PMA pulsed EL-4 or Con A-pulsed splenocytes or purified Jurkat IL-2 led to the generation of LAK cells equally active in vivo. The use of IL-2-activated cells may provide a valuable method for the adoptive therapy of human neoplasms as well. PMID:6141211

  9. Clonal evolution in chronic lymphocytic leukemia detected by fluorescence in situ hybridization and conventional cytogenetics after stimulation with CpG oligonucleotides and interleukin-2: a prospective analysis.

    PubMed

    Brejcha, Martin; Stoklasová, Martina; Brychtová, Yvona; Panovská, Anna; Štěpanovská, Kristina; Vaňková, Gabriela; Plevová, Karla; Oltová, Alexandra; Horká, Kateřina; Pospíšilová, Šárka; Mayer, Jiří; Doubek, Michael

    2014-02-01

    Chronic lymphocytic leukemia (CLL) patients may acquire new chromosome abnormalities during the course of their disease. Clonal evolution (CE) has been detected by conventional chromosome banding (CBA), several groups also confirmed CE with fluorescence in situ hybridization (FISH). At present, there are minimal prospective data on CE frequency determined using a combination of both methods. Therefore, the aim of our study was to prospectively assess CE frequency using a combination of FISH and CBA after stimulation with CpG oligonucleotides and interleukin-2. Between 2008 and 2012, we enrolled 140 patients with previously untreated CLL in a prospective trial evaluating CE using FISH and CBA after stimulation. Patients provided baseline and regular follow-up peripheral blood samples for testing. There was a median of 3 cytogenetic examinations (using both methods) per patient. CE was detected in 15.7% (22/140) of patients using FISH, in 28.6% (40/140) using CBA, and in 34.3% (48/140) of patients by combining both methods. Poor-prognosis CE (new deletion 17p, new deletion 11q or new complex karyotype) was detected in 15% (21/140) of patients and was significantly associated with previous CLL treatment (p=0.013). CBA provides more complex information about cytogenetic abnormalities in CLL patients than FISH and confirms that many patients can acquire new abnormalities during the course of their disease in a relatively short time period. PMID:24246692

  10. Effects of medium quality on the expression of human interleukin-2 at high cell density in fermentor cultures of Escherichia coli K-12.

    PubMed Central

    MacDonald, H L; Neway, J O

    1990-01-01

    We examined the ability of transformed Escherichia coli cells in fermentor cultures to accumulate interleukin-2 (IL-2) intracellularly under temperature-regulated control of the phage lambda pL promoter. Induction of expression was undertaken at different culture optical densities, and specific IL-2 accumulation was found to decrease with increasing cell density at induction. Induction at higher culture optical densities was also accompanied by decreased growth during induction and increased acetate accumulation in the culture medium. Experiments were undertaken to study the effect of replacing spent medium by perfusion with fresh medium both before induction and during IL-2 expression at high cell density. Improved IL-2 expression was seen only when perfusion was continued past 1.6 h after the start of induction, and it was accompanied by a significant reduction in acetate buildup. Further improvements were not seen when perfusion was continued beyond hour 3 of induction. Replenishing medium components and decreasing the concentration of diffusible inhibitors before induction did not alleviate acetate buildup, growth limitation, or limitation of IL-2 synthesis. These results suggested that accumulation of diffusible inhibitors such as acetate during induction may be a significant factor limiting IL-2 expression in high-density cultures, but other factors intrinsic to the organism or the protein also played a major role. PMID:2180368

  11. Improved expression of human interleukin-2 in high-cell-density fermentor cultures of Escherichia coli K-12 by a phosphotransacetylase mutant.

    PubMed Central

    Bauer, K A; Ben-Bassat, A; Dawson, M; de la Puente, V T; Neway, J O

    1990-01-01

    A fluoroacetate-resistant mutant of Escherichia coli K-12 (MM-294) accumulated less acetate in the medium during growth to high cell density in fermentor cultures and was shown to be defective in its phosphotransacetylase activity. The mutant had an improved ability to continue growing during induction of interleukin-2 (IL-2) synthesis, and in fermentor cultures it gave a higher level of specific IL-2 accumulation than its parent during expression under control of the temperature-sensitive pL promoter. In flask cultures at lower cell density, the mutant again produced less acetate than the parent, although both showed a much lower level of acetate accumulation than that seen in fermentors at high cell density. Both showed a higher specific expression level of IL-2 in flask cultures, and there was a greater difference between the mutant and its parent in the final extent of specific IL-2 accumulation in fermentor cultures compared with flask cultures. Thus, the concentration of acetate in the medium, which was much higher in fermentor cultures (greater than or equal to 300 mM after 5 h of induction) than in flask cultures (less than or equal to mM) of the parent organism, was a significant factor in limiting expression of the heterologous protein product, IL-2. The acetate kinase-phosphotransacetylase pathway was therefore a major source of acetate formation in these cultures. Blocking this pathway improved accumulation of IL-2 and did not slow growth. PMID:2187412

  12. A phase II trial of concomitant human interleukin-2 and interferon-alpha-2a in patients with disseminated malignant melanoma.

    PubMed

    Whitehead, R P; Figlin, R; Citron, M L; Pfile, J; Moldawer, N; Patel, D; Jones, G; Levitt, D; Zeffren, J

    1993-02-01

    Interleukin-2 (IL-2) and alpha-interferon have each shown antitumor activity in patients with disseminated malignant melanoma. Because animal studies suggest enhanced activity for the combination over each agent used alone, this trial using a relatively low-dose outpatient regimen was undertaken. IL-2 at a dose of 2 x 10(6) U/m2/day (Roche units) was given by continuous intravenous infusion for 4 days a week with interferon-alpha-2a at a dose of 6 x 10(6) U/m2/day given by s.c. or i.m. injection on days 1 and 4 of each treatment week. One cycle consisted of 4 consecutive weeks of treatment followed by a 2-week rest period. Fourteen patients were entered in this study. No complete or partial responses were seen. One patient required dose reduction because of grade 3 diarrhea and two patients had interruption of treatment because of central-line-related sepsis. Fatigue was common in all patients. This low-dose combination regimen of IL-2 and alpha-interferon does not appear to be better than the single agents used alone in optimal dosage. PMID:8318496

  13. 65-kilodalton protein phosphorylated by interleukin 2 stimulation bears two putative actin-binding sites and two calcium-binding sites

    SciTech Connect

    Zu, Youli; Shigesada, Katsuya; Hanaoka, Masao; Namba, Yuziro ); Nishida, Eisuke ); Kubota, Ichiro ); Kohno, Michiaki )

    1990-09-11

    The authors have previously characterized a 65-kilodalton protein (p65) as an interleukin 2 stimulated phosphoprotein in human T cells and showed that three endopeptide sequences of p65 are present in the sequence of l-plastin. In this paper, they present the complete primary structure of p65 based on the cDNA isolated from a human T lymphocyte (KUT-2) cDNA library. Analysis of p65 sequences and the amino acid composition of cleaved p65 N-terminal peptide indicated that the deduced p65 amino acid sequence exactly coincides with that of l-plastin over the C-terminal 580 residues and has a 57-residue extension at the N-terminus to l-plastin. Computer-assisted structural analysis revealed that p65 is a multidomain molecule involving at least three intriguing functional domains: two putative calcium-binding sites along the N-terminal 80 amino acid residues; a putative calmodulin-binding site following the calcium-binding region; and two tandem repeats of putative actin-binding domains in its middle and C-terminal parts, each containing approximately 240 amino acid residues. These results suggest that p65 belongs to actin-binding proteins.

  14. Role of zinc and alpha2 macroglobulin on thymic endocrine activity and on peripheral immune efficiency (natural killer activity and interleukin 2) in cervical carcinoma.

    PubMed

    Mocchegiani, E; Ciavattini, A; Santarelli, L; Tibaldi, A; Muzzioli, M; Bonazzi, P; Giacconi, R; Fabris, N; Garzetti, G G

    1999-01-01

    Decreased natural killer (NK) activity as well as interleukin 2 (IL-2) are risk factors for the progression of cervical carcinoma. NK activity and IL-2 may be thymus controlled. Plasma levels of active thymulin, a zinc-dependent thymic hormone (ZnFTS), are reduced in cancer because of the low peripheral zinc bioavailability. Zinc and thymulin are relevant for normal immune functions. Alpha2-macroglobulin is an inhibitor of matrix metalloproteases (MMPs) against invasive tumour proliferation. Because alpha2-macroglobulin has a binding affinity (Kd) for zinc that is higher than does thymulin, it may play a key role in immune efficiency in cancer. Plasma samples of 22 patients (age range 35-60 years) with locally advanced squamous cervical carcinoma and with FIGO stage Ib2-IIb were examined. They showed reduced active thymulin, decreased NK activity and IL-2 production, increased soluble IL-2 receptor (sIL-2R) and augmented alpha2-macroglobulin in the circulation, whereas plasma zinc levels were within the normal range for age. Significant positive correlations were found between zinc or active thymulin and alpha2-macroglobulin (r = 0.75, P < 0.01, r = 0.78, P < 0.01, respectively) in cancer patients. In vitro zinc increases IL-2 production from peripheral blood mononuclear cells (PBMCs) of cancer patients. These data suggest that an increase in alpha2-macroglobulin, which competes with thymulin for zinc binding, may be involved in causing a thymulin deficit with a consequent decrease of IL-2 and NK cytotoxicity. Thus, physiological zinc treatment in cervical carcinoma maybe restores impaired central and peripheral immune efficiency.

  15. Retrospective Analysis of the Safety and Efficacy of High-dose Interleukin-2 After Prior Tyrosine Kinase Inhibitor Therapy in Patients With Advanced Renal Cell Carcinoma

    PubMed Central

    Wong, Michael K. K.; Agarwal, Neeraj; Redman, Bruce G.; Logan, Theodore; Gao, Dexiang; Flaig, Thomas W.; Lewis, Karl; Poust, Jamie; Monk, Paul; Jarkowski, Anthony; Sendilnathan, Arun; Bolden, Marcus; Kuzel, Timothy M.; Olencki, Thomas

    2014-01-01

    Although tyrosine kinase inhibitors (TKI) are the most common first-line therapy for metastatic renal cell carcinoma, high-dose interleukin-2 (HD-IL2) remains the only agent that provides durable complete responses. The optimal sequence of these agents remains uncertain. This retrospective multi-institutional study examined the safety and efficacy of HD-IL2 following TKI therapy. After IRB approval at 7 HD-IL2 centers, data relating to patient, disease, and treatment characteristics among 40 consecutive patients with metastatic renal cell carcinoma who were treated with HD-IL2 after at least 1 prior TKI therapy were retrospectively collected. The most common cardiac adverse events were grade 3 hypotension and vascular leak syndrome. Six patients (15%) experienced other grade ≥3 cardiac adverse events. There were 2 treatment-related deaths due to congestive heart failure, occurring in 1 patient with short TKI to HD-IL2 interval and another patient with an abnormal baseline cardiac stress test. Best responses included 2 CRs (5%, duration 40+ and 62+ mo), 3 PRs (8%, duration 6, 11, and 24 mo), 13 SD (32%, median duration 12 mo), 20 PD (50%), and 2 not evaluable patients. Median overall survival was 22 months. Administration of HD-IL2 could be safe and effective after TKI therapy; however, careful selection of patients is critical. We recommend baseline cardiac risk factor assessment, screening with both cardiac stress test and echocardiogram, and allowing a TKI to HD-IL2 interval of at least 2 months. PMID:25075565

  16. Initial studies on the administration of C1-esterase inhibitor to patients with septic shock or with a vascular leak syndrome induced by interleukin-2 therapy.

    PubMed

    Hack, C E; Ogilvie, A C; Eisele, B; Jansen, P M; Wagstaff, J; Thijs, L G

    1994-01-01

    Activation of the complement and contact systems occur in patients with septic shock and is associated with a poor outcome. Activation of both systems is regulated by a common inhibitor, C1-esterase inhibitor (C1-Inh). Functional levels of C1-Inh are normal or slightly decreased in septic patients although this inhibitor is an acute phase protein. Moreover, an increased turn-over of C1-Inh in sepsis likely occurs since levels of proteolytically inactivated ("modified") C1-Inh are increased in this syndrome. One may therefore postulate that in sepsis there is a relative deficiency of C1-Inh. Here we will summarize our preliminary studies in 11 patients with septic shock, who received high doses of C1-Inh for up to 5 days. Activation of complement and contact systems also occurs in "a human model for septic shock" i.e., the vascular leak syndrome (VLS) induced by immunotherapy with the cytokine interleukin-2 (IL-2). The similarity between VLS and sepsis is not only reflected by similar patterns of complement and contact activation, but also by comparable hemodynamic and biochemical changes, and by the involvement of a number of other inflammatory mediators, such as the release of pro-inflammatory cytokines, and activation of coagulation and fibrinolysis and of neutrophils. Here we will also summarize our initial studies of the effect of C1-Inh administration to 6 patients with the VLS induced by IL-2. Our results indicate that high doses of C1-Inh can be safely administered to patients with septic shock or with the VLS, and may attenuate complement and contact activation in these conditions. Whether this therapy may reduce mortality and or morbidity of either syndrome has to be established by double-blind controlled studies.

  17. C1-inhibitor substitution therapy in septic shock and in the vascular leak syndrome induced by high doses of interleukin-2.

    PubMed

    Hack, C E; Ogilvie, A C; Eisele, B; Eerenberg, A J; Wagstaff, J; Thijs, L G

    1993-01-01

    C1-inhibitor (C1-INH) is the major plasma inhibitor of the complement and contact systems. Activation of either system has been shown to occur in patients with septic shock and is associated with a poor outcome. Functional levels of C1-INH tend to be normal in septic patients although paradoxically this inhibitor is an acute phase protein. Moreover, levels of proteolytically inactivated C1-INH are increased in sepsis pointing to an increased turn-over. These observations suggest a relative deficiency of biologically active C1-INH in sepsis. Complement and contact activation have also been shown to occur in the vascular leak syndrome (VLS) induced by immunotherapy with the cytokine interleukin-2 (IL-2), which syndrome may be regarded as a human model for septic shock. The similarity between VLS and sepsis encompasses more than complement and contact activation since a number of other inflammatory mediators considered to play a role in the pathogenesis of septic shock, are also involved in the development of VLS. The role and the mechanisms of complement and contact activation in sepsis and in the VLS are reviewed in this paper. Initial results of intervention therapy with high doses of C1-INH in these syndromes are also reported. It is concluded that high doses of C1-INH can be safely administered to patients with septic shock or with the VLS and may attenuate complement and contact activation in these conditions. Double-blind controlled studies are needed to definitely proved these effects and to establish whether this treatment is able to reduce mortality and morbidity of these syndromes.

  18. Role of zinc and α2macroglobulin on thymic endocrine activity and on peripheral immune efficiency (natural killer activity and interleukin 2) in cervical carcinoma

    PubMed Central

    Mocchegiani, E; Ciavattini, A; Santarelli, L; Tibaldi, A; Muzzioli, M; Bonazzi, P; Giacconi, R; Fabris, N; Garzetti, G G

    1999-01-01

    Decreased natural killer (NK) activity as well as interleukin 2 (IL-2) are risk factors for the progression of cervical carcinoma. NK activity and IL-2 may be thymus controlled. Plasma levels of active thymulin, a zinc-dependent thymic hormone (ZnFTS), are reduced in cancer because of the low peripheral zinc bioavailability. Zinc and thymulin are relevant for normal immune functions. α2-Macroglobulin is an inhibitor of matrix metalloproteases (MMPs) against invasive tumour proliferation. Because α2-macroglobulin has a binding affinity (Kd) for zinc that is higher than does thymulin, it may play a key role in immune efficiency in cancer. Plasma samples of 22 patients (age range 35–60 years) with locally advanced squamous cervical carcinoma and with FIGO stage Ib2–IIb were examined. They showed reduced active thymulin, decreased NK activity and IL-2 production, increased soluble IL-2 receptor (sIL-2R) and augmented α2-macroglobulin in the circulation, whereas plasma zinc levels were within the normal range for age. Significant positive correlations were found between zinc or active thymulin and α2-macroglobulin (r = 0.75, P< 0.01, r = 0.78, P< 0.01, respectively) in cancer patients. In vitro zinc increases IL-2 production from peripheral blood mononuclear cells (PBMCs) of cancer patients. These data suggest that an increase in α2-macroglobulin, which competes with thymulin for zinc binding, may be involved in causing a thymulin deficit with a consequent decrease of IL-2 and NK cytotoxicity. Thus, physiological zinc treatment in cervical carcinoma maybe restores impaired central and peripheral immune efficiency. © 1999 Cancer Research Campaign PMID:9888464

  19. Evidence for a Structural Motif in Toxins and Interleukin-2 That May Be Responsible for Binding to Endothelial Cells and Initiating Vascular Leak Syndrome

    NASA Astrophysics Data System (ADS)

    Baluna, Roxana; Rizo, Josep; Gordon, Brian E.; Ghetie, Victor; Vitetta, Ellen S.

    1999-03-01

    The dose-limiting toxicity of interleukin-2 (IL-2) and immunotoxin (IT) therapy in humans is vascular leak syndrome (VLS). VLS has a complex etiology involving damage to vascular endothelial cells (ECs), extravasation of fluids and proteins, interstitial edema, and organ failure. IL-2 and ITs prepared with the catalytic A chain of the plant toxin, ricin (RTA), and other toxins, damage human ECs in vitro and in vivo. Damage to ECs may initiate VLS; if this damage could be avoided without losing the efficacy of ITs or IL-2, larger doses could be administered. In this paper, we provide evidence that a three amino acid sequence motif, (x)D(y), in toxins and IL-2 damages ECs. Thus, when peptides from RTA or IL-2 containing this sequence motif are coupled to mouse IgG, they bind to and damage ECs both in vitro and, in the case of RTA, in vivo. In contrast, the same peptides with a deleted or mutated sequence do not. Furthermore, the peptide from RTA attached to mouse IgG can block the binding of intact RTA to ECs in vitro and vice versa. In addition, RTA, a fragment of Pseudomonas exotoxin A (PE38-lys), and fibronectin also block the binding of the mouse IgG-RTA peptide to ECs, suggesting that an (x)D(y) motif is exposed on all three molecules. Our results suggest that deletions or mutations in this sequence or the use of nondamaging blocking peptides may increase the therapeutic index of both IL-2, as well as ITs prepared with a variety of plant or bacterial toxins.

  20. Potential to involve multiple effector cells with human recombinant interleukin-2 and antiganglioside monoclonal antibodies in a canine malignant melanoma immunotherapy model.

    PubMed

    Helfand, S C; Soergel, S A; Donner, R L; Gan, J; Hank, J A; Lindstrom, M J; Sondel, P M

    1994-10-01

    Human tumors originating from neuroectodermal cells such as malignant melanoma and neuroblastoma express high levels of disialogangliosides GD2 and GD3, making these antigens ideal for targeting by monoclonal antibodies (Mabs). The purpose of this study was to investigate expression and targeting of gangliosides on canine melanoma. Using immunohistochemical methods, we analyzed the expression of disialogangliosides GD2 and GD3 on canine oral malignant melanomas with murine Mabs 14.G2a and R24 that recognize GD2 and GD3 disialogangliosides, respectively, on human tumors. We also assessed the ability of Mab 14.G2a (and its mouse-human chimera, ch 14.18) to mediate antibody-dependent cellular cytotoxicity (ADCC) in vitro against a canine malignant melanoma cell line with human recombinant interleukin-2 (IL-2) activated canine peripheral blood lymphocytes (PBL), or canine neutrophil effector cells. Our data show that Mabs 14.G2a and R24 recognized fresh frozen canine oral melanoma. Mabs 14.G2a or ch 14.18, or IL-2, potentiated lysis of the canine malignant melanoma cell line by canine PBL. The killing effect observed using the combination of either Mab with IL-2 was additive. Mab 14.G2a mediated potent ADCC of canine melanoma by canine neutrophils. These studies indicate that disialogangliosides are expressed on fresh canine melanoma cells. Mabs reactive with these antigens can target and trigger tumor killing by multiple canine effector populations and IL-2 can potentiate these effects by canine lymphocytes. Thus, canine oral malignant melanoma, a spontaneously occurring, metastatic cancer in the dog, may be a relevant animal model to investigate combination immunotherapy using antitumor Mab and IL-2.

  1. Fractalkine (CX3CL1)- and interleukin-2-enriched neuroblastoma microenvironment induces eradication of metastases mediated by T cells and natural killer cells.

    PubMed

    Zeng, Yan; Huebener, Nicole; Fest, Stefan; Weixler, Silke; Schroeder, Ulrike; Gaedicke, Gerhard; Xiang, Rong; Schramm, Alexander; Eggert, Angelika; Reisfeld, Ralph A; Lode, Holger N

    2007-03-01

    Fractalkine (FKN) is a unique CX3C chemokine (CX3CL1) known to induce both adhesion and migration of leukocytes mediated by a membrane-bound and a soluble form, respectively. Its function is mediated through CX3C receptor (CX3CR), which is expressed by T(H)1 immune cells including T cells and natural killer (NK) cells. FKN was shown to be expressed in >90% of 68 neuroblastoma samples as determined by cDNA microarray analysis. Here, we characterized the effect of FKN in the neuroblastoma microenvironment using a syngeneic model genetically engineered to secrete FKN. We show FKN-mediated migration, adhesion, and IFN-gamma secretion of immune effector cells, but limited antineuroblastoma activity, in vitro and in vivo. Therefore, we tested the hypothesis that a combined increase of FKN and interleukin-2 (IL-2) in the neuroblastoma microenvironment induces an effective antitumor immune response. For this purpose, IL-2 was targeted to ganglioside GD2, which is highly expressed on neuroblastoma tissue, using an anti-GD2 antibody IL-2 immunocytokine (ch14.18-IL-2). Only mice bearing FKN- and IL-2-enriched neuroblastoma tumors exhibited a reduction in primary tumor growth and a complete eradication of experimental liver metastases. The depletion of T cells and NK cells in vivo abrogated the effect, and these effector cells showed the highest cytolytic activity in vitro. Finally, only the FKN- and IL-2-enriched neuroblastoma microenvironment resulted in T-cell activation and the release of proinflammatory cytokines. In summary, we showed for the first time the immunologic mechanisms by which targeted IL-2 treatment of neuroblastoma with an FKN-rich microenvironment induces an effective antitumor response.

  2. Local and systemic effects of an allogeneic tumor cell vaccine combining transgenic human lymphotactin with interleukin-2 in patients with advanced or refractory neuroblastoma.

    PubMed

    Rousseau, Raphaël F; Haight, Ann E; Hirschmann-Jax, Charlotte; Yvon, Eric S; Rill, Donna R; Mei, Zhuyong; Smith, Susan C; Inman, Shannon; Cooper, Kristine; Alcoser, Pat; Grilley, Bambi; Gee, Adrian; Popek, Edwina; Davidoff, Andrew; Bowman, Laura C; Brenner, Malcolm K; Strother, Douglas

    2003-03-01

    In murine models, transgenic chemokine-cytokine tumor vaccines overcome many of the limitations of single-agent immunotherapy by producing the sequence of T-cell attraction followed by proliferation. The safety and immunologic effects of this approach in humans were tested in 21 patients with relapsed or refractory neuroblastoma. They received up to 8 subcutaneous injections of a vaccine combining lymphotactin (Lptn)- and interleukin-2 (IL-2)-secreting allogeneic neuroblastoma cells in a dose-escalating scheme. Severe adverse reactions were limited to reversible panniculitis in 5 patients and bone pain in 1 patient. Injection-site biopsies revealed increased cellularity caused by infiltration of CD4+ and CD8+ lymphocytes, eosinophils, and Langerhans cells. Systemically, the vaccine produced a 2-fold (P =.035) expansion of CD4+ T cells, a 3.5-fold (P =.039) expansion of natural killer (NK) cells, a 2.1-fold (P =.014) expansion of eosinophils, and a 1.6-fold (P =.049) increase in serum IL-5. When restimulated in vitro by the immunizing cell line, T cells collected after vaccination showed a 2.3-fold increase (P =.02) of T-helper (TH2)-type CD3+IL-4+ cells. Supernatant collected from restimulated cells showed increased amounts of IL-4 (11.4-fold; P =.021) and IL-5 (8.7-fold; P =.002). Six patients had significant increases in NK cytolytic activity. Fifteen patients made immunoglobulin G (IgG) antibodies that bound to the immunizing cell line. Measurable tumor responses included complete remission in 2 patients and partial response in 1 patient. Hence, allogeneic tumor cell vaccines combining transgenic Lptn with IL-2 appear to have little toxicity in humans and can induce an antitumor immune response.

  3. Infection by mink cell focus-forming viruses confers interleukin 2 (IL-2) independence to an IL-2-dependent rat T-cell lymphoma line.

    PubMed Central

    Tsichlis, P N; Bear, S E

    1991-01-01

    The development of T-cell lymphomas in rodents infected with type C retroviruses has been linked to the generation of a class of envelope (env) recombinant viruses called mink cell focus-forming viruses (MCF viruses) in the preleukemic thymus. To determine whether infection by MCF viruses altered the growth phenotype of retrovirus-induced T-cell lymphomas, a Moloney murine leukemia virus-induced interleukin-2 (IL-2)-dependent rat T-cell lymphoma line (4437A) was infected with MCF-247, modified MCF-V33 (mMCF-V33), or NZB-xenotropic (NZB-X) virus. The effects of virus infection on the IL-2 dependence of these cells was examined by cultivating them in the absence of IL-2. After IL-2 withdrawal, the uninfected and NZB-X-infected cells went through a crisis period characterized by massive death. All the independently maintained cultures of MCF- and mMCF-V33-infected cells, on the other hand, became IL-2 independent without a crisis. All the polytropic virus-infected IL-2-independent cultures contained a population of cells that was polyclonal with regard to polytropic provirus integration. Over this polyclonal background each culture produced multiple clones of cells that were selected rapidly after IL-2 withdrawal. Furthermore, the resulting MCF- or mMCF-V33-infected IL-2-independent cells retained the expression of IL-2 receptor. These data show that MCF and mMCF-V33 viruses may alter the growth phenotype of a T-cell lymphoma line and suggest that their effect on cell growth may be due to the direct interaction of the MCF envelope glycoprotein with cellular components, perhaps the IL-2 receptor. Images PMID:2052545

  4. Functional RNAi screen targeting cytokine and growth factor receptors reveals oncorequisite role for interleukin-2 gamma receptor in JAK3 mutation-positive leukemia

    PubMed Central

    Agarwal, Anupriya; MacKenzie, Ryan J.; Eide, Christopher A.; Davare, Monika A.; Watanabe-Smith, Kevin; Tognon, Cristina E.; Mongoue-Tchokote, Solange; Park, Byung; Braziel, Rita M.; Tyner, Jeffrey W.; Druker, Brian J.

    2014-01-01

    To understand the role for cytokine and growth factor receptor-mediated signaling in leukemia pathogenesis we designed a functional RNAi screen targeting 188 cytokine and growth factor receptors that we found highly expressed in primary leukemia specimens. Using this screen we identified interleukin-2 gamma receptor (IL2Rγ) as a critical growth determinant for the JAK3A572V mutation-positive AML cell line. We observed that knockdown of IL2Rγ abrogates phosphorylation of JAK3 and downstream signaling molecules, JAK1, STAT5, MAPK and pS6 ribosomal protein. Overexpression of IL2Rγ in murine cells increased the transforming potential of activating JAK3 mutations, whereas absence of IL2Rγ completely abrogated the clonogenic potential of JAK3A572V as well as the transforming potential of additional JAK3 activating mutations such as JAK3M511I. In addition, mutation at the IL2Rγ interaction site in the FERM domain of JAK3 (Y100C) completely abrogated JAK3-mediated leukemic transformation. Mechanistically, we found IL2Rγ contributes to constitutive JAK3 mutant signaling by increasing JAK3 expression and phosphorylation. Conversely, we found that mutant but not wild type JAK3 increased the expression of IL2Rγ, indicating IL2Rγ and JAK3 contribute to constitutive JAK/STAT signaling through their reciprocal regulation. Overall we demonstrate a novel role for IL2Rγ in potentiating oncogenesis in the setting of JAK3-mutation positive leukemia. Additionally, our study highlights an RNAi-based functional assay that can be used to facilitate the identification of non-kinase cytokine and growth factor receptor targets for inhibiting leukemic cell growth. PMID:25109334

  5. Limited T-cell receptor beta-chain heterogeneity among interleukin 2 receptor-positive synovial T cells suggests a role for superantigen in rheumatoid arthritis.

    PubMed Central

    Howell, M D; Diveley, J P; Lundeen, K A; Esty, A; Winters, S T; Carlo, D J; Brostoff, S W

    1991-01-01

    Rheumatoid arthritis (RA) is a disease affecting the synovial membranes of articulating joints that is thought to result from T-cell-mediated autoimmune phenomena. T cells responsible for the pathogenesis of RA are likely present in that fraction of synovial T cells that expresses the interleukin 2 receptor (IL-2R), one marker of T-cell activation. We report herein an analysis of T-cell receptor (TCR) beta-chain gene expression by IL-2R-positive synovial T cells. These T cells were isolated from uncultured synovial tissue specimens by using IL-2R-specific monoclonal antibodies and magnetic beads, and TCR beta-chain transcription was analyzed by PCR-catalyzed amplification using a panel of primers specific for the human TCR beta-chain variable region (V beta). Multiple V beta gene families were found to be transcribed in these patients samples; however, three gene families, V beta 3, V beta 14, and V beta 17, were found in a majority of the five synovial samples analyzed, suggesting that T cells bearing these V beta s had been selectively retained in the synovial microenvironment. In many instances, the V beta 3, V beta 14, or V beta 17 repertoires amplified from an individual patient were dominated by a single rearrangement, indicative of clonal expansion in the synovium and supportive of a role for these T cells in RA. Of note is a high sequence similarity between V beta 3, V beta 14, and V beta 17 polypeptides, particularly in the fourth complementarity-determining region (CDR). Given that binding sites for superantigens have been mapped to the CDR4s of TCR beta chains, the synovial localization of T cells bearing V beta s with significant CDR4 homology indicates that V beta-specific T-cell activation by superantigen may play a role in RA. PMID:1660155

  6. Mechanism of action of interleukin-2 (IL-2)-Bax, an apoptosis-inducing chimaeric protein targeted against cells expressing the IL-2 receptor.

    PubMed Central

    Aqeilan, Rami; Kedar, Rotem; Ben-Yehudah, Ahmi; Lorberboum-Galski, Haya

    2003-01-01

    The chimaeric protein interleukin-2 (IL-2)-Bax was designed to target and kill specific cell populations expressing the IL-2 receptor. However, it is not well understood how IL-2-Bax causes target cells to die. In the present study, we investigated the pathway of apoptosis evoked by IL-2-Bax and the possible involvement of endogenous Bax in this process. We report here that, upon internalization of IL-2-Bax into target cells, it is localized first mainly in the nucleus, and only later is it translocated to the mitochondria. Similarly, endogenous Bax is also partially localized in the nucleus, and accumulates mainly in this compartment soon after physiological triggering of apoptosis. Despite the fact that Bax has no nuclear localization sequence, our data suggest that Bax has one or more physiological roles and/or substrates within the nucleus. Indeed, a dramatic repression of nuclear Tax protein expression was induced following treatment of HUT-102 cells with IL-2-Bax, similar to what occurs following serum deprivation of these cells. Unexpectedly, induction of apoptosis using IL-2-Bax was preceded by enhanced expression of newly synthesized Bax protein and suppression of Bcl-2. This imbalance between the pro- and anti-apoptotic genes was associated with p53 induction, although IL-2-Bax activity was also evident in cells lacking p53 expression. By studying the mechanism of action of IL-2-Bax, we were able to follow the intrinsic events and their cascade that culminates in cell death. We have shown that the ability of IL-2-Bax to affect the intracellular apoptotic machinery within the target cells, and to cause the cells to die, uses a mechanism similar to that induced following a normal apoptotic signal. PMID:12405905

  7. A case of thyroid storm with a markedly elevated level of circulating soluble interleukin-2 receptor complicated by multiple organ failure and disseminated intravascular coagulation syndrome.

    PubMed

    Shimoda, Yoko; Satoh, Tetsurou; Takahashi, Hiroki; Katano-Toki, Akiko; Ozawa, Atsushi; Tomaru, Takuya; Horiguchi, Norio; Kaira, Kyoichi; Nishioka, Masaki; Shibusawa, Nobuyuki; Hashimoto, Koshi; Wakino, Shu; Mori, Masatomo; Yamada, Masanobu

    2014-01-01

    Thyroid storm (TS) is a life-threatening endocrine emergency. However, the pathogenesis of TS is poorly understood. A 40-year-old man was admitted to a nearby hospital with body weight loss and jaundice. Five days after a contrasted abdominal computerized tomography (CT) scan, he exhibited high fever and disturbance of consciousness. He was diagnosed with TS originating from untreated Graves' disease and was transferred to the intensive care unit (ICU) of our hospital. The patient exhibited impaired consciousness (E4V1M4 in Glasgow coma scale), high fever (39.3°C), and atrial flutter with a pulse rate 162/min, and was complicated by heart failure, acute hepatic failure, and disseminated intravascular coagulation syndrome (DIC). His circulating level of soluble interleukin-2 receptor (sIL-2R), a serum marker of an activated immune response, was highly elevated (7,416 U/mL, reference range: 135-483). Multiple organ failure (MOF) and DIC were successfully managed by multimodality treatments using inorganized iodide, glucocorticoids, anti-thyroid drugs, beta-blockers, and diuretics as well as an anticoagulant agent and the transfusion of platelet concentrate and fresh frozen plasma. sIL-2R levels gradually decreased during the initial treatment, but were still above the reference range even after thyroidectomy. Mild elevations in serum levels of sIL-2R have previously been correlated with thyroid hormone levels in non-storm Graves' disease. The present study demonstrated, for the first time, that circulating sIL-2R levels could be markedly elevated in TS. The marked increase in sIL-2R levels was speculated to represent an inappropriate generalized immune response that plays an unknown role in the pathogenesis of TS.

  8. Targeting Interleukin-2-inducible T-cell Kinase (ITK) and Resting Lymphocyte Kinase (RLK) Using a Novel Covalent Inhibitor PRN694

    PubMed Central

    Zhong, Yiming; Dong, Shuai; Strattan, Ethan; Ren, Li; Butchar, Jonathan P.; Thornton, Kelsey; Mishra, Anjali; Porcu, Pierluigi; Bradshaw, J. Michael; Bisconte, Angelina; Owens, Timothy D.; Verner, Erik; Brameld, Ken A.; Funk, Jens Oliver; Hill, Ronald J.; Johnson, Amy J.; Dubovsky, Jason A.

    2015-01-01

    Interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK or TXK) are essential mediators of intracellular signaling in both normal and neoplastic T-cells and natural killer (NK) cells. Thus, ITK and RLK inhibitors have therapeutic potential in a number of human autoimmune, inflammatory, and malignant diseases. Here we describe a novel ITK/RLK inhibitor, PRN694, which covalently binds to cysteine residues 442 of ITK and 350 of RLK and blocks kinase activity. Molecular modeling was utilized to design molecules that interact with cysteine while binding to the ATP binding site in the kinase domain. PRN694 exhibits extended target residence time on ITK and RLK and is highly selective for a subset of the TEC kinase family. In vitro cellular assays confirm that PRN694 prevents T-cell receptor- and Fc receptor-induced cellular and molecular activation, inhibits T-cell receptor-induced T-cell proliferation, and blocks proinflammatory cytokine release as well as activation of Th17 cells. Ex vivo assays demonstrate inhibitory activity against T-cell prolymphocytic leukemia cells, and in vivo assays demonstrate durable pharmacodynamic effects on ITK, which reduces an oxazolone-induced delayed type hypersensitivity reaction. These data indicate that PRN694 is a highly selective and potent covalent inhibitor of ITK and RLK, and its extended target residence time enables durable attenuation of effector cells in vitro and in vivo. The results from this study highlight potential applications of this dual inhibitor for the treatment of T-cell- or NK cell-mediated inflammatory, autoimmune, and malignant diseases. PMID:25593320

  9. Relationship between Serum Level of Interleukin-2 in Patients with Systemic Lupus Erythematosus and Disease Activity in Comparison with Control Group

    PubMed Central

    Aghaei, Mehrdad; Musavi, Sara; Nomali, Mahin

    2014-01-01

    Background: Despite the large number of surveys, there are not any validated biomarkers for SLE disease activity till now. This study aimed to evaluate the relationship between serum level of IL-2 in patients with SLE and disease activity in comparison with control group. Materials and Methods: In this case-control study, 73 patients with lupus and 73 healthy subjects referred to the rheumatology clinic of 5 Azar Hospital in Gorgan (North of Iran).They were studied via convenience sampling during 2011-2012. Blood samples were taken from both groups and serum levels of interleukin -2 measured by Avi Bion Human IL-2 ELISA kit. Serum Level of IL-2 greater than 15 pg/ml defined positive and lesser than this amount defined negative. Disease activity evaluated with SLE disease activity index. Score greater than or equal to three or four defined as active disease. Data analysis conducted by SPSS software (version 16) and by using descriptive statistics and statistical tests. Results: Serum level of IL-2 was positive in 45.2% of sample studied and negative in 54.8% in case group, while in control group, serum level of IL-2 only in 11% of sample studied was positive and in 89% was negative. Statistical analysis indicated a significant relationship between serum level of IL-2 and the SLE disease activity index (p=0.025). Conclusion: This study showed the relationship between serum levels of IL-2 and disease activity, so this biomarker can be used as a clinical indicator for assessing disease activity in patients with SLE. PMID:25177590

  10. T-independent and T-dependent B lymphoblasts: helper T cells prime for interleukin 2-induced growth and secretion of immunoglobulins that utilize downstream heavy chains.

    PubMed

    Forman, M S; Puré, E

    1991-03-01

    Resting B cells enlarge, enter the cell cycle, and change their surface phenotype when activated via the surface immunoglobulin (Ig) receptor, but subsequent cell growth and antibody production is relatively limited. To identify stimuli that might prime B cells for enhanced function in vitro, we have compared the effects of anti-Ig with helper T (Th) cells on the formation of B lymphoblasts and the subsequent ability of the blasts to grow and secrete Ig. The B blasts first were induced by either anti-Ig, anti-Ig plus T cell-derived lymphokines, or alloreactive T blasts. Each population of B blasts showed enhanced expression of cell surface adhesion molecules, interleukin 2 receptor (IL-2R) p55, and MHC products, as well as decreased expression of IgD. The allo-activated B blasts were distinctive in expressing low levels of Thy-1 and increased reactivity with peanut agglutinin, a marker of germinal center B blasts in situ. The function of the different populations of B blasts was also different. Whereas anti-Ig or anti-Ig plus lymphokines primed for enhanced responses to lipopolysaccharide (LPS), the B blasts induced by Th cells were insensitive to LPS. B lymphoblasts that had been activated in the presence of helper factors or Th cells responded vigorously to recombinant IL-2 with growth and Ig secretion, and this response was enhanced in the presence of anti-Ig. The B blasts activated directly by Th cells, but not by anti-Ig plus lymphokines, were primed to secrete high levels of IgG1 and IgA. Therefore, the phenotype and function of a B lymphoblast depends upon the manner in which it is primed. When primed by Th cells, IL-2 proves to be the predominant mediator of clonal expansion and antibody secretion.

  11. The Gfi-1 proto-oncoprotein contains a novel transcriptional repressor domain, SNAG, and inhibits G1 arrest induced by interleukin-2 withdrawal.

    PubMed Central

    Grimes, H L; Chan, T O; Zweidler-McKay, P A; Tong, B; Tsichlis, P N

    1996-01-01

    The Gfi-1 proto-oncogene is activated by provirus insertion in T-cell lymphoma lines selected for interleukin-2 (IL-2) independence in culture and in primary retrovirus-induced thymomas and encodes a nuclear, sequence-specific DNA-binding protein. Here we show that Gfi-1 is a position- and orientation-independent active transcriptional repressor, whose activity depends on a 20-amino-acid N-terminal repressor domain, coincident with a nuclear localization motif. The sequence of the Gfi-1 repressor domain is related to the sequence of the repressor domain of Gfi-1B, a Gfi-1-related protein, and to sequences at the N termini of the insulinoma-associated protein, IA-1, the homeobox protein Gsh-1, and the vertebrate but not the Drosophila members of the Snail-Slug protein family (Snail/Gfi-1, SNAG domain). Although not functionally characterized, these SNAG-related sequences are also likely to mediate transcriptional repression. Therefore, the Gfi-1 SNAG domain may be the prototype of a novel family of evolutionarily conserved repressor domains that operate in multiple cell lineages. Gfi-1 overexpression in IL-2-dependent T-cell lines allows the cells to escape from the G1 arrest induced by IL-2 withdrawal. Since a single point mutation in the SNAG domain (P2A) inhibits both the Gfi-1-mediated transcriptional repression and the G1 arrest induced by IL-2 starvation, we conclude that the latter depends on the repressor activity of the SNAG domain. Induction of Gfi-1 may therefore contribute to T-cell activation and tumor progression by repressing the expression of genes that inhibit cellular proliferation. PMID:8887656

  12. Acute and Chronic Hyperglycemia Elicit JIP1/JNK-Mediated Endothelial Vasodilator Dysfunction of Retinal Arterioles

    PubMed Central

    Hein, Travis W.; Xu, Wenjuan; Xu, Xin; Kuo, Lih

    2016-01-01

    Purpose Hyperglycemia, a hallmark of diabetes mellitus, is associated with retinal inflammation and impairment of endothelium-dependent nitric oxide (NO)–mediated dilation of retinal arterioles. However, molecular mechanisms involved in this diminished endothelial vasodilator function remain unclear. We examined whether inflammatory stress-activated kinases, c-Jun N-terminal kinase (JNK) and p38, contribute to retinal arteriolar dysfunction during exposure to acute and chronic hyperglycemia. Methods Retinal arterioles were isolated from streptozocin-induced diabetic pigs (2 weeks; chronic hyperglycemia, 471 ± 23 mg/dL) or age-matched control pigs (euglycemia, 79 ± 5 mg/dL), and then cannulated and pressurized for vasoreactivity study. For acute hyperglycemia study, vessels from nondiabetic pigs were exposed intraluminally to high glucose (25 mM ≈ 450 mg/dL) for 2 hours, and normal glucose (5 mM ≈ 90 mg/dL) served as the control. Results Endothelium-dependent vasodilation to bradykinin was reduced in a similar manner after exposure to acute or chronic hyperglycemia. Administration of NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) nearly abolished vasodilations either in control (euglycemia and normal glucose) or hyperglycemic (acute and chronic) vessels. Treatment of either acute or chronic hyperglycemic vessels with JNK inhibitor SP600125 or JNK-interacting protein-1 (JIP1) inhibitor BI-78D3, but not p38 inhibitor SB203580, preserved bradykinin-induced dilation in an L-NAME–sensitive manner. By contrast, endothelium-independent vasodilation to sodium nitroprusside was unaffected by acute or chronic hyperglycemia. Conclusions Activation of JIP1/JNK signaling in retinal arterioles during exposure to acute or chronic hyperglycemia leads to selective impairment of endothelium-dependent NO-mediated dilation. Therapeutic targeting of the vascular JNK pathway may improve retinal endothelial vasodilator function during early diabetes. PMID:27556216

  13. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis

    PubMed Central

    Konishi, Hiroaki; Fujiya, Mikihiro; Tanaka, Hiroki; Ueno, Nobuhiro; Moriichi, Kentaro; Sasajima, Junpei; Ikuta, Katsuya; Akutsu, Hiroaki; Tanabe, Hiroki; Kohgo, Yutaka

    2016-01-01

    Previous reports have suggested that some probiotics inhibit tumorigenesis and cancer progression. However, the molecules involved have not yet been identified. Here, we show that the culture supernatant of Lactobacillus casei ATCC334 has a strong tumour-suppressive effect on colon cancer cells. Using mass spectrometry, we identify ferrichrome as a tumour-suppressive molecule produced by L. casei ATCC334. The tumour-suppressive effect of ferrichrome is greater than that of cisplatin and 5-fluorouracil, and ferrichrome has less of an effect on non-cancerous intestinal cells than either of those agents. A transcriptome analysis reveals that ferrichrome treatment induces apoptosis, which is mediated by the activation of c-jun N-terminal kinase (JNK). Western blotting indicates that the induction of apoptosis by ferrichrome is reduced by the inhibition of the JNK signalling pathway. This we demonstrate that probiotic-derived ferrichrome exerts a tumour-suppressive effect via the JNK signalling pathway. PMID:27507542

  14. ROS activates JNK-mediated autophagy to counteract apoptosis in mouse mesenchymal stem cells in vitro

    PubMed Central

    Liu, Guan-yu; Jiang, Xiao-xue; Zhu, Xin; He, Wei-yang; Kuang, You-lin; Ren, Ke; Lin, Yong; Gou, Xin

    2015-01-01

    Aim: Transplantation of mesenchymal stem cells (MSCs) for the treatment of diabetic erectile dysfunction (ED) is hampered by apoptosis of the transplanted cells. In diabetic ED, there is increased oxidative stress and decreased NO in the corpora cavernosa, and reactive oxygen species (ROS) induce apoptosis of the transplanted cells. In this study we examined whether and how autophagy was involved in ROS-induced apoptosis of MSCs. Methods: Mouse C3H10 MSCs were treated with H2O2 to simulate the high oxidative condition in diabetic ED. Cell viability was measured using MTT assay. Apoptosis was analyzed by flow cytometry. Apoptosis- and autophagy-related proteins were detected with Western blot assays. Intracellular autophagosome accumulation was studied using transmission electron microscopy. Results: Treatment of MSCs with H2O2 (50–400 μmol/L) inhibited the cell viability in concentration- and time-dependent manners. Furthermore, H2O2 (300 μmol/L) induced apoptosis, as well as activated autophagy in MSCs. Pretreatment with lysosome inhibitor chloroquine (10 μmol/L) or PI3K inhibitor 3-methyladenine (5 mmol/L) significantly enhanced H2O2-induced cell death. Pretreatment with JNK inhibitor SP600125 (10 μmol/L) abrogated H2O2-induced accumulation of LC3-II, and attenuated H2O2-induced reduction of Bcl-2 levels in MSCs. Conclusion: ROS induce autophagy to counteract apoptosis in MSCs by activation of JNK. Thus, augmentation of autophagy may reduce apoptosis, prolonging MSC survival and improving MSC-based therapeutic efficacy for diabetic ED. PMID:26592514

  15. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells

    PubMed Central

    Ramphul, Urvashi N.; Garver, Lindsey S.; Molina-Cruz, Alvaro; Canepa, Gaspar E.; Barillas-Mury, Carolina

    2015-01-01

    The malaria parasite, Plasmodium, must survive and develop in the mosquito vector to be successfully transmitted to a new host. The Plasmodium falciparum Pfs47 gene is critical for malaria transmission. Parasites that express Pfs47 (NF54 WT) evade mosquito immunity and survive, whereas Pfs47 knockouts (KO) are efficiently eliminated by the complement-like system. Two alternative approaches were used to investigate the mechanism of action of Pfs47 on immune evasion. First, we examined whether Pfs47 affected signal transduction pathways mediating mosquito immune responses, and show that the Jun-N-terminal kinase (JNK) pathway is a key mediator of Anopheles gambiae antiplasmodial responses to P. falciparum infection and that Pfs47 disrupts JNK signaling. Second, we used microarrays to compare the global transcriptional responses of A. gambiae midguts to infection with WT and KO parasites. The presence of Pfs47 results in broad and profound changes in gene expression in response to infection that are already evident 12 h postfeeding, but become most prominent at 26 h postfeeding, the time when ookinetes invade the mosquito midgut. Silencing of 15 differentially expressed candidate genes identified caspase-S2 as a key effector of Plasmodium elimination in parasites lacking Pfs47. We provide experimental evidence that JNK pathway regulates activation of caspases in Plasmodium-invaded midgut cells, and that caspase activation is required to trigger midgut epithelial nitration. Pfs47 alters the cell death pathway of invaded midgut cells by disrupting JNK signaling and prevents the activation of several caspases, resulting in an ineffective nitration response that makes the parasite undetectable by the mosquito complement-like system. PMID:25552553

  16. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis.

    PubMed

    Konishi, Hiroaki; Fujiya, Mikihiro; Tanaka, Hiroki; Ueno, Nobuhiro; Moriichi, Kentaro; Sasajima, Junpei; Ikuta, Katsuya; Akutsu, Hiroaki; Tanabe, Hiroki; Kohgo, Yutaka

    2016-01-01

    Previous reports have suggested that some probiotics inhibit tumorigenesis and cancer progression. However, the molecules involved have not yet been identified. Here, we show that the culture supernatant of Lactobacillus casei ATCC334 has a strong tumour-suppressive effect on colon cancer cells. Using mass spectrometry, we identify ferrichrome as a tumour-suppressive molecule produced by L. casei ATCC334. The tumour-suppressive effect of ferrichrome is greater than that of cisplatin and 5-fluorouracil, and ferrichrome has less of an effect on non-cancerous intestinal cells than either of those agents. A transcriptome analysis reveals that ferrichrome treatment induces apoptosis, which is mediated by the activation of c-jun N-terminal kinase (JNK). Western blotting indicates that the induction of apoptosis by ferrichrome is reduced by the inhibition of the JNK signalling pathway. This we demonstrate that probiotic-derived ferrichrome exerts a tumour-suppressive effect via the JNK signalling pathway. PMID:27507542

  17. Progression of natural immunity during one-year treatment of residual disease in neuroblastoma patients with high doses of interleukin-2 after autologous bone marrow transplantation.

    PubMed

    Martí, F; Pardo, N; Peiró, M; Bertran, E; Amill, B; García, J; Cubells, J; Rueda, F

    1995-12-01

    The aim of this work was to monitor the functional and phenotypic variations of natural killer (NK) cells in seven children with stage IV neuroblastoma (NB) treated with recurrent 5-day cycles of interleukin-2 (IL-2) at a dose of 18 x 10(6) IU/m2/d by continuous intravenous infusion. All patients who entered the study had no detectable disease after hematologic recovery from intensive chemotherapy and autologous bone marrow transplantation (ABMT). To evaluate the effect of this treatment on tumor relapse, IL-2 immunotherapy was adjusted to maintain levels of NK activity above those of age-matched controls (threshold of 40 lytic units [LU]/10(9) mononuclear cells) during a 1-year period since hematologic recovery of ABMT. The levels of NK and endogenous lymphokine-activated killer (eLAK) cell cytotoxic activities, as well as phenotype-differentiated lymphocyte counts, were determined from patients' freshly isolated peripheral blood mononuclear cells (MNC). Data were analyzed at different points between each cycle of IL-2, and before and 36 hours after each infusion. NK and eLAK activities significantly increased in response to IL-2. Both cytotoxic parameters correlated with the serum levels of the soluble IL-2 receptor (sIL-2R). IL-2 increased the amounts of NK and T cell subsets but not of B cells. The effects of IL-2 were time-dependent. Early cycles of IL-2 preferentially increased cell numbers, especially of cells bearing a CD3-/CD16-/CD56+bright and CD8+dim phenotype. Conversely, late courses promoted higher cytotoxic effects but with a smaller increase in NK and T cell counts; the main NK subset became CD16+, and CD8+dim cells remained a minor subset. It is worthy to note that the patient who relapsed after completing immunotherapy showed only a slight increase of the NK subset in response to IL-2. These results show the feasibility of sustaining an increased NK activity during 1 year after ABMT in children with advanced neuroblastoma and suggest the

  18. Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein

    PubMed Central

    Bäckström, B Thomas; Brockelbank, Jane A; Rehm, Bernd HA

    2007-01-01

    Background Fluorescence activated cell sorting (FACS) is a powerful technique for the qualitative and quantitative detection of biomolecules used widely in both basic research and clinical diagnostic applications. Beads displaying a specific antigen are used to bind antibodies which are then fluorescently labelled using secondary antibodies. As the individual suspension bead passes through the sensing region of the FACS machine, fluorescent signals are acquired and analysed. Currently, antigens are tediously purified and chemically cross-linked to preformed beads. Purification and coupling of proteins often renders them inactive and they will not be displayed in its native configuration. As an alternative, we genetically engineered Escherichia coli to produce biopolyester (polyhdroxyalkanoate=PHA) granules displaying diagnostically relevant antigens in their native conformation and suitable for FACS analysis. Results Hybrid genes were constructed, which encode either the mouse interleukin-2 (IL2) or the myelin oligodendrocyte glycoprotein (MOG) fused via an enterokinase site providing linker region to the C terminus of the PHA granule associated protein PhaP, respectively. The hybrid genes were expressed in PHA-accumulating recombinant E. coli. MOG and IL2 fusion proteins were abundantly attached to PHA granules and were identified by MALDI-TOF/MS analysis and N terminal sequencing. A more abundant second fusion protein of either MOG or IL2 resulted from an additional N terminal fusion, which did surprisingly not interfere with attachment to PHA granule. PHA granules displaying either IL2 or MOG were used for FACS using monoclonal anti-IL2 or anti-MOG antibodies conjugated to a fluorescent dye. FACS analysis showed significant and specific binding of respective antibodies. Enterokinase treatment of IL2 displaying PHA granules enabled removal of IL2 as monitored by FACS analysis. Mice were immunized with either MOG or OVA (ovalbumin) and the respective sera were

  19. N-Farnesyloxy-norcantharimide inhibits progression of human leukemic Jurkat T cells through regulation of mitogen-activated protein kinase and interleukin-2 production

    PubMed Central

    Chang, Ming-Che; Wu, Jin-Yi; Liao, Hui-Fen; Chen, Yu-Jen

    2015-01-01

    This study investigated the anticancer effects of N-farnesyloxy-norcantharimide (NOC15), a newly synthesized norcantharidin (NCTD) analogue, on human leukemic Jurkat T cells and the signaling pathway underlying its effects. We found that the half maximal inhibitory concentration (IC50) of NOC15 on Jurkat T cells is 1.4 μmol/l, which is 11.14-fold (=15.6÷1.4) smaller than the 15.6 μmol/l of NCTD on Jurkat T cells, whereas the IC50 of NOC15 on human normal lymphoblast (HNL) is 207.9 μmol/l, which is 8.17-fold (=1698.0÷207.8) smaller than the 1698.0 μmol/l of NCTD on HNL cells. These results indicated that NOC15 exerts a higher anticancer effect on Jurkat T cells and has higher toxicity toward HNL cells than NCTD. Thus, NOC15 is 1.36-fold (=11.14÷8.17) beneficial as an anticancer agent toward Jurkat T cells compared with NCTD. Moreover, NOC15 can increase the percentage of cells in the sub-G1 phase and reduce the cell viability of Jurkat T cells, stimulate p38 and extracellular signal-regulated protein kinase 1/2 (ERK1/2) of mitogen-activated protein kinases (MAPKs) signaling pathway, and inhibit calcineurin expression and interleukin-2 (IL-2) production. However, NOC15 exerted no effects on the Jun-N-terminal kinase 1/2 (JNK1/2) signaling pathway, the production of IL-8, and tumor necrosis factor-α. We conclude that the anticancer activity of the newly synthesized NOC15 is 1.36-fold beneficial than NCTD as an anticancer agent and that NOC15 can increase the percentage of cells in the sub-G1 phase through the stimulation of p38 and ERK1/2 of the MAPK signaling pathway and the inhibition of calcineurin expression and IL-2 production. The NOC15 may have the potential of being developed into an anticancer agent in the future. PMID:26288134

  20. Enhancement of therapeutic effects of recombinant interleukin 2 on a transplantable rat fibrosarcoma by the use of a sustained release vehicle, pluronic gel.

    PubMed

    Morikawa, K; Okada, F; Hosokawa, M; Kobayashi, H

    1987-01-01

    We have tested the feasibility of pluronic F-127 gel (PLF-127; a polyoxyethylene-polyoxypropylene surface active block copolymer) as a sustained release vehicle for topical administration of interleukin 2 (IL-2) in order to enhance the therapeutic effects of IL-2 against a rat fibrosarcoma, KMT-17. Injection of human DNA recombinant IL-2 (3 X 10(4) units s.c.) in 30% (w/w) PLF-127 into rats provided detectable serum IL-2 levels for up to 10 h, while injection of IL-2 alone provided detectable IL-2 levels for 3 h. When, following s.c. inoculation with 1 X 10(5) KMT-17 tumor cells into rats, IL-2 (6 X 10(4) units/day) in PLF-127 gels was injected s.c. around the growing tumor inoculum every 2 days for 10 days from Day 1 to Day 19, the survival days of rats were more prolonged [mean survival day, 32.3 +/- 5.4 (SD)] as compared with that of rats treated with saline [20.7 +/- 2.1] than mean survival days of rats treated with IL-2 alone [27.3 +/- 4.5] or PLF-127 alone [22.9 +/- 3.3]. Moreover, the span of mean survival days of rats treated with IL-2 in PLF-127 locally (31.7 +/- 5.9) was much longer than that of rats given IL-2 in PLF-127 systemically (22.8 +/- 3.4). By means of a Winn assay, stronger tumor neutralizing activities were observed in regional lymph node cells obtained from tumor bearing rats treated with IL-2 in PLF-127 than were observed in lymph node cells from rats treated with IL-2 alone or PLF-127 alone (percentage of inhibition, 90.3, 12.2, and -15.5%, respectively). The therapeutic effects of IL-2 were thus found to be consistent with the antitumor activity in regional lymph node cells. These results suggest that the enhanced therapeutic effects of IL-2 in PLF-127 are due to enhancement of antitumor immune responses induced by sustained IL-2 activity at the tumor sites. PMID:3491675

  1. Prognostic Relevance of Cytokine Receptor Expression in Acute Myeloid Leukemia: Interleukin-2 Receptor α-Chain (CD25) Expression Predicts a Poor Prognosis.

    PubMed

    Nakase, Kazunori; Kita, Kenkichi; Kyo, Taiichi; Ueda, Takanori; Tanaka, Isao; Katayama, Naoyuki

    2015-01-01

    A variety of cytokine/cytokine receptor systems affect the biological behavior of acute leukemia cells. However, little is known about the clinical relevance of cytokine receptor expression in acute myeloid leukemia (AML). We quantitatively examined the expression of interleukin-2 receptor α-chain (IL-2Rα, also known as CD25), IL-2Rβ, IL-3Rα, IL-4Rα, IL-5Rα, IL-6Rα, IL-7Rα, the common β-chain (βc), γc, granulocyte-macrophage colony-stimulating factor (GM-CSF)Rα, G-CSFR, c-fms, c-mpl, c-kit, FLT3, and GP130 in leukemia cells from 767 adult patients with AML by flow cytometry and determined their prevalence and clinical significance. All cytokine receptors examined were expressed at varying levels, whereas the levels of IL-3Rα, GM-CSFRα, IL-2Rα, γc, c-kit, and G-CSFR exhibited a wide spectrum of ≥10,000 sites/cell. In terms of their French-American-British classification types, GM-CSFRα and c-fms were preferentially expressed in M4/M5 patients, G-CSF in M3 patients, and IL-2Rα in non-M3 patients. Elevated levels of IL-3Rα, GM-CSFRα, and IL-2Rα correlated with leukocytosis. In patients ≤60 years old, higher levels of these 3 receptors correlated with poor responses to conventional chemotherapy, but only IL-2Rα was associated with a shorter overall survival. By incorporating IL-2Rα status into cytogenetic risk stratification, we could sort out a significantly adverse-risk cohort from the cytogenetically intermediate-risk group. Analyses with various phenotypical risk markers revealed the expression of IL-2Rα as an independent prognostic indicator in patients with intermediate-risk cytogenetics. These findings were not observed in patients >60 years old. Our results indicate that several cytokine receptors were associated with certain cellular and clinical features, but IL-2Rα alone had prognostic value that provides an additional marker to improve current risk evaluation in AML patients ≤60 years old. PMID:26375984

  2. Interleukin-21 Is a Critical Regulator of CD4 and CD8 T Cell Survival during Priming under Interleukin-2 Deprivation Conditions

    PubMed Central

    Khattar, Mithun; Miyahara, Yoshihiro; Schroder, Paul M.; Xie, Aini; Chen, Wenhao; Stepkowski, Stanislaw M.

    2014-01-01

    Optimal T cell activation and expansion require binding of the common gamma-chain (γc) cytokine Interleukin-2 (IL-2) to its cognate receptor that in turn engages a γc/Janus tyrosine kinase (Jak)3 signaling pathway. Because of its restricted expression by antigen-activated T cells and its obligatory role in promoting their survival and proliferation, IL-2 has been considered as a selective therapeutic target for preventing T cell mediated diseases. However, in order to further explore IL-2 targeted therapy, it is critical to precisely understand its role during early events of T cell activation. In this study, we delineate the role of IL-2 and other γc cytokines in promoting the survival of CD4 and CD8 T cells during early phases of priming. Under IL-2 inhibitory conditions (by neutralizing anti-IL-2 mAbs), the survival of activated CD8+ T cells was reduced, whereas CD4+ T cells remained much more resistant. These results correlated with reduced Bcl-2 expression, and mitochondrial membrane potential in CD8+ T cells in comparison to CD4+ T cells. However, using transwell co-culture assays we have found that CD4+ T cells could rescue the survival of CD8+ T cells even under IL-2 deprived conditions via secretion of soluble factors. A cytokine screen performed on CD8+ T cells cultured alone revealed that IL-21, another γc cytokine, was capable of rescuing their survival under IL-2 deprivation. Indeed, blocking the IL-21 signaling pathway along with IL-2 neutralization resulted in significantly reduced survival of both CD4+ and CD8+ T cells. Taken together, we have shown that under IL-2 deprivation conditions, IL-21 may act as the major survival factor promoting T cell immune responses. Thus, investigation of IL-2 targeted therapies may need to be revisited to consider blockade of the IL-21 signaling pathways as an adjunct to provide more effective control of T cell immune responses. PMID:24416451

  3. Local expression of tumor necrosis factor alpha and interleukin-2 correlates with protection against corneal scarring after ocular challenge of vaccinated mice with herpes simplex virus type 1.

    PubMed Central

    Ghiasi, H; Wechsler, S L; Kaiwar, R; Nesburn, A B; Hofman, F M

    1995-01-01

    To correlate specific local immune responses with protection from corneal scarring, we examined immune cell infiltrates in the cornea after ocular challenge of vaccinated mice with herpes simplex virus type 1 (HSV-1). This is the first report to examine corneal infiltrates following ocular challenge of a vaccinated mouse rather than following infection of a naive mouse. Mice were vaccinated systemically with vaccines that following ocular challenge with HSV-1 resulted in (i) complete protection against corneal disease (KOS, an avirulent strain of HSV-1); (ii) partial protection, resulting in moderate corneal disease (baculovirus-expressed HSV-1 glycoprotein E [gE]); and (iii) no protection, resulting in severe corneal disease (mock vaccine). Infiltration into the cornea of CD4+ T cells, CD8+ T cells, macrophages, and cells containing various lymphokines was monitored on days 0, 1, 3, 7, and 10 postchallenge by immunocytochemistry of corneal sections. Prior to ocular challenge, no eye disease or corneal infiltrates were detected in any mice. KOS-vaccinated mice developed high HSV-1 neutralizing antibody titers (> 1:640) in serum. After ocular challenge, they were completely protected against death, developed no corneal disease, and had no detectable virus in their tear films at any time examined. In response to the ocular challenge, these mice developed high local levels of infiltrating CD4+ T cells and cells containing interleukin-2 (IL-2), IL-4, IL-6, or tumor necrosis factor alpha (TNF-alpha). In contrast, only low levels of infiltrating CD8+ T cells were found, and gamma interferon (IFN-gamma)-containing cells were not present until day 10. gE-vaccinated mice developed neutralizing antibody titers in serum almost as high as those of the KOS-vaccinated mice (> 1:320). After ocular challenge, they were also completely protected against death. However, the gE-vaccinated mice developed low levels of corneal disease and virus was detected in one-third of their eyes

  4. Lack of correlation between rejection of tumor cells co-expressing interleukin-2 and B7.1 and vaccine efficiency.

    PubMed

    Cayeux, S; Richter, G; Becker, C; Beck, C; Aicher, A; Pezzutto, A; Dörken, B; Blankenstein, T

    1997-07-01

    Genetically modifying tumor cells to express a variety of cytokines such as interleukin-2 (IL-2) or the co-stimulatory molecule B7.1 leads to increased immunogenicity and reduced tumorigenicity of tumors in several models with T cells involved in the process. We have previously reported decreased tumorigenicity of the murine plasmacytoma J558L [major histocompatibility complex (MHC) class I+ and class II-] expressing IL-2 or B7.1. When systemic immunity was analyzed, immunization with either J558-IL2 or J558-B7.1 cells generated moderate protection against unmodified J558L tumor cells, comparable to immunization with a tumor cells/adjuvant Corynebacterium parvum mixture. In this study, we asked whether the co-expression of IL-2 and B7.1 in tumor cells would augment vaccine potency, cytotoxic T lymphocyte (CTL) activity and protective immunity. Rejection of single IL-2 or B7.1 or co-transfected IL-2/B7.1 cells occurred in most syngeneic animals but not in T cell-deficient nude mice, thus confirming that T cells were required for tumor rejection. We knew from previous experiments that CD8+ T cells were responsible for rejection. Surprisingly, immunization with J558-IL2/B7.1 cells followed by challenge with parental J558L caused a reduction in systemic protection as compared to J558-B7.1 or J558-IL2 alone. We examined the mechanism underlying this unexpected result: 6 days after injection of J558-IL2/B7.1 cells, tumor were nearly completely destroyed and were almost devoid of CD8+ cells, while CD8+ cells were increased in both IL-2- and B7.1-transfected tumors. In addition, immunization with J558-IL2/B7.1 tumors had an adverse effect on the generation of CTL. Mice immunized with J558-B7.1 and to a lesser extent J558-IL2 cells mounted a CTL response against J558L cells while, in contrast, no CTL activity could be detected in mice immunized with J558-IL2/B7.1, thus showing a correlation between the absence of CTL activity and the lack of in vivo protection. We

  5. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  6. The role of interleukin-6 in mitogenic T-cell activation: detection of interleukin-2 heteronuclear RNA by polymerase chain reaction.

    PubMed

    Walz, G; Stevens, C; Zanker, B; Melton, L B; Clark, S C; Suthanthiran, M; Strom, T B

    1991-05-01

    It has been documented that interleukin-6 (IL-6) supports the proliferation of purified, anti-CD3-stimulated murine T cells. We found that stimulation of human peripheral blood mononuclear cells (PBMCs) with anti-CD3 induced a significant accumulation of IL-6 mRNA, indicating that antigen-mediated T-cell activation may involve IL-6 release from accessory cells. Phytohemagglutinin (PHA) had little effect upon IL-6 gene expression. In keeping with these findings, anti-IL-6 reduced but did not abolish anti-CD3-mediated proliferation of PBMCs, but had no significant effect upon PHA-stimulated proliferation. The addition of recombinant (r) IL-6 enhanced the proliferation of anti-CD3-stimulated PBMCs and increased the accumulation of IL-2 mRNA in PHA-stimulated PBMCs during the first 5 hr of culture. Nuclear run-off experiments did not reveal significant changes in IL-2 transcription in PHA plus rIL-6-treated PBMCs attempting to assume that IL-6 mediates stabilization of IL-2 mRNA. However, monitoring of partially spliced IL-2 mRNA by polymerase chain reaction revealed a clear increase in IL-2 heteronuclear RNA. Thus IL-6 increases the rate of IL-2 transcription which was not detectable by conventional in vitro transcription assays. We conclude that anti-CD3 triggers T-cell proliferation through a process that is partially but not entirely dependent upon release of IL-6. IL-6, in turn, supports IL-2 transcription. Insofar as anti-CD3 mimics antigen-triggered activation of the T-cell receptor complex, IL-6 appears to support the early immune response by augmenting antigen-triggered IL-2 gene expression. PMID:1827050

  7. Regulatory T Cell Responses in Participants with Type 1 Diabetes after a Single Dose of Interleukin-2: A Non-Randomised, Open Label, Adaptive Dose-Finding Trial

    PubMed Central

    Todd, John A.; Porter, Linsey; Smyth, Deborah J.; Rainbow, Daniel B.; Ferreira, Ricardo C.; Yang, Jennie H.; Bell, Charles J. M.; Schuilenburg, Helen; Challis, Ben; Clarke, Pamela; Coleman, Gillian; Dawson, Sarah; Goymer, Donna; Kennet, Jane; Brown, Judy; Greatorex, Jane; Goodfellow, Ian; Evans, Mark; Mander, Adrian P.; Bond, Simon; Wicker, Linda S.

    2016-01-01

    Background Interleukin-2 (IL-2) has an essential role in the expansion and function of CD4+ regulatory T cells (Tregs). Tregs reduce tissue damage by limiting the immune response following infection and regulate autoreactive CD4+ effector T cells (Teffs) to prevent autoimmune diseases, such as type 1 diabetes (T1D). Genetic susceptibility to T1D causes alterations in the IL-2 pathway, a finding that supports Tregs as a cellular therapeutic target. Aldesleukin (Proleukin; recombinant human IL-2), which is administered at high doses to activate the immune system in cancer immunotherapy, is now being repositioned to treat inflammatory and autoimmune disorders at lower doses by targeting Tregs. Methods and Findings To define the aldesleukin dose response for Tregs and to find doses that increase Tregs physiologically for treatment of T1D, a statistical and systematic approach was taken by analysing the pharmacokinetics and pharmacodynamics of single doses of subcutaneous aldesleukin in the Adaptive Study of IL-2 Dose on Regulatory T Cells in Type 1 Diabetes (DILT1D), a single centre, non-randomised, open label, adaptive dose-finding trial with 40 adult participants with recently diagnosed T1D. The primary endpoint was the maximum percentage increase in Tregs (defined as CD3+CD4+CD25highCD127low) from the baseline frequency in each participant measured over the 7 d following treatment. There was an initial learning phase with five pairs of participants, each pair receiving one of five pre-assigned single doses from 0.04 × 106 to 1.5 × 106 IU/m2, in order to model the dose-response curve. Results from each participant were then incorporated into interim statistical modelling to target the two doses most likely to induce 10% and 20% increases in Treg frequencies. Primary analysis of the evaluable population (n = 39) found that the optimal doses of aldesleukin to induce 10% and 20% increases in Tregs were 0.101 × 106 IU/m2 (standard error [SE] = 0.078, 95% CI = −0

  8. Biomaterials for mRNA Delivery

    PubMed Central

    Islam, Mohammad Ariful; Reesor, Emma K. G.; Xu, Yingjie; Zope, Harshal R.; Zetter, Bruce R.; Shi, Jinjun

    2015-01-01

    Messenger RNA (mRNA) has recently emerged with remarkable potential as an effective alternative to DNA-based therapies because of several unique advantages. mRNA does not require nuclear entry for transfection activity and has a negligible chance of integrating into the host genome which excludes the possibility of potentially detrimental genomic alternations. Chemical modification of mRNA has further enhanced its stability and decreased its activation of innate immune responses. Additionally, mRNA has been found to have rapid expression and predictable kinetics. Nevertheless, the ubiquitous application of mRNA remains challenging given its unfavorable attributes, such as large size, negative charge and susceptibility to enzymatic degradation. Further refinement of mRNA delivery modalities is therefore essential for its development as a therapeutic tool. This review provides an exclusive overview of current state-of-the-art biomaterials and nanotechnology platforms for mRNA delivery, and discusses future prospects to bring these exciting technologies into clinical practice. PMID:26280625

  9. Biomaterials for mRNA delivery.

    PubMed

    Islam, Mohammad Ariful; Reesor, Emma K G; Xu, Yingjie; Zope, Harshal R; Zetter, Bruce R; Shi, Jinjun

    2015-12-01

    Messenger RNA (mRNA) has recently emerged with remarkable potential as an effective alternative to DNA-based therapies because of several unique advantages. mRNA does not require nuclear entry for transfection activity and has a negligible chance of integrating into the host genome which excludes the possibility of potentially detrimental genomic alternations. Chemical modification of mRNA has further enhanced its stability and decreased its activation of innate immune responses. Additionally, mRNA has been found to have rapid expression and predictable kinetics. Nevertheless, the ubiquitous application of mRNA remains challenging given its unfavorable attributes, such as large size, negative charge and susceptibility to enzymatic degradation. Further refinement of mRNA delivery modalities is therefore essential for its development as a therapeutic tool. This review provides an exclusive overview of current state-of-the-art biomaterials and nanotechnology platforms for mRNA delivery, and discusses future prospects to bring these exciting technologies into clinical practice. PMID:26280625

  10. Inhibition of leukocyte function and interleukin-2 gene expression by 2-methylarachidonyl-(2'-fluoroethyl)amide, a stable congener of the endogenous cannabinoid receptor ligand anandamide

    SciTech Connect

    Kaplan, Barbara L.F.; Ouyang Yanli; Herring, Amy; Yea, Sung Su; Razdan, Raj; Kaminski, Norbert E. . E-mail: kamins11@msu.edu

    2005-06-01

    Arachidonylethanolamide (anandamide, AEA) has been identified as an endogenous ligand for cannabinoid receptors CB1 and CB2. Characterization of the direct cannabimimetic actions of anandamide has been hampered by its short duration of action and rapid degradation in in vivo and in vitro systems to arachidonic acid, a precursor in the biosynthesis of a broad range of biologically active molecules. In the present studies, we utilized 2-methylarachidonyl-(2'-fluoroethyl)amide (F-Me-AEA), an analog of anandamide resistant to enzymatic degradation, to determine whether F-Me-AEA modulated T cell function similar to that of plant-derived cannabinoids. Indeed, F-Me-AEA at low micromolar concentrations exhibited a marked inhibition of phorbol ester plus calcium ionophore (PMA/Io)-induced IL-2 protein secretion and steady state mRNA expression. Likewise, a modest suppression of the mixed lymphocyte response was observed in the presence of F-Me-AEA indicating an alteration in T cell responsiveness to allogeneic MHC class II antigens. F-Me-AEA was also found to modestly inhibit forskolin-stimulated adenylate cyclase activity in thymocytes and splenocytes, a hallmark of cannabinoid receptor agonists. Further characterization of the influence of F-Me-AEA on the cAMP signaling cascade revealed an inhibition of CREB-1/ATF-1 phosphorylation and subsequently, an inhibition of CRE DNA binding activity. Characterization of nuclear binding proteins further revealed that NF-AT and, to a lesser extent, NF-{kappa}B DNA binding activities were also suppressed. These studies demonstrate that F-Me-AEA modulates T cell function in a similar manner to plant-derived and endogenous cannabinoids and therefore can be utilized as an amidase- and hydrolysis-resistant endogenous cannabinoid.

  11. Two unique mutations in the interleukin-2 receptor gamma chain gene (IL2RG) cause X-linked severe combined immunodeficiency arising in opposite parental germ lines

    SciTech Connect

    Puck, J.M.; Pepper, A.E.

    1994-09-01

    The gene encoding the gamma chain of the lymphocyte receptor for IL-2 lies in human X13.1 and is mutated in males with X-linked severe combined immunodeficiency (SCID). 27 X-linked SCID mutations have been found in our laboratory. Single strand conformation polymorphism (SSCP) analysis of genomic DNA using primers flanking each of the 8 exons was followed by direct sequencing of abnormally migrating fragments from SCID patients and family members. A 9 bp in-frame duplication insertion was found in IL2RG exon 5 of a patient from a large X-linked SCID pedigree; the resulting duplication of 3 extracellular amino acids, including the first tryptophan of the {open_quotes}WSXWS{close_quotes} cytokine binding motif, is predicted to disrupt interaction of the cytokine receptor chain with its ligand. Genetic linkage studies demonstrated that the grandmaternal X chromosome associated with SCID was contributed to 3 daughters, 2 obligate carriers and 1 woman of unknown status. However, this grandmother`s genomic DNA did not contain the insertion mutation, nor did she have skewed X-chromosome inactivation in her lymphocytes. That both obligate carrier daughters, but not the third daughter, had the insertion proved the grandmother to be a germline mosaic. A second proband had X-linked SCID with a branch point mutation due to substitution of T for A 15 bp 5{prime} of the start of IL2RG exon 3. This mutation resulted in undetectable IL2RG mRNA by Northern blot. Linkage analysis and sequencing of IL2RG DNA in this family proved the mutation to have originated in the germline of the proband`s grandfather, an immunocompetent individual who contributed an X chromosome with normal IL2RG to one daughter and a mutated X to the another.

  12. The cascading, interrelated roles of interleukin-1, interleukin-2, and interleukin-6 in murine anti-CD3-driven T cell proliferation.

    PubMed

    Pankewycz, O G; Yui, M; Kelley, V E; Strom, T B

    1990-04-01

    T cell stimulation occurs following interaction of T cell receptor (TcR) with processed antigen presented by autologous accessory cells (AC). The effects of antigen stimulation on T cells are mimicked by monoclonal antibodies (Mabs) defining proteins of the TcR-CD3 complex. In this study, we examine the roles of T cell density, AC density, divalent and polyvalent forms of anti-CD3 Mab, and the cytokines interleukin (IL)-1, IL-2, and IL-6 in T cell activation and proliferation. Stringently AC-depleted T cells do not proliferate in response to Con A or divalent anti-CD3; however, polyvalent anti-CD3 provides a powerful signal for isolated resting T cell proliferation. Recombinant (r)IL-2 strongly amplifies T cell proliferation in response to anti-CD3, whereas rIL-1 exerts no direct effects on anti-CD3-stimulated T cells. In the presence of AC, however, rIL-1 augments T cell proliferation to anti-CD3. Recombinant IL-6 promotes T cell proliferation among T cells stimulated with polyvalent but not divalent anti-CD3. As deduced by Northern blot analysis, rIL-1 increases cytoplasmic levels of IL-6 mRNA in AC. Recombinant IL-6, in turn, amplifies the accumulation of stable IL-2 transcripts in purified T cells stimulated with polyvalent anti-CD3. Hence, IL-1, IL-6, and IL-2 support T cell proliferation through cascading effects at the level of gene transcription. The cytokines evaluated in this study, however, do not fully reconstitute AC functions in promoting anti-CD3 Mab T cell proliferation. PMID:2137741

  13. NMR characterization of interleukin-2 in complexes with the IL-2Rα receptor component, and with low molecular weight compounds that inhibit the IL-2/IL-Rα interaction

    PubMed Central

    Emerson, S. Donald; Palermo, Robert; Liu, Chao-Min; Tilley, Jefferson W.; Chen, Li; Danho, Waleed; Madison, Vincent S.; Greeley, David N.; Ju, Grace; Fry, David C.

    2003-01-01

    Nuclear magnetic resonance (NMR) methods were employed to study the interaction of the cytokine Interleukin-2 (IL-2) with the α-subunit of its receptor (IL-2Rα), and to help understand the behavior of small molecule inhibitors of this interaction. Heteronuclear 1H-15N HSQC experiments were used to identify the interaction surface of 15N-enriched Interleukin-2 (15N-IL-2) in complex with human IL-2Rα. In these experiments, chemical shift and line width changes in the heteronuclear single-quantum coherence (HSQC) spectra upon binding of 15N-IL-2 enabled classification of NH atoms as either near to, or far from, the IL-2Rα interaction surface. These data were complemented by hydrogen/deuterium (H/D) exchange measurements, which illustrated enhanced protection of slowly-exchanging IL-2 NH protons near the site of interaction with IL-2Rα. The interaction surface defined by NMR compared well with the IL-2Rα binding site identified previously using mutagenesis of human and murine IL-2. Two low molecular weight inhibitors of the IL-2/IL-2Rα interaction were studied: one (a cyclic peptide derivative) was found to mimic a part of the cytokine and bind to IL-2Rα; the other (an acylphenylalanine derivative) was found to bind to IL-2. For the interaction between IL-2 and the acylphenylalanine, chemical shift perturbations of 15N and 15NH backbone resonances were tracked as a function of ligand concentration. The perturbation pattern observed for this complex revealed that the acylphenylalanine is a competitive inhibitor—it binds to the same site on IL-2 that interacts with IL-2Rα. PMID:12649439

  14. Coupling mRNA Synthesis and Decay

    PubMed Central

    Braun, Katherine A.

    2014-01-01

    What has been will be again, what has been done will be done again; there is nothing new under the sun.—Ecclesiastes 1:9 (New International Version) Posttranscriptional regulation of gene expression has an important role in defining the phenotypic characteristics of an organism. Well-defined steps in mRNA metabolism that occur in the nucleus—capping, splicing, and polyadenylation—are mechanistically linked to the process of transcription. Recent evidence suggests another link between RNA polymerase II (Pol II) and a posttranscriptional process that occurs in the cytoplasm—mRNA decay. This conclusion appears to represent a conundrum. How could mRNA synthesis in the nucleus and mRNA decay in the cytoplasm be mechanistically linked? After a brief overview of mRNA processing, we will review the recent evidence for transcription-coupled mRNA decay and the possible involvement of Snf1, the Saccharomyces cerevisiae ortholog of AMP-activated protein kinase, in this process. PMID:25154419

  15. Self-amplifying mRNA vaccines.

    PubMed

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization.

  16. Self-amplifying mRNA vaccines.

    PubMed

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. PMID:25620012

  17. Sensitivity of mRNA Translation

    PubMed Central

    Poker, Gilad; Margaliot, Michael; Tuller, Tamir

    2015-01-01

    Using the dynamic mean-field approximation of the totally asymmetric simple exclusion process (TASEP), we investigate the effect of small changes in the initiation, elongation, and termination rates along the mRNA strand on the steady-state protein translation rate. We show that the sensitivity of mRNA translation is equal to the sensitivity of the maximal eigenvalue of a symmetric, nonnegative, tridiagonal, and irreducible matrix. This leads to new analytical results as well as efficient numerical schemes that are applicable for large-scale models. Our results show that in the usual endogenous case, when initiation is more rate-limiting than elongation, the sensitivity of the translation rate to small mutations rapidly increases towards the 5′ end of the ORF. When the initiation rate is high, as may be the case for highly expressed and/or heterologous optimized genes, the maximal sensitivity is with respect to the elongation rates at the middle of the mRNA strand. We also show that the maximal possible effect of a small increase/decrease in any of the rates along the mRNA is an increase/decrease of the same magnitude in the translation rate. These results are in agreement with previous molecular evolutionary and synthetic biology experimental studies. PMID:26238363

  18. Cytokine mRNA quantification in duodenal mucosa from dogs with chronic enteropathies by real-time reverse transcriptase polymerase chain reaction.

    PubMed

    Peters, Iain R; Helps, Chris R; Calvert, Emma L; Hall, Edward J; Day, Michael J

    2005-01-01

    The pathogenesis of inflammatory bowel disease (IBD) and antibiotic-responsive diarrhea (ARD) in dogs likely involves an interaction between the intestinal immune system and luminal bacterial or food antigens. German Shepherd Dogs (GSD) are particularly predisposed to both IBD and ARD. CD4+ T cells are important for the regulation of immune responses in the mucosa, and they exert their effects through the secretion of cytokines. The present study examined the role of cytokines in the pathogenesis of canine chronic enteropathies by quantification of mRNA encoding interleukin-2 (IL-2), IL-4, IL-5, IL-6, IL-10, IL-12, IL-18, interferon gamma, tumor necrosis factor-alpha, transforming growth factor-beta, and glyceraldehyde-3-phosphate dehydrogenase by real-time reverse transcriptase polymerase chain reaction in duodenal mucosal biopsies obtained from 39 dogs with chronic diarrhea and 18 control dogs. Contemporaneously collected biopsies were assessed for histologic changes with a 4-point grading system. No significant difference in the expression of cytokine mRNA (P > .01) was detected between dogs with and those without chronic diarrhea. Similarly, no significant differences in cytokine mRNA expression were observed between GSD and other breeds with chronic diarrhea, or between histologically normal duodenal mucosa and that with evidence of inflammatory change. Failure to detect a difference in mRNA expression does not rule out the possibility of a defect downstream at the level of translation or protein function. No conclusion can be drawn from these data as to the predominant CD4+ cell type in the pathogenesis of these canine chronic enteropathies.

  19. Mechanism of Cytoplasmic mRNA Translation

    PubMed Central

    2015-01-01

    Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings. PMID:26019692

  20. In vitro activation of T lymphocytes from human immunodeficiency virus (HIV)-seropositive blood donors. I. Soluble interleukin 2 receptor (IL2R) production parallels cellular IL2R expression and DNA synthesis.

    PubMed

    Prince, H E; Kleinman, S H; Maino, V C; Jackson, A L

    1988-03-01

    We investigated the relationship of soluble interleukin 2 receptor (sIL2R) production to cellular IL2R expression and DNA synthesis by mitogen-stimulated mononuclear cells from blood donors seropositive for human immunodeficiency virus (HIV). SIL2R was measured using an enzyme-linked immunosorbent assay which employed 2 anti-IL2R monoclonal antibodies recognizing distinct IL2R epitopes. Decreased phytohemagglutinin-induced DNA synthesis and cellular IL2R expression were accompanied by decreased levels of sIL2R in cell culture supernatants. Similar findings were observed for pokeweed mitogen-induced responses. There was no detectable spontaneous secretion of sIL2R into culture supernatants by unstimulated mononuclear cells from either HIV-seropositive or control seronegative donors. These findings indicate that the in vitro T-cell activation defects which characterize HIV infection include decreased sIL2R production, as well as decreased cellular IL2R expression and DNA synthesis. Further, they show that assessment of supernatant sIL2R levels can be used as a valid, reliable assay for T-cell activation.

  1. Interleukin 2 Induces CD8^+ T Cell-Mediated Suppression of Human Immunodeficiency Virus Replication in CD4^+ T Cells and This Effect Overrides Its Ability to Stimulate Virus Expression

    NASA Astrophysics Data System (ADS)

    Kinter, Audrey L.; Bende, Steven M.; Hardy, Elena C.; Jackson, Robert; Fauci, Anthony S.

    1995-11-01

    The nonlytic suppression of human immunodeficiency virus (HIV) production from infected CD4^+ T cells by CD8^+ lymphocytes from HIV-infected individuals is one of the most potent host-mediated antiviral activities observed in vitro. We demonstrate that the pleiotropic cytokine interleukin 2 (IL-2), but not IL-12, is a potent inducer of the CD8^+ HIV suppressor phenomenon. IL-2 induces HIV expression in peripheral blood or lymph node mononuclear cells from HIV-infected individuals in the absence of CD8^+ T cells. However, IL-2 induces CD8^+ T cells to suppress HIV expression when added back to these cultures, and this effect dramatically supersedes the ability of IL-2 to induce HIV expression. Five to 25 times fewer CD8^+ cells were required to obtain comparable levels of inhibition of viral production if they were activated in the presence of IL-2 as compared with IL-12 or no exogenous cytokine. Furthermore, IL-2 appeared either to induce a qualitative increase in HIV suppressor cell activity or to increase the relative frequency of suppressor cells in the activated (CD25^+) CD8^+ populations. Analyses of proviral levels in peripheral blood mononuclear cells suggest that CD8^+ T cell-mediated lysis of in vivo infected cells is not induced by IL-2. These results have implications for our understanding of the effects of impaired IL-2 production during HIV disease as well as the overall effects of IL-2-based immunotherapy on HIV replication in vivo.

  2. The human T-cell leukemia/lymphotropic virus type 1 p12I proteins bind the interleukin-2 receptor beta and gammac chains and affects their expression on the cell surface.

    PubMed Central

    Mulloy, J C; Crownley, R W; Fullen, J; Leonard, W J; Franchini, G

    1996-01-01

    p12I is a small hydrophobic protein encoded by the human T-cell leukemia/lymphotropic virus type 1 (HTLV-1) that interacts with the 16-kDa component of the H+ vacuolar ATPase and cooperates with bovine papillomavirus 1 E5 oncoprotein in cell transformation. Just as an important step in E5 action appears to be its binding to the platelet-derived growth factor receptor, it was found that p12I binds specifically to both the beta and gamma(c) chains of the interleukin-2 receptor (IL-2R). The IL-2R beta and gamma(c) chains associated with p12I are endoglycosidase-H sensitive, suggesting that their interaction occurs in a pre-Golgi compartment. p12I stabilizes the immature forms of the IL-2R beta and gamma(c) chains and decreases their cell surface expression. The interactions of p12I with IL-2R beta and gamma(c) may have important implications in the immunosuppressive effect of HTLV-1 in vivo as well as in the ligand-independent HTLV-1-mediated T-cell proliferation. PMID:8648694

  3. Peripheral blood lymphocytes of patients with common variable immunodeficiency (CVI) produce reduced levels of interleukin-4, interleukin-2 and interferon-gamma, but proliferate normally upon activation by mitogens.

    PubMed Central

    Pastorelli, G; Roncarolo, M G; Touraine, J L; Peronne, G; Tovo, P A; de Vries, J E

    1989-01-01

    Peripheral blood lymphocytes (PBL) of 11 patients with CVI produced reduced levels of interleukin-4 (IL-4) upon activation by mitogens as compared with those secreted by PBL of healthy donors. The interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) production by PBL of a series of 15 patients with CVI was also reduced. Decreased levels of IL-4 or IL-2 and IFN-gamma production were not only observed after activation by phytohaemagglutinin (PHA) at concentrations of 10 and 1 micrograms/ml, but also after activation by concanavalin A (Con A, 10 micrograms/ml). Longitudinal studies indicated that this defective lymphokine production was consistent upon testing periods up to 5 months. No correlation between reduced IL-4, IL-2 or IFN-gamma production was observed. PBL of patients that produced reduced levels of one lymphokine generally secreted normal levels of the other two lymphokines. Despite the reduced synthesis of the T cell growth factors IL-2 and IL-4, the proliferative responses of the PBL of the patients were in the normal range, which is compatible with the finding that IL-2 and IL-4 have synergistic effects on lymphocyte proliferation, particularly when one of these lymphokines is present at suboptimal concentrations. Since IL-2, IL-4 and IFN-gamma can act as B cell growth and differentiation factors, our data suggest that the reduced synthesis of these lymphokines may contribute to the deficient immunoglobulin production in patients with CVI. PMID:2515013

  4. Tumor necrosis factor alpha induces proteins that bind specifically to kappa B-like enhancer elements and regulate interleukin 2 receptor alpha-chain gene expression in primary human T lymphocytes.

    PubMed Central

    Lowenthal, J W; Ballard, D W; Böhnlein, E; Greene, W C

    1989-01-01

    We have investigated the biochemical basis for the activation of interleukin 2 receptor alpha-subunit (IL-2R alpha) gene expression in primary human T lymphocytes by a cytokine (tumor necrosis factor alpha), a T-cell mitogen (phorbol 12-myristate 13-acetate), and the transactivator protein (Tax) from the type I human T-cell leukemia virus. Using in vivo transfection techniques specificially designed for these primary T cells in conjunction with in vitro gel retardation and DNA footprinting assays, we found that activation of the IL-2R alpha promoter by each of these agents involves the induction of nuclear proteins that specifically interact with a kappa B-like enhancer element (i.e., an element resembling the immunoglobulin kappa-chain enhancer sequence recognized by transcription factor NF-kappa B). DNA-protein crosslinking studies revealed that primary T cells express at least three different inducible DNA-binding proteins (50-55, 70-75, and 80-90 kDa) that specifically interact with this IL-2R alpha kappa B element. Images PMID:2494663

  5. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy.

    PubMed

    Külshammer, Eva; Mundorf, Juliane; Kilinc, Merve; Frommolt, Peter; Wagle, Prerana; Uhlirova, Mirka

    2015-10-01

    Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs) that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (Ras(V12)) and loss of the tumor suppressor Scribble (scrib(1)). We show that malignant transformation of the ras(V12)scrib(1) tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK). Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to ras(V12)scrib(1) tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1) upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in ras(V12)scrib(1) tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with Ras(V12) in inducing malignant clones that, like ras(V12)scrib(1) tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8). While ras(V12)ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In conclusion, our study delineates both unique and overlapping functions of distinct TFs that cooperatively promote aberrant expression of target genes, leading to malignant tumor phenotypes.

  6. Methotrexate Promotes Platelet Apoptosis via JNK-Mediated Mitochondrial Damage: Alleviation by N-Acetylcysteine and N-Acetylcysteine Amide

    PubMed Central

    Paul, Manoj; Hemshekhar, Mahadevappa; Thushara, Ram M.; Sundaram, Mahalingam S.; NaveenKumar, Somanathapura K.; Naveen, Shivanna; Devaraja, Sannaningaiah; Somyajit, Kumar; West, Robert; Basappa; Nayaka, Siddaiah C.; Zakai, Uzma I.; Nagaraju, Ganesh; Rangappa, Kanchugarakoppal S.; Kemparaju, Kempaiah; Girish, Kesturu S.

    2015-01-01

    Thrombocytopenia in methotrexate (MTX)-treated cancer and rheumatoid arthritis (RA) patients connotes the interference of MTX with platelets. Hence, it seemed appealing to appraise the effect of MTX on platelets. Thereby, the mechanism of action of MTX on platelets was dissected. MTX (10 μM) induced activation of pro-apoptotic proteins Bid, Bax and Bad through JNK phosphorylation leading to ΔΨm dissipation, cytochrome c release and caspase activation, culminating in apoptosis. The use of specific inhibitor for JNK abrogates the MTX-induced activation of pro-apoptotic proteins and downstream events confirming JNK phosphorylation by MTX as a key event. We also demonstrate that platelet mitochondria as prime sources of ROS which plays a central role in MTX-induced apoptosis. Further, MTX induces oxidative stress by altering the levels of ROS and glutathione cycle. In parallel, the clinically approved thiol antioxidant N-acetylcysteine (NAC) and its derivative N-acetylcysteine amide (NACA) proficiently alleviate MTX-induced platelet apoptosis and oxidative damage. These findings underpin the dearth of research on interference of therapeutic drugs with platelets, despite their importance in human health and disease. Therefore, the use of antioxidants as supplementary therapy seems to be a safe bet in pathologies associated with altered platelet functions. PMID:26083398

  7. Berberine Protects Human Umbilical Vein Endothelial Cells against LPS-Induced Apoptosis by Blocking JNK-Mediated Signaling

    PubMed Central

    Guo, Junping; Wang, Lijun; Wang, Linyao; Qian, Senmi; Fang, Jie

    2016-01-01

    Endothelial dysfunction is a critical factor during the initiation of atherosclerosis. Berberine has a beneficial effect on endothelial function; however, the underlying mechanisms remain unclear. In this study, we investigated the effects of berberine on lipopolysaccharide- (LPS-) induced apoptosis in human umbilical vein endothelial cells (HUVECs) and the molecular mechanisms mediating the effect. The effects of berberine on LPS-induced cell apoptosis and viability were measured with 5-ethynyl-2′-deoxyuridine staining, flow cytometry, and Cell Counting Kit-8 assays. The expression and/or activation of proapoptotic and antiapoptotic proteins or signaling pathways, including caspase-3, poly(ADP-ribose) polymerase, myeloid cell leukemia-1 (MCL-1), p38 mitogen-activated protein kinase, C-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase, were determined with western blotting. The malondialdehyde levels, superoxide dismutase (SOD) activity, and production of proinflammatory cytokines were measured with enzyme-linked immunosorbent assays. The results demonstrated that berberine pretreatment protected HUVECs from LPS-induced apoptosis, attenuated LPS-induced injury, inhibited LPS-induced JNK phosphorylation, increased MCL-1 expression and SOD activity, and decreased proinflammatory cytokine production. The effects of berberine on LPS-treated HUVECs were prevented by SP600125, a JNK-specific inhibitor. Thus, berberine might be a potential candidate in the treatment of endothelial cell injury-related vascular diseases. PMID:27478481

  8. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy

    PubMed Central

    Külshammer, Eva; Mundorf, Juliane; Kilinc, Merve; Frommolt, Peter; Wagle, Prerana; Uhlirova, Mirka

    2015-01-01

    ABSTRACT Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs) that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (RasV12) and loss of the tumor suppressor Scribble (scrib1). We show that malignant transformation of the rasV12scrib1 tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK). Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to rasV12scrib1 tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1) upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in rasV12scrib1 tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with RasV12 in inducing malignant clones that, like rasV12scrib1 tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8). While rasV12ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In conclusion, our study delineates both unique and overlapping functions of distinct TFs that cooperatively promote aberrant expression of target genes, leading to malignant tumor phenotypes. PMID:26398940

  9. Inhibition of JNK-mediated autophagy enhances NSCLC cell sensitivity to mTORC1/2 inhibitors

    PubMed Central

    Jin, Hyeon-Ok; Hong, Sung-Eun; Park, Jin-Ah; Chang, Yoon Hwan; Hong, Young Jun; Park, In-Chul; Lee, Jin Kyung

    2016-01-01

    As the activation of autophagy contributes to the efficacy of many anticancer therapies, deciphering the precise role of autophagy in cancer therapy is critical. Here, we report that the dual mTORC1/2 inhibitors PP242 and OSI-027 decreased cell viability but did not induce apoptosis in the non-small cell lung cancer (NSCLC) cell lines H460 and A549. PP242 induced autophagy in NSCLC cells as demonstrated by the formation of massive vacuoles and acidic vesicular organelles and the accumulation of LC3-II. JNK was activated by PP242, and PP242-induced autophagy was blocked by inhibiting JNK pathway with SP600125 or JNK siRNA, suggesting that JNK activation is required for the mTORC1/2 inhibitor-mediated induction of autophagy in NSCLC cells. Inhibiting JNK or autophagy increased the sensitivity of H460 cells to mTORC1/2 inhibitors, indicating that JNK or autophagy promoted survival in NSCLC cells treated with mTORC1/2 inhibitors. Together, these data suggest that combining mTORC1/2 inhibitors with inhibitors of JNK or autophagy might be an effective approach for improving therapeutic outcomes in NSCLC. PMID:27358039

  10. Quercetin sensitizes pancreatic cancer cells to TRAIL-induced apoptosis through JNK-mediated cFLIP turnover.

    PubMed

    Kim, Ji Hye; Kim, Min Joo; Choi, Kyung-Chul; Son, Jaekyoung

    2016-09-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that can selectively kill cancer cells. Nonetheless, many cancers are resistant to TRAIL, and the molecular mechanisms of TRAIL resistance in cancer, particularly pancreatic cancer, are still unclear. In this study, we tested the hypothesis that quercetin, a flavonoid, induces apoptosis in TRAIL-resistant pancreatic cancer cells. Although quercetin alone had no significant cytotoxic effect, when combined with TRAIL, it promoted TRAIL-induced apoptosis that required mitochondrial outer membrane permeabilization. A BH3-only protein BID knockdown dramatically attenuated TRAIL/quercetin-induced apoptosis. The expression levels of cellular FLICE-like inhibitory protein (cFLIP) decreased in a dose-dependent manner in the presence of quercetin, and overexpression of cFLIP was able to robustly rescue pancreatic cancer cells from TRAIL/quercetin-induced apoptosis. Additionally, quercetin activated c-Jun N-terminal kinase (JNK) in a dose-dependent manner, which in turn induced the proteasomal degradation of cFLIP, and JNK activation also sensitized pancreatic cancer cells to TRAIL-induced apoptosis. Thus, our results suggest that quercetin induces TRAIL-induced apoptosis via JNK activation-mediated cFLIP turnover. PMID:27477310

  11. Berberine Protects Human Umbilical Vein Endothelial Cells against LPS-Induced Apoptosis by Blocking JNK-Mediated Signaling.

    PubMed

    Guo, Junping; Wang, Lijun; Wang, Linyao; Qian, Senmi; Zhang, Dayong; Fang, Jie; Pan, Jianping

    2016-01-01

    Endothelial dysfunction is a critical factor during the initiation of atherosclerosis. Berberine has a beneficial effect on endothelial function; however, the underlying mechanisms remain unclear. In this study, we investigated the effects of berberine on lipopolysaccharide- (LPS-) induced apoptosis in human umbilical vein endothelial cells (HUVECs) and the molecular mechanisms mediating the effect. The effects of berberine on LPS-induced cell apoptosis and viability were measured with 5-ethynyl-2'-deoxyuridine staining, flow cytometry, and Cell Counting Kit-8 assays. The expression and/or activation of proapoptotic and antiapoptotic proteins or signaling pathways, including caspase-3, poly(ADP-ribose) polymerase, myeloid cell leukemia-1 (MCL-1), p38 mitogen-activated protein kinase, C-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase, were determined with western blotting. The malondialdehyde levels, superoxide dismutase (SOD) activity, and production of proinflammatory cytokines were measured with enzyme-linked immunosorbent assays. The results demonstrated that berberine pretreatment protected HUVECs from LPS-induced apoptosis, attenuated LPS-induced injury, inhibited LPS-induced JNK phosphorylation, increased MCL-1 expression and SOD activity, and decreased proinflammatory cytokine production. The effects of berberine on LPS-treated HUVECs were prevented by SP600125, a JNK-specific inhibitor. Thus, berberine might be a potential candidate in the treatment of endothelial cell injury-related vascular diseases. PMID:27478481

  12. [Adoptive immunotherapy with interleukin 2 in oncology].

    PubMed

    Favrot, M; Bouffet, E; Négrier, S; Combaret, V; Philip, I; Philip, T

    1990-01-01

    Forty-seven patients with renal carcinoma were included in first line or rescue protocols of immunotherapy including IL2 alone or in association with LAK cells, INF alpha or TNF. The toxicity was mild and the mortality was 2% (1 patient). The response rate was 26%. Nineteen children with neuroblastoma received IL2 either alone or in combination with LAK cells. The morbidity and mortality were higher in patients with end stage disease who had previously received high dose and prolonged chemotherapy. In contrast, the toxicity was mild and transient in patients treated in the months following autologous bone marrow transplantation. The only complete response observed was in 1 child treated with IL2, 4 months after high dose chemotherapy and ABMT. Immunological analysis showed that the immunomodulatory effect of IL2 is very different depending on whether IL2 is used alone or in combination with other cytokines; moreover, the biological effect of IL2 is dependent on the immunological status of the patients prior to IL2 therapy.

  13. Priming of tumor-specific T cells in the draining lymph nodes after immunization with interleukin 2-secreting tumor cells: three consecutive stages may be required for successful tumor vaccination.

    PubMed Central

    Maass, G; Schmidt, W; Berger, M; Schilcher, F; Koszik, F; Schneeberger, A; Stingl, G; Birnstiel, M L; Schweighoffer, T

    1995-01-01

    Although both CD4+ and CD8+ T cells are clearly required to generate long-lasting anti-tumor immunity induced by s.c. vaccination with interleukin 2 (IL-2)-transfected, irradiated M-3 clone murine melanoma cells, some controversy continues about the site and mode of T-cell activation in this system. Macrophages, granulocytes, and natural killer cells infiltrate the vaccination site early after injection into either syngeneic euthymic DBA/2 mice or athymic nude mice and eliminate the inoculum within 48 hr. We could not find T cells at the vaccination site, which argues against the concept that T-cell priming by the IL-2-secreting cancer cells occurs directly at that location. However, reverse transcription-PCR revealed transcripts indicative of T-cell activation and expansion in the draining lymph nodes of mice immunized with the IL-2-secreting vaccine but not in mice vaccinated with untransfected, irradiated M-3 cells. We therefore propose that the antigen-presenting cells, which invade the vaccination site, process tumor-derived antigens and, subsequently, initiate priming of tumor-specific T lymphocytes in lymphoid organs. These findings suggest a three-stage process for the generation of effector T cells after vaccination with IL-2-secreting tumor cells: (i) tumor-antigen uptake and processing at the site of injection by antigen-presenting cells, (ii) migration of antigen-presenting cells into the regional draining lymph nodes, where T-cell priming occurs, and (iii) circulation of activated T cells that either perform or initiate effector mechanisms leading to tumor cell destruction. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:7777545

  14. Low-Dose Interleukin-2 Immunotherapy Does Not Improve Outcome of Patients Age 60 Years and Older With Acute Myeloid Leukemia in First Complete Remission: Cancer and Leukemia Group B Study 9720

    PubMed Central

    Baer, Maria R.; George, Stephen L.; Caligiuri, Michael A.; Sanford, Ben L.; Bothun, Sandra M.; Mrózek, Krzysztof; Kolitz, Jonathan E.; Powell, Bayard L.; Moore, Joseph O.; Stone, Richard M.; Anastasi, John; Bloomfield, Clara D.; Larson, Richard A.

    2008-01-01

    Purpose Cancer and Leukemia Group B (CALGB) 9720 evaluated subcutaneous low-dose recombinant interleukin-2 (rIL-2) maintenance immunotherapy as a strategy for prolonging remission in older patients with acute myeloid leukemia (AML). Patients and Methods AML patients age 60 years and older in first complete remission after induction and consolidation chemotherapy were randomly assigned to no further therapy or a 90-day regimen of 14-day cycles of low-dose rIL-2, aimed at expanding natural killer (NK) cells, followed by 3-day higher doses aimed at activating cytotoxicity of expanded NK cells to lyse residual AML cells. All randomly assigned patients were included in an intention-to-treat analysis. Results A total of 163 (64%) of 254 patients who completed induction and consolidation chemotherapy on CALGB 9720 were randomly assigned to rIL-2 (n = 81) or no further therapy (n = 82); the most common reasons for lack of random assignment were patient refusal and relapse. Fifteen patients randomly assigned to rIL-2 never initiated it because of refusal, intercurrent medical problems, or relapse, and 24 patients initiated rIL-2 but stopped early because of toxicity or relapse. Grade 4 toxicities during rIL-2 therapy included thrombocytopenia (65%) and neutropenia (64%), and grade 3 toxicities included anemia (33%), infection (24%) and malaise/fatigue (14%). Forty-two patients (52%) randomly assigned to rIL-2 completed the full 90-day course. Patients in both arms had similar distributions of both disease-free (combined median = 6.1 months; P = .47) and overall survival (combined median = 14.7 months; P = .61) after random assignment. Moreover, the 42 patients who completed all planned therapy did not show prolongation of disease-free or overall survival. Conclusion Low-dose rIL-2 maintenance immunotherapy is not a successful strategy in older AML patients. PMID:18591543

  15. Adjuvant treatment with interleukin-2- and interferon-alpha2a-based chemoimmunotherapy in renal cell carcinoma post tumour nephrectomy: Results of a prospectively randomised Trial of the German Cooperative Renal Carcinoma Chemoimmunotherapy Group (DGCIN)

    PubMed Central

    Atzpodien, J; Schmitt, E; Gertenbach, U; Fornara, P; Heynemann, H; Maskow, A; Ecke, M; Wöltjen, H H; Jentsch, H; Wieland, W; Wandert, T; Reitz, M

    2005-01-01

    We conducted a prospectively randomised clinical trial to investigate the role of adjuvant outpatient immunochemotherapy administered postoperatively in high-risk patients with renal cell carcinoma. In total, 203 renal carcinoma patients' status post radical tumour nephrectomy were stratified into three risk groups: patients with tumour extending into renal vein/vena cava or invading beyond Gerota's fascia (pT3b/c pN0 or pT4pN0), patients with locoregional lymph node infiltration (pN+), and patients after complete resection of tumour relapse or solitary metastasis (R0). Patients were randomised to undergo either (A) 8 weeks of outpatient subcutaneous interleukin-2 (sc-rIL-2), subcutaneous interferon-alpha2a (sc-rIFN-α2a), and intravenous 5-fluorouracil (iv-5-FU) according to the standard Atzpodien regimen (Atzpodien et al, 2004) or (B) observation. Two-, 5-, and 8-year survival rates were 81, 58, and 58% in the treatment arm, and 91, 76, and 66% in the observation arm (log rank P=0.0278), with a median follow-up of 4.3 years. Two, 5-, and 8-year relapse-free survival rates were calculated at 54, 42, and 39% in the treatment arm, and at 62, 49, and 49% in the observation arm (log rank P=0.2398). Stage-adapted subanalyses revealed no survival advantages of treatment over observation, as well. Our results established that there was no relapse-free survival benefit and the overall survival was inferior with an adjuvant 8-week-outpatient sc-rIL-2/sc-rIFN-α2a/iv-5-FU-based immunochemotherapy compared to observation in high-risk renal cell carcinoma patients following radical tumour nephrectomy. PMID:15756254

  16. Preassembly of interleukin 2 (IL-2) receptor subunits on resting Kit 225 K6 T cells and their modulation by IL-2, IL-7, and IL-15: a fluorescence resonance energy transfer study.

    PubMed

    Damjanovich, S; Bene, L; Matkó, J; Alileche, A; Goldman, C K; Sharrow, S; Waldmann, T A

    1997-11-25

    Assembly and mutual proximities of alpha, beta, and gamma(c) subunits of the interleukin 2 receptors (IL-2R) in plasma membranes of Kit 225 K6 T lymphoma cells were investigated by fluorescence resonance energy transfer (FRET) using fluorescein isothiocyanate- and Cy3-conjugated monoclonal antibodies (mAbs) that were directed against the IL-2R alpha, IL-2R beta, and gamma(c) subunits of IL-2R. The cell-surface distribution of subunits was analyzed at the nanometer scale (2-10 nm) by FRET on a cell-by-cell basis. The cells were probed in resting phase and after coculture with saturating concentrations of IL-2, IL-7, and IL-15. FRET data from donor- and acceptor-labeled IL-2R beta-alpha, gamma-alpha, and gamma-beta pairs demonstrated close proximity of all subunits to each other in the plasma membrane of resting T cells. These mutual proximities do not appear to represent mAb-induced microaggregation, because FRET measurements with Fab fragments of the mAbs gave similar results. The relative proximities were meaningfully modulated by binding of IL-2, IL-7, and IL-15. Based on FRET analysis the topology of the three subunits at the surface of resting cells can be best described by a "triangular model" in the absence of added interleukins. IL-2 strengthens the bridges between the subunits, making the triangle more compact. IL-7 and IL-15 act in the opposite direction by opening the triangle possibly because they associate their private specific alpha receptors with the beta and/or gamma(c) subunits of the IL-2R complex. These data suggest that IL-2R subunits are already colocalized in resting T cells and do not require cytokine-induced redistribution. This colocalization is significantly modulated by binding of relevant interleukins in a cytokine-specific manner.

  17. Molecular cloning of gp42, a cell-surface molecule that is selectively induced on rat natural killer cells by interleukin 2: glycolipid membrane anchoring and capacity for transmembrane signaling

    PubMed Central

    1991-01-01

    We have previously shown that in vitro culture of rat natural killer (NK) cells in high concentrations of recombinant interleukin 2 (rIL-2) leads to the expression of a surface glycoprotein with a molecular mass of approximately 42 kD. This glycoprotein, gp42, is not induced on other lymphocytes and thus provides a lineage-specific marker for rIL-2- activated NK cells. We here present the nucleotide sequence for gp42 cDNA. The open reading frame encodes 233 amino acids with three potential sites for N-linked glycosylation. The deduced amino acid sequence lacks an apparent transmembrane domain and instead contains a hydrophobic COOH terminus that is characteristic of glycosylphosphatidylinositol (GPI)-anchored surface proteins. Consistent with this, gp42 is cleaved from the NK-like cell line, RNK- 16, by phosphatidylinositol-specific phospholipase C (PI-PLC), as is gp42 expressed on CHO cells that have been transformed with gp42 cDNA. On rIL-2-activated NK cells, gp42 is resistant to PI-PLC, though our studies suggest that gp42 on these cells is still expressed as a GPI- anchored molecule. Antibody to gp42 stimulates in RNK-16 cells an increase in inositol phosphates and in intracellular calciu, signals that are associated with the activation of lymphocytes, including NK cells. rIL-2-activated NK cells, however, lack this response to gp42 as well as to other stimuli. Thus, gp42, the only NK-specific activation antigen, is a GPI-anchored surface molecule with the capacity to stimulate transmembrane signaling. PMID:1845873

  18. Messenger RNA (mRNA) nanoparticle tumour vaccination

    NASA Astrophysics Data System (ADS)

    Phua, Kyle K. L.; Nair, Smita K.; Leong, Kam W.

    2014-06-01

    Use of mRNA-based vaccines for tumour immunotherapy has gained increasing attention in recent years. A growing number of studies applying nanomedicine concepts to mRNA tumour vaccination show that the mRNA delivered in nanoparticle format can generate a more robust immune response. Advances in the past decade have deepened our understanding of gene delivery barriers, mRNA's biological stability and immunological properties, and support the notion for engineering innovations tailored towards a more efficient mRNA nanoparticle vaccine delivery system. In this review we will first examine the suitability of mRNA for engineering manipulations, followed by discussion of a model framework that highlights the barriers to a robust anti-tumour immunity mediated by mRNA encapsulated in nanoparticles. Finally, by consolidating existing literature on mRNA nanoparticle tumour vaccination within the context of this framework, we aim to identify bottlenecks that can be addressed by future nanoengineering research.

  19. Human peripheral blood CD4+ and CD8+ T cells express Th1-like cytokine mRNA and proteins following in vitro stimulation with heat-inactivated Brucella abortus.

    PubMed Central

    Zaitseva, M B; Golding, H; Betts, M; Yamauchi, A; Bloom, E T; Butler, L E; Stevan, L; Golding, B

    1995-01-01

    Defining the pattern of lymphokine production associated with Brucella abortus is critical for advancing the development of B. abortus as a vaccine carrier. In the present study we investigated the ability of heat-inactivated B. abortus or lipopolysaccharide from B. abortus to induce lymphokine production from purified human T cells in vitro. Gamma interferon (IFN-gamma), interleukin-2 (IL-2), IL-4, and IL-5 induction was assayed by mRNA-specific PCR and by enzyme-linked immunosorbent assay and bioassay for protein production. Following depletion of monocytes and B cells, B. abortus increased IFN-gamma and IL-2 mRNA expression in purified T cells compared with expression in unstimulated cells. In contrast, no IL-5 mRNA expression and only transient low-level IL-4 mRNA expression and no IL-4 protein secretion were detected. Phytohemagglutinin or phorbol myristate acetate plus ionomycin induced mRNA and protein for all these cytokines. Similar results were obtained with LPS purified from B. abortus. Removal of NK cells did not reduce lymphokine production, and enriched NK cells did not express IFN-gamma mRNA or secrete IFN-gamma protein in response to B. abortus, indicating that NK cells were not the responding population. Both CD4+ and CD8+ populations produced IFN-gamma and IL-2 in response to B. abortus. Preincubation of resting T cells with B. abortus or LPS from B. abortus for 7 days induced their differentiation into Th1-like cells as judged by their subsequent lymphokine response to phorbol myristate acetate plus ionomycin. These results suggest that B. abortus can induce differentiation of Th0 into Th1-type cells. PMID:7790090

  20. Recent innovations in mRNA vaccines.

    PubMed

    Ulmer, Jeffrey B; Geall, Andrew J

    2016-08-01

    Nucleic acid-based vaccines are being developed as a means to combine the positive attributes of both live-attenuated and subunit vaccines. Viral vectors and plasmid DNA vaccines have been extensively evaluated in human clinical trials and have been shown to be safe and immunogenic, although none have yet been licensed for human use. Recently, mRNA based vaccines have emerged as an alternative approach. They promise the flexibility of plasmid DNA vaccines, without the need for electroporation, but with enhanced immunogenicity and safety. In addition, they avoid the limitations of anti-vector immunity seen with viral vectors, and can be dosed repeatedly. This review highlights the key papers published over the past few years and summarizes prospects for the near future.

  1. Augmentation of cell number and LAK activity in peripheral blood mononuclear cells activated with anti-CD3 and interleukin-2. Preliminary results in children with acute lymphocytic leukemia and neuroblastoma.

    PubMed

    Anderson, P M; Bach, F H; Ochoa, A C

    1988-01-01

    A wide variety of human cancers currently have no effective treatment and are potential targets for lymphokine-activated killer (LAK) cellular immunotherapy. Relapsed acute lymphocytic leukemia (ALL) and neuroblastoma are two of the major therapeutic challenges in pediatric oncology today. However, one problem which makes LAK immunotherapy in children particularly difficult is obtaining the large numbers of cells required. Present adult therapeutic LAK protocols have utilized short-term (5 day) cultures of interleukin-2 (IL2)-activated cells which are initially obtained from leukopheresis. Since routine use of this procedure in small children is not practical, we have investigated a different approach to obtain increased cell numbers by activation of peripheral blood mononuclear cells with OKT3, a mitogenic anti-CD3 monoclonal antibody, and IL2. Cell growth and LAK activity in OKT3 + IL2-activated cultures were compared to cultures activated with IL2 alone in 2 children with relapsed ALL and 2 children with stage IV neuroblastoma. OKT3 + IL2-activated cultures had marked increases in cell number: after 14 days the OKT3 + IL2-activated cultures yielded an approximately 500-fold increase in cell number compared to a 7-fold increase for cultures activated with IL2 alone. In vitro 51Cr release assays were used to estimate LAK activity of the cultures at 7 and 14 days. When tested against HL60, a natural killer (NK)-resistant tumor cell line, not only were total cytolytic units greatly increased in OKT3 + IL2-stimulated cultures by lytic activity on a per cell basis (lytic units/1 x 10(6) cells) had also markedly increased on day 14 of culture. Phenotypic analysis demonstrated that 80% to 90% of cells in OKT3 + IL2-stimulated cultures were CD3 + T cells. Variable low percentages of CD16 + NK cells were seen in these cultures. In summary, OKT3 + IL2 activation resulted in a large increase in cell yield and the development of high level LAK activity using peripheral blood

  2. [Changes of content of regulatory lymphocytes and concentration of soluble interleukine-2 receptor in blood of patients with ischemic heart disease after coronary artery angioplasty with implantation of stents with rapamycin covering].

    PubMed

    Potekhina, A V; Sokolov, V O; Pylaeva, E A; Provatorov, S I; Masenko, V P; Bosykh, E G; Noeva, E A; Krasnikova, T L; Aref'eva, T I

    2011-01-01

    We studied dynamics of content of subpopulation of lymphocytes including regulatory and effector T-lymphocytes as well as concentration of soluble form of interleukine-2 receptor (sCD25) in peripheral blood of patients after coronary stenting (CS) with implantation of stents with rapamycin covering (SRC). We included into the study 62 patients with stable effort II-III functional class angina. Coronary angiography (CA) was carried out in all, CS with implantation of 1 - 2 SRC - in 42 patients. Blood samples were taken before CA/CS, in 24, 48 hours, 7 days, 1 and 3 months after intervention. Content of T-, helper and cytotoxic T-cells, -, NK-, NKT-cells, activated effector T-lymphocytes (CD4+CD251owCD127high) and regulatory T-lymphocytes (CD4+CD25highCD1271ow) were measured by direct immunofluorescence and flow cytometry. CD4+ lymphocytes were isolated from mononuclear cell fraction of donor blood by magnetic separation. Content of regulatory T-lymphocytes in culture were determined by expression of a specific marker FOXP3+. Concentration of sCD25 was measured by chemiluminescent method. It was shown that content of main subpopulations of lymphocytes in blood changed after CS or CF. Blood content of regulatory T-lymphocytes and sCD25 significantly increased after 7 days and 1 month after CS but not after CA. Plasma sCD25 concentration correlated with content of regulatory T-lymphocytes in 1 month after SRC implantation. During cultivation of CD4+ lymphocytes in the presence of rapamycin we noted antiproliferative effect relative to FOXP3-cells and accumulation of regulatory +-lymphocytes. Thus implantation of SRC in coronary arteries leads to increase of number of circulating regulatory T-lymphocytes and blood concentration of sCD25. Changes of these parameters after CS can reflect peculiarities of local and systemic reaction arising in response to introduction of stent with drug covering and be significant for assessment of prognosis of the disease.

  3. Adoptive immunotherapy with MUC1-mRNA transfected dendritic cells and cytotoxic lymphocytes plus gemcitabine for unresectable pancreatic cancer

    PubMed Central

    2014-01-01

    Background We previously reported the clinical efficacy of adoptive immunotherapy (AIT) with dendritic cells (DCs) pulsed with mucin 1 (MUC1) peptide and cytotoxic T lymphocytes (CTLs). We also reported that gemcitabine (GEM) enhances anti-tumor immunity by suppressing regulatory T cells. Therefore, in the present study, we performed combination therapy with AIT and GEM for patients with unresectable or recurrent pancreatic cancer. Patients and methods Forty-two patients with unresectable or recurrent pancreatic cancer were treated. DCs were generated by culture with granulocyte macrophage colony-stimulating factor and interleukin-4 and then exposed to tumor necrosis factor-α. Mature DCs were transfected with MUC1-mRNA by electroporation (MUC1-DCs). MUC1-CTLs were induced by co-culture with YPK-1, a human pancreatic cancer cell line, and then with interleukin-2. Patients were treated with GEM, while MUC1-DCs were intradermally injected, and MUC1-CTLs were intravenously administered. Results Median survival time (MST) was 13.9 months, and the 1-year survival rate was 51.1%. Of 42 patients, one patient had complete response (2.4%), three patients had partial response (7.1%) and 22 patients had stable disease (52.4%). The disease control ratio was 61.9%. The MST and 1-year survival rate of 35 patients who received more than 1 × 107 MUC1-DCs per injection was 16.1 months and 60.3%, respectively. Liver metastasis occurred in only 5 patients among 35 patients without liver metastasis before treatment. There were no severe toxicities associated with AIT. Conclusion AIT with MUC1-DCs and MUC1-CTLs plus GEM may be a feasible and effective treatment for pancreatic cancer. PMID:24947606

  4. An expanding universe of mRNA modifications

    PubMed Central

    Jaffrey, Samie R.

    2015-01-01

    The fate of mRNA can be regulated by internal base modifications, with the currently known modified bases being N6-methyladenosine, 5-methylcytosine, and inosine. Three new studies show that yeast and human mRNA also contain pseudouridine residues and that pseudouridylation is induced in various stress states, hinting at a new pathway for post-transcriptional control of mRNA. PMID:25372308

  5. mRNA Localization and Translational Control in Drosophila Oogenesis

    PubMed Central

    Lasko, Paul

    2012-01-01

    Localization of an mRNA species to a particular subcellular region can complement translational control mechanisms to produce a restricted spatial distribution of the protein it encodes. mRNA localization has been studied most in asymmetric cells such as budding yeast, early embryos, and neurons, but the process is likely to be more widespread. This article reviews the current state of knowledge about the mechanisms of mRNA localization and its functions in early embryonic development, focusing on Drosophila where the relevant knowledge is most advanced. Links between mRNA localization and translational control mechanisms also are examined. PMID:22865893

  6. Functional Integration of mRNA Translational Control Programs.

    PubMed

    MacNicol, Melanie C; Cragle, Chad E; Arumugam, Karthik; Fosso, Bruno; Pesole, Graziano; MacNicol, Angus M

    2015-01-01

    Regulated mRNA translation plays a key role in control of cell cycle progression in a variety of physiological and pathological processes, including in the self-renewal and survival of stem cells and cancer stem cells. While targeting mRNA translation presents an attractive strategy for control of aberrant cell cycle progression, mRNA translation is an underdeveloped therapeutic target. Regulated mRNAs are typically controlled through interaction with multiple RNA binding proteins (RBPs) but the mechanisms by which the functions of distinct RBPs bound to a common target mRNA are coordinated are poorly understood. The challenge now is to gain insight into these mechanisms of coordination and to identify the molecular mediators that integrate multiple, often conflicting, inputs. A first step includes the identification of altered mRNA ribonucleoprotein complex components that assemble on mRNAs bound by multiple, distinct RBPs compared to those recruited by individual RBPs. This review builds upon our knowledge of combinatorial control of mRNA translation during the maturation of oocytes from Xenopus laevis, to address molecular strategies that may mediate RBP diplomacy and conflict resolution for coordinated control of mRNA translational output. Continued study of regulated ribonucleoprotein complex dynamics promises valuable new insights into mRNA translational control and may suggest novel therapeutic strategies for the treatment of disease. PMID:26197342

  7. Sodium Channel Inhibitors Reduce DMPK mRNA and Protein.

    PubMed

    Witherspoon, Luke; O'Reilly, Sean; Hadwen, Jeremiah; Tasnim, Nafisa; MacKenzie, Alex; Farooq, Faraz

    2015-08-01

    Myotonic dystrophy type 1 (DM1) is caused by an expanded trinucleotide (CTG)n tract in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) gene. This results in the aggregation of an expanded mRNA forming toxic intranuclear foci which sequester splicing factors. We believe down-regulation of DMPK mRNA represents a potential, and as yet unexplored, DM1 therapeutic avenue. Consequently, a computational screen for agents which down-regulate DMPK mRNA was undertaken, unexpectedly identifying the sodium channel blockers mexiletine, prilocaine, procainamide, and sparteine as effective suppressors of DMPK mRNA. Analysis of DMPK mRNA in C2C12 myoblasts following treatment with these agents revealed a reduction in the mRNA levels. In vivo analysis of CD1 mice also showed DMPK mRNA and protein down-regulation. The role of DMPK mRNA suppression in the documented efficacy of this class of compounds in DM1 is worthy of further investigation. PMID:26011798

  8. Functional Integration of mRNA Translational Control Programs.

    PubMed

    MacNicol, Melanie C; Cragle, Chad E; Arumugam, Karthik; Fosso, Bruno; Pesole, Graziano; MacNicol, Angus M

    2015-01-01

    Regulated mRNA translation plays a key role in control of cell cycle progression in a variety of physiological and pathological processes, including in the self-renewal and survival of stem cells and cancer stem cells. While targeting mRNA translation presents an attractive strategy for control of aberrant cell cycle progression, mRNA translation is an underdeveloped therapeutic target. Regulated mRNAs are typically controlled through interaction with multiple RNA binding proteins (RBPs) but the mechanisms by which the functions of distinct RBPs bound to a common target mRNA are coordinated are poorly understood. The challenge now is to gain insight into these mechanisms of coordination and to identify the molecular mediators that integrate multiple, often conflicting, inputs. A first step includes the identification of altered mRNA ribonucleoprotein complex components that assemble on mRNAs bound by multiple, distinct RBPs compared to those recruited by individual RBPs. This review builds upon our knowledge of combinatorial control of mRNA translation during the maturation of oocytes from Xenopus laevis, to address molecular strategies that may mediate RBP diplomacy and conflict resolution for coordinated control of mRNA translational output. Continued study of regulated ribonucleoprotein complex dynamics promises valuable new insights into mRNA translational control and may suggest novel therapeutic strategies for the treatment of disease.

  9. Probing dimensionality beyond the linear sequence of mRNA.

    PubMed

    Del Campo, Cristian; Ignatova, Zoya

    2016-05-01

    mRNA is a nexus entity between DNA and translating ribosomes. Recent developments in deep sequencing technologies coupled with structural probing have revealed new insights beyond the classic role of mRNA and place it more centrally as a direct effector of a variety of processes, including translation, cellular localization, and mRNA degradation. Here, we highlight emerging approaches to probe mRNA secondary structure on a global transcriptome-wide level and compare their potential and resolution. Combined approaches deliver a richer and more complex picture. While our understanding on the effect of secondary structure for various cellular processes is quite advanced, the next challenge is to unravel more complex mRNA architectures and tertiary interactions. PMID:26650615

  10. Role of T-helper type 2 cytokines in down-modulation of fas mRNA and receptor on the surface of activated CD4(+) T cells: molecular basis for the persistence of the allergic immune response.

    PubMed

    Spinozzi, F; Agea, E; Fizzotti, M; Bassotti, G; Russano, A; Droetto, S; Bistoni, O; Grignani, F; Bertotto, A

    1998-12-01

    The mechanisms responsible for persistence of T lymphocytes at the sites of allergic inflammation are not completely understood. Activated T cells, usually expressing Fas on their surface, undergo activation-induced apoptotic death, thus limiting the dangerous consequences of a persistent immune reaction. We have previously shown that pulmonary T lymphocytes from untreated asthmatic subjects do not express surface Fas receptors nor do they contain Fas mRNA, yet they display normal levels of Fas ligand. This is not an inherited defect and is confined to mucosal T cells. To gain insights into the mechanism responsible for these findings, we performed a set of experiments with both purified Dermatophagoides pteronyssinus allergen and recombinant human cytokines: interleukin 2 (IL-2), IL-4, IL-5, transforming growth factor beta1, interferon gamma, and granulocyte-macrophage colony-stimulating factor (GM-CSF). In vitro exposure of purified CD4(+) lymphocytes to allergen yielded only transient up-regulation of surface Fas but did not influence susceptibility to Fas-mediated cell death. T-helper type 2 cytokines (IL-4, IL-5, and GM-CSF) had a dose-dependent and specific inhibitory effect on Fas mRNA, suggesting a new fundamental biological role in the survival of inflammatory cells during allergen exposure. PMID:9837865

  11. Interaction of interleukin-2 (IL-2) mutant proteins with interleukin-2 receptors

    SciTech Connect

    Liang, S.M.; Lee, N.; Chollet, A.

    1987-05-01

    The authors have previously produced several human IL-2 mutant proteins by site specific mutagenesis. Deletion or substitution of alanine for cysteine at positions 58 and 105 results in the decrease of biological activities. Substitution of serine for cysteine at position 125 does not affect the activity, however, deletion of this cysteine or amino acids in its vicinity causes a dramatic loss of activity. In this study, the interaction of these mutant proteins with IL-2 receptors has been analyzed by evaluating the competition between these mutant proteins and recombinant DNA derived IL-2 (rIL-2) for the binding to murine CTLL-2, an IL-2 dependent cell line. Addition of unlabeled rIL-2 (1 x 10/sup -11/ to 10/sup -7/M) inhibited the binding of I/sup 125/-labeled rIL-2 (1 x 10/sup -10/M, specific activity 39.6 uCi/mg) to CTLL-2 cells in a concentration dependent manner. Mutant proteins with substitution of alanine for cysteine at position 58 (Ala 58) or deletion of cysteine at position 125 (Des-Cys 125) required a 100-fold higher concentration than rIL-2 to reach 50% inhibition. These results indicate that the decrease of biological activity in mutant proteins is partly, if not primarily, due to the attenuation in their abilities to bind IL-2 receptors.

  12. Effects of DNA replication on mRNA noise

    PubMed Central

    Peterson, Joseph R.; Cole, John A.; Fei, Jingyi; Ha, Taekjip; Luthey-Schulten, Zaida A.

    2015-01-01

    There are several sources of fluctuations in gene expression. Here we study the effects of time-dependent DNA replication, itself a tightly controlled process, on noise in mRNA levels. Stochastic simulations of constitutive and regulated gene expression are used to analyze the time-averaged mean and variation in each case. The simulations demonstrate that to capture mRNA distributions correctly, chromosome replication must be realistically modeled. Slow relaxation of mRNA from the low copy number steady state before gene replication to the high steady state after replication is set by the transcript’s half-life and contributes significantly to the shape of the mRNA distribution. Consequently both the intrinsic kinetics and the gene location play an important role in accounting for the mRNA average and variance. Exact analytic expressions for moments of the mRNA distributions that depend on the DNA copy number, gene location, cell doubling time, and the rates of transcription and degradation are derived for the case of constitutive expression and subsequently extended to provide approximate corrections for regulated expression and RNA polymerase variability. Comparisons of the simulated models and analytical expressions to experimentally measured mRNA distributions show that they better capture the physics of the system than previous theories. PMID:26669443

  13. Primary structure of chicken muscle pyruvate kinase mRNA.

    PubMed Central

    Lonberg, N; Gilbert, W

    1983-01-01

    We have determined the cDNA sequence corresponding to chicken muscle pyruvate kinase mRNA; the predicted coding region spans 529 amino acids and establishes the complete amino acid sequence for the vertebrate enzyme. We demonstrate that the level of mRNA for this enzyme is under developmental control and suggest a structural model for the protein kinase-mediated regulation of the mammalian liver isozyme. We report a method for the direct analysis of, and the preparation of cDNA probes from, mRNA which has been fractionated on methylmercury/agarose gels. Images PMID:6574503

  14. Signaling Pathways That Control mRNA Turnover

    PubMed Central

    Thapar, Roopa; Denmon, Andria P.

    2013-01-01

    Cells regulate their genomes mainly at the level of transcription and at the level of mRNA decay. While regulation at the level of transcription is clearly important, the regulation of mRNA turnover by signaling networks is essential for a rapid response to external stimuli. Signaling pathways result in posttranslational modification of RNA binding proteins by phosphorylation, ubiquitination, methylation, acetylation etc. These modifications are important for rapid remodeling of dynamic ribonucleoprotein complexes and triggering mRNA decay. Understanding how these posttranslational modifications alter gene expression is therefore a fundamental question in biology. In this review we highlight recent findings on how signaling pathways and cell cycle checkpoints involving phosphorylation, ubiquitination, and arginine methylation affect mRNA turnover. PMID:23602935

  15. Polyadenylation of Vesicular Stomatitis Virus mRNA

    PubMed Central

    Ehrenfeld, Ellie

    1974-01-01

    Vesicular stomatitis virus (VSV) mRNA isolated from infected cell polysomes contains polyadenylic acid [poly(A)] sequences. Detergent-activated purified virions in vitro can transcribe complementary RNA, which has sedimentation properties similar to mRNA, and this RNA also contains poly(A) sequences. Digestion of virion RNA with U2 RNase under conditions where hydrolysis is specific for purine linkages leaves no sequences of polyuridylic acid corresponding in length to the poly(A) on the transcripts. Growth of infectious virus is not inhibited by 3-deoxyadenosine (cordycepin) under conditions in which it inhibits polyadenylation of cellular mRNA. The virus-specific mRNA produced in the presence of cordycepin has poly(A) sequences of the same size distribution as that synthesized in the absence of cordycepin. PMID:4363251

  16. Multiple crosstalks between mRNA biogenesis and SUMO.

    PubMed

    Rouvière, Jérôme O; Geoffroy, Marie-Claude; Palancade, Benoit

    2013-10-01

    mRNA metabolism involves the orchestration of multiple nuclear events, including transcription, processing (e.g., capping, splicing, polyadenylation), and quality control. This leads to the accurate formation of messenger ribonucleoparticles (mRNPs) that are finally exported to the cytoplasm for translation. The production of defined sets of mRNAs in given environmental or physiological situations relies on multiple regulatory mechanisms that target the mRNA biogenesis machineries. Among other regulations, post-translational modification by the small ubiquitin-like modifier SUMO, whose prominence in several cellular processes has been largely demonstrated, also plays a key role in mRNA biogenesis. Analysis of the multiple available SUMO proteomes and functional validations of an increasing number of sumoylated targets have revealed the key contribution of SUMO-dependent regulation in nuclear mRNA metabolism. While sumoylation of transcriptional activators and repressors is so far best documented, SUMO contribution to other stages of mRNA biogenesis is also emerging. Modification of mRNA metabolism factors by SUMO determine their subnuclear targeting and biological activity, notably by regulating their molecular interactions with nucleic acids or protein partners. In particular, sumoylation of DNA-bound transcriptional regulators interfere with their association to target sequences or chromatin modifiers. In addition, the recent identification of enzymes of the SUMO pathway within specialized mRNA biogenesis machineries may provide a further level of regulation to their specificity. These multiple crosstalks between mRNA metabolism and SUMO appear therefore as important players in cellular regulatory networks.

  17. Messenger RNA (mRNA) Nanoparticle Tumour Vaccination

    PubMed Central

    Phua, Kyle K.L.; Nair, Smita K.; Leong, Kam W.

    2014-01-01

    Use of mRNA-based vaccines for tumour immunotherapy has gained increasing attention in recent years. A growing number of studies applying nanomedicine concepts to mRNA tumour vaccination show that the mRNA delivered in nanoparticle format can generate a more robust immune response. Advances in the past decade have deepened our understanding of gene delivery barriers, mRNA’s biological stability and immunological properties, and support the notion for engineering innovations tailored towards a more efficient mRNA nanoparticle vaccine delivery system. In this review we will first examine the suitability of mRNA for engineering manipulations, followed by discussion of a model framework that highlights the barriers to a robust anti-tumour immunity mediated by mRNA encapsulated in nanoparticles. Finally, by consolidating existing literature on mRNA nanoparticle tumour vaccination within the context of this framework, we aim to identify bottlenecks that can be addressed by future nanoengineering research. PMID:24904987

  18. Mechanisms of endonuclease-mediated mRNA decay.

    PubMed

    Schoenberg, Daniel R

    2011-01-01

    Endonuclease cleavage was one of the first identified mechanisms of mRNA decay but until recently it was thought to play a minor role to the better-known processes of deadenylation, decapping, and exonuclease-catalyzed decay. Most of the early examples of endonuclease decay came from studies of a particular mRNA whose turnover changed in response to hormone, cytokine, developmental, or nutritional stimuli. Only a few of these examples of endonuclease-mediated mRNA decay progressed to the point where the enzyme responsible for the initiating event was identified and studied in detail. The discovery of microRNAs and RISC-catalyzed endonuclease cleavage followed by the identification of PIN (pilT N-terminal) domains that impart endonuclease activity to a number of the proteins involved in mRNA decay has led to a resurgence of interest in endonuclease-mediated mRNA decay. PIN domains show no substrate selectivity and their involvement in a number of decay pathways highlights a recurring theme that the context in which an endonuclease function is a primary factor in determining whether any given mRNA will be targeted for decay by this or the default exonuclease-mediated decay processes.

  19. mRNA modifications: Dynamic regulators of gene expression?

    PubMed Central

    Hoernes, Thomas Philipp; Hüttenhofer, Alexander; Erlacher, Matthias David

    2016-01-01

    ABSTRACT The expression of a gene is a tightly regulated process and is exerted by a myriad of different mechanisms. Recently, RNA modifications located in coding sequences of mRNAs, have been identified as potential regulators of gene expression. N6-methyladenosine (m6A), 5-methylcytosine (m5C), pseudouridine (Ψ) and N1-methyladenosine (m1A) have been found within open reading frames of mRNAs. The presence of these mRNA modifications has been implicated to modulate the fate of an mRNA, ranging from maturation to its translation and even degradation. However, many aspects concerning the biological functions of mRNA modifications remain elusive. Recently, systematic in vitro studies allowed a first glimpse of the direct interplay of mRNA modifications and the efficiency and fidelity of ribosomal translation. It thereby became evident that the effects of mRNA modifications were, astonishingly versatile, depending on the type, position or sequence context. The incorporation of a single modification could either prematurely terminate protein synthesis, reduce the peptide yield or alter the amino acid sequence identity. These results implicate that mRNA modifications are a powerful mechanism to post-transcriptionally regulate gene expression. PMID:27351916

  20. Conventional and unconventional mechanisms for capping viral mRNA.

    PubMed

    Decroly, Etienne; Ferron, François; Lescar, Julien; Canard, Bruno

    2012-01-01

    In the eukaryotic cell, capping of mRNA 5' ends is an essential structural modification that allows efficient mRNA translation, directs pre-mRNA splicing and mRNA export from the nucleus, limits mRNA degradation by cellular 5'-3' exonucleases and allows recognition of foreign RNAs (including viral transcripts) as 'non-self'. However, viruses have evolved mechanisms to protect their RNA 5' ends with either a covalently attached peptide or a cap moiety (7-methyl-Gppp, in which p is a phosphate group) that is indistinguishable from cellular mRNA cap structures. Viral RNA caps can be stolen from cellular mRNAs or synthesized using either a host- or virus-encoded capping apparatus, and these capping assemblies exhibit a wide diversity in organization, structure and mechanism. Here, we review the strategies used by viruses of eukaryotic cells to produce functional mRNA 5'-caps and escape innate immunity. PMID:22138959

  1. A novel mRNA 3' untranslated region translational control sequence regulates Xenopus Wee1 mRNA translation.

    PubMed

    Wang, Yi Ying; Charlesworth, Amanda; Byrd, Shannon M; Gregerson, Robert; MacNicol, Melanie C; MacNicol, Angus M

    2008-05-15

    Cell cycle progression during oocyte maturation requires the strict temporal regulation of maternal mRNA translation. The intrinsic basis of this temporal control has not been fully elucidated but appears to involve distinct mRNA 3' UTR regulatory elements. In this study, we identify a novel translational control sequence (TCS) that exerts repression of target mRNAs in immature oocytes of the frog, Xenopus laevis, and can direct early cytoplasmic polyadenylation and translational activation during oocyte maturation. The TCS is functionally distinct from the previously characterized Musashi/polyadenylation response element (PRE) and the cytoplasmic polyadenylation element (CPE). We report that TCS elements exert translational repression in both the Wee1 mRNA 3' UTR and the pericentriolar material-1 (Pcm-1) mRNA 3' UTR in immature oocytes. During oocyte maturation, TCS function directs the early translational activation of the Pcm-1 mRNA. By contrast, we demonstrate that CPE sequences flanking the TCS elements in the Wee1 3' UTR suppress the ability of the TCS to direct early translational activation. Our results indicate that a functional hierarchy exists between these distinct 3' UTR regulatory elements to control the timing of maternal mRNA translational activation during oocyte maturation.

  2. Nebulisation of IVT mRNA Complexes for Intrapulmonary Administration

    PubMed Central

    Guan, Shan; Rosenecker, Joseph

    2015-01-01

    During the last years the potential role of in vitro transcribed (IVT) mRNA as a vehicle to deliver genetic information has come into focus. IVT mRNA could be used for anti-cancer therapies, vaccination purposes, generation of pluripotent stem cells and also for genome engineering or protein replacement. However, the administration of IVT mRNA into the target organ is still challenging. The lung with its large surface area is not only of interest for delivery of genetic information for treatment of e.g. for cystic fibrosis or alpha-1-antitrypsin deficiency, but also for vaccination purposes. Administration of IVT mRNA to the lung can be performed by direct intratracheal instillation or by aerosol inhalation/nebulisation. The latter approach shows a non-invasive tool, although it is not known, if IVT mRNA is resistant during the process of nebulisation. Therefore, we investigated the transfection efficiency of non-nebulised and nebulised IVT mRNA polyplexes and lipoplexes in human bronchial epithelial cells (16HBE). A slight reduction in transfection efficiency was observed for lipoplexes (Lipofectamine 2000) in the nebulised part compared to the non-nebulised which can be overcome by increasing the amount of Lipofectamine. However, Lipofectamine was more than three times more efficient in transfecting 16HBE than DMRIE and linear PEI performed almost 10 times better than its branched derivative. By contrast, the nebulisation process did not affect the cationic polymer complexes. Furthermore, aerosolisation of IVT mRNA complexes did neither affect the protein duration nor the toxicity of the cationic complexes. Taken together, these data show that aerosolisation of cationic IVT mRNA complexes constitute a potentially powerful means to transfect cells in the lung with the purpose of protein replacement for genetic diseases such as cystic fibrosis or alpha-1-antitrypsin deficiency or for infectious disease vaccines, while bringing along the advantages of IVT mRNA as

  3. SURVIV for survival analysis of mRNA isoform variation

    PubMed Central

    Shen, Shihao; Wang, Yuanyuan; Wang, Chengyang; Wu, Ying Nian; Xing, Yi

    2016-01-01

    The rapid accumulation of clinical RNA-seq data sets has provided the opportunity to associate mRNA isoform variations to clinical outcomes. Here we report a statistical method SURVIV (Survival analysis of mRNA Isoform Variation), designed for identifying mRNA isoform variation associated with patient survival time. A unique feature and major strength of SURVIV is that it models the measurement uncertainty of mRNA isoform ratio in RNA-seq data. Simulation studies suggest that SURVIV outperforms the conventional Cox regression survival analysis, especially for data sets with modest sequencing depth. We applied SURVIV to TCGA RNA-seq data of invasive ductal carcinoma as well as five additional cancer types. Alternative splicing-based survival predictors consistently outperform gene expression-based survival predictors, and the integration of clinical, gene expression and alternative splicing profiles leads to the best survival prediction. We anticipate that SURVIV will have broad utilities for analysing diverse types of mRNA isoform variation in large-scale clinical RNA-seq projects. PMID:27279334

  4. Effect of ribosome shielding on mRNA stability

    NASA Astrophysics Data System (ADS)

    Deneke, Carlus; Lipowsky, Reinhard; Valleriani, Angelo

    2013-08-01

    Based on the experimental evidence that translating ribosomes stabilize the mRNAs, we introduce and study a theoretical model for the dynamic shielding of mRNA by ribosomes. We present an improved fitting of published decay assay data in E. coli and show that only one third of the decay patterns are exponential. Our new transcriptome-wide estimate of the average lifetimes and mRNA half-lives shows that these timescales are considerably shorter than previous estimates. We also explain why there is a negative correlation between mRNA length and average lifetime when the mRNAs are subdivided in classes sharing the same degradation parameters. As a by-product, our model indicates that co-transcriptional translation in E. coli may be less common than previously believed.

  5. mRNA stability and control of cell proliferation.

    PubMed

    Mazzoni, Cristina; Falcone, Claudio

    2011-10-01

    Most of the studies on cell proliferation examine the control of gene expression by specific transcription factors that act on transcriptional initiation. In the last few years, it became evident that mRNA stability/turnover provides an important mechanism for post-transcriptional control of gene expression. In eukaryotes, mRNAs are mainly degraded after deadenylation by decapping and exosome pathways. Mechanisms of mRNA surveillance comprise deadenylation-independent pathways such as NMD (nonsense-mediated decay), when mRNAs harbour a PTC (premature termination codon), NSD (non-stop decay, when mRNAs lack a termination codon, and NGD (no-go decay), when mRNA translation elongation stalls. Many proteins involved in these processes are conserved from bacteria to yeast and humans. Recent papers showed the involvement of proteins deputed to decapping in controlling cell proliferation, virus replication and cell death. In this paper, we will review the newest findings in this field.

  6. Nonsense-mediated mRNA decay - mechanisms of substrate mRNA recognition and degradation in mammalian cells.

    PubMed

    Schweingruber, Christoph; Rufener, Simone C; Zünd, David; Yamashita, Akio; Mühlemann, Oliver

    2013-01-01

    The nonsense-mediated mRNA decay (NMD) pathway is well known as a translation-coupled quality control system that recognizes and degrades aberrant mRNAs with truncated open reading frames (ORF) due to the presence of a premature termination codon (PTC). However, a more general role of NMD in posttranscriptional regulation of gene expression is indicated by transcriptome-wide mRNA profilings that identified a plethora of physiological mRNAs as NMD targets. In this review, we focus on mechanistic aspects of target mRNA identification and degradation in mammalian cells, based on the available biochemical and genetic data, and point out knowledge gaps. Translation termination in a messenger ribonucleoprotein particle (mRNP) environment lacking necessary factors for proper translation termination emerges as a key determinant for subjecting an mRNA to NMD, and we therefore review recent structural and mechanistic insight into translation termination. In addition, the central role of UPF1, its crucial phosphorylation/dephosphorylation cycle and dynamic interactions with other NMD factors are discussed. Moreover, we address the role of exon junction complexes (EJCs) in NMD and summarize the functions of SMG5, SMG6 and SMG7 in promoting mRNA decay through different routes. This article is part of a Special Issue entitled: RNA Decay mechanisms.

  7. Post-transcriptional regulation tends to attenuate the mRNA noise and to increase the mRNA gain

    NASA Astrophysics Data System (ADS)

    Shi, Changhong; Wang, Shuqiang; Zhou, Tianshou; Jiang, Yiguo

    2015-10-01

    Post-transcriptional regulation is ubiquitous in prokaryotic and eukaryotic cells, but how it impacts gene expression remains to be fully explored. Here, we analyze a simple gene model in which we assume that mRNAs are produced in a constitutive manner but are regulated post-transcriptionally by a decapping enzyme that switches between the active state and the inactive state. We derive the analytical mRNA distribution governed by a chemical master equation, which can be well used to analyze the mechanism of how post-transcription regulation influences the mRNA expression level including the mRNA noise. We demonstrate that the mean mRNA level in the stochastic case is always higher than that in the deterministic case due to the stochastic effect of the enzyme, but the size of the increased part depends mainly on the switching rates between two enzyme states. More interesting is that we find that in contrast to transcriptional regulation, post-transcriptional regulation tends to attenuate noise in mRNA. Our results provide insight into the role of post-transcriptional regulation in controlling the transcriptional noise.

  8. mRNA stability changes precede changes in steady-state mRNA amounts during hyperosmotic stress.

    PubMed

    Molin, Claes; Jauhiainen, Alexandra; Warringer, Jonas; Nerman, Olle; Sunnerhagen, Per

    2009-04-01

    Under stress, cells need to optimize the activity of a wide range of gene products during the response phases: shock, adaptation, and recovery. This requires coordination of several levels of regulation, including turnover and translation efficiencies of mRNAs. Mitogen-activated protein (MAP) kinase pathways are implicated in many aspects of the environmental stress response, including initiation of transcription, translation efficiency, and mRNA turnover. In this study, we analyze mRNA turnover rates and mRNA steady-state levels at different time points following mild hyperosmotic shock in Saccharomyces cerevisiae cells. The regulation of mRNA stability is transient and affects most genes for which there is a change in transcript level. These changes precede and prepare for the changes in steady-state levels, both regarding the initial increase and the later decline of stress-induced mRNAs. The inverse is true for stress-repressed genes, which become stabilized during hyperosmotic stress in preparation of an increase as the cells recover. The MAP kinase Hog1 affects both steady-state levels and stability of stress-responsive transcripts, whereas the Hog1-activated kinase Rck2 influences steady-state levels without a major effect on stability. Regulation of mRNA stability is a wide-spread, but not universal, effect on stress-responsive transcripts during transient hyperosmotic stress. By destabilizing stress-induced mRNAs when their steady-state levels have reached a maximum, the cell prepares for the subsequent recovery phase when these transcripts are to return to normal levels. Conversely, stabilization of stress-repressed mRNAs permits their rapid accumulation in the recovery phase. Our results show that mRNA turnover is coordinated with transcriptional induction.

  9. Glucocorticoids enhance stability of human growth hormone mRNA.

    PubMed Central

    Paek, I; Axel, R

    1987-01-01

    We have studied the control of expression of the human growth hormone (hGH) gene introduced into the chromosomes of mouse fibroblasts. Cell lines transformed with the hGH gene expressed low levels of intact hGH mRNA and secreted hGH protein into the medium. Although the level of expression of hGH mRNA was low, the gene remained responsive to induction by glucocorticoid hormones. To localize the sequences responsible for induction and to determine the mechanism by which these cis-acting sequences enhance gene expression, we have constructed a series of fusion genes between the hGH gene and the herpes simplex virus (HSV) thymidine kinase (tk) gene. We have demonstrated that a fusion gene in which hGH cDNA is flanked at its 5' terminus by an HSV tk promoter and is flanked at its 3' terminus by 3' HSV tk DNA remains inducible by glucocorticoids. Our studies indicate that the hGH exons contain sequences which are responsible for glucocorticoid hormone induction. Pulse-chase experiments, in vitro nuclear transcription, and approach to steady-state measurements indicate that the mechanisms responsible for induction of the hGH cDNA fusion gene operate posttranscriptionally to enhance the stability of hGH mRNA. Moreover, this increased stability was associated with an increase in the length of the 3' poly(A) tail on hGH mRNA. Images PMID:3037323

  10. Influenza virus mRNA trafficking through host nuclear speckles.

    PubMed

    Mor, Amir; White, Alexander; Zhang, Ke; Thompson, Matthew; Esparza, Matthew; Muñoz-Moreno, Raquel; Koide, Kazunori; Lynch, Kristen W; García-Sastre, Adolfo; Fontoura, Beatriz M A

    2016-01-01

    Influenza A virus is a human pathogen with a genome composed of eight viral RNA segments that replicate in the nucleus. Two viral mRNAs are alternatively spliced. The unspliced M1 mRNA is translated into the matrix M1 protein, while the ion channel M2 protein is generated after alternative splicing. These proteins are critical mediators of viral trafficking and budding. We show that the influenza virus uses nuclear speckles to promote post-transcriptional splicing of its M1 mRNA. We assign previously unknown roles for the viral NS1 protein and cellular factors to an intranuclear trafficking pathway that targets the viral M1 mRNA to nuclear speckles, mediates splicing at these nuclear bodies and exports the spliced M2 mRNA from the nucleus. Given that nuclear speckles are storage sites for splicing factors, which leave these sites to splice cellular pre-mRNAs at transcribing genes, we reveal a functional subversion of nuclear speckles to promote viral gene expression. PMID:27572970

  11. Influenza virus mRNA trafficking through host nuclear speckles.

    PubMed

    Mor, Amir; White, Alexander; Zhang, Ke; Thompson, Matthew; Esparza, Matthew; Muñoz-Moreno, Raquel; Koide, Kazunori; Lynch, Kristen W; García-Sastre, Adolfo; Fontoura, Beatriz M A

    2016-01-01

    Influenza A virus is a human pathogen with a genome composed of eight viral RNA segments that replicate in the nucleus. Two viral mRNAs are alternatively spliced. The unspliced M1 mRNA is translated into the matrix M1 protein, while the ion channel M2 protein is generated after alternative splicing. These proteins are critical mediators of viral trafficking and budding. We show that the influenza virus uses nuclear speckles to promote post-transcriptional splicing of its M1 mRNA. We assign previously unknown roles for the viral NS1 protein and cellular factors to an intranuclear trafficking pathway that targets the viral M1 mRNA to nuclear speckles, mediates splicing at these nuclear bodies and exports the spliced M2 mRNA from the nucleus. Given that nuclear speckles are storage sites for splicing factors, which leave these sites to splice cellular pre-mRNAs at transcribing genes, we reveal a functional subversion of nuclear speckles to promote viral gene expression.

  12. Localization of histidine decarboxylase mRNA in rat brain.

    PubMed

    Bayliss, D A; Wang, Y M; Zahnow, C A; Joseph, D R; Millhorn, D E

    1990-08-01

    The recent cloning of a cDNA encoding fetal rat liver histidine decarboxylase (HDC), the synthesizing enzyme for histamine, allows the study of the central histaminergic system at the molecular level. To this end, Northern blot and in situ hybridization analyses were used to determine the regional and cellular distribution of neurons which express HDC mRNA in rat brain. Three hybridizing species which migrate as 1.6-, 2.6-, and 3.5-kb RNA were identified with Northern blots. The major (2.6 kb) and minor (3.5 kb) species, characteristic of HDC mRNA in fetal liver, were expressed at high levels in diencephalon and at just detectable levels in hippocampus, but not in other brain regions. In contrast, the 1.6-kb species was present in all brain regions examined except the olfactory bulb. Cells which contain HDC mRNA were found by in situ hybridization in the hypothalamus; HDC mRNA-containing cells were not detected in other areas, including the hippocampus. Hypothalamic neurons which express HDC mRNA were localized to all aspects of the tuberomammillary nucleus, a result consistent with previous immunohistochemical findings. PMID:19912749

  13. Molecular cloning of human ornithine aminotransferase mRNA

    SciTech Connect

    Inana, G.; Totsuka, S.; Redmond, M.; Dougherty, T.; Nagle, J.; Shiono, T.; Ohura, T. Kominami, E.; Katunuma, N.

    1986-03-01

    The isolation and characterization of a cDNA clone for the mRNA of human ornithine aminotransferase (OATase; ornithine-oxo-acid aminotransferase; L-ornithine:2-oxo-acid aminotransferase, EC 2.6.1.13), a nonabundant mitochondrial matrix enzyme that is severely deficient in a hereditary chorioretinal degenerative disease (gyrate atrophy), is described. Human liver, retina, and retinoblastoma (Y79) mRNAs were prepared and tested for the OATase mRNA content by in vitro translation, immunoprecipitation, and NaDodSO/sub 4//PAGE. The retinoblastoma cells were found to be expressing this enzyme at a relatively high level. The primary translation product of the OATase mRNA is larger than the pure OATase protein on NaDodSO/sub 4//PAGE. lambdagt11 cDNA libraries were prepared from the human mRNAs, and the recombinant clones were immunoscreened as plaques with two different preparations of rabbit anti-human OATase antibodies. The amino acid sequences of seven tryptic peptides (115 amino acid residues) of the pure human OATase were obtained by microsequencing. When the tryptic peptide and cDNA-derived amino acid sequences were compared, homologies in 111 of 115 residues, including a match of 20 consecutive residues, were observed. An RNA blot hybridization of /sup 32/P-labeled OATase cDNA to normal human retina and retinoblastoma mRNAs demonstrated an OATase mRNA species of approx. = 2.2 kilobases.

  14. Regulation of mRNA trafficking by nuclear pore complexes.

    PubMed

    Bonnet, Amandine; Palancade, Benoit

    2014-09-02

    Over the last two decades, multiple studies have explored the mechanisms governing mRNA export out of the nucleus, a crucial step in eukaryotic gene expression. During transcription and processing, mRNAs are assembled into messenger ribonucleoparticles (mRNPs). mRNPs are then exported through nuclear pore complexes (NPCs), which are large multiprotein assemblies made of several copies of a limited number of nucleoporins. A considerable effort has been put into the dissection of mRNA export through NPCs at both cellular and molecular levels, revealing the conserved contributions of a subset of nucleoporins in this process, from yeast to vertebrates. Several reports have also demonstrated the ability of NPCs to sort out properly-processed mRNPs for entry into the nuclear export pathway. Importantly, changes in mRNA export have been associated with post-translational modifications of nucleoporins or changes in NPC composition, depending on cell cycle progression, development or exposure to stress. How NPC modifications also impact on cellular mRNA export in disease situations, notably upon viral infection, is discussed.

  15. Regulation of mRNA Trafficking by Nuclear Pore Complexes

    PubMed Central

    Bonnet, Amandine; Palancade, Benoit

    2014-01-01

    Over the last two decades, multiple studies have explored the mechanisms governing mRNA export out of the nucleus, a crucial step in eukaryotic gene expression. During transcription and processing, mRNAs are assembled into messenger ribonucleoparticles (mRNPs). mRNPs are then exported through nuclear pore complexes (NPCs), which are large multiprotein assemblies made of several copies of a limited number of nucleoporins. A considerable effort has been put into the dissection of mRNA export through NPCs at both cellular and molecular levels, revealing the conserved contributions of a subset of nucleoporins in this process, from yeast to vertebrates. Several reports have also demonstrated the ability of NPCs to sort out properly-processed mRNPs for entry into the nuclear export pathway. Importantly, changes in mRNA export have been associated with post-translational modifications of nucleoporins or changes in NPC composition, depending on cell cycle progression, development or exposure to stress. How NPC modifications also impact on cellular mRNA export in disease situations, notably upon viral infection, is discussed. PMID:25184662

  16. Connections Underlying Translation and mRNA Stability.

    PubMed

    Radhakrishnan, Aditya; Green, Rachel

    2016-09-11

    Gene expression and regulation in organisms minimally depends on transcription by RNA polymerase and on the stability of the RNA product (for both coding and non-coding RNAs). For coding RNAs, gene expression is further influenced by the amount of translation by the ribosome and by the stability of the protein product. The stabilities of these two classes of RNA, non-coding and coding, vary considerably: tRNAs and rRNAs tend to be long lived while mRNAs tend to be more short lived. Even among mRNAs, however, there is a considerable range in stability (ranging from seconds to hours in bacteria and up to days in metazoans), suggesting a significant role for stability in the regulation of gene expression. Here, we review recent experiments from bacteria, yeast and metazoans indicating that the stability of most mRNAs is broadly impacted by the actions of ribosomes that translate them. Ribosomal recognition of defective mRNAs triggers "mRNA surveillance" pathways that target the mRNA for degradation [Shoemaker and Green (2012) ]. More generally, even the stability of perfectly functional mRNAs appears to be dictated by overall rates of translation by the ribosome [Herrick et al. (1990), Presnyak et al. (2015) ]. Given that mRNAs are synthesized for the purpose of being translated into proteins, it is reassuring that such intimate connections between mRNA and the ribosome can drive biological regulation. In closing, we consider the likelihood that these connections between protein synthesis and mRNA stability are widespread or whether other modes of regulation dominate the mRNA stability landscape in higher organisms. PMID:27261255

  17. Ochratoxin A mediates MAPK activation, modulates IL-2 and TNF-α mRNA expression and induces apoptosis by mitochondria-dependent and mitochondria-independent pathways in human H9 T cells.

    PubMed

    Darif, Youssef; Mountassif, Driss; Belkebir, Abdelkarim; Zaid, Younes; Basu, Kaustuv; Mourad, Walid; Oudghiri, Mounia

    2016-01-01

    Ochratoxin A (OTA) is a natural fungal secondary metabolite that contaminates food and animal feed. Human exposure and involvement of this mycotoxin in several pathologies have been demonstrated worldwide. We investigated OTA immunotoxicity on H9 cells, a human cutaneous CD4+ T lymphoma cell line. Cells were treated with 0, 1, 5, 10, and 20 µM OTA for up to 24 hr. Western blotting revealed increased phosphorylation of all three major mitogen-activated protein kinases (extracellular signal-regulated kinase, c-Jun amino-terminal kinase, p38). OTA triggered mitochondrial transmembrane potential loss and caspase-3 activation. The 24-hr OTA treatment caused marked changes in cell morphology and DNA fragmentation, suggesting the occurrence of apoptotic events that involved a mitochondria-dependent pathway. Moreover, OTA triggered significant modulation of survivin, interleukin 2 (IL-2) and tumor necrosis factor α (TNF-α): mRNA expression of survivin and IL-2 were decreased, while TNF-α was increased. OTA also caused caspase-8 activation in a time-dependent manner, which evokes the death receptor pathway activation; we suspect that this occurred via the autocrine pro-apoptotic effect of TNF-α on H9 cells. PMID:27193732

  18. Hfq affects mRNA levels independently of degradation

    PubMed Central

    2010-01-01

    Background The bacterial Lsm protein, Hfq, is an RNA chaperone involved in many reactions related to RNA metabolism, such as replication and stability, control of small RNA activity and polyadenylation. Despite this wide spectrum of known functions, the global role of Hfq is almost certainly undervalued; its capacity to bind DNA and to interact with many other proteins are only now beginning to be taken into account. Results The role of Hfq in the maturation and degradation of the rpsO mRNA of E. coli was investigated in vivo. The data revealed a decrease in rpsO mRNA abundance concomitant to an increase in its stability when Hfq is absent. This indicates that the change in mRNA levels in hfq mutants does not result from its modification of RNA stability. Moreover, a series of independent experiments have revealed that the decrease in mRNA level is not a consequence of a reduction of translation efficiency and that Hfq is not directly implicated in translational control of rpsO expression. Reduced steady-state mRNA levels in the absence of Hfq were also shown for rpsT, rpsB and rpsB-tsf, but not for lpp, pnp or tRNA transcripts. The abundance of chimeric transcripts rpsO-lacZ and rpsB-lacZ, whose expression was driven by rpsO and rpsB promoters, respectively, was also lower in the hfq null-mutants, while the β-galactosidase yield remained about the same as in the parent wild-type strain. Conclusions The data obtained suggest that alteration of rpsO, rpsT and rpsB-tsf transcript levels observed under conditions of Hfq deficiency is not caused by the post-transcriptional events, such as mRNA destabilization or changes in translation control, and may rather result from changes in transcriptional activity. So far, how Hfq affects transcription remains unclear. We propose that one of the likely mechanisms of Hfq-mediated modulation of transcription might operate early in the elongation step, when interaction of Hfq with a nascent transcript would help to overcome

  19. UIF, a New mRNA export adaptor that works together with REF/ALY, requires FACT for recruitment to mRNA.

    PubMed

    Hautbergue, Guillaume M; Hung, Ming-Lung; Walsh, Matthew J; Snijders, Ambrosius P L; Chang, Chung-Te; Jones, Rachel; Ponting, Chris P; Dickman, Mark J; Wilson, Stuart A

    2009-12-01

    Messenger RNA (mRNA) export adaptors play an important role in the transport of mRNA from the nucleus to the cytoplasm. They couple early mRNA processing events such as 5' capping and 3' end formation with loading of the TAP/NXF1 export receptor onto mRNA. The canonical adaptor REF/ALY/Yra1 is recruited to mRNA via UAP56 and subsequently delivers the mRNA to NXF1 [1]. Knockdown of UAP56 [2, 3] and NXF1 [4-7] in higher eukaryotes efficiently blocks mRNA export, whereas knockdown of REF only causes a modest reduction, suggesting the existence of additional adaptors [8-10]. Here we identify a new UAP56-interacting factor, UIF, which functions as an export adaptor, binding NXF1 and delivering mRNA to the nuclear pore. REF and UIF are simultaneously found on the same mRNA molecules, and both proteins are required for efficient export of mRNA. We show that the histone chaperone FACT specifically binds UIF, but not REF, via the SSRP1 subunit, and this interaction is required for recruitment of UIF to mRNA. Together the results indicate that REF and UIF represent key human adaptors for the export of cellular mRNAs via the UAP56-NXF1 pathway.

  20. Screening of mRNA Chemical Modification to Maximize Protein Expression with Reduced Immunogenicity

    PubMed Central

    Uchida, Satoshi; Kataoka, Kazunori; Itaka, Keiji

    2015-01-01

    Chemical modification of nucleosides in mRNA is an important technology to regulate the immunogenicity of mRNA. In this study, various previously reported mRNA formulations were evaluated by analyzing in vitro protein expression and immunogenicity in multiple cell lines. For the macrophage-derived cell line, RAW 264.7, modified mRNA tended to have reduced immunogenicity and increased protein expression compared to the unmodified mRNA. In contrast, in some cell types, such as hepatocellular carcinoma cells (HuH-7) and mouse embryonic fibroblasts (MEFs), protein expression was decreased by mRNA modification. Further analyses revealed that mRNA modifications decreased translation efficiency but increased nuclease stability. Thus, mRNA modification is likely to exert both positive and negative effects on the efficiency of protein expression in transfected cells and optimal mRNA formulation should be determined based on target cell types and transfection purposes. PMID:26213960

  1. Screening of mRNA Chemical Modification to Maximize Protein Expression with Reduced Immunogenicity.

    PubMed

    Uchida, Satoshi; Kataoka, Kazunori; Itaka, Keiji

    2015-01-01

    Chemical modification of nucleosides in mRNA is an important technology to regulate the immunogenicity of mRNA. In this study, various previously reported mRNA formulations were evaluated by analyzing in vitro protein expression and immunogenicity in multiple cell lines. For the macrophage-derived cell line, RAW 264.7, modified mRNA tended to have reduced immunogenicity and increased protein expression compared to the unmodified mRNA. In contrast, in some cell types, such as hepatocellular carcinoma cells (HuH-7) and mouse embryonic fibroblasts (MEFs), protein expression was decreased by mRNA modification. Further analyses revealed that mRNA modifications decreased translation efficiency but increased nuclease stability. Thus, mRNA modification is likely to exert both positive and negative effects on the efficiency of protein expression in transfected cells and optimal mRNA formulation should be determined based on target cell types and transfection purposes. PMID:26213960

  2. Molecular cloning of seal myoglobin mRNA.

    PubMed Central

    Wood, D; Blanchetot, A; Jeffreys, A J

    1982-01-01

    Grey seal skeletal muscle containing high levels of myoglobin was used to prepare poly(A)+ RNA. In vitro translation of this RNA produced a range of polypeptides including myoglobin. cDNA was prepared by reverse transcription of muscle poly(A)+ RNA and cloned into the plasmid pAT 153. 4% of cDNA recombinants were shown to contain myoglobin cDNA inserts. DNA sequence analysis of one clone (pSM 178) which contained a relatively large myoglobin cDNA insert showed an incomplete cDNA comprising the terminal 293 nucleotides of 3' non-translated mRNA sequences. Hybridization experiments using this myoglobin cDNA indicated that seal myoglobin is coded by a single gene which is transcribed to give a 1400 nucleotide mRNA considerably longer than related haemoglobin mRNAs. Images PMID:6185919

  3. Peptide inhibitors of botulinum neurotoxin by mRNA display

    SciTech Connect

    Yiadom, Kwabena P.A.B.; Muhie, Seid; Yang, David C.H. . E-mail: yangdc@georgetown.edu

    2005-10-07

    Botulinum neurotoxins (BoNTs) are extremely toxic. The metalloproteases associated with the toxins cleave proteins essential for neurotransmitter secretion. Inhibitors of the metalloprotease are currently sought to control the toxicity of BoNTs. Toward that goal, we produced a synthetic cDNA for the expression and purification of the metalloprotease of BoNT/A in Escherichia coli as a biotin-ubiquitin fusion protein, and constructed a combinatorial peptide library to screen for BoNT/A light chain inhibitors using mRNA display. A protease assay was developed using immobilized intact SNAP-25 as the substrate. The new peptide inhibitors showed a 10-fold increase in affinity to BoNT/A light chain than the parent peptide. Interestingly, the sequences of the new peptide inhibitors showed abundant hydrophobic residues but few hydrophilic residues. The results suggest that mRNA display may provide a general approach in developing peptide inhibitors of BoNTs.

  4. The Current Status of Vertebrate Cellular mRNA IRESs

    PubMed Central

    Jackson, Richard J.

    2013-01-01

    Internal ribosome entry sites/segments (IRESs) were first discovered over 20 years ago in picornaviruses, followed by the discovery of two other types of IRES in hepatitis C virus (HCV), and the dicistroviruses, which infect invertebrates. In the meantime, reports of IRESs in eukaryotic cellular mRNAs started to appear, and the list of such putative IRESs continues to grow to the point in which it now stands at ∼100, 80% of them in vertebrate mRNAs. Despite initial skepticism from some quarters, there now seems universal agreement that there is genuine internal ribosome entry on the viral IRESs. However, the same cannot be said for cellular mRNA IRESs, which continue to be shrouded in controversy. The aim of this article is to explain why vertebrate mRNA IRESs remain controversial, and to discuss ways in which these controversies might be resolved. PMID:23378589

  5. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  6. Body Fluid Identification Using mRNA Profiling.

    PubMed

    Roeder, Amy D; Haas, Cordula

    2016-01-01

    RNA analysis is a valuable tool for the identification of the forensically relevant body fluids, saliva, blood, menstrual blood, cervicovaginal fluid, and semen. Multiple human mRNA and bacterial RNA markers have been identified for each of these body fluids. RNA and DNA can be coextracted from the same portion of a sample and RNA markers for different body fluids can be multiplexed in a single PCR, thereby maximizing the number of analyses that can be performed with limited sample material.

  7. The utility of protein and mRNA correlation

    SciTech Connect

    Payne, Samuel H.

    2015-01-01

    Transcriptomic, proteomic and metabolomic measurements are revolutionizing the way we model and predict cellular behavior, and multi-omic comparisons are being published with increased regularity. Some have expected a trivial and predictable correlation between mRNA and protein; however the manifest complexity of biological regulation suggests a more nuanced relationship. Indeed, observing this lack of strict correlation provides clues for new research topics, and has the potential for transformative biological insight.

  8. Vibrational force alters mRNA expression in osteoblasts.

    PubMed

    Tjandrawinata, R R; Vincent, V L; Hughes-Fulford, M

    1997-05-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  9. Local Translation and mRNA Trafficking in Axon Pathfinding

    PubMed Central

    2013-01-01

    Axons and their growth cones are specialized neuronal sub-compartments that possess translation machinery and have distinct messenger RNAs (mRNAs). Several classes of mRNAs have been identified using candidate-based, as well as unbiased genome-wide-based approaches. Axonal mRNA localization serves to regulate spatially the protein synthesis; thereby, providing axons with a high degree of functional autonomy from the soma during axon pathfinding. Importantly, de novo protein synthesis in navigating axonal growth cones is necessary for chemotropic responses to various axon guidance cues. This chapter discusses the molecular components involved in regulating axonal mRNA trafficking, targeting, and translation, and focuses on RNA binding proteins (RNBPs) and microRNAs. The functional significance of local mRNA translation in the directional response of growth cones to a gradient is highlighted along with the downstream signaling events that mediate local protein synthesis. The view that emerges is that local translation is tightly coupled to extracellular cues, enabling growth cones to respond to new signals with exquisite adaptability and spatiotemporal control. PMID:19343311

  10. Exaptive origins of regulated mRNA decay in eukaryotes

    PubMed Central

    Hamid, Fursham M.

    2016-01-01

    Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense‐mediated decay (NMD) and motif‐specific transcript destabilization by CCCH‐type zinc finger RNA‐binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those of RNA viruses and retrotransposable elements. We further hypothesize that the subsequent advent of “professional” innate and adaptive immunity systems allowed NMD and the motif‐triggered mechanisms to be efficiently repurposed for regulation of endogenous cellular transcripts. This scenario explains the rapid emergence of archetypical mRNA destabilization pathways in eukaryotes and argues that other aspects of post‐transcriptional gene regulation in this lineage might have been derived through a similar exaptation route. PMID:27438915

  11. Leptin mRNA expresses in the bull reproductive organ.

    PubMed

    Abavisani, A; Baghbanzadeh, A; Shayan, P; Tajik, P; Dehghani, H; Mirtorabi, M

    2009-12-01

    Leptin, a 167-amino acid hormone, is secreted mainly by fat tissue. It has some powerful effects on the regulation of metabolism and reproductive function through endocrine and probably paracrine mechanisms. The contribution rate of leptin function on the male reproductive system is not still clear. Characterization of leptin expression in reproductive organs will suggest that in addition to its endocrine action, leptin has also paracrine/autocrine effects on reproduction. The expression of functional leptin receptor mRNA has been already recognized in testis of rodents, human and cattle. Thus, the aim of the present study was to investigate the presence of leptin mRNA in the bovine testis, because it will be the first step for understanding of its paracrine/autocrine effects on the male reproductive organs in cattle. The present study was the first to showed leptin mRNA expression in the testis of Holstein cattle using reverse transcription and polymerase chain reaction (RT-PCR) analysis. RT-PCR products were amplified with nested PCR using inner leptin primer pairs to emphasis the first results. Besides, bovine beta actin gene was acted as an internal positive control as well as RNA purification marker. Our findings suggest that in addition to its endocrine actions at the hypothalamic-pituitary axis, leptin can has an autocrine and/or paracrine role in bull testicular function.

  12. Decreased albumin mRNA in immunodeficient wasted' mice

    SciTech Connect

    Libertin, C.R.; Buczek, N.; Weaver, P.; Mobarhan, S.; Woloschak, G.E. Argonne National Lab., IL )

    1991-03-15

    Mice bearing the autosomal recessive gene wst (wst/wst) develop a wasting syndrome' that leads to death by 28-32 days of age. These mice have faulty repair of damage induced by ionizing radiation, immunodeficiency at secretory sites, and neurologic abnormalities. In addition to a progressively more apparent wasted phenotype, wst/wst mice show other features of failure to thrive and malnutrition. Daily body weights of the animals revealed a loss in weight between 25 and 30 days of age, a time during which normal littermates were progressively and rapidly gaining weight. Albumin mRNA levels were measured by dilution dot blot hybridizations of liver-derived RNA preparations from wasted mice, littermates, and parental controls. In all wasted mice, albumin mRNA levels were reduced 5 to 10 fold compared to controls. Northern blots revealed that the albumin mRNA present in wasted mice was normal in length though reduced in amount. These results suggest there may be a relationship between low albumin synthesis and the wasting syndrome of the wst/wst mouse.

  13. mRNA capping: biological functions and applications.

    PubMed

    Ramanathan, Anand; Robb, G Brett; Chan, Siu-Hong

    2016-09-19

    The 5' m7G cap is an evolutionarily conserved modification of eukaryotic mRNA. Decades of research have established that the m7G cap serves as a unique molecular module that recruits cellular proteins and mediates cap-related biological functions such as pre-mRNA processing, nuclear export and cap-dependent protein synthesis. Only recently has the role of the cap 2'O methylation as an identifier of self RNA in the innate immune system against foreign RNA has become clear. The discovery of the cytoplasmic capping machinery suggests a novel level of control network. These new findings underscore the importance of a proper cap structure in the synthesis of functional messenger RNA. In this review, we will summarize the current knowledge of the biological roles of mRNA caps in eukaryotic cells. We will also discuss different means that viruses and their host cells use to cap their RNA and the application of these capping machineries to synthesize functional mRNA. Novel applications of RNA capping enzymes in the discovery of new RNA species and sequencing the microbiome transcriptome will also be discussed. We will end with a summary of novel findings in RNA capping and the questions these findings pose. PMID:27317694

  14. Sequence and expression of ferredoxin mRNA in barley

    SciTech Connect

    Zielinski, R.; Funder, P.M.; Ling, V. )

    1990-05-01

    We have isolated and structurally characterized a full-length cDNA clone encoding ferredoxin from a {lambda}gt10 cDNA library prepared from barley leaf mRNA. The ferredoxin clone (pBFD-1) was fused head-to-head with a partial-length cDNA clone encoding calmodulin, and was fortuitously isolated by screening the library with a calmodulin-specific oligonucleotide probe. The mRNA sequence from which pBFD-1 was derived is expressed exclusively in the leaf tissues of 7-d old barley seedlings. Barley pre-ferredoxin has a predicted size of 15.3 kDal, of which 4.6 kDal are accounted for by the transit peptide. The polypeptide encoded by pBFD-1 is identical to wheat ferredoxin, and shares slightly more amino acid sequence similarity with spinach ferredoxin I than with ferredoxin II. Ferredoxin mRNA levels are rapidly increased 10-fold by white light in etiolated barley leaves.

  15. mRNA capping: biological functions and applications.

    PubMed

    Ramanathan, Anand; Robb, G Brett; Chan, Siu-Hong

    2016-09-19

    The 5' m7G cap is an evolutionarily conserved modification of eukaryotic mRNA. Decades of research have established that the m7G cap serves as a unique molecular module that recruits cellular proteins and mediates cap-related biological functions such as pre-mRNA processing, nuclear export and cap-dependent protein synthesis. Only recently has the role of the cap 2'O methylation as an identifier of self RNA in the innate immune system against foreign RNA has become clear. The discovery of the cytoplasmic capping machinery suggests a novel level of control network. These new findings underscore the importance of a proper cap structure in the synthesis of functional messenger RNA. In this review, we will summarize the current knowledge of the biological roles of mRNA caps in eukaryotic cells. We will also discuss different means that viruses and their host cells use to cap their RNA and the application of these capping machineries to synthesize functional mRNA. Novel applications of RNA capping enzymes in the discovery of new RNA species and sequencing the microbiome transcriptome will also be discussed. We will end with a summary of novel findings in RNA capping and the questions these findings pose.

  16. Stochastic mRNA synthesis in mammalian cells.

    PubMed

    Raj, Arjun; Peskin, Charles S; Tranchina, Daniel; Vargas, Diana Y; Tyagi, Sanjay

    2006-10-01

    Individual cells in genetically homogeneous populations have been found to express different numbers of molecules of specific proteins. We investigated the origins of these variations in mammalian cells by counting individual molecules of mRNA produced from a reporter gene that was stably integrated into the cell's genome. We found that there are massive variations in the number of mRNA molecules present in each cell. These variations occur because mRNAs are synthesized in short but intense bursts of transcription beginning when the gene transitions from an inactive to an active state and ending when they transition back to the inactive state. We show that these transitions are intrinsically random and not due to global, extrinsic factors such as the levels of transcriptional activators. Moreover, the gene activation causes burst-like expression of all genes within a wider genomic locus. We further found that bursts are also exhibited in the synthesis of natural genes. The bursts of mRNA expression can be buffered at the protein level by slow protein degradation rates. A stochastic model of gene activation and inactivation was developed to explain the statistical properties of the bursts. The model showed that increasing the level of transcription factors increases the average size of the bursts rather than their frequency. These results demonstrate that gene expression in mammalian cells is subject to large, intrinsically random fluctuations and raise questions about how cells are able to function in the face of such noise. PMID:17048983

  17. mRNA capping: biological functions and applications

    PubMed Central

    Ramanathan, Anand; Robb, G. Brett; Chan, Siu-Hong

    2016-01-01

    The 5′ m7G cap is an evolutionarily conserved modification of eukaryotic mRNA. Decades of research have established that the m7G cap serves as a unique molecular module that recruits cellular proteins and mediates cap-related biological functions such as pre-mRNA processing, nuclear export and cap-dependent protein synthesis. Only recently has the role of the cap 2′O methylation as an identifier of self RNA in the innate immune system against foreign RNA has become clear. The discovery of the cytoplasmic capping machinery suggests a novel level of control network. These new findings underscore the importance of a proper cap structure in the synthesis of functional messenger RNA. In this review, we will summarize the current knowledge of the biological roles of mRNA caps in eukaryotic cells. We will also discuss different means that viruses and their host cells use to cap their RNA and the application of these capping machineries to synthesize functional mRNA. Novel applications of RNA capping enzymes in the discovery of new RNA species and sequencing the microbiome transcriptome will also be discussed. We will end with a summary of novel findings in RNA capping and the questions these findings pose. PMID:27317694

  18. Dynamics of tRNA translocation, mRNA translocation and tRNA dissociation during ribosome translation through mRNA secondary structures.

    PubMed

    Xie, Ping

    2014-07-01

    The ribosome can translate through the duplex region or secondary structure of mRNA. Recent single-molecule experimental data showed that downstream mRNA secondary structures have more sensitive effects on deacylated tRNA dissociation from the E site than on tRNA translocation in the 50S subunit. However, it is unclear how the downstream mRNA secondary structure can affect the tRNA dissociation from the E site, which is distant from the secondary structure. Here, based on our proposed ribosomal translocation model, we theoretically study the dynamics of tRNA translocation in the 50S subunit, mRNA translocation and tRNA dissociation, giving quantitative explanations of the single-molecule experimental data. It is shown that the effect of the downstream mRNA secondary structure on tRNA dissociation is via the effect on mRNA translocation, while the mRNA secondary structure has no effect on the rate of deacylated tRNA dissociation from the posttranslocation state. The slow mRNA translocation, which results in slow tRNA dissociation, derives from the occurrence of the futile transition, which is induced by the energy barrier from base pair unwinding to resist the forward translocation. The reduced translation rate through the mRNA secondary structure is induced by the slow mRNA translocation rather than the slow tRNA dissociation.

  19. Nucleocytoplasmic transport: the influenza virus NS1 protein regulates the transport of spliced NS2 mRNA and its precursor NS1 mRNA.

    PubMed

    Alonso-Caplen, F V; Nemeroff, M E; Qiu, Y; Krug, R M

    1992-02-01

    Influenza virus unspliced NS1 mRNA, like retroviral pre-mRNAs, is efficiently exported from the nucleus and translated in the cytoplasm of infected cells. With human immunodeficiency virus (HIV), the transport of viral pre-mRNAs is facilitated by the viral Rev protein. We tested the possibility that the influenza virus NS1 protein, a nuclear protein that is encoded by unspliced NS1 mRNA, has the same function as the HIV Rev protein. Surprisingly, using transient transfection assays, we found that rather than facilitating the nucleocytoplasmic transport of unspliced NS1 mRNA, the NS1 protein inhibited the transport of NS2 mRNA, the spliced mRNA generated from NS1 mRNA. The efficient transport of NS2 mRNA from the nucleus to the cytoplasm occurred only when the synthesis of the NS1 protein was abrogated by amber mutations. The NS1 protein down-regulated the export of NS2 mRNA whether or not it was generated by splicing, indicating that the NS1 protein acted directly on transport. Actinomycin D chase experiments verified that the NS1 protein acted on the transport and not on the differential stability of NS2 mRNA in the nucleus as compared to the cytoplasm. In addition, the NS1 protein inhibited the transport of NS1 mRNA itself, which contains all of the sequences in NS2 mRNA, particularly when NS1 mRNA was released from the splicing machinery by mutating its 3'-splice site. Our results indicate that the NS1 protein-mediated inhibition of transport requires sequences in NS2 mRNA. The transport of the viral PB1 protein, nucleocapsid protein, hemagglutinin, membrane protein, and M2 mRNAs was not affected by the NS1 protein. When the NS2 mRNA sequence was covalently attached to the PB1 mRNA, the transport of the chimeric mRNA was inhibited by the NS1 protein. Our results identify a novel function of the influenza virus NS1 protein and demonstrate that post-transcriptional control of gene expression can also occur at the level of the nucleocytoplasmic transport of a

  20. Combination of Nimbolide and TNF-α-Increases Human Colon Adenocarcinoma Cell Death through JNK-mediated DR5 Up- regulation.

    PubMed

    Chantana, Chantana; Yenjai, Chavi; Reubroycharoen, Prasert; Waiwut, Pornthip

    2016-01-01

    Tumor necrosis factor (TNF-α), an inflammatory cytokine that plays an important role in the control of cell proliferation, differentiation, and apoptosis, has previously been used in anti-cancer therapy. However, the therapeutic applications of TNF-α are largely limited due to its general toxicity and anti-apoptotic influence. To overcome this problem, the present study focused on the effect of active constituents isolated from a medicinal plant on TNF-α-induced apoptosis in human colon adenocarcinoma (HT-29) cells. Nimbolide from Azadirachta indica was evaluated for cytotoxicity by methyl tetrazolium 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay and phase contrast microscopy. Effects on apoptotic signaling proteins were investigated using Western blot analysis. Nimbolide showed cytotoxicity against HT-29 cells that was significantly different from the control group (<0.01), a concentration of 10 μM significantly inducing cell death (<0.01). In combination with TNF-α, nimbolide significantly enhanced-induced cell death. In apoptotic pathway, nimbolide activated c-Jun N-terminal kinase (JNK) phosphorylation, BH3 interacting-domain death agonist (Bid) and up-regulated the death receptor 5 (DR5) level. In the combination group, nimbolide markedly sensitized TNF-α-induced JNK, Bid, caspase-3 activation and the up-regulation of DR5. Our findings overall indicate that nimbolide may enhance TNF-α-mediated cellular proliferation inhibition through increasing cell apoptosis of HT-29 cells by up-reglation of DR5 expression via the JNK pathway. PMID:27268643

  1. Procollagen mRNA metabolism during the fibroblast cell cycle and its synthesis in transformed cells.

    PubMed

    Parker, I; Fitschen, W

    1980-06-25

    Procollagen mRNA was isolated from mouse embryos and used for the synthesis of a highly labelled cDNA probe complementary to collagen mRNA. This probe was used for the investigation of procollagen mRNA metabolism during the cell cycle of 3T6 mouse embryo fibroblasts in culture. Titration hybridization experiments revealed that procollagen mRNA was present throughout the cell cycle following stumulation of confluent monolayers. Procollagen mRNA levels of sparse cultures appeared similar to those of unstimulated monolayers. The fluctuating levels of collagen synthesis during the cell cycle can be ascribed to changes in the amount of collagen mRNA present. In mouse sarcoma virus transformed 3T3 cells only 20--30% of the amount of procollagen mRNA in 3T3 cells is present indicating that the decline in collagen synthesis is due to mRNA availability.

  2. Polysome analysis for determining mRNA and ribosome association in Saccharomyces cerevisiae.

    PubMed

    Hu, Wenqian; Coller, Jeff

    2013-01-01

    The control of mRNA translation is vital for gene expression and it is regulated under various physiological and pathological conditions (Groppo and Richter, 2009). For example, under some physiological conditions, translational initiation is impaired. Therefore, the association of mRNA with ribosomes and/or ribosomal subunits can provide a powerful means to dissect specific aspects of posttranscriptional mRNA regulation. This protocol describes a technique used to determine ribosome occupancy on mRNA.

  3. Conceptual Modeling of mRNA Decay Provokes New Hypotheses

    PubMed Central

    Somekh, Judith; Haimovich, Gal; Guterman, Adi; Dori, Dov; Choder, Mordechai

    2014-01-01

    Biologists are required to integrate large amounts of data to construct a working model of the system under investigation. This model is often informal and stored mentally or textually, making it prone to contain undetected inconsistencies, inaccuracies, or even contradictions, not much less than a representation in free natural language. Using Object-Process Methodology (OPM), a formal yet visual and humanly accessible conceptual modeling language, we have created an executable working model of the mRNA decay process in Saccharomyces cerevisiae, as well as the import of its components to the nucleus following mRNA decay. We show how our model, which incorporates knowledge from 43 articles, can reproduce outcomes that match the experimental findings, evaluate hypotheses, and predict new possible outcomes. Moreover, we were able to analyze the effects of the mRNA decay model perturbations related to gene and interaction deletions, and predict the nuclear import of certain decay factors, which we then verified experimentally. In particular, we verified experimentally the hypothesis that Rpb4p, Lsm1p, and Pan2p remain bound to the RNA 3′-untralslated region during the entire process of the 5′ to 3′ degradation of the RNA open reading frame. The model has also highlighted erroneous hypotheses that indeed were not in line with the experimental outcomes. Beyond the scientific value of these specific findings, this work demonstrates the value of the conceptual model as an in silico vehicle for hypotheses generation and testing, which can reinforce, and often even replace, risky, costlier wet lab experiments. PMID:25255440

  4. Cistanches Herba aqueous extract affecting serum BGP and TRAP and bone marrow Smad1 mRNA, Smad5 mRNA, TGF-β1 mRNA and TIEG1 mRNA expression levels in osteoporosis disease.

    PubMed

    Liang, Hai-Dong; Yu, Fang; Tong, Zhi-Hong; Zhang, Hong-Quan; Liang, Wu

    2013-02-01

    We studied molecular mechanism of Cistanches Herba aqueous extract (CHAE) in ovariectomized (OVX) rats, as an experimental model of postmenopausal osteoporosis. Female rats were either sham-operated or bilaterally OVX; and at 60 days postoperatively. The OVX group (n = 8) received an ovariectomy and treatment with normal saline for 90 days commencing from 20th post ovariectomy day. The ovariectomized +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy and were treated with Cistanches Herba aqueous extract of 100 mg/kg body weight daily for 90 days commencing from 22nd post ovariectomy day. The ovariectomy +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy, and were treated with the of 200 mg/kg body weight daily for 90 days commencing from 20th post ovariectomy day. Serum BGP and TRAP, E2, FSH and LH level, bone marrow Smad1, Smad5, TGF-β1 and TIEG1 mRNA expression levels were examined. Results showed that serum BGP and TRAP, FSH and LH levels were significantly increased, whereas E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels were significantly decreased in OVX rats compared to sham rats. 90 days of CHAE treatment could significantly decrease serum BGP and TRAP, FSH and LH levels, and increase E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels in OVX rats. It can be concluded that CHAE play its protective effect against OVX-induced bone degeneration partly by regulating some bone metabolism related genes, e.g. Smad1, Smad5, TGF-β1 and TIEG1.

  5. Measuring mRNA Translation by Polysome Profiling.

    PubMed

    Kudla, Marek; Karginov, Fedor V

    2016-01-01

    Determination of mRNA translation rates is essential to understanding the regulatory pathways governing eukaryotic gene expression. In this chapter, we present a transcriptome-wide method to assess translation by association of mRNAs with polysomes on sucrose density gradients. After sedimentation, the fractions are spiked with a control RNA mixture and the RNA content is measured by high-throughput sequencing. Normalization to the spike-ins provides a global quantitative view on the translational status of cellular mRNAs, with the ability to measure changes and identify active and silent subpopulations of each.

  6. Differential regulation of plastid mRNA stability. Progress report

    SciTech Connect

    Stern, D.B.

    1993-09-01

    Our goal is to identify cis-acting sequences and transacting factors that function in plastid mRNA maturation, stabilization, and/or decay through an in vitro and in vivo analysis of mRNA:protein interactions. Our previous results emphasized the study of 3{prime}end inverted repeat sequences (IRs) that serve both as mRNA processing elements and stability determinants, and associate with plastid proteins that potentially play enzymatic, structural and/or regulatory roles. We seek to define, by single base and internal deletion mutagenesis, the sequence and structural requirements for protein binding to the 3{prime} IRs of petD and psbA mRNAs; to purify RNA-binding proteins that demonstrate gene- or sequence-specific binding, or that are implicated in RNA stabilization or decay; and to investigate the native form of mRNA in the plastid, by attempting to purify ribonucleoprotein (RNP) particles from organelles. Our view of mRNA decay is that it is regulated by three interactive components: RNA structure, ribonucleases and RNA-binding proteins. We have used mutagenesis to study the role of RNA structure in regulating RNA decay rates, and to identify protein binding and endonuclease recognition sites. We have identified at least three endonuclease activities; one that cleaves psbA RNA; and two whose cleavage patterns with petD 3{prime} IR-RNA has been studied (endoC1 and endoC2). Additionally, we have continued to analyze the properties of the major RNA processing exoribonuclease. We have concentrated our efforts on three RNA-binding proteins. A 100 kd protein with properties suggestive of a mammalian RNP component has been purified. A protein of 55 kd that may also be an endonuclease has been partially purified. We have studied the interaction of a 29 kd protein with the petD stem/loop, and its role in RNA processing. Recently, we have used a novel gel shift/SDS-PAGE technique to identify new RNA-binding proteins.

  7. [Age-dependent changes in mRNA transport (nucleus-cytoplasm)].

    PubMed

    Müller, W E; Agutter, P S; Prochnow, D J; Fasold, H; Sève, A P; Tsiapalis, C M; Schröder, H C

    1993-01-01

    Transport of mRNA from nucleus to cytoplasm is an ATP-dependent process which occurs strictly vectorially. Because the mRNA is structurally bound during transport, mRNA transport is a "solid-state" process consisting of i) mRNA release from the nuclear matrix, ii) mRNA translocation through the nuclear pore, and iii) cytoskeletal binding. We identified and purified the following components involved in the translocation step: i) the nuclear envelope (NE) nucleoside triphosphatase (NTPase) which is stimulated by the 3'poly(A) tail of mRNA, ii) the poly(A)-recognizing mRNA carrier, iii) the NE protein kinase, and iv) the NE phosphatase. In addition, we found that an RNA helicase activity is present in NE, which also may be involved in RNA transport. Our results show that, besides poly(A), also double-stranded RNA structures may modulate RNA export. The amount of mRNA released from nuclei markedly decreases with age. Evidence is presented that this age-dependent change is caused by an impairment of polyadenylation of mRNA, hnRNA processing, release of mRNA from nuclear matrix, and translocations of mRNA from nuclear to cytoplasmic compartment (decrease in activities of NE NTPase, protein kinase, and phosphatase; decrease in poly(A)-binding affinity of mRNA carrier).

  8. Myc Regulation of mRNA Cap Methylation

    PubMed Central

    Cowling, Victoria H.; Cole, Michael D.

    2010-01-01

    The c-myc proto-oncogene regulates the expression of 15% to 20% of all genes, depending on the cell type, and the regulation is usually modest (1.5- to 2.0-fold). The authors discovered that in addition to regulating mRNA abundance, c-Myc regulates the formation of the 7-methylguanosine cap on many mRNAs, including transcriptional target genes and others not transcriptionally activated. Because the 7-methylguanosine cap is required for effective translation, enhanced methyl cap formation leads to increased protein production from Myc-responsive genes that exceeds the transcriptional induction. Increased cap methylation is linked to Myc-dependent enhanced activity of 2 critical kinases, TFIIH and p-TEFb, which phosphorylate the RNA polymerase II carboxy-terminal domain (CTD). Phosphorylation of the CTD recruits RNGTT and RNMT, the enzymes involved in mRNA capping, to the nascent transcript. Evidence is accumulating that enhanced cap methylation makes a significant contribution to Myc-dependent gene regulation and protein production. PMID:21170289

  9. Sequence specificity of mRNA N6-adenosine methyltransferase.

    PubMed

    Csepany, T; Lin, A; Baldick, C J; Beemon, K

    1990-11-25

    The sequence specificity of chicken mRNA N6-adenosine methyltransferase has been investigated in vivo. Localization of six new N6-methyladenosine sites on Rous sarcoma virus (RSV) virion RNA has confirmed our extended consensus sequence for methylation: RGACU, where R is usually a G (7/12). We have also observed A (2/12) and U (3/12) at the -2 position (relative to m6A at +1) but never a C. At the +3 position, the U was observed 10/12 times; an A and a C were observed once each in weakly methylated sequences. The extent of methylation varied between the different sites up to a maximum of about 90%. To test the significance of this consensus sequence, it was altered by site-specific mutagenesis, and methylation was assayed after transfection of mutated RSV DNA into chicken embryo fibroblasts. We found that changing the G at -1 or the U at +3 to any other residue inhibited methylation. However, inhibition of methylation at all four of the major sites in the RSV src gene did not detectably alter the steady-state levels of the three viral RNA species or viral infectivity. Additional mutants that inactivated the src protein kinase activity produced less virus and exhibited relatively less src mRNA in infected cells. PMID:2173695

  10. Subcellular mRNA localisation at a glance

    PubMed Central

    Parton, Richard M.; Davidson, Alexander; Davis, Ilan; Weil, Timothy T.

    2014-01-01

    ABSTRACT mRNA localisation coupled to translational regulation provides an important means of dictating when and where proteins function in a variety of model systems. This mechanism is particularly relevant in polarised or migrating cells. Although many of the models for how this is achieved were first proposed over 20 years ago, some of the molecular details are still poorly understood. Nevertheless, advanced imaging, biochemical and computational approaches have started to shed light on the cis-acting localisation signals and trans-acting factors that dictate the final destination of localised transcripts. In this Cell Science at a Glance article and accompanying poster, we provide an overview of mRNA localisation, from transcription to degradation, focusing on the microtubule-dependent active transport and anchoring mechanism, which we will use to explain the general paradigm. However, it is clear that there are diverse ways in which mRNAs become localised and target protein expression, and we highlight some of the similarities and differences between these mechanisms. PMID:24833669

  11. Motion of individual ribosomes along mRNA

    NASA Astrophysics Data System (ADS)

    Visscher, Koen

    2004-11-01

    Ribosomes move along messenger RNA to translate a sequence of ribonucleotides into a corresponding sequence of amino acids that make up a protein. Efficient motion of ribosomes along the mRNA requires hydrolysis of GTP, converting chemical energy into mechanical work, like better known molecular motors such as kinesin. However, motion is just one of the many tasks of the ribosome, whereas for kinesin, motion itself is the main goal. In keeping with these functional differences, the ribosome is also much larger consisting of more than 50 proteins and with half of its mass made up of ribosomal RNA. Such structural complexity enables indirect ways of coupling GTP hydrolysis to directed motion. In order to elucidate the mechanochemical coupling in ribosomes we have developed a single-molecule assay based on using optical tweezers to record the motion of individual ribosomes along mRNA. Translation rates of 2-4 codons/s have been observed. However, when increasing the force opposing motion, we observe backward slippage of ribosomes along homopolymeric poly(U) messages. Currently, it is not clear if the motor operates in reverse or if backward motion has become completely uncoupled from GTP hydrolysis. Interestingly, force-induced backward motion is of biological relevance because of its possible role in -1 frameshifting, a mechanism used by viruses to regulate gene expression at the level of translation.

  12. Tracking single mRNA molecules in live cells

    NASA Astrophysics Data System (ADS)

    Moon, Hyungseok C.; Lee, Byung Hun; Lim, Kiseong; Son, Jae Seok; Song, Minho S.; Park, Hye Yoon

    2016-06-01

    mRNAs inside cells interact with numerous RNA-binding proteins, microRNAs, and ribosomes that together compose a highly heterogeneous population of messenger ribonucleoprotein (mRNP) particles. Perhaps one of the best ways to investigate the complex regulation of mRNA is to observe individual molecules. Single molecule imaging allows the collection of quantitative and statistical data on subpopulations and transient states that are otherwise obscured by ensemble averaging. In addition, single particle tracking reveals the sequence of events that occur in the formation and remodeling of mRNPs in real time. Here, we review the current state-of-the-art techniques in tagging, delivery, and imaging to track single mRNAs in live cells. We also discuss how these techniques are applied to extract dynamic information on the transcription, transport, localization, and translation of mRNAs. These studies demonstrate how single molecule tracking is transforming the understanding of mRNA regulation in live cells.

  13. PKA isoforms coordinate mRNA fate during nutrient starvation

    PubMed Central

    Tudisca, Vanesa; Simpson, Clare; Castelli, Lydia; Lui, Jennifer; Hoyle, Nathaniel; Moreno, Silvia; Ashe, Mark; Portela, Paula

    2012-01-01

    Summary A variety of stress conditions induce mRNA and protein aggregation into mRNA silencing foci, but the signalling pathways mediating these responses are still elusive. Previously we demonstrated that PKA catalytic isoforms Tpk2 and Tpk3 localise with processing and stress bodies in Saccharomyces cerevisiae. Here, we show that Tpk2 and Tpk3 are associated with translation initiation factors Pab1 and Rps3 in exponentially growing cells. Glucose starvation promotes the loss of interaction between Tpk and initiation factors followed by their accumulation into processing bodies. Analysis of mutants of the individual PKA isoform genes has revealed that the TPK3 or TPK2 deletion affects the capacity of the cells to form granules and arrest translation properly in response to glucose starvation or stationary phase. Moreover, we demonstrate that PKA controls Rpg1 and eIF4G1 protein abundance, possibly controlling cap-dependent translation. Taken together, our data suggest that the PKA pathway coordinates multiple stages in the fate of mRNAs in association with nutritional environment and growth status of the cell. PMID:22899713

  14. Akt and mRNA translation by interferons.

    PubMed

    Kaur, Surinder; Katsoulidis, Efstratios; Platanias, Leonidas C

    2008-07-15

    The important antiviral and antitumor properties of interferons (IFNs) in vitro and in vivo have triggered extensive investigations over the years to understand the signals that control such responses in normal and malignant cells. The discovery of IFN-regulated Jak-Stat pathways and various ancillary cascades has led to the definition and establishment of models by which early signals at the IFN receptor level ultimately induce transcription of IFN-controlled genes to generate antiviral and antitumor responses. An important outstanding issue in the field has been the identification of the mechanisms responsible for regulation of mRNA translation of IFN-sensitive genes. There is emerging evidence suggesting that mTOR and its effectors play key and essential roles in the generation of such responses. Moreover, recent studies point towards Akt as a common and central integrator for such responses in Type I and II IFN signaling, via its regulatory effects on mTOR. Here, we review the accumulating evidence on the importance of Akt in IFN-signaling, with particular emphasis on its role in mRNA translation of IFN-sensitive genes. The implications of such studies on the overall perception of the Akt pathway are also discussed.

  15. Rapid high-yield mRNA extraction for reverse-transcription PCR.

    PubMed

    Wang, Chengming; Kim, Teayoun; Gao, Dongya; Vaglenov, Alexander; Kaltenboeck, Bernhard

    2007-04-10

    Reverse-transcription PCR (RT-PCR) is the gold standard for mRNA quantification. Efficient, rapid, and high-throughput mRNA extraction is a prerequisite to ensure PCR sensitivity and precision, particularly for quantification of low-abundance mRNAs, and for large numbers of samples. Many mRNA extraction methods entail meticulous handling of individual samples, and are not well suited for large sample numbers. To achieve simple separation of mRNA binding matrix and the medium from which mRNA is to be isolated, oligo (dT)(20)-coated silica beads were used. Simple centrifugation and decanting steps can be used throughout the extraction procedure to separate supernatant fluids from the silica beads. DNase treatment reduced clumping of sedimented beads, thus facilitating bead resuspension and avoiding repeated agitation. DNase treatment also significantly reduced contaminating DNA, increased mRNA purity, and enhanced mRNA PCR readout by approximately 5-fold. The number of target transcripts per sample aliquot was higher in DNase-treated mRNA than in non-treated mRNA or in total nucleic acids. Thus, use of DNase-treated mRNA increased sensitivity of detection and quantification of low-copy transcripts. In conclusion, we describe here a simple, rapid, and cost-effective method that facilitates convenient extraction of high-quality mRNA by minimizing cumbersome mechanical disruption and pipetting steps.

  16. Rituximab Plus Interleukin-2 in Treating Patients With Hematologic Cancer

    ClinicalTrials.gov

    2013-06-05

    B-cell Adult Acute Lymphoblastic Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  17. [Studies on adoptive immunotherapy using recombinant interleukin 2].

    PubMed

    Sugiyama, Y; Takao, H; Saji, S; Sakata, K

    1986-04-01

    Lymphokine activated killer (LAK) cells derived from normal subjects were examined as to the following points: 1) monoclonal analysis of LAK, 2) cytotoxic ability of LAK, 3) effect on LAK cytotoxic ability of the presence in the medium of either serum obtained from gastric cancer patients or nonspecific immunosuppressive factors (ferritin, IAP, AFP), 4) effect, on induction of their cytotoxicity, of the presence in the medium during culture of sera from gastric cancer patients, simulating the conditions of in vivo administration and 5) augmentation of cytotoxic ability of LAK by simultaneous IL2 administration. The following results were obtained. 1) Monoclonal marker analysis of LAK revealed that the ratios of OKT3+, OKT4+, OKT8+ and OKIa1+ lymphocytes were all significantly higher than those in peripheral blood lymphocytes (PBL). 2) Cytotoxic ability of LAK against various tumor cell lines (MKN-28, MKN-45, KATOIII, PC-10 and K562) was found to be higher than that of PBL. 3) Addition to medium of ferritin, IAP or AFP significantly reduced the cytotoxic ability of both PBL and LAK against various tumor cell lines. However, the degree of reduction was significantly milder in the case of LAK than in PBL. 4) The cytotoxicity-suppressing effects of gastric cancer sera (untreated, at stages III and IV) were significantly milder in the case of LAK than in PBL. 5) When gastric cancer serum was added to medium, instead of normal AB serum during induction of LAK, its cytotoxic ability against various tumor cell lines was significantly reduced. Its cytotoxic ability was nevertheless significantly higher than that of PBL. 6) When IL2 was added to medium during cytotoxicity assay, cytotoxic ability of LAK was augmented. When LAK was cultured for 1 hour before assay in fresh medium containing 1,000 U/ml IL2, its cytotoxic ability was further augmented. PMID:3488028

  18. Endothelin-1 mRNA expression in the rat kidney.

    PubMed Central

    Nunez, D J; Taylor, E A; Oh, V M; Schofield, J P; Brown, M J

    1991-01-01

    Cultured pig and bovine endothelial cells are capable of synthesizing endothelin-1 (ET-1). Thus the observation that the kidney contains a large number of binding sites for ET distributed in close proximity to endothelial cells suggests that ET-1 may be released from the endothelium to act locally on these receptors. In support of this hypothesis, using the technique of reverse transcription with specific amplification of cDNA, we report here that ET-1 mRNA is expressed in the rat kidney. The partial sequence of the amplified rat ET-1 cDNA confirms that the mature rat peptide is identical to that of the mouse, man and pig, but with some differences in codon usage. PMID:2039460

  19. Origin of Hepatitis Delta Virus mRNA

    PubMed Central

    Gudima, Severin; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Moraleda, Gloria; Taylor, John

    2000-01-01

    Hepatitis delta virus (HDV) is unique relative to all known animal viruses, especially in terms of its ability to redirect host RNA polymerase(s) to transcribe its 1,679-nucleotide (nt) circular RNA genome. During replication there accumulates not only more molecules of the genome but also its exact complement, the antigenome. In addition, there are relatively smaller amounts of an 800-nt RNA of antigenomic polarity that is polyadenylated and considered to act as mRNA for translation of the single and essential HDV protein, the delta antigen. Characterization of this mRNA could provide insights into the in vivo mechanism of HDV RNA-directed RNA transcription and processing. Previously, we showed that the 5′ end of this RNA was located in the majority of species, at nt 1630. The present studies show that (i) at least some of this RNA, as extracted from the liver of an HDV-infected woodchuck, behaved as if it contained a 5′-cap structure; (ii) in the infected liver there were additional polyadenylated antigenomic HDV RNA species with 5′ ends located at least 202 nt and even 335 nt beyond the nt 1630 site, (iii) the 5′ end at nt 1630 was not detected in transfected cells, following DNA-directed HDV RNA transcription, in the absence of genome replication, and (iv) nevertheless, using in vitro transcription with purified human RNA polymerase II holoenzyme and genomic RNA template, we did not detect initiation of template-dependent RNA synthesis; we observed only low levels of 3′-end addition to the template. These new findings support the interpretation that the 5′ end detected at nt 1630 during HDV replication represents a specific site for the initiation of an RNA-directed RNA synthesis, which is then modified by capping. PMID:10906174

  20. The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer.

    PubMed Central

    Bartlett, J. M.; Langdon, S. P.; Simpson, B. J.; Stewart, M.; Katsaros, D.; Sismondi, P.; Love, S.; Scott, W. N.; Williams, A. R.; Lessells, A. M.; Macleod, K. G.; Smyth, J. F.; Miller, W. R.

    1996-01-01

    The expression of mRNA for the epidermal growth factor (EGF) receptor, EGF and transforming growth factor alpha (TGF-alpha) was determined in 76 malignant, six borderline and 15 benign primary ovarian tumours using the reverse transcriptase-polymerase chain reaction and related to clinical and pathological parameters. Of the malignant tumours, 70% (53/76) expressed EGF receptor mRNA, 31% (23/75) expressed EGF mRNA and 35% (26/75) expressed TGF-alpha mRNA. For the borderline tumours, four of six (67%) expressed EGF receptor mRNA, 1/6 (17%) expressed TGF-alpha mRNA and none expressed EGF mRNA. Finally, 33% (5/15) of the benign tumours expressed EGF receptor mRNA, whereas 40% (6/15) expressed EGF mRNA and 7% (1/15) expressed TGF-alpha mRNA. The presence of the EGF receptor in malignant tumours was associated with that of TGF-alpha (P = 0.0015) but not with EGF (P = 1.00), whereas there was no relationship between the presence of EGF and TGF-alpha (P = 1.00). EGF receptor mRNA expression was significantly and positively associated with serous histology (P = 0.006) but not with stage or grade. Neither EGF nor TGF-alpha showed any link with histological subtype or stage. The survival of patients with malignant tumours possessing EGF receptor mRNA was significantly reduced compared with that of patients whose tumours were negative (P = 0.030 for all malignant tumours; P = 0.007 for malignant epithelial tumours only). In contrast, neither the expression of TGF-alpha nor EGF was related to survival. These data suggest that the presence of EGF receptor mRNA is associated with poor prognosis in primary ovarian cancer. Images Figure 1 PMID:8562334

  1. The Glc7p nuclear phosphatase promotes mRNA export by facilitating association of Mex67p with mRNA.

    PubMed

    Gilbert, Wendy; Guthrie, Christine

    2004-01-30

    mRNA export is mediated by Mex67p:Mtr2p/NXF1:p15, a conserved heterodimeric export receptor that is thought to bind mRNAs through the RNA binding adaptor protein Yra1p/REF. Recently, mammalian SR (serine/arginine-rich) proteins were shown to act as alternative adaptors for NXF1-dependent mRNA export. Npl3p is an SR-like protein required for mRNA export in S. cerevisiae. Like mammalian SR proteins, Npl3p is serine-phosphorylated by a cytoplasmic kinase. Here we report that this phosphorylation of Npl3p is required for efficient mRNA export. We further show that the mRNA-associated fraction of Npl3p is unphosphorylated, implying a subsequent nuclear dephosphorylation event. We present evidence that the essential, nuclear phosphatase Glc7p promotes dephosphorylation of Npl3p in vivo and that nuclear dephosphorylation of Npl3p is required for mRNA export. Specifically, recruitment of Mex67p to mRNA is Glc7p dependent. We propose a model whereby a cycle of cytoplasmic phosphorylation and nuclear dephosphorylation of shuttling SR adaptor proteins regulates Mex67p:Mtr2p/NXF1:p15-dependent mRNA export. PMID:14759366

  2. qPCR based mRNA quality score show intact mRNA after heat stabilization.

    PubMed

    Karlsson, Oskar; Segerström, Lova; Sjöback, Robert; Nylander, Ingrid; Borén, Mats

    2016-03-01

    Analysis of multiple analytes from biological samples can be challenging as different analytes require different preservation measures. Heat induced enzymatic inactivation is an efficient way to preserve proteins and their modifications in biological samples but RNA quality, as measured by RIN value, has been a concern in such samples. Here, we investigate the effect of heat stabilization compared with standard snap freezing on RNA quality using two RNA extraction protocols, QiaZol with and without urea pre-solubilization, and two RNA quality measurements: RIN value, as defined by the Agilent Bioanalyzer, and an alternative qPCR based method. DNA extraction from heat stabilized brain samples was also examined. The snap frozen samples had RIN values about 1 unit higher than heat stabilized samples for the direct QiaZol extraction but equal with stabilized samples using urea pre-solubilization. qPCR based RNA quality measurement showed no difference in quality between snap frozen and heat inactivated samples. The probable explanation for this discrepancy is that the RIN value is an indirect measure based on rRNA, while the qPCR score is based on actual measurement of mRNA quality. The DNA yield from heat stabilized brain tissue samples was significantly increased, compared to the snap frozen tissue, without any effects on purity or quality. Hence, heat stabilization of tissues opens up the possibility for a two step preservation protocol, where proteins and their modifications can be preserved in the first heat based step, while in a second step, using standard RNA preservation strategies, mRNA be preserved. This collection strategy will enable biobanking of samples where the ultimate analysis is not determined without loss of sample quality. PMID:27077049

  3. Evaluation of CTX-M steady-state mRNA, mRNA half-life and protein production in various STs of Escherichia coli

    PubMed Central

    Geyer, Chelsie N.; Fowler, Randal C.; Johnson, James R.; Johnston, Brian; Weissman, Scott J.; Hawkey, Peter; Hanson, Nancy D.

    2016-01-01

    Objectives High levels of β-lactamase production can impact treatment with a β-lactam/β-lactamase inhibitor combination. Goals of this study were to: (i) compare the mRNA and protein levels of CTX-M-15- and CTX-M-14-producing Escherichia coli from 18 different STs and 10 different phylotypes; (ii) evaluate the mRNA half-lives and establish a role for chromosomal- and/or plasmid-encoded factors; and (iii) evaluate the zones of inhibition for piperacillin/tazobactam and ceftolozane/tazobactam. Methods Disc diffusion was used to establish zone size. RNA analysis was accomplished using real-time RT–PCR and CTX-M protein levels were evaluated by immunoblotting. Clinical isolates, transformants and transconjugants were used to evaluate mRNA half-lives. Results mRNA levels of CTX-M-15 were up to 165-fold higher compared with CTX-M-14. CTX-M-15 protein levels were 2–48-fold less than their respective transcript levels, while CTX-M-14 protein production was comparable to the observed transcript levels. Nineteen of 25 E. coli (76%) had extended CTX-M-15 mRNA half-lives of 5–15 min and 16 (100%) CTX-M-14 isolates had mRNA half-lives of <2–3 min. Transformants had mRNA half-lives of <2 min for both CTX-M-type transcripts, while transconjugant mRNA half-lives corresponded to the half-life of the donor. Ceftolozane/tazobactam zone sizes were ≥19 mm, while piperacillin/tazobactam zone sizes were ≥17 mm. Conclusions CTX-M-15 mRNA and protein production did not correlate. Neither E. coli ST nor phylotype influenced the variability observed for CTX-M-15 mRNA or protein produced. mRNA half-life is controlled by a plasmid-encoded factor and may influence mRNA transcript levels, but not protein levels. PMID:26612874

  4. Oscillatory kinetics of gene expression: Protein conversion and slow mRNA transport

    SciTech Connect

    Zhdanov, V. P.

    2009-06-15

    The negative feedback between mRNA and regulatory-protein production may result in oscillations in the kinetics of gene expression if the mRNA-protein interplay includes protein conversion. Using a mean-field kinetic model, we show that such oscillations can be amplified due to limitations of the mRNA transport between the nucleus and cytoplasm. This effect may be dramatic for the mRNA population in the nucleus.

  5. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain. PMID:7852311

  6. Nuclear imprisonment: viral strategies to arrest host mRNA nuclear export.

    PubMed

    Kuss, Sharon K; Mata, Miguel A; Zhang, Liang; Fontoura, Beatriz M A

    2013-07-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.

  7. Correlation of mRNA and protein in complex biological samples.

    PubMed

    Maier, Tobias; Güell, Marc; Serrano, Luis

    2009-12-17

    The correlation between mRNA and protein abundances in the cell has been reported to be notoriously poor. Recent technological advances in the quantitative analysis of mRNA and protein species in complex samples allow the detailed analysis of this pathway at the center of biological systems. We give an overview of available methods for the identification and quantification of free and ribosome-bound mRNA, protein abundances and individual protein turnover rates. We review available literature on the correlation of mRNA and protein abundances and discuss biological and technical parameters influencing the correlation of these central biological molecules.

  8. Regulated production of an influenza virus spliced mRNA mediated by virus-specific products.

    PubMed

    Smith, D B; Inglis, S C

    1985-09-01

    The influenza virus NS2 mRNA is generated through processing by cellular enzymes of a transcript (the NS1 mRNA) of virion RNA segment 8. Production of this mRNA is altered in cells infected with a mutant of influenza A (fowl plague) virus. The proportion of segment 8 transcripts which accumulated in a spliced form was found to be considerably lower in mutant virus-infected cells than in cells infected with wild-type virus, and the amplification in production of NS2 mRNA relative to that of the NS1 mRNA, which normally occurs during infection with wild-type virus, was not observed with the mutant. The NS1 mRNA specified by the mutant virus has unaltered splice recognition sites and was apparently processed normally during a mixed infection with a strain of virus which is wild-type for production of NS2 mRNA. These results suggest that the production of NS2 mRNA is regulated by virus-specific products; these products may act by increasing the efficiency of splicing of NS1 mRNA.

  9. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    PubMed Central

    Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.

    2013-01-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491

  10. Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation.

    PubMed

    Charlesworth, Amanda; Wilczynska, Anna; Thampi, Prajitha; Cox, Linda L; MacNicol, Angus M

    2006-06-21

    A strict temporal order of maternal mRNA translation is essential for meiotic cell cycle progression in oocytes of the frog Xenopus laevis. The molecular mechanisms controlling the ordered pattern of mRNA translational activation have not been elucidated. We report a novel role for the neural stem cell regulatory protein, Musashi, in controlling the translational activation of the mRNA encoding the Mos proto-oncogene during meiotic cell cycle progression. We demonstrate that Musashi interacts specifically with the polyadenylation response element in the 3' untranslated region of the Mos mRNA and that this interaction is necessary for early Mos mRNA translational activation. A dominant inhibitory form of Musashi blocks maternal mRNA cytoplasmic polyadenylation and meiotic cell cycle progression. Our data suggest that Musashi is a target of the initiating progesterone signaling pathway and reveal that late cytoplasmic polyadenylation element-directed mRNA translation requires early, Musashi-dependent mRNA translation. These findings indicate that Musashi function is necessary to establish the temporal order of maternal mRNA translation during Xenopus meiotic cell cycle progression.

  11. Intracellular Calcium Regulates Nonsense-Mediated mRNA Decay

    PubMed Central

    Nickless, Andrew; Jackson, Erin; Marasa, Jayne; Nugent, Patrick; Mercer, Robert W.; Piwnica-Worms, David; You, Zhongsheng

    2014-01-01

    The nonsense-mediated mRNA decay (NMD) pathway selectively eliminates aberrant transcripts containing premature translation termination codons (PTCs) and regulates the levels of a number of physiological mRNAs. NMD modulates the clinical outcome of a variety of human diseases, including cancer and many genetic disorders, and may represent an important target for therapeutic intervention. Here we have developed a novel multicolored, bioluminescence-based reporter system that can specifically and effectively assay NMD in live human cells. Using this reporter system, we conducted a robust high-throughput small-molecule screen in human cells and, unpredictably, identified a group of cardiac glycosides including ouabain and digoxin as potent inhibitors of NMD. Cardiac glycoside-mediated effects on NMD are dependent on binding and inhibiting the Na+/K+-ATPase on the plasma membrane and subsequent elevation of intracellular calcium levels. Induction of calcium release from endoplasmic reticulum also leads to inhibition of NMD. Thus, this study reveals intracellular calcium as a key regulator of NMD and has important implications for exploiting NMD in the treatment of disease. PMID:25064126

  12. Molecular Determinants of the Axonal mRNA Transcriptome

    PubMed Central

    Gomes, Cynthia; Merianda, Tanuja T.; Lee, Seung Joon; Yoo, Soonmoon; Twiss, Jeffery L.

    2014-01-01

    Axonal protein synthesis has been shown to play a role in developmental and regenerative growth, as well as in cell body responses to axotomy. Recent studies have begun to identify the protein products that contribute to these autonomous responses of axons. In the peripheral nervous system, intra-axonal protein synthesis has been implicated in the localized in vivo responses to neuropathic stimuli, and there is emerging evidence for protein synthesis in CNS axons in vivo. Despite that hundreds of mRNAs have now been shown to localize into the axonal compartment, knowledge of what RNA binding proteins are responsible for this is quite limited. Here, we review the current state of knowledge of RNA transport mechanisms, and highlight recently uncovered mechanisms for dynamically altering the axonal transcriptome. Both changes in the levels or activities of components of the RNA transport apparatus and alterations in transcription of transported mRNAs can effectively shift the axonal mRNA population. Consistent with this, the axonal RNA population shifts with development, with changes in growth state, and in response to extracellular stimulation. Each of these events must impact the transcriptional and transport apparatuses of the neuron, thus directly and indirectly modifying the axonal transcriptome. PMID:23959706

  13. Preproglucagon mRNA expression in adult rat submandibular glands.

    PubMed

    Egéa, J C; Hirtz, C; Deville de Périère, D

    2003-04-01

    Salivary glands of various animal species have been reported to contain and suggested to produce glucagon or glucagon-like material, but the origin and the nature of this salivary peptide are still doubtful. The present study was undertaken to ascertain whether the glucagon gene is expressed in rat submandibular glands and in an immortalized murine cell line derived from salivary glands (SCA-9 cell line). For this purpose, total RNA was isolated from submandibular glands or cultured cells and submitted to reverse transcription. The cDNAs obtained were amplified by a nested polymerase chain reaction using preproglucagon primers. The results showed that the preproglucagon mRNA was expressed in adult rat submandibular glands but not in the SCA-9 cell line. Determination of cyclic DNA (cDNA) sequence established identity with the coding regions of rat pancreatic pre-proglucagon gene. In conclusion, these results strongly support the idea that rat submandibular glands could represent a source of extrapancreatic glucagon or of its precursor's peptide.

  14. Intronic hammerhead ribozymes in mRNA biogenesis.

    PubMed

    García-Robles, Inmaculada; Sánchez-Navarro, Jesús; de la Peña, Marcos

    2012-11-01

    Small self-cleaving ribozymes are a group of natural RNAs that are capable of catalyzing their own and sequence-specific endonucleolytic cleavage. One of the most studied members is the hammerhead ribozyme (HHR), a catalytic RNA originally discovered in subviral plant pathogens but recently shown to reside in a myriad of genomes along the tree of life. In eukaryotes, most of the genomic HHRs seem to be related to short interspersed retroelements, with the main exception of a group of strikingly conserved ribozymes found in the genomes of all amniotes (reptiles, birds and mammals). These amniota HHRs occur in the introns of a few specific genes, and clearly point to a preserved biological role during pre-mRNA biosynthesis. More specifically, bioinformatic analysis suggests that these intronic ribozymes could offer a new form of splicing regulation of the mRNA of higher vertebrates. We review here the latest advances in the discovery and biological characterization of intronic HHRs of vertebrates, including new conserved examples in the genomes of the primitive turtle and coelacanth fish. PMID:23109545

  15. Regulation of mRNA translation during mitosis

    PubMed Central

    Tanenbaum, Marvin E; Stern-Ginossar, Noam; Weissman, Jonathan S; Vale, Ronald D

    2015-01-01

    Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ∼200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function. DOI: http://dx.doi.org/10.7554/eLife.07957.001 PMID:26305499

  16. Regulation of mRNA translation during mitosis.

    PubMed

    Tanenbaum, Marvin E; Stern-Ginossar, Noam; Weissman, Jonathan S; Vale, Ronald D

    2015-08-25

    Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ~200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function.

  17. Tiny molecular beacons for in vivo mRNA detection.

    PubMed

    Bratu, Diana P; Catrina, Irina E; Marras, Salvatore A E

    2011-01-01

    The molecular beacon technology is an established approach for visualizing native mRNAs in living cells. These probes need to efficiently hybridize to accessible RNA regions in order to spatially and temporally resolve the dynamic steps of the RNA life cycle. A refined method using two computer algorithms, mfold and RNAstructure, is described for choosing shorter, more abundant target regions for molecular beacon binding. The probes are redesigned as small hairpins and are synthesized from 2'-O-methyl RNA/LNA chimeric nucleic acids. These tiny molecular beacons are stable in the cellular environment and have a high affinity for binding to target RNAs. The user-friendly synthesis protocol and ability to couple to a variety of fluorophores make tiny molecular beacons the optimal technology to detect less abundant, highly structured RNAs, as well as small RNAs, such as microRNAs. As an example, tiny chimeric molecular beacons were designed to target regions of oskar mRNA, microinjected into living Drosophila melanogaster oocytes and imaged via spinning disc confocal microscopy.

  18. Cytoplasmic Control of Sense-Antisense mRNA Pairs.

    PubMed

    Sinturel, Flore; Navickas, Albertas; Wery, Maxime; Descrimes, Marc; Morillon, Antonin; Torchet, Claire; Benard, Lionel

    2015-09-22

    Transcriptome analyses have revealed that convergent gene transcription can produce many 3'-overlapping mRNAs in diverse organisms. Few studies have examined the fate of 3'-complementary mRNAs in double-stranded RNA-dependent nuclear phenomena, and nothing is known about the cytoplasmic destiny of 3'-overlapping messengers or their impact on gene expression. Here, we demonstrate that the complementary tails of 3'-overlapping mRNAs can interact in the cytoplasm and promote post-transcriptional regulatory events including no-go decay (NGD) in Saccharomyces cerevisiae. Genome-wide experiments confirm that these messenger-interacting mRNAs (mimRNAs) form RNA duplexes in wild-type cells and thus have potential roles in modulating the mRNA levels of their convergent gene pattern under different growth conditions. We show that the post-transcriptional fate of hundreds of mimRNAs is controlled by Xrn1, revealing the extent to which this conserved 5'-3' cytoplasmic exoribonuclease plays an unexpected but key role in the post-transcriptional control of convergent gene expression. PMID:26344770

  19. PABPN1-Dependent mRNA Processing Induces Muscle Wasting.

    PubMed

    Riaz, Muhammad; Raz, Yotam; van Putten, Maaike; Paniagua-Soriano, Guillem; Krom, Yvonne D; Florea, Bogdan I; Raz, Vered

    2016-05-01

    Poly(A) Binding Protein Nuclear 1 (PABPN1) is a multifunctional regulator of mRNA processing, and its expression levels specifically decline in aging muscles. An expansion mutation in PABPN1 is the genetic cause of oculopharyngeal muscle dystrophy (OPMD), a late onset and rare myopathy. Moreover, reduced PABPN1 expression correlates with symptom manifestation in OPMD. PABPN1 regulates alternative polyadenylation site (PAS) utilization. However, the impact of PAS utilization on cell and tissue function is poorly understood. We hypothesized that altered PABPN1 expression levels is an underlying cause of muscle wasting. To test this, we stably down-regulated PABPN1 in mouse tibialis anterior (TA) muscles by localized injection of adeno-associated viruses expressing shRNA to PABPN1 (shPab). We found that a mild reduction in PABPN1 levels causes muscle pathology including myofiber atrophy, thickening of extracellular matrix and myofiber-type transition. Moreover, reduced PABPN1 levels caused a consistent decline in distal PAS utilization in the 3'-UTR of a subset of OPMD-dysregulated genes. This alternative PAS utilization led to up-regulation of Atrogin-1, a key muscle atrophy regulator, but down regulation of proteasomal genes. Additionally reduced PABPN1 levels caused a reduction in proteasomal activity, and transition in MyHC isotope expression pattern in myofibers. We suggest that PABPN1-mediated alternative PAS utilization plays a central role in aging-associated muscle wasting.

  20. PABPN1-Dependent mRNA Processing Induces Muscle Wasting

    PubMed Central

    Raz, Yotam; van Putten, Maaike; Paniagua-Soriano, Guillem; Krom, Yvonne D.; Florea, Bogdan I.; Raz, Vered

    2016-01-01

    Poly(A) Binding Protein Nuclear 1 (PABPN1) is a multifunctional regulator of mRNA processing, and its expression levels specifically decline in aging muscles. An expansion mutation in PABPN1 is the genetic cause of oculopharyngeal muscle dystrophy (OPMD), a late onset and rare myopathy. Moreover, reduced PABPN1 expression correlates with symptom manifestation in OPMD. PABPN1 regulates alternative polyadenylation site (PAS) utilization. However, the impact of PAS utilization on cell and tissue function is poorly understood. We hypothesized that altered PABPN1 expression levels is an underlying cause of muscle wasting. To test this, we stably down-regulated PABPN1 in mouse tibialis anterior (TA) muscles by localized injection of adeno-associated viruses expressing shRNA to PABPN1 (shPab). We found that a mild reduction in PABPN1 levels causes muscle pathology including myofiber atrophy, thickening of extracellular matrix and myofiber-type transition. Moreover, reduced PABPN1 levels caused a consistent decline in distal PAS utilization in the 3’-UTR of a subset of OPMD-dysregulated genes. This alternative PAS utilization led to up-regulation of Atrogin-1, a key muscle atrophy regulator, but down regulation of proteasomal genes. Additionally reduced PABPN1 levels caused a reduction in proteasomal activity, and transition in MyHC isotope expression pattern in myofibers. We suggest that PABPN1-mediated alternative PAS utilization plays a central role in aging-associated muscle wasting. PMID:27152426

  1. In vitro Splicing of Influenza Viral NS1 mRNA and NS1-β -globin Chimeras: Possible Mechanisms for the Control of Viral mRNA Splicing

    NASA Astrophysics Data System (ADS)

    Plotch, Stephen J.; Krug, Robert M.

    1986-08-01

    In influenza virus-infected cells, the splicing of the viral NS1 mRNA catalyzed by host nuclear enzymes is controlled so that the steady-state amount of the spliced NS2 mRNA is only 5-10% of that of the unspliced NS1 mRNA. Here we examine the splicing of NS1 mRNA in vitro, using nuclear extracts from HeLa cells. We show that in addition to its consensus 5' and 3' splice sites, NS1 mRNA has an intron branch-point adenosine residue that was functional in lariat formation. Nonetheless, this RNA was not detectably spliced in vitro under conditions in which a human β -globin precursor was efficiently spliced. Using chimeric RNA precursors containing both NS1 and β -globin sequences, we show that the NS1 5' splice site was effectively utilized by the β -globin branch-point sequence and 3' splice site to form a spliced RNA, whereas the NS1 3' splice site did not function in detectable splicing in vitro, even in the presence of the β -globin branch-point sequence or in the presence of both the branch-point sequence and 5' exon and splice site from β -globin With the chimeric precursors that were not detectably spliced, as with NS1 mRNA itself, a low level of a lariat structure containing only intron and not 3' exon sequences was formed. The inability of the consensus 3' splice site of NS1 mRNA to function effectively in in vitro splicing suggests that this site is structurally inaccessible to components of the splicing machinery. Based on these results, we propose two mechanisms whereby NS1 mRNA splicing in infected cells is controlled via the accessibility of its 3' splice site.

  2. Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription

    PubMed Central

    Aliotta, Jason M.; Pereira, Mandy; Johnson, Kevin W.; de Paz, Nicole; Dooner, Mark S.; Puente, Napoleon; Ayala, Carol; Brilliant, Kate; Berz, David; Lee, David; Ramratnam, Bharat; McMillan, Paul N.; Hixson, Douglas C.; Josic, Djuro; Quesenberry, Peter J.

    2010-01-01

    Objective Microvesicles have been shown to mediate intercellular communication. Previously, we have correlated entry of murine lung-derived microvesicles into murine bone marrow cells with expression of pulmonary epithelial cell-specific mRNA in these marrow cells. The present studies establish that entry of lung-derived microvesicles into marrow cells is a prerequisite for marrow expression of pulmonary epithelial cell-derived mRNA. Methods/Results Murine bone marrow cells co-cultured with rat lung, but separated from them using a cell-impermeable membrane (0.4 micron pore size), were analyzed using species-specific primers (for rat or mouse). These studies revealed that surfactant B and C mRNA produced by murine marrow cells were of both rat and mouse origin. Similar results were obtained using murine lung co-cultured with rat bone marrow cells or when bone marrow cells were analyzed for the presence of species-specific albumin mRNA after co-culture with rat or murine liver. These studies show that microvesicles both deliver mRNA to marrow cells and also mediate marrow cell transcription of tissue-specific mRNA. The latter likely underlies the longer term stable change in genetic phenotype which has been observed. We have also observed microRNA in lung-derived microvesicles and studies with RNase-treated microvesicles indicate that microRNA negatively modulates pulmonary epithelial cell-specific mRNA levels in co-cultured marrow cells. In addition, we have also observed tissue-specific expression of brain, heart and liver mRNA in co-cultured marrow cells suggesting that microvesicle-mediated cellular phenotype change is a universal phenomena. Conclusion These studies suggest that cellular systems are more phenotypically labile then previously considered. PMID:20079801

  3. Herpes simplex virus virion stimulatory protein mRNA leader contains sequence elements which increase both virus-induced transcription and mRNA stability.

    PubMed

    Blair, E D; Blair, C C; Wagner, E K

    1987-08-01

    To investigate the role of 5' noncoding leader sequence of herpes simplex virus type 1 (HSV-1) mRNA in infected cells, the promoter for the 65,000-dalton virion stimulatory protein (VSP), a beta-gamma polypeptide, was introduced into plasmids bearing the chloramphenicol acetyltransferase (cat) gene together with various lengths of adjacent viral leader sequences. Plasmids containing longer lengths of leader sequence gave rise to significantly higher levels of CAT enzyme in transfected cells superinfected with HSV-1. RNase T2 protection assays of CAT mRNA showed that transcription was initiated from an authentic viral cap site in all VSP-CAT constructs and that CAT mRNA levels corresponded to CAT enzyme levels. Use of cis-linked simian virus 40 enhancer sequences demonstrated that the effect was virus specific. Constructs containing 12 and 48 base pairs of the VSP mRNA leader gave HSV infection-induced CAT activities intermediate between those of the leaderless construct and the VSP-(+77)-CAT construct. Actinomycin D chase experiments demonstrated that the longest leader sequences increased hybrid CAT mRNA stability at least twofold in infected cells. Cotransfection experiments with a cosmid bearing four virus-specified transcription factors (ICP4, ICP0, ICP27, and VSP-65K) showed that sequences from -3 to +77, with respect to the viral mRNA cap site, also contained signals responsive to transcriptional activation. PMID:3037112

  4. The bicistronic nature of lens alpha-crystallin 14S mRNA.

    PubMed Central

    Chen, J H; Spector, A

    1977-01-01

    The A2 and B2 polypeptide chains of calf lens alpha-crystallin are synthesized on a 14S, 1500-nucleotide mRNA and a 10S, 735-nucleotide mRNA, respectively. The 10S mRNA is theoretically compatible with the size of the B2 chain, but the 14S mRNA contains approximately twice the required number of nucleotides necessary for A2 chain synthesis. This fact raises the question of the function of the additional nucleotide sequence in the 14S mRNA. The following observations on 14S mRNA suggest that it may contain an additional cistron. (i) Under a number of denaturing conditions, 14S mRNA continues to retain its initial size characteristics. (ii) In addition to synthesis of the A2 chain, 14S mRNA directs the synthesis of another polypeptide with the same electrophoretic mobility as that of the B2 chain. (iii) Molecular hybridization of the 14S mRNA with the cDNA produced from the 10S mRNA suggests that 2 mol of the cDNA bind to 1 mol of the 14S mRNA. (iv) Examination of the nucleotide sequences of the 10S and 14S mRNAs by two-dimensional maps of RNase A and T1 digests indicates marked similarity. The overall data suggest that the additional cistronic component may carry coding information for an alpha-crystallin polypeptide or a closely related polypeptide species. Images PMID:271967

  5. Distinguishing direct from indirect roles for bicoid mRNA localization factors

    PubMed Central

    Weil, Timothy T.; Xanthakis, Despina; Parton, Richard; Dobbie, Ian; Rabouille, Catherine; Gavis, Elizabeth R.; Davis, Ilan

    2010-01-01

    Localization of bicoid mRNA to the anterior of the Drosophila oocyte is essential for patterning the anteroposterior body axis in the early embryo. bicoid mRNA localizes in a complex multistep process involving transacting factors, molecular motors and cytoskeletal components that remodel extensively during the lifetime of the mRNA. Genetic requirements for several localization factors, including Swallow and Staufen, are well established, but the precise roles of these factors and their relationship to bicoid mRNA transport particles remains unresolved. Here we use live cell imaging, super-resolution microscopy in fixed cells and immunoelectron microscopy on ultrathin frozen sections to study the distribution of Swallow, Staufen, actin and dynein relative to bicoid mRNA during late oogenesis. We show that Swallow and bicoid mRNA are transported independently and are not colocalized at their final destination. Furthermore, Swallow is not required for bicoid transport. Instead, Swallow localizes to the oocyte plasma membrane, in close proximity to actin filaments, and we present evidence that Swallow functions during the late phase of bicoid localization by regulating the actin cytoskeleton. In contrast, Staufen, dynein and bicoid mRNA form nonmembranous, electron dense particles at the oocyte anterior. Our results exclude a role for Swallow in linking bicoid mRNA to the dynein motor. Instead we propose a model for bicoid mRNA localization in which Swallow is transported independently by dynein and contributes indirectly to bicoid mRNA localization by organizing the cytoskeleton, whereas Staufen plays a direct role in dynein-dependent bicoid mRNA transport. PMID:20023172

  6. Axonal Amphoterin mRNA Is Regulated by Translational Control and Enhances Axon Outgrowth

    PubMed Central

    Merianda, Tanuja T.; Coleman, Jennifer; Kim, Hak Hee; Kumar Sahoo, Pabitra; Gomes, Cynthia; Brito-Vargas, Paul; Rauvala, Heikki; Blesch, Armin; Yoo, Soonmoon

    2015-01-01

    High mobility group (HMG) proteins concentrate in the nucleus, interacting with chromatin. Amphoterin is an HMG protein (HMGB1) that has been shown to have extranuclear functions and can be secreted from some cell types. Exogenous amphoterin can increase neurite growth, suggesting that the secreted protein may have growth promoting activities in neurons. Consistent with this, we show that depletion of amphoterin mRNA from cultured adult rat DRG neurons attenuates neurite outgrowth, pointing to autocrine or paracrine mechanisms for its growth-promoting effects. The mRNA encoding amphoterin localizes to axonal processes and we showed recently that its 3′-UTR is sufficient for axonal localization of heterologous transcripts (Donnelly et al., 2013). Here, we show that amphoterin mRNA is transported constitutively into axons of adult DRG neurons. A preconditioning nerve injury increases the levels of amphoterin protein in axons without a corresponding increase in amphoterin mRNA in the axons. A 60 nucleotide region of the amphoterin mRNA 3′-UTR is necessary and sufficient for its localization into axons of cultured sensory neurons. Amphoterin mRNA 3′-UTR is also sufficient for axonal localization in distal axons of DRG neurons in vivo. Overexpression of axonally targeted amphoterin mRNA increases axon outgrowth in cultured sensory neurons, but axon growth is not affected when the overexpressed mRNA is restricted to the cell body. PMID:25855182

  7. Secondary Structure across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function.

    PubMed

    Del Campo, Cristian; Bartholomäus, Alexander; Fedyunin, Ivan; Ignatova, Zoya

    2015-10-01

    Messenger RNA acts as an informational molecule between DNA and translating ribosomes. Emerging evidence places mRNA in central cellular processes beyond its major function as informational entity. Although individual examples show that specific structural features of mRNA regulate translation and transcript stability, their role and function throughout the bacterial transcriptome remains unknown. Combining three sequencing approaches to provide a high resolution view of global mRNA secondary structure, translation efficiency and mRNA abundance, we unraveled structural features in E. coli mRNA with implications in translation and mRNA degradation. A poorly structured site upstream of the coding sequence serves as an additional unspecific binding site of the ribosomes and the degree of its secondary structure propensity negatively correlates with gene expression. Secondary structures within coding sequences are highly dynamic and influence translation only within a very small subset of positions. A secondary structure upstream of the stop codon is enriched in genes terminated by UAA codon with likely implications in translation termination. The global analysis further substantiates a common recognition signature of RNase E to initiate endonucleolytic cleavage. This work determines for the first time the E. coli RNA structurome, highlighting the contribution of mRNA secondary structure as a direct effector of a variety of processes, including translation and mRNA degradation. PMID:26495981

  8. Snf1-Dependent Transcription Confers Glucose-Induced Decay upon the mRNA Product

    PubMed Central

    Braun, Katherine A.; Dombek, Kenneth M.

    2015-01-01

    In the yeast Saccharomyces cerevisiae, the switch from respiratory metabolism to fermentation causes rapid decay of transcripts encoding proteins uniquely required for aerobic metabolism. Snf1, the yeast ortholog of AMP-activated protein kinase, has been implicated in this process because inhibiting Snf1 mimics the addition of glucose. In this study, we show that the SNF1-dependent ADH2 promoter, or just the major transcription factor binding site, is sufficient to confer glucose-induced mRNA decay upon heterologous transcripts. SNF1-independent expression from the ADH2 promoter prevented glucose-induced mRNA decay without altering the start site of transcription. SNF1-dependent transcripts are enriched for the binding motif of the RNA binding protein Vts1, an important mediator of mRNA decay and mRNA repression whose expression is correlated with decreased abundance of SNF1-dependent transcripts during the yeast metabolic cycle. However, deletion of VTS1 did not slow the rate of glucose-induced mRNA decay. ADH2 mRNA rapidly dissociated from polysomes after glucose repletion, and sequences bound by RNA binding proteins were enriched in the transcripts from repressed cells. Inhibiting the protein kinase A pathway did not affect glucose-induced decay of ADH2 mRNA. Our results suggest that Snf1 may influence mRNA stability by altering the recruitment activity of the transcription factor Adr1. PMID:26667037

  9. Osteoblastic alkaline phosphatase mRNA is stabilized by binding to vimentin intermediary filaments.

    PubMed

    Schmidt, Yvonne; Biniossek, Martin; Stark, G Björn; Finkenzeller, Günter; Simunovic, Filip

    2015-03-01

    Vascularization is essential in bone tissue engineering and recent research has focused on interactions between osteoblasts (hOBs) and endothelial cells (ECs). It was shown that cocultivation increases the stability of osteoblastic alkaline phosphatase (ALP) mRNA. We investigated the mechanisms behind this observation, focusing on mRNA binding proteins. Using a luciferase reporter assay, we found that the 3'-untranslated region (UTR) of ALP mRNA is necessary for human umbilical vein endothelial cells (HUVEC)-mediated stabilization of osteoblastic ALP mRNA. Using pulldown experiments and nanoflow-HPLC mass spectrometry, vimentin was identified to bind to the 3'-UTR of ALP mRNA. Validation was performed by Western blotting. Functional experiments inhibiting intermediate filaments with iminodipropionitrile and specific inhibition of vimentin by siRNA transfection showed reduced levels of ALP mRNA and protein. Therefore, ALP mRNA binds to and is stabilized by vimentin. This data add to the understanding of intracellular trafficking of ALP mRNA, its function, and have possible implications in tissue engineering applications.

  10. Differential targeting of VDAC3 mRNA isoforms influences mitochondria morphology

    PubMed Central

    Michaud, Morgane; Ubrig, Elodie; Filleur, Sophie; Erhardt, Mathieu; Ephritikhine, Geneviève; Maréchal-Drouard, Laurence; Duchêne, Anne-Marie

    2014-01-01

    Intracellular targeting of mRNAs has recently emerged as a prevalent mechanism to control protein localization. For mitochondria, a cotranslational model of protein import is now proposed in parallel to the conventional posttranslational model, and mitochondrial targeting of mRNAs has been demonstrated in various organisms. Voltage-dependent anion channels (VDACs) are the most abundant proteins in the outer mitochondrial membrane and the major transport pathway for numerous metabolites. Four nucleus-encoded VDACs have been identified in Arabidopsis thaliana. Alternative cleavage and polyadenylation generate two VDAC3 mRNA isoforms differing by their 3′ UTR. By using quantitative RT-PCR and in vivo mRNA visualization approaches, the two mRNA variants were shown differentially associated with mitochondria. The longest mRNA presents a 3′ extension named alternative UTR (aUTR) that is necessary and sufficient to target VDAC3 mRNA to the mitochondrial surface. Moreover, aUTR is sufficient for the mitochondrial targeting of a reporter transcript, and can be used as a tool to target an unrelated mRNA to the mitochondrial surface. Finally, VDAC3–aUTR mRNA variant impacts mitochondria morphology and size, demonstrating the role of mRNA targeting in mitochondria biogenesis. PMID:24889622

  11. Quantification of mRNA Levels Using Real-Time Polymerase Chain Reaction (PCR).

    PubMed

    Li, Yiyi; Wang, Kai; Chen, Longhua; Zhu, Xiaoxia; Zhou, Jie

    2016-01-01

    Real-time quantitative reverse transcription PCR technique has advanced greatly over the past 20 years. Messenger RNA (mRNA) levels in cells or tissues can be quantified by this approach. It is well known that changes in mRNA expression in disease, and correlation of mRNA expression profiles with clinical parameters, serve as clinically relevant biomarkers. Hence, accurate determination of the mRNA levels is critically important in describing the biological, pathological, and clinical roles of genes in health and disease. This chapter describes a real-time PCR approach to detect and quantify mRNA expression levels, which can be used for both laboratorial and clinical studies in breast cancer research.

  12. Aiding and Abetting Cancer: mRNA export and the nuclear pore

    PubMed Central

    Culjkovic-Kraljacic, Biljana; Borden, Katherine L.B

    2013-01-01

    mRNA export is a critical step in gene expression. Export of transcripts can be modulated in response to cellular signaling or stress. Consistently, mRNA export is dysregulated in primary human specimens derived from many different forms of cancer. Aberrant expression of export factors can alter export of specific transcripts encoding proteins involved in proliferation, survival and oncogenesis. These specific factors, which are not used for bulk mRNA export, are obvious therapeutic targets. Indeed, given the emerging role of mRNA export in cancer, it is not surprising that efforts to target different aspects of this pathway have reached the clinical trial stage. Thus, like transcription and translation, mRNA export may also play a critical role in cancer genesis and maintenance. PMID:23582887

  13. In the right place at the right time: visualizing and understanding mRNA localization

    PubMed Central

    Buxbaum, Adina R.; Haimovich, Gal

    2015-01-01

    The spatial regulation of protein translation is an efficient way to create functional and structural asymmetries in cells. Recent research has furthered our understanding of how individual cells spatially organize protein synthesis, by applying innovative technology to characterize the relationship between mRNAs and their regulatory proteins, single-mRNA trafficking dynamics, physiological effects of abrogating mRNA localization in vivo and for endogenous mRNA labelling. The implementation of new imaging technologies has yielded valuable information on mRNA localization, for example, by observing single molecules in tissues. The emerging movements and localization patterns of mRNAs in morphologically distinct unicellular organisms and in neurons have illuminated shared and specialized mechanisms of mRNA localization, and this information is complemented by transgenic and biochemical techniques that reveal the biological consequences of mRNA mislocalization. PMID:25549890

  14. Glucocorticoids modulate the NGF mRNA response in the rat hippocampus after traumatic brain injury.

    PubMed

    Grundy, P L; Patel, N; Harbuz, M S; Lightman, S L; Sharples, P M

    2001-02-23

    Nerve growth factor (NGF) expression in the rat hippocampus is increased after experimental traumatic brain injury (TBI) and is neuroprotective. Glucocorticoids are regulators of brain neurotrophin levels and are often prescribed following TBI. The effect of adrenalectomy (ADX) and corticosterone (CORT) replacement on the expression of NGF mRNA in the hippocampus after TBI has not been investigated to date. We used fluid percussion injury and in situ hybridisation to evaluate the expression of NGF mRNA in the hippocampus 4 h after TBI in adrenal-intact or adrenalectomised rats (with or without CORT replacement). TBI increased expression of NGF mRNA in sham-ADX rats, but not in ADX rats. Furthermore, CORT replacement in ADX rats restored the increase in NGF mRNA induced by TBI. These findings suggest that glucocorticoids have an important role in the induction of hippocampal NGF mRNA after TBI.

  15. Glucocorticoids modulate BDNF mRNA expression in the rat hippocampus after traumatic brain injury.

    PubMed

    Grundy, P L; Patel, N; Harbuz, M S; Lightman, S L; Sharples, P M

    2000-10-20

    Brain-derived neurotrophic factor (BDNF) expression in rat hippocampus is increased after experimental traumatic brain injury (TBI) and may be neuroprotective. Glucocorticoids are important regulators of brain neurotrophin levels and are often prescribed following TBI. The effect of adrenalectomy (ADX) on the expression of BDNF mRNA in the hippocampus after TBI has not been investigated to date. We used fluid percussion injury (FPI) and in situ hybridization to evaluate the expression of BDNF mRNA in the hippocampus 4 h after TBI in adrenal-intact or adrenalectomized rats (with or without corticosterone replacement). FPI and ADX independently increased expression of BDNF mRNA. In animals undergoing FPI, prior ADX caused further elevation of BDNF mRNA and this upregulation was prevented by corticosterone replacement in ADX rats. These findings suggest that glucocorticoids are involved in the modulation of the BDNF mRNA response to TBI.

  16. Challenges and advances towards the rational design of mRNA vaccines.

    PubMed

    Pollard, Charlotte; De Koker, Stefaan; Saelens, Xavier; Vanham, Guido; Grooten, Johan

    2013-12-01

    In recent years, mRNA vaccines have emerged as a safe and potent approach for the induction of cellular immune responses. Whereas initial studies were limited to the ex vivo loading of dendritic cells (DCs) with antigen-encoding mRNA, recent progress has led to the development of improved mRNA vaccines that enable direct in vivo targeting of DCs. Although preclinical studies demonstrated their potency in inducing antitumor immunity, several bottlenecks hinder the broader application of mRNA vaccines. In this review, we discuss the challenges associated with mRNA-based vaccination strategies, the technological advances that have been made to overcome these limitations, and the hurdles that remain to be tackled for the development of an optimal mRNA vaccine.

  17. Fluorescence Lifetime Imaging of Nanoflares for mRNA Detection in Living Cells.

    PubMed

    Shi, Jing; Zhou, Ming; Gong, Aihua; Li, Qijun; Wu, Qian; Cheng, Gary J; Yang, Mingyang; Sun, Yaocheng

    2016-02-16

    The expression level of tumor-related mRNA can reveal significant information about tumor progression and prognosis, so specific mRNA in cells provides an important approach for biological and disease studies. Here, fluorescence lifetime imaging of nanoflares in living cells was first employed to detect specific intracellular mRNA. We characterized the lifetime changes of the prepared nanoflares before and after the treatment of target mRNA and also compared the results with those of fluorescence intensity-based measurements both intracellularly and extracellularly. The nanoflares released the cy5-modified oligonucleotides and bound to the targets, resulting in a fluorescence lifetime lengthening. This work puts forward another dimension of detecting specific mRNA in cells and can also open new ways for detection of many other biomolecules. PMID:26813157

  18. Cigarette Smoking and Tryptophan Hydroxylase 2 mRNA in the Dorsal Raphe Nucleus in Suicides

    PubMed Central

    Bach, Helene; Arango, Victoria; Kassir, Suham A.; Dwork, Andrew J.; Mann, J. John; Underwood, Mark D.

    2016-01-01

    Cigarette smoking is associated with suicide and mood disorders and stimulates serotonin release. Tryptophan hydroxylase (TPH2) synthesizes serotonin and is over-expressed in suicides. We determined whether smoking is associated with TPH2 mRNA in suicides and controls. TPH2 mRNA was measured postmortem in the dorsal raphe nucleus (DRN) of controls (N=26, 17 nonsmokers and nine smokers) and suicides (N=23, 5 nonsmokers and 18 smokers). Psychiatric history was obtained by psychological autopsy. TPH2 mRNA was greater in suicide nonsmokers than suicide smokers, control smokers and control nonsmokers (p=0.006). There was more TPH2 mRNA throughout the DRN. Smoking interferes with the TPH2 mRNA increase observed in suicide nonsmokers. The absence of altered TPH2 expression in non-suicide smokers suggests no pharmacological effect of smoking. PMID:26954509

  19. Decreased relative expression level of trefoil factor 3 mRNA to galectin-3 mRNA distinguishes thyroid follicular carcinoma from adenoma.

    PubMed

    Takano, Toru; Miyauchi, Akira; Yoshida, Hiroshi; Kuma, Kanji; Amino, Nobuyuki

    2005-02-28

    The expression level of trefoil factor 3 (TFF3) mRNA is a marker for distinguishing thyroid follicular adenomas from carcinomas. However, when measuring the expression level of TFF3 mRNA in fine needle aspiration biopsies, an appropriate internal control mRNA, of which expression is restricted in thyroid epithelial--derived cells, is necessary, since they are often contaminated with a considerable number of blood cells, which do not express TFF3 mRNA. In this study, we evaluated the efficiency of molecular-based diagnosis of thyroid follicular carcinoma by measuring the relative expression of TFF3 mRNA by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) using galectin-3 mRNA as an internal control. The TFF3/galectin-3 mRNA ratio (T/G ratio) was measured in 54 follicular adenomas and 29 follicular carcinomas. It was markedly decreased in 7 follicular carcinomas of widely invasive type and with evident distant metastases. When the cutoff point was set at 16.0 by a receiver operator characteristic curve, the TG ratio showed good agreement with the pathological diagnosis [kappa=0.55; 95% confidence interval (CI), 0.34-0.77]. This agreement was better when the pathologically questionable cases were excluded (kappa=0.72; 95% CI, 0.49-0.95). Quantification of the T/G ratio may be a useful tool for the distinction between follicular adenomas and carcinomas, which is the most difficult in thyroid pathology.

  20. Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles.

    PubMed

    Baba, Miyuki; Itaka, Keiji; Kondo, Kenji; Yamasoba, Tatsuya; Kataoka, Kazunori

    2015-03-10

    Sensory nerve disorders are difficult to cure completely considering poor nerve regeneration capacity and difficulties in accurately targeting neural tissues. Administering mRNA is a promising approach for treating neurological disorders because mRNA can provide proteins and peptides in their native forms for mature non-dividing neural cells, without the need of entering their nuclei. However, direct mRNA administration into neural tissues in vivo has been challenging due to too unstable manner of mRNA and its strong immunogenicity. Thus, using a suitable carrier is essential for effective mRNA administration. For this purpose, we established a novel carrier based on the self-assembly of polyethylene glycol (PEG)-polyamino acid block copolymer, i.e. polyplex nanomicelles. To investigate the feasibility and efficacy of mRNA administration for the treatment of sensory nerve disorders, we used a mouse model of experimentally induced olfactory dysfunction. Intranasal administration of mRNA-loaded nanomicelles provided an efficient and sustained protein expression for nearly two days in nasal tissues, particularly in the lamina propria which contains olfactory nerve fibers, with effectively regulating the immunogenicity of mRNA. Consequently, once-daily intranasal administration of brain-derived neurotrophic factor (BDNF)-expressing mRNA using polyplex nanomicelles remarkably enhanced the neurological recovery of olfactory function along with repairing the olfactory epithelium to a nearly normal architecture. To the best of our knowledge, this is the first study to show the therapeutic potential of introducing exogenous mRNA for the treatment of neurological disorders. These results indicate the feasibility and safety of using mRNA, and provide a novel strategy of mRNA-based therapy.

  1. Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles.

    PubMed

    Baba, Miyuki; Itaka, Keiji; Kondo, Kenji; Yamasoba, Tatsuya; Kataoka, Kazunori

    2015-03-10

    Sensory nerve disorders are difficult to cure completely considering poor nerve regeneration capacity and difficulties in accurately targeting neural tissues. Administering mRNA is a promising approach for treating neurological disorders because mRNA can provide proteins and peptides in their native forms for mature non-dividing neural cells, without the need of entering their nuclei. However, direct mRNA administration into neural tissues in vivo has been challenging due to too unstable manner of mRNA and its strong immunogenicity. Thus, using a suitable carrier is essential for effective mRNA administration. For this purpose, we established a novel carrier based on the self-assembly of polyethylene glycol (PEG)-polyamino acid block copolymer, i.e. polyplex nanomicelles. To investigate the feasibility and efficacy of mRNA administration for the treatment of sensory nerve disorders, we used a mouse model of experimentally induced olfactory dysfunction. Intranasal administration of mRNA-loaded nanomicelles provided an efficient and sustained protein expression for nearly two days in nasal tissues, particularly in the lamina propria which contains olfactory nerve fibers, with effectively regulating the immunogenicity of mRNA. Consequently, once-daily intranasal administration of brain-derived neurotrophic factor (BDNF)-expressing mRNA using polyplex nanomicelles remarkably enhanced the neurological recovery of olfactory function along with repairing the olfactory epithelium to a nearly normal architecture. To the best of our knowledge, this is the first study to show the therapeutic potential of introducing exogenous mRNA for the treatment of neurological disorders. These results indicate the feasibility and safety of using mRNA, and provide a novel strategy of mRNA-based therapy. PMID:25599855

  2. Comparison of Protamine 1 to Protamine 2 mRNA Ratio and YBX2 gene mRNA Content in Testicular Tissue of Fertile and Azoospermic Men

    PubMed Central

    Moghbelinejad, Sahar; Najafipour, Reza; Hashjin, Amir Samimi

    2015-01-01

    Background Although aberrant protamine (PRM) ratios have been observed in infertile men, the mechanisms that implicit the uncoupling of PRM1 and PRM2 expression remain unclear. To uncover these mechanisms, in this observational study we have compared the PRM1/PRM2 mRNA ratio and mRNA contents of two regulatory factors of these genes. Materials and Methods In this experimental study, sampling was performed by a multi-step method from 50 non-obstructive azoospermic and 12 normal men. After RNA extraction and cDNA synthesis, real-time quantitative polymerase chain reaction (RT- QPCR) was used to analyze the PRM1, PRM2, Y box binding protein 2 (YBX2) and JmjC-containing histone demethylase 2a (JHDM2A) genes in testicular biopsies of the studied samples. Results The PRM1/PRM2 mRNA ratio differed significantly among studied groups, namely 0.21 ± 0.13 in azoospermic samples and -0.8 ± 0.22 in fertile samples. The amount of PRM2 mRNA, significantly reduced in azoospermic patients. Azoospermic men exhibited significant under expression of YBX2 gene compared to controls (P<0.001). mRNA content of this gene showed a positive correlation with PRM mRNA ratio (R=0.6, P=0.007). JHDM2A gene expression ratio did not show any significant difference between the studied groups (P=0.3). We also observed no correlation between JHDM2A mRNA content and the PRM mRNA ratio (R=0.2, P=0.3). Conclusion We found significant correlation between the aberrant PRM ratio (PRM2 under expression) and lower YBX2 mRNA content in testicular biopsies of azoospermic men compared to controls, which suggested that downregulation of the YBX2 gene might be involved in PRM2 under expression. These molecules could be useful biomarkers for predicting male infertility. PMID:26644857

  3. Experiment K-6-11. Actin mRNA and cytochrome c mRNA concentrations in the tricepts brachia muscle of rats

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Morrison, P. R.; Thomason, D. B.; Oganov, V. S.

    1990-01-01

    It is well known that some skeletal muscles atrophy as a result of weightlessness (Steffen and Musacchia 1986) and as a result of hindlimb suspension (Tischler et al., 1985, Thomason et al., 1987). Because the content of protein is determined by the rates of protein synthesis and degradation, a decrease in protein synthesis rate, or an increase in the protein degradation, or changes in both could produce the atrophy. Indeed, an increased protein degradation (Tischler et al., 1985) and a decreased protein synthesis (Thomason et al., 1988) have been observed in skeletal muscles of suspended hindlimbs of rats. Any decrease in protein synthesis rate could be caused by decreases in mRNA concentrations. Such decreases in the concentration and content of alpha-actin mRNA and cytochrome c mRNA have been noted in skeletal muscles of hindlimb suspended rats (Babij and Booth, 1988). From these findings researchers hypothesized that alpha-actin mRNA and cytochrome c mRNA would decrease in the triceps brachia muscle of Cosmos 1887 rats.

  4. Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity

    PubMed Central

    Phua, Kyle K. L.; Staats, Herman F.; Leong, Kam W.; Nair, Smita K.

    2014-01-01

    Direct in vivo administration of messenger RNA (mRNA) delivered in both naked and nanoparticle formats are actively investigated because the use of dendritic cells transfected ex vivo with mRNA for cancer therapy is expensive and needs significant infrastructure. Notably, intravenous and subcutaneous injections are the only routes of administration tested for mRNA nanoparticle tumor vaccination. In this report, we demonstrate that tumor immunity can be achieved via nasal administration of mRNA. Mice nasally immunized with mRNA delivered in nanoparticle format demonstrate delayed tumor progression in both prophylactic and therapeutic immunization models. The observed tumor immunity correlates with splenic antigen-specific CD8+ T cells and is achieved only when mRNA is delivered in nanoparticle but not in naked format. In conclusion, we demonstrate, as a proof-of-concept, a non-invasive approach to mRNA tumor vaccination, increasing its potential as a broadly applicable and off-the-shelf therapy for cancer treatment. PMID:24894817

  5. Nonsense mutations in the human. beta. -globin gene affect mRNA metabolism

    SciTech Connect

    Baserga, S.J.; Benz, E.J. Jr. )

    1988-04-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human {alpha}- and {beta}-globin genes. Studies on mRNA isolated from patients with {beta}{sup 0}-thalassemia have shown that for both the {beta}-17 and the {beta}-39 mutations less than normal levels of {beta}-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human {beta}-globin mRNA). In vitro studies using the cloned {beta}-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human {beta}-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation.

  6. Membrane-association of mRNA decapping factors is independent of stress in budding yeast

    PubMed Central

    Huch, Susanne; Gommlich, Jessie; Muppavarapu, Mridula; Beckham, Carla; Nissan, Tracy

    2016-01-01

    Recent evidence has suggested that the degradation of mRNA occurs on translating ribosomes or alternatively within RNA granules called P bodies, which are aggregates whose core constituents are mRNA decay proteins and RNA. In this study, we examined the mRNA decapping proteins, Dcp1, Dcp2, and Dhh1, using subcellular fractionation. We found that decapping factors co-sediment in the polysome fraction of a sucrose gradient and do not alter their behaviour with stress, inhibition of translation or inhibition of the P body formation. Importantly, their localisation to the polysome fraction is independent of the RNA, suggesting that these factors may be constitutively localised to the polysome. Conversely, polysomal and post-polysomal sedimentation of the decapping proteins was abolished with the addition of a detergent, which shifts the factors to the non-translating RNP fraction and is consistent with membrane association. Using a membrane flotation assay, we observed the mRNA decapping factors in the lower density fractions at the buoyant density of membrane-associated proteins. These observations provide further evidence that mRNA decapping factors interact with subcellular membranes, and we suggest a model in which the mRNA decapping factors interact with membranes to facilitate regulation of mRNA degradation. PMID:27146487

  7. Evaluation of mRNA Localization Using Double Barrel Scanning Ion Conductance Microscopy.

    PubMed

    Nashimoto, Yuji; Takahashi, Yasufumi; Zhou, Yuanshu; Ito, Hidenori; Ida, Hiroki; Ino, Kosuke; Matsue, Tomokazu; Shiku, Hitoshi

    2016-07-26

    Information regarding spatial mRNA localization in single cells is necessary for a better understanding of cellular functions in tissues. Here, we report a method for evaluating localization of mRNA in single cells using double-barrel scanning ion conductance microscopy (SICM). Two barrels in a nanopipette were filled with aqueous and organic electrolyte solutions and used for SICM and as an electrochemical syringe, respectively. We confirmed that the organic phase barrel could be used to collect cytosol from living cells, which is a minute but sufficient amount to assess cellular status using qPCR analysis. The water phase barrel could be used for SICM to image topography with subcellular resolution, which could be used to determine positions for analyzing mRNA expression. This system was able to evaluate mRNA localization in single cells. After puncturing the cellular membrane in a minimally invasive manner, using SICM imaging as a guide, we collected a small amount cytosol from different positions within a single cell and showed that mRNA expression depends on cellular position. In this study, we show that SICM imaging can be utilized for the analysis of mRNA localization in single cells. In addition, we fully automated the pipet movement in the XYZ-directions during the puncturing processes, making it applicable as a high-throughput system for collecting cytosol and analyzing mRNA localization. PMID:27399804

  8. Translation by Ribosomes with mRNA Degradation: Exclusion Processes on Aging Tracks

    NASA Astrophysics Data System (ADS)

    Nagar, Apoorva; Valleriani, Angelo; Lipowsky, Reinhard

    2011-12-01

    We investigate the role of degradation of mRNA on protein synthesis using the totally asymmetric simple exclusion process (TASEP) as the underlying model for ribosome dynamics. mRNA degradation has a strong effect on the lifetime distribution of the mRNA, which in turn affects polysome statistics such as the number of ribosomes present on an mRNA strand of a given size. An average over mRNA of all ages is equivalent to an average over possible configurations of the corresponding TASEP—both before steady state and in steady state. To evaluate the relevant quantities for the translation problem, we first study the approach towards steady state of the TASEP, starting with an empty lattice representing an unloaded mRNA. When approaching the high density phase, the system shows two distinct phases with the entry and exit boundaries taking control of the density at their respective ends in the second phase. The approach towards the maximal current phase exhibits the surprising property that the ribosome entry flux can exceed the maximum possible steady state value. In all phases, the averaging over the mRNA age distribution shows a decrease in the average ribosome density profile as a function of distance from the entry boundary. For entry/exit parameters corresponding to the high density phase of TASEP, the average ribosome density profile also has a maximum near the exit end.

  9. Myoglobin expression: early induction and subsequent modulation of myoglobin and myoglobin mRNA during myogenesis.

    PubMed Central

    Weller, P A; Price, M; Isenberg, H; Edwards, Y H; Jeffreys, A J

    1986-01-01

    We showed that myoglobin gene transcription and the appearance of myoglobin occur very early in myogenesis, in both humans and mice. In contrast to the contractile protein genes, there is a subsequent increase of 50- to 100-fold in myoglobin mRNA and protein levels during later muscle development. Myoglobin and myoglobin mRNA are present at elevated levels in fetal heart and are also detectable at low levels in adult smooth muscle. The absolute level of myoglobin mRNA in highly myoglobinized seal muscle is very high [2.8% of the total population of poly(A)+ RNAs]. Levels of myoglobin in seal skeletal muscle and in various human muscle types appear to be determined by the size of the myoglobin mRNA pool. In contrast, low levels of myoglobin in mouse skeletal muscle are not apparently correlated with low levels of myoglobin mRNA. As expected from the early appearance of myoglobin mRNA in embryonic skeletal muscle, both rat and mouse embryonic myoblasts accumulate myoglobin mRNA on fusion and differentiation in vitro. Images PMID:3796609

  10. Imaging and characterizing influenza A virus mRNA transport in living cells.

    PubMed

    Wang, Wei; Cui, Zong-Qiang; Han, Han; Zhang, Zhi-Ping; Wei, Hong-Ping; Zhou, Ya-Feng; Chen, Ze; Zhang, Xian-En

    2008-09-01

    The mechanisms of influenza A virus mRNA intracellular transport are still not clearly understood. Here, we visualized the distribution and transport of influenza A virus mRNA in living cells using molecular beacon (MB) technology. Confocal-FRAP measurements determined that the transport of influenza A virus intronless mRNA, in both nucleus and cytoplasm, was energy dependent, being similar to that of Poly(A)(+) RNA. Drug inhibition studies in living cells revealed that the export of influenza A virus mRNA is independent of the CRM1 pathway, while the function of RNA polymerase II (RNAP-II) may be needed. In addition, viral NS1 protein and cellular TAP protein were found associated with influenza A virus mRNA in the cell nucleus. These findings characterize influenza A virus mRNA transport in living cells and suggest that influenza A virus mRNA may be exported from the nucleus by the cellular TAP/p15 pathway with NS1 protein and RNAP-II participation.

  11. Mechanism of decay of the cry1Aa mRNA in Bacillus subtilis.

    PubMed Central

    Vázquez-Cruz, C; Olmedo-Alvarez, G

    1997-01-01

    We undertook the study of the decay process of the cry1Aa mRNA of Bacillus thuringiensis expressed in B. subtilis. The cry1Aa transcript is a 3.7-kb mRNA expressed during sporulation whose transcriptional control has previously been studied in both B. subtilis and B. thuringiensis. We found that the cry1Aa mRNA has a half-life of around 9 min and that its decay occurs through endoribonucleolytic cleavages which result in three groups of high-molecular-weight mRNA intermediates ranging in size from 2.7 to 0.5 kb. A comparative study carried out with Escherichia coli showed a similar pattern of degradation intermediates. Primer extension analysis carried out on RNA from B. subtilis revealed that most cleavages occur within two regions located toward the 5' and 3' ends of the mRNA. The most prominent processing site observed for the cry1Aa mRNA isolated from B. subtilis is only two bases away from that occurring on RNA isolated from E. coli. Most cleavage sites occur at seemingly single-stranded RNA segments rich in A and U nucleotides, suggesting that a common and conserved mechanism may process the cry1Aa mRNA. PMID:9335281

  12. Heat Shock Response in Yeast Involves Changes in Both Transcription Rates and mRNA Stabilities

    PubMed Central

    Castells-Roca, Laia; García-Martínez, José; Moreno, Joaquín; Herrero, Enrique; Bellí, Gemma; Pérez-Ortín, José E.

    2011-01-01

    We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25°C to 37°C. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins. PMID:21364882

  13. Definition of global and transcript-specific mRNA export pathways in metazoans.

    PubMed

    Farny, Natalie G; Hurt, Jessica A; Silver, Pamela A

    2008-01-01

    Eukaryotic gene expression requires export of messenger RNAs (mRNAs) from their site of transcription in the nucleus to the cytoplasm where they are translated. While mRNA export has been studied in yeast, the complexity of gene structure and cellular function in metazoan cells has likely led to increased diversification of these organisms' export pathways. Here we report the results of a genome-wide RNAi screen in which we identify 72 factors required for polyadenylated [poly-(A(+))] mRNA export from the nucleus in Drosophila cells. Using structural and functional conservation analysis of yeast and Drosophila mRNA export factors, we expose the evolutionary divergence of eukaryotic mRNA export pathways. Additionally, we demonstrate the differential export requirements of two endogenous heat-inducible transcripts--intronless heat-shock protein 70 (HSP70) and intron-containing HSP83--and identify novel export factors that participate in HSP83 mRNA splicing. We characterize several novel factors and demonstrate their participation in interactions with known components of the Drosophila export machinery. One of these factors, Drosophila melanogaster PCI domain-containing protein 2 (dmPCID2), associates with polysomes and may bridge the transition between exported messenger ribonucleoprotein particles (mRNPs) and polysomes. Our results define the global network of factors involved in Drosophila mRNA export, reveal specificity in the export requirements of different transcripts, and expose new avenues for future work in mRNA export.

  14. Elevated neurofilament light chain (NFL) mRNA levels in prediabetic peripheral neuropathy.

    PubMed

    Celikbilek, Asuman; Tanik, Nermin; Sabah, Seda; Borekci, Elif; Akyol, Lutfi; Ak, Hakan; Adam, Mehmet; Suher, Murat; Yilmaz, Neziha

    2014-06-01

    Evidence suggests that peripheral nerve injury occurs during the early stages of disease with mild glycemic dysregulation. Two proteins, neuron-specific enolase (NSE) and neurofilament light chain (NFL), have been examined previously as possible markers of neuronal damage in the pathophysiology of neuropathies. Herein, we aimed to determine the potential value of circulatory NSE and NFL mRNA levels in prediabetic patients and in those with peripheral neuropathy. This prospective clinical study included 45 prediabetic patients and 30 age- and sex-matched controls. All prediabetic patients were assessed with respect to diabetes-related microvascular complications, such as peripheral neuropathy, retinopathy and nephropathy. mRNA levels of NSE and NFL were determined in the blood by real-time polymerase chain reaction. NSE mRNA levels were similar between prediabetic and control groups (p > 0.05), whereas NFL mRNA levels were significantly higher in prediabetics than in controls (p < 0.001). NSE mRNA levels did not significantly differ between prediabetic patients with and without peripheral neuropathy (p > 0.05), while NFL mRNA levels were significantly higher in prediabetics with peripheral neuropathy than in those without (p = 0.038). According to correlation analysis, NFL mRNA levels were positively correlated with the Douleur Neuropathique 4 questionnaire score in prediabetic patients (r = 0.302, p = 0.044). This is the first study to suggest blood NFL mRNA as a surrogate marker for early prediction of prediabetic peripheral neuropathy, while NSE mRNA levels may be of no diagnostic value in prediabetic patients.

  15. Androgen control of secretory component mRNA levels in the rat lacrimal gland.

    PubMed

    Gao, J; Lambert, R W; Wickham, L A; Banting, G; Sullivan, D A

    1995-03-01

    The purpose of this investigation was to determine whether the known gender-related differences in, and the endocrine control of, the production of secretory component (SC) by the rat lacrimal gland are associated with alterations in SC mRNA content. Levels of SC mRNA were measured in lacrimal tissues of intact, sham-operated, castrated, hypophysectomized, and testosterone-treated male and female adult rats by Northern blot procedures, which utilized a specific, [alpha-32P]-labelled rat SC cDNA probe. For control purposes, SC mRNA amounts were standardized to the beta-actin content in experimental blots. The location of SC mRNA in lacrimal glands was evaluated by in situ hybridization techniques, which involved exposure of tissue sections to sense or anti-sense [35S]-labelled SC RNA probes. Our results demonstrate that: (1) lacrimal glands of male rats contain a significantly greater amount of SC mRNA than those of female rats, and that this difference co-exists with distinct, gender-associated variations in the distribution of SC mRNA in lacrimal tissue; (2) orchiectomy or hypophysectomy, but not ovariectomy or sham surgery, leads to a marked decline in the lacrimal SC mRNA content; and (3) testosterone, but not placebo, administration to castrated male and female rats induces a significant increase in the SC mRNA levels in lacrimal tissue. Overall, these findings show that gender, androgens and the hypothalamic-pituitary axis exert a considerable influence on the SC mRNA content in the rat lacrimal gland.

  16. Alternative splicing of parathyroid hormone-related protein mRNA: expression and stability

    PubMed Central

    Sellers, R S; Luchin, A I; Richard, V; Brena, R M; Lima, D; Rosol, T J

    2011-01-01

    Parathyroid hormone-related protein (PTHrP) is a multifunctional protein that is often dysregulated in cancer. The human PTHrP gene is alternatively spliced into three isoforms, each with a unique 3′-untranslated region (3′-UTR), encoding 139, 173 and 141 amino acid proteins. The regulation of PTHrP mRNA isoform expression has not been completely elucidated, but it may be affected by transforming growth factor-β1 (TGF-β1). In this study, we examined differences in the PTHrP mRNA isoform expression in two squamous carcinoma cell lines (SCC2/88 and HARA), an immortalized keratinocyte cell line (HaCaT), and spontaneous human lung cancer with adjacent normal tissue. In addition, the effect of TGF-β1 on PTHrP mRNA isoform expression and stability was examined. Cell-type specific expression of PTHrP mRNA isoforms occurred between the various cell lines, normal human lung, and immortalized human keratinocytes (HaCaT). PTHrP isoform expression pattern was significantly altered between normal lung tissue and the adjacent lung cancer. In vitro studies revealed that TGF-β1 differentially altered the mRNA steady-state levels and mRNA stability of the PTHrP isoforms. Protein–RNA binding studies identified different proteins binding to the 3′-UTR of the PTHrP isoforms (139) and (141), which may be important in the differential mRNA stability and response to cytokines between the PTHrP isoforms. The data demonstrate that there is cell-type specific expression of PTHrP mRNA isoforms, and disruption of the normal regulation during cancer progression may in part be associated with TGF-β1-induced changes in PTHrP mRNA isoform expression and stability. PMID:15291755

  17. COX-2 mRNA expression in esophageal squamous cell carcinoma (ESCC) and effect by NSAID.

    PubMed

    Liu, X; Li, P; Zhang, S-T; You, H; Jia, J-D; Yu, Z-L

    2008-01-01

    To investigate cyclooxygenase-2 (COX-2) mRNA expression in human esophageal squamous cell carcinoma and the effect of a non-steroidal anti-inflammatory drug (NSAID) on it, in order to explore the mechanism of COX-2 in esophageal squamous cell carcinoma (ESCC) carcinogenesis and the ability of NSAID to prevent or treat ESCC. Frozen specimens of human ESCC and adjacent normal esophageal squamous epithelium pairs (n = 22) were examined for COX-2 mRNA expression by reverse-transcription polymerase chain reaction (RT-PCR). After incubation with aspirin (a non-selective COX inhibitor) or Nimesulide (a selective COX-2 inhibitor), the proliferation status of two human esophageal squamous cancer cell lines, EC-9706 and EC-109, was quantified by 3-(4,5-dimethyl-thiazol-2yl)-2,5-diphenyltetrazolium bromide assay. The expression of COX-2 mRNA in these cells was detected by RT-PCR. COX-2 mRNA was expressed in 12 of 22 (54.5%) ESCC tissue samples, but it was undetectable in all the specimens of adjacent normal esophageal squamous epithelium COX-2 mRNA expression. Both aspirin (5-20 mmol/L) and Nimesulide (0.1-0.8 mmol/L) inhibited EC-9706 cell line proliferation and suppressed its COX-2 mRNA expression dose-dependently. However, only aspirin (5-20 mmol/L) could inhibit proliferation in the EC-109 cell line and suppress COX-2 mRNA expression. Nimesulide (0.1-0.8 mmol/L) could neither inhibit EC-109 cell growth nor suppress COX-2 mRNA expression. COX-2 mRNA expression is a frequent phenomenon in human ESCC tissue samples and plays an important role in the carcinogenesis of ESCC. NSAID may be useful in the chemoprevention and therapy of human ESCC and its effects are likely to be mediated by modulating COX-2 activity.

  18. Aberrant Maspin mRNA Expression is Associated with Clinical Outcome in Patients with Pulmonary Adenocarcinoma

    PubMed Central

    Lu, Mingjie; Li, Jun; Huang, Zebo; Du, Yiping; Jin, Shidai; Wang, Jian

    2016-01-01

    Background The aim of this study was to investigate the expression level of maspin mRNA in pulmonary adenocarcinoma and to clarify its clinical significance in prediction of prognosis. Material/Methods RNA was extracted from formalin-fixed paraffin-embedded (FFPE) tumor tissue blocks of 30 pairs of pulmonary adenocarcinoma (AC) tissues and adjacent noncancerous tissues (ANT) and in another 81 AC tissues. Expression of maspin mRNA was tested by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and the potential relationship between maspin mRNA expression and clinic pathological features of AC patients was analyzed. Results The expression of maspin mRNA was upregulated in AC samples compared with the ANT (p<0.001). Patients at advanced clinical stage (III) and patients with lymphatic metastasis showed higher maspin mRNA expression level than those in early-stage patients (I and II) (p=0.038) or with non-lymphatic metastasis (p=0.034). The Kaplan-Meier survival curves indicated that disease-free survival (DFS) was significantly worse in high maspin mRNA expression AC patients (p=0.007). Furthermore, multivariate analysis revealed that the expression of maspin mRNA was an independent prognostic marker for AC (p=0.040). Conclusions Our study reveals that maspin mRNA was significantly up-regulated in tissues of AC patients. Maspin mRNA may be useful as a new marker of prognosis in AC. PMID:26757744

  19. Autoregulation of Musashi1 mRNA translation during Xenopus oocyte maturation.

    PubMed

    Arumugam, Karthik; Macnicol, Melanie C; Macnicol, Angus M

    2012-08-01

    The mRNA translational control protein, Musashi, plays a critical role in cell fate determination through sequence-specific interactions with select target mRNAs. In proliferating stem cells, Musashi exerts repression of target mRNAs to promote cell cycle progression. During stem cell differentiation, Musashi target mRNAs are de-repressed and translated. Recently, we have reported an obligatory requirement for Musashi to direct translational activation of target mRNAs during Xenopus oocyte meiotic cell cycle progression. Despite the importance of Musashi in cell cycle regulation, only a few target mRNAs have been fully characterized. In this study, we report the identification and characterization of a new Musashi target mRNA in Xenopus oocytes. We demonstrate that progesterone-stimulated translational activation of the Xenopus Musashi1 mRNA is regulated through a functional Musashi binding element (MBE) in the Musashi1 mRNA 3' untranslated region (3' UTR). Mutational disruption of the MBE prevented translational activation of Musashi1 mRNA and its interaction with Musashi protein. Further, elimination of Musashi function through microinjection of inhibitory antisense oligonucleotides prevented progesterone-induced polyadenylation and translation of the endogenous Musashi1 mRNA. Thus, Xenopus Musashi proteins regulate translation of the Musashi1 mRNA during oocyte maturation. Our results indicate that the hierarchy of sequential and dependent mRNA translational control programs involved in directing progression through meiosis are reinforced by an intricate series of nested, positive feedback loops, including Musashi mRNA translational autoregulation. These autoregulatory positive feedback loops serve to amplify a weak initiating signal into a robust commitment for the oocyte to progress through the cell cycle and become competent for fertilization.

  20. Mutation of genes controlling mRNA metabolism and protein synthesis predisposes to neurodevelopmental disorders.

    PubMed

    Sartor, Francesca; Anderson, Jihan; McCaig, Colin; Miedzybrodzka, Zosia; Müller, Berndt

    2015-12-01

    Brain development is a tightly controlled process that depends upon differentiation and function of neurons to allow for the formation of functional neural networks. Mutation of genes encoding structural proteins is well recognized as causal for neurodevelopmental disorders (NDDs). Recent studies have shown that aberrant gene expression can also lead to disorders of neural development. Here we summarize recent evidence implicating in the aetiology of NDDs mutation of factors acting at the level of mRNA splicing, mRNA nuclear export, translation and mRNA degradation. This highlights the importance of these fundamental processes for human health and affords new strategies and targets for therapeutic intervention.

  1. All-in-one detector of circulating mRNA based on a smartphone

    NASA Astrophysics Data System (ADS)

    Cmiel, Vratislav; Gumulec, Jaromir; Svoboda, Ondrej; Raudenska, Martina; Hudcova, Kristyna; Sekora, Jiri; Balogh, Jaroslav; Masarik, Michal; Provaznik, Ivo

    2016-03-01

    Metallothionein is significantly elevated in various tumors, notably in prostate cancer on both mRNA and protein level. We demonstrated a strong predictive potential of free circulating metallothionein 2A isoform mRNA for patients with this cancer. Circulating mRNA detection relies on expensive equipment and requires high level of expertise. In this work we developed compact "all-in-one" laboratory system which replace microvolume spectrophotometer, thermocycler and realtime PCR machines. We managed to design and construct a microprocessor controlled heating/cooling chamber that ensures required temperature gradient. The chamber includes implemented optical system to enable fluorescence excitation and fluorescence analysis using a smart-phone.

  2. mRNA on the move: the road to its biological destiny.

    PubMed

    Eliscovich, Carolina; Buxbaum, Adina R; Katz, Zachary B; Singer, Robert H

    2013-07-12

    Cells have evolved to regulate the asymmetric distribution of specific mRNA targets to institute spatial and temporal control over gene expression. Over the last few decades, evidence has mounted as to the importance of localization elements in the mRNA sequence and their respective RNA-binding proteins. Live imaging methodologies have shown mechanistic details of this phenomenon. In this minireview, we focus on the advanced biochemical and cell imaging techniques used to tweeze out the finer aspects of mechanisms of mRNA movement.

  3. Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression.

    PubMed

    Pérez-Ortín, José E; Alepuz, Paula; Chávez, Sebastián; Choder, Mordechai

    2013-10-23

    mRNA concentration depends on the balance between transcription and degradation rates. On both sides of the equilibrium, synthesis and degradation show, however, interesting differences that have conditioned the evolution of gene regulatory mechanisms. Here, we discuss recent genome-wide methods for determining mRNA half-lives in eukaryotes. We also review pre- and posttranscriptional regulons that coordinate the fate of functionally related mRNAs by using protein- or RNA-based trans factors. Some of these factors can regulate both transcription and decay rates, thereby maintaining proper mRNA homeostasis during eukaryotic cell life.

  4. The adaptor Grb7 links netrin-1 signaling to regulation of mRNA translation

    PubMed Central

    Tsai, Nien-Pei; Bi, Jing; Wei, Li-Na

    2007-01-01

    We previously reported a novel biological activity of Netrin-1 in translational stimulation of kappa opioid receptor (KOR). We now identify Grb7 as a new RNA-binding protein that serves as the molecular adaptor for transmitting Netrin-1 signals, through focal adhesion kinase (FAK), to the translation machinery. Grb7 binds specifically to the first stem loop of kor mRNA 5′-UTR through a new RNA-binding domain located in its amino terminus. Upon binding to its capped, target mRNA, Grb7 blocks the recruitment of eIF4E, rendering mRNA untranslatable. The RNA-binding and translation-repressive activity is reduced by FAK-mediated hyperphosphorylation on two tyrosine residues of its carboxyl terminus. This study reports an adaptor protein Grb7 that transmits the stimulating signals of Netrin-1 to the translational machinery to rapidly regulate mRNA translation. PMID:17318180

  5. Nerve growth factor mRNA in brain: localization by in situ hybridization

    SciTech Connect

    Rennert, P.D.; Heinrich, G.

    1986-07-31

    Nerve Growth Factor is a 118 amino acid polypeptide that plays an important role in the differentiation and survival of neurons. The recent discovery that a mRNA that encodes beta Nerve Growth Factor is present in brain suggests that the Nerve Growth Factor gene may not only regulate gene expression of peripheral but also of central neurons. To identify the site(s) of Nerve Growth Factor mRNA production in the brain and to determine which cells express the Nerve Growth Factor gene, the technique of in situ hybridization was employed. A 32P-labeled RNA probe complementary to Nerve Growth Factor mRNA hybridized to cells in the stratum granulosum of the dentate gyrus and the stratum pyramidale of the hippocampus. These observations identify for the first time cellular sites of Nerve Growth Factor gene expression in the central nervous system, and suggest that Nerve Growth Factor mRNA is produced by neurons.

  6. Regulation of hypothalamic somatostatin and growth hormone releasing hormone mRNA levels by inhibin.

    PubMed

    Carro, E; Señarís, R M; Mallo, F; Diéguez, C

    1999-03-20

    Although it is well established that inhibin plays a major role in the regulation of the hypothalamic-pituitary-gonadal axis, its influence in the regulation of other neuroendocrine functions is still poorly understood. Recent results indicate that inhibin suppresses plasma GH levels, but its site of action is yet unknown. Therefore, in the present work we investigated the effects of inhibin on somatostatin and growth hormone releasing hormone (GHRH) mRNA levels in the hypothalamus by 'in situ' hybridization. We found that inhibin administration (4, 12 and 24 h, i.c.v.) led to an increase in somatostatin mRNA levels in the periventricular nucleus, and to a decrease in GHRH mRNA content in the arcuate nucleus of the hypothalamus. These findings indicate that inhibin regulates the hypothalamic levels of somatostatin and GHRH mRNA.

  7. Localization of insulin receptor mRNA in rat brain by in situ hybridization

    SciTech Connect

    Marks, J.L.; Porte, D. Jr.; Stahl, W.L.; Baskin, D.G. )

    1990-12-01

    Insulin receptor mRNA was demonstrated in rat brain slices by in situ hybridization with three {sup 35}S-oligonucleotide probes and contact film autoradiography. Specificity was confirmed by showing that (a) excess unlabeled probe abolished the signal, (b) an oligonucleotide probe for rat neuropeptide Y mRNA showed a different distribution of hybridization signal, and (c) the distribution of insulin receptor binding was consistent with the distribution of insulin receptor mRNA. Insulin receptor mRNA was most abundant in the granule cell layers of the olfactory bulb, cerebellum and dentate gyrus, in the pyramidal cell body layers of the pyriform cortex and hippocampus, in the choroid plexus and in the arcuate nucleus of the hypothalamus.

  8. Luzp4 defines a new mRNA export pathway in cancer cells

    PubMed Central

    Viphakone, Nicolas; Cumberbatch, Marcus G.; Livingstone, Michaela J.; Heath, Paul R.; Dickman, Mark J.; Catto, James W.; Wilson, Stuart A.

    2015-01-01

    Cancer testis antigens (CTAs) represented a poorly characterized group of proteins whose expression is normally restricted to testis but are frequently up-regulated in cancer cells. Here we show that one CTA, Luzp4, is an mRNA export adaptor. It associates with the TREX mRNA export complex subunit Uap56 and harbours a Uap56 binding motif, conserved in other mRNA export adaptors. Luzp4 binds the principal mRNA export receptor Nxf1, enhances its RNA binding activity and complements Alyref knockdown in vivo. Whilst Luzp4 is up-regulated in a range of tumours, it appears preferentially expressed in melanoma cells where it is required for growth. PMID:25662211

  9. Dietary glycerol for quail: association between productive performance and COX III mRNA expression.

    PubMed

    Silva, S C C; Gasparino, E; Batista, E; Tanamati, F; Vesco, A P D; Lala, B; de Oliveira, D P

    2016-01-01

    This study was carry out to evaluate mRNA expression of mitochondrial cytochrome c oxidase III in the Pectoralis superficialis muscle of 28-day-old quails fed diets containing 0, 8, and 12% glycerol. Total RNA was extracted (N = 10) and cDNA was amplified using specifics primers for qRT-PCR. Feed efficiency and feed intake were evaluated. COX III mRNA expression in breast muscle was higher in the group fed with 12% glycerol (0.863 AU); no differences were observed in the expression of this gene between the muscle of animals fed diets without glycerol (0.357 AU) and 8% glycerol (0.415 AU). Quails that showed greater COX III mRNA expression also showed the lowest feed efficiency. These results show that there is a difference in COX III mRNA expression in breast muscle of 28-day-old quail fed diets different concentrations of glycerol. PMID:27323091

  10. Eucaryotic RNA polymerase conditional mutant that rapidly ceases mRNA synthesis.

    PubMed Central

    Nonet, M; Scafe, C; Sexton, J; Young, R

    1987-01-01

    We have isolated a yeast conditional mutant which rapidly ceases synthesis of mRNA when subjected to the nonpermissive temperature. This mutant (rpb1-1) was constructed by replacing the wild-type chromosomal copy of the gene encoding the largest subunit of RNA polymerase II with one mutagenized in vitro. The rapid cessation of mRNA synthesis in vivo and the lack of RNA polymerase II activity in crude extracts indicate that the mutant possesses a functionally defective, rather than an assembly-defective, RNA polymerase II. The shutdown in mRNA synthesis in the rpb1-1 mutant has pleiotropic effects on the synthesis of other RNAs and on the heat shock response. This mutant provides direct evidence that the RPB1 protein has a functional role in mRNA synthesis. Images PMID:3299050

  11. Screening of Different Organs of Rats for HCA2 Receptor mRNA

    PubMed Central

    Shomali, Tahoora; Mosleh, Najmeh; Kamalpour, Mohammad

    2014-01-01

    Interest in hydroxy - carboxylic acid 2 (HCA2) receptor has been raised since it is the target of antidyslipidemic drug nicotinic acid. The present study aimed to evaluate the presence of mRNA of this receptor in different organs of laboratory rat. Twenty two different organs of rats including mesenteric fat, epididymis (head, body and tail), testis, ovary, xiphoid process, liver, adrenal gland, femoral head, proximal epiphyseal and metaphyseal bone marrow of femur, esophagus, glandular stomach, forestomach, intestines, colons, heart, spleen, kidney, trachea, lung, skeletal muscle (quadriceps), cerebrum and cerebellum were removed and examined for HCA2 mRNA by RT- PCR method. The mRNA for HCA2 receptor was detected in all analyzed tissues. In conclusion, the different organs of rat express HCA2 receptor mRNA which makes a proper animal model for future studies on the physiological and pharmacological roles of this receptor in vivo. PMID:25035863

  12. Expression of D2 dopamine receptor mRNA in the arterial chemoreceptor afferent pathway.

    PubMed

    Czyzyk-Krzeska, M F; Lawson, E E; Millhorn, D E

    1992-11-01

    Dopamine is a major neurotransmitter in the arterial chemoreceptor pathway. In the present study we wished to determine if messenger RNAs for dopamine D1 and D2 receptor are expressed in carotid body (type I cells), in sensory neurons of the petrosal ganglion which innervate the carotid body and in sympathetic neurons of the superior cervical ganglion. We failed to detect D1 receptor mRNA in any of these tissues. However, we found that D2 receptor mRNA was expressed by dopaminergic carotid body type I cells. D2 receptor mRNA was also found in petrosal ganglion neurons that innervated the carotid sinus and carotid body. In addition, a large number of sympathetic postganglionic neurons in the superior cervical ganglion expressed D2 receptor mRNA. PMID:1362730

  13. Synthetic mRNA: Production, Introduction into Cells, and Physiological Consequences.

    PubMed

    Rhoads, Robert E

    2016-01-01

    Recent advances have made it possible to synthesize mRNA in vitro that is relatively stable when introduced into mammalian cells, has a diminished ability to activate the innate immune response against exogenous (virus-like) RNA, and can be efficiently translated into protein. Synthetic methods have also been developed to produce mRNA with unique investigational properties such as photo-cross-linking, fluorescence emission, and attachment of ligands through click chemistry. Synthetic mRNA has been proven effective in numerous applications beneficial for human health such as immunizing patients against cancer and infections diseases, alleviating diseases by restoring deficient proteins, converting somatic cells to pluripotent stem cells to use in regenerative medicine therapies, and engineering the genome by making specific alterations in DNA. This introductory chapter provides background information relevant to the following 20 chapters of this volume that present protocols for these applications of synthetic mRNA. PMID:27236789

  14. The genes and mRNA coding for the heavy chains of chick embryonic skeletal myosin.

    PubMed

    Patrinou-Georgoulas, M; John, H A

    1977-10-01

    A size class of polysomes was isolated from chick embryonic leg skeletal muscle which synthesized almost exclusively a polypeptide chain with a molecular weight identical to the myosin heavy chain. The mRNA purified from these polysomes was shown to synthesize the 200,000 dalton polypeptide in the wheat germ cell-free translation system. At least 90% of the polypeptide had properties similar to the myosin heavy chain. Isoelectric focusing indicated that the myosin heavy chain synthesized in vitro contained two chains in equal amounts, as did purified embryonic leg skeletal muscle myosin. The kinetics of hybridization of the complementary DNA with an excess of the myosin heavy chain mRNA (MHC mRNA) indicated the presence of two different mRNA sequences. Reassociation of the cDNA to an excess of the DNA of the genome suggest that there is little, if any, reiteration of the myosin heavy chain genes.

  15. Visual detection of Akt mRNA in living cell using gold nanoparticle beacon

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Tian, Caiping; Li, Siwen; Wang, Zhaohui; Gu, Yueqing

    2014-09-01

    PI3K-Akt signaling pathway plays the key role in cell apoptosis and survival, and the components of PI3K /Akt signaling pathway are often abnormally expressed in human tumors. Therefore, determination of the Akt (protein kinase B, PKB) messenger ribonucleic acid (mRNA) expression is significantly important in understanding the mechanism of tumor progression. In this study, we designed a special hairpin deoxyribonucleic acid (DNA) functionalized with gold nanoparticles and fluorescein isothiocyanate(FITC) as a beacon for detecting human Akt mRNA. Spectrofluorometer was used to detect the fluorescence quenching and recovery of the beacons, and laser confocal scanning microscopy was adopted to image Akt mRNA in cells. The results showed that this beacon could sensitively and quantitatively measure the Akt mRNA in living cells . This strategy is potentially useful for the cellular imaging of RNA or protein expression in living cells.

  16. Expression of beta 3-adrenoceptor mRNA in rat tissues.

    PubMed Central

    Evans, B. A.; Papaioannou, M.; Bonazzi, V. R.; Summers, R. J.

    1996-01-01

    1. This study examines the expression of beta 3-adrenoceptor messenger RNA (beta 3-AR mRNA) in rat tissues to allow comparison with atypical beta-adrenoceptors determined by functional and radioligand binding techniques. 2. A reverse transcription/polymerase chain reaction protocol has been developed for determining the relative amounts of beta 3-AR mRNA in rat tissues. 3. Measurement of adipsin and uncoupling protein (UCP) mRNA was used to examine all tissues for the presence of white and brown adipose tissue which may contribute beta 3-AR mRNA. 4. The beta 3-AR mRNA is expressed at high levels in brown and white adipose tissue, stomach fundus, the longitudinal/circular smooth muscle of both colon and ileum, and colon submucosa. There was substantial expression of adipsin in colon submucosa and moderate expression in fundus, suggesting that in these regions at least some of the beta 3-AR signal may be contributed by fat. Pylorus and colon mucosa showed moderate levels of beta 3-AR mRNA with lower levels of adipsin. Ileum mucosa and submucosa showed low but readily detectable levels of beta 3-AR. 5. Expression of adipsin in rat skeletal muscles coupled to very low levels of beta 3-AR mRNA indicates that the observed beta 3-AR may be due to the presence of intrinsic fat. beta 3-AR mRNA was virtually undetectable in heart, lung and liver. These results raise the possibility that the atypical beta-AR demonstrated by functional and/or binding studies in muscle and in heart is not the beta 3-AR. 6. By use of two different sets of primers for amplification of beta 3-AR cDNA, no evidence was found for differential splicing of the mRNA in any of the tissues examined. 7. The detection of beta 3-AR mRNA in the gut mucosa and submucosa suggests that in addition to its established roles in lipolysis, thermogenesis and regulation of gut motility beta 3-AR may subserve other functions in the gastrointestinal tract. The absence of beta 3-AR mRNA in rat heart or its presence with

  17. Plasminogen mRNA induction in the mouse brain after kainate excitation: codistribution with plasminogen activator inhibitor-2 (PAI-2) mRNA.

    PubMed

    Sharon, Ronit; Abramovitz, Rene; Miskin, Ruth

    2002-08-15

    Plasminogen (Plg), which can be converted to the active protease plasmin by plasminogen activators, has been previously implicated in brain plasticity and in toxicity inflicted in hippocampal pyramidal neurons by kainate. Here we have localized Plg. mRNA through in situ hybridization in brain cryosections derived from normal adult mice or after kainate injection (i.p.). The results indicated that Plg mRNA was undetectable in the normal brain, but after kainate injection it was induced in neuronal cells in multiple, but specific areas, including layers II-III of the neocortex; the olfactory bulb, anterior olfactory nucleus, and the piriform cortex; the caudate/putamen and accumbens nucleus shell; throughout the amygdaloid complex; and in the CAI/CA3 subfields of the hippocampus. Interestingly, this distribution pattern coincided with what we have recently described for the plasminogen activator inhibitor-2 (PAI-2) mRNA, however differing from that of the plasminogen activator inhibitor-1 (PAI-1) mRNA, as also shown here. These results suggest that enhanced Plg gene expression could be involved in events associated with olfactory, striatal, and limbic structures. Furthermore, because PAI-2 is thought to intracellularly counteract cytotoxic events, our results raise the possibility that PAI-2 can act in the brain as an intracellular neuroprotector against potential plasmin-mediated toxicity.

  18. An Integrative Analysis of microRNA and mRNA Profiling in CML Stem Cells.

    PubMed

    Nassar, Farah J; El Eit, Rabab; Nasr, Rihab

    2016-01-01

    Integrative analysis of microRNA (miRNA) and messenger RNA (mRNA) in Chronic Myeloid leukemia (CML) stem cells is an important technique to study the involvement of miRNA and their targets in CML stem cells self-renewal, maintenance, and therapeutic resistance. Here, we describe a simplified integrative analysis using Ingenuity Pathway Analysis software after performing proper RNA extraction, miRNA and mRNA microarray and data analysis. PMID:27581151

  19. Whole blood mRNA in prostate cancer reveals a four-gene androgen regulated panel.

    PubMed

    Thomas, Benjamin C; Kay, Jonathan D; Menon, Suraj; Vowler, Sarah L; Dawson, Sarah N; Bucklow, Laura J; Luxton, Hayley J; Johnston, Thomas; Massie, Charlie E; Pugh, Michelle; Warren, Anne Y; Barker, Peter; Burling, Keith; Lynch, Andy G; George, Anne; Burge, Johanna; Corcoran, Marie; Stearn, Sara; Lamb, Alastair D; Sharma, Naomi L; Shaw, Greg L; Neal, David E; Whitaker, Hayley C

    2016-10-01

    Due to increased sensitivity, the expression of circulating nucleotides is rapidly gaining popularity in cancer diagnosis. Whole blood mRNA has been used in studies on a number of cancers, most notably two separate studies that used whole blood mRNA to define non-overlapping signatures of prostate cancer that has become castration independent. Prostate cancer is known to rely on androgens for initial growth, and there is increasing evidence on the importance of the androgen axis in advanced disease. Using whole blood mRNA samples from patients with prostate cancer, we have identified the four-gene panel of FAM129A, MME, KRT7 and SOD2 in circulating mRNA that are differentially expressed in a discovery cohort of metastatic samples. Validation of these genes at the mRNA and protein level was undertaken in additional cohorts defined by risk of relapse following surgery and hormone status. All the four genes were downregulated at the mRNA level in the circulation and in primary tissue, but this was not always reflected in tissue protein expression. MME demonstrated significant differences in the hormone cohorts, whereas FAM129A is downregulated at the mRNA level but is raised at the protein level in tumours. Using published ChIP-seq data, we have demonstrated that this may be due to AR binding at the FAM129A and MME loci in multiple cell lines. These data suggest that whole blood mRNA of androgen-regulated genes has the potential to be used for diagnosis and monitoring of prostate cancer. PMID:27578825

  20. Plasmonic nanohalo optical probes for highly sensitive imaging of survivin mRNA in living cells.

    PubMed

    Qian, Guang-Sheng; Kang, Bin; Zhang, Zhuo-Lei; Li, Xiang-Ling; Zhao, Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-09-25

    A strategy is designed for sensitive detection of tumor biomarker survivin mRNA based on resonance Rayleigh scattering of a single AuNP nanohalo probe that couples large gold nanoparticles (L-AuNPs, 52 nm) with small AuNPs (S-AuNPs, 18 nm) through the affinity interaction between streptavidin and biotin. This core-satellite plasmon ruler is further applied to imaging survivin mRNA in living cells. PMID:27412908

  1. Rapid changes in ovarian mRNA induced by brief photostimulation in Siberian hamsters (Phodopus sungorus).

    PubMed

    Shahed, Asha; McMichael, Carling F; Young, Kelly A

    2015-11-01

    This study sought to characterize the rapid intraovarian mRNA response of key folliculogenic factors that may contribute to the restoration of folliculogenesis during 2-10 days of photostimulation in Siberian hamsters. Adult hamsters were exposed to short photoperiod (8L:16D) for 14 weeks (SD). A subset were then transferred to long photoperiod (16L:8D) for 2 (PT day-2), 4 (PT day-4), or 10 days (PT day-10). Quantitative real-time PCR was used to measure intraovarian mRNA expression of: gonadotropin releasing hormone (GnRH), follicle stimulating hormone β-subunit (FSHβ-subunit), luteinizing hormone β-subunit (LHβ-subunit), FSH and LH receptors, estrogen receptors α and β (Esr1 and Esr2), matrix metalloproteinase (MMP)-2 and -9, anti-Müllerian hormone (AMH), inhibin-α subunit, fibroblast growth factor-2 (FGF-2) and proliferating cell nuclear antigen (PCNA). Compared to SD, plasma FSH concentrations increased on PT day-4 and the number of antral follicles and corpora lutea increased on PT day-10. FSHR and inhibin-α mRNA expression also increased on PT day-4, whereas LHR and proliferation marker PCNA both increased on PT day-10 as compared to SD. Esr1 mRNA increased on PT day-2 and remained significantly increased as compared to SD, whereas Esr1 mRNA increased only on PT day-2, similar to FGF-2 and MMP-2 results. No differences were observed in mRNA expression in ovarian GnRH, FSHβ- and LHβ-subunits, AMH, and MMP-9 mRNA with 2-10 days of photostimulation. Rapid increases in intraovarian FSHR and inhibin-α mRNA and antral follicle/corpora lutea numbers suggest that the ovary is primed to react quickly to the FSH released in response to brief periods of photostimulation.

  2. Plasmonic nanohalo optical probes for highly sensitive imaging of survivin mRNA in living cells.

    PubMed

    Qian, Guang-Sheng; Kang, Bin; Zhang, Zhuo-Lei; Li, Xiang-Ling; Zhao, Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-09-25

    A strategy is designed for sensitive detection of tumor biomarker survivin mRNA based on resonance Rayleigh scattering of a single AuNP nanohalo probe that couples large gold nanoparticles (L-AuNPs, 52 nm) with small AuNPs (S-AuNPs, 18 nm) through the affinity interaction between streptavidin and biotin. This core-satellite plasmon ruler is further applied to imaging survivin mRNA in living cells.

  3. mRNA levels of TLR4 and TLR5 are independent of H pylori

    PubMed Central

    Garza-González, Elvira; Bocanegra-García, Virgilio; Bosques-Padilla, Francisco Javier; Flores-Gutiérrez, Juan Pablo; Moreno, Francisco; Perez-Perez, Guillermo Ignacio

    2008-01-01

    AIM: To determine if the presence H pylori or its virulence affect toll-like receptor 4 (TLR4) and TLR5 mRNA expression levels. METHODS: For the in vivo assays, gastric biopsies were obtained from 40 patients and H pylori status was determined. For the in vitro assays, human gastric adenocarcinoma mucosal cells (AGS) were cultured in the presence or absence of twelve selected H pylori strains. H pylori strains isolated from culture-positive patients and selected strains were genotyped for cagA and vacA. The cDNA was obtained from mRNA extracted from biopsies and from infected AGS cells. TLR4 and TLR5 mRNA levels were examined by real-time PCR. RESULTS: The presence of H pylori did not affect the mRNA levels of TLR4 or TLR5 in gastric biopsies. The mRNA levels of both receptors were not influenced by the vacA status (P > 0.05 for both receptors) and there were no differences in TLR4 or TLR5 mRNA levels among the different clinical presentations/histological findings (P > 0.05). In the in vitro assay, the mRNA levels of TLR4 or TLR5 in AGS cells were not influenced by the vacAs1 status or the clinical condition associated with the strains (P > 0.05 for both TLR4 and TLR5). CONCLUSION: The results of this study show that the mRNA levels of TLR4 and TLR5 in gastric cells, both in vivo and in vitro, are independent of H pylori colonization and suggest that vacA may not be a significant player in the first step of innate immune recognition mediated by TLR4 or TLR5. PMID:18785283

  4. CXCL10 mRNA expression predicts response to neoadjuvant chemoradiotherapy in rectal cancer patients.

    PubMed

    Li, Cong; Wang, Zhimin; Liu, Fangqi; Zhu, Ji; Yang, Li; Cai, Guoxiang; Zhang, Zhen; Huang, Wei; Cai, Sanjun; Xu, Ye

    2014-10-01

    Chemoradiotherapy has been commonly used as neoadjuvant therapy for rectal cancer to allow for less aggressive surgical approaches and to improve quality of life. In cancer, it has been reported that CXCL10 has an anti-tumor function. However, the association between CXCL10 and chemoradiosensitivity has not been fully investigated. We performed this study to investigate the relationship between CXCL10 expression and chemoradiosensitivity in rectal cancer patients. Ninety-five patients with rectal cancer who received neoadjuvant chemoradiotherapy (NCRT) were included. Clinical parameters were compared with the outcome of NCRT and CXCL10 messenger RNA (mRNA) expression between the pathological complete response (pCR) group and non-pathological complete response (npCR) group. CXCL10 mRNA and protein expressions between groups were analyzed using the Student's t test and chi-square test. The mean mRNA level of CXCL10 in the pCR group was significantly higher than that in the npCR group (p = 0.010). In the pCR group, 73.7 % of the patients had high CXCL10 mRNA expression, and 61.4 % of the patients in the npCR group had low CXCL10 mRNA expression. Subjects with high CXCL10 mRNA expression demonstrated a higher sensitivity to NCRT (p = 0.011). The receiver operating characteristic curve showed that the diagnostic performance of CXCL10 mRNA expression had an area under the curve of 0.720 (95 % confidence interval, 0.573-0.867). There were no differences between the pCR and npCR groups in CXCL10 protein expression (p > 0.05). High CXCL10 mRNA expression is associated with a better tumor response to NCRT in rectal cancer patients and may predict the outcome of NCRT in this malignancy.

  5. Maternally inherited npm2 mRNA is crucial for egg developmental competence in zebrafish.

    PubMed

    Bouleau, Aurélien; Desvignes, Thomas; Traverso, Juan Martin; Nguyen, Thaovi; Chesnel, Franck; Fauvel, Christian; Bobe, Julien

    2014-08-01

    The molecular mechanisms underlying and determining egg developmental competence remain poorly understood in vertebrates. Nucleoplasmin (Npm2) is one of the few known maternal effect genes in mammals, but this maternal effect has never been demonstrated in nonmammalian species. A link between developmental competence and the abundance of npm2 maternal mRNA in the egg was previously established using a teleost fish model for egg quality. The importance of maternal npm2 mRNA for egg developmental competence remains unknown in any vertebrate species. In the present study, we aimed to characterize the contribution of npm2 maternal mRNA to early developmental success in zebrafish using a knockdown strategy. We report here the oocyte-specific expression of npm2 and maternal inheritance of npm2 mRNA in zebrafish eggs. The knockdown of the protein translated from this maternal mRNA results in developmental arrest before the onset of epiboly and subsequent embryonic death, a phenotype also observed in embryos lacking zygotic transcription. Npm2 knockdown also results in impaired transcription of the first-wave zygotic genes. Our results show that npm2 is also a maternal effect gene in a nonmammalian vertebrate species and that maternally inherited npm2 mRNA is crucial for egg developmental competence. We also show that de novo protein synthesis from npm2 maternal mRNA is critical for developmental success beyond the blastula stage and required for zygotic genome activation. Finally, our results suggest that npm2 maternal mRNA is an important molecular factor of egg quality in fish and possibly in all vertebrates.

  6. Differential Control of Interleukin-6 mRNA Levels by Cellular Distribution of YB-1

    PubMed Central

    Kang, Sujin; Lee, Taeyun A.; Ra, Eun A.; Lee, Eunhye; Choi, Hyun jin; Lee, Sungwook; Park, Boyoun

    2014-01-01

    Cytokine production is essential for innate and adaptive immunity against microbial invaders and must be tightly controlled. Cytokine messenger RNA (mRNA) is in constant flux between the nucleus and the cytoplasm and in transcription, splicing, or decay; such processes must be tightly controlled. Here, we report a novel function of Y-box-binding protein 1 (YB-1) in modulating interleukin-6 (IL-6) mRNA levels in a cell type-specific manner. In lipopolysaccharide (LPS)-stimulated macrophages, YB-1 interacts with IL-6 mRNA and actively transports it to the extracellular space by YB-1-enriched vesicles, resulting in the proper maintenance of intracellular IL-6 mRNA levels. YB-1 secretion occurs in a cell type-specific manner. Whereas macrophages actively secret YB-1, dendritic cells maintain it predominantly in the cytoplasm even in response to LPS. Intracellular YB-1 has the distinct function of regulating IL-6 mRNA stability in dendritic cells. Moreover, because LPS differentially regulates the expression of histone deacetylase 6 (HDAC6) in macrophages and dendritic cells, this stimulus might control YB-1 acetylation differentially in both cell types. Taken together, these results suggest a unique feature of YB-1 in controlling intracellular IL-6 mRNA levels in a cell type-specific manner, thereby leading to functions that are dependent on the extracellular and intracellular distribution of YB-1. PMID:25398005

  7. RPFdb: a database for genome wide information of translated mRNA generated from ribosome profiling

    PubMed Central

    Xie, Shang-Qian; Nie, Peng; Wang, Yan; Wang, Hongwei; Li, Hongyu; Yang, Zhilong; Liu, Yizhi; Ren, Jian; Xie, Zhi

    2016-01-01

    Translational control is crucial in the regulation of gene expression and deregulation of translation is associated with a wide range of cancers and human diseases. Ribosome profiling is a technique that provides genome wide information of mRNA in translation based on deep sequencing of ribosome protected mRNA fragments (RPF). RPFdb is a comprehensive resource for hosting, analyzing and visualizing RPF data, available at www.rpfdb.org or http://sysbio.sysu.edu.cn/rpfdb/index.html. The current version of database contains 777 samples from 82 studies in 8 species, processed and reanalyzed by a unified pipeline. There are two ways to query the database: by keywords of studies or by genes. The outputs are presented in three levels. (i) Study level: including meta information of studies and reprocessed data for gene expression of translated mRNAs; (ii) Sample level: including global perspective of translated mRNA and a list of the most translated mRNA of each sample from a study; (iii) Gene level: including normalized sequence counts of translated mRNA on different genomic location of a gene from multiple samples and studies. To explore rich information provided by RPF, RPFdb also provides a genome browser to query and visualize context-specific translated mRNA. Overall our database provides a simple way to search, analyze, compare, visualize and download RPF data sets. PMID:26433228

  8. Creatine kinase and alpha-actin mRNA levels decrease in diabetic rat hearts

    SciTech Connect

    Popovich, B.; Barrieux, A.; Dillmann, W.H.

    1987-05-01

    Diabetic cardiomyopathy is associated with cardiac atrophy and isoenzyme redistribution. To determine if tissue specific changes occur in mRNAs coding for ..cap alpha..-actin and creatine kinase (CK), they performed RNA blot analysis. Total ventricular RNA from control (C) and 4 wk old diabetic (D) rats were hybridized with /sup 32/P cDNA probes for ..cap alpha..-actin and CK. A tissue independent cDNA probe, CHOA was also used. Signal intensity was quantified by photodensitometry. D CK mRNA was 47 +/- 16% lower in D vs C. Insulin increases CK mRNA by 20% at 1.5 hs, and completely reverses the deficit after 4 wks. D ..cap alpha..-actin mRNA is 66 +/- 18% lower in D vs C. Insulin normalized ..cap alpha..-actin mRNA by 5 hs. CHOA mRNA is unchanged in D vs C, but D + insulin CHOA mRNA is 30 +/- 2% lower than C. In rats with diabetic cardiomyopathy, muscle specific CK and ..cap alpha..-actin mRNAs are decreased. Insulin treatment reverses these changes.

  9. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export

    PubMed Central

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M.; Brandl, Holger; Schwich, Oliver D.; Steiner, Michaela C.; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M.

    2016-01-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1–7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1–7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3′ untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3′ ends. PMID:26944680

  10. Conserved Non-Coding Sequences are Associated with Rates of mRNA Decay in Arabidopsis.

    PubMed

    Spangler, Jacob B; Feltus, Frank Alex

    2013-01-01

    Steady-state mRNA levels are tightly regulated through a combination of transcriptional and post-transcriptional control mechanisms. The discovery of cis-acting DNA elements that encode these control mechanisms is of high importance. We have investigated the influence of conserved non-coding sequences (CNSs), DNA patterns retained after an ancient whole genome duplication event, on the breadth of gene expression and the rates of mRNA decay in Arabidopsis thaliana. The absence of CNSs near α duplicate genes was associated with a decrease in breadth of gene expression and slower mRNA decay rates while the presence CNSs near α duplicates was associated with an increase in breadth of gene expression and faster mRNA decay rates. The observed difference in mRNA decay rate was fastest in genes with CNSs in both non-transcribed and transcribed regions, albeit through an unknown mechanism. This study supports the notion that some Arabidopsis CNSs regulate the steady-state mRNA levels through post-transcriptional control mechanisms and that CNSs also play a role in controlling the breadth of gene expression.

  11. Changes in contractile protein mRNA accumulation in response to spaceflight.

    PubMed

    Esser, K A; Hardeman, E C

    1995-02-01

    Ten rats were exposed to 9 days of zero gravity aboard the National Aeronautics and Space Administration SLS-1 space mission (June 1991). Levels of fast and slow isoform mRNAs from six contractile protein gene families were quantified in the flight soleus and extensor digitorum longus (EDL) muscles. The gene families studied were myosin light chain-1 (MLC-1), myosin light chain-2 (MLC-2), troponin (Tn) T, TnI, TnC, and tropomyosin. In the EDL muscle there was no change in slow mRNA levels with a general increase in fast mRNA levels from 23 to 232%. Changes in slow mRNA levels were seen in the flight soleus muscle with TnCslow and TnTslow levels increasing slightly, and MLC-1slow a, MLC-1slow b, TnIslow, alpha-Tmslow, and MLC-2slow levels decreasing. All fast mRNA levels increased in the flight soleus muscle from 170 to 1,100%. We can conclude that exposure to zero gravity results in 1) a general increase in fast mRNA levels in both fast and slow muscles and 2) differing directional changes in slow mRNA accumulation in the soleus muscle. PMID:7864086

  12. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    PubMed

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends. PMID:26944680

  13. Viscum album-Mediated COX-2 Inhibition Implicates Destabilization of COX-2 mRNA

    PubMed Central

    Saha, Chaitrali; Hegde, Pushpa; Friboulet, Alain; Bayry, Jagadeesh; Kaveri, Srinivas V.

    2015-01-01

    Extensive use of Viscum album (VA) preparations in the complementary therapy of cancer and in several other human pathologies has led to an increasing number of cellular and molecular approaches to explore the mechanisms of action of VA. We have recently demonstrated that, VA preparations exert a potent anti-inflammatory effect by selectively down-regulating the COX-2-mediated cytokine-induced secretion of prostaglandin E2 (PGE2), one of the important molecular signatures of inflammatory reactions. In this study, we observed a significant down-regulation of COX-2 protein expression in VA-treated A549 cells however COX-2 mRNA levels were unaltered. Therefore, we hypothesized that VA induces destabilisation of COX-2 mRNA, thereby depleting the available functional COX-2 mRNA for the protein synthesis and for the subsequent secretion of PGE2. To address this question, we analyzed the molecular degradation of COX-2 protein and its corresponding mRNA in A549 cell line. Using cyclohexamide pulse chase experiment, we demonstrate that, COX-2 protein degradation is not affected by the treatment with VA whereas experiments on transcriptional blockade with actinomycin D, revealed a marked reduction in the half life of COX-2 mRNA due to its rapid degradation in the cells treated with VA compared to that in IL-1β-stimulated cells. These results thus demonstrate that VA-mediated inhibition of PGE2 implicates destabilization of COX-2 mRNA. PMID:25664986

  14. Gravitational loading of a simulated launch alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Hughes-Fulford, M.

    1996-01-01

    Serum-deprived mouse osteoblastic cells (MC3T3-E1a) were centrifuged under a regime designed to simulate a space shuttle launch (maximum of 3g). Messenger RNA levels for eight genes involved in bone growth and maintenance were determined using RT-PCR. Following 30 min of centrifugation, mRNA level for early response gene c-fos was significantly increased 89% (P < 0.05). The c-fos induction was transient and returned to control levels after 3 h. The mRNA level for the mineralization marker gene osteocalcin was significantly decreased to 44% of control level (P < 0.005) 3 h after centrifugation. No changes in mRNA levels were detected for c-myc, TGFbeta1, TGFbeta2, cyclophilin A, or actin. No basal mRNA level for TGFbeta3 was detected. In addition, no change in the steady-state synthesis of prostaglandin E2 was detected, possibly due to lack of lipid substrates in serum-deprived cells, suggesting that the increase in c-fos mRNA in response to gravitational loading is a result of mechanical stimulation. These results indicate that a small magnitude mechanical loading, such as that experienced during a shuttle launch, can alter mRNA levels in quiescent osteoblastic cells.

  15. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation.

    PubMed

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S Kundhavai; Klaholz, Bruno P; Eriani, Gilbert

    2016-08-24

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon.

  16. Induction of cysteine-rich motor neuron 1 mRNA expression in vascular endothelial cells.

    PubMed

    Nakashima, Yukiko; Takahashi, Satoru

    2014-08-22

    Cysteine-rich motor neuron 1 (CRIM1) is expressed in vascular endothelial cells and plays a crucial role in angiogenesis. In this study, we investigated the expression of CRIM1 mRNA in human umbilical vein endothelial cells (HUVECs). CRIM1 mRNA levels were not altered in vascular endothelial growth factor (VEGF)-stimulated monolayer HUVECs or in cells in collagen gels without VEGF. In contrast, the expression of CRIM1 mRNA was elevated in VEGF-stimulated cells in collagen gels. The increase in CRIM1 mRNA expression was observed even at 2h when HUVECs did not form tubular structures in collagen gels. Extracellular signal-regulated kinase (Erk) 1/2, Akt and focal adhesion kinase (FAK) were activated by VEGF in HUVECs. The VEGF-induced expression of CRIM1 mRNA was significantly abrogated by PD98059 or PF562271, but was not affected by LY294002. These results demonstrate that CRIM1 is an early response gene in the presence of both angiogenic stimulation (VEGF) and environmental (extracellular matrix) factors, and Erk and FAK might be involved in the upregulation of CRIM1 mRNA expression in vascular endothelial cells.

  17. Targeted Mutagenesis in Plant Cells through Transformation of Sequence-Specific Nuclease mRNA

    PubMed Central

    Stoddard, Thomas J.; Clasen, Benjamin M.; Baltes, Nicholas J.; Demorest, Zachary L.; Voytas, Daniel F.; Zhang, Feng; Luo, Song

    2016-01-01

    Plant genome engineering using sequence-specific nucleases (SSNs) promises to advance basic and applied plant research by enabling precise modification of endogenous genes. Whereas DNA is an effective means for delivering SSNs, DNA can integrate randomly into the plant genome, leading to unintentional gene inactivation. Further, prolonged expression of SSNs from DNA constructs can lead to the accumulation of off-target mutations. Here, we tested a new approach for SSN delivery to plant cells, namely transformation of messenger RNA (mRNA) encoding TAL effector nucleases (TALENs). mRNA delivery of a TALEN pair targeting the Nicotiana benthamiana ALS gene resulted in mutation frequencies of approximately 6% in comparison to DNA delivery, which resulted in mutation frequencies of 70.5%. mRNA delivery resulted in three-fold fewer insertions, and 76% were <10bp; in contrast, 88% of insertions generated through DNA delivery were >10bp. In an effort to increase mutation frequencies using mRNA, we fused several different 5’ and 3’ untranslated regions (UTRs) from Arabidopsis thaliana genes to the TALEN coding sequence. UTRs from an A. thaliana adenine nucleotide α hydrolases-like gene (At1G09740) enhanced mutation frequencies approximately two-fold, relative to a no-UTR control. These results indicate that mRNA can be used as a delivery vehicle for SSNs, and that manipulation of mRNA UTRs can influence efficiencies of genome editing. PMID:27176769

  18. Drosophila Ge-1 Promotes P Body Formation and oskar mRNA Localization

    PubMed Central

    Fan, Shih-Jung; Marchand, Virginie; Ephrussi, Anne

    2011-01-01

    mRNA localization coupled with translational control is a widespread and conserved strategy that allows the localized production of proteins within eukaryotic cells. In Drosophila, oskar (osk) mRNA localization and translation at the posterior pole of the oocyte are essential for proper patterning of the embryo. Several P body components are involved in osk mRNA localization and translational repression, suggesting a link between P bodies and osk RNPs. In cultured mammalian cells, Ge-1 protein is required for P body formation. Combining genetic, biochemical and immunohistochemical approaches, we show that, in vivo, Drosophila Ge-1 (dGe-1) is an essential gene encoding a P body component that promotes formation of these structures in the germline. dGe-1 partially colocalizes with osk mRNA and is required for osk RNP integrity. Our analysis reveals that although under normal conditions dGe-1 function is not essential for osk mRNA localization, it becomes critical when other components of the localization machinery, such as staufen, Drosophila decapping protein 1 and barentsz are limiting. Our findings suggest an important role of dGe-1 in optimization of the osk mRNA localization process required for patterning the Drosophila embryo. PMID:21655181

  19. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism

    PubMed Central

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K.; Lehtonen, Jukka Y.A.

    2016-01-01

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3′-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. PMID:26681690

  20. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation.

    PubMed

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S Kundhavai; Klaholz, Bruno P; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  1. Drosophila glutamate receptor mRNA expression and mRNP particles.

    PubMed

    Ganesan, Subhashree; Karr, Julie E; Featherstone, David E

    2011-01-01

    The processes controlling glutamate receptor expression early in synaptogenesis are poorly understood. Here, we examine glutamate receptor (GluR) subunit mRNA expression and localization in Drosophila embryonic/larval neuromuscular junctions (NMJs). We show that postsynaptic GluR subunit gene expression is triggered by contact from the presynaptic nerve, approximately halfway through embryogenesis. After contact, GluRIIA and GluRIIB mRNA abundance rises quickly approximately 20-fold, then falls within a few hours back to very low levels. Protein abundance, however, gradually increases throughout development. At the same time that mRNA levels decrease following their initial spike, GluRIIA, GluRIIB, and GluRIIC subunit mRNA aggregates become visible in the cytoplasm of postsynaptic muscle cells. These mRNA aggregates do not colocalize with eIF4E, but nevertheless presumably represent mRNP particles of unknown function. Multiplex FISH shows that different GluR subunit mRNAs are found in different mRNPs. GluRIIC mRNPs are most common, followed by GluRIIA and then GluRIIB mRNPs. GluR mRNP density is not increased near NMJs, for any subunit; if anything, GluR mRNP density is highest away from NMJs and near nuclei. These results reveal some of the earliest events in postsynaptic development and provide a foundation for future studies of GluR mRNA biology.

  2. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines.

    PubMed

    Toki, Yasumichi; Sasaki, Katsunori; Tanaka, Hiroki; Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro; Torimoto, Yoshihiro; Ohtake, Takaaki; Kohgo, Yutaka

    2016-08-01

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. PMID:27264950

  3. Large volume flow electroporation of mRNA: clinical scale process.

    PubMed

    Li, Linhong; Allen, Cornell; Shivakumar, Rama; Peshwa, Madhusudan V

    2013-01-01

    Genetic modification for enhancing cellular function has been continuously pursued for fighting diseases. Messenger RNA (mRNA) transfection is found to be a promising solution in modifying hematopoietic and immune cells for therapeutic purpose. We have developed a flow electroporation-based system for large volume electroporation of cells with various molecules, including mRNA. This allows robust and scalable mRNA transfection of primary cells of different origin. Here we describe transfection of chimeric antigen receptor (CAR) mRNA into NK cells to modulate the ability of NK cells to target tumor cells. High levels of CAR expression in NK cells can be maintained for 3-7 days post transfection. CD19-specific CAR mRNA transfected NK cells demonstrate targeted lysis of CD19-expressing tumor cells OP-1, primary B-CLL tumor cells, and autologous CD19+ B cells in in vitro assays with enhanced potency: >80% lysis at effector-target ratio of 1:1. This allows current good manufacturing practices (cGMP) and regulatory compliant manufacture of CAR mRNA transfected NK cells for clinical delivery. PMID:23296932

  4. Single-cell detection of mRNA expression using nanofountain-probe electroporated molecular beacons.

    PubMed

    Giraldo-Vela, Juan P; Kang, Wonmo; McNaughton, Rebecca L; Zhang, Xuemei; Wile, Brian M; Tsourkas, Andrew; Bao, Gang; Espinosa, Horacio D

    2015-05-01

    New techniques for single-cell analysis enable new discoveries in gene expression and systems biology. Time-dependent measurements on individual cells are necessary, yet the common single-cell analysis techniques used today require lysing the cell, suspending the cell, or long incubation times for transfection, thereby interfering with the ability to track an individual cell over time. Here a method for detecting mRNA expression in live single cells using molecular beacons that are transfected into single cells by means of nanofountain probe electroporation (NFP-E) is presented. Molecular beacons are oligonucleotides that emit fluorescence upon binding to an mRNA target, rendering them useful for spatial and temporal studies of live cells. The NFP-E is used to transfect a DNA-based beacon that detects glyceraldehyde 3-phosphate dehydrogenase and an RNA-based beacon that detects a sequence cloned in the green fluorescence protein mRNA. It is shown that imaging analysis of transfection and mRNA detection can be performed within seconds after electroporation and without disturbing adhered cells. In addition, it is shown that time-dependent detection of mRNA expression is feasible by transfecting the same single cell at different time points. This technique will be particularly useful for studies of cell differentiation, where several measurements of mRNA expression are required over time.

  5. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation

    PubMed Central

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G.; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S. Kundhavai; Klaholz, Bruno P.; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  6. Analysis of mRNA nuclear export kinetics in mammalian cells by microinjection.

    PubMed

    Gueroussov, Serge; Tarnawsky, Stefan P; Cui, Xianying A; Mahadevan, Kohila; Palazzo, Alexander F

    2010-12-04

    In eukaryotes, messenger RNA (mRNA) is transcribed in the nucleus and must be exported into the cytoplasm to access the translation machinery. Although the nuclear export of mRNA has been studied extensively in Xenopus oocytes and genetically tractable organisms such as yeast and the Drosophila derived S2 cell line, few studies had been conducted in mammalian cells. Furthermore the kinetics of mRNA export in mammalian somatic cells could only be inferred indirectly. In order to measure the nuclear export kinetics of mRNA in mammalian tissue culture cells, we have developed an assay that employs the power of microinjection coupled with fluorescent in situ hybridization (FISH). These assays have been used to demonstrate that in mammalian cells, the majority of mRNAs are exported in a splicing dependent manner, or in manner that requires specific RNA sequences such as the signal sequence coding region (SSCR). In this assay, cells are microinjected with either in vitro synthesized mRNA or plasmid DNA containing the gene of interest. The microinjected cells are incubated for various time points then fixed and the sub-cellular localization of RNA is assessed using FISH. In contrast to transfection, where transcription occurs several hours after the addition of nucleic acids, microinjection of DNA or mRNA allows for rapid expression and allows for the generation of precise kinetic data.

  7. Colony-stimulating factor 1 regulates CTP: phosphocholine cytidylyltransferase mRNA levels.

    PubMed

    Tessner, T G; Rock, C O; Kalmar, G B; Cornell, R B; Jackowski, S

    1991-09-01

    Growth factor regulation of phosphatidylcholine (PtdCho) metabolism during the G1 stage of the cell cycle was investigated in the colony-stimulating factor 1 (CSF-1)-dependent murine macrophage cell-line BAC1.2F5. The transient removal of CSF-1 arrested the cells in G1. Incorporation of [3H]choline into PtdCho was stimulated significantly 1 h after growth factor addition to quiescent cells. Metabolic labeling experiments pointed to CTP:phosphocholine cytidylyltransferase (CT) as the rate-controlling enzyme for PtdCho biosynthesis in BAC1.2F5 cells. The amount of CT mRNA increased 4-fold within 15 min of CSF-1 addition and remained elevated for 2 h. The rise in CT mRNA levels was accompanied by a 50% increase in total CT specific activity in cell extracts within 4 h after the addition of CSF-1. CSF-1-dependent elevation of CT mRNA content was neither attenuated nor superinduced by the inhibition of protein synthesis with cycloheximide. The rate of CT mRNA turnover decreased in the presence of CSF-1 indicating that message stabilization was a key factor in determining the levels of CT mRNA. These data point to increased CT mRNA abundance as a component in growth factor-stimulated PtdCho synthesis.

  8. Developmental timing of mRNA translation--integration of distinct regulatory elements.

    PubMed

    MacNicol, Melanie C; MacNicol, Angus M

    2010-08-01

    Targeted mRNA translation is emerging as a critical mechanism to control gene expression during developmental processes. Exciting new findings have revealed a critical role for regulatory elements within the mRNA untranslated regions to direct the timing of mRNA translation. Regulatory elements can be targeted by sequence-specific binding proteins to direct either repression or activation of mRNA translation in response to developmental signals. As new regulatory elements continue to be identified it has become clear that targeted mRNAs can contain multiple regulatory elements, directing apparently contradictory translational patterns. How is this complex regulatory input integrated? In this review, we focus on a new challenge area-how sequence-specific RNA binding proteins respond to developmental signals and functionally integrate to regulate the extent and timing of target mRNA translation. We discuss current understanding with a particular emphasis on the control of cell cycle progression that is mediated through a complex interplay of distinct mRNA regulatory elements during Xenopus oocyte maturation.

  9. Role of miRNAs and alternative mRNA 3'-end cleavage and polyadenylation of their mRNA targets in cardiomyocyte hypertrophy.

    PubMed

    Soetanto, R; Hynes, C J; Patel, H R; Humphreys, D T; Evers, M; Duan, G; Parker, B J; Archer, S K; Clancy, J L; Graham, R M; Beilharz, T H; Smith, N J; Preiss, T

    2016-05-01

    miRNAs play critical roles in heart disease. In addition to differential miRNA expression, miRNA-mediated control is also affected by variable miRNA processing or alternative 3'-end cleavage and polyadenylation (APA) of their mRNA targets. To what extent these phenomena play a role in the heart remains unclear. We sought to explore miRNA processing and mRNA APA in cardiomyocytes, and whether these change during cardiac hypertrophy. Thoracic aortic constriction (TAC) was performed to induce hypertrophy in C57BL/6J mice. RNA extracted from cardiomyocytes of sham-treated, pre-hypertrophic (2 days post-TAC), and hypertrophic (7 days post-TAC) mice was subjected to small RNA- and poly(A)-test sequencing (PAT-Seq). Differential expression analysis matched expectations; nevertheless we identified ~400 mRNAs and hundreds of noncoding RNA loci as altered with hypertrophy for the first time. Although multiple processing variants were observed for many miRNAs, there was little change in their relative proportions during hypertrophy. PAT-Seq mapped ~48,000 mRNA 3'-ends, identifying novel 3' untranslated regions (3'UTRs) for over 7000 genes. Importantly, hypertrophy was associated with marked changes in APA with a net shift from distal to more proximal mRNA 3'-ends, which is predicted to decrease overall miRNA repression strength. We independently validated several examples of 3'UTR proportion change and showed that alternative 3'UTRs associate with differences in mRNA translation. Our work suggests that APA contributes to altered gene expression with the development of cardiomyocyte hypertrophy and provides a rich resource for a systems-level understanding of miRNA-mediated regulation in physiological and pathological states of the heart. PMID:27032571

  10. Posttranscriptional regulation of collagen alpha1(I) mRNA in hepatic stellate cells.

    PubMed Central

    Stefanovic, B; Hellerbrand, C; Holcik, M; Briendl, M; Aliebhaber, S; Brenner, D A

    1997-01-01

    The hepatic stellate cell (HSC) is the primary cell responsible for the dramatic increase in the synthesis of type I collagen in the cirrhotic liver. Quiescent HSCs contain a low level of collagen alpha1(I) mRNA, while activated HSCs contain about 60- to 70-fold more of this mRNA. The transcription rate of the collagen alpha1(I) gene is only two fold higher in activated HSCs than in quiescent HSCs. In assays using actinomycin D or 5,6-dichlorobenzimidazole riboside collagen alpha1(I) mRNA has estimated half-lives of 1.5 h in quiescent HSCs and 24 h in activated HSCs. Thus, this 16-fold change in mRNA stability is primarily responsible for the increase in collagen alpha1(I) mRNA steady-state level in activated HSCs. We have identified a novel RNA-protein interaction targeted to the C-rich sequence in the collagen alpha1(I) mRNA 3' untranslated region (UTR). This sequence is localized 24 nucleotides 3' to the stop codon. In transient transfection experiments, mutation of this sequence diminished accumulation of an mRNA transcribed from a collagen alpha1(I) minigene and in stable transfections decreased the half-life of collagen alpha1(I) minigene mRNA. Binding to the collagen alpha1(I) 3' UTR is present in cytoplasmic extracts of activated but not quiescent HSCs. It contains as a subunit alphaCP, which is also found in the complex involved in stabilization of alpha-globin mRNA. The auxiliary factors necessary to promote binding of alphaCP to the collagen 3' UTR are distinct from the factors necessary for binding to the alpha-globin sequence. Since alphaCP is expressed in both quiescent and activated HSCs, these auxiliary factors are responsible for the differentially expressed RNA-protein interaction at the collagen alpha1(I) mRNA 3' UTR. PMID:9271398

  11. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    SciTech Connect

    Lazarus, Kyren A.; Zhao, Zhe; Knower, Kevin C.; To, Sarah Q.; Chand, Ashwini L.; Clyne, Colin D.

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.

  12. Modulation of phosphoenolpyruvate carboxykinase mRNA levels by the hepatocellular hydration state.

    PubMed Central

    Newsome, W P; Warskulat, U; Noe, B; Wettstein, M; Stoll, B; Gerok, W; Häussinger, D

    1994-01-01

    Exposure of isolated perfused rat livers to hypo-osmotic (225 mosmol/l) perfusion media for 3 h led to a decrease of about 60% in mRNA levels for phosphoenolpyruvate carboxy-kinase (PEPCK) compared with normo-osmotic (305 mosmol/l) perfusions. Conversely, PEPCK mRNA levels increased about 3-fold during hyperosmotic (385 mosmol/l) perfusions. The anisotonicity effects were not explained by changes in the intracellular cyclic AMP (cAMP) concentration or by changes of the extracellular Na+ or Cl- activity. Similar effects of aniso-osmolarity on PEPCK mRNA levels were found in cultured rat hepatoma H4IIE.C3 cells, the experimental system used for further characterization of the effect. Whereas during the first hour of anisotonic exposure no effects on PEPCK mRNA levels were detectable, near-maximal aniso-osmolarity effects were observed within the next 2-3 h. PEPCK mRNA levels increased sigmoidally with the osmolarity of the medium, and the anisotonicity effects were most pronounced upon modulation of osmolarity between 250 and 350 mosmol/l. The aniso-osmolarity effects on PEPCK mRNA were not affected in presence of Gö 6850, protein kinase C inhibitor. cAMP increased the PEPCK mRNA levels about 2.3-fold in normo-osmotic media, whereas insulin lowered the PEPCK mRNA levels to about 8%. The effects of cAMP and insulin were also observed during hypo-osmotic and hyperosmotic exposure, respectively, but the anisotonicity effects were not abolished in presence of the hormones. The data suggest that hepatocellular hydration affects hepatic carbohydrate metabolism also over a longer term by modulating PEPCK mRNA levels. This is apparently unrelated to protein kinase C or alterations of cAMP levels. The data strengthen the view that cellular hydration is an important determinant for cell metabolic function by extending its regulatory role in carbohydrate metabolism to the level of mRNA. Images Figure 1 Figure 2 Figure 5 Figure 6 PMID:7998992

  13. Urinary vimentin mRNA as a potential novel biomarker of renal fibrosis.

    PubMed

    Cao, Yu-Han; Lv, Lin-Li; Zhang, Xu; Hu, Hong; Ding, Li-Hong; Yin, Di; Zhang, Ying-Zi; Ni, Hai-Feng; Chen, Ping-Sheng; Liu, Bi-Cheng

    2015-09-15

    Renal fibrosis is a histological outcome of chronic kidney disease (CKD) progression. However, the noninvasive detection of renal fibrosis remains a challenge. Here we constructed a renal fibrosis target mRNA array and used it to detect urinary mRNAs of CKD patients for investigating potential noninvasive biomarkers of renal fibrosis. We collected urine samples from 39 biopsy-proven CKD patients and 11 healthy controls in the training set. Urinary mRNA profiles of 86 genes showed a total of 21 mRNAs that were differentially expressed between CKD patients and controls (P < 0.05), and vimentin (VIM) mRNA demonstrated the highest change fold of 9.99 in CKD vs. controls with robust correlations with decline of renal function and severity of tubulointerstitial fibrosis. Additionally, VIM mRNA further differentiated patients with moderate-to-severe fibrosis from none-to-mild fibrosis group with an area of the curve of 0.796 (P = 0.008). A verification of VIM mRNA in the urine of an additional 96 patients and 20 controls showed that VIM is not only well correlated with renal function parameters but also correlated with proteinuria and renal fibrosis scores. Multiple logistic regression and receiver-operating characteristics analysis further showed that urine VIM mRNA is the best predictive parameter of renal fibrosis compared with estimated glomerular filtration rate, serum creatinine, and blood urea nitrogen. In addition, there is no improved predictive performance for the composite biomarkers to predict renal fibrosis severity compared with a single gene of VIM. Overall, urinary VIM mRNA might serve as a novel independent noninvasive biomarker to monitor the progression of kidney fibrosis.

  14. Self-Digitization Microfluidic Chip for Absolute Quantification of mRNA in Single Cells

    PubMed Central

    2015-01-01

    Quantification of mRNA in single cells provides direct insight into how intercellular heterogeneity plays a role in disease progression and outcomes. Quantitative polymerase chain reaction (qPCR), the current gold standard for evaluating gene expression, is insufficient for providing absolute measurement of single-cell mRNA transcript abundance. Challenges include difficulties in handling small sample volumes and the high variability in measurements. Microfluidic digital PCR provides far better sensitivity for minute quantities of genetic material, but the typical format of this assay does not allow for counting of the absolute number of mRNA transcripts samples taken from single cells. Furthermore, a large fraction of the sample is often lost during sample handling in microfluidic digital PCR. Here, we report the absolute quantification of single-cell mRNA transcripts by digital, one-step reverse transcription PCR in a simple microfluidic array device called the self-digitization (SD) chip. By performing the reverse transcription step in digitized volumes, we find that the assay exhibits a linear signal across a wide range of total RNA concentrations and agrees well with standard curve qPCR. The SD chip is found to digitize a high percentage (86.7%) of the sample for single-cell experiments. Moreover, quantification of transferrin receptor mRNA in single cells agrees well with single-molecule fluorescence in situ hybridization experiments. The SD platform for absolute quantification of single-cell mRNA can be optimized for other genes and may be useful as an independent control method for the validation of mRNA quantification techniques. PMID:25390242

  15. Reduced secreted mu mRNA synthesis in selective IgM deficiency of Bloom's syndrome.

    PubMed Central

    Kondo, N; Ozawa, T; Kato, Y; Motoyoshi, F; Kasahara, K; Kameyama, T; Orii, T

    1992-01-01

    Serum IgM concentrations were low although serum IgG and IgA concentrations were normal in both our patients with Bloom's syndrome. Although the percentages of surface IgM-bearing cells were not reduced, the numbers of IgM-secreting cells were markedly reduced. The membrane-bound mu (microns) and secreted mu (microseconds) mRNAs are produced from transcripts of a single immunoglobulin mu gene by alternative RNA processing pathways. The control of microseconds mRNA synthesis depends on the addition of poly(A) to microseconds C-terminal segment. In both patients, mu mRNA was well detected but microseconds C-terminal mRNA was scarcely detected, suggesting that microns mRNA was well transcribed but microseconds mRNA was not. There was, at least, no mutation or deletion in the microseconds C-terminal coding sequence, the RNA splice site (GG/TAAAC) at the 5' end of microseconds C-terminal segment and the AATAAA poly(A) signal sequence in both patients. Our results suggest that selective IgM deficiency in Bloom's syndrome is due to an abnormality in the maturation of surface IgM-bearing B cells into IgM-secreting cells and a failure of microseconds mRNA synthesis. Moreover, reduced microseconds mRNA synthesis may be due to the defect on developmental regulation of the site at which poly(A) is added to transcripts of the mu gene. Images Fig. 2 PMID:1563106

  16. Self-digitization microfluidic chip for absolute quantification of mRNA in single cells.

    PubMed

    Thompson, Alison M; Gansen, Alexander; Paguirigan, Amy L; Kreutz, Jason E; Radich, Jerald P; Chiu, Daniel T

    2014-12-16

    Quantification of mRNA in single cells provides direct insight into how intercellular heterogeneity plays a role in disease progression and outcomes. Quantitative polymerase chain reaction (qPCR), the current gold standard for evaluating gene expression, is insufficient for providing absolute measurement of single-cell mRNA transcript abundance. Challenges include difficulties in handling small sample volumes and the high variability in measurements. Microfluidic digital PCR provides far better sensitivity for minute quantities of genetic material, but the typical format of this assay does not allow for counting of the absolute number of mRNA transcripts samples taken from single cells. Furthermore, a large fraction of the sample is often lost during sample handling in microfluidic digital PCR. Here, we report the absolute quantification of single-cell mRNA transcripts by digital, one-step reverse transcription PCR in a simple microfluidic array device called the self-digitization (SD) chip. By performing the reverse transcription step in digitized volumes, we find that the assay exhibits a linear signal across a wide range of total RNA concentrations and agrees well with standard curve qPCR. The SD chip is found to digitize a high percentage (86.7%) of the sample for single-cell experiments. Moreover, quantification of transferrin receptor mRNA in single cells agrees well with single-molecule fluorescence in situ hybridization experiments. The SD platform for absolute quantification of single-cell mRNA can be optimized for other genes and may be useful as an independent control method for the validation of mRNA quantification techniques.

  17. A ribonucleoprotein complex protects the interleukin-6 mRNA from degradation by distinct herpesviral endonucleases.

    PubMed

    Muller, Mandy; Hutin, Stephanie; Marigold, Oliver; Li, Kathy H; Burlingame, Al; Glaunsinger, Britt A

    2015-05-01

    During lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection, the viral endonuclease SOX promotes widespread degradation of cytoplasmic messenger RNA (mRNA). However, select mRNAs escape SOX-induced cleavage and remain robustly expressed. Prominent among these is interleukin-6 (IL-6), a growth factor important for survival of KSHV infected B cells. IL-6 escape is notable because it contains a sequence within its 3' untranslated region (UTR) that can confer protection when transferred to a SOX-targeted mRNA, and thus overrides the endonuclease targeting mechanism. Here, we pursued how this protective RNA element functions to maintain mRNA stability. Using affinity purification and mass spectrometry, we identified a set of proteins that associate specifically with the protective element. Although multiple proteins contributed to the escape mechanism, depletion of nucleolin (NCL) most severely impacted protection. NCL was re-localized out of the nucleolus during lytic KSHV infection, and its presence in the cytoplasm was required for protection. After loading onto the IL-6 3' UTR, NCL differentially bound to the translation initiation factor eIF4H. Disrupting this interaction, or depleting eIF4H, reinstated SOX targeting of the RNA, suggesting that interactions between proteins bound to distant regions of the mRNA are important for escape. Finally, we found that the IL-6 3' UTR was also protected against mRNA degradation by the vhs endonuclease encoded by herpes simplex virus, despite the fact that its mechanism of mRNA targeting is distinct from SOX. These findings highlight how a multitude of RNA-protein interactions can impact endonuclease targeting, and identify new features underlying the regulation of the IL-6 mRNA. PMID:25965334

  18. Mapping of N6-methyladenosine residues in bovine prolactin mRNA.

    PubMed

    Horowitz, S; Horowitz, A; Nilsen, T W; Munns, T W; Rottman, F M

    1984-09-01

    N6-Methyladenosine (m6A) residues, which are found internally in viral and cellular mRNA populations at the sequences Apm6ApC and Gpm6ApC, have been proposed to play a role in mRNA processing and transport. We have developed a sensitive approach to analyze the level and location of m6A in specific purified cellular mRNAs in an attempt to correlate m6A location with function. Polyadenylylated mRNA is hybridized to cDNA clones representing the full size mRNA under study or fragments of it, and the protected RNA is digested and labeled with polynucleotide kinase in vitro. After enrichment for m6A with anti-m6A antibody, the [32P]-pm6A is separated on TLC plates, and compared with the total amount of radiolabeled nucleotides. Using this combination of in vitro RNA labeling and antibody selection, we were able to detect m6A in purified stable mRNAs that cannot be readily labeled in cells with greater sensitivity than was possible by previous techniques. We applied this technique to bovine prolactin mRNA and showed that this mRNA contains m6A. Moreover, all of the m6A residues in this message are found within the 3' two-thirds of the molecule and are highly concentrated (61%) within a sequence of 108 nucleotides at the 3' noncoding region of the message. The nonrandom distribution of m6A in a specific cellular mRNA, as demonstrated for bovine prolactin, will have to be taken into account when designing a model for m6A function. PMID:6592581

  19. The ribosome structure controls and directs mRNA entry, translocation and exit dynamics

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Ozge; Doruker, Pemra; Sen, Taner Z.; Kloczkowski, Andrzej; Jernigan, Robert L.

    2008-12-01

    The protein-synthesizing ribosome undergoes large motions to effect the translocation of tRNAs and mRNA; here, the domain motions of this system are explored with a coarse-grained elastic network model using normal mode analysis. Crystal structures are used to construct various model systems of the 70S complex with/without tRNA, elongation factor Tu and the ribosomal proteins. Computed motions reveal the well-known ratchet-like rotational motion of the large subunits, as well as the head rotation of the small subunit and the high flexibility of the L1 and L7/L12 stalks, even in the absence of ribosomal proteins. This result indicates that these experimentally observed motions during translocation are inherently controlled by the ribosomal shape and only partially dependent upon GTP hydrolysis. Normal mode analysis further reveals the mobility of A- and P-tRNAs to increase in the absence of the E-tRNA. In addition, the dynamics of the E-tRNA is affected by the absence of the ribosomal protein L1. The mRNA in the entrance tunnel interacts directly with helicase proteins S3 and S4, which constrain the mRNA in a clamp-like fashion, as well as with protein S5, which likely orients the mRNA to ensure correct translation. The ribosomal proteins S7, S11 and S18 may also be involved in assuring translation fidelity by constraining the mRNA at the exit site of the channel. The mRNA also interacts with the 16S 3' end forming the Shine-Dalgarno complex at the initiation step; the 3' end may act as a 'hook' to reel in the mRNA to facilitate its exit.

  20. Molecular cloning and characterization of a novel mRNA present in the squid giant axon.

    PubMed

    Chun, J T; Gioio, A E; Crispino, M; Eyman, M; Giuditta, A; Kaplan, B B

    1997-07-15

    Previously, we reported the presence of a heterogeneous population of mRNAs in the squid giant axon. The construction of a cDNA library to this mRNA population has facilitated the identification of several of the constituent mRNAs which encode several cytoskeletal and motor proteins as well as enolase, a glycolytic enzyme. In this communication, we report the isolation of a novel mRNA species (pA6) from the axonal cDNA library. The pA6 mRNA is relatively small (550 nucleotides in length) and is expressed in both nervous tissue and skeletal muscle. The axonal localization of pA6 mRNA was unequivocally established by in situ hybridization histochemistry. The results of quantitative RT-PCR analysis indicate that there are 1.8 x 10(6) molecules of pA6 mRNA (approximately 0.45 pg) in the analyzed segment of the giant axon and suggest that the level of pA6 mRNA in the axonal domain of the giant fiber system might be equal to or greater than the level present in the parental cell soma. Sequence analysis of pA6 suggests that the mRNA encodes an integral membrane protein comprising 84 amino acids. The putative protein contains a single transmembrane domain located in the middle of the molecule and a phosphate-binding loop situated near the N terminus. The C-terminal region of the protein contains two potential phosphorylation sites. These four structural motifs manifest striking similarity to domains present in the ryanodine receptor, raising the possibility that pA6 represents a cephalopod intracellular calcium release channel protein.

  1. Circulating resistin protein and mRNA concentrations and clinical severity of coronary artery disease

    PubMed Central

    Sopic, Miron; Spasojevic-Kalimanovska, Vesna; Kalimanovska-Ostric, Dimitra; Andjelkovic, Kristina; Jelic-Ivanovic, Zorana

    2015-01-01

    Introduction Previous studies have implicated a strong link between circulating plasma resistin and coronary artery disease (CAD). The aim of this study was to evaluate the differences in peripheral blood mononuclear cells (PBMC) resistin mRNA and its plasma protein concentrations between the patients with CAD of different clinical severity. Material and methods This study included 33 healthy subjects as the control group (CG) and 77 patients requiring coronary angiography. Of the latter 30 was CAD negative whereas 47 were CAD positive [18 with stable angina pectoris (SAP) and 29 with acute coronary syndrome (ACS)]. Circulating resistin was measured by ELISA; PBMC resistin mRNA was determined by real-time PCR. Results Resistin protein was significantly higher in the ACS group compared to the CG (P = 0.001) and the CAD negative group (P = 0.018). Resistin mRNA expression did not vary across the study groups, despite the positive correlation seen with plasma resistin (ρ = 0.305, P = 0.008). In patients, plasma resistin and PBMC resistin mRNA negatively correlated with HDL-C (ρ = -0.404, P < 0.001 and ρ = -0.257, P = 0.032, respectively). Furthermore, the highest plasma resistin tertile showed the lowest HDL-C (P = 0.006). Plasma resistin was positively associated with serum creatinine (ρ = 0.353, P = 0.002). Conclusion Significant increase of plasma resistin in patients with ACS compared to CG and CAD negative patients was observed. Despite no change in PBMC resistin mRNA in different disease conditions a positive association between resistin mRNA and resistin plasma protein was evident. Both plasma resistin and PBMC resistin mRNA were negatively associated with plasma HDL-C, and plasma resistin positively with serum creatinine. PMID:26110037

  2. mRNA expression and protein localization of dentin matrix protein 1 during dental root formation.

    PubMed

    Toyosawa, S; Okabayashi, K; Komori, T; Ijuhin, N

    2004-01-01

    Dentin matrix protein 1 (DMP1) is an acidic phosphoprotein. DMP1 was initially detected in dentin and later in other mineralized tissues including cementum and bone, but the DMP1 expression pattern in tooth is still controversial. To determine the precise localization of DMP1 messenger RNA (mRNA) and the protein in the tooth, we performed in situ hybridization and immunohistochemical analyses using rat molars and incisors during various stages of root formation. During root dentin formation of molars, DMP1 mRNA was detected in root odontoblasts in parallel with mineralization of the dentin. However, the level of DMP1 mRNA expression in root odontoblasts decreased near the coronal part and was absent in coronal odontoblasts. DMP1 protein was localized along dentinal tubules and their branches in mineralized root dentin, and the distribution of DMP1 shifted from the end of dentinal tubules to the base of the tubules as dentin formation progressed. During the formation of the acellular cementum, DMP1 mRNA was detected in cementoblasts lining the acellular cementum where its protein was localized. During the formation of the cellular cementum, DMP1 mRNA was detected in cementocytes embedded in the cellular cementum but not in cementoblasts, and its protein was localized in the pericellular cementum of cementocytes including their processes. During dentin formation of incisors, DMP1 mRNA was detected in odontoblasts on the cementum-related dentin, where its protein was localized along dentinal tubules near the mineralization front. The localization of DMP1 mRNA and protein in dentin and cementum was related to their mineralization, suggesting that one of the functions of DMP1 may be involved in the mineralization of dentin and cementum during root formation. PMID:14751569

  3. Lipoprotein lipase and hepatic lipase mRNA tissue specific expression, developmental regulation, and evolution.

    PubMed

    Semenkovich, C F; Chen, S H; Wims, M; Luo, C C; Li, W H; Chan, L

    1989-03-01

    Lipoprotein lipase (LPL) and hepatic lipase (HL) enzyme activities were previously reported to be regulated during development, but the underlying molecular events are unknown. In addition, little is known about LPL evolution. We cloned and sequenced a complete mouse LPL cDNA. Comparison of sequences from mouse, human, bovine, and guinea pig cDNAs indicated that the rates of evolution of mouse, human, and bovine LPL are quite low, but guinea pig LPL has evolved several times faster than the others. 32P-Labeled mouse LPL and rat HL cDNAs were used to study lipase mRNA tissue distribution and developmental regulation in the rat. Northern gel analysis revealed the presence of a single 1.87 kb HL mRNA species in liver, but not in other tissues including adrenal and ovary. A single 4.0 kb LPL mRNA species was detected in epididymal fat, heart, psoas muscle, lactating mammary gland, adrenal, lung, and ovary, but not in adult kidney, liver, intestine, or brain. Quantitative slot-blot hybridization analysis demonstrated the following relative amounts of LPL mRNA in rat tissues: adipose, 100%; heart, 94%; adrenal, 6.6%; muscle, 3.8%; lung, 3.0%; kidney, 0%; adult liver, 0%. The same quantitative analysis was used to study lipase mRNA levels during development. There was little postnatal variation in LPL mRNA in adipose tissue; maximal levels were detected at the earliest time points studied for both inguinal and epididymal fat. In heart, however, LPL mRNA was detected at low levels 6 days before birth and increased 278-fold as the animals grew to adulthood.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Molecular contacts of ribose-phosphate backbone of mRNA with human ribosome.

    PubMed

    Sharifulin, Dmitri E; Grosheva, Anastasia S; Bartuli, Yulia S; Malygin, Alexey A; Meschaninova, Maria I; Ven'yaminova, Aliya G; Stahl, Joachim; Graifer, Dmitri M; Karpova, Galina G

    2015-08-01

    In this work, intimate contacts of riboses of mRNA stretch from nucleotides in positions +3 to +12 with respect to the first nucleotide of the P site codon were studied using cross-linking of short mRNA analogs with oxidized 3'-terminal riboses bound to human ribosomes in the complexes stabilized by codon-anticodon interactions and in the binary complexes. It was shown that in all types of complexes cross-links of the mRNA analogs to ribosomal protein (rp) uS3 occur and the yield of these cross-links does not depend on the presence of tRNA and on sequences of the mRNA analogs. Site of the mRNA analogs cross-linking in rp uS3 was mapped to the peptide in positions 55-64 that is located away from the mRNA binding site. Additionally, in complexes with P site-bound tRNA, riboses of mRNA nucleotides in positions +4 to +7 cross-linked to the C-terminal tail of rp uS19 displaying a contact specific to the decoding site of the mammalian ribosome, and tRNA bound at the A site completely blocked this cross-linking. Remarkably, rps uS3 and uS19 were also able to cross-link to the fragment of HCV IRES containing unstructured 3'-terminal part restricted by the AUGC tetraplet with oxidized 3'-terminal ribose. However, no cross-linking to rp uS3 was observed in the 48S preinitiation complex assembled in reticulocyte lysate with this HCV IRES derivative. The results obtained show an ability of rp uS3 to interact with single-stranded RNAs. Possible roles of rp uS3 region 55-64 in the functioning of ribosomes are discussed.

  5. Real-time monitoring of intracellular mRNA hybridization inside single living cells.

    PubMed

    Perlette, J; Tan, W

    2001-11-15

    A molecular beacon, an oligonucleotide probe with inherent signal transduction mechanisms, is an optimal tool for visualizing real-time mRNA hybridization in single living cells. Each molecular beacon (MB) consists of a single-stranded DNA molecule in a stem-loop conformation with a fluorophore linked to the 5' end and a quencher at the 3' end. In this study, we demonstrate real-time monitoring of mRNA-DNA hybridization inside living cells using molecular beacons. A MB specific for beta-actin mRNA has been designed and synthesized. After microinjection into the cytoplasm of single living kangaroo rat kidney cells (PtK2 cells), the MB hybridizes with beta-actin mRNA as shown by fluorescence measurements over time. Hybridization dynamics have been followed. Strict control experiments have been carried out to confirm that the fluorescence signal increase is indeed due to the hybridization of mRNA inside single living cells. Variation in the MB/mRNA hybridization fluorescent signal has been observed for different PtK2 cells, which indicates the amount of mRNA in different cells is different. We have also monitored the beta-1 andrenergic receptor mRNA inside the PtK2 cells. These studies demonstrate the feasibility of using MBs and the ultrasensitivity achieved in our fluorescence imaging system for real-time detection of mRNA hybridization and for the visualization of oligonucleotide/mRNA interactions inside single living cells.

  6. Both ran and importins have the ability to function as nuclear mRNA export factors.

    PubMed Central

    Yi, Rui; Bogerd, Hal P; Wiegand, Heather L; Cullen, Bryan R

    2002-01-01

    The Ran protein regulates nucleocytoplasmic transport mediated by the karyopherin family of nuclear transport factors. Ran is converted to the active, GTP bound form in the nucleus and then binds to a conserved domain found in all karyopherins. This interaction induces cargo binding for exportins and cargo release for importins. In either case, the Ran.GTP is then transported to the cytoplasm by the karyopherin, where it is hydrolyzed to Ran.GDP. To ask whether Ran could function as a nuclear mRNA export factor, we fused Ran to the MS2 coat protein and inserted MS2 RNA-binding sites into an unspliced cat mRNA that is normally sequestered in the nucleus. Coexpression of MS2-Ran induced cat mRNA export and CAT enzyme expression as effectively as, for example, an MS2-Rev fusion protein. MS2-Ran dependent nuclear mRNA export was reduced by inhibitors specific for Crm1, but not blocked as was seen with MS2-Rev. Consistent with the hypothesis that Crm1 is not the only karyopherin cofactor for MS2-Ran mediated mRNA export, we show that not only Crm1 but also CAS, transportin, importin beta and exportin t can all export mRNA from the nucleus when tethered via the MS2 RNA-binding domain. In contrast, two shuttling hnRNPs, hnRNP A1 and hnRNP K, proved unable to function as nuclear RNA export factors when expressed as MS2 fusions. Together, these data argue that karyopherins that normally function to transport proteins into or out of the nucleus are also capable of exporting tethered mRNA molecules. PMID:11911364

  7. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    SciTech Connect

    Dalgaard, Louise T.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. Black-Right-Pointing-Pointer UCP2 mRNA up-regulation by glucose is dependent on glucokinase. Black-Right-Pointing-Pointer Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. Black-Right-Pointing-Pointer This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic {beta}-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  8. Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system

    PubMed Central

    DeRosa, F; Guild, B; Karve, S; Smith, L; Love, K; Dorkin, J R; Kauffman, K J; Zhang, J; Yahalom, B; Anderson, D G; Heartlein, M W

    2016-01-01

    DNA-based gene therapy has considerable therapeutic potential, but the challenges associated with delivery continue to limit progress. Messenger RNA (mRNA) has the potential to provide for transient production of therapeutic proteins, without the need for nuclear delivery and without the risk of insertional mutagenesis. Here we describe the sustained delivery of therapeutic proteins in vivo in both rodents and non-human primates via nanoparticle-formulated mRNA. Nanoparticles formulated with lipids and lipid-like materials were developed for delivery of two separate mRNA transcripts encoding either human erythropoietin (hEPO) or factor IX (hFIX) protein. Dose-dependent protein production was observed for each mRNA construct. Upon delivery of hEPO mRNA in mice, serum EPO protein levels reached several orders of magnitude (>125 000-fold) over normal physiological values. Further, an increase in hematocrit (Hct) was established, demonstrating that the exogenous mRNA-derived protein maintained normal activity. The capacity of producing EPO in non-human primates via delivery of formulated mRNA was also demonstrated as elevated EPO protein levels were observed over a 72-h time course. Exemplifying the possible broad utility of mRNA drugs, therapeutically relevant amounts of human FIX (hFIX) protein were achieved upon a single intravenous dose of hFIX mRNA-loaded lipid nanoparticles in mice. In addition, therapeutic value was established within a hemophilia B (FIX knockout (KO)) mouse model by demonstrating a marked reduction in Hct loss following injury (incision) to FIX KO mice. PMID:27356951

  9. “Pretranscriptional capping” in the biosynthesis of cytoplasmic polyhedrosis virus mRNA

    PubMed Central

    Furuichi, Yasuhiro

    1978-01-01

    The in vitro synthesis of cytoplasmic polyhedrosis virus (CPV) mRNA was previously shown to be dependent upon the presence of the methyl donor S-adenosylmethionine (AdoMet). We now find that the competitive inhibitor of methylation, S-adenosylhomocysteine (AdoHcy), also stimulates CPV mRNA synthesis efficiently, resulting in the synthesis of viral mRNAs containing 5′-terminal GpppA and ppA, rather than m7GpppAm as observed with Adomet. In addition to AdoHcy, other AdoMet analogues, including S-adenosylethionine and adenosine, also stimulate CPV mRNA synthesis but to a smaller extent than does AdoHcy or AdoMet. In order to study the relationship between cap formation and mRNA synthesis, nucleoside triphosphates were replaced in the RNA-synthesizing reaction mixture (containing AdoMet) by the corresponding β,γ-imido analogues, which are resistant to nucleotide phosphohydrolase, an enzyme involved in cap formation. Although mRNA synthesis occurred in the presence of UMP-pNHp or GMP-pNHp, none was observed when AMP-pNHp was substituted for ATP. Because the ATP molecule that becomes the 5′-terminal nucleotide of CPV mRNA must be cleaved at the β-γ position during cap formation, the results suggest that, in this viral transcription system, cap formation is prerequisite to mRNA synthesis—i.e., a “pretranscriptional” event. PMID:349555

  10. AUF1 contributes to Cryptochrome1 mRNA degradation and rhythmic translation

    PubMed Central

    Lee, Kyung-Ha; Kim, Sung-Hoon; Kim, Hyo-Jin; Kim, Wanil; Lee, Hwa-Rim; Jung, Youngseob; Choi, Jung-Hyun; Hong, Ka Young; Jang, Sung Key; Kim, Kyong-Tai

    2014-01-01

    In the present study, we investigated the 3′ untranslated region (UTR) of the mouse core clock gene cryptochrome 1 (Cry1) at the post-transcriptional level, particularly its translational regulation. Interestingly, the 3′UTR of Cry1 mRNA decreased its mRNA levels but increased protein amounts. The 3′UTR is widely known to function as a cis-acting element of mRNA degradation. The 3′UTR also provides a binding site for microRNA and mainly suppresses translation of target mRNAs. We found that AU-rich element RNA binding protein 1 (AUF1) directly binds to the Cry1 3′UTR and regulates translation of Cry1 mRNA. AUF1 interacted with eukaryotic translation initiation factor 3 subunit B and also directly associated with ribosomal protein S3 or ribosomal protein S14, resulting in translation of Cry1 mRNA in a 3′UTR-dependent manner. Expression of cytoplasmic AUF1 and binding of AUF1 to the Cry1 3′UTR were parallel to the circadian CRY1 protein profile. Our results suggest that the 3′UTR of Cry1 is important for its rhythmic translation, and AUF1 bound to the 3′UTR facilitates interaction with the 5′ end of mRNA by interacting with translation initiation factors and recruiting the 40S ribosomal subunit to initiate translation of Cry1 mRNA. PMID:24423872

  11. mRNA fragments in in vitro culture media are associated with bovine preimplantation embryonic development.

    PubMed

    Kropp, Jenna; Khatib, Hasan

    2015-01-01

    In vitro production (IVP) systems have been used to bypass problems of fertilization and early embryonic development. However, embryos produced by IVP are commonly selected for implantation based on morphological assessment, which is not a strong indicator of establishment and maintenance of pregnancy. Thus, there is a need to identify additional indicators of embryonic developmental potential. Previous studies have identified microRNA expression in in vitro culture media to be indicative of embryo quality in both bovine and human embryos. Like microRNAs, mRNAs have been shown to be secreted from cells into the extracellular environment, but it is unknown whether or not these RNAs are secreted by embryos. Thus, the objective of the present study was to determine whether mRNAs are secreted into in vitro culture media and if their expression in the media is indicative of embryo quality. In vitro culture medium was generated and collected from both blastocyst and degenerate (those which fail to develop from the morula to blastocyst stage) embryos. Small-RNA sequencing revealed that many mRNA fragments were present in the culture media. A total of 17 mRNA fragments were differentially expressed between blastocyst and degenerate conditioned media. Differential expression was confirmed by quantitative real-time PCR for fragments of mRNA POSTN and VSNL-1, in four additional biological replicates of media. To better understand the mechanisms of mRNA secretion into the media, the expression of a predicted RNA binding protein of POSTN, PUM2, was knocked down using an antisense oligonucleotide gapmer. Supplementation of a PUM2 gapmer significantly reduced blastocyst development and decreased secretion of POSTN mRNA into the media. Overall, differential mRNA expression in the media was repeatable and sets the framework for future study of mRNA biomarkers in in vitro culture media to improve predictability of reproductive performance.

  12. Splicing of influenza A virus NS1 mRNA is independent of the viral NS1 protein.

    PubMed

    Robb, Nicole C; Jackson, David; Vreede, Frank T; Fodor, Ervin

    2010-09-01

    RNA segment 8 (NS) of influenza A virus encodes two proteins. The NS1 protein is translated from the unspliced primary mRNA transcript, whereas the second protein encoded by this segment, NS2/NEP, is translated from a spliced mRNA. Splicing of influenza NS1 mRNA is thought to be regulated so that the levels of NS2 spliced transcripts are approximately 10 % of total NS mRNA. Regulation of splicing of the NS1 mRNA has been studied at length, and a number of often-contradictory control mechanisms have been proposed. In this study, we used (32)P-labelled gene-specific primers to investigate influenza A NS1 mRNA splicing regulation. It was found that the efficiency of splicing of NS1 mRNA was maintained at similar levels in both virus infection and ribonucleoprotein-reconstitution assays, and NS2 mRNA comprised approximately 15 % of total NS mRNA in both assays. The effect of NS1 protein expression on the accumulation of viral NS2 mRNA and spliced cellular beta-globin mRNA was analysed, and it was found that NS1 protein expression reduced spliced beta-globin mRNA levels, but had no effect on the accumulation of NS2 mRNA. We conclude that the NS1 protein specifically inhibits the accumulation of cellular RNA polymerase II-driven mRNAs, but does not affect the splicing of its own viral NS1 mRNA.

  13. Antisense Transcript and RNA Processing Alterations Suppress Instability of Polyadenylated mRNA in Chlamydomonas Chloroplasts

    PubMed Central

    Nishimura, Yoshiki; Kikis, Elise A.; Zimmer, Sara L.; Komine, Yutaka; Stern, David B.

    2004-01-01

    In chloroplasts, the control of mRNA stability is of critical importance for proper regulation of gene expression. The Chlamydomonas reinhardtii strain Δ26pAtE is engineered such that the atpB mRNA terminates with an mRNA destabilizing polyadenylate tract, resulting in this strain being unable to conduct photosynthesis. A collection of photosynthetic revertants was obtained from Δ26pAtE, and gel blot hybridizations revealed RNA processing alterations in the majority of these suppressor of polyadenylation (spa) strains, resulting in a failure to expose the atpB mRNA 3′ poly(A) tail. Two exceptions were spa19 and spa23, which maintained unusual heteroplasmic chloroplast genomes. One genome type, termed PS+, conferred photosynthetic competence by contributing to the stability of atpB mRNA; the other, termed PS−, was required for viability but could not produce stable atpB transcripts. Based on strand-specific RT-PCR, S1 nuclease protection, and RNA gel blots, evidence was obtained that the PS+ genome stabilizes atpB mRNA by generating an atpB antisense transcript, which attenuates the degradation of the polyadenylated form. The accumulation of double-stranded RNA was confirmed by insensitivity of atpB mRNA from PS+ genome-containing cells to S1 nuclease digestion. To obtain additional evidence for antisense RNA function in chloroplasts, we used strain Δ26, in which atpB mRNA is unstable because of the lack of a 3′ stem-loop structure. In this context, when a 121-nucleotide segment of atpB antisense RNA was expressed from an ectopic site, an elevated accumulation of atpB mRNA resulted. Finally, when spa19 was placed in a genetic background in which expression of the chloroplast exoribonuclease polynucleotide phosphorylase was diminished, the PS+ genome and the antisense transcript were no longer required for photosynthesis. Taken together, our results suggest that antisense RNA in chloroplasts can protect otherwise unstable transcripts from 3′→5

  14. Postnatal rat lung retinoic acid receptor (RAR) mRNA expression and effects of dexamethasone on RAR beta mRNA.

    PubMed

    Grummer, M A; Zachman, R D

    1995-10-01

    Retinoids exert multiple effects upon lung differentiation and growth. Although the mechanisms involved are presently poorly understood, increasing evidence points to a central role of nuclear retinoic acid receptors (RAR). The purpose of this study was to determine RAR mRNA expression profile during postnatal alveolarization, compared with the expression in prenatal and adult rat lung, and to describe the effects of dexamethasone (DEX) and oxygen on postnatal lung RAR gene expression. Total RNA was isolated from lungs of Sprague-Dawley rats on prenatal day 19, on postnatal days 1, 3, 7, 10, and 14 of life, and from adults. One subgroup of littermate pups was treated with DEX daily for 3 or 7 days. In a second experiment, rats were exposed to room air or to 95% oxygen for 72 hours, and received either DEX or saline. Northern hybridization showed that the levels of all RAR subtypes in fetal lung were 45% or less of levels at postnatal day 1. The 3.7 kb RAR alpha transcript levels were lower than day 1 on days 10 and 14 (relative to day 1, day 10 = 0.54 +/- 0.05; day 14 = 0.54 +/- 0.08), but there was no change in a 2.7 kb RAR alpha transcript over this time period. By contrast, RAR beta mRNA levels were significantly higher at days 3, 10, and 14 compared with day 1 (day 3 = 1.79 +/- 0.19; day 10 = 1.41 +/- 0.14; day 14 = 1.53 +/- 0.05). Similarly, RAR gamma mRNA expression levels were higher on day 10 (1.45 +/- 0.09), but by day 14 there was no difference from day 1. Adult lung 3.7 kb RAR alpha, 2.7 kb RAR alpha, and RAR gamma were lower than day 1, but RAR beta was significantly greater (3.7 alpha = 0.52 +/- 0.05; 2.7 alpha = 0.49 +/- 0.26; gamma = 0.74 +/- 0.06; beta = 1.63 +/- 0.22). Treatment with DEX prevented the rise in RAR beta mRNA occurring on day 3 and significantly lowered (0.65 +/- 0.06) the amount of RAR beta mRNA in day 7 lung. Exposure of rat pups to oxygen caused an increase in RAR beta mRNA (1.21 +/- 0.03). DEX treatment again decreased RAR beta mRNA

  15. GLUT3 protein and mRNA in autopsy muscle specimens

    NASA Technical Reports Server (NTRS)

    Stuart, C. A.; Wen, G.; Jiang, J.

    1999-01-01

    GLUT3 is expressed in rat muscle, but this glucose transporter protein has not been identified previously in adult human skeletal muscle. We quantified the rapidity of disappearance of mRNA and protein from human skeletal muscle at room temperature and at 4 degrees C. Fifty percent of the immunologically detectable GLUT3 protein disappeared by 1 hour at 20 degrees C and by 2 hours at 4 degrees C. mRNA for GLUT3 was decreased 50% by 2.2 hours at 20 degrees C and by 24 hours at 4 degrees C. Half of the measurable mRNAs for GLUT4, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), alpha-actin, and beta-myosin disappeared by 0.8 to 2.1 hours at 20 degrees C and by 5.0 to 16.6 hours at 4 degrees C. Previous conclusions that GLUT3 is not expressed in human muscle were likely drawn because of artifacts related to degradation of GLUT3 protein in the specimens prior to study. Because of the rapid degradation of protein and mRNA, autopsy specimens of muscle must be obtained within 6 hours of death, and even then, protein and mRNA data will likely dramatically underestimate their expression in fresh muscle. Some previously published conclusions and recommendations regarding autopsy specimens are not stringent enough to consistently yield useful protein and mRNA.

  16. Regulation of mRNA transport, localization and translation in the nervous system of mammals (Review)

    PubMed Central

    DI LIEGRO, CARLO MARIA; SCHIERA, GABRIELLA; DI LIEGRO, ITALIA

    2014-01-01

    Post-transcriptional control of mRNA trafficking and metabolism plays a critical role in the actualization and fine tuning of the genetic program of cells, both in development and in differentiated tissues. Cis-acting signals, responsible for post-transcriptional regulation, reside in the RNA message itself, usually in untranslated regions, 5′ or 3′ to the coding sequence, and are recognized by trans-acting factors: RNA-binding proteins (RBPs) and/or non-coding RNAs (ncRNAs). ncRNAs bind short mRNA sequences usually present in the 3′-untranslated (3′-UTR) region of their target messages. RBPs recognize specific nucleotide sequences and/or secondary/tertiary structures. Most RBPs assemble on mRNA at the moment of transcription and shepherd it to its destination, somehow determining its final fate. Regulation of mRNA localization and metabolism has a particularly important role in the nervous system where local translation of pre-localized mRNAs has been implicated in developing axon and dendrite pathfinding, and in synapse formation. Moreover, activity-dependent mRNA trafficking and local translation may underlie long-lasting changes in synaptic efficacy, responsible for learning and memory. This review focuses on the role of RBPs in neuronal development and plasticity, as well as possible connections between ncRNAs and RBPs. PMID:24452120

  17. Eosinophil cationic protein mRNA expression in children with bronchial asthma.

    PubMed

    Yu, H Y; Li, X Y; Cai, Z F; Li, L; Shi, X Z; Song, H X; Liu, X J