Sample records for joaquin river up-stream

  1. Organochlorine pesticide residues in bed sediments of the San Joaquin River and its tributary streams, California

    USGS Publications Warehouse

    Gilliom, R.J.; Clifton, D.G.

    1987-01-01

    The distribution and concentrations of organochlorine pesticide residues in bed sediments were assessed from samples collected at 24 sites in the San Joaquin River and its tributaries in the San Joaquin Valley, California. Sampling was designed to collect the finest grained bed sediments present in the vicinity of each site. One or more of the 14 pesticides analyzed were detected at every site. Pesticides detected at one or more sites were chlordane, DDD, DDE, DDT, dieldrin, endosulfan, mirex, and toxaphene. Pesticides not detected were endrin, heptachlor, heptachlor epoxide, lindane, methoxychlor, and perthane. The most frequently detected pesticides were DDD (83% of sites), DDE (all sites), DDT (33% of sites), and dieldrin (58% of sites). Maximum concentrations of these pesticides, which were correlated with each other and with the amount of organic carbon in the sample, were DDD, 260 micrograms/kg; DDE, 430 micrograms/kg; DDT, 420 micrograms/kg; and dieldrin, 8.9 micrograms/kg. Six small tributary streams that drain agricultural areas west of the San Joaquin River had the highest concentrations. Water concentrations and loads were estimated for each pesticide from its concentration in bed sediments, the concentration of suspended sediment, and streamflow. Estimated loadings of DDD, DDE, DDT, and dieldrin from tributaries to the San Joaquin River indicate that most of the loading to the river at the time of the study was probably from the westside tributaries. Estimated water concentrations exceeded the aquatic life criterion for the sum of DDD, DDE, and DDt of 0.001 microgram/L at nine of the 24 sites sampled. Five of the nine sites are westside tributaries and one is the San Joaquin River near Vernalis. (Author 's abstract)

  2. Chinese mitten crab surveys of San Joaquin River basin and Suisun Marsh, California, 2000

    USGS Publications Warehouse

    May, Jason T.; Brown, Larry R.

    2001-01-01

    Juvenile Chinese mitten crabs (Eriocheir sinensis) are known to use both brackish and freshwater habitats as rearing areas. The objectives of this study were to examine the habitat use and potential effects of mitten crabs in the freshwater habitats of the San Joaquin River drainage up-stream of the Sacramento-San Joaquin Delta. After several unsuccessful attempts to catch or observe mitten crabs by trapping, electrofishing, and visual observations, the study was redirected to determine the presence of crabs in the San Joaquin River (in the vicinity of Mossdale) and Suisun Marsh. Monthly surveys using baited traps in the San Joaquin River were done from June through November 2000 and in the Suisun Marsh from August through October 2000. No mitten crabs were caught in the San Joaquin River Basin and only one mitten crab was caught in Suisun Marsh. Surveys were conducted at 92 locations in the San Joaquin River Basin by deploying 352 traps for 10,752 hours of trapping effort; in Suisun Marsh, 34 locations were investigated by deploying 150 traps for 3,600 hours of trapping effort. The baited traps captured a variety of organisms, including catfishes (Ictularidae), yellowfin gobies (Acantho-gobius flavimanus), and crayfish (Decapoda). It is unclear whether the failure to capture mitten crabs in the San Joaquin River Basin and Suisun Marsh was due to ineffective trapping methods, or repre-sents a general downward trend in populations of juvenile mitten crabs in these potential rearing areas or a temporary decline related to year-class strength. Available data (since 1998) on the number of mitten crabs entrained at federal and state fish salvage facilities indicate a downward trend in the number of crabs, which may indicate a declining trend in use of the San Joaquin River Basin by juvenile mitten crabs. Continued monitoring for juvenile Chinese mitten crabs in brackish and freshwater portions of the Sacramento-San Joaquin River Basins is needed to better assess the

  3. Organochlorine pesticide residues in bed sediments of the San Joaquin River, California

    USGS Publications Warehouse

    Gilliom, Robert J.; Clifton, Daphne G.

    1990-01-01

    Bed sediments of the San Joaquin River and its tributaries were sampled during October 7–11, 1985, and analyzed for organochiorine pesticide residues in order to determine their areal distribution and to evaluate and prioritize needs for further study. Residues of DDD, DDE, DDT, and dieldrin are widespread in the fine-grained bed sediments of the San Joaquin River and its tributaries despite little or no use of these pesticides for more than 15 years. The San Joaquin River has among the highest bed-sediment concentrations of DDD, DDE, DDT, and dieldrin residues of major rivers in the United States. Concentrations of all four pesticides were correlated with each other and with the amount of organic carbon and fine-grained particles in the bed sediments. The highest concentrations occurred in bed sediments of westside tributary streams. Potential tributary loads of DDD, DDE, DDT, and dieldrin to the San Joaquin River were computed from bed-sediment concentrations and data on streamfiow and suspended-sediment concentration in order to identify the general magnitude of differences between streams and to determine study priorities. The estimated loads indicate that the most important sources of residues during the study period were Salt Slough because of a high load of fine sediment, and Newman Wasteway, Orestimba Creek, and Hospital Creek because of high bed-sediment concentrations. Generally, the highest estimated loads of DDD, DDE, DDT, and dieldrin were in Orestimba and Hospital Creeks.

  4. Transport of diazinon in the San Joaquin River Basin, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin.

  5. Transport of diazinon in the San Joaquin River basin, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1997-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focussed mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks were probably the main diazinon source early in the storms, while the Tuolumne and Merced Rivers and east-side drainage directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 199193 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceeding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.

  6. Isotopic Evidence of Nitrate Sources and its Relationship to Algae in the San Joaquin River, California

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Young, M. B.; Stringfellow, W. T.; Borglin, S. E.; Kratzer, C. R.; Dahlgren, R. A.; Schmidt, C.; Rollog, M. E.

    2007-12-01

    monthly from over 20 bank and in-stream wells. Preliminary data suggest that much of the groundwater nitrate has been variably denitrified thereby increasing its d15N values, but not by enough to account for the high d15N values in the river nitrate. The d15N of algae in the San Joaquin reflects the high values of the nitrate in the river indicating (1) that the San Joaquin is productive despite its relatively high opacity, (2) that the algae use the nitrate as a primary nutrient source, and (3) that the concentrations of algae in the San Joaquin are not principally dependent on algae from the tributaries being flushed into the river as has been suggested. The sources of nitrate to the San Joaquin River must be identified if algae production is to be controlled and hypoxic conditions in the downstream reaches eliminated.

  7. Modeling pesticide loadings from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    NASA Astrophysics Data System (ADS)

    Chen, H.; Zhang, M.

    2016-12-01

    The Sacramento-San Joaquin Delta is an ecologically rich, hydrologically complex area that serves as the hub of California's water supply. However, pesticides have been routinely detected in the Delta waterways, with concentrations exceeding the benchmark for the protection of aquatic life. Pesticide loadings into the Delta are partially attributed to the San Joaquin watershed, a highly productive agricultural watershed located upstream. Therefore, this study aims to simulate pesticide loadings to the Delta by applying the Soil and Water Assessment Tool (SWAT) model to the San Joaquin watershed, under the support of the USDA-ARS Delta Area-Wide Pest Management Program. Pesticide use patterns in the San Joaquin watershed were characterized by combining the California Pesticide Use Reporting (PUR) database and GIS analysis. Sensitivity/uncertainty analyses and multi-site calibration were performed in the simulation of stream flow, sediment, and pesticide loads along the San Joaquin River. Model performance was evaluated using a combination of graphic and quantitative measures. Preliminary results indicated that stream flow was satisfactorily simulated along the San Joaquin River and the major eastern tributaries, whereas stream flow was less accurately simulated in the western tributaries, which are ephemeral small streams that peak during winter storm events and are mainly fed by irrigation return flow during the growing season. The most sensitive parameters to stream flow were CN2, SOL_AWC, HRU_SLP, SLSUBBSN, SLSOIL, GWQMN and GW_REVAP. Regionalization of parameters is important as the sensitivity of parameters vary significantly spatially. In terms of evaluation metric, NSE tended to overrate model performance when compared to PBIAS. Anticipated results will include (1) pesticide use pattern analysis, (2) calibration and validation of stream flow, sediment, and pesticide loads, and (3) characterization of spatial patterns and temporal trends of pesticide yield.

  8. Pyrethroid insecticide concentrations and toxicity in streambed sediments and loads in surface waters of the San Joaquin Valley, California, USA

    USGS Publications Warehouse

    Domagalski, Joseph L.; Weston, Donald P.; Zhang, Minghua; Hladik, Michelle L.

    2010-01-01

    Pyrethroid insecticide use in California, USA, is growing, and there is a need to understand the fate of these compounds in the environment. Concentrations and toxicity were assessed in streambed sediment of the San Joaquin Valley of California, one of the most productive agricultural regions of the United States. Concentrations were also measured in the suspended sediment associated with irrigation or storm‐water runoff, and mass loads during storms were calculated. Western valley streambed sediments were frequently toxic to the amphipod, Hyalella azteca, with most of the toxicity attributable to bifenthrin and cyhalothrin. Up to 100% mortality was observed in some locations with concentrations of some pyrethroids up to 20 ng/g. The western San Joaquin Valley streams are mostly small watersheds with clay soils, and sediment‐laden irrigation runoff transports pyrethroid insecticides throughout the growing season. In contrast, eastern tributaries and the San Joaquin River had low bed sediment concentrations (<1 ng/g) and little or no toxicity because of the preponderance of sandy soils and sediments. Bifenthrin, cyhalothrin, and permethrin were the most frequently detected pyrethroids in irrigation and storm water runoff. Esfenvalerate, fenpropathrin, and resmethrin were also detected. All sampled streams contributed to the insecticide load of the San Joaquin River during storms, but some compounds detected in the smaller creeks were not detected in the San Joaquin River. The two smallest streams, Ingram and Hospital Creeks, which had high sediment toxicity during the irrigation season, accounted for less than 5% of the total discharge of the San Joaquin River during storm conditions, and as a result their contribution to the pyrethroid mass load of the larger river was minimal. 

  9. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.205 Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. (a) San Joaquin River Deep Water Channel between Suisun Bay and the easterly end of the channel at...

  10. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.205 Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. (a) San Joaquin River Deep Water Channel between Suisun Bay and the easterly end of the channel at...

  11. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.205 Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. (a) San Joaquin River Deep Water Channel between Suisun Bay and the easterly end of the channel at...

  12. Transport of sediment-bound organochlorine pesticides to the San Joaquin River, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1998-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced Rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.

  13. Trace elements in Corbicula fluminea from the San Joaquin River, California

    USGS Publications Warehouse

    Leland, H.V.; Scudder, B.C.

    1990-01-01

    (i) Trace element concentrations in soft tissue of the benthic bivalve, Corbicula fluminea, from the San Joaquin River and its major tributaries were examined during the primary irrigation season in relation to the spatial variation in concentrations of major, minor and trace constituents in riverwater and sediments. (ii) Selenium concentrations in Corbicula from perennial flow reaches of the San Joaquin River and its major tributaries varied directly with the solute (??? 0.45 ??m) Se concentrations of riverwater. Elevated concentrations occurred in clams from sites with substantial discharge originating as subsurface drainage and irrigation return flows. Both tissue and solute Se concentrations declined from June through the end of the primary irrigation season. (iii) Arsenic concentrations in Corbicula from perennial flow reaches of the San Joaquin River varied directly with the HNO3-extractable (pH 2) As:Fe ratio of suspended matter, providing evidence that sorption to oxyhydroxide surfaces is an important control on the biological availability of As. However, Corbicula from several tributaries draining alluvium derived from the Sierra Nevada had lower As concentrations than would be predicted by the relation developed for perennial flow sites of the San Joaquin River. Arsenic concentrations in Corbicula from the Tuolumne and Merced Rivers and upstream reaches of the San Joaquin River were higher than in clams from the downstream perennial flow reaches of the San Joaquin River. Concentrations of As in clams from downstream perennial flow reaches of the San Joaquin River increased from June through the end of the primary irrigation season. (iv) Mercury concentrations in Corbicula were elevated in upstream reaches of the San Joaquin River, in the Merced and Tuolumne Rivers, and in tributaries draining the Coast Ranges. Mean Cd and Cu concentrations in Corbicula were elevated in the Merced and Tuolumne Rivers, Orestimba Creek and a perennial flow reach of the San

  14. Groundwater contributions of flow, nitrate, and dissolved organic carbon to the lower San Joaquin River, California, 2006-08

    USGS Publications Warehouse

    Zamora, Celia; Dahlgren, Randy A.; Kratzer, Charles R.; Downing, Bryan D.; Russell, Ann D.; Dileanis, Peter D.; Bergamaschi, Brian A.; Phillips, Steven P.

    2013-01-01

    The influence of groundwater on surface-water quality in the San Joaquin River, California, was examined for a 59-mile reach from the confluence with Salt Slough to Vernalis. The primary objective of this study was to quantify the rate of groundwater discharged to the lower San Joaquin River and the contribution of nitrate and dissolved organic carbon concentrations to the river. Multiple lines of evidence from four independent approaches were used to characterize groundwater contributions of nitrogen and dissolved organic carbon. Monitoring wells (in-stream and bank wells), streambed synoptic surveys (stream water and shallow groundwater), longitudinal profile surveys by boat (continuous water-quality parameters in the stream), and modeling (MODFLOW and VS2DH) provided a combination of temporal, spatial, quantitative, and qualitative evidence of groundwater contributions to the river and the associated quality. Monitoring wells in nested clusters in the streambed (in-stream wells) and on both banks (bank wells) along the river were monitored monthly from September 2006 to January 2009. Nitrate concentrations in the bank wells ranged from less than detection—that is, less than 0.01 milligrams per liter (mg/L) as nitrogen (N)—to approximately 13 mg/L as N. Nitrate was not detected at 17 of 26 monitoring wells during the study period. Dissolved organic carbon concentrations among monitoring wells were highly variable, but they generally ranged from 1 to 4 mg/L. In a previous study, 14 bank wells were sampled once in 1988 following their original installation. With few exceptions, specific conductivity and nitrate concentrations measured in this study were virtually identical to those measured 20 years ago. Streambed synoptic measurements were made by using a temporarily installed drive-point piezometer at 113 distinct transects across the stream during 4 sampling events. Nitrate concentrations exceeded the detection limit of 0.01 mg/L as N in 5 percent of

  15. Diazinon and chlorpyrifos loads in the San Joaquin River basin, California, January and February 2000

    USGS Publications Warehouse

    Kratzer, Charles R.; Zamora, Celia; Knifong, Donna L.

    2002-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2000 in the San Joaquin River Basin was less than 21 percent of application in 1993 and 1994. A total of 13 sites were sampled weekly during nonstorm periods and more frequently during two storm periods. The sites included five major river and eight minor tributary sites. The highest concentrations of diazinon and chlorpyrifos occurred during the storm periods. Four samples from major river sites (Tuolumne River and two San Joaquin River sites) had diazinon concentrations greater than 0.08 microgram per liter, the concentration being considered by the state of California as its criterion maximum concentration for the protection of aquatic habitat. One sample from a major river site (San Joaquin River) exceeded the equivalent State guideline of 0.02 microgram per liter for chlorpyrifos. At the eight minor tributary sites, 24 samples exceeded the diazinon guideline and four samples exceeded the chlorpyrifos guideline. The total diazinon load in the San Joaquin River near Vernalis during January and February 2000 was 19.6 pounds active ingredient; of this, 8.17 pounds active ingredient was transported during two storms. In 1994, 27.4 pounds active ingredient was transported during two storms. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2000 was 5.68 pounds active ingredient; of this, 2.17 pounds active ingredient was transported during the two storms. During the frequently sampled February 2000 storm, the main sources of diazinon in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (25 percent), Tuolumne River Basin (14 percent), and the Stanislaus River Basin (10 percent). The main sources of chlorpyrifos in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (17 percent), Tuolumne River Basin (13 percent), and the Merced River Basin (11 percent). The total January and February diazinon load in the

  16. Inputs of the Dormant-Spray Pesticide, Diazinon, to the San Joaquin River, California, February 1993

    USGS Publications Warehouse

    Domagalski, Joseph L.; Dubrovsky, Neil M.; Kratzer, Charles R.

    1995-01-01

    INTRODUCTION The objective of the National Water Quality Assessment (NAWQA) Program of the U.S. Geological Survey is to describe the status and trends of the Nation's water quality with respect to natural features of the environment and human activities or land-use. Pesticides are a major water-quality issue in the San Joaquin Valley of California (fig. 1), and pesticide residues may be transported to rivers and streams in agricultural runoff following winter storms. Three sites in the western San Joaquin Valley were monitored during and after two February 1993 storms. The storms occurred after extensive spraying of organophosphate insecticides, mostly diazinon, on almond and other stone-fruit orchards.

  17. Concentrations of organic contaminants detected during managed flow conditions, San Joaquin River and Old River, California, 2001

    USGS Publications Warehouse

    Orlando, James L.; Kuivila, Kathryn

    2005-01-01

    Concentrations of organic contaminants were determined in water samples collected at six surface-water sites located along the San Joaquin and Old Rivers during April through June 2001. Water samples were collected, coincident with salmon smolt caging studies conducted by researchers from the Bodega Marine Laboratory at the University of California at Davis to characterize exposure of the salmon smolt to organic contaminants. Sampling occurred prior to, during, and following the implementation of managed streamflow conditions on the San Joaquin and Old Rivers as part of the Vernalis Adaptive Management Plan. Thirteen pesticides were detected in water samples collected during this study, and at least five pesticides were detected in each sample. The total number of pesticide detections varied little between river systems and between sites, but the maximum concentrations of most pesticides occurred in San Joaquin River samples. The total number of pesticides detected varied little over the three time periods. However, during the period of managed streamflow, the fewest number of pesticides were detected at their absolute maximum concentration. Nine wastewater compounds were detected during this study. Suspended-sediment concentrations were similar for the San Joaquin and Old Rivers except during the period of managed streamflow conditions, when suspended-sediment concentration was higher at sites on the San Joaquin River than at sites on the Old River. Values for water parameters (pH, specific conductance, and hardness) were lowest during the period of managed flows.

  18. Environmental setting of the San Joaquin-Tulare basins, California

    USGS Publications Warehouse

    Gronberg, JoAnn A.; Dubrovsky, Neil M.; Kratzer, Charles R.; Domagalski, Joseph L.; Brown, Larry R.; Burow, Karen R.

    1998-01-01

    The National Water-Quality Assessment Program for the San Joaquin- Tulare Basins began in 1991 to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology. The San Joaquin-Tulare Basins study unit, which covers approximately 31,200 square miles in central California, is made up of the San Joaquin Valley, the eastern slope of the Coast Ranges to the west, and the western slope of the Sierra Nevada to the east. The sediments of the San Joaquin Valley can be divided into alluvial fans and basin deposits. The San Joaquin River receives water from tributaries draining the Sierra Nevada and Coast Ranges, and except for streams discharging directly to the Sacramento-San Joaquin Delta, is the only surface- water outlet from the study unit. The surface-water hydrology of the San Joaquin-Tulare Basins study unit has been significantly modified by development of water resources. Almost every major river entering the valley from the Sierra Nevada has one or more reservoirs. Almost every tributary and drainage into the San Joaquin River has been altered by a network of canals, drains, and wasteways. The Sierra Nevada is predominantly forested, and the Coast Ranges and the foothills of the Sierra Nevada are predominately rangeland. The San Joaquin Valley is dominated by agriculture, which utilized approximately 14.7 million acre-feet of water and 597 million pounds active ingredient of nitrogen and phosphorus fertilizers in 1990, and 88 million pounds active ingredient of pesticides in 1991. In addition, the livestock industry contributed 318 million pounds active ingredient of nitrogen and phosphorus from manure in 1987. This report provides the background information to assess the influence of these and other factors on water quality and to provide the foundation for the design and interpretation of all spatial data. These characterizations provide a basis for comparing the influences of human activities

  19. Occurrence and accumulation of pesticides and organic contaminants in river sediment, water and clam tissues from the San Joaquin River and tributaries, California

    USGS Publications Warehouse

    Pereira, W.E.; Domagalski, Joseph L.; Hostettler, F.D.; Brown, L.R.; Rapp, J.B.

    1996-01-01

    A study was conducted in 1992 to assess the effects of anthropogenic activities and land use on the water quality of the San Joaquin River and its major tributaries. This study focused on pesticides and organic contaminants, looking at distributions of contaminants in water, bed and suspended sediment, and the bivalve Corbicula fluminea. Results indicated that this river system is affected by agricultural practices and urban runoff. Sediments from Dry Creek contained elevated concentrations of polycyclic aromatic hydrocarbons (PAHs), possibly derived from urban runoff from the city of Modesto; suspended sediments contained elevated amounts of chlordane. Trace levels of triazine herbicides atrazine and simazine were present in water at most sites. Sediments, water, and bivalves from Orestimba Creek, a westside tributary draining agricultural areas, contained the greatest levels of DDT (1,1,1-trichloro-2-2-bis[p-chlorophenyl]ethane), and its degradates DDD (1,1-dichloro-2,2-bis[p-chlorophenyl]ethane), and DDE (1,1-dichloro-2,2- bis[p-chlorophenyl]ethylene). Sediment adsorption co efficients (K(oc)), and bioconcentration factors (BCF) in Corbicula of DDT, DDD, and DDE at Orestimba Creek were greater than predicted values. Streams of the western San Joaquin Valley can potentially transport significant amounts of chlorinated pesticides to the San Joaquin River, the delta, and San Francisco Bay. Organochlorine compounds accumulate in bivalves and sediment and may pose a problem to other biotic species in this watershed.

  20. Dissolved pesticide concentrations detected in storm-water runoff at selected sites in the San Joaquin River basin, California, 2000-2001

    USGS Publications Warehouse

    Orlando, James L.; Kuivila, Kathryn; Whitehead, Andrew

    2003-01-01

    As part of a collaborative study involving the United States Geological Survey Toxics Substances Hydrology Project (Toxics Project) and the University of California, Davis, Bodega Marine Laboratory (BML), water samples were collected at three sites within the San Joaquin River Basin of California and analyzed for dissolved pesticides. Samples were collected during, and immediately after, the first significant rainfall (greater than 0.5 inch per day) following the local application of dormant spray, organophosphate insecticides during the winters of 2000 and 2001. All samples were collected in conjunction with fish-caging experiments conducted by BML researchers. Sites included two locations potentially affected by runoff of agricultural chemicals (San Joaquin River near Vernalis, California, and Orestimba Creek at River Road near Crows Landing, California, and one control site located upstream of pesticide input (Orestimba Creek at Orestimba Creek Road near Newman, California). During these experiments, fish were placed in cages and exposed to storm runoff for up to ten days. Following exposure, the fish were examined for acetylcholinesterase concentrations and overall genetic damage. Water samples were collected throughout the rising limb of the stream hydrograph at each site for later pesticide analysis. Concentrations of selected pesticides were measured in filtered water samples using solid-phase extraction (SPE) and gas chromatography-mass spectrometry (GC/MS) at the U.S. Geological Survey organic chemistry laboratory in Sacramento, California. Results of these analyses are presented.

  1. Results of a prototype surface water network design for pesticides developed for the San Joaquin River Basin, California

    USGS Publications Warehouse

    Domagalski, Joseph L.

    1997-01-01

    A nested surface water monitoring network was designed and tested to measure variability in pesticide concentrations in the San Joaquin River and selected tributaries during the irrigation season. The network design an d sampling frequency necessary for determining the variability and distribution in pesticide concentrations were tested in a prototype study. The San Joaquin River Basin, California, was sampled from April to August 1992, a period during the irrigation season where there was no rainfall. Orestimba Creek, which drains a part of the western San Joaquin Valley, was sampled three times per week for 6 weeks, followed by a once per week sampling for 6 weeks, and the three times per week sampling for 6 weeks. A site on the San Joaquin River near the mouth of the basin, and an irrigation drain of the eastern San Joaquin Valley, were sampled weekly during the entire sampling period. Pesticides were most often detected in samples collected from Orestimba Creek. This suggests that the western valley was the principal source of pesticides to the San Joaquin River during the irrigation season. Irrigation drainage water was the source of pesticides to Orestimba Creek. Pesticide concentrations of Orestimba Creek showed greater temporal variability when sampled three times per week than when sampled once a week, due to variations in field management and irrigation. The implication for the San Joaquin River basin (an irrigation-dominated agricultural setting) is that frequent sampling of tributary sites is necessary to describe the variability in pesticides transported to the San Joaquin River.

  2. 33 CFR 110.224 - San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Bay, Sacramento River, San Joaquin River, and connecting waters, CA. (a) General regulations. (1..., Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and connecting waters, CA. 110.224... notified to move by the Captain of the Port. (4) No vessel may anchor within a tunnel, cable, or pipeline...

  3. 33 CFR 110.224 - San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Bay, Sacramento River, San Joaquin River, and connecting waters, CA. (a) General regulations. (1..., Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and connecting waters, CA. 110.224... notified to move by the Captain of the Port. (4) No vessel may anchor within a tunnel, cable, or pipeline...

  4. 33 CFR 110.224 - San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Bay, Sacramento River, San Joaquin River, and connecting waters, CA. (a) General regulations. (1..., Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and connecting waters, CA. 110.224... notified to move by the Captain of the Port. (4) No vessel may anchor within a tunnel, cable, or pipeline...

  5. 78 FR 6833 - Final Environmental Impact Statement/Environmental Impact Report for the San Joaquin River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ...The Bureau of Reclamation and the San Joaquin River Exchange Contractors Water Authority have prepared a Final Environmental Impact Statement/Environmental Impact Report (EIS/EIR) for a 25-Year Water Transfer Program, 2014-2038. The proposed new program would provide for the transfer and/or exchange of up to 150,000 acre-feet of substitute water from the San Joaquin River Exchange Contractors Water Authority to several potential users over a 25-year timeframe (water service years 2014-2038). A Notice of Availability of the joint Draft EIS/EIR was published in the Federal Register on Friday, May 4, 2012 (77 FR 26578). The written comment period on the Draft EIS/EIR ended Tuesday, July 3, 2012. The Final EIS/EIR contains responses to all comments received and reflects comments and additional information received during the review period.

  6. Bottom-up, decision support system development : a wetlandsalinity management application in California's San Joaquin Valley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Nigel W.T.

    Seasonally managed wetlands in the Grasslands Basin ofCalifornia's San Joaquin Valley provide food and shelter for migratorywildfowl during winter months and sport for waterfowl hunters during theannual duck season. Surface water supply to these wetland contain saltwhich, when drained to the San Joaquin River during the annual drawdownperiod, negatively impacts downstream agricultural riparian waterdiverters. Recent environmental regulation, limiting discharges salinityto the San Joaquin River and primarily targeting agricultural non-pointsources, now addresses return flows from seasonally managed wetlands.Real-time water quality management has been advocated as a means ofmatching wetland return flows to the assimilative capacity of the SanJoaquin River. Past attemptsmore » to build environmental monitoring anddecision support systems to implement this concept have failed forreasons that are discussed in this paper. These reasons are discussed inthe context of more general challenges facing the successfulimplementation of environmental monitoring, modelling and decisionsupport systems. The paper then provides details of a current researchand development project which will ultimately provide wetland managerswith the means of matching salt exports with the available assimilativecapacity of the San Joaquin River, when fully implemented. Manipulationof the traditional wetland drawdown comes at a potential cost to thesustainability of optimal wetland moist soil plant habitat in thesewetlands - hence the project provides appropriate data and a feedback andresponse mechanism for wetland managers to balance improvements to SanJoaquin River quality with internally-generated information on the healthof the wetland resource. The author concludes the paper by arguing thatthe architecture of the current project decision support system, whencoupled with recent advances in environmental data acquisition, dataprocessing and information dissemination technology, holds

  7. 75 FR 39207 - Notice of Intent To Prepare an Environmental Assessment and Conduct San Joaquin River Chinook...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... Intent To Prepare an Environmental Assessment and Conduct San Joaquin River Chinook Salmon Scoping... Chinook salmon to the mainstem of the San Joaquin River. The document contained incorrect contact... second column, correct the e-mail address that was listed as SJRSpringSalmon@noaa.gov to read SJRSpring...

  8. Pesticide transport in the San Joaquin River Basin

    USGS Publications Warehouse

    Dubrovsky, N.M.; Kratzer, C.R.; Panshin, S.Y.; Gronberg, J.A.M.; Kuivila, K.M.

    2000-01-01

    Pesticide occurrence and concentrations were evaluated in the San Joaquin River Basin to determine potential sources and mode of transport. Land use in the basin is mainly agricultural. Spatial variations in pesticide occurrence were evaluated in relation to pesticide application and cropping patterns in three contrasting subbasins and at the mouth of the basin. Temporal variability in pesticide occurrence was evaluated by fixed interval sampling and by sampling across the Hydrograph during winter storms. Four herbicides (simazine, metolachlor, dacthal, and EPTC) and two insecticides (diazinon and chlorpyrifos) were detected in more than 50 percent of the samples. Temporal, and to a lesser extent spatial, variation in pesticide occurrence is usually consistent with pesticide application and cropping patterns. Diazinon concentrations changed rapidly during winter storms, and both eastern and western tributaries contributed diazinon to the San Joaquin River at concentrations toxic to the water flea Ceriodaphnia dubia at different times during the hydrograph. During these storms, toxic concentrations resulted from the transport of only a very small portion of the applied diazinon.

  9. Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento-San Joaquin River Basin, California

    USGS Publications Warehouse

    Sickman, James O.; DiGiorgio, Carol L.; Davisson, M. Lee; Lucero, Delores M.; Bergamaschi, Brian A.

    2010-01-01

    We used radiocarbon measurements of dissolved organic carbon (DOC) to resolve sources of riverine carbon within agriculturally dominated landscapes in California. During 2003 and 2004, average Δ14C for DOC was −254‰ in agricultural drains in the Sacramento–San Joaquin Delta, −218‰ in the San Joaquin River, −175‰ in the California State Water Project and −152‰ in the Sacramento River. The age of bulk DOC transiting the rivers of California’s Central Valley is the oldest reported for large rivers and suggests wide-spread loss of soil organic matter caused by agriculture and urbanization. Using DAX 8 adsorbent, we isolated and measured 14C concentrations in hydrophobic acid fractions (HPOA); river samples showed evidence of bomb-pulse carbon with average Δ14C of 91 and 76‰ for the San Joaquin and Sacramento Rivers, respectively, with older HPOA, −204‰, observed in agricultural drains. An operationally defined non-HPOA fraction of DOC was observed in the San Joaquin River with seasonally computed Δ14C values of between −275 and −687‰; the source of this aged material was hypothesized to be physically protected organic-matter in high clay-content soils and agrochemicals (i.e., radiocarbon-dead material) applied to farmlands. Mixing models suggest that the Sacramento River contributes about 50% of the DOC load in the California State Water Project, and agricultural drains contribute approximately one-third of the load. In contrast to studies showing stabilization of soil carbon pools within one or two decades following land conversion, sustained loss of soil organic matter, occurring many decades after the initial agricultural-land conversion, was observed in California’s Central Valley.

  10. Streamflow, dissolved solids, suspended sediment, and trace elements, San Joaquin River, California, June 1985-September 1988

    USGS Publications Warehouse

    Hill, B.R.; Gilliom, R.J.

    1993-01-01

    The 1985-88 study period included hydrologic extremes throughout most of central California. Except for an 11-month period during and after the 1986 flood, San Joaquin River streamflows during 1985-88 were generally less than median for 1975-88. The Merced Tuolumne, and Stanislaus Rivers together comprised 56 to 69 percent of the annual San Joaquin River flow, Salt and Mud Sloughs together comprised 6 to 19 percent, the upper San Joaquin River comprised 2 to 25 percent, and unmeasured sources from agricultural discharges and ground water accounted for 13 to 20 percent. Salt and Mud Sloughs and the unmeasured sources contribute most of the dissolved-solids load. The Merced, Tuolumne, and Stanislaus Rivers greatly dilute dissolved-solids concentrations. Suspended-sediment concentration peaked sharply at more than 600 milligrams per liter during the flood of February 1986. Concentrations and loads varied seasonally during low-flow conditions, with concentrations highest during the early summer irrigation season. Trace elements present primarily in dissolved phases are arsenic, boron, lithium, molybdenum, and selenium. Boron concentrations exceeded the irrigation water-quality criterion of 750 micrograms per liter more than 75 percent of the time in Salt and Mud Sloughs and more than 50 percent of the time at three sites on the San Joaquin River. Selenium concentrations exceeded the aquatic-life criterion of 5 micrograms per liter more than 75 percent of the time in Salt Slough and more than 50 percent of the time in Mud Slough and in the San Joaquin River from Salt Slough to the Merced River confluence. Concentrations of dissolved solids, boron, and selenium usually are highest during late winter to early spring, lower in early summer, higher again in mid-to-late summer, and the lowest in autumn, and generally correspond to seasonal inflows of subsurface tile-drain water to Salt and Mud Sloughs. Trace elements present primarily in particulate phases are aluminum

  11. 75 FR 20815 - Notice of Intent To Prepare an Environmental Assessment and to Conduct San Joaquin River Chinook...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... Intent To Prepare an Environmental Assessment and to Conduct San Joaquin River Chinook Salmon Scoping... of spring-run Chinook salmon to the mainstem of the San Joaquin River. DATES: NMFS will conduct a..., Sacramento, CA 95814. Comments may also be submitted electronically to SJRSpringSalmon@nooa.gov . Comments...

  12. Assessment of interim flow water-quality data of the San Joaquin River restoration program and implications for fishes, California, 2009-11

    USGS Publications Warehouse

    Wulff, Marissa L.; Brown, Larry R.

    2015-01-01

    After more than 50 years of extensive water diversion for urban and agriculture use, a major settlement was reached among the U.S. Departments of the Interior and Commerce, the Natural Resources Defense Council, and the Friant Water Users Authority in an effort to restore the San Joaquin River. The settlement received Federal court approval in October 2006 and established the San Joaquin River Restoration Program, a multi-agency collaboration between State and Federal agencies to restore and maintain fish populations, including Chinook salmon, in the main stem of the river between Friant Dam and the confluence with the Merced River. This is to be done while avoiding or minimizing adverse water supply effects to all of the Friant Division contractors that could result from restoration flows required by the settlement. The settlement stipulates that water- and sediment-quality data be collected to help assess the restoration goals. This report summarizes and evaluates water-quality data collected in the main stem of the San Joaquin River between Friant Dam and the Merced River by the U.S. Bureau of Reclamation for the San Joaquin River Restoration Program during 2009-11. This summary and assessment consider sampling frequency for adequate characterization of variability, sampling locations for sufficient characterization of the San Joaquin River Restoration Program restoration reach, sampling methods for appropriate media (water and sediment), and constituent reporting limits. After reviewing the water- and sediment-quality results for the San Joaquin River Restoration Program, several suggestions were made to the Fisheries Management Work Group, a division of the San Joaquin River Restoration Program that focuses solely on the reintroduction strategies and health of salmon and other native fishes in the river. Water-quality results for lead and total organic carbon exceeded the Surface Water Ambient Monitoring Program Basin Plan Objectives for the San Joaquin Basin

  13. Documentation of a groundwater flow model (SJRRPGW) for the San Joaquin River Restoration Program study area, California

    USGS Publications Warehouse

    Traum, Jonathan A.; Phillips, Steven P.; Bennett, George L.; Zamora, Celia; Metzger, Loren F.

    2014-01-01

    To better understand the potential effects of restoration flows on existing drainage problems, anticipated as a result of the San Joaquin River Restoration Program (SJRRP), the U.S. Geological Survey (USGS), in cooperation with the U.S. Bureau of Reclamation (Reclamation), developed a groundwater flow model (SJRRPGW) of the SJRRP study area that is within 5 miles of the San Joaquin River and adjacent bypass system from Friant Dam to the Merced River. The primary goal of the SJRRP is to reestablish the natural ecology of the river to a degree that restores salmon and other fish populations. Increased flows in the river, particularly during the spring salmon run, are a key component of the restoration effort. A potential consequence of these increased river flows is the exacerbation of existing irrigation drainage problems along a section of the river between Mendota and the confluence with the Merced River. Historically, this reach typically was underlain by a water table within 10 feet of the land surface, thus requiring careful irrigation management and (or) artificial drainage to maintain crop health. The SJRRPGW is designed to meet the short-term needs of the SJRRP; future versions of the model may incorporate potential enhancements, several of which are identified in this report. The SJRRPGW was constructed using the USGS groundwater flow model MODFLOW and was built on the framework of the USGS Central Valley Hydrologic Model (CVHM) within which the SJRRPGW model domain is embedded. The Farm Process (FMP2) was used to simulate the supply and demand components of irrigated agriculture. The Streamflow-Routing Package (SFR2) was used to simulate the streams and bypasses and their interaction with the aquifer system. The 1,300-square mile study area was subdivided into 0.25-mile by 0.25-mile cells. The sediment texture of the aquifer system, which was used to distribute hydraulic properties by model cell, was refined from that used in the CVHM to better represent

  14. Proposed Strategy for San Joaquin River Basin Water Quality Monitoring and Assessment

    EPA Pesticide Factsheets

    A Proposed Strategy for San Joaquin River Basin Water Quality Monitoring and Assessment was published in 2010, and a Strawman Proposal was developed in 2012 by the Coalition for Urban/Rural Environmental Stewardship, California Water Resources Board, EPA.

  15. Trends in nutrient concentrations, loads, and yields in streams in the Sacramento, San Joaquin, and Santa Ana Basins, California, 1975-2004

    USGS Publications Warehouse

    Kratzer, Charles R.; Kent, Robert; Seleh, Dina K.; Knifong, Donna L.; Dileanis, Peter D.; Orlando, James L.

    2011-01-01

    A comprehensive database was assembled for the Sacramento, San Joaquin, and Santa Ana Basins in California on nutrient concentrations, flows, and point and nonpoint sources of nutrients for 1975-2004. Most of the data on nutrient concentrations (nitrate, ammonia, total nitrogen, orthophosphate, and total phosphorus) were from the U.S. Geological Survey's National Water Information System database (35.2 percent), the California Department of Water Resources (21.9 percent), the University of California at Davis (21.6 percent), and the U.S. Environmental Protection Agency's STOrage and RETrieval database (20.0 percent). Point-source discharges accounted for less than 1 percent of river flows in the Sacramento and San Joaquin Rivers, but accounted for close to 80 percent of the nonstorm flow in the Santa Ana River. Point sources accounted for 4 and 7 percent of the total nitrogen and total phosphorus loads, respectively, in the Sacramento River at Freeport for 1985-2004. Point sources accounted for 8 and 17 percent of the total nitrogen and total phosphorus loads, respectively, in the San Joaquin River near Vernalis for 1985-2004. The volume of wastewater discharged into the Santa Ana River increased almost three-fold over the study period. However, due to improvements in wastewater treatment, the total nitrogen load to the Santa Ana River from point sources in 2004 was approximately the same as in 1975 and the total phosphorus load in 2004 was less than in 1975. Nonpoint sources of nutrients estimated in this study included atmospheric deposition, fertilizer application, manure production, and tile drainage. The estimated dry deposition of nitrogen exceeded wet deposition in the Sacramento and San Joaquin Valleys and in the basin area of the Santa Ana Basin, with ratios of dry to wet deposition of 1.7, 2.8, and 9.8, respectively. Fertilizer application increased appreciably from 1987 to 2004 in all three California basins, although manure production increased in the

  16. Dissolved pesticide concentrations entering the Sacramento-San Joaquin Delta from the Sacramento and San Joaquin Rivers, California, 2012-13

    USGS Publications Warehouse

    Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle

    2014-01-01

    Surface-water samples were collected from the Sacramento and San Joaquin Rivers where they enter the Sacramento–San Joaquin Delta, and analyzed by the U.S. Geological Survey for a suite of 99 current-use pesticides and pesticide degradates. Samples were collected twice per month from May 2012 through July 2013 and from May 2012 through April 2013 at the Sacramento River at Freeport, and the San Joaquin River near Vernalis, respectively. Samples were analyzed by two separate laboratory methods by using gas chromatography with mass spectrometry or liquid chromatography with tandem mass spectrometry. Method detection limits ranged from 0.9 to 10.5 nanograms per liter (ng/L). A total of 37 pesticides and degradates were detected in water samples collected during the study (18 herbicides, 11 fungicides, 7 insecticides, and 1 synergist). The most frequently detected pesticides overall were the herbicide hexazinone (detected in 100 percent of the samples); 3,4-dichloroaniline (97 percent), which is a degradate of the herbicides diuron and propanil; the fungicide azoxystrobin (83 percent); and the herbicides diuron (72 percent), simazine (66 percent), and metolachlor (64 percent). Insecticides were rarely detected during the study. Pesticide concentrations varied from below the method detection limits to 984 ng/L (hexazinone). Twenty seven pesticides and (or) degradates were detected in Sacramento River samples, and the average number of pesticides per sample was six. The most frequently detected compounds in these samples were hexazinone (detected in 100 percent of samples), 3,4-dichloroaniline (97 percent), azoxystrobin (88 percent), diuron (56 percent), and simazine (50 percent). Pesticides with the highest detected maximum concentrations in Sacramento River samples included the herbicide clomazone (670 ng/L), azoxystrobin (368 ng/L), 3,4-dichloroaniline (364 ng/L), hexazinone (130 ng/L), and propanil (110 ng/L), and all but hexazinone are primarily associated with

  17. Sources and Transport of Nutrients, Organic Carbon, and Chlorophyll-a in the San Joaquin River Upstream of Vernalis, California, during Summer and Fall, 2000 and 2001

    USGS Publications Warehouse

    Kratzer, Charles R.; Dileanis, Peter D.; Zamora, Celia; Silva, Steven R.; Kendall, Carol; Bergamaschi, Brian A.; Dahlgren, Randy A.

    2004-01-01

    Oxidizable materials from the San Joaquin River upstream of Vernalis can contribute to low dissolved oxygen episodes in the Stockton Deep Water Ship Channel that can inhibit salmon migration in the fall. The U.S. Geological Survey collected and analyzed samples at four San Joaquin River sites in July through October 2000 and June through November 2001, and at eight tributary sites in 2001. The data from these sites were supplemented with data from samples collected and analyzed by the University of California at Davis at three San Joaquin River sites and eight tributary sites as part of a separate study. Streamflows in the San Joaquin River were slightly above the long-term average in 2000 and slightly below average in 2001. Nitrate loads at Vernalis in 2000 were above the long-term average, whereas loads in 2001 were close to average. Total nitrogen loads in 2000 were slightly above average, whereas loads in 2001 were slightly below average. Total phosphorus loads in 2000 and 2001 were well below average. These nutrient loads correspond with the flow-adjusted concentration trends--nitrate concentrations significantly increased since 1972 (p 0.05). Loading rates of nutrients and dissolved organic carbon increased in the San Joaquin River in the fall with the release of wetland drainage into Mud Slough and with increased reservoir releases on the Merced River. During August 2000 and September 2001, the chlorophyll-a loading rates and concentrations in the San Joaquin River declined and remained low during the rest of the sampling period. The most significant tributary sources of nutrients were the Tuolumne River, Harding Drain, and Mud Slough. The most significant tributary sources of dissolved organic carbon were Salt Slough, Mud Slough, and the Tuolumne and Stanislaus Rivers. Compared with nutrients and dissolved organic carbon, the tributaries were minor sources of chlorophyll-a, suggesting that most of the chlorophyll-a was produced in the San Joaquin River

  18. Modeling Investigation of Spring Chinook Salmon Habitat in San Joaquin River Restoration Program

    NASA Astrophysics Data System (ADS)

    Liu, L.; Ramires, J.

    2013-12-01

    As the second longest river in California, the San Joaquin River (SJR) is a vital natural resource to numerous residents and industries and provides an array of activities within Central Valley, home to some of California's most productive agricultural areas. Originating in the high Sierra Nevada, mainly from snowmelt and runoff, and passing through the middle sections including Fresno and Madera counties, eventually the SJR conjoins with the Sacramento River, constructing the largest river delta on the west coast of North America. Along with human necessities, the river used to be crucial for the propagation and survivability of Chinook salmon and other aquatic and wildlife. However, the SJR has experienced hydraulic disconnection throughout certain reaches due to extensive water diversion. Indigenous salmon populations have been degraded over the years due to insufficient flows and anthropogenic activities. In 2006, to maintain salmon and other fish populations to a point of self-sustainment, the San Joaquin River Restoration Project (SJRRP) was established to restore flows along the SJR from Friant Dam to the confluence of the Merced River by routing the original SJR in different pathways. One of the major tasks of the SJRRP, so called 'Reach 4B Project', was to modify and improve channel capacity of reach 4B, east side bypass and Mariposa bypass of the SJR. Multiple scenarios for the alteration and modification of the SJR water pathway were designed to ensure fish passage by retrofitting existing channels and to provide adequate flow throughout the study area. The goal of the SJRRP project 4B was to provide an efficient passage for adult Chinook salmon to spawning beds further upstream and a safe route for yearling to the delta. The objective of this research project is to characterize the stream properties (current velocities, depth, etc.) of each proposed alternative in Project 4B2 under the same upstream conditions using a modeling method. A depth

  19. San Joaquin River Riparian Habitat Below Friant Dam: Preservation and Restoration

    Treesearch

    Donn Furman

    1989-01-01

    Riparian habitat along California's San Joaquin River in the 25 miles between Friant Darn and Freeway 99 occurs on approximately 6 percent of its historic range. It is threatened directly and indirectly by increased urban encroachment such as residential housing, certain recreational uses, sand and gravel extraction, aquiculture, and road construction. The San...

  20. Physical characteristics of the lower San Joaquin River, California, in relation to white sturgeon spawning habitat, 2011–14

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.; Whealdon-Haught, Daniel R.; Kinzel, Paul J.

    2017-07-19

    The U.S. Fish and Wildlife Service confirmed that white sturgeon (Acipenser transmontanus) recently spawned in the lower San Joaquin River, California. Decreases in the San Francisco Bay estuary white sturgeon population have led to an increased effort to understand their migration behavior and habitat preferences. The preferred spawning habitat of other white sturgeon (for example, those in the Columbia and Klamath Rivers) is thought to be areas that have high water velocity, deep pools, and coarse bed material. Coarse bed material (pebbles and cobbles), in particular, is important for the survival of white sturgeon eggs and larvae. Knowledge of the physical characteristics of the lower San Joaquin River can be used to preserve sturgeon spawning habitat and lead to management decisions that could help increase the San Francisco Bay estuary white sturgeon population.Between 2011 and 2014, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, assessed selected reaches and tributaries of the lower river in relation to sturgeon spawning habitat by (1) describing selected spawning reaches in terms of habitat-related physical characteristics (such as water depth and velocity, channel slope, and bed material) of the lower San Joaquin River between its confluences with the Stanislaus and Merced Rivers, (2) describing variations in these physical characteristics during wet and dry years, and (3) identifying potential reasons for these variations.The lower San Joaquin River was divided into five study reaches. Although data were collected from all study reaches, three subreaches where the USFWS collected viable eggs at multiple sites in 2011–12 from Orestimba Creek to Sturgeon Bend were of special interest. Water depth and velocity were measured using two different approaches—channel cross sections and longitudinal profiles—and data were collected using an acoustic Doppler current profiler.During the first year of data collection (water

  1. Invasive aquatic vegetation management in the Sacramento-San Joaquin River Delta: status recommendations

    USDA-ARS?s Scientific Manuscript database

    Widespread growth of invasive aquatic vegetation is a major stressor to the Sacramento-San Joaquin River Delta, a region of significant agricultural, industrial, and ecological importance. Total invaded area in the Delta is increasing, with the risk of new invasions a continual threat. However, inva...

  2. SAN JOAQUIN ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    McKee, Edwin H.; Capstick, Donald O.

    1984-01-01

    The San Joaquin Roadless Area is composed of three noncontiguous areas on the eastern side of the Sierra Nevada in Madera County, California. The results of geologic, geochemical, and mining-activity and production surveys in the central part of the area indicate little promise for the occurrence of metallic-mineral or energy resources in the area. Sand, gravel, and pumice exist in the area but occurrences are small and isolated and farther from major markets than similar deposits outside the roadless area. Rocks in the area are exhibited in exposures of unaltered and nonmineralized granitic and metavolcanic rock along the steep western wall of the glacially carved valley of the Middle Fork of the San Joaquin River. Drainage in the area consists of seeps along fractures in the cliff or small cascading streams, a hydraulic setting not favorable for the development of placer deposits. No mines or prospect workings were found in the roadless area. Alteration zones within the granitic and metamorphic rock that crop out within the area are small, isolated, and consist only of limonitic staining and bleached quartzose rock.

  3. Determination of traveltimes in the lower San Joaquin River basin, California, from dye-tracer studies during 1994-1995

    USGS Publications Warehouse

    Kratzer, Charles R.; Biagtan, Rhoda N.

    1997-01-01

    Dye-tracer studies were done in the lower San Joaquin River Basin in February 1994, June 1994, and February 1995. Dye releases were made in the Merced River (February 1994), Salt Slough (June 1994), Tuolumne River (February 1995), and Dry Creek (February 1995). The traveltimes determined in the studies aided the interpretation of pesticide data collected during storm sampling and guided sample collection during a Lagrangian pesticide study. All three studies used rhodamine WT 20-percent dye solution, which was released as a slug in midstream. The mean traveltime determined in the dye studies were compared to estimates based on regression equations of mean stream velocity as a function of streamflow. Dye recovery, the ratio of the calculated dye load at downstream sites to the initial amount of dye released, was determined for the 1994 studies and a dye-dosage formula was evaluated for all studies. In the February 1994 study, mean traveltime from the Merced River at River Road to the San Joaquin River near Vernalis (46.8 river miles) was 38.5 hours, and to the Delta-Mendota Canal at Tracy pumps (84.3 river miles) was 90.4 hours. In the June 1994 study, mean traveltime from Salt Slough at Highway 165 to Vernalis (64.0 river miles) was 80.1 hours. In the February 1995 study, the mean traveltime from the Tuolumne River at Roberts Ferry to Vernalis (51.5 river miles) was 35.8 hours. For the 1994 studies, the regression equations provided suitable estimates of travel-time, with ratios of estimated traveltime to mean dye traveltime of 0.94 to 1.08. However, for the 1995 dye studies, the equations considerably underestimated traveltime, with ratios of 0.49 to 0.73.In the February 1994 study, 70 percent of the dye released was recovered at Vernalis and 35percent was recovered at the Delta-Mendota Canal at Tracy pumps. In the June 1994 study, recovery was 61 percent at Patterson, 43 percent just upstream of the Tuolumne River confluence, and 37 percent at Vernalis. The dye

  4. Distribution and Joint Fish-Tag Survival of Juvenile Chinook Salmon Migrating through the Sacramento-San Joaquin River Delta, California, 2008

    USGS Publications Warehouse

    Holbrook, Christopher M.; Perry, Russell W.; Adams, Noah S.

    2009-01-01

    Acoustic telemetry was used to obtain the movement histories of 915 juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) through the lower San Joaquin River and Sacramento-San Joaquin Delta, California, in 2008. Data were analyzed within a release-recapture framework to estimate survival, route distribution, and detection probabilities among three migration pathways through the Delta. The pathways included the primary route through the San Joaquin River and two less direct routes (Old River and Turner Cut). Strong inferences about survival were limited by premature tag failure, but estimates of fish distribution among migration routes should be unaffected by tag failure. Based on tag failure tests (N = 66 tags), we estimated that only 55-78 percent of the tags used in this study were still functioning when the last fish was detected exiting the study area 15 days after release. Due to premature tag failure, our 'survival' estimates represent the joint probability that both the tag and fish survived, not just survival of fish. Low estimates of fish-tag survival could have been caused by fish mortality or fish travel times that exceeded the life of the tag, but we were unable to differentiate between the two. Fish-tag survival through the Delta (from Durham Ferry to Chipps Island by all routes) ranged from 0.05 +or- 0.01 (SE) to 0.06 +or- 0.01 between the two weekly release groups. Among the three migration routes, fish that remained in the San Joaquin River exhibited the highest joint fish-tag survival (0.09 +or- 0.02) in both weeks, but only 22-33 percent of tagged fish used this route, depending on the week of release. Only 4-10 percent (depending on week) of tagged fish traveled through Turner Cut, but no tagged fish that used this route were detected exiting the Delta. Most fish (63-68 percent, depending on week of release) migrated through Old River, but fish-tag survival through this route (0.05 +or- 0.01) was only about one-half that of fish that

  5. Estimating sediment budgets at the interface between rivers and estuaries with application to the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Wright, S.A.; Schoellhamer, D.H.

    2005-01-01

    [1] Where rivers encounter estuaries, a transition zone develops where riverine and tidal processes both affect sediment transport processes. One such transition zone is the Sacramento-San Joaquin River Delta, a large, complex system where several rivers meet to form an estuary (San Francisco Bay). Herein we present the results of a detailed sediment budget for this river/estuary transitional system. The primary regional goal of the study was to measure sediment transport rates and pathways in the delta in support of ecosystem restoration efforts. In addition to achieving this regional goal, the study has produced general methods to collect, edit, and analyze (including error analysis) sediment transport data at the interface of rivers and estuaries. Estimating sediment budgets for these systems is difficult because of the mixed nature of riverine versus tidal transport processes, the different timescales of transport in fluvial and tidal environments, and the sheer complexity and size of systems such as the Sacramento-San Joaquin River Delta. Sediment budgets also require error estimates in order to assess whether differences in inflows and outflows, which could be small compared to overall fluxes, are indeed distinguishable from zero. Over the 4 year period of this study, water years 1999-2002, 6.6 ?? 0.9 Mt of sediment entered the delta and 2.2 ?? 0.7 Mt exited, resulting in 4.4 ?? 1.1 Mt (67 ?? 17%) of deposition. The estimated deposition rate corresponding to this mass of sediment compares favorably with measured inorganic sediment accumulation on vegetated wetlands in the delta.

  6. Distribution of algae in the San Joaquin River, California, in relation to nutrient supply, salinity and other environmental factors

    USGS Publications Warehouse

    Leland, H.V.; Brown, L.R.; Mueller, D.K.

    2001-01-01

    1. The taxonomic composition and biomass of the phytoplankton and the taxonomic composition of the phytobenthos of the San Joaquin River and its major tributaries were examined in relation to water chemistry, habitat and flow regime. Agricultural drainage and subsurface flow contribute to a complex gradient of salinity and nutrients in this eutrophic, 'lowland type' river.2. Because of light-limiting conditions for growth, maintenance demands of the algae exceed production during summer and autumn in the San Joaquin River where there is no inflow from tributaries. In contrast to substantial gains in concentration of inorganic nitrogen and soluble reactive phosphorus during the summer of normal-flow years, net losses of algal biomass (2-4 ??g L-1 day-1 chlorophyll a) occurred in a mid-river segment with no significant tributary inflow. However, downstream of a large tributary draining the Sierra Nevada, a substantial net gain in algal biomass (6-11 μg L-1 day-1) occurred in the summer, but not in the spring (loss of 1-6 μg L-1 day-1) or autumn (loss of 2-5 ??g L-1 day-1).3. The phytoplankton was dominated in summer by 'r-selected' centric diatoms (Thalassiosirales), species both tolerant of variable salinity and widely distributed in the San Joaquin River. Pennate diatoms were proportionally more abundant (in biomass) in the winter, spring and autumn. Abundant taxa included the diatoms Cyclotella meneghiniana, Skeletonema cf. potamos, Cyclostephanos invisitatus, Thalassiosira weissflogii, Nitzschia acicularis, N. palea and N. reversa, and the chlorophytes Chlamydomonas sp. and Scenesdesmus quadricauda. Patterns in the abundance of species indicated that assembly of the phytoplankton is limited more by light and flow regime than by nutrient supply.4. The phytobenthos was dominated by larger, more slowly reproducing pennate diatoms. Few of the abundant species are euryhaline. The diatoms Navicula recens and Nitzschia inconspicua and cyanophytes, Oscillatoria spp

  7. A stream temperature model for the Peace-Athabasca River basin

    NASA Astrophysics Data System (ADS)

    Morales-Marin, L. A.; Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-12-01

    Water temperature plays a fundamental role in water ecosystem functioning. Because it regulates flow energy and metabolic rates in organism productivity over a broad spectrum of space and time scales, water temperature constitutes an important indicator of aquatic ecosystems health. In cold region basins, stream water temperature modelling is also fundamental to predict ice freeze-up and break-up events in order to improve flood management. Multiple model approaches such as linear and multivariable regression methods, neural network and thermal energy budged models have been developed and implemented to simulate stream water temperature. Most of these models have been applied to specific stream reaches and trained using observed data, but very little has been done to simulate water temperature in large catchment river networks. We present the coupling of RBM model, a semi-Lagrangian water temperature model for advection-dominated river system, and MESH, a semi-distributed hydrological model, to simulate stream water temperature in river catchments. The coupled models are implemented in the Peace-Athabasca River basin in order to analyze the variation in stream temperature regimes under changing hydrological and meteorological conditions. Uncertainty of stream temperature simulations is also assessed in order to determine the degree of reliability of the estimates.

  8. Evaluation of a floating fish guidance structure at a hydrodynamically complex river junction in the Sacramento-San Joaquin River Delta, California, USA

    USGS Publications Warehouse

    Romine, Jason G.; Perry, Russell W.; Pope, Adam C.; Stumpner, Paul; Liedtke, Theresa L.; Kumagai, Kevin K; Reeves, Ryan L

    2016-01-01

    Survival of out-migrating juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento–San Joaquin River delta, California, USA, varies by migration route. Survival of salmonids that enter the interior and southern Delta can be as low as half that of salmonids that remain in the main-stem Sacramento River. Reducing entrainment into the higher-mortality routes, such as Georgiana Slough, should increase overall survival. In spring 2014, a floating fish-guidance structure (FFGS) designed to reduce entrainment into Georgiana Slough was deployed just upstream of the Georgiana Slough divergence. We used acoustic telemetry to evaluate the effect of the FFGS on Chinook entrainment to Georgiana Slough. At intermediate discharge (200–400 m3 s–1), entrainment into Georgiana Slough was five percentage points lower when the FFGS was in the on state (19.1% on; 23.9% off). At higher discharge (>400 m3 s–1), entrainment was higher when the FFGS was in the on state (19.3% on; 9.7% off), and at lower discharge (0–200 m3 s–1) entrainment was lower when the FFGS was in the on state (43.7% on; 47.3% off). We found that discharge, cross-stream fish position, time of day, and proportion of flow remaining in the Sacramento River contributed to the probability of being entrained to Georgiana Slough.

  9. Assessing the sources and magnitude of diurnal nitrate variability in the San Joaquin River (California) with an in situ optical nitrate sensor and dual nitrate isotopes

    USGS Publications Warehouse

    Pellerin, Brian A.; Downing, Bryan D.; Kendall, Carol; Dahlgren, Randy A.; Kraus, Tamara E.C.; Saraceno, John Franco; Spencer, Robert G. M.; Bergamaschi, Brian A.

    2009-01-01

    1. We investigated diurnal nitrate (NO3−) concentration variability in the San Joaquin River using an in situ optical NO3− sensor and discrete sampling during a 5‐day summer period characterized by high algal productivity. Dual NO3− isotopes (δ15NNO3 and δ18ONO3) and dissolved oxygen isotopes (δ18ODO) were measured over 2 days to assess NO3− sources and biogeochemical controls over diurnal time‐scales.2. Concerted temporal patterns of dissolved oxygen (DO) concentrations and δ18ODOwere consistent with photosynthesis, respiration and atmospheric O2 exchange, providing evidence of diurnal biological processes independent of river discharge.3. Surface water NO3− concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5‐day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of δ15NNO3 and δ18ONO3isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3− variability in the San Joaquin River during the study. The lack of a clear explanation for NO3− variability likely reflects a combination of riverine biological processes and time‐varying physical transport of NO3− from upstream agricultural drains to the mainstem San Joaquin River.4. The application of an in situ optical NO3− sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment.

  10. The Use of Radar to Improve Rainfall Estimation over the Tennessee and San Joaquin River Valleys

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Gatlin, Patrick N.; Felix, Mariana; Carey, Lawrence D.

    2010-01-01

    This slide presentation provides an overview of the collaborative radar rainfall project between the Tennessee Valley Authority (TVA), the Von Braun Center for Science & Innovation (VCSI), NASA MSFC and UAHuntsville. Two systems were used in this project, Advanced Radar for Meteorological & Operational Research (ARMOR) Rainfall Estimation Processing System (AREPS), a demonstration project of real-time radar rainfall using a research radar and NEXRAD Rainfall Estimation Processing System (NREPS). The objectives, methodology, some results and validation, operational experience and lessons learned are reviewed. The presentation. Another project that is using radar to improve rainfall estimations is in California, specifically the San Joaquin River Valley. This is part of a overall project to develop a integrated tool to assist water management within the San Joaquin River Valley. This involves integrating several components: (1) Radar precipitation estimates, (2) Distributed hydro model, (3) Snowfall measurements and Surface temperature / moisture measurements. NREPS was selected to provide precipitation component.

  11. San Joaquin River Up-Stream DO TMDL Project Task 4: MonitoringStudy Interim Task Report #3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stringfellow, William; Borglin, Sharon; Dahlgren, Randy

    2007-03-30

    The purpose of the Dissolved Oxygen Total Maximum Daily LoadProject (DO TMDLProject) is to provide a comprehensive understanding ofthe sources and fate of oxygen consuming materials in the San JoaquinRiver (SJR) watershed between Channel Point and Lander Avenue (upstreamSJR). When completed, this study will provide the stakeholders anunderstanding of the baseline conditions of the basin, provide input foran allocation decision, and provide the stakeholders with a tool formeasuring the impact of any waterquality management program that may beimplemented as part of the DO TMDL process. Previous studies haveidentified algal biomass as the most significant oxygen-demandingsubstance in the DO TMDL Projectmore » study-area between of Channel Point andLander Ave onthe SJR. Other oxygen-demanding substances found in theupstream SJR include ammonia and organic carbon from sources other thanalgae. The DO TMDL Project study-area contains municipalities, dairies,wetlands, cattle ranching, irrigated agriculture, and industries thatcould potentially contribute biochemical oxygen demand (BOD) to the SJR.This study is designed to discriminate between algal BOD and othersources of BOD throughout the entire upstream SJR watershed. Algalbiomass is not a conserved substance, but grows and decays in the SJR;hence, characterization of oxygen-demanding substances in the SJR isinherently complicated and requires an integrated effort of extensivemonitoring, scientific study, and modeling. In order to achieve projectobjectives, project activities were divided into a number of Tasks withspecific goals and objectives. In this report, we present the results ofmonitoring and research conducted under Task 4 of the DO TMDL Project.The major objective of Task 4 is to collect sufficient hydrologic (flow)and water quality (WQ) data to characterize the loading of algae, otheroxygen-demanding materials, and nutrients fromindividual tributaries andsub-watersheds of the upstream SJR between Mossdale

  12. Isotopic and Chemical Analysis of Nitrate Sources and Cycling in the San Joaquin River Near Stockton, California

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Bemis, B.; Wankel, S.; Bergamaschi, B.; Kratzer, C.; Dileanis, P.; Erickson, D.; Avery, E.; Paxton, K.

    2002-12-01

    Fish migration through the deep-water channel in the San Joaquin River at Stockton, California is inhibited by low oxygen concentrations during the summer months. The cause for this condition appears to be stagnation and decomposition of algae with attendant oxygen consumption. Algae growth in the San Joaquin River is promoted by nutrients entering the river mainly in the form of nitrate. Possible significant sources of nitrate include soil, fertilizer from agriculture, manure from dairy operations, and N derived from municipal sewage. A 2000 CALFED pilot study investigated the sources and cycling of nitrate at four sites along the San Joaquin River upstream of Stockton using the carbon and nitrogen isotopes of total dissolved and particulate organic matter, together with hydrological measurements and various concentration data, including chlorophyll-a. The nitrate source, its relationship to phytoplankton, and the effect of the nitrate source and cycling on the N isotopic composition of dissolved and particulate organic matter were the primary concerns of the study. The d15N values of dissolved organic nitrogen (DON) were used as a proxy for nitrate d15N because nitrate comprised about 90% of DON. Chlorophyll-a and C:N ratios indicated that the particulate organic matter (POM) consisted largely of plankton and therefore the d15N of POM was used as a proxy for the d15N of plankton. A tentative interpretation of the pilot study was that nitrate was a major nutrient for the plankton and the nitrate was of anthropogenic origin, possibly sewage or animal waste. To test these assumptions and interpretations, we are currently analyzing a set of samples collected in 2001. In addition to the previous sample types, a subset of samples will be measured directly for nitrate d15N to assess the validity of using d15N of DON as a proxy for nitrate.

  13. Floods of 1952 in California. Flood of January 1952 in the south San Francisco Bay region; Snowmelt flood of 1952 in Kern River, Tulare Lake, and San Joaquin River basins

    USGS Publications Warehouse

    Rantz, S.E.; Stafford, H.M.

    1956-01-01

    Two major floods occurred in California in 1952. The first was the flood of January 11-13 in the south San Francisco Bay region that resulted from heavy rains which began on the morning of January 11 and ended about noon January 13. This flood was notable for the magnitude of the peak discharges, although these discharges were reduced by the controlling effect of reservoirs for conservation and flood-control purposes. The flood damage was thereby reduced, and no lives were lost; damage, nevertheless, amounted to about $1.400.000. The second flood was due, not to the immediate runoff of heavy rain, but to the melting of one of the largest snow packs ever recorded in the Sierra Nevada range. In the spring and summer of 1952, flood runoff occurred on all the major streams draining the Sierra Nevada. In the northern half of the Central Valley basin?the Sacramento River basin?flood volumes and maximum daily discharges were not exceptional. and flood damage was not appreciable. However, in the southern half, which is formed by the Kern River, Tulare Lake, and San Joaquin River basins, new records for snowmelt runoff were established for some streams; but for below-normal temperatures and shorter, less warm hot spells, record flood discharges would have occurred on many others. In the three basins an area of 200,000 acres. largely cropland. was inundated, and damage was estimated at $11,800,000.

  14. Late Cretaceous and Paleogene sedimentation along east side of San Joaquin basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, S.A.

    1986-04-01

    Depositional systems of the Late Cretaceous contrast with those of the Paleogene in the subsurface along the east side of the San Joaquin basin between Bakersfield and Fresno, California. Upper Cretaceous deposits include thick fan-delta and submarine fan facies of the Moreno and Panoche Formations, whereas the paleogene contains extensive nearshore, shelf, slope, and submarine fan deposits of the Lodo, Domengine, and Kreyenhagen Formations. These sediments were deposited on a basement surface having several west-trending ridges and valleys. West-flowing streams draining an ancestral Sierra Nevada of moderate relief formed prograding fan deltas that filled the valleys with thick wedges ofmore » nonmarine channel deposits, creating a bajada along the shoreline. Detrital material moved rapidly from the shoreline through a narrow shelf, into a complex of submarine fans in the subduction trough. During the early Eocene, a low sea level stand plus an end of Sierra Nevada uplift resulted in the erosion of the range to a peneplain. Stream-fed fan deltas were replaced by a major river system, which flowed west on about the present course of the Kern River. Following a rapid sea level increase, sand from the river system was deposited on the now broad shelf along a wide belt roughly coincident with California Highway 99. The river was also the point source for sand in a submarine fan northwest of Bakersfield. Both Upper Cretaceous and Paleogene depositional systems probably continue north along the east edge of the Great Valley. This proposed scenario for the east side of the San Joaquin is analogous to forearc deposits in the San Diego area, including the Cretaceous Rosario fan-delta and submarine fan system and the Eocene La Jolla and Poway nearshore, shelf, and submarine fan systems.« less

  15. Transport of sediment-bound organochlorine pesticides to the San Joaquin River, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Suspended sediment samples were collected in westside tributaries and the main stem of the San Joaquin River, California, in June 1994 during the irrigation season and in January 1995 during a winter storm. These samples were analyzed for 15 organochlorine pesticides to determine their occurrence and their concentrations on suspended sediment and to compare transport during the irrigation season (April to September) to transport during winter storm runoff (October to March). Ten organochlorine pesticides were detected during the winter storm runoff; seven during the irrigation season. The most frequently detected organochlorine pesticides during both sampling periods were p,p'-DDE, p,p'-DDT, p,p'-DDD, dieldrin, toxaphene, and chlordane. Dissolved samples were analyzed for three organochlorine pesticides during the irrigation season and for 15 during the winter storm. Most calculated total concentrations of p,p'-DDT, chlordane, dieldrin, and toxaphene exceeded chronic criteria for the protection of freshwater aquatic life. At eight sites in common between sampling periods, suspended sediment concentrations and streamflow were greater during the winter storm runoff median concentration of 3,590 mg/L versus 489 mg/and median streamflow of 162 ft3/s versus 11 ft3/s. Median concentrations of total DDT (sum of p,p'-DDD, p,p'-DDE, and p,p'-DDT), chlordane, dieldrin, and toxaphene on suspended sediment were slightly greater during the irrigation season, but instantaneous loads of organochlorine pesticides at the time of sampling were substantially greater during the winter storm. Estimated loads for the entire irrigation season exceeded estimated loads for the January 1995 storm by about 2 to 4 times for suspended transport and about 3 to 11 times for total transport. However, because the mean annual winter runoff is about 2 to 4 times greater than the runoff during the January 1995 storm, mean winter transport may be similar to irrigation season transport. This conclusion

  16. 78 FR 39597 - Safety Zone; Hilton Fourth of July Fireworks, San Joaquin River, Venice Island, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... Zone; Hilton Fourth of July Fireworks, San Joaquin River, Venice Island, CA AGENCY: Coast Guard, DHS... the Hilton Fourth of July Fireworks in the Captain of the Port, San Francisco area of responsibility...'' W (NAD83) for the Hilton Fourth of July Fireworks in 33 CFR 165.1191, Table 1, Item number 17. This...

  17. Long-term historical analysis of benthic communities and physical habitat in an agricultural stream in California's San Joaquin River watershed.

    PubMed

    Hall, Lenwood W; Killen, William D; Alden, Raymond

    2009-05-01

    This study was designed to characterize long-term annual temporal and spatial trends (2001 to 2007) in physical habitat and benthic communities and to determine relationships of habitat and benthic communities during this 7-year period in an agricultural stream in the San Joaquin River watershed in California (Del Puerto Creek). The canonical discriminant analysis indicated that there were no overall significant temporal patterns for the habitat metrics although spatial patterns were prominent for nearly all the habitat metrics. Channel alteration, riparian vegetative zone, bank stability, vegetative protection and frequency of riffles/bends were the primary habitat metrics associated with these site effects. Approximately 3,700 to 4,500 individual macroinvertebrates were picked and identified from five Del Puerto Creek sites sampled annually from 2001 to 2007. The total number of taxa by year ranged from 81 in 2003 to 106 in 2007. These benthic assemblages were generally comprised of tolerant to moderately tolerant taxa such as blackflies, oligochaetes, snails and chironomids. The metrics % predators, % EPT index, % collectors/filterers and % shredders were the benthic metrics that were most associated with the temporal effects. Ephemeroptera taxa, trichoptera taxa, and % sensitive EPT index were the benthic metrics that were most associated with the site effects. The most upstream site in Del Puerto Creek had the most robust and healthy benthic communites. Strong statistical relationships were reported between certain benthic metrics and habitat metrics. Overall, samples taken from site-year combinations with sediments that were qualitatively less muddy (less fines) and that had higher habitat metric scores for embeddedness, riparian vegetative zone, and channel alteration tended to have benthic communities characterized by higher values of the benthic metrics such as EPT taxa, Ephemeroptera taxa, EPT index, abundance, and taxonomic richness, among others

  18. 75 FR 71145 - San Joaquin River Restoration Program: Reach 4B, Eastside Bypass, and Mariposa Bypass Channel and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation San Joaquin River Restoration Program: Reach 4B...: Bureau of Reclamation, Interior. ACTION: Revised notice of intent to prepare an Environmental Impact...., the NRDC, Friant Water Users Authority, and the Departments of the Interior and Commerce (Settling...

  19. Measured flow and tracer-dye data for spring 1996 and 1997 for the south Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Oltmann, Richard N.

    1999-01-01

    During the spring of years when the flow of the San Joaquin River is less than 7,000 cubic feet per second (ft3/s) a temporary rock barrier is installed by the California Department of Water Resources (DWR) at the head of Old River (HOR) in the south Sacramento-San Joaquin Delta to prevent out migrating salmon in the San Joaquin River from entering Old River and being drawn to the State and federal pumping facilities (Figure 1). The export rate of the pumping facilities also is reduced during these migration periods to minimize the draw of fish to the export facilities through the other channels connected to the San Joaquin River north of the HOR such as Turner Cut, Columbia Cut, and Middle River.

  20. Nitrogen Removal by Streams and Rivers of the Upper Mississippi River Basin

    EPA Science Inventory

    Our study, based on chemistry and channel dimensions data collected at 893 randomly-selected stream and river sites in the Mississippi River basin, demonstrated the interaction of stream chemistry, stream size, and NO3-N uptake metrics across a range of stream sizes and across re...

  1. The nature of organic carbon in density-fractionated sediments in the Sacramento-San Joaquin River Delta (California)

    NASA Astrophysics Data System (ADS)

    Wakeham, S. G.; Canuel, E. A.

    2015-10-01

    Rivers are the primary means by which sediments and carbon are transported from the terrestrial biosphere to the oceans but gaps remain in our understanding of carbon associations from source to sink. Bed sediments from the Sacramento-San Joaquin River Delta (CA) were fractionated according to density and analyzed for sediment mass distribution, elemental (C and N) composition, mineral surface area, and stable carbon and radiocarbon isotope compositions of organic carbon (OC) and fatty acids to evaluate the nature of organic carbon in river sediments. OC was unevenly distributed among density fractions. Mass and TOC were in general concentrated in mesodensity (1.6-2.0 and 2.0-2.5 g cm-3) fractions, comprising 84.0 ± 1.3 % of total sediment mass and 80.8 ± 13.3 % of total OC (TOC). Low density (< 1.6 g cm-3) material, although rich in OC (34.0 ± 2.0 % OC) due to woody debris, constituted only 17.3 ± 12.8 % of TOC. High density (> 2.5 g cm-3) organic-poor, mineral material made-up 13.7 ± 1.4 % of sediment mass and 2.0 ± 0.9 % of TOC. Stable carbon isotope compositions of sedimentary OC were relatively uniform across bulk and density fractions (δ13C -27.4 ± 0.5 ‰). Radiocarbon content varied from Δ14C values of -382 (radiocarbon age 3800 yr BP) to +94 ‰ (modern) indicating a~mix of young and pre-aged OC. Fatty acids were used to further constrain the origins of sedimentary OC. Short-chain n-C14-n-C18 fatty acids of algal origin were depleted in δ13C (δ13C -37.5 to -35.2 ‰) but were enriched in 14C (Δ14C > 0) compared to long-chain n-C24-n-C28 acids of vascular plant origins with higher δ13C (-33.0 to -31.0 ‰) but variable Δ14C values (-180 and 61 ‰). These data demonstrate the potentially complex source and age distributions found within river sediments and provide insights about sediment and organic matter supply to the Sacramento-San Joaquin River Delta.

  2. Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2012-01-01

    Sedimentation in the Sacramento–San Joaquin River Delta builds the Delta landscape, creates benthic and pelagic habitat, and transports sediment-associated contaminants. Here we present a conceptual model of sedimentation that includes submodels for river supply from the watershed to the Delta, regional transport within the Delta and seaward exchange, and local sedimentation in open water and marsh habitats. The model demonstrates feedback loops that affect the Delta ecosystem. Submerged and emergent marsh vegetation act as ecosystem engineers that can create a positive feedback loop by decreasing suspended sediment, increasing water column light, which in turn enables more vegetation. Sea-level rise in open water is partially countered by a negative feedback loop that increases deposition if there is a net decrease in hydrodynamic energy. Manipulation of regional sediment transport is probably the most feasible method to control suspended sediment and thus turbidity. The conceptual model is used to identify information gaps that need to be filled to develop an accurate sediment transport model.

  3. Spatial and temporal variation of biological control agents associated with Eichhornia crassipes in the Sacramento-San Joaquin River Delta, California

    USDA-ARS?s Scientific Manuscript database

    Invasive aquatic weeds, such as water hyacinth (Eichhornia crassipes), severely limit the ecosystem services provided by the Sacramento-San Joaquin River Delta. As part of the biological control program in the Delta, two weevils, Neochetina bruchi and N. eichhorniae (Coleoptera: Curculionidae) and a...

  4. Concentrations of chlorinated organic compounds in biota and bed sediment in streams of the lower San Joaquin River drainage, California

    USGS Publications Warehouse

    Brown, Larry R.

    1998-01-01

    Samples of resident biota and bed sediments were collected in 1992 from 18 sites on or near the floor of the San Joaquin Valley, California, for analysis of 33 organochlorine compounds. The sites were divided into five groups on the basis of physiographic region and land use. Ten compounds were detected in tissue, and 16 compounds were detected in bed sediment. The most frequently detected compound in both media was p,p'-DDE. Concentrations of total DDT (sum of o,p'- and p,p'-forms of DDD, DDE, and DDT) were statistically different among groups of sites for tissue and sediment (Kruskal-Wallis, P < 0.05). Concentrations in both media were highest in streams draining the west side of the valley. Concentrations of total DDT in tissue were significantly correlated with specific conductance, pH, and total alkalinity (P < 0.05), which are indicators of the proportion of irrigation-return flows in stream discharge. Concentrations in sediment on a dry-weight basis were not correlated with these water-quality parameters, but total-organic- carbon (TOC) normalized concentrations were significantly correlated with specific conductance and pH (P < 0.05). Regressions of the concentration of total DDT in tissue as a function of total DDT in bed sediment were significant and explained as much as 76 percent of the variance in the data. The concentration of total DDT in sediment may be related to mechanisms of soil transport to surface water with bioavailability of compounds related to the concentration of TOC in sediment.

  5. Dissolved nitrogen seasonal dynamics in Alaskan Arctic streams & rivers

    NASA Astrophysics Data System (ADS)

    Khosh, M. S.; McClelland, J. W.; Douglas, T. A.; Jacobson, A. D.; Barker, A. J.; Lehn, G. O.

    2011-12-01

    Over the coming century, continued warming in the Arctic is expected to bring about many changes to the region including altered precipitation regimes, earlier snowmelt, and degradation of permafrost. These alterations are likely to modify the hydrology within the region, including changes in the quantity, seasonality, and flow paths of water; all of which may impact biogeochemical processes within Arctic catchments. The anticipated responses to warming in the Arctic are likely to become most apparent during the spring snowmelt period, and in the late summer to early fall when the seasonally-thawed active layer reaches its maximum depth. While our knowledge of the seasonal dynamics of water-borne constituents in Arctic rivers is improving, the spring snowmelt and the late summer/early fall are times of the year that Arctic rivers have historically been under sampled. An improved understanding of the mechanisms that control the seasonal variability of water chemistry may help us to better understand how these systems will respond to further warming. Between May and October of 2009 and 2010 we collected surface water samples from six different rivers/streams in the Alaskan Arctic, with particular emphasis placed on sampling during the spring snowmelt and during the late summer until fall freeze-up. These rivers were selected because they represent end-member physical characteristics ranging from high gradient rivers draining predominantly bedrock to low gradient rivers draining predominantly tundra. The catchments of all six rivers are underlain by continuous permafrost and range in size from 1.6 km2 to 610 km2. Samples were analyzed for total dissolved nitrogen (TDN), nitrate (NO3-), and ammonium (NH4+). Dissolved organic nitrogen (DON) was calculated as [TDN] - [NO3-] - [NH4+]. TDN concentrations exhibited maxima in the spring and fall, but the prevailing forms of nitrogen differed markedly between the early and late periods. There were also marked differences

  6. National River and Stream Assessment Monitoring Design

    EPA Science Inventory

    The USEPA designed the National River and Stream Assessment (NRSA) in 2007 and field sampling was completed in 2008-9. The objective of the assessment is to estimate the ecological condition of river and streams nationally. This paper describes the national survey design and re...

  7. Initial Development of Riparian and Marsh Vegetation on Dredged-material Islands in the Sacramento-San Joaquin River Delta, California

    Treesearch

    A. Sidney England; Mark K. Sogge; Roy A. Woodward

    1989-01-01

    Natural vegetation establishment and development were monitored for 3 1/2 years on a new, dredged-material island located within the breached levees at Donlon Island in the Sacramento-San Joaquin River Delta. Vegetation measurements and maps prepared annually indicate that marsh and riparian vegetation types have developed rapidly. Topographic data for the island has...

  8. Use of radars to monitor stream discharge by noncontact methods

    USGS Publications Warehouse

    Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.

    2006-01-01

    Conventional measurements of river flows are costly, time‐consuming, and frequently dangerous. This report evaluates the use of a continuous wave microwave radar, a monostatic UHF Doppler radar, a pulsed Doppler microwave radar, and a ground‐penetrating radar to measure river flows continuously over long periods and without touching the water with any instruments. The experiments duplicate the flow records from conventional stream gauging stations on the San Joaquin River in California and the Cowlitz River in Washington. The purpose of the experiments was to directly measure the parameters necessary to compute flow: surface velocity (converted to mean velocity) and cross‐sectional area, thereby avoiding the uncertainty, complexity, and cost of maintaining rating curves. River channel cross sections were measured by ground‐penetrating radar suspended above the river. River surface water velocity was obtained by Bragg scattering of microwave and UHF Doppler radars, and the surface velocity data were converted to mean velocity on the basis of detailed velocity profiles measured by current meters and hydroacoustic instruments. Experiments using these radars to acquire a continuous record of flow were conducted for 4 weeks on the San Joaquin River and for 16 weeks on the Cowlitz River. At the San Joaquin River the radar noncontact measurements produced discharges more than 20% higher than the other independent measurements in the early part of the experiment. After the first 3 days, the noncontact radar discharge measurements were within 5% of the rating values. On the Cowlitz River at Castle Rock, correlation coefficients between the USGS stream gauging station rating curve discharge and discharge computed from three different Doppler radar systems and GPR data over the 16 week experiment were 0.883, 0.969, and 0.992. Noncontact radar results were within a few percent of discharge values obtained by gauging station, current meter, and hydroacoustic methods

  9. Rivers and streams: Physical setting and adapted biota

    USGS Publications Warehouse

    Wilzbach, Margaret A.; Cummins, K.W.

    2008-01-01

    Streams and rivers are enormously important, with their ecological, and economic value, greatly outweighing their significance on the landscape. Lotic ecology began in Europe with a focus on the distribution, abundance, and taxonomic composition of aquatic organisms and in North American with a focus on fishery biology. Since 1980, stream/river research has been highly interdisciplinary, involving fishery biologists, aquatic entomologists, algologists, hydrologists, geomorphologists, microbiologists, and terrestrial plant ecologists. Stream and river biota evolved in response to, and in concert with, the physical and chemical setting. Streams/rivers transport water and move sediments to the sea as part of the hydrologic cycle that involves evaporation, plant evapotranspiration, and precipitation. Ephemeral streams flow only in the wettest year, intermittent streams flow predictably every year during capture of surface runoff, and perennial streams flow continuously during wet and dry periods, receiving both stormflow and groundwater baseflow. The lotic biota, for example, algae, macrophytes, benthic invertebrates, and fishes, have evolved adaptations to their running-water setting. Dominant physical features of this setting are current, substrate, and temperature. Key chemical constituents are dissolved gases, dissolved inorganic ions and compounds, particulate inorganic material, particulate organic material, and dissolved organic ions (nitrogen and phosphorus) and compounds.

  10. National rivers and streams assessment: fish tissue contaminants

    EPA Science Inventory

    Overview of the National Rivers and Streams Assessment (NRSA), a statistical survey of flowing waters in the U.S. Survey is designed to: assess the condition of the nation's rivers and streams; help build state and tribal capacity for monitoring and assessment; promote collabor...

  11. Spatial variability in groundwater N2 and N2O in the San Joaquin River

    NASA Astrophysics Data System (ADS)

    Hinshaw, S.; Dahlgren, R. A.

    2010-12-01

    The San Joaquin River is surrounded by nearly 2 million acres of irrigated agricultural land. Groundwater inputs from agricultural areas can have severe negative effects on water quality with high nitrate concentrations being a major concern. Riparian zones are important ecological habitats that mitigate nitrogen loading from groundwater discharging into rivers primarily by denitrification. Denitrification is a permanent removal of nitrate by anaerobic microbial communities via the reduction to NO, N2O and N2. However, previous studies have shown that these areas can be source of N2O emissions. Although removal of nitrate through denitrification is advantageous from a water quality perspective, N2O is a harmful greenhouse gas. This study aimed to investigate nitrogen dynamics and dissolved N gases in surface and groundwater of the riparian zones of the San Joaquin River. Excess N2 and N2O concentrations were measured in surface and groundwater at 4 locations along a 33 km reach of the river. Samples were collected within bank sediments and 5 transect points across the river at depth intervals between 2-3 cm and 150 cm. Dissolved N2 and Ar were measured by membrane inlet mass spectrometry and used to estimate excess dissolved N2 concentrations. Dissolved N2O concentrations were measured using the headspace equilibrium technique and analyzed with a gas chromatograph. Both N2 uptake and excess N2 were present, ranging from -3.40 to 8.65 N2 mg/L with a median concentration of 1.20 N2 mg/L. Significantly lower concentrations of N2O were present ranging from 0.0 to 0.12 N2O mg/L. Deeper groundwater sites had significantly higher N2 and N2O concentrations coinciding with decreased O2. The presence of excess N2 and low N2O concentrations documents the importance of denitrification in removing nitrate from groundwater. Further investigation will examine N2O emissions from riparian soils and benthic sediments using static chambers and focus on nitrogen pathways that

  12. Organic Carbon Trends, Loads, and Yields to the Sacramento-San Joaquin Delta, California, Water Years 1980 to 2000

    USGS Publications Warehouse

    Saleh, Dina K.; Domagalski, Joseph L.; Kratzer, Charles R.; Knifong, Donna L.

    2003-01-01

    Organic carbon, nutrient, and suspended sediment concentration data were analyzed for the Sacramento and San Joaquin River Basins for the period 1980-2000. The data were retrieved from three sources: the U.S. Geological Survey's National Water Information System, the U.S. Environmental Protection Agency's Storage and Retrieval System, and the California Interagency Ecological Program's relational database. Twenty sites were selected, all of which had complete records of daily streamflow data. These data met the minimal requirements of the statistical programs used to estimate trends, loads, and yields. The seasonal Kendall program was used to estimate trends in organic carbon, nutrient, and suspended sediment. At all 20 sites, analyses showed that in the 145 analyses for the seven constituents, 95 percent of the analyses had no significant trend. Dissolved organic carbon (DOC) concentrations were significant only for four sites: the American River at Sacramento, the Sacramento River sites near Freeport, Orestimba Creek at River Roads near Crows Landing, and the San Joaquin River near Vernalis. Loads were calculated using two programs, ESTIMATOR and LOADEST2. The 1998 water year was selected to describe loads in the Sacramento River Basin. Organic carbon, nutrient, and suspended sediment loads at the Sacramento River sites near Freeport included transported loads from two main upstream sites: the Sacramento River at Verona and the American River at Sacramento. Loads in the Sacramento River Basin were affected by the amount of water diverted to the Yolo Bypass (the amount varies annually, depending on the precipitation and streamflow). Loads at the Sacramento River sites near Freeport were analyzed for two hydrologic seasons: the irrigation season (April to September) and the nonirrigation season (October to March). DOC loads are lower during the irrigation season then they are during the nonirrigation season. During the irrigation season, water with low

  13. Algal Biomass as an Indicator for Biochemical Oxygen Demand in the San Joaquin River, California.

    NASA Astrophysics Data System (ADS)

    Volkmar, E. C.; Dalhgren, R. A.

    2005-12-01

    Episodes of hypoxia (DO < 2 mg/L) occur in the lower San Joaquin River (SJR), California, and are typically most acute in the late summer and fall. The oxygen deficit can stress and kill aquatic organisms, and often inhibits the upstream migration of fall-run Chinook salmon. Hypoxia is most pronounced downstream from the Stockton Deep Water Ship Channel, which has been dredged from a depth of 2-3 m to about 11 m to allow ocean-going ships to reach the Port of Stockton. To protect aquatic organisms and facilitate the upstream migration of fall-run Chinook salmon, the minimum water quality standard for DO is 6 mg/L during September through November, and 5 mg/L for the remainder of the year. A five year study examined components contributing to biochemical oxygen demand (BOD): ammonia, algal biomass, non-algal particulate organic matter, and dissolved organic carbon. BOD shows a significant increase in loading rates as the SJR flows downstream, which parallels the load of algal biomass due to instream growth. BOD loading rates from tributaries accounts for 28% in a wet year and 39% in a dry year. Regression analysis revealed that chlorophyll-a + pheophyton-a was the only significant (p<0.05) predictor for BOD (r2 = 0.71). Less than 20% of the BOD was found in the dissolved fraction (<0.45 μm). The average BOD decomposition rate of the SJR and tributaries is 0.0841 d-1. We conclude that algal biomass is the primary contributor to BOD loads in the San Joaquin River.

  14. Diazinon and chlorpyrifos loads in precipitation and urban and agricultural storm runoff during January and February 2001 in the San Joaquin River basin, California

    USGS Publications Warehouse

    Zamora, Celia; Kratzer, Charles R.; Majewski, Michael S.; Knifong, Donna L.

    2003-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2001 in the San Joaquin River Basin was 24 percent less and 3.2 times more than applications in 2000, respectively. A total of 16 sites were sampled during January and February 2001 storm events: 7 river sites, 8 precipitation sites, and 1 urban storm drain. The seven river sites were sampled weekly during nonstorm periods and more frequently during storm runoff from a total of four storms. The monitoring of storm runoff at a city storm drain in Modesto, California, occurred simultaneously with the collection of precipitation samples from eight sites during a January 2001 storm event. The highest concentrations of diazinon occurred during the storm periods for all 16 sites, and the highest concentrations of chlorpyrifos occurred during weekly nonstorm sampling for the river sites and during the January storm period for the urban storm drain and precipitation sites. A total of 60 samples (41 from river sites, 10 from precipitation sites, and 9 from the storm drain site) had diazinon concentrations greater than 0.08 ?g/L, the concentration being considered by the California Department of Fish and Game as its criterion maximum concentration for the protection of aquatic habitats. A total of 18 samples (2 from river sites, 9 from precipitation sites, and 7 from the storm drain site) exceeded the equivalent California Department of Fish and Game guideline of 0.02 ?g/L for chlorpyrifos. The total diazinon load in the San Joaquin River near Vernalis during January and February 2001 was 23.8 pounds active ingredient; of this amount, 16.9 pounds active ingredient were transported by four storms, 1.06 pounds active ingredient were transported by nonstorm events, and 5.82 pounds active ingredient were considered to be baseline loads. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2001 was 2.17 pounds active ingredient; of this amount, 0.702 pound active

  15. Electrical resistivity investigation of fluvial geomorphology to evaluate potential seepage conduits to agricultural lands along the San Joaquin River, Merced County, California, 2012–13

    USGS Publications Warehouse

    Groover, Krishangi D.; Burgess, Matthew K.; Howle, James F.; Phillips, Steven P.

    2017-02-08

    Increased flows in the San Joaquin River, part of the San Joaquin River Restoration Program, are designed to help restore fish populations. However, increased seepage losses could result from these higher restoration flows, which could exacerbate existing drainage problems in neighboring agricultural lands and potentially damage crops. Channel deposits of abandoned river meanders that are hydraulically connected to the river could act as seepage conduits, allowing rapid and widespread water-table rise during restoration flows. There is a need to identify the geometry and properties of these channel deposits to assess their role in potential increased seepage effects and to evaluate management alternatives for reducing seepage. Electrical and electromagnetic surface geophysical methods have provided a reliable proxy for lithology in studies of fluvial and hyporheic systems where a sufficient electrical contrast exists between deposits of differing grain size. In this study, direct-current (DC) resistivity was used to measure subsurface resistivity to identify channel deposits and to map their subsurface geometry. The efficacy of this method was assessed by using DC resistivity surveys collected along a reach of the San Joaquin River in Merced County, California, during the summers of 2012 and 2013, in conjunction with borings and associated measurements from a hydraulic profiling tool. Modeled DC resistivity data corresponded with data from cores, hand-auger samples, a hydraulic profiling tool, and aerial photographs, confirming that DC resistivity is effective for differentiating between silt and sand deposits in this setting. Modeled DC resistivity data provided detailed two-dimensional cross-sectional resistivity profiles to a depth of about 20 meters. The distribution of high-resistivity units in these profiles was used as a proxy for identifying areas of high hydraulic conductivity. These data were used subsequently to guide the location and depth of wells

  16. Preliminary assessment of the effects of selenium in agricultural drainage on fish in the San Joaquin Valley

    USGS Publications Warehouse

    Saiki, M.K.; Jennings, M.R.; Hamilton, S.J.; Dinar, A.; Zilberman, D.

    1991-01-01

    Concentrations of total selenium were measured in whole-body samples of seven fishes from the Sacramento and San Joaquin River systems and the San Francisco Bay complex. Concentrations of selenium (up to 11 µg/g dry weight in whole-body composite samples) were highest in fish from canals and sloughs in the Grassland Water District (Grasslands) that received large inflows of subsurface agricultural drainage water. Slightly lower selenium concentrations occurred in fish from the San Joaquin River immediately downstream from tributaries draining the Grasslands. Although circumstantial evidence suggests that selenium-sensitive species such as bluegills and largemouth bass are being excluded from the Grasslands, conclusive evidence of selenium toxicity is still lacking. In response to earlier reports of high concentrations of selenium in several species collected from the Grasslands, the California Department of Health Services has urged people to limit consumption of fish from this region.

  17. Bedload transport associated with high stream power, Jordan River, Israel

    PubMed Central

    Inbar, Moshe; Schick, Asher P.

    1979-01-01

    During a flood of a magnitude that recurs once in 100 years, boulders up to 1700 mm in size were transported in the Jordan and Meshushim Rivers, northern Israel. Bedload discharge rates were estimated for periods of 3-72 hr of peak flow by a combination of hydrologic and geomorphic methods. Bedload transport rate is proportional to unit stream power in excess of that necessary for initial motion, raised to the power 3/2, as has been shown for data on other rivers. PMID:16592661

  18. Comparisons of fish species traits from small streams to large rivers

    USGS Publications Warehouse

    Goldstein, R.M.; Meador, M.R.

    2004-01-01

    To examine the relations between fish community function and stream size, we classified 429 lotic freshwater fish species based on multiple categories within six species traits: (1) substrate preference, (2) geomorphic preference, (3) trophic ecology, (4) locomotion morphology, (5) reproductive strategy, and (6) stream size preference. Stream size categories included small streams, small, medium, and large rivers, and no size preference. The frequencies of each species trait category were determined for each stream size category based on life history information from the literature. Cluster analysis revealed the presence of covarying groups of species trait categories. One cluster (RUN) included the traits of planktivore and herbivore feeding ecology, migratory reproductive behavior and broadcast spawning, preferences for main-channel habitats, and a lack of preferences for substrate type. The frequencies of classifications for the RUN cluster varied significantly across stream size categories (P = 0.009), being greater for large rivers than for small streams and rivers. Another cluster (RIFFLE) included the traits of invertivore feeding ecology, simple nester reproductive behavior, a preference for riffles, and a preference for bedrock, boulder, and cobble-rubble substrate. No significant differences in the frequency of classifications among stream size categories were detected for the RIFFLE cluster (P = 0.328). Our results suggest that fish community function is structured by large-scale differences in habitat and is different for large rivers than for small streams and rivers. Our findings support theoretical predictions of variation in species traits among stream reaches based on ecological frameworks such as landscape filters, habitat templates, and the river continuum concept. We believe that the species trait classifications presented here provide an opportunity for further examination of fish species' relations to physical, chemical, and biological factors

  19. Effects of hydrologic infrastructure on flow regimes of California's Central Valley rivers: Implications for fish populations

    USGS Publications Warehouse

    Brown, Larry R.; Bauer, Marissa L.

    2010-01-01

    Alteration of natural flow regimes is generally acknowledged to have negative effects on native biota; however, methods for defining ecologically appropriate flow regimes in managed river systems are only beginning to be developed. Understanding how past and present water management has affected rivers is an important part of developing such tools. In this paper, we evaluate how existing hydrologic infrastructure and management affect streamflow characteristics of rivers in the Central Valley, California and discuss those characteristics in the context of habitat requirements of native and alien fishes. We evaluated the effects of water management by comparing observed discharges with estimated discharges assuming no water management ("full natural runoff"). Rivers in the Sacramento River drainage were characterized by reduced winter–spring discharges and augmented discharges in other months. Rivers in the San Joaquin River drainage were characterized by reduced discharges in all months but particularly in winter and spring. Two largely unaltered streams had hydrographs similar to those based on full natural runoff of the regulated rivers. The reduced discharges in the San Joaquin River drainage streams are favourable for spawning of many alien species, which is consistent with observed patterns of fish distribution and abundance in the Central Valley. However, other factors, such as water temperature, are also important to the relative success of native and alien resident fishes. As water management changes in response to climate change and societal demands, interdisciplinary programs of research and monitoring will be essential for anticipating effects on fishes and to avoid unanticipated ecological outcomes.

  20. Evaluating a Radar-Based, Non Contact Streamflow Measurement System in the San Joaquin River at Vernalis, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Gartner, Jeffrey W.; Mason, Jr., Robert R.; Costa, John E.; Plant, William J.; Spicer, Kurt R.; Haeni, F. Peter; Melcher, Nick B.; Keller, William C.; Hayes, Ken

    2004-01-01

    Accurate measurement of flow in the San Joaquin River at Vernalis, California, is vital to a wide range of Federal and State agencies, environmental interests, and water contractors. The U.S. Geological Survey uses a conventional stage-discharge rating technique to determine flows at Vernalis. Since the flood of January 1997, the channel has scoured and filled as much as 20 feet in some sections near the measurement site resulting in an unstable stage-discharge rating. In response to recent advances in measurement techniques and the need for more accurate measurement methods, the Geological Survey has undertaken a technology demonstration project to develop and deploy a radar-based streamflow measuring system on the bank of the San Joaquin River at Vernalis, California. The proposed flow-measurement system consists of a ground-penetrating radar system for mapping channel geometries, a microwave radar system for measuring surface velocities, and other necessary infrastructure. Cross-section information derived from ground penetrating radar provided depths similar to those measured by other instruments during the study. Likewise, surface-velocity patterns and magnitudes measured by the pulsed Doppler radar system are consistent with near surface current measurements derived from acoustic velocity instruments. Since the ratio of surface velocity to mean velocity falls to within a small range of theoretical value, using surface velocity as an index velocity to compute river discharge is feasable. Ultimately, the non-contact radar system may be used to make continuous, near-real-time flow measurements during high and medium flows. This report documents the data collected between April 14, 2002 and May 17, 2002 for the purposes of testing this radar based system. Further analyses of the data collected during this field effort will lead to further development and improvement of the system.

  1. The Cenozoic evolution of the San Joaquin Valley, California

    USGS Publications Warehouse

    Bartow, J. Alan

    1991-01-01

    The San Joaquin Valley, which is the southern part of the 700-km-long Great Valley of California, is an asymmetric structural trough that is filled with a prism of upper Mesozoic and Cenozoic sediments up to 9 km thick; these sediments rest on crystalline basement rocks of the southwestward-tilted Sierran block. The San Joaquin sedimentary basin is separated from the Sacramento basin to the north by the buried Stockton arch and associated Stockton fault. The buried Bakersfield arch near the south end of the valley separates the small Maricopa-Tejon subbasin at the south end of the San Joaquin basin from the remainder of the basin. Cenozoic strata in the San Joaquin basin thicken southeastward from about 800 m in the north to over 9,000 m in the south. The San Joaquin Valley can be subdivided into five regions on the basis of differing structural style. They are the northern Sierran block, the southern Sierran block, the northern Diablo homocline, the westside fold belt, and the combined Maricopa-Tejon subbasin and southmargin deformed belt. Considerable facies variation existed within the sedimentary basin, particularly in the Neogene when a thick section of marine sediment accumulated in the southern part of the basin, while a relatively thin and entirely nonmarine section was deposited in the northern part. The northern Sierran block, the stable east limb of the valley syncline between the Stockton fault and the San Joaquin River, is the least deformed region of the valley. Deformation consists mostly of a southwest tilt and only minor late Cenozoic normal faulting. The southern Sierran block, the stable east limb of the valley syncline between the San Joaquin River and the Bakersfield arch, is similar in style to the northern part of the block, but it has a higher degree of deformation. Miocene or older normal faults trend mostly north to northwest and have a net down-to-the-west displacement with individual offsets of as much as 600 m. The northern Diablo

  2. National Rivers and Streams Assessment

    EPA Pesticide Factsheets

    The NRSA is a collaborative, statistical survey of the nation's rivers and streams. It is one of four national surveys that EPA and its partners conduct to assess the condition and health of the nation's water resources.

  3. A Multi-isotope Tracer Approach Linking Land Use With Carbon and Nitrogen Cycling in the San Joaquin River System

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Silva, S. R.; Dahlgren, R. A.; Stringfellow, W. T.

    2008-12-01

    The San Joaquin River (SJR) is a large hypereutrophic river located in the Central Valley, California, a major agricultural region. Nutrient subsidies, algae, and other organic material from the San Joaquin River contribute to periods of low dissolved oxygen in the Stockton Deep Water Ship Channel, inhibiting salmon migration. We used a multi-isotope approach to link nitrate and particulate organic matter (POM) to different sources and related land uses. The isotope data was also used to better understand the physical and biological processes controlling the distribution of nitrate and POM throughout the river system. Samples collected from the mainstem SJR and tributaries twice-monthly to monthly between March 2005 and December 2007 were analyzed for nitrate, POM, and water isotopes. There are many land uses surrounding the SJR and its tributaries, including multiple types of agriculture, dairies, wetlands, and urban areas. Samples from SJR tributaries containing both major and minor contributions of wetland discharge generally had distinct nitrate and POM isotope signatures compared to other tributaries. Unique nitrate and POM isotope signatures associated with wetland discharges may reflect anaerobic biological processes occurring in flooded soils. For the mainstem SJR, we applied an isotope mass balance approach using nitrate and water isotopes to calculate the expected downstream isotope values based upon measured inputs from known water sources such as drains and tributaries. Differences between the calculated downstream isotope values and the measured values indicate locations and time periods when either biological processes such as algal uptake, or physical process such as the input of unidentified water sources, significantly altered the isotope signatures of water, POM, or nitrate within the SJR. This research will provide a better understanding of how different land uses affect the delivery of carbon and nitrogen to the SJR, and will provide a better

  4. Rising stream and river temperatures in the United States

    Treesearch

    Sujay S. Kaushal; Gene E. Likens; Norbert A. Jaworski; Michael L. Pace; Ashley M. Sides; David Seekell; Kenneth T. Belt; David H. Secor; Rebecca L. Wingate

    2010-01-01

    Water temperatures are increasing in many streams and rivers throughout the US. We analyzed historical records from 40 sites and found that 20 major streams and rivers have shown statistically significant, long-term warming. Annual mean water temperatures increased by 0.009-0.077°C yr-1, and rates of warming were most rapid in, but not...

  5. Evaluation of Diazinon and Chlorpyrifos Concentrations and Loads, and other Pesticide Concentrations, at Selected Sites in the San Joaquin Valley, California, April to August, 2001

    USGS Publications Warehouse

    Domagalski, Joseph L.; Munday, Cathy

    2003-01-01

    Twelve sites in the San Joaquin Valley of California were monitored weekly during the growing and irrigation season of 2001 for a total of 51 pesticides and pesticide degradation products, with primary interest on the concentration, load, and basin yield of organophosphorus insecticides, especially diazinon and chlorpyrifos. Diazinon was detected frequently, up to 100 percent of the time, at many of the sampling sites, but with generally low concentrations. For all sites, 75 percent of all measured diazinon concentrations were less than 0.02 mg/L, and 90 percent of all measured diazinon concentrations were less than 0.06 mg/L. The highest diazinon concentrations were measured in samples from two west-side tributaries to the San Joaquin River, Orestimba Creek, and Del Puerto Creek. The median concentration of chlorpyrifos was at or less than the laboratory reporting limit (0.005 mg/L) for most sites with the exceptions of two tributaries to the San Joaquin River: Orestimba Creek and the Tuolumne River. For all sites, 75 percent of all measured chlorpyrifos concentrations were less than 0.03 mg/L and 90 percent of all measured chlorpyrifos concentrations were less than 0.07 mg/L. The total load of diazinon out of the basin was just over 7 kilograms, which accounted for about 0.17 percent of the total agricultural applications. The diazinon load from the monitored upstream tributaries accounted for about 50 percent of the load at the mouth of the San Joaquin River. The streamflow from the selected monitored tributaries accounted for about 83 percent of the streamflow at the mouth of the San Joaquin River. The total load of chlorpyrifos out of the basin was 3.75 kilograms, and this accounted for approximately 0.007 percent of the total amount applied. Other pesticides that were frequently detected during this study included herbicides such as metolachlor, simazine, and trifluralin, and insecticides such as carbaryl, carbofuran, and propargite. At Orestimba Creek, DDE

  6. Nitrous oxide emission from denitrification in stream and river networks

    USGS Publications Warehouse

    Beaulieu, J.J.; Tank, J.L.; Hamilton, S.K.; Wollheim, W.M.; Hall, R.O.; Mulholland, P.J.; Peterson, B.J.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Dodds, W.K.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Poole, G.C.; Maurice, Valett H.; Arango, C.P.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.

    2011-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N 2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3-) concentrations, but that <1% of denitrified N is converted to N2O. Unlike some previous studies, we found no relationship between the N2O yield and stream water NO3-. We suggest that increased stream NO3- loading stimulates denitrification and concomitant N2O production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg??y -1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.

  7. Nitrous oxide emission from denitrification in stream and river networks

    PubMed Central

    Beaulieu, Jake J.; Tank, Jennifer L.; Hamilton, Stephen K.; Wollheim, Wilfred M.; Hall, Robert O.; Mulholland, Patrick J.; Peterson, Bruce J.; Ashkenas, Linda R.; Cooper, Lee W.; Dahm, Clifford N.; Dodds, Walter K.; Grimm, Nancy B.; Johnson, Sherri L.; McDowell, William H.; Poole, Geoffrey C.; Valett, H. Maurice; Arango, Clay P.; Bernot, Melody J.; Burgin, Amy J.; Crenshaw, Chelsea L.; Helton, Ashley M.; Johnson, Laura T.; O'Brien, Jonathan M.; Potter, Jody D.; Sheibley, Richard W.; Sobota, Daniel J.; Thomas, Suzanne M.

    2011-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3−) concentrations, but that <1% of denitrified N is converted to N2O. Unlike some previous studies, we found no relationship between the N2O yield and stream water NO3−. We suggest that increased stream NO3− loading stimulates denitrification and concomitant N2O production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg·y−1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change. PMID:21173258

  8. Are Streams in the Southwestern Ozarks Underfit? Applying Dury's model to the Illinois River Watershed in Arkansas.

    NASA Astrophysics Data System (ADS)

    Shepherd, S. L.; Davis, R. K.; Dixon, J. C.; Cothren, J. D.

    2008-12-01

    George H. Dury (1964) proposed eight theoretical combinations of stream pattern and valley pattern that represent underfit streams; claiming underfit is a climate induced condition caused by a significant decrease in channel forming discharge. One combination was defined by the Osage River in the northeastern Ozark Plateaus of Missouri. Osage underfit streams fail to meander within a meandering valley. The mean channel meander wavelength and channel width of the stream is much less than the valley resulting in valley-stream ratios of up to 40:1 in contrast to his expected values of approximately 11:1. Dury's model is generally applied to the entire Ozarks including the Illinois River watershed without field data support. The Illinois River is located on the western flank of the Ozark Plateaus physiographic region on the Springfield Plateau which has different lithology than the Salem Plateau where the Osage River is located. To test the assumption that streams in the Illinois River watershed are underfit a combination of field, map, and GIS data were collected. Geomorphic surveys of ten reaches along eight first order streams were completed. The average stream widths of the ten reaches were compared to valley widths measured from USGS 1:24000 Quadrangle maps. The valley to stream ratios ranged from 1 to 15. Forested watersheds exhibited the highest width ratios, ranging from 12 to 15, while ratios in urban and agricultural watersheds were less than 2. This finding is consistent with observed changes in stream morphology caused by anthropogenic influences. To extrapolate to the larger watershed thirteen valley and stream widths along the Illinois River and two higher order tributaries, Osage Creek and Clear Creek, were measured from USGS maps. These ratios ranged from 2.8 to 5.7. Additionally, stream and valley wavelengths are being analyzed in a GIS using the USGS medium resolution hydrology data set and a LiDAR derived 8 m DEM for the watershed. These data suggest

  9. National Rivers and Streams Assessment 2008-2009: A Collaborative Survey

    EPA Science Inventory

    The National Rivers and Streams Assessment 2008–2009: A Collaborative Survey (NRSA) presents the results of an unprecedented assessment of the nation’s rivers and streams. This report is part of the National Aquatic Resource Surveys, a series of statistically based surveys design...

  10. Water quality of streams and springs, Green River Basin, Wyoming

    USGS Publications Warehouse

    DeLong, L.L.

    1986-01-01

    Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)

  11. Measured flow and tracer-dye data showing the anthropogenic effects on the hydrodynamics of south Sacramento-San Joaquin Delta, California, spring 1996 and 1997

    USGS Publications Warehouse

    Oltmann, Richard N.

    1998-01-01

    Tidal flows were measured using acoustic Doppler current profilers and ultrasonic velocity meters during spring 1996 and 1997 in south Sacramento-San Joaquin Delta, California, when (1) a temporary barrier was installed at the head of Old River to prevent the entrance of migrating San Joaquin River salmon smolts, (2) the rate of water export from the south Delta was reduced for an extended period of time, and (3) a 30-day pulse flow was created on the San Joaquin River to move salmon smolts north away from the export facilities during spring 1997. Tracer-dye measurements also were made under these three conditions.

  12. Tracing seasonal nitrate sources and loads in the San Joaquin River using nitrogen and oxygen stable isotopes

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Silva, S.; Stringfellow, W. T.; Dahlgren, R. A.

    2007-12-01

    The San Joaquin River (SJR) is a heavily impacted river draining a major agricultural basin in central California. This river receives nitrate inputs from multiple point and non-point sources including agriculture, livestock, waste water treatment plants, septic systems, urban run-off, and natural soil leaching. Nitrate inputs to the SJR may play a significant role in driving algal blooms and reducing overall water quality. The San Joaquin River discharges into the San Francisco Bay-Delta ecosystem, and reduced water quality and large algal blooms in the SJR may play a significant role in driving critically low oxygen levels in the Stockton Deep Water Shipping Channel. Correct identification of the major nitrate sources to the SJR is important for coordinating mitigation efforts throughout the SJR-Delta-San Francisco Bay region. Measurements of the nitrogen and oxygen isotopic composition of nitrate were made monthly to bimonthly from 2005 through 2007 within the Lower SJR, major tributaries, and various other water input sources in order to assess spatial and temporal variations in nitrate inputs and cycling in this heavily impacted watershed. The oxygen and hydrogen isotopic composition of water was also measured to better distinguish water sources and identify changes in water inputs. A very wide range of δ15N-NO3 and δ18O-NO3 values were observed in the main stem SJR and tributaries. The δ15N values ranged from +2 to +17 ‰, and the δ18O values ranged from -1 to +18 ‰. Except for a major agricultural drain site (San Luis Drain), all the sites showed temporal changes in both δ15N-NO3 and δ18O-NO3 much greater than the differences seen between individual sites. In general, the δ15N values of nitrate in the larger tributary rivers (Merced, Tuolumne and Stanislaus) were much lower than those of the main stem SJR from April to May; however, after June the tributary values began to rise toward the values in the main stem river. Some of the highest δ15N-NO3

  13. Phytophthora Species in Rivers and Streams of the Southwestern United States

    PubMed Central

    Stamler, Rio A.; Sanogo, Soumalia; Goldberg, Natalie P.

    2016-01-01

    ABSTRACT Phytophthora species were isolated from rivers and streams in the southwestern United States by leaf baiting and identified by sequence analysis of internal transcribed spacer (ITS) ribosomal DNA (rDNA). The major waterways examined included the Rio Grande River, Gila River, Colorado River, and San Juan River. The most prevalent species identified in rivers and streams were Phytophthora lacustris and P. riparia, both members of Phytophthora ITS clade 6. P. gonapodyides, P. cinnamomi, and an uncharacterized Phytophthora species in clade 9 were also recovered. In addition, six isolates recovered from the Rio Grande River were shown to be hybrids of P. lacustris × P. riparia. Pathogenicity assays using P. riparia and P. lacustris failed to produce any disease symptoms on commonly grown crops in the southwestern United States. Inoculation of Capsicum annuum with P. riparia was shown to inhibit disease symptom development when subsequently challenged with P. capsici, a pathogenic Phytophthora species. IMPORTANCE Many Phytophthora species are significant plant pathogens causing disease on a large variety of crops worldwide. Closer examinations of streams, rivers, and forest soils have also identified numerous Phytophthora species that do not appear to be phytopathogens and likely act as early saprophytes in aquatic and saturated environments. To date, the Phytophthora species composition in rivers and streams of the southwestern United States has not been evaluated. This article details a study to determine the identity and prevalence of Phytophthora species in rivers and streams located in New Mexico, Arizona, Colorado, Utah, and Texas. Isolated species were evaluated for pathogenicity on crop plants and for their potential to act as biological control agents. PMID:27235435

  14. A method of estimating in-stream residence time of water in rivers

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Howden, N. J. K.; Burt, T. P.

    2014-05-01

    This study develops a method for estimating the average in-stream residence time of water in a river channel and across large catchments, i.e. the time between water entering a river and reaching a downstream monitoring point. The methodology uses river flow gauging data to integrate Manning's equation along a length of channel for different percentile flows. The method was developed and tested for the River Tees in northern England and then applied across the United Kingdom (UK). The study developed methods to predict channel width and main channel length from catchment area. For an 818 km2 catchment with a channel length of 79 km, the in-stream residence time at the 50% exceedence flow was 13.8 h. The method was applied to nine UK river basins and the results showed that in-stream residence time was related to the average slope of a basin and its average annual rainfall. For the UK as a whole, the discharge-weighted in-stream residence time was 26.7 h for the median flow. At median flow, 50% of the discharge-weighted in-stream residence time was due to only 6 out of the 323 catchments considered. Since only a few large rivers dominate the in-stream residence time, these rivers will dominate key biogeochemical processes controlling export at the national scale. The implications of the results for biogeochemistry, especially the turnover of carbon in rivers, are discussed.

  15. Temporal and spatial assessment of water quality, physical habitat, and benthic communities in an impaired agricultural stream in California's San Joaquin Valley.

    PubMed

    Hall, Lenwood W; Killen, William D

    2005-01-01

    The goal of this study was to characterize and discuss the relationships among water quality, physical habitat, and benthic community data collected annually over a three-year period (2000--2002) in an impaired agricultural stream (Orestimba Creek) in California's San Joaquin River watershed. Conductivity, pH, and turbidity were the most important water quality conditions influencing the various benthic metrics. Significantly higher flow conditions and lower dissolved oxygen values were reported in Orestimba Creek in 2001; increased turbidity conditions were reported in 2002. Channel alteration, riparian buffer, sediment deposition, and channel flow were the most important physical habitat metrics influencing the various benthic metrics. Higher total physical habitat scores were reported in 2001 when compared with 2002. The most dominant benthic taxa collected during all three years of sampling were oligochaetes and chironomids. Oligochaetes are found in stressful environments while chironomids can be either sensitive or tolerant to environmental stressors depending on the species. Populations of both daphnids and the exotic clam Corbicula were reported to increase over time. Both of these taxa are generally tolerant to most types of environmental degradation. The exception is that daphnids are highly sensitive to organophosphate insecticides. The % filterers increased over time, which suggests an increase in environmental disturbance. The % collectors decreased from 2000 to 2002, which suggests an improvement in environmental conditions. The presence of approximately 100 taxa in Orestimba Creek during each of the three years of sampling implies that benthic communities in this stream are fairly diverse, considering their ephemeral environment, but without a clear definition of benthic community expectations based on established referenc conditions it is unknown if this water body is actually impaired.

  16. Rivers and streams: Ecosystem dynamics and integrating paradigms

    USGS Publications Warehouse

    Cummins, K.W.; Wilzbach, M.A.

    2008-01-01

    Full understanding of running waters requires an ecosystem perspective, which encompasses the physical and chemical setting in interaction with dependent biological communities. Several conceptual models or paradigms of river and stream ecosystems that capture critical components of lotic ecosystems have been developed, including the ‘river continuum concept’, to describe fluxes of matter and energy within the stream or river channel together with exchanges between the channel and its terrestrial setting. A complete ecosystem perspective includes consideration of hierarchical spatial scales in a temporal context. Flow of energy in lotic ecosystems is driven by two alternative energy sources: sunlight regulating in-stream photosynthesis and plant litter derived from the stream-side riparian corridor or floodplain. Energy transfers within the ecosystem pass through micro- and macroproducers (algae and vascular hydrophytes) and micro- and macroconsumers (microorganisms, invertebrates, and vertebrates). Material fluxes encompass the cycling of key nutrients, such as nitrogen and phosphorus, and the transport, storage, and metabolism of dissolved (DOM) and particulate (POM) organic matter (OM). Growth of lotic periphyton (algae and associated microbes, microzoans, and detritus) and coarse (CPOM) and fine (FPOM) particulate organic matter constitute the food resources of nonpredaceous running-water invertebrates (e.g., shredders that consume CPOM and collectors that feed on FPOM and associated microbes of both).

  17. Preliminary Results from the BLM’s Western Rivers and Streams Assessment

    EPA Science Inventory

    The Bureau of Land Management (BLM), in collaboration with the U.S. Environmental Protection Agency, is conducting its first Western Rivers and Streams Assessment (WRSA), a survey of the condition of BLM streams and rivers throughout the contiguous western U.S. The WRSA will answ...

  18. Effect of tides, river flow, and gate operations on entrainment of juvenile salmon into the interior Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Perry, Russell W.; Brandes, Patricia L.; Burau, Jon R.; Sandstrom, Philip T.; Skalski, John R.

    2015-01-01

    Juvenile Chinook Salmon Oncorhynchus tshawytscha emigrating from natal tributaries of the Sacramento River, California, must negotiate the Sacramento-San Joaquin River Delta (hereafter, the Delta), a complex network of natural and man-made channels linking the Sacramento River with San Francisco Bay. Fish that enter the interior and southern Delta—the region to the south of the Sacramento River where water pumping stations are located—survive at a lower rate than fish that use alternative migration routes. Consequently, total survival decreases as the fraction of the population entering the interior Delta increases, thus spurring management actions to reduce the proportion of fish that are entrained into the interior Delta. To better inform management actions, we modeled entrainment probability as a function of hydrodynamic variables. We fitted alternative entrainment models to telemetry data that identified when tagged fish in the Sacramento River entered two river channels leading to the interior Delta (Georgiana Slough and the gated Delta Cross Channel). We found that the probability of entrainment into the interior Delta through both channels depended strongly on the river flow and tidal stage at the time of fish arrival at the river junction. Fish that arrived during ebb tides had a low entrainment probability, whereas fish that arrived during flood tides (i.e., when the river's flow was reversed) had a high probability of entering the interior Delta. We coupled our entrainment model with a flow simulation model to evaluate the effect of nighttime closures of the Delta Cross Channel gates on the daily probability of fish entrainment into the interior Delta. Relative to 24-h gate closures, nighttime closures increased daily entrainment probability by 3 percentage points on average if fish arrived at the river junction uniformly throughout the day and by only 1.3 percentage points if 85% of fish arrived at night. We illustrate how our model can be used to

  19. Evaluation of an alternate method for sampling benthic macroinvertebrates in low-gradient streams sampled as part of the National Rivers and Streams Assessment.

    PubMed

    Flotemersch, Joseph E; North, Sheila; Blocksom, Karen A

    2014-02-01

    Benthic macroinvertebrates are sampled in streams and rivers as one of the assessment elements of the US Environmental Protection Agency's National Rivers and Streams Assessment. In a 2006 report, the recommendation was made that different yet comparable methods be evaluated for different types of streams (e.g., low gradient vs. high gradient). Consequently, a research element was added to the 2008-2009 National Rivers and Streams Assessment to conduct a side-by-side comparison of the standard macroinvertebrate sampling method with an alternate method specifically designed for low-gradient wadeable streams and rivers that focused more on stream edge habitat. Samples were collected using each method at 525 sites in five of nine aggregate ecoregions located in the conterminous USA. Methods were compared using the benthic macroinvertebrate multimetric index developed for the 2006 Wadeable Streams Assessment. Statistical analysis did not reveal any trends that would suggest the overall assessment of low-gradient streams on a regional or national scale would change if the alternate method was used rather than the standard sampling method, regardless of the gradient cutoff used to define low-gradient streams. Based on these results, the National Rivers and Streams Survey should continue to use the standard field method for sampling all streams.

  20. Innovation in monitoring: The U.S. Geological Survey Sacramento–San Joaquin River Delta, California, flow-station network

    USGS Publications Warehouse

    Burau, Jon; Ruhl, Cathy; Work, Paul A.

    2016-01-29

    The U.S. Geological Survey (USGS) installed the first gage to measure the flow of water into California’s Sacramento–San Joaquin River Delta from the Sacramento River in the late 1800s. Today, a network of 35 hydro-acoustic meters measure flow throughout the delta. This region is a critical part of California’s freshwater supply and conveyance system. With the data provided by this flow-station network—sampled every 15 minutes and updated to the web every hour—state and federal water managers make daily decisions about how much freshwater can be pumped for human use, at which locations, and when. Fish and wildlife scientists, working with water managers, also use this information to protect fish species affected by pumping and loss of habitat. The data are also used to help determine the success or failure of efforts to restore ecosystem processes in what has been called the “most managed and highly altered” watershed in the country.

  1. Latest View of Hurricane Joaquin

    NASA Image and Video Library

    2017-12-08

    /h) with higher gusts. Joaquin is a category 3 hurricane on the Saffir-Simpson Hurricane Wind Scale. Some strengthening is forecast in the next day or so, with some fluctuations in intensity possible on Friday. Hurricane force winds extend outward up to 35 miles (55 km) from the center and tropical storm force winds extend outward up to 140 miles (220 km). The minimum central pressure just extrapolated by an Air Force Reserve Hurricane Hunter aircraft is 942 millibars. For updated forecasts, watches and warnings visit the National Hurricane Center (NHC) website: www.nhc.noaa.gov. Credit: NASA/NOAA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers

    USGS Publications Warehouse

    Sundareshwar, P.V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S.A.; Sandvik, C.; Trennepohl, A.

    2011-01-01

    In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large "blooms" in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers. Copyright 2011 by the American Geophysical Union.

  3. Using a non-physical behavioural barrier to alter migration routing of juvenile Chinook salmon in the Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Perry, R.W.; Romine, J.G.; Adams, N.S.; Blake, A.R.; Burau, J.R.; Johnston, S.V.; Liedtke, T.L.

    2012-01-01

    Anthropogenic alterations to river systems, such as irrigation and hydroelectric development, can negatively affect fish populations by reducing survival when fish are routed through potentially dangerous locations. Non-physical barriers using behavioural stimuli are one means of guiding fish away from such locations without obstructing water flow. In the Sacramento–San Joaquin River Delta, we evaluated a bio-acoustic fish fence (BAFF) composed of strobe lights, sound and a bubble curtain, which was intended to divert juvenile Chinook salmon (Oncorhynchus tshawytscha) away from Georgiana Slough, a low-survival migration route that branches off the Sacramento River. To quantify fish response to the BAFF, we estimated individual entrainment probabilities from two-dimensional movement paths of juvenile salmon implanted with acoustic transmitters. Overall, 7.7% of the fish were entrained into Georgiana Slough when the BAFF was on, and 22.3% were entrained when the BAFF was off, but a number of other factors influenced the performance of the BAFF. The effectiveness of the BAFF declined with increasing river discharge, likely because increased water velocities reduced the ability of fish to avoid being swept across the BAFF into Georgiana Slough. The BAFF reduced entrainment probability by up to 40 percentage points near the critical streakline, which defined the streamwise division of flow vectors entering each channel. However, the effect of the BAFF declined moving in either direction away from the critical streakline. Our study shows how fish behaviour and the environment interacted to influence the performance of a non-physical behavioural barrier in an applied setting.

  4. Stream and River Condition Across the BLM's National System of Public Lands

    EPA Science Inventory

    Meeting Abstract: The Bureau of Land Management (BLM), in collaboration with the U.S. Environmental Protection Agency, conducted the first ever Western Rivers and Streams Assessment (WRSA), a survey of the condition of BLM streams and rivers throughout the contiguous western U.S...

  5. In-stream biogeochemical processes of a temporary river.

    PubMed

    Tzoraki, Ourania; Nikolaidis, Nikolaos P; Amaxidis, Yorgos; Skoulikidis, Nikolaos Th

    2007-02-15

    A reach at the estuary of Krathis River in Greece was used to assess how in-stream processes alter its hydrologic and biogeochemical regime. Krathis River exhibited high annual flow variability and its transmission losses become significant, especially during the dry months. These transmission losses are enhanced in chemistry due to release of nutrients from river sediments. These fluxes are significant because they correspond to 11% of the dissolved inorganic nitrogen flux of the river. Release of nitrogen species was influenced by temperature, while release of phosphate was not because phosphate levels were below the equilibrium concentration. There is a significant amount of sediments with fine composition that create "hot spot" areas in the river reach. These sediments are mobilized during the first flush events in the fall carrying with them a significant load of nutrient and suspended matter to the coastal zone. The nutrient organic content of sediments was also significant and it was studied in terms of its mineralization capacity. The capacity for mineralization was influenced by soil moisture, exhibiting significant capacity even at moisture levels of 40%. Temporary rivers are sensitive ecosystems, vulnerable to climate changes. In-stream processes play a significant role in altering the hydrology and biogeochemistry of the water and its impacts to the coastal zone.

  6. Stream and River Condition Across the BLM's National System of Public Lands.

    EPA Science Inventory

    The Bureau of Land Management (BLM), in collaboration with the U.S. Environmental Protection Agency, conducted the first ever Western Rivers and Streams Assessment (WRSA), a survey of the condition of BLM streams and rivers throughout the contiguous western U.S. The WRSA was desi...

  7. Reconciliation Ecology, Rewilding and the San Joaquin River Restoration

    NASA Astrophysics Data System (ADS)

    Kraus-Polk, A.

    2014-12-01

    Recent events, perhaps reaching their climactic convergence in the current drought, have exposed the fragility and imbalances of the socioecological system of the San Joaquin river. We see that our triumphant march of progress onfolds on a thin, and unstable crust. What lies below is lava. Our agricultural systems progress only while extracting an ever-untenable social and ecological debt. Our successive regimes of accumulation by appropriation have brought us to the brink of ecological exhaustion. Have we reached our day of reckoning? This is not the first time this question has been asked of this particular system of irrigated agriculture? "Insurmountable" ecological barriers have been eyed down and promptly obliterated through magnificent features of physical and social engineering. But lets us consider for a moment that we have at last reached some sort of edge, a threshold past which we experience a sudden socioecological regime shift. Staring out over this edge can we begin to come to terms with the fallacies of our stories, our ignorance, our foolishness? We need an acknowledgement of the needs of the agriculture systems, it's connections and dependencies. What desperate measures are we willing to take in order to sustain this system? How much further can we go? How far is too far? Is there another way to produce and distribute food? We then turn to the past. We imagine the ecosystem as it once was. The pelagic fish species that formed the biological connection between this river system, the delta, the Ocean, the Mountains. What would it mean to restore this diversity and repair these relationships? What would it take to cede control to the non-human forces that sustain these connections? How do we reconcile restraint and the cessation of control with the human needs of the system? How do we rewild our river in such a way that our needs are met in a way that is more resilient and equitable? We will need systems of agriculture and flood control that serve

  8. ECOLOGICAL ASSESSMENT OF ARIZONA'S STREAMS AND RIVERS, 2000-2004

    EPA Science Inventory

    The State of Arizona participated in a U.S. Environmental Protection Agency (EPA) ecological assessment of Western streams. One goal of the assessment was to report on the ecological condition of all Western perennial streams, except the `Great Rivers' such as the lower Columbi...

  9. Effect of Land Cover Type and Structure on Water Cycling Dynamics for Agricultural and Wetland Sites in the Sacramento/San Joaquin River Delta

    NASA Astrophysics Data System (ADS)

    Eichelmann, E.; Hemes, K. S.; Baldocchi, D. D.

    2016-12-01

    The Sacramento/San Joaquin river delta is an important source of fresh water for California. To reverse soil subsidence, which is linked to draining the natural wetlands for agriculture, parts of the Sacramento/San Joaquin river delta have been restored to managed wetlands. While these restored wetlands provide greenhouse gas benefits compared to agricultural use of the land, implications for the water balance of these ecosystems, specifically evapotranspiration, are not well known. Based on multiple years of eddy covariance measurements of water, CO2, and sensible energy fluxes we explored the water cycling dynamics for several sites under different land use covers in the Sacramento/San Joaquin river delta. We investigated four sites under agricultural use (rice, corn, and alfalfa crops and cow pasture) and three restored wetland sites of varying ages and structures to examine the influence of land cover type and structure on evapotranspiration, sensible energy flux, and water use efficiency. While the wetland and the rice sites are usually flooded for the majority of the year, the alfalfa, corn, and pasture sites have a water table that is maintained to be below ground level throughout the year. The three wetland sites also have different fractions of open water to vegetation, covering a gradient from very dense vegetation with no open water to a fairly open structure with large pools of open water. These differences in land cover (dry vs flooded and fraction of open water to vegetation) have an effect on the patterns of evapotranspiration on diurnal to annual timescales. Although the flooded sites (wetland sites and rice) tend to have larger annual evapotranspiration than the drained sites (cow pasture, alfalfa, and corn), the fraction of open water to vegetation affects the extend to which the flooded sites' evapotranspiration exceeds that of drained sites. On diurnal timescales, we found that flooded sites with a larger fraction of open water to vegetation

  10. Continuous estimation of baseflow in snowmelt-dominated streams and rivers in the Upper Colorado River Basin: A chemical hydrograph separation approach

    USGS Publications Warehouse

    Miller, Matthew P.; Susong, David D.; Shope, Christopher L.; Heilweil, Victor M.; Stolp, Bernard J.

    2014-01-01

    Effective science-based management of water resources in large basins requires a qualitative understanding of hydrologic conditions and quantitative measures of the various components of the water budget, including difficult to measure components such as baseflow discharge to streams. Using widely available discharge and continuously collected specific conductance (SC) data, we adapted and applied a long established chemical hydrograph separation approach to quantify daily and representative annual baseflow discharge at fourteen streams and rivers at large spatial (> 1,000 km2 watersheds) and temporal (up to 37 years) scales in the Upper Colorado River Basin. On average, annual baseflow was 21-58% of annual stream discharge, 13-45% of discharge during snowmelt, and 40-86% of discharge during low-flow conditions. Results suggest that reservoirs may act to store baseflow discharged to the stream during snowmelt and release that baseflow during low-flow conditions, and that irrigation return flows may contribute to increases in fall baseflow in heavily irrigated watersheds. The chemical hydrograph separation approach, and associated conceptual model defined here provide a basis for the identification of land use, management, and climate effects on baseflow.

  11. A Synoptic Survey of Nitrogen and Phosphorus in Tributary Streams and Great Rivers of the Upper Mississippi River Basin

    EPA Science Inventory

    We combined stream chemistry and hydrology data from surveys of 467 tributary stream sites and 447 great river sites in the Upper Mississippi River basin to provide a regional snapshot of baseflow total nitrogen (TN) and total phosphorus (TP) concentrations, and to investigate th...

  12. Selenium and other elements in freshwater fishes from the irrigated San Joaquin Valley, California

    USGS Publications Warehouse

    Saiki, M.K.; Jennings, M.R.; May, T.W.

    1992-01-01

    Arsenic (As), chromium (Cr), mercury (Hg), and selenium (Se) were measured in composite whole-body samples of five fishes — bluegill (Lepomis macrochirus), common carp (Cyprinus carpio), mosquitofish (Gambusia affinis), largemouth bass (Micropterus salmoides), and Sacramento blackfish (Orthodon microlepidotus) — from the San Joaquin River system to determine if concentrations were elevated from exposure to agricultural subsurface (tile) drainage. Except for Cr, the concentrations of these elements in fishes from one or more sites were elevated; however, only Se approached concentrations that may adversely affect survival, growth, or reproduction in warm water fishes. Moreover, only Se among the four measured elements exhibited a geographic (spatial) pattern that coincided with known inflows of tile drainage to the San Joaquin River and its tributaries. Historical data from the Grassland Water District (Grasslands; a region exposed to concentrated tile drainage) suggested that concentrations of Se in fishes were at maximum during or shortly after 1984 and have been slightly lower since then. The recent decline of Se concentrations in fishes from the Grasslands could be temporary if additional acreages of irrigated lands in this portion of the San Joaquin Valley must be tile-drained to protect agricultural crops from rising groundwater tables.

  13. Influence of wood on invertebrate communities in streams and rivers

    Treesearch

    Arthur Benke; J. Bruce Wallace

    2010-01-01

    Wood plays a major role in creating multiple invertebrate habitats in small streams and large rivers. In small streams, wood debris dams are instrumental in creating a step and pool profile of habitats, enhancing habitat heterogeneity, retaining organic matter, and changing current velocity. Beavers can convert sections of free-flowing streams into ponds and wetlands...

  14. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.

    In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less

  15. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

    DOE PAGES

    Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; ...

    2014-12-17

    In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less

  16. SETTING EXPECTATIONS FOR THE OHIO RIVER FISH INDEX BASED ON IN-STREAM HABITAT

    EPA Science Inventory

    The use of habitat criteria for setting fish community assessment expectations is common for streams, but a standard approach for great rivers remains largely undeveloped. We developed assessment expectations for the Ohio River Fish Index (ORFIN) based on measures of in-stream h...

  17. SURVEY OF THE NATION'S NON-WADEABLE STREAMS AND RIVERS

    EPA Science Inventory

    The U.S. EPA is engaging states, tribes and other parties in designing a national survey to assess the condition of non-wadeable rivers and streams. The river survey is one of a series of surveys beng implemented as a partnership among states, tribes and U.S. EPA, with the colla...

  18. Building Partnerships to Monitor the Conditions of Streams and Rivers on Public Lands

    EPA Science Inventory

    The Bureau of Land Management (BLM), in collaboration with the U.S. Environmental Protection Agency (EPA), will conduct its first Western Rivers and Streams Assessment (WRSA), a survey of the condition of BLM streams and rivers throughout the contiguous western U.S. The objective...

  19. Controls on morphological variability and role of stream power distribution pattern, Yamuna River, western India

    NASA Astrophysics Data System (ADS)

    Bawa, Nupur; Jain, Vikrant; Shekhar, Shashank; Kumar, Niraj; Jyani, Vikas

    2014-12-01

    Understanding the controls on the morphological variability of river systems constitutes one of the fundamental questions in geomorphic investigation. Channel morphology is an important indicator of river processes and is of significance for mapping the hydrology-ecologic connectivity in a river system and for predicting the future trajectory of river health in response to external forcings. This paper documents the spatial morphological variability and its natural and anthropogenic controls for the Yamuna River, a major tributary of the Ganga River, India. The Yamuna River runs through a major urban centre i.e. Delhi National Capital Region. The Yamuna River was divided into eight geomorphically distinct reaches on the basis of the assemblages of geomorphic units and the association of landscape, valley and floodplain settings. The morphological variability was analysed through stream power distribution and sediment load data at various stations. Stream power distribution of the Yamuna River basin is characterised by a non-linear pattern that was used to distinguish (a) high energy ‘natural' upstream reaches, (b) ‘anthropogenically altered', low energy middle stream reaches, and (c) ‘rejuvenated' downstream reaches again with higher stream power. The relationship between stream power and channel morphology in these reaches was integrated with sediment load data to define the maximum flow efficiency (MFE) as the threshold for geomorphic transition. This analysis supports the continuity of river processes and the significance of a holistic, basin-scale approach rather than isolated local scale analysis in river studies.

  20. Fish communities of the Sacramento River Basin: Implications for conservation of native fishes in the Central Valley, California

    USGS Publications Warehouse

    May, J.T.; Brown, L.R.

    2002-01-01

    The associations of resident fish communities with environmental variables and stream condition were evaluated at representative sites within the Sacramento River Basin, California between 1996 and 1998 using multivariate ordination techniques and by calculating six fish community metrics. In addition, the results of the current study were compared with recent studies in the San Joaquin River drainage to provide a wider perspective of the condition of resident fish communities in the Central Valley of California as a whole. Within the Sacramento drainage, species distributions were correlated with elevational and substrate size gradients; however, the elevation of a sampling site was correlated with a suite of water-quality and habitat variables that are indicative of land use effects on physiochemical stream parameters. Four fish community metrics - percentage of native fish, percentage of intolerant fish, number of tolerant species, and percentage of fish with external anomalies - were responsive to environmental quality. Comparisons between the current study and recent studies in the San Joaquin River drainage suggested that differences in water-management practices may have significant effects on native species fish community structure. Additionally, the results of the current study suggest that index of biotic integrity-type indices can be developed for the Sacramento River Basin and possibly the entire Central Valley, California. The protection of native fish communities in the Central Valley and other arid environments continues to be a conflict between human needs for water resources and the requirements of aquatic ecosystems; preservation of these ecosystems will require innovative management strategies.

  1. Using StreamCat and the NHDPlus framework to model and map the biological condition of USA streams and rivers

    EPA Science Inventory

    The US EPA’s National River and Stream Assessment (NRSA) uses spatially balanced sampling to estimate the proportion of streams within the conterminous US (CONUS) that deviate from least-disturbed biological condition (BC). These assessments do not infer BC at un-sampled streams,...

  2. Benthic macroinvertebrate assemblages and their relations with environmental variables in the Sacramento and San Joaquin River drainages, California, 1993-1997

    USGS Publications Warehouse

    Brown, Larry R.; May, Jason T.

    2000-01-01

    Data were collected in the San Joaquin and Sacramento river drainages to evaluate associations between macroinvertebrate assemblages and environmental variables as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Samples were collected at 53 sites from 1993 to 1995 in the San Joaquin River drainage and in 1996 and 1997 in the Sacramento River drainage. Macroinvertebrates were collected from riffles or from large woody debris (snags) when riffles were absent. Macroinvertebrate taxa were aggregated to the family (or higher) level of taxonomic organization, resulting in 81 taxa for analyses. Only the 50 most common taxa were used for two-way indicator species analysis (TWINSPAN) and canonical correspondence analysis. TWINSPAN analysis defined four groups of riffle samples and four groups of snag samples based on macroinvertebrate assemblages. Analysis of variance identified differences in environmental and biotic characteristics of the groups. These results combined with the results of canonical correspondence analysis indicated that patterns in riffle sample assemblage structure were highly correlated with a gradient in physical and chemical conditions associated with elevation. The results also suggested that flow regulation associated with large storage reservoirs has negative effects on the total number of taxa and density of macroinvertebrates below foothill dams. Analysis of the snag samples showed that, although elevation remained a significant variable, mean dominant substrate size, gradient, specific conductance, water temperature, percentage of the basin in agricultural land use, and percentage of the basin in combined agricultural and urban land uses were more important factors in explaining assemblage structure. Macroinvertebrate assemblages on snags may be useful in family level bioassessments of environmental conditions in valley floor habitats. In the Sierra Nevada and its foothills, the strong influence of elevation

  3. Occurrence and in-stream attenuation of wastewater-derived pharmaceuticals in Iberian rivers.

    PubMed

    Acuña, Vicenç; von Schiller, Daniel; García-Galán, Maria Jesús; Rodríguez-Mozaz, Sara; Corominas, Lluís; Petrovic, Mira; Poch, Manel; Barceló, Damià; Sabater, Sergi

    2015-01-15

    A multitude of pharmaceuticals enter surface waters via discharges of wastewater treatment plants (WWTPs), and many raise environmental and health concerns. Chemical fate models predict their concentrations using estimates of mass loading, dilution and in-stream attenuation. However, current comprehension of the attenuation rates remains a limiting factor for predictive models. We assessed in-stream attenuation of 75 pharmaceuticals in 4 river segments, aiming to characterize in-stream attenuation variability among different pharmaceutical compounds, as well as among river segments differing in environmental conditions. Our study revealed that in-stream attenuation was highly variable among pharmaceuticals and river segments and that none of the considered pharmaceutical physicochemical and molecular properties proved to be relevant in determining the mean attenuation rates. Instead, the octanol-water partition coefficient (Kow) influenced the variability of rates among river segments, likely due to its effect on sorption to sediments and suspended particles, and therefore influencing the balance between the different attenuation mechanisms (biotransformation, photolysis, sorption, and volatilization). The magnitude of the measured attenuation rates urges scientists to consider them as important as dilution when aiming to predict concentrations in freshwater ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Microbial Ecoenzymatic Stoichiometry as an Indicator of Nutrient Limitation in US Streams and Rivers

    EPA Science Inventory

    We compared microbial ecoenzymatic activity at 2122 randomly-selected stream and river sites across the conterminous US. The sites were evenly distributed between wadeable and non-wadeable streams and rivers. Sites were aggregated into nine larger physiographic provinces for stat...

  5. Predictive Mapping of the Biotic Condition of Conterminous U.S. Rivers and Streams

    EPA Science Inventory

    Understanding and mapping the spatial variations in the biological condition of streams could provide an important tool for assessment and restoration of stream ecosystems. The US EPA’s National Rivers and Streams Assessment (NRSA) summarizes the percent of stream lengths within ...

  6. StreamVOC - A deterministic source-apportionment model to estimate volatile organic compound concentrations in rivers and streams

    USGS Publications Warehouse

    Asher, William E.; Bender, David A.; Zogorski, John S.; Bartholomay, Roy C.

    2006-01-01

    This report documents the construction and verification of the model, StreamVOC, that estimates (1) the time- and position-dependent concentrations of volatile organic compounds (VOCs) in rivers and streams as well as (2) the source apportionment (SA) of those concentrations. The model considers how different types of sources and loss processes can act together to yield a given observed VOC concentration. Reasons for interest in the relative and absolute contributions of different sources to contaminant concentrations include the need to apportion: (1) the origins for an observed contamination, and (2) the associated human and ecosystem risks. For VOCs, sources of interest include the atmosphere (by absorption), as well as point and nonpoint inflows of VOC-containing water. Loss processes of interest include volatilization to the atmosphere, degradation, and outflows of VOC-containing water from the stream to local ground water. This report presents the details of StreamVOC and compares model output with measured concentrations for eight VOCs found in the Aberjona River at Winchester, Massachusetts. Input data for the model were obtained during a synoptic study of the stream system conducted July 11-13, 2001, as part of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey. The input data included a variety of basic stream characteristics (for example, flows, temperature, and VOC concentrations). The StreamVOC concentration results agreed moderately well with the measured concentration data for several VOCs and provided compound-dependent SA estimates as a function of longitudinal distance down the river. For many VOCs, the quality of the agreement between the model-simulated and measured concentrations could be improved by simple adjustments of the model input parameters. In general, this study illustrated: (1) the considerable difficulty of quantifying correctly the locations and magnitudes of ground-water-related sources of

  7. Effects of Large Wood on River-Floodplain Connectivity in a Headwater Appalachian Stream

    NASA Astrophysics Data System (ADS)

    Keys, T.; Govenor, H.; Jones, C. N.; Hession, W. C.; Scott, D.; Hester, E. T.

    2017-12-01

    Large wood (LW) plays an important, yet often undervalued role in stream ecosystems. Traditionally, LW has been removed from streams for aesthetic, navigational, and flood mitigation purposes. However, extensive research over the last three decades has directly linked LW to critical ecosystem functions including habitat provisioning, stream geomorphic stability, and water quality improvements; and as such, LW has increasingly been implemented in stream restoration activities. One of the proposed benefits to this restoration approach is that LW increases river-floodplain connectivity, potentially decreasing downstream flood peaks and improving water quality. Here, we conducted two experiential floods (i.e., one with and one without LW) in a headwater, agricultural stream to explore the effect of LW on river-floodplain connectivity and resulting hydrodynamic processes. During each flood, we released an equal amount of water to the stream channel, measured stream discharge at upstream and downstream boundaries, and measured inundation depth at multiple locations across the floodplain. We then utilized a 2-dimensional hydrodynamic model (HEC-RAS) to simulate floodplain hydrodynamics. We first calibrated the model using observations from the two experimental floods. Then, we utilized the calibrated model to evaluate differing LW placement strategies and effects under various flow conditions. Results show that the addition of LW to the channel decreased channel velocity and increased inundation extent, inundation depth, and floodplain velocity. Differential placement of LW along the stream impacted the levels of floodplain discharge, primarily due to the geomorphic characteristics of the stream. Finally, we examined the effects of LW on floodplain hydrodynamics across a synthetic flow record, and found that the magnitude of river-floodplain connectivity decreased as recurrence interval increased, with limited impacts on storm events with a recurrence interval of 25 years

  8. Population Estimates from the National Rivers and Streams Assessment: Looking Beyond Ecoregion-based Subpopulations

    EPA Science Inventory

    The EPA National Rivers and Streams Assessment (NRSA), one of the National Aquatic Resource Surveys (NARS), provides information on the status and extent of biological condition in streams and rivers. Information from the NRSA helps EPA and partners meet the reporting requiremen...

  9. MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL RACE OF POWER PLANT AND PENSTOCK HEADGATE TO LOWER GORGE CONTROL PLANT. A MINIMAL FLOW OF RIVER WATER IS REQUIRED TO MAINTAIN FISH LIFE - Los Angeles Aqueduct, Middle Gorge Power Plant, Los Angeles, Los Angeles County, CA

  10. A millennium-length reconstruction of Bear River stream flow, Utah

    Treesearch

    R. J. DeRose; M. F. Bekker; S.-Y. Wang; B. M. Buckley; R. K. Kjelgren; T. Bardsley; T. M. Rittenour; E. B. Allen

    2015-01-01

    The Bear River contributes more water to the eastern Great Basin than any other river system. It is also the most significant source of water for the burgeoning Wasatch Front metropolitan area in northern Utah. Despite its importance for water resources for the region’s agricultural, urban, and wildlife needs, our understanding of the variability of Bear River’s stream...

  11. The nature of organic carbon in density-fractionated sediments in the Sacramento-San Joaquin River Delta (California)

    NASA Astrophysics Data System (ADS)

    Wakeham, S. G.; Canuel, E. A.

    2016-02-01

    Rivers are the primary means by which sediments and carbon are transported from the terrestrial biosphere to the oceans but gaps remain in our understanding of carbon associations from source to sink. Bed sediments from the Sacramento-San Joaquin River Delta (CA) were fractionated according to density and analyzed for sediment mass distribution, elemental (C and N) composition, mineral surface area, and stable carbon and radiocarbon isotope compositions of organic carbon (OC) and fatty acids to evaluate the nature of organic carbon in river sediments. OC was unevenly distributed among density fractions. Mass and OC were in general concentrated in mesodensity (1.6-2.0 and 2.0-2.5 g cm-3) fractions, comprising 84.0 ± 1.3 % of total sediment mass and 80.8 ± 13.3 % of total OC (TOC). Low-density (< 1.6 g cm-3) material, although rich in OC (34.0 ± 2.0 % OC) due to woody debris, constituted only 17.3 ± 12.8 % of TOC. High-density (> 2.5 g cm-3) organic-poor, mineral-rich material made-up 13.7 ± 1.4 % of sediment mass and 2.0 ± 0.9 % of TOC. Stable carbon isotope compositions of sedimentary OC were relatively uniform across bulk and density fractions (δ13C -27.4 ± 0.5 ‰). Radiocarbon content varied from Δ14C values of -382 (radiocarbon age 3800 yr BP) to +94 ‰ (modern) indicating a mix of young and old OC. Fatty acids were used to further constrain the origins of sedimentary OC. Short-chain n-C14-n-C18 fatty acids of algal origin were depleted in 13C (δ13C -37.5 to -35.2 ‰) but were enriched in 14C (Δ14C > 0) compared to long-chain n-C24-n-C28 acids of vascular plant origins with higher δ13C (-33.0 to -31.0 ‰) but variable Δ14C values (-180 and 61 ‰). These data demonstrate the potentially complex source and age distributions found within river sediments and provide insights about sediment and organic matter supply to the Delta.

  12. Urban and agricultural sources of pyrethroid insecticides to the Sacramento-San Joaquin Delta of California.

    PubMed

    Weston, Donald P; Lydy, Michael J

    2010-03-01

    While studies have documented the presence of pyrethroid insecticides at acutely toxic concentrations in sediments, little quantitative data on sources exist. Urban runoff, municipal wastewater treatment plants and agricultural drains in California's Sacramento-San Joaquin River Delta were sampled to understand their importance as contributors of these pesticides to surface waters. Nearly all residential runoff samples were toxic to the amphipod, Hyalella azteca, and contained pyrethroids at concentrations exceeding acutely toxic thresholds, in many cases by 10-fold. Toxicity identification evaluation data were consistent with pyrethroids, particularly bifenthrin and cyfluthrin, as the cause of toxicity. Pyrethroids passed through secondary treatment systems at municipal wastewater treatment facilities and were commonly found in the final effluent, usually near H. azteca 96-h EC(50) thresholds. Agricultural discharges in the study area only occasionally contained pyrethroids and were also occasional sources of toxicity related to the organophosphate insecticide chlorpyrifos. Discharge of the pyrethroid bifenthrin via urban stormwater runoff was sufficient to cause water column toxicity in two urban creeks, over at least a 30 km reach of the American River, and at one site in the San Joaquin River, though not in the Sacramento River.

  13. GPM Captures Hurricane Joaquin

    NASA Image and Video Library

    2017-12-08

    Joaquin became a tropical storm Monday evening (EDT) midway between the Bahamas and Bermuda and has now formed into Hurricane Joaquin, the 3rd of the season--the difference is Joaquin could impact the US East Coast. NASA's GPM satellite captured Joaquin Tuesday, September 29th at 21:39 UTC (5:39 pm EDT). Credit: NASA's Scientific Visualization Studio Data provided by the joint NASA/JAXA GPM mission. Download/read more: svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4367 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Factors of Stream Instability in Urban Centres of Southern Nigeria: Case Study of Port Harcourt City River Systems.

    NASA Astrophysics Data System (ADS)

    Amangabara, G. T.

    2006-05-01

    There are two main drainage rivers in the Port Harcourt Metropolis - The Ntamogba and the Woji creek (Abam, 2004). There are a few other drainage rivers that are equally important e.g. the Nwaja River that drains Rumukalagbor, Elekahia, New GRA Phases IV and V, Presidential Housing Estate and Sun Ray publications Area of Aba Road. These river systems drain the entire Port Harcourt City dividing the City into three major drainage zones. Since the discovery of oil in Nigeria in the 1950s, the country has been suffering the negative environmental consequences of oil development. The growth of the country's oil industry, combined with population explosion and a lack of environmental regulations, led to substantial damage to Nigeria's environment, especially in the Niger Delta region, the center of the country's oil industry. Uncontrolled population movement as well as spontaneous housing development on marginal lands such as stream corridors, has led to the degradation of all major stream channels in the Nation's oil capital - Port Harcourt City. The longitudinal profiles and cross sections of reaches of three major streams (Ntamogba, Nwaja, and Oginigba streams) were investigated. Land use maps of 1979 1999 and 2004 were used. Our result showed that 1). Almost all of the stream corridors have been built up without adequate plan 2). The natural grades have been distorted by channelisation for the purpose of flood evacuation without geomorphic consideration .3). Our research also shows that the interface of saline water and fresh water has extended upstream affecting urban infrastructure. 4) localized damming and sedimentation behind hydraulic structures were common occurrences) our overall result indicate that two episodes of channel incision on Oginigba stream had increased slope reduced sinuosity increased entrenchment and reduce width-depth ratio . Conclusively the factors of the instability of theses urban streams are manly the processes of urbanization which

  15. Concentrations of chlorinated organic compounds in biota and bed sediment in streams of the San Joaquin Valley, California

    USGS Publications Warehouse

    Brown, L.R.

    1997-01-01

    Samples of resident biota and bed sediments were collected in 1992 from 18 sites on or near the floor of the San Joaquin Valley, California, for analysis of 33 organochlorine compounds. The sites were divided into five groups on the basis of physiographic region and land use. Ten compounds were detected in tissue, and 15 compounds were detected in bed sediment. The most frequently detected compound in both media was p,p'-DDE. Concentrations of ??DDT (sum of o,p'- and p, p' forms of DDD, DDE, and DDT) were statistically different among groups of sites for both tissue and sediment (Kruskal- Wallis, p < 0.05). Concentrations in both media were highest in streams draining the west side of the valley. Concentrations of ??DDT in tissue were significantly correlated with specific conductance, pH, and total alkalinity (p < 0.05), which are indicators of the proportion of irrigation return flows in stream discharge. Concentrations in sediment on a dry-weight basis were not correlated with these water-quality parameters, but total organic carbon (TOC) normalized concentrations were significantly correlated with specific conductance and pH (p < 0.05). Regressions of the concentration of ??DDT in tissue, as a function of ??DDT in bed sediment, were significant and explained up to 76% of the variance in the data. The concentration of ??DDT in sediment may be related to mechanisms of soil transport to surface water with bioavailability of compounds related to the concentration of TOC in sediment. The results of this study did not indicate any clear advantage to using either bed sediment or tissues in studies of organochlorine chemicals in the environment. Some guidelines for protection of fish and wildlife were exceeded. Concentrations of organochlorine chemicals in biota, and perhaps sediment, have declined from concentrations measured in the 1970s and 1980s, but remain high compared to other regions of the United States.

  16. Potential interaction between transport and stream networks over the lowland rivers in Eastern India.

    PubMed

    Roy, Suvendu; Sahu, Abhay Sankar

    2017-07-15

    Extension of transport networks supports good accessibility and associated with the development of a region. However, transport lines have fragmented the regional landscape and disturbed the natural interplay between rivers and their floodplains. Spatial analysis using multiple buffers provides information about the potential interaction between road and stream networks and their impact on channel morphology of a small watershed in the Lower Gangetic Plain. Present study is tried to understand the lateral and longitudinal disconnection in headwater stream by rural roads with the integration of geoinformatics and field survey. Significant (p < 0.001) growth of total road length and number of road-stream crossing in the last five decades (1970s-2010s) contribute to making longitudinal and lateral disconnection in the fluvial system of Kunur River Basin. Channel geometry from ten road-stream crossings shows significant (p = 0.01) differences between upstream and downstream of crossing structure and created problems like downstream scouring, increased drop height at outlet, formation of stable bars, severe bank erosion, and make barriers for river biota. The hydro-geomorphic processes are also adversely affected due to lateral disconnection and input of fine to coarse sediments from the river side growth of unpaved road (1922%). Limited streamside development, delineation of stream corridor, regular monitoring and engineering efficiency for the construction of road and road-stream crossing might be effective in managing river geomorphology and riverine landscape. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The contribution of headwater streams to biodiversity in river networks

    Treesearch

    Judy L. Meyer; David L. Strayer; J. Bruce Wallace; Sue L. Eggert; Gene S. Helfman; Norman E. Leonard

    2007-01-01

    The diversity of life in headwater streams (intermittent, first and second order) contributes to the biodiversity of a river system and its riparian network. Small streams differ widely in physical, chemical, and biotic attributes, thus providing habitats for a range of unique species. Headwater species include permanent residents as well as migrants that travel to...

  18. STREAM RESTORATION STRATEGIES FOR REDUCING RIVER NITROGEN LOADS

    EPA Science Inventory

    Despite decades of work implementing agricultural and urban best management practices to reduce the movement of excess nitrogen (N) from the land to aquatic ecosystems, the amount of N moving down streams and rivers remains unacceptably high in many watersheds. During this same ...

  19. Modeling nutrient retention at the watershed scale: Does small stream research apply to the whole river network?

    NASA Astrophysics Data System (ADS)

    Aguilera, Rosana; Marcé, Rafael; Sabater, Sergi

    2013-06-01

    are conveyed from terrestrial and upstream sources through drainage networks. Streams and rivers contribute to regulate the material exported downstream by means of transformation, storage, and removal of nutrients. It has been recently suggested that the efficiency of process rates relative to available nutrient concentration in streams eventually declines, following an efficiency loss (EL) dynamics. However, most of these predictions are based at the reach scale in pristine streams, failing to describe the role of entire river networks. Models provide the means to study nutrient cycling from the stream network perspective via upscaling to the watershed the key mechanisms occurring at the reach scale. We applied a hybrid process-based and statistical model (SPARROW, Spatially Referenced Regression on Watershed Attributes) as a heuristic approach to describe in-stream nutrient processes in a highly impaired, high stream order watershed (the Llobregat River Basin, NE Spain). The in-stream decay specifications of the model were modified to include a partial saturation effect in uptake efficiency (expressed as a power law) and better capture biological nutrient retention in river systems under high anthropogenic stress. The stream decay coefficients were statistically significant in both nitrate and phosphate models, indicating the potential role of in-stream processing in limiting nutrient export. However, the EL concept did not reliably describe the patterns of nutrient uptake efficiency for the concentration gradient and streamflow values found in the Llobregat River basin, posing in doubt its complete applicability to explain nutrient retention processes in stream networks comprising highly impaired rivers.

  20. River restoration and biocoenoses improvement in two streams renaturated using bioengeneering.

    NASA Astrophysics Data System (ADS)

    Leoni, B.; Forasacco, E.; Dobner, R.; Cotta Ramusino, M.

    2003-04-01

    The Bioengineering is a constructive discipline having its own technical, ecological and environmental friendly scopes, by using living materials. The aim of this study is to assess the river restoration efficiency of Bioengineering. The basic goals of many management-concepts are the integrity of the river habitat, self-regulation and self-regeneration, the preservation of intact resources, to recreate the uniqueness, diversity and beauty of natural river landscape. From an ecological point of view the richness, diversity and age composition of the populations developing after restoration as a result of habitat improvement reveal the degree to which comprehensive concepts were applied (Jungwirth et al., 1995). The following results summarised an investigation on streams Boesio and Rancina in Valcuvia, (Varese, Northern Italy). These streams are characterised by human impacts like water pollution, river engineering and river bioengineering (palificata doppia viva). The samples of macrobenthic fauna were collected between August 2000 and July 2001 in 4 stations for each stream, where the 3rd station of Boesio and Rancina streams is characterised by bioengeneering measure, using a Surber sampler (0.125 m2, mesh size 0.45 mm). The zoobenthic communities of these pre-alpine streams are characterised by low richness and diversity and few families and genera were predominant. In Rancina stream, Ephemeroptera (genus Baetis), Trichoptera (families Hydropsychidae, Limnephilidae and Rhyacophilidae) and Diptera (families Chironomidae and Simuliidae) are present throughout the year with significant densities. The faunal composition of Boesio stream is similar. It differs, only, from stream Rancina to costant presence of Plecoptera with genus Leuctra. To evaluate the restoration of environmental quality two indices were applied: Indice Biotico Esteso (I.B.E.- Ghetti, 1995); Indice di Funzionalità Fluviale (I.F.F.- Siligardi, 2000). The E.B.I. scores of Boesio stream indicate

  1. Regional patterns of total nitrogen concentrations in the National Rivers and Streams Assessment

    EPA Science Inventory

    Patterns of nitrogen concentrations in streams sampled by the National Rivers and Streams Assessment (NRSA) were examined semi-quantitatively to identify regional differences in stream nitrogen levels. The data were categorized and analyzed by watershed size classes to reveal pat...

  2. Simulation of stream discharge and transport of nitrate and selected herbicides in the Mississippi River Basin

    USGS Publications Warehouse

    Broshears, R.E.; Clark, G.M.; Jobson, H.E.

    2001-01-01

    Stream discharge and the transport of nitrate, atrazine, and metolachlor in the Mississippi River Basin were simulated using the DAFLOW/BLTM hydrologic model. The simulated domain for stream discharge included river reaches downstream from the following stations in the National Stream Quality Accounting Network: Mississippi River at Clinton, IA; Missouri River at Hermann, MO: Ohio River at Grand Chain, IL: And Arkansas River at Little Rock, AR. Coefficients of hydraulic geometry were calibrated using data from water year 1996; the model was validated by favourable simulation of observed discharges in water years 1992-1994. The transport of nitrate, atrazine, and metolachlor was simulated downstream from the Mississippi River at Thebes, IL, and the Ohio River at Grand Chain. Simulated concentrations compared favourably with observed concentrations at Baton Rouge, LA. Development of this model is a preliminary step in gaining a more quantitative understanding of the sources and fate of nutrients and pesticides delivered from the Mississippi River Basin to the Gulf of Mexico.

  3. Water quality assessment of the San Joaquin--Tulare basins, California; analysis of available data on nutrients and suspended sediment in surface water, 1972-1990

    USGS Publications Warehouse

    Kratzer, Charles R.; Shelton, Jennifer L.

    1998-01-01

    Nutrients and suspended sediment in surface water of the San Joaquin-Tulare basins in California were assessed using 1972-1990 data from the U.S. Geological Survey's National Water Information System and the U.S. Environmental Protection Agency's STOrage and RETrieval database. Loads of nutrients and suspended sediment were calculated at several sites and the contributions from point and nonpoint sources were estimated. Trends in nutrient and suspended-sediment concentrations were evaluated at several sites, especially at the basin outlet on the San Joaquin River. Comparisons of nutrient and suspended sediment concentrations were made among three environmental settings: the San Joaquin Valley--west side, the San Joaquin Valley--east side, and the Sierra Nevada.

  4. Polycyclic aromatic hydrocarbons in bottom sediment and bioavailability in streams in the New River Gorge National River and Gauley River National Recreation Area, West Virginia, 2002

    USGS Publications Warehouse

    Messinger, Terrence

    2004-01-01

    Polycyclic aromatic hydrocarbons (PAHs), including some on the U.S. Environmental Protection Agency's priority pollutant list, were found in bottom sediment in streams in the coal-producing region of the Kanawha River Basin in 1996-1998, and in and near the New River Gorge National River in 2002, in concentrations exceeding those thought likely to cause adverse effects to wildlife. Very low concentrations of bioavailable PAHs were measured in streams in and near the New River Gorge National River by the use of semipermeable membrane devices. The apparent contradiction between the high concentrations of total PAHs and the low concentrations of bioavailable PAHs may result from the presence of a substantial amount of particulate coal in bottom sediment.

  5. The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Rumsey, C.; Miller, M. P.; Schwarz, G. E.; Susong, D.

    2017-12-01

    Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity (dissolved solids) loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in baseflow, or groundwater discharge to streams, to assess whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate long-term mean annual baseflow discharge and baseflow dissolved solids loads at stream gages (n=69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow. Additionally, a statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams with data from 1987 to 2011 (n=29). About two-thirds (62%) of these streams showed statistically significant decreasing trends in baseflow dissolved solids loads. At the two most downstream sites, Green River at Green River, UT and Colorado River at Cisco, UT, baseflow dissolved solids loads decreased by a combined 780,000 metric tons, which is approximately 65% of the estimated basin-scale decrease in total dissolved solids loads in the UCRB attributed to salinity control efforts. Results indicate that groundwater discharged to streams, and therefore subsurface transport processes, play a large role in delivering dissolved solids to streams in the UCRB. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, changes in land use, and/or climate are

  6. 27 CFR 9.164 - River Junction.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., follow the levee along the San Joaquin River onto the Ripon, CA quadrangle map; (3) Then in a northerly... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction..., CA 1969, photorevised 1980; (2) Vernalis, CA 1969, photorevised 1980. (c) Boundaries. The River...

  7. 27 CFR 9.164 - River Junction.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., follow the levee along the San Joaquin River onto the Ripon, CA quadrangle map; (3) Then in a northerly... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction..., CA 1969, photorevised 1980; (2) Vernalis, CA 1969, photorevised 1980. (c) Boundaries. The River...

  8. 27 CFR 9.164 - River Junction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., follow the levee along the San Joaquin River onto the Ripon, CA quadrangle map; (3) Then in a northerly... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction..., CA 1969, photorevised 1980; (2) Vernalis, CA 1969, photorevised 1980. (c) Boundaries. The River...

  9. 27 CFR 9.164 - River Junction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., follow the levee along the San Joaquin River onto the Ripon, CA quadrangle map; (3) Then in a northerly... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction..., CA 1969, photorevised 1980; (2) Vernalis, CA 1969, photorevised 1980. (c) Boundaries. The River...

  10. 27 CFR 9.164 - River Junction.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., follow the levee along the San Joaquin River onto the Ripon, CA quadrangle map; (3) Then in a northerly... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction..., CA 1969, photorevised 1980; (2) Vernalis, CA 1969, photorevised 1980. (c) Boundaries. The River...

  11. Spatial prediction models for the probable biological condition of streams and rivers in the USA

    EPA Science Inventory

    The National Rivers and Streams Assessment (NRSA) is a probability-based survey conducted by the US Environmental Protection Agency and its state and tribal partners. It provides information on the ecological condition of the rivers and streams in the conterminous USA, and the ex...

  12. Random forest models for the probable biological condition of streams and rivers in the USA

    EPA Science Inventory

    The National Rivers and Streams Assessment (NRSA) is a probability based survey conducted by the US Environmental Protection Agency and its state and tribal partners. It provides information on the ecological condition of the rivers and streams in the conterminous USA, and the ex...

  13. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    USGS Publications Warehouse

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  14. Historical assessments and comparisons of benthic communities and physical habitat in two agricultural streams in California's San Joaquin watershed.

    PubMed

    Hall, Lenwood W; Killen, William D

    2006-01-01

    This study was designed to assess trends in physical habitat and benthic communities (macroinvertebrates) annually in two agricultural streams (Del Puerto Creek and Salt Slough) in California's San Joaquin Valley from 2001 to 2005, determine the relationship between benthic communities and both water quality and physical habitat from both streams over the 5-year period, and compare benthic communities and physical habitat in both streams from 2001 to 2005. Physical habitat, measured with 10 metrics and a total score, was reported to be fairly stable over 5 years in Del Puerto Creek but somewhat variable in Salt Slough. Benthic communities, measured with 18 metrics, were reported to be marginally variable over time in Del Puerto Creek but fairly stable in Salt Slough. Rank correlation analysis for both water bodies combined showed that channel alteration, embeddedness, riparian buffer, and velocity/depth/diversity were the most important physical habitat metrics influencing the various benthic metrics. Correlations of water quality parameters and benthic community metrics for both water bodies combined showed that turbidity, dissolved oxygen, and conductivity were the most important water quality parameters influencing the different benthic metrics. A comparison of physical habitat metrics (including total score) for both water bodies over the 5-year period showed that habitat metrics were more positive in Del Puerto Creek when compared to Salt Slough. A comparison of benthic metrics in both water bodies showed that approximately one-third of the metrics were significantly different between the two water bodies. Generally, the more positive benthic metric scores were reported in Del Puerto Creek, which suggests that the communities in this creek are more robust than Salt Slough.

  15. A River Runs Under It: Modeling the Distribution of Streams and Stream Burial in Large River Basins

    NASA Astrophysics Data System (ADS)

    Elmore, A. J.; Julian, J.; Guinn, S.; Weitzell, R.; Fitzpatrick, M.

    2011-12-01

    correctly predicts the presence of 91% of all 10-m stream segments, and rarely miscalculates tributary numbers. We apply this model to the entire Potomac River Basin (37,800 km2) and several adjacent basins to map stream channel density and compare our results with NHD flowline data. We find that NHD underestimates stream channel density by a factor of two in most sub watersheds and this effect is strongest in the densely urbanized cities of Washington, DC and Baltimore, MD. We then apply a second predictive model based on impervious surface area data to map the extent of stream burial. Results demonstrate that the extent of stream burial increases with decreasing stream catchment area. When applied at four time steps (1975, 1990, 2001, and 2006), we find that although stream burial rates have slowed in the recent decade, streams that are not mapped in NHD flowline data continue to be buried during development. This work is the most ambitious attempt yet to map stream network density over a large region and will have lasting implications for modeling and conservation efforts.

  16. Modeled streamflow metrics on small, ungaged stream reaches in the Upper Colorado River Basin

    USGS Publications Warehouse

    Reynolds, Lindsay V.; Shafroth, Patrick B.

    2016-01-20

    Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow metrics and environmental variables. Flow metrics were then projected to ungaged reaches in the Upper Colorado River Basin using environmental variables for each stream, represented as raster cells, in the basin. Last, the projected random forest models of minimum flow coefficient of variation and specific mean daily flow were used to highlight streams that had greater than 61.84 percent minimum flow coefficient of variation and less than 0.096 specific mean daily flow and suggested that these streams will be most threatened to shift to intermittent flow regimes under drier climate conditions. Map projection products can help scientists, land managers, and policymakers understand current hydrology in the Upper Colorado River Basin and make informed decisions regarding water resources. With knowledge of which streams are likely to undergo significant drying in the future, managers and scientists can plan for stream-dependent ecosystems and human water users.

  17. Evaluation of An Alternate Benthic Macroinvertebrate Sampling Method for Low Gradient Streams Sampled in the National Rivers and Streams Assessment

    EPA Science Inventory

    Benthic macroinvertebrates are one of the primary biological indicators of condition used in the U.S. Environmental Protection Agency’s National Rivers and Streams Assessment. Following EPA’s Wadeable Streams Assessment, States recommended that a different yet compara...

  18. Natural radioactivity in stream sediments of Oltet River, Romania

    NASA Astrophysics Data System (ADS)

    Ion, Adriana

    2017-04-01

    The concentration of naturally occurring radionuclides (U-238, Th-232 and K-40) in stream sediments of the Oltet River was measured in order to establish the primary sources of radionuclides, the transport pathways and the geochemical factors favouring their mobilisation and concentration in the existing geological context. The Oltet River has a length of 185 Km and crosses the southern central part of the country, being the right tributary of the Olt River. The range in elevation of the watercourse varies between 1963 m in the springs area (Parîng Mountains) and 200 m at the confluence with the Olt River, whereas the relief of the Oltet Basin has a varied character, manifested by the presence of diverse forms of relief, starting with major mountainous heights and ending with low-lying plains regions. In cross section from North to South, the Olteț River cuts metamorphic rocks (schist, gneisses, quartzite, marble, mica-schist's), magmatic rocks (granite and granitoid massifs - intruded by veins of microgranite, aplite, pegmatite and lamprophyre) and limestone, followed by deposits composed of clays, marls, sands and gravels, that are characterized by the presence of lignite seams. 44 stream sediment samples were collected in summer of 2016 from sampling points distributed along the river with an equidistance of about 4 - 5 km. The activity concentrations of the U-238, Th-232 and K-40 were measured by gamma ray spectrometry using HPGe detector (ORTEC) with 26% relative efficiency in multilayer shielding. The reference materials used were IAEA - RGK-1 and IAEA - 314. Analysis was performed on the <2 mm fraction of sediment sample, each sample was counted for 24,000 s. U-238 specific activity in the stream sediments varies between 6.18 and 68.76 Bq/Kg and Th-232 specific activity from 8.12 to 89.28 Bq/Kg, whereas the K-40 specific activity in sediments ranges from 99.01 to 312.16 Bq/Kg. In the upper sector of the Oltet River, concentrations of U-238, Th-232 and K-40

  19. Simulation of stream discharge and transport of nitrate and selected herbicides in the Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Broshears, Robert E.; Clark, Gregory M.; Jobson, Harvey E.

    2001-05-01

    Stream discharge and the transport of nitrate, atrazine, and metolachlor in the Mississippi River Basin were simulated using the DAFLOW/BLTM hydrologic model. The simulated domain for stream discharge included river reaches downstream from the following stations in the National Stream Quality Accounting Network: Mississippi River at Clinton, IA; Missouri River at Hermann, MO; Ohio River at Grand Chain, IL; and Arkansas River at Little Rock, AR. Coefficients of hydraulic geometry were calibrated using data from water year 1996; the model was validated by favourable simulation of observed discharges in water years 1992-1994. The transport of nitrate, atrazine, and metolachlor was simulated downstream from the Mississippi River at Thebes, IL, and the Ohio River at Grand Chain. Simulated concentrations compared favourably with observed concentrations at Baton Rouge, LA. Development of this model is a preliminary step in gaining a more quantitative understanding of the sources and fate of nutrients and pesticides delivered from the Mississippi River Basin to the Gulf of Mexico. Published in 2001 by John Wiley & Sons, Ltd.

  20. Estimation of river pollution index in a tidal stream using kriging analysis.

    PubMed

    Chen, Yen-Chang; Yeh, Hui-Chung; Wei, Chiang

    2012-08-29

    Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI) in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.

  1. Assessing the Impact of Climate Change on Stream Temperatures in the Methow River Basin, Washington

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, S.; Caldwell, R. J.; Lai, Y.; Bountry, J.

    2011-12-01

    The Methow River in Washington offers prime spawning habitat for salmon and other cold-water fishes. During the summer months, low streamflows on the Methow result in cutoff side channels that limit the habitat available to these fishes. Future climate scenarios of increasing air temperature and decreasing precipitation suggest the potential for increasing loss of habitat and fish mortality as stream temperatures rise in response to lower flows and additional heating. To assess the impacts of climate change on stream temperature in the Methow River, the US Bureau of Reclamation is developing an hourly time-step, two-dimensional hydraulic model of the confluence of the Methow and Chewuch Rivers above Winthrop. The model will be coupled with a physical stream temperature model to generate spatial representations of stream conditions conducive for fish habitat. In this study, we develop a statistical framework for generating stream temperature time series from global climate model (GCM) and hydrologic model outputs. Regional observations of stream temperature and hydrometeorological conditions are used to develop statistical models of daily mean stream temperature for the Methow River at Winthrop, WA. Temperature and precipitation projections from 10 global climate models (GCMs) are coupled with the streamflow generated using the University of Washington Variable Infiltration Capacity model. The projections serve as input to the statistical models to generate daily time series of mean daily stream temperature. Since the output from the GCM, VIC, and statistical models offer only daily data, a k-nearest neighbor (k-nn) resampling technique is employed to select appropriate proportion vectors for disaggregating the Winthrop daily flow and temperature to an upstream location on each of the rivers above the confluence. Hourly proportion vectors are then used to disaggregate the daily flow and temperature to hourly values to be used in the hydraulic model. Historical

  2. Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA)

    USGS Publications Warehouse

    Spencer, R.G.M.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.C.; Smart, D.R.; Dahlgren, R.A.; Hernes, P.J.

    2007-01-01

    Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability ( < 1 day) on DOM dynamics. This study examined whether diurnal processes measurably altered DOM concentration and composition in the hypereutrophic San Joaquin River (California) during a relatively quiescent period. We evaluated the efficacy of using optical in situ measurements to reveal changes in DOM which may not be evident from bulk dissolved organic carbon (DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll-a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290-350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically-mediated processes. The results of this study highlight that short-term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short

  3. Fish assemblages and environmental correlates in least-disturbed streams of the upper Snake River basin

    USGS Publications Warehouse

    Maret, T.R.; Robinson, C.T.; Minshall, G.W.

    1997-01-01

    Fish assemblages and environmental variables were evaluated from 37 least-disturbed, 1st- through 6th-order streams and springs in the upper Snake River basin, western USA. Data were collected as part of the efforts by the U.S. Geological Survey National Water Quality Assessment Program and the Idaho State University Stream Ecology Center to characterize aquatic biota and associated habitats in least-disturbed coldwater streams. Geographically, the basin comprises four ecoregions. Environmental variables constituting various spatial scales, from watershed characteristics to in stream habitat measures, were used to examine distribution patterns in fish assemblages. Nineteen fish species in the families Salmonidae, Cottidae, Cyprinidae, and Catostemidae were collected. Multivariate analyses showed high overlap in stream fish assemblages among the ecoregions. Major environmental factors determining species distributions in the basin were stream gradient, watershed size, conductivity, and percentage of the watershed covered by forest. Lowland streams (below 1,600 m in elevation), located mostly in the Snake River Basin/High Desert ecoregion, displayed different fish assemblages than upland streams (above 2,000 m elevation) in the Northern Rockies, Middle Rockies, and Northern Basin and Range ecoregions. For example, cotrids were not found in streams above 2,000 m in elevation. In addition, distinct fish assemblages were found in tributaries upstream and downstream from the large waterfall, Shoshone Falls, on the Snake River. Fish metrics explaining most of the variation among sites included the total number of species, number of native species, number of salmonid species, percent introduced species, percent cottids, and percent salmonids. Springs also exhibited different habitat conditions and fish assemblages than streams. The data suggest that the evolutionary consequences of geographic features and fish species introductions transcend the importance of ecoregion

  4. Estimates of recreational stream use in the White River drainage, Vermont

    Treesearch

    Ronald J. Glass; Gerald Walton; Herbert E. Echelberger; Herbert E. Echelberger

    1992-01-01

    An observation technique that incorporates Godified, stratified sampling was used to estimate in-stream recreation use in the White River Drainage in Vermont. Results were reported by season, day of week, time of day, kind of activity, and portion of stream. Summer had the highest use followed by spring and fall. Except in fall, weekends and holidays received...

  5. STREAMS TO RIVERS: THE NEXT GENERATION OF ECOSYSTEM MONITORING

    EPA Science Inventory

    The historical focus in aquatic ecosystems has been on sampling methods oriented toward surveys of wadeable streams or smaller rivers. However, to fully assess the condition of the nations waters, methods are needed for systems above and below this scale. Biological communities...

  6. Effects of stream flow intermittency on riparian vegetation of a semiarid region river (San Pedro River, Arizona)

    USGS Publications Warehouse

    Stromberg, J.C.; Bagstad, K.J.; Leenhouts, J.M.; Lite, S.J.; Makings, E.

    2005-01-01

    The San Pedro River in the southwestern United States retains a natural flood regime and has several reaches with perennial stream flow and shallow ground water. However, much of the river flows intermittently. Urbanization-linked declines in regional ground-water levels have raised concerns over the future status of the riverine ecosystem in some parts of the river, while restoration-linked decreases in agricultural ground-water pumping are expected to increase stream flows in other parts. This study describes the response of the streamside herbaceous vegetation to changes in stream flow permanence. During the early summer dry season, streamside herbaceous cover and species richness declined continuously across spatial gradients of flow permanence, and composition shifted from hydric to mesic species at sites with more intermittent flow. Hydrologic threshold values were evident for one plant functional group: Schoenoplectus acutus, Juncus torreyi, and other hydric riparian plants declined sharply in cover with loss of perennial stream flow. In contrast, cover of mesic riparian perennials (including Cynodon dactylon, an introduced species) increased at sites with intermittent flow. Patterns of hydric and mesic riparian annuals varied by season: in the early summer dry season their cover declined continuously as flow became more intermittent, while in the late summer wet season their cover increased as the flow became more intermittent. Periodic drought at the intermittent sites may increase opportunities for establishment of these annuals during the monsoonal flood season. During the late summer flood season, stream flow was present at most sites, and fewer vegetation traits were correlated with flow permanence; cover and richness were correlated with other environmental factors including site elevation and substrate nitrate level and particle size. Although perennial-flow and intermittent-flow sites support different streamside plant communities, all of the plant

  7. EPA New England Trains 30 Federal and State Environmental Workers on the National Rivers and Streams Assessment

    EPA Pesticide Factsheets

    The USEPA held a four-day training session last week at the EPA Chelmsford Laboratory for approximately 30 state & federal workers participating in the EPA National Rivers & Streams Assessment, the 3rd nationwide survey of the condition of rivers & streams

  8. Harmonic analyses of stream temperatures in the Upper Colorado River Basin

    USGS Publications Warehouse

    Steele, T.D.

    1985-01-01

    Harmonic analyses were made for available daily water-temperature records for 36 measurement sites on major streams in the Upper Colorado River Basin and for 14 measurement sites on streams in the Piceance structural basin. Generally (88 percent of the station years analyzed), more than 80 percent of the annual variability of temperatures of streams in the Upper Colorado River Basin was explained by the simple-harmonic function. Significant trends were determined for 6 of the 26 site records having 8 years or more record. In most cases, these trends resulted from construction and operation of upstream surface-water impoundments occurring during the period of record. Regional analysis of water-temperature characteristics at the 14 streamflow sites in the Piceance structural basin indicated similarities in water-temperature characteristics for a small range of measurement-site elevations. Evaluation of information content of the daily records indicated that less-than-daily measurement intervals should be considered, resulting in substantial savings in measurement and data-processing costs. (USGS)

  9. Initial river test of a monostatic RiverSonde streamflow measurement system

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; ,

    2003-01-01

    A field experiment was conducted on May 7-8, 2002 using a CODAR RiverSonde UHF radar system at Vernalis, California on the San Joaquin River. The monostatic radar configuration on one bank of the river, with the antennas looking both upriver and downriver, provided very high-quality data. Estimates of both along-river and cross-river surface current were generated using several models, including one based on normal-mode analysis. Along-river surface velocities ranged from about 0.6 m/s at the river banks to about 1.0 m/s near the middle of the river. Average cross-river surface velocities were 0.02 m/s or less.

  10. Texture and depositional history of near-surface alluvial deposits in the central part of the western San Joaquin Valley, California

    USGS Publications Warehouse

    Laudon, Julie; Belitz, Kenneth

    1989-01-01

    Saline conditions and associated high levels of selenium and other soluble trace elements in soil, shallow ground water, and agricultural drain water of the western San Joaquin Valley, California, have prompted a study of the texture of near-surface alluvial deposits in the central part of the western valley. Texture is characterized by the percentage of coarse-grained sediment present within a specified subsurface depth interval and is used as a basis for mapping the upper 50 feet of deposits. Resulting quantitative descriptions of the deposits are used to interpret the late Quaternary history of the area. Three hydrogeologic units--Coast Range alluvium, flood-basin deposits, and Sierran sand--can be recognized in the upper 50 feet of deposits in the central part of the western San Joaquin Valley. The upper 30 feet of Coast Range alluvium and the adjacent 5 to 35 feet of flood-basin deposits are predominantly fine grained. These fine-grained Coast Range deposits are underlain by coarse-grained channel deposits. The fine-grained flood basin deposits are underlain by coarse-grained Sierran sand. The extent and orientation of channel deposits below 20 feet in the Coast Range alluvium indicate that streams draining the Coast Range may have been tributary to the axial stream that deposited the Sierran sand and that streamflow may have been to the southeast. The fining-upward stratigraphic sequence in the upper 50 feet of deposits and the headward retreat of tributary stream channels from the valley trough with time support a recent hypothesis of climatic control of alluviation in the western San Joaquin Valley.

  11. U.S. EPA'S SURVEY OF THE NATION'S NON-WADEABLE STREAMS AND RIVERS

    EPA Science Inventory

    The U.S. EPA is engaging states, tribes and other parties in designing a national survey to assess the condition of non-wadeable rivers and streams. The rivers survey is one of a series of surveys being implemented as a partnership among states, tribes and U.S. EPA, with the coll...

  12. IN-STREAM AND WATERSHED PREDICTORS OF GENETIC DIVERSITY, EFFECTIVE POPULATION SIZE AND IMMIGRATION ACROSS RIVER-STREAM NETWORKS

    EPA Science Inventory

    The influence of spatial processes on population dynamics within river-stream networks is poorly understood. Utilizing spatially explicit analyses of temporal genetic variance, we examined whether persistence of Central Stonerollers (Campostoma anomalum) reflects differences in h...

  13. Drainage areas of New York streams, by river basins; a stream gazetteer; Part 1, Data compiled as of October 1980

    USGS Publications Warehouse

    Wagner, L.A.

    1982-01-01

    Hydrologic studies concerned with surface water require geographic data of several types, among which are stream length and size of drainage area from which runoff is contributed. This gazetteer presents all drainage-area data on New York streams that were available as of October 1980. The information is grouped by river basin, and each section consists of two lists. The first gives sites alphabetically by stream name and includes the body of water to which the stream is tributary, county in which the site is located, drainage area above the mouth, coordinates of the topographic quadrangle on the State index map , and the Geological Survey site number. The second list presents site information by U.S. Geological Survey site number (downstream order along the main stream) and includes drainage area, distance of measurement site above the mouth, and location by latitude and longitude. Data were compiled from published and unpublished sources, all of which are available for inspection at the U.S. Geological Survey in Albany, N.Y. Also included are updated values on several river basins that have been redelineated and whose drainage areas have been recomputed and retabulated since 1977. (USGS)

  14. Selenium and other elements in juvenile striped bass from the San Joaquin Valley and San Francisco Estuary, California

    USGS Publications Warehouse

    Saiki, Michael K.; Palawski, Donald U.

    1990-01-01

    Concentrations of selenium and other trace elements were determined in 55 whole body samples of juvenile anadromous striped bass (Morone saxatilis) from the San Joaquin Valley and San Francisco Estuary, California. The fish (≤1 yr old—the predominant life stage in the San Joaquin Valley) were collected in September–December 1986 from 19 sites in the Valley and 3 sites in the Estuary, and analyzed for the following elements: aluminum (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), magnesium (Mg), molybdenum (Mo), nickel (Ni), lead (Pb), selenium (Se), strontium (Sr), vanadium (V), and zinc (Zn). When compared to concentrations in whole freshwater fish measured by surveys from other waters, a few samples contained higher levels, of As, Cd, Cu, Pb, and Se. The median concentrations of Al, As, Cu, Fe, Mg, Se, and Sr also differed significantly (P⩽0.05) among sites. However, only Se concentrations were highest (up to 7.9 μg/g dry weight) in samples from Valley sites exposed to agricultural subsurface (tile) drainwater; concentrations were lower in samples collected elsewhere. Water quality variables—especially those strongly influenced by tile drainwater (conductivity, total dissolved solids, total alkalinity, and total hardness)—were also significantly correlated (P⩽0.05) with Se concentrations in fish. Selenium concentrations in striped bass from the Estuary were only one-fourth to one-half the concentrations measured in the most contaminated fish from the San Joaquin River.

  15. A statistical model for estimating stream temperatures in the Salmon and Clearwater River basins, central Idaho

    USGS Publications Warehouse

    Donato, Mary M.

    2002-01-01

    A water-quality standard for temperature is critical for the protection of threatened and endangered salmonids, which need cold, clean water to sustain life. The Idaho Department of Environmental Quality has established temperature standards to protect salmonids, yet little is known about the normal range of temperatures of most Idaho streams. A single temperature standard for all streams does not take into account the natural temperature variation of streams or the existence of naturally warm waters. To address these issues and to help the Idaho Department of Environmental Quality revise the existing State temperature standards for aquatic life, temperature data from more than 200 streams and rivers in the salmon and Clearwater River Basins were collected. From these data, a statistical model was developed for estimating stream temperatures on the basis of subbasin and site characteristics and climatic factors. Stream temperatures were monitored hourly for approximately 58 days during July, August, and September 2000 at relatively undisturbed sites in subbasins in the Salmon and Clearwater River Basins in central Idaho. The monitored subbasins vary widely in size, elevation, drainage area, vegetation cover, and other characteristics. The resulting data were analyzed for statistical correlations with subbasin and site characteristics to establish the most important factors affecting stream temperature. Maximum daily average stream temperatures were strongly correlated with elevation and total upstream drainage area; weaker correlations were noted with stream depth and width and aver-age subbasin slope. Stream temperatures also were correlated with certain types of vegetation cover, but these variables were not significant in the final model. The model takes into account seasonal temperature fluctuations, site elevation, total drainage area, average subbasin slope, and the deviation of daily average air temperature from a 30-year normal daily average air temperature

  16. Adaptive Management Methods to Protect the California Sacramento-San Joaquin Delta Water Resource

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  17. Nitrogen and phosphorus in streams of the Great Miami River Basin, Ohio, 1998-2000

    USGS Publications Warehouse

    Reutter, David C.

    2003-01-01

    Sources and loads of nitrogen and phosphorus in streams of the Great Miami River Basin were evaluated as part of the National Water-Quality Assessment program. Water samples were collected by the U.S. Geological Survey from October 1998 through September 2000 (water years 1999 and 2000) at five locations in Ohio on a routine schedule and additionally during selected high streamflows. Stillwater River near Union, Great Miami River near Vandalia, and Mad River near Eagle City were selected to represent predominantly agricultural areas upstream from the Dayton metropolitan area. Holes Creek near Kettering is in the Dayton metropolitan area and was selected to represent an urban area in the Great Miami River Basin. Great Miami River at Hamilton is downstream from the Dayton and Hamilton-Middletown metropolitan areas and was selected to represent mixed agricultural and urban land uses of the Great Miami River Basin. Inputs of nitrogen and phosphorus to streams from point and nonpoint sources were estimated for the three agricultural basins and for the Great Miami River Basin as a whole. Nutrient inputs from point sources were computed from the facilities that discharge one-half million gallons or more per day into streams of the Great Miami River Basin. Nonpoint-source inputs estimated in this report are atmospheric deposition and commercial-fertilizer and manure applications. Loads of ammonia, nitrate, total nitrogen, orthophosphate, and total phosphorus from the five sites were computed with the ESTIMATOR program. The computations show nitrate to be the primary component of instream nitrogen loads, and particulate phosphorus to be the primary component of instream phosphorus loads. The Mad River contributed the smallest loads of total nitrogen and total phosphorus to the study area upstream from Dayton, whereas the Upper Great Miami River (upstream from Vandalia) contributed the largest loads of total nitrogen and total phosphorus to the Great Miami River Basin

  18. Elements of an environmental decision support system for seasonal wetland salt management in a river basin subjected to water quality regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, N.W.T.

    Seasonally managed wetlands in the Grasslands Basin on the west-side of California's San Joaquin Valley provide food and shelter for migratory wildfowl during winter months and sport for waterfowl hunters during the annual duck season. Surface water supply to these wetlands contain salt which, when drained to the San Joaquin River during the annual drawdown period, can negatively impact water quality and cause concern to downstream agricultural riparian water diverters. Recent environmental regulation, limiting discharges salinity to the San Joaquin River and primarily targeting agricultural non-point sources, now also targets return flows from seasonally managed wetlands. Real-time water quality managementmore » has been advocated as a means of continuously matching salt loads discharged from agricultural, wetland and municipal operations to the assimilative capacity of the San Joaquin River. Past attempts to build environmental monitoring and decision support systems (EDSS's) to implement this concept have enjoyed limited success for reasons that are discussed in this paper. These reasons are discussed in the context of more general challenges facing the successful implementation of a comprehensive environmental monitoring, modelling and decision support system for the San Joaquin River Basin.« less

  19. Traveltime and reaeration of selected streams in the North Platte and Yampa River basins, Colorado

    USGS Publications Warehouse

    Ruddy, B.C.; Britton, L.J.

    1989-01-01

    Traveltime characteristics were measured using rhodamine WT dye as a tracer in the Canadian and Michigan Rivers in the North Platte river basin and in the Yampa, Elk, and Williams Fork Rivers, and Trout and Fish Creeks in the Yampa River basin of Colorado. Reaeration coefficients were determined by use of the modified-tracer techniques using ethylene and propane gas for selected stream reaches during low-flow conditions. Stream reach velocities determined during traveltime and reaeration measurements ranged from 0.09 mi/hour at 5.1 cu ft/sec on the Canadian River to 4.04 mi/hour at 746 cu ft/sec on the Williams Fork. A modified longitudinal dispersion model or results from cumulative traveltime curves were used to estimate traveltimes in the measured streams for streamflow conditions other than those measured. Traveltime-discharge curves were developed by using the estimated and measured traveltimes. Reaeration coefficients were determined for 20 different subreaches in the study area. Rearation coefficients were determined for 20 different subreaches in the study area. Reaeration coefficients ranged from 1.6/day in a pooled subreach of the Yampa River Craig, Colorado, to 98/day in a turbulent subreach of Trout Creek near Oak Creek, Colorado. (USGS)

  20. Governance, legislation and protection of intermittent rivers and ephemeral streams

    EPA Science Inventory

    Institutions and processes governing the conveyance and control of water have a long history. In this chapter, we discuss the extent to which water governance systems consider the management of intermittent rivers and ephemeral streams (IRES) and identify where research could inf...

  1. Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    USDA-ARS?s Scientific Manuscript database

    Quantitative information on pesticide loading into the Sacramento-San Joaquin Delta waterways of northern California is critical for water resource management in the region, and potentially useful for biological weed control planning. The San Joaquin watershed, an agriculturally intensive area, is a...

  2. A synoptic survey of microbial respiration, organic matter decomposition, and carbon efflux in U.S. streams and rivers

    EPA Science Inventory

    We analyzed microbial respiration and ecoenzyme activities related to organic matter processing in 1879 streams and rivers across the continental US as part of the USEPA’s 2008-2009 National Rivers and Streams Assessment. Ecoenzymatic stoichiometry was used to construct models fo...

  3. Spatial Statistical Network Models for Stream and River Temperatures in the Chesapeake Bay Watershed

    EPA Science Inventory

    Numerous metrics have been proposed to describe stream/river thermal regimes, and researchers are still struggling with the need to describe thermal regimes in a parsimonious fashion. Regional temperature models are needed for characterizing and mapping current stream thermal re...

  4. Freshwater Fish Assemblage Patterns in Rhode Island Streams and Rivers

    EPA Science Inventory

    Patterns in fish assemblages in streams and rivers can inform watershed and water management, yet these patterns are not well characterized for the U.S. state of Rhode Island. Here we relate freshwater fish data collected by the Rhode Island Department of Environmental Managemen...

  5. River Mileages and Drainage Areas for Illinois Streams. Volume 2. Illinois River Basin.

    DTIC Science & Technology

    1979-12-01

    FLANAGAN Q. POA 33 T29N P 3E FLANAGAN 9I.1 0OAn S32 T20N R 3E FLANAGAN 1.3 POAt, S 5 T2FN W 3E FLANAGAN 12.2 POA(n 5 8 T28N d 3E FLANAGAN 14.2 NOAh S I T28...U.S..A.MY.CORPS.OF.ENGINEER..... 0..4.200..wX . .. ...... 50272 -101 REPORT DOCUMENTATION .RPRIO W IOO 4 2 S . Recipient’s Accession No. 4. Title and...SutteS. Report Date River mileages and drainage art-as for Illinois streams- December 1979 Volume 2, Illinois River Basin 6 7. Author( s ) 8. Performing

  6. Mercury in sport fish from the Sacramento-San Joaquin Delta region, California, USA.

    PubMed

    Davis, Jay A; Greenfield, Ben K; Ichikawa, Gary; Stephenson, Mark

    2008-02-25

    Total mercury (Hg) concentrations were determined in fillet tissue of sport fish captured in the Sacramento-San Joaquin River Delta and surrounding tributaries, a region particularly impacted by historic gold and mercury mining activity. In 1999 and 2000, mercury concentrations were measured in 767 samples from ten fish species. Largemouth bass (Micropterus salmoides), the primary target species, exhibited a median Hg concentration of 0.53 mug g(-1) (N=406). Only 23 largemouth bass (6%) were below a 0.12 mug g(-1) threshold corresponding to a 4 meals per month safe consumption limit. Most of the largemouth bass (222 fish, or 55% of the sample) were above a 0.47 mug g(-1) threshold corresponding to a 1 meal per month consumption limit. Striped bass (Morone saxatilis), channel catfish (Ictalurus punctatus), white catfish (Ameirus catus), and Sacramento pikeminnow (Ptychocheilus grandis) also had relatively high concentrations, with 31% or more of samples above 0.47 mug g(-1). Concentrations were lowest in redear (Lepomis microlophus) and bluegill (Lepomis macrochirus) sunfish, with most samples below 0.12 mug g(-1), suggesting that targeting these species for sport and subsistence fishing may reduce human dietary exposure to Hg in the region. An improved method of analysis of covariance was performed to evaluate spatial variation in Hg in largemouth bass captured in 2000, while accounting for variability in fish length. Using this approach, Hg concentrations were significantly elevated in the Feather River, northern Delta, lower Cosumnes River, and San Joaquin River regions. In spite of elevated Hg concentrations on all of its tributaries, the central Delta had concentrations that were low both in comparison to safe consumption guidelines and to other locations.

  7. The economic value of Trinity River water

    USGS Publications Warehouse

    Douglas, A.J.; Taylor, J.G.

    1999-01-01

    The Trinity River, largest tributary of the Klamath River, has its head-waters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the Sacramento River, and power production at three of these installations would diminish if no Trinity River water were diverted to the Sacramento River. After Trinity River water reaches the Sacramento River, it flows toward the Sacramento-San Joaquin Delta and San Francisco Bay. Trinity River water is pumped via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The social cost of putting more water down the Trinity River is the sum of the value of the foregone consumer surplus from hydropower production as well as the value of the foregone irrigation water. Sharply diminished instream flows have also severely affected the size and robustness of Trinity River salmon, steelhead, shad and sturgeon runs. Survey data were used to estimate the non-market benefits of augmenting Trinity River instream flows by letting more water flow down the Trinity and moving less water to the Sacramento River. Preservation benefits for Trinity River instream flows and fish runs are $803 million per annum for the scenario that returns the most water down the Trinity River, a value that greatly exceeds the social cost estimate.The Trinity River, largest tributary of the Klamath River, has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the

  8. Hydrogeologic data for the Big River-Mishnock River stream-aquifer system, central Rhode Island

    USGS Publications Warehouse

    Craft, P.A.

    2001-01-01

    Hydrogeology, ground-water development alternatives, and water quality in the BigMishnock stream-aquifer system in central Rhode Island are being investigated as part of a long-term cooperative program between the Rhode Island Water Resources Board and the U.S. Geological Survey to evaluate the ground-water resources throughout Rhode Island. The study area includes the Big River drainage basin and that portion of the Mishnock River drainage basin upstream from the Mishnock River at State Route 3. This report presents geologic data and hydrologic and water-quality data for ground and surface water. Ground-water data were collected from July 1996 through September 1998 from a network of observation wells consisting of existing wells and wells installed for this study, which provided a broad distribution of data-collection sites throughout the study area. Streambed piezometers were used to obtain differences in head data between surface-water levels and ground-water levels to help evaluate stream-aquifer interactions throughout the study area. The types of data presented include monthly ground-water levels, average daily ground-water withdrawals, drawdown data from aquifer tests, and water-quality data. Historical water-level data from other wells within the study area also are presented in this report. Surface-water data were obtained from a network consisting of surface-water impoundments, such as ponds and reservoirs, existing and newly established partial-record stream-discharge sites, and synoptic surface-water-quality sites. Water levels were collected monthly from the surface-water impoundments. Stream-discharge measurements were made at partial-record sites to provide measurements of inflow, outflow, and internal flow throughout the study area. Specific conductance was measured monthly at partial-record sites during the study, and also during the fall and spring of 1997 and 1998 at 41 synoptic sites throughout the study area. General geologic data, such as

  9. Estimation of stream temperature in support of fish production modeling under future climates in the Klamath River Basin

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.

    2012-01-01

    Stream temperature estimates under future climatic conditions were needed in support of fish production modeling for evaluation of effects of dam removal in the Klamath River Basin. To allow for the persistence of the Klamath River salmon fishery, an upcoming Secretarial Determination in 2012 will review potential changes in water quality and stream temperature to assess alternative scenarios, including dam removal. Daily stream temperature models were developed by using a regression model approach with simulated net solar radiation, vapor density deficit calculated on the basis of air temperature, and mean daily air temperature. Models were calibrated for 6 streams in the Lower, and 18 streams in the Upper, Klamath Basin by using measured stream temperatures for 1999-2008. The standard error of the y-estimate for the estimation of stream temperature for the 24 streams ranged from 0.36 to 1.64°C, with an average error of 1.12°C for all streams. The regression models were then used with projected air temperatures to estimate future stream temperatures for 2010-99. Although the mean change from the baseline historical period of 1950-99 to the projected future period of 2070-99 is only 1.2°C, it ranges from 3.4°C for the Shasta River to no change for Fall Creek and Trout Creek. Variability is also evident in the future with a mean change in temperature for all streams from the baseline period to the projected period of 2070-99 of only 1°C, while the range in stream temperature change is from 0 to 2.1°C. The baseline period, 1950-99, to which the air temperature projections were corrected, established the starting point for the projected changes in air temperature. The average measured daily air temperature for the calibration period 1999-2008, however, was found to be as much as 2.3°C higher than baseline for some rivers, indicating that warming conditions have already occurred in many areas of the Klamath River Basin, and that the stream temperature

  10. Appendix A The influence of junction hydrodynamics on entrainment of juvenile salmon into the interior Sacramento-San Joaquin River Delta

    NASA Astrophysics Data System (ADS)

    Ramón Casañas, Cintia; Burau, Jon; Blake, Aaron; Acosta, Mario; Rueda, Francisco

    2017-04-01

    River junctions where water may follow two or more alternative pathways (diffluences) could be critical points in river networks where aquatic migratory species select different migration routes. Federally listed Sacramento River Chinook salmon juveniles must survive passage through the tidal Sacramento - San Joaquin River Delta in order to successfully out-migrate to the ocean. Two of the four main migration routes identified for salmon in the Sacramento River direct them to the interior of the delta, where salmon survival is known to decrease dramatically. Migration route selection is thought to be advection-dominated, but the combination of physical and biological processes that control route selection is still poorly understood. The reach in the Sacramento-River where the entrances of the two lower-survival migration routes are located is strongly influenced by the tides, with flows reversing twice daily, and the two diffluences are located in the outside of the same Sacramento River bend where secondary circulation occurs. Three dimensional simulations are conducted, both in the Eularian and Lagrangian frame, to understand tidal and secondary-circulation effects on the migration route selection of juveniles within this reach of the Sacramento River. Although salmon behavior is reduced to the simplest (passively-driven neutrally-buoyant particles), the preliminary results here presented are consistent with previous studies that show that during the flood tide almost all the flow, and thus, all the salmon, are directed to the interior delta through these two migration routes. Simulated fish entrainment rates into the interior of the delta tend to be larger than those expected from flow entrainment calculations alone, particularly during ebb tides. Several factors account for these tendencies. First, the fraction of the flow diverted to the side channel in the shallowest layers tend to be higher than in the deeper layers, as a result of the secondary circulation

  11. Installation Development Environmental Assessment Travis Air Force Base, California

    DTIC Science & Technology

    2007-11-01

    United States Code USEPA United States Environmental Protection Agency USFWS United States Fish and Wildlife Service USGS United States...kilometers) north to south, its northern half referred to as the Sacramento Valley and its southern half as the San Joaquin Valley . This area is...Sacramento and San Joaquin Rivers, fans and floodplains of tributary streams, and terraces and foothills around the edge of the valleys . Elevation

  12. The significance of small streams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2017-09-01

    Headwaters, defined here as first- and secondorder streams, make up 70%‒80% of the total channel length of river networks. These small streams exert a critical influence on downstream portions of the river network by: retaining or transmitting sediment and nutrients; providing habitat and refuge for diverse aquatic and riparian organisms; creating migration corridors; and governing connectivity at the watershed-scale. The upstream-most extent of the channel network and the longitudinal continuity and lateral extent of headwaters can be difficult to delineate, however, and people are less likely to recognize the importance of headwaters relative to other portions of a river network. Consequently, headwaters commonly lack the legal protections accorded to other portions of a river network and are more likely to be significantly altered or completely obliterated by land use.

  13. 2008-09 National Rivers and Streams Assessment Fish Tissue Data Dictionary

    EPA Pesticide Factsheets

    The Office of Science and Technology (OST) is providing the fish tissue results from the 2008-09 National Rivers and Streams Assessment (NRSA). This document includes the “data dictionary” for Mercury, Selenium, PBDEs, PCBs, Pesticides and PFCs.

  14. Translocation of Humpback Chub into tributary streams of the Colorado River: Implications for conservation of large-river fishes

    USGS Publications Warehouse

    Spurgeon, Jonathan J.; Paukert, Craig P.; Healy, Brian D.; Trammell, Melissa; Speas, Dave; Smith, Emily Omana

    2015-01-01

    The Humpback Chub Gila cypha, a large-bodied, endangered cyprinid endemic to the Colorado River basin, is in decline throughout most of its range due largely to anthropogenic factors. Translocation of Humpback Chub into tributaries of the Colorado River is one conservation activity that may contribute to the expansion of the species’ current range and eventually provide population redundancy. We evaluated growth, survival, and dispersal following translocation of approximately 900 Humpback Chub over a period of 3 years (2009, 2010, and 2011) into Shinumo Creek, a tributary stream of the Colorado River within Grand Canyon National Park. Growth and condition of Humpback Chub in Shinumo Creek were consistent among year-classes and equaled or surpassed growth estimates from both the main-stem Colorado River and the Little Colorado River, where the largest (and most stable) Humpback Chub aggregation remains. Based on passive integrated tag recoveries, 53% ( = 483/902) of translocated Humpback Chub dispersed from Shinumo Creek into the main-stem Colorado River as of January 2013, 35% leaving within 25 d following translocation. Annual apparent survival estimates within Shinumo Creek ranged from 0.22 to 0.41, but were strongly influenced by emigration. Results indicate that Shinumo Creek provides favorable conditions for growth and survival of translocated Humpback Chub and could support a new population if reproduction and recruitment occur in the future. Adaptation of translocation strategies of Humpback Chub into tributary streams ultimately may refine the role translocation plays in recovery of the species.

  15. Fish communities and their associations with environmental variables, lower San Joaquin River drainage, California

    USGS Publications Warehouse

    Brown, L.R.

    2000-01-01

    Twenty sites in the lower San Joaquin River drainage, California, were sampled from 1993 to 1995 to characterize fish communities and their associations with measures of water quality and habitat quality. The feasibility of developing an Index of Biotic Integrity was assessed by evaluating four fish community metrics, including percentages of native fish, omnivorous fish, fish intolerant of environmental degradation, and fish with external anomalies. Of the thirty-one taxa of fish captured during the study, only 10 taxa were native to the drainage. Multivariate analyses of percentage data identified four site groups characterized by different groups of species. The distributions of fish species were related to specific conductance, gradient, and mean depth; however, specific conductance acted as a surrogate variable for a large group of correlated variables. Two of the fish community metrics - percentage of introduced fish and percentage of intolerant fish - appeared to be responsive to environmental quality but the responses of the other two metrics - percentage of omnivorous fish and percentage of fish with anomalies - were less direct. The conclusion of the study is that fish communities are responsive to environmental conditions, including conditions associated with human-caused disturbances, particularly agriculture and water development. The results suggest that changes in water management and water quality could result in changes in species distributions. Balancing the costs and benefits of such changes poses a considerable challenge to resource managers.

  16. Predicting thermal reference conditions for USA streams and rivers

    USGS Publications Warehouse

    Hill, Ryan A.; Hawkins, Charles P.; Carlisle, Daren M.

    2013-01-01

    Temperature is a primary driver of the structure and function of stream ecosystems. However, the lack of stream temperature (ST) data for the vast majority of streams and rivers severely compromises our ability to describe patterns of thermal variation among streams, test hypotheses regarding the effects of temperature on macroecological patterns, and assess the effects of altered STs on ecological resources. Our goal was to develop empirical models that could: 1) quantify the effects of stream and watershed alteration (SWA) on STs, and 2) accurately and precisely predict natural (i.e., reference condition) STs in conterminous USA streams and rivers. We modeled 3 ecologically important elements of the thermal regime: mean summer, mean winter, and mean annual ST. To build reference-condition models (RCMs), we used daily mean ST data obtained from several thousand US Geological Survey temperature sites distributed across the conterminous USA and iteratively modeled ST with Random Forests to identify sites in reference condition. We first created a set of dirty models (DMs) that related STs to both natural factors (e.g., climate, watershed area, topography) and measures of SWA, i.e., reservoirs, urbanization, and agriculture. The 3 models performed well (r2 = 0.84–0.94, residual mean square error [RMSE] = 1.2–2.0°C). For each DM, we used partial dependence plots to identify SWA thresholds below which response in ST was minimal. We then used data from only the sites with upstream SWA below these thresholds to build RCMs with only natural factors as predictors (r2 = 0.87–0.95, RMSE = 1.1–1.9°C). Use of only reference-quality sites caused RCMs to suffer modest loss of predictor space and spatial coverage, but this loss was associated with parts of ST response curves that were flat and, therefore, not responsive to further variation in predictor space. We then compared predictions made with the RCMs to predictions made with the DMs with SWA set to 0. For most

  17. Chemical character of streams in the Delaware River basin

    USGS Publications Warehouse

    Anderson, Peter W.; McCarthy, Leo T.

    1963-01-01

    The water chemistry of streams in the Delaware River basin falls into eight general groups, when mapped according to the prevalent dissolved-solids content and the predominant ions normally found in the water. The approximate regions representing each of these iso-chemical quality groups are shown on the accompanying base map of the drainage basin.

  18. BIOTIC INTEGRITY OF STREAMS IN THE SAVANNAH RIVER SITE INTEGRATOR OPERABLE UNITS, 1996 TO 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paller, M; Susan Dyer, S

    2004-11-08

    The Savannah River Site (SRS) has been divided into six Integrator Operable Units (IOUs) that correspond to the watersheds of the five major streams on the SRS (Upper Three Runs, Fourmile Branch, Pen Branch, Steel Creek, and Lower Three Runs) and the portions of the Savannah River and Savannah River Swamp associated with the SRS. The streams are the primary integrators within each IOU because they potentially receive, through surface or subsurface drainage, soluble contaminants from all waste sites within their watersheds. If these contaminants reach biologically significant levels, they would be expected to effect the numbers, types, and healthmore » of stream organisms. In this study, biological sampling was conducted within each IOU as a measure of the cumulative ecological effects of the waste sites within the IOUs. The use of information from biological sampling to assess environmental quality is often termed bioassessment. The IOU bioassessment program included 38 sites in SRS streams and nine sites in the Savannah River. Sampling was conducted in 1996 to 1998, 2000, and 2003. Four bioassessment methods were used to evaluate ecological conditions in the IOU streams: the Index of Biotic Integrity, the Fish Health Assessment Index, measurement of fish tissue contaminant levels, and two benthic macroinvertebrate indices. The Index of Biotic Integrity (IBI) is an EPA supported method based on comparison of ecologically important and sensitive fish assemblage variables between potentially disturbed and reference (i.e., undisturbed) sites. It is designed to assess the ability of a stream to support a self-sustaining biological community and ecological processes typical of undisturbed, natural conditions. Since many types of contaminants can bioaccumulate, fish tissue contaminant data were used to determine the types of chemicals fish were exposed to and their relative magnitudes among IOUs. The Fish Health Assessment Index (HAI) is an EPA supported method for

  19. Nitrification and Microbial Activity in Response to Wastewater Effluent in the Sacramento/San Joaquin River Delta

    NASA Astrophysics Data System (ADS)

    Challenor, T.; Damashek, J.; Tolar, B. B.; Francis, C.; Casciotti, K. L.

    2016-12-01

    Nitrification, the oxidation of ammonium (NH4+) to nitrate (NO3-) by a coterie of ammonia-oxidizing bacteria (AOB) and archaea (AOA), is a crucial step in removing nitrogen from marine ecosystems. The Sacramento/San Joaquin River delta receives ammonium-laden effluent from the Sacramento Regional Wastewater Treatment Plant (SRWTP) and nitrate from agriculture runoff. The system provides freshwater to irrigate the Central Valley and drinking water for many millions of people. In recent years, however, this environment has experienced ecological turmoil - the Pelagic Organism Decline (POD) refers to a die-out of fish and other species over the course of three decades. One explanation implicated excessive ammonium input, claiming it limited primary productivity and hurt pelagic fish down the line. A new hypothesis, however, posits that the ecosystem may soon face the opposite problem: over-productivity and hypoxia due to increased light availability and reduced turbidity. Studying the rate of nitrification and the makeup of the microbial community will further elucidate how nutrient loading has impacted this ecosystem. Nitrification rates were calculated from water samples collected in the Sacramento River starting at the SRWTP and moving downstream. Samples were spiked with 15N-labeled ammonium and incubated for 24 hours in triplicate. Four time-points were extracted and the "denitrifier" method was used to measure the isotopic ratio of N over time. DNA and RNA were extracted from filtered water at each site and PCR and qPCR assays were used targeting the amoA gene, which encodes the α-subunit of ammonia monooxygenase, responsible for oxidizing ammonium to nitrite (NO2-). Consistent with previous nitrification data, rates were highest in the lower river downstream of the SRWTP, where nitrate concentrations were correspondingly elevated. AOB predominated in the ammonia oxidizing community, and some clades were unique to this ecosystem. Nitrifying microbes provide an

  20. Scaling up watershed model parameters--Flow and load simulations of the Edisto River Basin

    USGS Publications Warehouse

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul

    2014-01-01

    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are some of the highest recorded in the United States. As part of an effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River basin, analyses and simulations of the hydrology of the Edisto River basin were made with the topography-based hydrological model (TOPMODEL). The potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River basin, was assessed. Scaling up was done in a step-wise process beginning with applying the calibration parameters, meteorological data, and topographic wetness index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made with subsequent simulations culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River basin and updated calibration parameters for some of the TOPMODEL calibration parameters. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the two models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the significant difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variables in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD-H, and LOADEST

  1. Effects of flow diversions on water and habitat quality: Examples from California's highly manipulated Sacramento–San Joaquin Delta

    USGS Publications Warehouse

    Monsen, Nancy E.; Cloern, James E.; Burau, Jon R.

    2007-01-01

    We use selected monitoring data to illustrate how localized water diversions from seasonal barriers, gate operations, and export pumps alter water quality across the Sacramento-San Joaquin Delta (California). Dynamics of water-quality variability are complex because the Delta is a mixing zone of water from the Sacramento and San Joaquin Rivers, agricultural return water, and the San Francisco Estuary. Each source has distinct water-quality characteristics, and the contribution of each source varies in response to natural hydrologic variability and water diversions. We use simulations with a tidal hydrodynamic model to reveal how three diversion events, as case studies, influence water quality through their alteration of Delta-wide water circulation patterns and flushing time. Reduction of export pumping decreases the proportion of Sacramento- to San Joaquin-derived fresh water in the central Delta, leading to rapid increases in salinity. Delta Cross Channel gate operations control salinity in the western Delta and alter the freshwater source distribution in the central Delta. Removal of the head of Old River barrier, in autumn, increases the flushing time of the Stockton Ship Channel from days to weeks, contributing to a depletion of dissolved oxygen. Each shift in water quality has implications either for habitat quality or municipal drinking water, illustrating the importance of a systems view to anticipate the suite of changes induced by flow manipulations, and to minimize the conflicts inherent in allocations of scarce resources to meet multiple objectives.

  2. Power of Streams and Power of Management: How Community and Fluvial Science Work Together for Massachusetts Rivers

    NASA Astrophysics Data System (ADS)

    Hatch, C. E.; Mabee, S. B.; Slovin, N. B.; Vogel, E.; Gartner, J. D.; Gillett, N.; Warner, B. P.

    2015-12-01

    In the Northeastern U.S., the most costly damages from intense storm events were impacts to road-stream crossings. In steep post-glacial terrain, erosion by floodwater and entrained sediment is the largest destructive force during intense storms, and the most likely driver of major morphological changes to riverbanks and channels. Steam power analysis is a tool that can successfully quantify floodwater energy that caused damage afterward, however, prediction of which reaches or watersheds may experience future impacts remains uncertain. We must better determine how states with thousands of river miles may better prioritize flood mitigation studies, crossing replacements, or other infrastructure upgrades for future flood resilience within resource constraints. This challenged us to develop a statewide-scale scientific method for screening waterways and translating the results into effective policies for river corridor management. Here we present a method based on stream power analysis using widely-available 10-m DEMs and stream flow data to identify locations with extreme high or low stream power values (i.e., >300 W⁄m2 or <60 W⁄m2) or abrupt changes in these values. We used this information to identify potential areas of erosion or deposition in the Deerfield River watershed in Massachusetts and Vermont, then compared it to areas where damage occurred during Tropical Storm Irene. We show that areas of increasing (with respect to distance downstream) and high stream power are prone to landslides, bank failures, and other pulse sediment inputs in flood events. These are also the focal points of wood input to rivers, which combined with increased sediment load, makes culverts in these reaches especially prone to failure. Integration of this information into state databases allows communities to prioritize and make land-use decisions that are informed by the fluvial geomorphic workings of the larger watershed, but that have powerful local implications. Outreach and

  3. Freshwater Fish Assemblage Patterns in Rhode Island Streams and Rivers (ESA)

    EPA Science Inventory

    Patterns in fish assemblages in streams and rivers can inform watershed and water management, yet these patterns are not well characterized for the U.S. state of Rhode Island. Here we relate freshwater fish data collected by the Rhode Island Department of Environmental Managemen...

  4. Hurricane Joaquin 9/30/15

    NASA Image and Video Library

    2017-12-08

    NOAA's GOES-East satellite captured this visible image of Hurricane Joaquin east of the Bahamas on Sept. 30 at 1745 UTC (1:45 p.m. EDT). Credit: NASA/NOAA GOES Project At 11 a.m. EDT (1500 UTC) on Wednesday, September 30, 2015 the center of Hurricane Joaquin was located near latitude 24.7 North, longitude 72.6 West. That puts the center of Joaquin about 215 miles (345 km) east-northeast of the Central Bahamas. Joaquin became a tropical storm Monday evening (EDT), September 29 when it was midway between the Bahamas and Bermuda. By 8 a.m. EDT on September 30, it strengthened into a hurricane and has become the third hurricane of the Atlantic Hurricane season. On September 30, the National Hurricane Center issued a Hurricane Warning for the central Bahamas including Cat Island, the Exumas, Long Island, Rum Cay, and San Salvador. A Hurricane Watch is in effect for the northwestern Bahamas including the Abacos, Berry Islands, Bimini, Eleuthera, Grand Bahama Island, and New Providence, but excluding Andros Island. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. The ecology of methane in streams and rivers: Patterns, controls, and global significance

    USGS Publications Warehouse

    Stanley, Emily H.; Casson, Nora J.; Christel, Samuel T.; Crawford, John T.; Loken, Luke C.; Oliver, Samantha K.

    2016-01-01

    Streams and rivers can substantially modify organic carbon (OC) inputs from terrestrial landscapes, and much of this processing is the result of microbial respiration. While carbon dioxide (CO2) is the major end-product of ecosystem respiration, methane (CH4) is also present in many fluvial environments even though methanogenesis typically requires anoxic conditions that may be scarce in these systems. Given recent recognition of the pervasiveness of this greenhouse gas in streams and rivers, we synthesized existing research and data to identify patterns and drivers of CH4, knowledge gaps, and research opportunities. This included examining the history of lotic CH4 research, creating a database of concentrations and fluxes (MethDB) to generate a global-scale estimate of fluvial CH4 efflux, and developing a conceptual framework and using this framework to consider how human activities may modify fluvial CH4 dynamics. Current understanding of CH4 in streams and rivers has been strongly influenced by goals of understanding OC processing and quantifying the contribution of CH4 to ecosystem C fluxes. Less effort has been directed towards investigating processes that dictate in situ CH4 production and loss. CH4 makes a meager contribution to watershed or landscape C budgets, but streams and rivers are often significant CH4 sources to the atmosphere across these same spatial extents. Most fluvial systems are supersaturated with CH4 and we estimate an annual global emission of 26.8 Tg CH4, equivalent to ~15-40% of wetland and lake effluxes, respectively. Less clear is the role of CH4 oxidation, methanogenesis, and total anaerobic respiration to whole ecosystem production and respiration. Controls on CH4 generation and persistence can be viewed in terms of proximate controls that influence methanogenesis (organic matter, temperature, alternative electron acceptors, nutrients) and distal geomorphic and hydrologic drivers. Multiple controls combined with its

  6. ALIEN SPECIES IMPORTANTANCE IN NATIVE VEGETATION ALONG WADEABLE STREAMS, JOHN DAY RIVER BASIN, OREGON, USA

    EPA Science Inventory

    We evaluated the importance of alien species in existing vegetation along wadeable streams of a large, topographically diverse river basin in eastern Oregon, USA; sampling 165 plots (30 × 30 m) across 29 randomly selected 1-km stream reaches. Plots represented eight streamside co...

  7. Regional patterns of total nitrogen concentrations in the National Rivers and Streams Assessment

    USGS Publications Warehouse

    Omernik, James M.; Paulsen, Steven G.; Griffith, Glenn E.; Weber, Marc H.

    2016-01-01

    Patterns of nitrogen (N) concentrations in streams sampled by the National Rivers and Streams Assessment (NRSA) were examined semiquantitatively to identify regional differences in stream N levels. The data were categorized and analyzed by watershed size classes to reveal patterns of the concentrations that are consistent with the spatial homogeneity in natural and anthropogenic characteristics associated with regional differences in N levels. Ecoregions and mapped information on human activities including agricultural practices were used to determine the resultant regions. Marked differences in N levels were found among the nine aggregations of ecoregions used to report the results of the NRSA. We identified distinct regional patterns of stream N concentrations within the reporting regions that are associated with the characteristics of specific Level III ecoregions, groups of Level III ecoregions, groups of Level IV ecoregions, certain geographic characteristics within ecoregions, and/or particular watershed size classes. We described each of these regions and illustrated their areal extent and median and range in N concentrations. Understanding the spatial variability of nutrient concentrations in flowing waters and the apparent contributions that human and nonhuman factors have on different sizes of streams and rivers is critical to the development of effective water quality assessment and management plans. This semi-quantitative analysis is also intended to identify areas within which more detailed quantitative work can be conducted to determine specific regional factors associated with variations in stream N concentrations.

  8. Mapping spatial patterns of stream power and channel change along a gravel-bed river in northern Yellowstone

    NASA Astrophysics Data System (ADS)

    Lea, Devin M.; Legleiter, Carl J.

    2016-01-01

    Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing or field surveys. This study sought to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8-km reach. Aerial photographs from 1994 to 2012 and ground-based surveys were used to develop a locational probability map and morphologic sediment budget to assess lateral channel mobility and changes in net sediment flux. A drainage area-to-discharge relationship and DEM developed from LiDAR data were used to obtain the discharge and slope values needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of sediment sources and sinks. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volumetric change in each time increment. Collectively, we refer to these methods as the stream power gradient (SPG) framework. The results of this study were compromised by methodological limitations of the SPG framework and revealed some complications likely to arise when applying this framework to small, wandering, gravel-bed rivers. Correlations between stream power gradients and sediment flux were generally weak, highlighting the inability of relatively simple statistical approaches to link sub-budget cell-scale sediment dynamics to larger-scale driving forces such as stream power gradients. Improving the moderate spatial resolution techniques used in this study and acquiring very-high resolution data from recently developed methods in fluvial remote

  9. Pesticides in the rivers and streams of two river basins in northern Greece.

    PubMed

    Papadakis, Emmanouil-Nikolaos; Tsaboula, Aggeliki; Vryzas, Zisis; Kotopoulou, Athina; Kintzikoglou, Katerina; Papadopoulou-Mourkidou, Euphemia

    2018-05-15

    The pollution caused by pesticides, and their ecotoxicological implications were investigated in water samples from the Strymonas and Nestos river basins (Northern Greece). Chlorpyrifos was the most frequently detected pesticide in both basins (42 and 37% in the Strymonas and Nestos basins, respectively), followed by fluometuron and terbuthylazine (25 and 12%, Strymonas), and bentazone and boscalid (24 and 10%, Nestos). The Annual Average and the Maximum Allowable Concentration of Environmental Quality Standards set in European Union Directives were exceeded in several cases by alphamethrin and chlorpyrifos. Risk Quotient assessment revealed significant ecological risk towards the aquatic organisms in over 20% of the water samples. Insecticides (mostly pyrethroids and organophosphosphates) contributed more in the ecotoxicological risk than herbicides and fungicides. The three main rivers in the current study (Strymonas, Aggitis, Nestos) exhibited similar sum of RQs indicating that aquatic life in all three of them was at the same risk level. However, the sums of RQs were higher in the various streams monitored than the three rivers. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Water-quality data for the Talkeetna River and four streams in National Parks, Cook Inlet basin, Alaska, 1998

    USGS Publications Warehouse

    Frenzel, Steven A.; Dorava, Joseph M.

    1999-01-01

    Five streams in the Cook Inlet Basin, Alaska, were sampled in 1998 to provide the National Park Service with baseline information on water quality. Four of these streams drain National Park Service land: Costello and Colorado Creeks in Denali National Park and Preserve, Johnson River in Lake Clark National Park and Preserve, and Kamishak River in Katmai National Park and Preserve. The fifth site was on the Talkeetna River, outside of national park boundaries. Samples of stream water, streambed sediments, and fish tissues were collected for chemical analyses. Biological and geomorphic information was also collected at each site. Nutrient concentrations in stream water were low and commonly were less than analytical detection limits. Analyses of fish tissues for 28 organochlorine compounds at Talkeetna River and Costello Creek produced just one detection. Hexachlorobenzene was detected at a concentration of 5.70 micrograms per kilogram in slimy sculpin from the Talkeetna River. Streambed sediment samples from the Talkeetna River had three organochlorine compounds at detectable levels; hexachlorobenzene was measured at 13 micrograms per kilogram and two other compounds were below the minimum reporting levels. At Colorado Creek, Johnson River, and Kamishak River, where fish samples were not collected, no organochlorine compounds were detected in streambed sediment samples. Several semivolatile organic compounds were detected at Colorado Creek and Costello Creek. Only one compound, dibenzothiophene, detected at Costello Creek at a concentration of 85 micrograms per kilogram was above the minimum reporting limit. No semivolatile organic compounds were detected at the Talkeetna, Kamishak, or Johnson Rivers. Trace elements were detected in both fish tissues and streambed sediments. Macroinvertebrate and fish samples contained few taxa at all sites. Total numbers of macroinvertebrate taxa ranged from 19 at the Johnson River to 38 at the Talkeetna River. Diptera were the

  11. Phosphorus and nitrogen limitation and impairment of headwater streams relative to rivers in Great Britain: A national perspective on eutrophication

    USDA-ARS?s Scientific Manuscript database

    This study provides a first national-scale assessment of the nutrient status of British headwater streams within the wider river network, by joint analysis of the national Countryside Survey Headwater Stream and Harmonised River Monitoring Scheme datasets. The results show that, while localized nutr...

  12. Sediment dynamics of a high gradient stream in the Oi river basin of Japan

    Treesearch

    Hideji Maita

    1991-01-01

    This paper discusses the effects of the valley width for discontinuities of sediment transport in natural stream channels. The results may be summarized as follows: 1)ln torrential rivers. deposition or erosion depend mostly on the sediment supply. not on the magnitude of the flow discharge. 2)Wide valley floors of streams are depositional spaces where the excess...

  13. Stream metabolism heats up

    NASA Astrophysics Data System (ADS)

    Heffernan, James B.

    2018-06-01

    Higher stream temperatures as the climate warms could lead to lower ecosystem productivity and higher CO2 emissions in streams. An analysis of stream ecosystems finds that such changes will be greatest in the warmest and most productive streams.

  14. Assemblages of fishes and their associations with environmental variables, lower San Joaquin River drainage, California

    USGS Publications Warehouse

    Brown, Larry R.

    1998-01-01

    Twenty sites in the lower San Joaquin River drainage, California, were sampled from 1993 to 1995 to characterize fish assemblages and their associations with measures of water quality and habitat quality. In addition, four fish community metrics were assessed, including percentages of native fish, omnivorous fish, fish intolerant of environmental degradation, and fish with external anomalies. Of the 31 taxa of fish captured during the study, only 10 taxa were native to the drainage. Multivariate analyses of percentage data identified four site groups characterized by characterized by different groups of species. The distributions of fish species were related to specific conductance, gradient, and mean depth; however, specific conductance acted as a surrogate variable for a large group of correlated variables. Two of the fish community metrics--percentage of introduced fish and percentage of intolerant fish--appeared to be responsive to environmental quality but the responses of the other two metrics--percentage of omnivorous fish and percentage of fish with anomalies--were less direct. The conclusion of the study is that fish assemblages are responsive to environmental conditions, including conditions associated with human-caused disturbances, particularly agriculture and water development. The results suggest that changes in water management and water quality could result in changes in species distributions. Balancing the costs and benefits of such changes poses a considerable challenge to resource managers. different groups of species.

  15. Occurrence and transport of acetochlor in streams of the Mississippi River Basin

    USGS Publications Warehouse

    Clark, G.M.; Goolsby, D.A.

    1999-01-01

    The herbicide acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6- methylphenyl) acetamide] was first used on corn (Zea mays L.) in the USA during the growing season of 1994. By 1996, it was the third most heavily used corn herbicide in the midwestern USA. During the growing season of 1997, 78% of 375 samples collected at 32 stream sites in the Mississippi River Basin contained detectable concentrations of acetochlor. However, concentrations in only 2% of the samples exceeded 2 ??g/L, the maximum annual average concentration allowable in public water supplies derived primarily from surface water. The largest acetochlor concentrations were detected in streams draining basins in parts of Illinois, Indiana, and Iowa. The median concentration of acetochlor in streams was about 10% that of atrazine (6- chloro-N-ethyl-N-isopropyl-1,3,5-triazine-2,4-diamine), about 25% that of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide], about 50% that of cyanazine [2-[[4-chloro-6-(ethylamino)-1,3,5- triazin-2-yl]amino]-2-methylpropionitrile], and about threefold that of alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl) acetanilide]. Load estimates indicate that, during the growing season of 1997, agricultural subbasins draining areas of Illinois, Indiana, and Iowa contributed about 37000 kg, or 74%, of the 50 000 kg of acetochlor measured in streams of the Mississippi River Basin.

  16. Impact of river water levels on the simulation of stream-aquifer exchanges over the Upper Rhine alluvial aquifer (France/Germany)

    NASA Astrophysics Data System (ADS)

    Vergnes, Jean-Pierre; Habets, Florence

    2018-05-01

    This study aims to assess the sensitivity of river level estimations to the stream-aquifer exchanges within a hydrogeological model of the Upper Rhine alluvial aquifer (France/Germany), characterized as a large shallow aquifer with numerous hydropower dams. Two specific points are addressed: errors associated with digital elevation models (DEMs) and errors associated with the estimation of river level. The fine-resolution raw Shuttle Radar Topographic Mission dataset is used to assess the impact of the DEM uncertainties. Specific corrections are used to overcome these uncertainties: a simple moving average is applied to the topography along the rivers and additional data are used along the Rhine River to account for the numerous dams. Then, the impact of the river-level temporal variations is assessed through two different methods based on observed rating curves and on the Manning formula. Results are evaluated against observation data from 37 river-level points located over the aquifer, 190 piezometers, and a spatial database of wetlands. DEM uncertainties affect the spatial variability of the stream-aquifer exchanges by inducing strong noise and unrealistic peaks. The corrected DEM reduces the biases between observations and simulations by 22 and 51% for the river levels and the river discharges, respectively. It also improves the agreement between simulated groundwater overflows and observed wetlands. Introducing river-level time variability increases the stream-aquifer exchange range and reduces the piezometric head variability. These results confirm the need to better assess river levels in regional hydrogeological modeling, especially for applications in which stream-aquifer exchanges are important.

  17. Effects of Forecasted Climate Change on Stream Temperatures in the Nooksack River Basin

    NASA Astrophysics Data System (ADS)

    Truitt, S. E.; Mitchell, R. J.; Yearsley, J. R.; Grah, O. J.

    2017-12-01

    The Nooksack River in northwest Washington State provides valuable habitat for endangered salmon species, as such it is critical to understand how stream temperatures will be affected by forecasted climate change. The Middle and North Forks basins of the Nooksack are high-relief and glaciated, whereas the South Fork is a lower relief rain and snow dominated basin. Due to a moderate Pacific maritime climate, snowpack in the basins is sensitive to temperature increases. Previous modeling studies in the upper Nooksack basins indicate a reduction in snowpack and spring runoff, and a recession of glaciers into the 21st century. How stream temperatures will respond to these changes is unknown. We use the Distributed Hydrology Soil Vegetation Model (DHSVM) coupled with a glacier dynamics model and the River Basin Model (RBM) to simulate hydrology and stream temperature from present to the year 2100. We calibrate the DHSVM and RBM to the three forks in the upper 1550 km2 of the Nooksack basin, which contain an estimated 3400 hectares of glacial ice. We employ observed stream-temperature data collected over the past decade and hydrologic data from the four USGS streamflow monitoring sites within the basin and observed gridded climate data developed by Linveh et al. (2013). Field work was conducted in the summer of 2016 to determine stream morphology, discharge, and stream temperatures at a number of stream segments for the RBM calibration. We simulate forecast climate change impacts, using gridded daily downscaled data from global climate models of the CMIP5 with RCP4.5 and RCP8.5 forcing scenarios developed using the multivariate adaptive constructed analogs method (MACA; Abatzoglou and Brown, 2011). Simulation results project a trending increase in stream temperature as a result of lower snowmelt and higher air temperatures into the 21st century, especially in the lower relief, unglaciated South Fork basin.

  18. Hurricane Joaquin 9/30/15

    NASA Image and Video Library

    2017-12-08

    The MODIS instrument on NASA's Terra satellite captured Hurricane Joaquin off the Bahamas at 15:45 UTC (11:45 a.m. EDT) on September 30, 2015. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team At 11 a.m. EDT (1500 UTC) on Wednesday, September 30, 2015 the center of Hurricane Joaquin was located near latitude 24.7 North, longitude 72.6 West. That puts the center of Joaquin about 215 miles (345 km) east-northeast of the Central Bahamas. Joaquin became a tropical storm Monday evening (EDT), September 29 when it was midway between the Bahamas and Bermuda. By 8 a.m. EDT on September 30, it strengthened into a hurricane and has become the third hurricane of the Atlantic Hurricane season. On September 30, the National Hurricane Center issued a Hurricane Warning for the central Bahamas including Cat Island, the Exumas, Long Island, Rum Cay, and San Salvador. A Hurricane Watch is in effect for the northwestern Bahamas including the Abacos, Berry Islands, Bimini, Eleuthera, Grand Bahama Island, and New Providence, but excluding Andros Island. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. From Shoestring Rills to Dendritic River Networks: Documenting the Evolution of River Basins Towards Geometric Similarity Through Divide Migration, Stream Capture and Lateral Branching

    NASA Astrophysics Data System (ADS)

    Beeson, H. W.; McCoy, S. W.; Willett, S.

    2016-12-01

    Erosional river networks dissect much of Earth's surface into drainage basins. Global scaling laws such as Hack's Law suggest that river basins trend toward a particular scale-invariant shape. While erosional instabilities arising from competition between advective and diffusive processes can explain why headwaters branch, the erosional mechanics linking larger scale network branching with evolution towards a characteristic river basin shape remain poorly constrained. We map river steepness and a proxy for the steady-state elevation of river networks, χ, in simulated and real landscapes with a large range in spatial scale (102 -106 m) but with similar inclined, planar surfaces at the time of incipient network formation. We document that the evolution from narrow rill-like networks to dendritic, leaf-shaped river basins follows from drainage area differences between catchments. These serve as instabilities that grow, leading to divide migration, stream capture, lateral branching and network reorganization. As Horton hypothesized, incipient networks formed down gradient on an inclined, planar surface have an unequal distribution of drainage area and nonuniformity in response times such that larger basins erode more rapidly and branch laterally via capture of adjacent streams with lower erosion rates. Positive feedback owing to increase in drainage area furthers the process of branching at the expense of neighboring rivers. We show that drainage area exchange and the degree of network reorganization has a significant effect on river steepness in the Dragon's Back Pressure Ridge, CA, the Sierra Nevada, CA, and the Rocky Mountain High Plains, USA. Similarly, metrics of basin shape reveal that basins are evolving from narrow basins towards more common leaf shapes. Our results suggest that divide migration and stream capture driven by erosional disequilibrium could be fundamental processes by which river basins reach their characteristic geometry and dendritic form.

  20. Stream-aquifer interactions in the Straight River area, Becker and Hubbard counties, Minnesota

    USGS Publications Warehouse

    Stark, J.R.; Armstrong, David S.; Zwilling, Daniel R.

    1994-01-01

    Daily fluctuations of stream temperature are as great as 15 degrees Celsius during the summer, primarily in response to changes in air temperature. Ground-water discharge to the Straight River decreases stream temperature during the summer. Results of simulations from a stream-temperature model indicate that daily changes in stream temperature are strongly influenced by solar radiation, wind speed, stream depth, and ground-water inflow. Results of simulations from ground-water-flow and stream-temperature models developed for the investigation indicate a significant decrease in ground-water flow could result from ground-water withdrawal at rates similar to those measured during 1988. This reduction in discharge to the stream could result in an increase in stream temperature of 0.5 to 1.5 degrees Celsius. Nitrate concentrations in shallow wells screened at the water table, in some areas, are locally greater than the limit set by the Minnesota Pollution Control Agency. Nitrate concentrations in water from deeper wells and in the stream are low, generally less than 1.0 milligram per liter.

  1. Determination of channel capacity of the Mokelumne River downstream from Camanche Dam, San Joaquin and Sacramento Counties, California

    USGS Publications Warehouse

    Simpson, R.G.

    1972-01-01

    This study evaluates the adequacy of a 39-mile reach of the Mokelumne River in San Joaquin and Sacramento Counties, California, to carry planned flood releases between Camanche Reservoir and the Bensons Ferry Bridge near Thornton. The flood releases from Camanche Reservoir are to be restricted, insofar as possible, so that the flows in the Mokelumne River will not exceed 5,000 cfs (cubic feet per second) as measured at the gaging station below Camanche Dam. Areas of inundation and computed floodwater profiles are based on channel conditions in late 1970 and on observed water-surface profiles during flood releases of about 5,000 cfs in January 1969 and January 1970. The inundated area shown on the maps (appendix A) and the water-surface elevations indicated on the cross sections (appendix G) are for the flood releases of those dates. The following conclusions are contingent on there being no levee failures during periods of high flow and no significant channel changes since the flood release of January 1970. 1. High tides in San Francisco Bay and, to a greater degree, flood stages on the Cosumnes River, cause backwater in the study reach. Severe backwater conditions occurring simultaneously with a flow of 5,000 cfs in the Mokelumne River can increase the flood stage 4 to 6 feet at Bensons Ferry Bridge (cross section 1). Backwater effects decrease in an upstream direction and are less than 0.5 foot at cross section 35, a river distance of 8.6 miles upstream from cross section 1, and 1.5 miles downstream from the Peltier Road bridge. 2. In the reach between cross sections 1 and 35, a 5,000 cfs release from Camanche Reservoir with maximum backwater effect (measured at cross section 1 at the mouth of the Cosumnes River) is confined within the natural or leveed banks except on the right bank flood plain between cross sections 12 and 19. 3. Upstream from cross section 35, there is overbank flooding at a flow of 5,000 cfs between cross sections 48 and 51, and 62 and 67

  2. Ground water in the San Joaquin Valley, California

    USGS Publications Warehouse

    Kunkel, Fred; Hofman, Walter

    1966-01-01

    Ladies and gentlemen, it is a pleasure to be invited to attend this Irrigation Institute conference and to describe the Geological Survey's program of ground-water studies in the San Joaquin Valley. The U.S. Geological Survey has been making water-resources studies in cooperation with the State of California and other agencies in California for more than 70 years. Three of the earliest Geological Survey Water-Supply Papers--numbers 17, 18, and 19--published in 1898 and 1899, describe "Irrigation near Bakersfield," "Irrigation near Fresno," and "Irrigation near Merced." However, the first Survey report on ground-water occurrence in the San Joaquin Valley was "Ground Water in the San Joaquin Valley," by Mendenhall and others. The fieldwork was done from 1905 to 1910, and the report was published in 1916 as U.S. Geological Survey Water-Supply Paper 398.The current series of ground-water studies in the San Joaquin Valley was begun in 1952 as part of the California Department of Water Resources-U.S. Geological Survey cooperative water-resources program. The first report of this series is Geological Survey Water-Supply Paper 1469, "Ground-Water Conditions and Storage Capacity in the San Joaquin Valley." Other reports are Water-Supply Paper 1618, "Use of Ground-Water Reservoirs for Storage of Surface Water in the San Joaquin Valley;" Water-Supply Paper 1656, "Geology and Ground-Water Features of the Edison-Maricopa Area;" Water-Supply Paper 1360-G, "Ground- Water Conditions in the Mendota-Huron Area;" Water-Supply Paper 1457, "Ground-Water Conditions in the Avenal-McKittrick Area;" and an open-file report, "Geology, Hydrology, and Quality of Water in the Terra Bella-Lost Hills Area."In addition to the preceding published reports, ground-water studies currently are being made of the Kern Fan area, the Hanford- Visalia area, the Fresno area, the Merced area, and of the clays of Tulare Lake. Also, detailed studies of both shallow and deep subsidence in the southern part of

  3. Statistical modeling of daily and subdaily stream temperatures: Application to the Methow River Basin, Washington

    NASA Astrophysics Data System (ADS)

    Caldwell, R. J.; Gangopadhyay, S.; Bountry, J.; Lai, Y.; Elsner, M. M.

    2013-07-01

    Management of water temperatures in the Columbia River Basin (Washington) is critical because water projects have substantially altered the habitat of Endangered Species Act listed species, such as salmon, throughout the basin. This is most important in tributaries to the Columbia, such as the Methow River, where the spawning and rearing life stages of these cold water fishes occurs. Climate change projections generally predict increasing air temperatures across the western United States, with less confidence regarding shifts in precipitation. As air temperatures rise, we anticipate a corresponding increase in water temperatures, which may alter the timing and availability of habitat for fish reproduction and growth. To assess the impact of future climate change in the Methow River, we couple historical climate and future climate projections with a statistical modeling framework to predict daily mean stream temperatures. A K-nearest neighbor algorithm is also employed to: (i) adjust the climate projections for biases compared to the observed record and (ii) provide a reference for performing spatiotemporal disaggregation in future hydraulic modeling of stream habitat. The statistical models indicate the primary drivers of stream temperature are maximum and minimum air temperature and stream flow and show reasonable skill in predictability. When compared to the historical reference time period of 1916-2006, we conclude that increases in stream temperature are expected to occur at each subsequent time horizon representative of the year 2020, 2040, and 2080, with an increase of 0.8 ± 1.9°C by the year 2080.

  4. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM (EMAP): WESTERN STREAMS AND RIVERS STATISTICAL SUMMARY

    EPA Science Inventory

    This statistical summary reports data from the Environmental Monitoring and Assessment Program (EMAP) Western Pilot (EMAP-W). EMAP-W was a sample survey (or probability survey, often simply called 'random') of streams and rivers in 12 states of the western U.S. (Arizona, Californ...

  5. Water quality and discharge of streams in the Lehigh River Basin, Pennsylvania

    USGS Publications Warehouse

    McCarren, Edward F.; Keighton, Walter B.

    1969-01-01

    The Lehigh River, 100 miles long, is the second largest tributary to the Delaware River. It drains 1,364 square miles in four physiographic provinces. The Lehigh River basin includes mountainous and forested areas, broad agricultural valleys and areas of urban and industrial development. In the headwaters the water is of good quality and has a low concentration of solutes. Downstream, some tributaries receive coal-mine drainage and become acidic; others drain areas underlain by limestone and acquire alkaline characteristics. The alkaline streams neutralize and dilute the acid mine water where they mix. The dissolved-oxygen content of river water, which is high in the upper reaches of the stream, is reduced in the lower reaches because of lower turbulence, higher temperature, and the respiration of organisms. The Lehigh is used for public supply, recreation, waterpower, irrigation, and mining and other industrial purposes. Because the river is shallow in its upper reaches, most of the water comes in contact with the atmosphere as it churns over rocks and around islets and large boulders. Aeration of the water is rapid. When water that was low in dissolved-oxygen concentration was released from the lower strata of the Francis E. Walter Reservoir in June 1966, it quickly became aerated in the Lehigh River, and for 40 miles downstream from the dam the water was nearly saturated with oxygen. Most of the river water requires only moderate treatment for industrial use and public distribution throughout the Lehigh River valley. At times, however, some segments of the main river and its tributaries transport industrial wastes and acid coal-mine drainage. Usually the relatively high concentrations of solutes in water and the ensuing damage caused to quality by such waste discharges are more extensive and prolonged during droughts and other periods of low streamflow. For many years the Lehigh River flow has been continuously measured and its water chemically analyzed. Since

  6. Groundwater Quality in the Central Eastside San Joaquin Valley, California

    USGS Publications Warehouse

    Belitz, Kenneth; Landon, Matthew K.

    2010-01-01

    The Central Eastside study unit is located in California's San Joaquin Valley. The 1,695 square mile study unit includes three groundwater subbasins: Modesto, Turlock, and Merced (California Department of Water Resources, 2003). The primary water-bearing units consist of discontinuous lenses of gravel, sand, silt, and clay, which are derived largely from the Sierra Nevada Mountains to the east. Public-supply wells provide most of the drinking water supply in the Central Eastside. Consequently, the primary aquifer in the Central Eastside study unit is defined as that part of the aquifer corresponding to the perforated interval of wells listed in the California Department of Public Health database. Public-supply wells are typically drilled to depths of 200 to 350 feet, consist of solid casing from the land surface to a depth of about 100 to 200 feet, and they are perforated below the solid casing. Water quality in the shallower and deeper parts of the aquifer system may differ from that in the primary aquifer. The Central Eastside study unit has hot and dry summers and cool, moist, winters. Average annual rainfall ranges from 11 to 15 inches. The Stanislaus, Tuolumne, and Merced Rivers, with headwaters in the Sierra Nevada Mountains, are the primary streams traversing the study unit. Land use in the study unit is approximately 59 percent (%) agricultural, 34% natural (primarily grassland), and 7% urban. The primary crops are almonds, walnuts, peaches, grapes, grain, corn, and alfalfa. The largest urban areas (2003 population in parentheses) are the cities of Modesto (206,872), Turlock (63,467), and Merced (69,512). Municipal water use accounts for about 5% of the total water use in the Central Eastside study unit, with the remainder used for irrigated agriculture. Groundwater accounts for about 75% of the municipal supply, and surface water accounts for about 25%. Recharge to the groundwater flow system is primarily from percolation of irrigation return

  7. Evaluation of the antioxidant system and neurotoxic effects observed in Rhamdia branneri (Teleostei: Heptapteridae) sampled from streams of the lower Iguazu River basin.

    PubMed

    Sobjak, Thaís Maylin; Romão, Silvia; Cazarolli, Luisa Helena; Sampaio, Silvio César; Remor, Marcelo Bevilacqua; Guimarães, Ana Tereza Bittencourt

    2018-07-15

    The use of multiple biomarkers has been shown to be an efficient method for evaluating environmental contamination. In this work, we evaluate neurotoxic effects and the antioxidant system responses of the R. branneri collected in two streams of lower Iguazu River basin, relating them with different percentage of vegetation coverture, presence of pesticides and fall and winter seasons. The biological samples were collected in March and August of 2015, from two streams that belong to the lower Iguazu River basin (Brazil): the Manoel Gomes River and the Arquimedes Stream. Soil analyses were performed, and the results showed the presence of the following organophosphates in the Manoel Gomes River and the Arquimedes Stream: disulfoton, methyl parathion, and ronnel. The present study detected inhibition of cholinesterase activity in the brain and muscle of fish samples during the fall from the Manoel Gomes River and the Arquimedes Stream. In the Manoel Gomes River, elevated lipoperoxidation was also observed during the fall. It was observed that the increase or decrease of biomarkers was related to temporal variation and, possibly, to the exposure of animals to agrochemicals. Although the Manoel Gomes River and the Arquimedes Stream are located in regions with large areas of vegetation, the soil analyses show that agrochemical residues are able to reach these locations, which suggests that the fauna are in contact with oxidant and anti-cholinesterase agents during the fall, in addition to respond differently during each season. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Climate Change Impacts on Stream Temperature in Regulated River Systems: A Case Study in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Niemeyer, R. J.; Zhang, X.; Yearsley, J. R.; Voisin, N.; Nijssen, B.

    2017-12-01

    Climate change and associated changes in air temperature and precipitation are projected to impact natural water resources quantity, quality and timing. In the past century, over 280 major dams were built in the Southeastern United States (SEUS) (GRanD database). Regulation of the river system greatly alters natural streamflow as well as stream temperature. Understanding the impacts of climate change on regulated systems, particularly within the context of the Clean Water Act, can inform stakeholders how to maintain and adapt water operations (e.g. regulation, withdrawals). In this study, we use a new modeling framework to study climate change impacts on stream temperatures of a regulated river system. We simulate runoff with the Variable Infiltration Capacity (VIC) macroscale hydrological model, regulated streamflow and reservoir operations with a large-scale river routing-reservoir model (MOSART-WM), and stream temperature using the River Basin Model (RBM). We enhanced RBM with a two-layer thermal stratification reservoir module. This modeling framework captures both the impact of reservoir regulation on streamflow and the reservoir stratification effects on downstream temperatures. We evaluate changes in flow and stream temperatures based on climate projections from two representative concentration pathways (RCPs; RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We simulate river temperature with meteorological forcings that have been downscaled with the Multivariate Constructed Analogs (MACA) method. We are specifically interested in analyzing extreme periods during which stream temperature exceeds water quality standards. In this study, we focus on identifying whether these extreme temperature periods coincide with low flows, and whether the frequency and duration of these operationally-relevant periods will increase under future climate change.

  9. Prediction of traveltime and longitudinal dispersion in rivers and streams

    USGS Publications Warehouse

    Jobson, Harvey E.

    1996-01-01

    The possibility of a contaminant being accidentally or intentionally spilled upstream from a water supply is a constant concern to those diverting and using water from streams and rivers. Although many excellent models are available to estimate traveltime and dispersion, none can be used with confidence before calibration and verification to the particular river reach in question. Therefore, the availability of reliable input information is usually the weakest link in the chain of events needed to predict the rate of movement, dilution, and mixing of contaminants in rivers and streams. Measured tracer-response curves produced from the injection of a known quantity of soluble tracer provide an efficient method of obtaining the necessary data. The purpose of this report is to use previously presented concepts along with extensive data collected on time of travel and dispersion to provide guidance to water-resources managers and planners in responding to spills. This is done by providing methods to estimate (1) the rate of movement of a contaminant through a river reach, (2) the rate of attenuation of the peak concentration of a conservative contaminant with time, and (3) the length of time required for the contaminant plume to pass a point in the river. Although the accuracy of the predictions can be greatly increased by performing time-oftravel studies on the river reach in question, the emphasis of this report is on providing methods for making estimates where few data are available. Results from rivers of all sizes can be combined by defining the unit concentration as that concentration of a conservative pollutant that would result from injecting a unit of mass into a unit of flow. Unit-peak concentrations are compiled for more than 60 different rivers representing a wide range of sizes, slopes, and geomorphic types. Analyses of these data indicate that the unitpeak concentration is well correlated with the time required for a pollutant cloud to reach a specific

  10. Ecological assessment of streams in the Powder River Structural Basin, Wyoming and Montana, 2005-06

    USGS Publications Warehouse

    Peterson, D.A.; Wright, P.R.; Edwards, G.P.; Hargett, E.G.; Feldman, D.L.; Zumberge, J.R.; Dey, Paul

    2009-01-01

    Energy and mineral development, particularly coalbed natural gas development, is proceeding at a rapid pace in the Powder River Structural Basin (PRB) in northeastern Wyoming. Concerns about the potential effects of development led to formation of an interagency working group of primarily Federal and State agencies to address these issues in the PRB in Wyoming and in Montana where similar types of resources exist but are largely undeveloped. Under the direction of the interagency working group, an ecological assessment of streams in the PRB was initiated to determine the current status (2005–06) and to establish a baseline for future monitoring.The ecological assessment components include assessment of stream habitat and riparian zones as well as assessments of macroinvertebrate, algal, and fish communities. All of the components were sampled at 47 sites in the PRB during 2005. A reduced set of components, consisting primarily of macroinvertebrate and fish community assessments, was sampled in 2006. Related ecological data, such as habitat and fish community data collected from selected sites in 2004, also are included in this report.The stream habitat assessment included measurement of channel features, substrate size and embeddedness, riparian vegetation, and reachwide characteristics. The width-to-depth ratio (bankfull width/bankfull depth) tended to be higher at sites on the main-stem Powder River than at sites on the main-stem Tongue River and at sites on tributary streams. The streambed substrate particle size was largest at sites on the main-stem Tongue River and smallest at sites on small tributary streams such as Squirrel Creek and Otter Creek. Total vegetative cover at the ground level, understory, and canopy layers ranged from less than 40 percent at a few sites to more than 90 percent at many of the sites. A bank-stability index indicated that sites in the Tongue River drainage were less at risk of bank failure than sites on the main-stem Powder River

  11. Joaquin moves away from East Coast

    NASA Image and Video Library

    2017-12-08

    NOAA's GOES-East satellite captured this visible image of Hurricane Joaquin east of the Bahamas on Oct. 3 at 1615 UTC (12:15 p.m. EDT). The national weather forecast for October 3, 2015: Joaquin is no threat for now, but the nor'easter on the East Coast is causing massive flooding. Heavy rain hit Charleston, South Carolina., and much of the Southeast on Saturday, giving the region little relief from the threat of Hurricane Joaquin as it moved to the northeast away from the East Coast. Credit: NASA/NOAA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Instream coliform gradients in the Holtemme, a small headwater stream in the Elbe River Basin, Northern Germany

    NASA Astrophysics Data System (ADS)

    Karthe, Daniel; Lin, Pei-Ying; Westphal, Katja

    2017-09-01

    The Holtemme is a small headwater stream in North Germany's Elbe River Basin. According to German and European legislation, hygienic monitoring is not mandatory for such water bodies which are neither drinking water sources nor categorized as bathing waters. Consequently, relatively little is known about the occurrence of-potentially pathogenic-bacteria and viruses in Germany's streams and rivers. The Holtemme was selected for a case study because it is relatively well monitored for both chemical water quality and aquatic ecology, but not for hygiene. Originating in the mountains of Harz Nature Park, the 47 km long Holtemme is characterized by a strong longitudinal gradient in chemical water quality, which is related to different land uses and the influx of treated wastewater from two urban areas (Wernigerode and Halberstadt). Waste water loads received by the Holtemme are comparatively high when compared to similarly small streams. In 2015, total coliform concentrations between more than 200 and 77,010 bacteria per 100 mL, and fecal coliform concentrations between 5 and 24,060 bacteria per 100 mL were observed in the Holtemme's main channel. The highest concentrations were typically found below the outlets of the two wastewater treatment plants. The treated wastewater contained total and fecal coliform concentrations of up to 200,500 and 83,100 per 100 mL, respectively; however, there were significant temporal variations. While the observed concentrations are unproblematic from a legal perspective (because no maximum permissible limits are defined for streams in Germany), they would exceed the tolerable limits for bathing waters in the EU, indicating moderate to critical pollution limits.

  13. The Optical, Chemical, and Molecular Dissolved Organic Matter Succession Along a Boreal Soil-Stream-River Continuum

    NASA Astrophysics Data System (ADS)

    Hutchins, Ryan H. S.; Aukes, Pieter; Schiff, Sherry L.; Dittmar, Thorsten; Prairie, Yves T.; del Giorgio, Paul A.

    2017-11-01

    Soils export large amounts of organic matter to rivers, and there are still major uncertainties concerning the composition and reactivity of this material and its fate within the fluvial network. Here we reconstructed the pattern of movement and processing of dissolved organic matter (DOM) along a soil-stream-river continuum under summer baseflow conditions in a boreal region of Québec (Canada), using a combination of fluorescence spectra, size exclusion chromatography and ultrahigh resolution mass spectrometry. Our results show that there is a clear sequence of selective DOM degradation along the soil-stream-river continuum, which results in pronounced compositional shifts downstream. The soil-stream interface was a hot spot of DOM degradation, where biopolymers and low molecular weight (LMW) compounds were selectively removed. In contrast, processing in the stream channel was dominated by the degradation of humic-like aromatic DOM, likely driven by photolysis, with little further degradation of either biopolymers or LMW compounds. Overall, there was a high degree of coherence between the patterns observed in DOM chemical composition, optical properties, and molecular profiles, and none of these approaches pointed to measurable production of new DOM components, suggesting that the DOM pools removed during transit were likely mineralized to CO2. Our first order estimates suggest that rates of soil-derived DOM mineralization could potentially sustain over half of the measured CO2 emissions from this stream network, with mineralization of biopolymers and humic substances contributing roughly equally to these fluvial emissions.

  14. The Kings River Experimental Watersheds: new findings about headwater streams of the southern Sierra Nevada

    Treesearch

    Carolyn Hunsaker

    2013-01-01

    The Kings River Experimental Watersheds (KREW) study was designed to (1) characterize the variability in watershed attributes considered important to understanding processes and health of headwater streams and forest watersheds and (2) evaluate forest restoration treatments. The KREW is a paired watershed experiment located in the headwaters of the Kings River Basin...

  15. Examining Dimethyl Sulfide Emissions in California's San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Huber, D.; Hughes, S.; Blake, D. R.

    2017-12-01

    Dimethyl Sulfide (DMS) is a sulfur-containing compound that leads to the formation of aerosols which can lead to the formation of haze and fog. Whole air samples were collected on board the NASA C-23 Sherpa aircraft during the 2017 Student Airborne Research Program (SARP) over dairies and agricultural fields in the San Joaquin Valley. Analysis of the samples indicate average DMS concentrations of 23 ± 9 pptv, with a maximum concentration of 49 pptv. When compared with DMS concentrations from previous SARP missions (2009-2016), 2017 by far had the highest frequency of elevated DMS in this region. For this study, agricultural productivity of this region was analyzed to determine whether land use could be contributing to the elevated DMS. Top down and bottom up analysis of agriculture and dairies were used to determine emission rates of DMS in the San Joaquin Valley. Correlations to methane and ethanol were used to determine that DMS emissions were strongly linked to dairies, and resulted in R2 values of 0.61 and 0.43, respectively. These values indicate a strong correlation between dairies and DMS emissions. Combined with NOAA HySPLIT back trajectory data and analysis of ground air samples, results suggest that the contribution of dairies to annual DMS emissions in the San Joaquin Valley exceeds those from corn and alfalfa production.

  16. Mercury concentrations in fillets of fish collected in the U.S. EPA National Rivers and Streams Assessment of the continental USA

    EPA Science Inventory

    The National Rivers and Streams Assessment (NRSA) is a statistical survey of flowing waters of the U.S. The purpose of this survey was to assess the condition of the nation's rivers and streams, establish a baseline to evaluate progress of pollution control activities in flowing...

  17. Gazetteer of hydrologic characteristics of streams in Massachusetts; Blackstone River basin

    USGS Publications Warehouse

    Wandle, S.W.; Phipps, A.F.

    1984-01-01

    The Blackstone River basin encompasses 335 square miles in south-central Massachusetts, including parts of Bristol, Middlesex, Norfolk, and Worcester Counties. Drainage areas, using the latest available 1:24,000 scale topographic maps, were computed for the first time for streams draining more than 3 square miles and were recomputed for data-collection sites. Streamflow characteristics, were calculated using a new data base with records through 1980. These characteristics include annual and monthly flow statistics, duration of daily flow values, and the annual 7-day mean low flow at the 2-year and 10-year recurrence intervals. The 7-day, 10-year low-flow values are presented for 31 partial-record sites and the procedures used to determine the hydrologic characteristics of the basin are summarized. Basin characteristics representing 14 commonly used indices to estimate various streamflows are presented for the six gaged streams in the Blackstone River basin. This gazetteer will aid in the planning and siting of water-resources-related activities and will provide a common data base for governmental agencies and the engineering and planning communities. (USGS)

  18. Geochemical correlation and 40Ar/39Ar dating of the Kern River ash bed and related tephra layers: Implications for the stratigraphy of petroleum-bearing formations in the San Joaquin Valley, California

    USGS Publications Warehouse

    Baron, D.; Negrini, R.M.; Golob, E.M.; Miller, D.; Sarna-Wojcicki, A.; Fleck, R.J.; Hacker, B.; Erendi, A.

    2008-01-01

    The Kern River ash (KRA) bed is a prominent tephra layer separating the K and G sands in the upper part of the Kern River Formation, a major petroleum-bearing formation in the southern San Joaquin Valley (SSJV) of California. The minimum age of the Kern River Formation was based on the tentative major-element correlation with the Bishop Tuff, a 0.759??0.002 Ma volcanic tephra layer erupted from the Long Valley Caldera. We report a 6.12??0.05 Ma 40Ar/39Ar date for the KRA, updated major-element correlations, trace-element correlations of the KRA and geochemically similar tephra, and a 6.0??0.2 Ma 40Ar/39Ar age for a tephra layer from the Volcano Hills/Silver Peak eruptive center in Nevada. Both major and trace-element correlations show that despite the similarity to the Bishop Tuff, the KRA correlates most closely with tephra from the Volcano Hills/Silver Peak eruptive center. This geochemical correlation is supported by the radiometric dates which are consistent with a correlation of the KRA to the Volcano Hills/Silver Peak center but not to the Bishop Tuff. The 6.12??0.05 Ma age for the KRA and the 6.0??0.2 Ma age for the tephra layer from the Volcano Hills/Silver Peak eruptive center suggest that the upper age of the Kern River Formation is over 5 Ma older than previously thought. Re-interpreted stratigraphy of the SSJV based on the new, significantly older age for the Kern River Formation opens up new opportunities for petroleum exploration in the SSJV and places better constraints on the tectonostratigraphic development of the SSJV. ?? 2007 Elsevier Ltd and INQUA.

  19. In-stream production of methylmercury in a northern California river during summer baseflow

    NASA Astrophysics Data System (ADS)

    Tsui, M. T.; Finlay, J. C.; Nollet, Y. H.; Balogh, S. J.

    2009-12-01

    In stream ecosystems, it is well established that terrestrial landscape features such as wetlands are important in determining the aqueous concentration and flux of methylmercury. In contrast, our understanding of in-stream production of methylmercury is inadequate, especially on an ecosystem scale. In this study, we examined the relationship between the net production of dissolved methylmercury and algal metabolism in an 8-km reach of a third order stream (South Fork Eel River) in northern California. The stream has a forested watershed with no wetlands and has a long period of baseflow that typically extends from late May to early October. There was an intense rainfall in early May, 2009, but no major precipitation was recorded afterward, as is typical of Mediterranean climate of the study site. We collected surface water samples along the main channel and four major tributaries to the study stream reach. Temporal patterns of algal metabolism were inferred from net changes in total dissolved phosphorus and silica uptake and algal abundance. There was essentially no net production of methylmercury within the study reach (~ 0 µg Hg/km/d) in mid-May but net production of methylmercury occurred afterward when discharge declined exponentially, water temperature increased and algal metabolism increased (i.e. phosphorus and silica were taken up biologically). Net production of dissolved methylmercury peaked in mid-June (100 µg Hg/km/d) and then declined in mid-July (58 µg Hg/km/d) and mid-August (45 µg Hg/km/d) within the 8-km reach. The absence of surface runoff during the summer (e.g. June through September) indicates that the observed net production of methylmercury occurred within the channel and algal metabolism is coupled to the mercury methylation process. In summary, our study suggests that, in addition to watershed features, in-stream production of methylmercury should be considered as an important factor mediating mercury bioavailability in flowing waters

  20. A spatial model for a stream networks of Citarik River with the environmental variables: potential of hydrogen (PH) and temperature

    NASA Astrophysics Data System (ADS)

    Bachrudin, A.; Mohamed, N. B.; Supian, S.; Sukono; Hidayat, Y.

    2018-03-01

    Application of existing geostatistical theory of stream networks provides a number of interesting and challenging problems. Most of statistical tools in the traditional geostatistics have been based on a Euclidean distance such as autocovariance functions, but for stream data is not permissible since it deals with a stream distance. To overcome this autocovariance developed a model based on the distance the flow with using convolution kernel approach (moving average construction). Spatial model for a stream networks is widely used to monitor environmental on a river networks. In a case study of a river in province of West Java, the objective of this paper is to analyze a capability of a predictive on two environmental variables, potential of hydrogen (PH) and temperature using ordinary kriging. Several the empirical results show: (1) The best fit of autocovariance functions for temperature and potential hydrogen (ph) of Citarik River is linear which also yields the smallest root mean squared prediction error (RMSPE), (2) the spatial correlation values between the locations on upstream and on downstream of Citarik river exhibit decreasingly

  1. Prediction of fish and sediment mercury in streams using landscape variables and historical mining.

    PubMed

    Alpers, Charles N; Yee, Julie L; Ackerman, Joshua T; Orlando, James L; Slotton, Darrel G; Marvin-DiPasquale, Mark C

    2016-11-15

    Widespread mercury (Hg) contamination of aquatic systems in the Sierra Nevada of California, U.S., is associated with historical use to enhance gold (Au) recovery by amalgamation. In areas affected by historical Au mining operations, including the western slope of the Sierra Nevada and downstream areas in northern California, such as San Francisco Bay and the Sacramento River-San Joaquin River Delta, microbial conversion of Hg to methylmercury (MeHg) leads to bioaccumulation of MeHg in food webs, and increased risks to humans and wildlife. This study focused on developing a predictive model for THg in stream fish tissue based on geospatial data, including land use/land cover data, and the distribution of legacy Au mines. Data on total mercury (THg) and MeHg concentrations in fish tissue and streambed sediment collected during 1980-2012 from stream sites in the Sierra Nevada, California were combined with geospatial data to estimate fish THg concentrations across the landscape. THg concentrations of five fish species (Brown Trout, Rainbow Trout, Sacramento Pikeminnow, Sacramento Sucker, and Smallmouth Bass) within stream sections were predicted using multi-model inference based on Akaike Information Criteria, using geospatial data for mining history and landscape characteristics as well as fish species and length (r(2)=0.61, p<0.001). Including THg concentrations in streambed sediment did not improve the model's fit, however including MeHg concentrations in streambed sediment, organic content (loss on ignition), and sediment grain size resulted in an improved fit (r(2)=0.63, p<0.001). These models can be used to estimate THg concentrations in stream fish based on landscape variables in the Sierra Nevada in areas where direct measurements of THg concentration in fish are unavailable. Published by Elsevier B.V.

  2. Hurricane Joaquin on 9/29/15

    NASA Image and Video Library

    2017-12-08

    NASA's Aqua satellite captured this image of Joaquin near the Bahamas on Sept. 29 at 18:10 UTC (2:10 p.m. EDT). Credit: NASA Goddard MODIS Rapid Response Team At 11 a.m. EDT (1500 UTC) on Wednesday, September 30, 2015 the center of Hurricane Joaquin was located near latitude 24.7 North, longitude 72.6 West. That puts the center of Joaquin about 215 miles (345 km) east-northeast of the Central Bahamas. Joaquin became a tropical storm Monday evening (EDT), September 29 when it was midway between the Bahamas and Bermuda. By 8 a.m. EDT on September 30, it strengthened into a hurricane and has become the third hurricane of the Atlantic Hurricane season. On September 30, the National Hurricane Center issued a Hurricane Warning for the central Bahamas including Cat Island, the Exumas, Long Island, Rum Cay, and San Salvador. A Hurricane Watch is in effect for the northwestern Bahamas including the Abacos, Berry Islands, Bimini, Eleuthera, Grand Bahama Island, and New Providence, but excluding Andros Island. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change

    USGS Publications Warehouse

    Reynolds, Lindsay V.; Shafroth, Patrick B.; Poff, N. LeRoy

    2015-01-01

    Longer, drier summers projected for arid and semi-arid regions of western North America under climate change are likely to have enormous consequences for water resources and river-dependent ecosystems. Many climate change scenarios for this region involve decreases in mean annual streamflow, late summer precipitation and late-summer streamflow in the coming decades. Intermittent streams are already common in this region, and it is likely that minimum flows will decrease and some perennial streams will shift to intermittent flow under climate-driven changes in timing and magnitude of precipitation and runoff, combined with increases in temperature. To understand current intermittency among streams and analyze the potential for streams to shift from perennial to intermittent under a warmer climate, we analyzed historic flow records from streams in the Upper Colorado River Basin (UCRB). Approximately two-thirds of 115 gaged stream reaches included in our analysis are currently perennial and the rest have some degree of intermittency. Dry years with combinations of high temperatures and low precipitation were associated with more zero-flow days. Mean annual flow was positively related to minimum flows, suggesting that potential future declines in mean annual flows will correspond with declines in minimum flows. The most important landscape variables for predicting low flow metrics were precipitation, percent snow, potential evapotranspiration, soils, and drainage area. Perennial streams in the UCRB that have high minimum-flow variability and low mean flows are likely to be most susceptible to increasing streamflow intermittency in the future.

  4. Mapping spatial patterns of stream power and channel change along a gravel-bed river in northern Yellowstone

    NASA Astrophysics Data System (ADS)

    Lea, Devin M.

    Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing or field surveys. This study used remote sensing and GIS tools along with field data to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8 km reach. Aerial photographs from 1994-2012 and cross-section surveys were used to develop a locational probability map and morphologic sediment budget to assess lateral channel mobility and changes in net sediment flux. A drainage area-to-discharge relationship and digital elevation model (DEM) developed from light detection and ranging (LiDAR) data were used to obtain the discharge and slope values needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of sediment sources and sinks. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volumetric change in each time increment. Results indicated a lack of strong correlation between stream power gradients and sediment response, highlighting the geomorphic complexity of Soda Butte Creek and the inability of relatively simple statistical approaches to link sub-budget cell-scale sediment dynamics to larger-scale driving forces such as stream power gradients. Improving the moderate spatial resolution techniques used in this study and acquiring very-high resolution data from recently developed methods in fluvial remote sensing could help improve understanding of the spatial organization of stream power, sediment transport, and channel change in

  5. IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia

    NASA Astrophysics Data System (ADS)

    Sahu, Netrananda; Behera, Swadhin K.; Yamashiki, Yosuke; Takara, Kaoru; Yamagata, Toshio

    2012-10-01

    Extreme stream-flow events of Citarum River are derived from the daily stream-flows at the Nanjung gauge station. Those events are identified based on their persistently extreme flows for 6 or more days during boreal fall when the seasonal mean stream-flow starts peaking-up from the lowest seasonal flows of June-August. Most of the extreme events of high-streamflows were related to La Niña conditions of tropical Pacific. A few of them were also associated with the negative phases of IOD and the newly identified El Niño Modoki. Unlike the cases of extreme high streamflows, extreme low streamflow events are seen to be associated with the positive IODs. Nevertheless, it was also found that the low-stream-flow events related to positive IOD events were also associated with El Niño events except for one independent event of 1977. Because the occurrence season coincides the peak season of IOD, not only the picked extreme events are seen to fall under the IOD seasons but also there exists a statistically significant correlation of 0.51 between the seasonal IOD index and the seasonal streamflows. There also exists a significant lag correlation when IOD of June-August season leads the streamflows of September-November. A significant but lower correlation coefficient (0.39) is also found between the seasonal streamflow and El Niño for September-November season only.

  6. Master Contract: San Joaquin Delta College Teachers Association/CTA/NEA and San Joaquin Delta Community College District, July 1987-June 1990.

    ERIC Educational Resources Information Center

    San Joaquin Delta Community Coll. District, CA.

    The collective bargaining agreement between the San Joaquin Delta Community College District Board of Trustees and the San Joaquin Delta College Teachers Association/California Teachers Association/National Education Association is presented. This contract, covering the period from July 1987 through June 1990, deals with the following topics:…

  7. Towards national mapping of aquatic condition (II): Predicting the probable biological condition of USA streams and rivers

    EPA Science Inventory

    The US EPA’s National River and Stream Assessment (NRSA) uses spatially balanced sampling to estimate the proportion of streams within the conterminous US (CONUS) that deviate from least-disturbed biological condition (BC). These assessments do not infer BC at un-sampled st...

  8. Climate Change Impacts on Stream Temperatures in the Columbia River System

    NASA Astrophysics Data System (ADS)

    Yearsley, J. R.; Crozier, L.

    2014-12-01

    The Columbia River system, a drainage basin of 668,000 sq. km that includes the Columbia and Snake River rivers, supports a large population of anadromous, cold-water fishes. 13 species of these fishes are listed under the Endangered Species Act and are vulnerable to impacts of climate change. Bioenergetics models for these species have been developed by the federal agencies that operate the Federal Columbia River Power System. These models simulate the impacts on anadromous fishes as they move through the power system both upstream as adults and downstream as juveniles. Water temperature simulations required for input to the bioenergetics models were made for two different segments of the Columbia River system; one being the portions from the Canadian border to Bonneville Dam and the Snake River from Brownlee Dam in Idaho to its confluence and the other, the Salmon River basin in Idaho. Simulations were performed for the period 1928-1998 with the semi-Lagrangian stream temperature model, RBM, for existing conditions and for a two 2040 climate scenarios, a cool, dry condition (ECHO_g model) and a warm, wet condition (MIROC_3.2 model). Natural flows were simulated with the variable infiltration capacity model, VIC, and modified for Columbia River project operations using HYDSIM, a hydro system regulation model that simulates month-to-month operation of the Pacific Northwest hydropower system.

  9. Water-quality assessment of the Kentucky River basin, Kentucky; nutrients, sediments, and pesticides in streams, 1987-90

    USGS Publications Warehouse

    Haag, K.H.; Porter, S.D.

    1995-01-01

    The U.S. Geological Survey investigated the water quality of the Kentucky River Basin in Kentucky as part of the National Water Quality Assessment program. Data collected during 1987-90 were used to describe the spatial and temporal variability of nutrients, suspended sediment, and pesticides in streams. Concentrations of phosphorus were signifi- cantly correlated with urban and agricultural land use. The high phosphorus content of Bluegrass Region soils was an important source of phosphorus in streams. At many sites in urban areas, all of the stream nitrogen load was attributable to wastewater- treatment-plant effluent. Tributary streams affected by agricultural sources of nutrients contained higher densities of phytoplankton than streams that drained forested areas. Data indicate that a consid- erable percentage of total nitrogen was transported as algal biomass during periods of low discharge. Average suspended-sediment concentrations for the study period were positively correlated with dis- charge. There was a downward trend in suspended- sediment concentrations downstream in the Kentucky River main stem during the study. Although a large amount of suspended sediment originates in the Eastern Coal Field Region, contributions of suspended sediment from the Red River and other tributary streams of the Knobs Region also are important. The most frequently detected herbicides in water samples were atrazine, 2,4-D, alachlor, metolachlor, and dicamba. Diazinon, malathion, and parathion were the most frequently detected organo- phosphate insecticides in water samples. Detectable concentrations of aldrin, chlordane, DDT, DDE, dieldrin, endrin, endosulfan, heptachlor, heptachlor epoxide, and lindane were found in streambed- sediment samples.

  10. Defining interactions of in-stream hydrokinetic devices in the Tanana River, Alaska

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Toniolo, H.; Seitz, A. C.; Schmid, J.; Duvoy, P.

    2012-12-01

    The acceptance, performance, and sustainability of operating in-stream hydrokinetic power generating devices in rivers depends on the impact of the river environment on hydrokinetic infrastructure as well as its impact on the river environment. The Alaska Hydrokinetic Energy Research Center (AHERC) conducts hydrokinetic "impact" and technology studies needed to support a sustainable hydrokinetic industry in Alaska. These include completed and ongoing baseline studies of river hydrodynamic conditions (river stage, discharge, current velocity, power, and turbulence; suspended and bed load sediment transport), ice, fish populations and behavior, surface and subsurface debris flows, and riverbed conditions. Technology and methods studies to minimize the effect of debris flows on deployed turbine system are in-progress to determine their effectiveness at reducing the probability of debris impact, diverting debris and their affect on available river power for conversion to electricity. An anchor point has been placed in the main flow just upstream of Main (Figure 1) to support projects and in preparation for future projects that are being planned to examine hydrokinetic turbine performance including power conversion efficiency, turbine drag and anchor chain loads, wake generation and effects on fish. Baseline fish studies indicate that hydrokinetic devices at the test site will have the most potential interactions with Pacific salmon smolts during their down-migration to the ocean in May and June. At the AHERC test site, the maximum turbulent kinetic energy (TKE) occurs just down stream from the major river bends (e.g., 000 and near the railroad bridge [upper center of the figure]) and over a deep hole at 440 (Figure 1), Minimum TKE occurs between main and 800. River current velocity measurements and simulations of river flow from 000 downstream past the railroad bridge indicate that the most stable current in the river reach is between Main and 800. The stable current

  11. The surface water register: an empirically improved sample frame for monitoring the rivers and streams of Kansas

    EPA Science Inventory

    State-wide monitoring based on probability survey designs requires a spatially explicit representation of all streams and rivers of interest within a state, i.e., a sample frame. The sample frame should be the best available map representation of the resource. Many stream progr...

  12. Spatial statistical network models for stream and river temperature in New England, USA

    EPA Science Inventory

    Watershed managers are challenged by the need for predictive temperature models with sufficient accuracy and geographic breadth for practical use. We described thermal regimes of New England rivers and streams based on a reduced set of metrics for the May–September growing ...

  13. MERCURY CONCENTRATION IN FISH FROM STREAMS/RIVERS THROUGHOUT THE WESTERN UNITED STATES

    EPA Science Inventory

    We collected 2,707 fish from 626 stream/river sites in 12 western USA states using a probability design to assess the spatial extent of whole fish mercury (Hg) concentrations. In all large (> 120 mm) fish, Hg concentrations (mean µg¿g-1; SD) in both piscivores (0.260; 0.241) and ...

  14. Assessment of pathogen levels in stream water column and bed sediment of Merced River Watershed in California

    NASA Astrophysics Data System (ADS)

    Vaddella, V. K.; Pandey, P.; Biswas, S.; Lewis, D. J.

    2014-12-01

    Mitigating pathogen levels in surface water is crucial for protecting public health. According to the U.S. Environmental Protection Agency (US EPA), approximately 480,000 km of rivers/streams are contaminated in the U.S., and a major cause of contamination is elevated levels of pathogen/pathogen indicator. Many of past studies showed considerably higher pathogen levels in sediment bed than that of the stream water column in rivers. In order to improve the understanding of pathogen levels in rivers in California, we carried out an extensive pathogen monitoring study in four different watersheds (Bear Creek, Ingalsbe, Maxwell, and Yosemite watersheds) of Merced River. Stream water and streambed sediment samples were collected from 17 locations. Pathogen levels (E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were enumerated in streambed sediment and water column. In addition, the impacts of heat stress on pathogen survival were assessed by inoculating pathogens into the water and sediment samples for understanding the pathogen survival in stream water column and streambed sediment. The pathogen enumeration (in water column and sediment bed) results indicated that the E. coli O157:H7, Salmonella spp. and Listeria monocytogenes levels were non-detectable in the water column and streambed sediment. The results of heat stress (50◦ C for 180 minutes) test indicated a pathogen decay at one order of magnitude (108 cfu/ml to 107 cfu/ml). Nonetheless, higher pathogen levels (1.13 × 107 cfu/ml) after the heat stress study showed potential pathogen survival at higher temperature. Preliminary results of this study would help in understanding the impacts of elevated temperature on pathogen in stream environment. Further studies are required to test the long-term heat-stress impacts on pathogen survival.

  15. Nutrient attenuation in rivers and streams, Puget Sound Basin, Washington

    USGS Publications Warehouse

    Sheibley, Rich W.; Konrad, Christopher P.; Black, Robert W.

    2015-01-01

    From a management perspective, preservation and improvement of instream nutrient attenuation should focus on increasing the travel time through a reach and contact time of water sediment (reactive) surfaces and lowering nutrient concentrations (and loads) to avoid saturation of instream attenuation and increase attenuation efficiency. These goals can be reached by maintaining and restoring channel-flood plain connectivity, maintaining and restoring healthy riparian zones along streams, managing point and nonpoint nutrient loads to streams and rivers, and restoring channel features that promote attenuation such as the addition of woody debris and maintaining pool-riffle morphologies. Many of these management approaches are already being undertaken during projects aimed to restore quality salmon habitat. Therefore, there is a dual benefit to these projects that also may lead to enhanced potential for nitrogen and phosphorus attenuation.

  16. Estimation of daily mean streamflow for ungaged stream locations in the Delaware River Basin, water years 1960–2010

    USGS Publications Warehouse

    Stuckey, Marla H.

    2016-06-09

    The ability to characterize baseline streamflow conditions, compare them with current conditions, and assess effects of human activities on streamflow is fundamental to water-management programs addressing water allocation, human-health issues, recreation needs, and establishment of ecological flow criteria. The U.S. Geological Survey, through the National Water Census, has developed the Delaware River Basin Streamflow Estimator Tool (DRB-SET) to estimate baseline (minimally altered) and altered (affected by regulation, diversion, mining, or other anthropogenic activities) and altered streamflow at a daily time step for ungaged stream locations in the Delaware River Basin for water years 1960–2010. Daily mean baseline streamflow is estimated by using the QPPQ method to equate streamflow expressed as a percentile from the flow-duration curve (FDC) for a particular day at an ungaged stream location with the percentile from a FDC for the same day at a hydrologically similar gaged location where streamflow is measured. Parameter-based regression equations were developed for 22 exceedance probabilities from the FDC for ungaged stream locations in the Delaware River Basin. Water use data from 2010 is used to adjust the baseline daily mean streamflow generated from the QPPQ method at ungaged stream locations in the Delaware River Basin to reflect current, or altered, conditions. To evaluate the effectiveness of the overall QPPQ method contained within DRB-SET, a comparison of observed and estimated daily mean streamflows was performed for 109 reference streamgages in and near the Delaware River Basin. The Nash-Sutcliffe efficiency (NSE) values were computed as a measure of goodness of fit. The NSE values (using log10 streamflow values) ranged from 0.22 to 0.98 (median of 0.90) for 45 streamgages in the Upper Delaware River Basin and from -0.37 to 0.98 (median of 0.79) for 41 streamgages in the Lower Delaware River Basin.

  17. Instream flow characterization of upper Salmon River Basin streams, Central Idaho, 2003

    USGS Publications Warehouse

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2004-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream from the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the federally listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications, as a result of irrigation practices, have directly affected the quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include the collection of habitat and streamflow information for the Physical Habitat Simulation (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts in the evaluation of potential fish habitat and passage improvements by increasing streamflow. Instream flow characterization studies were completed on Pole, Fourth of July, Elk, and Valley Creeks during 2003. Continuous streamflow data were collected upstream from all diversions on each stream. In addition, natural summer streamflows were estimated for each study site using regression

  18. The Grain-size Patchiness of Braided Gravel-Bed Streams: Example of the Urumqi River (northeast Tian Shan, China)

    NASA Astrophysics Data System (ADS)

    Guerit, L.; Barrier, L.; Narteau, C.; Métivier, F.; Liu, Y.; Lajeunesse, E.; Gayer, E.; Malverti, L.; Meunier, P.; Ye, B.

    2012-04-01

    In gravel-beds rivers, sediments are sorted into patches of different grain-sizes. For single-thread streams, it has long been shown that this local granulometric sorting is closely linked to the channel morpho-sedimentary elements. For braided streams, this relation is still unclear. In such rivers, many observations of vertical sediment sorting has led to the definition of a surface and a subsurface layers. Because of this common stratification, methods for sampling gravel-bed rivers have been divided in two families. The surface layer is generally sampled by surface methods and the subsurface layer by volumetric methods. Yet, the equivalency between the two kind of techniques is still a key question. In this study, we characterized the grain-size distribution of the surface layer of the Urumqi River, a shallow braided gravel-bed river in China, by surface-count (Wolman grid-by-number) and volumetric (sieve-by-weight) sampling methods. An analysis of two large samples (212 grains and 3226 kg) show that these two methods are equivalent to characterize the river-bed surface layer. Then, we looked at the grain-size distributions of the river-bed morpho-sedimentary elements: (1) chutes at flow constrictions, which pass downstream to (2) anabranches and (3) bars at flow expansions. Using both sampling methods, we measured the diameter of more than 2300 grains and weight more than 6000 kg of grains larger than 4 mm. Our results show that the three morpho-sedimentary elements correspond only to two kinds of grain-size patches: (1) chutes composed of one coarse-grained top layer lying on finer deposits, and (2) anabranches and bars made up of finer-grained deposits more homogeneous in depth. On the basis of these quantitative observations, together with the concave or convex morphology of the different elements, we propose that chute patches form by erosion and transit with size-selective entrainment, whereas anabranch and bar patches rather develop and migrate by

  19. Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004

    USGS Publications Warehouse

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2005-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing streamflow. In 2004, instream flow characterization studies were completed on Salmon River and Beaver, Pole, Champion, Iron, Thompson, and Squaw Creeks. Continuous streamflow data were recorded upstream of all diversions on Salmon River and Pole, Iron, Thompson, and Squaw Creeks. In addition, natural summer streamflows were

  20. ASSESSING HEADWATER STREAMS: LINKING LANDSCAPES TO STREAM NETWORKS

    EPA Science Inventory

    Headwater streams represent a significant land-water boundary and drain 70-80% of the landscape. Headwater streams are vital components to drainage systems and are directly linked to our downstream rivers and lakes. However, alteration and loss of headwater streams have occurre...

  1. Groundwater quality in the Madera and Chowchilla subbasins of the San Joaquin Valley, California

    USGS Publications Warehouse

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The Madera and Chowchilla subbasins of the San Joaquin Valley constitute one of the study units being evaluated. The Madera-Chowchilla study unit is about 860 square miles and consists of the Madera and Chowchilla groundwater subbasins of the San Joaquin Valley Basin (California Department of Water Resources, 2003; Shelton and others, 2009). The study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 11 to 15 inches, most of which occurs between November and February. The main surface-water features in the study unit are the San Joaquin, Fresno, and Chowchilla Rivers, and the Madera and Chowchilla canals. Land use in the study unit is about 69 percent (%) agricultural, 28% natural (mainly grasslands), and 3% urban. The primary crops are orchards and vineyards. The largest urban area is the city of Madera. The primary aquifer system is defined as those parts of the aquifer corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. In the Madera-Chowchilla study unit, these wells typically are drilled to depths between 200 and 800 feet, consist of a solid casing from land surface to a depth of about 140 to 400 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer system. The primary aquifer system in the study unit consists of Quaternary-age alluvial-fan and fluvial deposits that were formed by the rivers draining the Sierra Nevada. Sediments consist of gravels, sands

  2. Sources, bioavailability, and photoreactivity of dissolved organic carbon in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Stepanauskas, R.; Moran, M.A.; Bergamaschi, B.A.; Hollibaugh, J.T.

    2005-01-01

    We analyzed bioavailability, photoreactivity, fluorescence, and isotopic composition of dissolved organic carbon (DOC) collected at 13 stations in the Sacramento-San Joaquin River Delta during various seasons to estimate the persistence of DOC from diverse shallow water habitat sources. Prospective large-scale wetland restorations in the Delta may change the amount of DOC available to the food web as well as change the quality of Delta water exported for municipal use. Our study indicates that DOC contributed by Delta sources is relatively refractory and likely mostly the dissolved remnants of vascular plant material from degrading soils and tidal marshes rather than phytoplankton production. Therefore, the prospective conversion of agricultural land into submerged, phytoplankton-dominated habitats may reduce the undesired export of DOC from the Delta to municipal users. A median of 10% of Delta DOC was rapidly utilizable by bacterioplankton. A moderate dose of simulated solar radiation (286 W m-2 for 4 h) decreased the DOC bioavailability by an average of 40%, with a larger relative decrease in samples with higher initial DOC bioavailability. Potentially, a DOC-based microbial food web could support ???0.6 ?? 109 g C of protist production in the Delta annually, compared to ???17 ?? 109 g C phytoplankton primary production. Thus, DOC utilization via the microbial food web is unlikely to play an important role in the nutrition of Delta zooplankton and fish, and the possible decrease in DOC concentration due to wetland restoration is unlikely to have a direct effect on Delta fish productivity. ?? Springer 2005.

  3. MERCURY CONCENTRATION IN FISH FROM STREAMS AND RIVERS THROUGHOUT THE WESTERN UNITED STATES

    EPA Science Inventory

    We collected and analyzed 2,707 large fish from 626 stream/river sites in 12 western U.S. states using a probability design to assess the regional distribution of whole fish mercury (Hg) concentrations. Large (>120 mm total length) fish Hg levels were strongly related to both fis...

  4. 234U/238U and δ87Sr in peat as tracers of paleosalinity in the Sacramento-San Joaquin Delta of California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Paces, James B.; Alpers, Charles N.; Windham-Myers, Lisamarie; Neymark, Leonid; Bullen, Thomas D.; Taylor, Howard E.

    2013-01-01

    The purpose of this study was to determine the history of paleosalinity over the past 6000+ years in the Sacramento-San Joaquin Delta (the Delta), which is the innermost part of the San Francisco Estuary. We used a combination of Sr and U concentrations, d87Sr values, and 234U/238U activity ratios (AR) in peat as proxies for tracking paleosalinity. Peat cores were collected in marshes on Browns Island, Franks Wetland, and Bacon Channel Island in the Delta. Cores were dated using 137Cs, the onset of Pb and Hg contamination from hydraulic gold mining, and 14C. A proof of concept study showed that the dominant emergent macrophyte and major component of peat in the Delta, Schoenoplectus spp., incorporates Sr and U and that the isotopic composition of these elements tracks the ambient water salinity across the Estuary. Concentrations and isotopic compositions of Sr and U in the three main water sources contributing to the Delta (seawater, Sacramento River water, and San Joaquin River water) were used to construct a three-end-member mixing model. Delta paleosalinity was determined by examining variations in the distribution of peat samples through time within the area delineated by the mixing model. The Delta has long been considered a tidal freshwater marsh region, but only peat samples from Franks Wetland and Bacon Channel Island have shown a consistently fresh signal (<0.5 ppt) through time. Therefore, the eastern Delta, which occurs upstream from Bacon Channel Island along the San Joaquin River and its tributaries, has also been fresh for this time period. Over the past 6000+ years, the salinity regime at the western boundary of the Delta (Browns Island) has alternated between fresh and oligohaline (0.5-5 ppt).

  5. I am Joaquin. Yo Soy Joaquin. An Epic Poem with a Chronology of People and Events in Mexican and Mexican American History.

    ERIC Educational Resources Information Center

    Gonzales, Rodolfo

    Both Spanish and English versions of the epic poem "I Am Joaquin" are given in this book. "I Am Joaquin" is the first work of poetry to be published by Chicanos for Chicanos. It is a historical essay of the greatness and weakness of the Chicano people. Their psychological wounds, cultural genocide, social castration, nobility, courage,…

  6. Pesticides in U.S. streams and rivers: occurrence and trends during 1992-2011

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.; Ryberg, Karen R.

    2014-01-01

    During the 20 years from 1992 to 2011, pesticides were found at concentrations that exceeded aquatic-life benchmarks in many rivers and streams that drain agricultural, urban, and mixed-land use watersheds. Overall, the proportions of assessed streams with one or more pesticides that exceeded an aquatic-life benchmark were very similar between the two decades for agricultural (69% during 1992−2001 compared to 61% during 2002−2011) and mixed-land-use streams (45% compared to 46%). Urban streams, in contrast, increased from 53% during 1992−2011 to 90% during 2002−2011, largely because of fipronil and dichlorvos. The potential for adverse effects on aquatic life is likely greater than these results indicate because potentially important pesticide compounds were not included in the assessment. Human-health benchmarks were much less frequently exceeded, and during 2002−2011, only one agricultural stream and no urban or mixed-land-use streams exceeded human-health benchmarks for any of the measured pesticides. Widespread trends in pesticide concentrations, some downward and some upward, occurred in response to shifts in use patterns primarily driven by regulatory changes and introductions of new pesticides.

  7. Pesticides in Surface and Ground Water of the San Joaquin-Tulare Basins, California: Analysis of Available Data, 1966 Through 1992

    USGS Publications Warehouse

    Domagalski, Joseph L.

    1997-01-01

    Available pesticide data (1966-92) for surface and ground water were analyzed for the San Joaquin-Tulare Basins, California, one of 60 large hydrologic systems being studied as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Most of the pesticide data were for the San Joaquin Valley, one of the most intensively farmed and irrigated areas of the United States. Data were obtained from the Storage and Retrieval data base of the U.S. Environmental Protection Agency, the water-quality data base of the U.S. Geological Survey, and from data files of State agencies. Pesticides detected in surface water include organochlorine pesticides, organophosphate pesticides, carbamate pesticides, and triazine herbicides. Pesticides detected in ground water include triazine and other organonitrogen herbicides and soil fumi gants. Surface-water data indicate seasonal patterns for the detection of organophosphate and carbamate pesticides, which are attributed to their use on almond orchards and alfafa fields. Organochlorine pesticides were detected primarily in river-bed sediments. Concentrations detected in bed sediments of the San Joaquin River near Vernalis are among the highest of any major river system in the United States. Patterns and timing of pesticide use indicate that pesticides might be present in surface-water systems during most months of a year. The most commonly detected pesticide in ground water is the soil fumigant, dibromochloropropane. Dibromochloropropane, used primarily on vineyards and orchards, was detected in ground water near the city of Fresno. Triazine and other organonitrogen herbicides were detected near vineyards and orchards in the same general locations as the detections of dibromochloropropane. Pesticides were detected in ground water of the east side of the valley floor, where the soils are sandy or coarsegrained, and water-soluble pesticides with long environmental half-lives were used. In contrast, fewer

  8. Migratory patterns of hatchery and stream-reared Atlantic salmon Salmo salar smolts in the Connecticut River, U.S.A.

    USGS Publications Warehouse

    McCormick, Stephen D.; Haro, Alexander; Lerner, Darren T.; O'Dea, Michael F.; Regish, Amy M.

    2014-01-01

    The timing of downstream migration and detection rates of hatchery-reared Atlantic salmon Salmo salar smolts and stream-reared smolts (stocked 2 years earlier as fry) were examined in the Connecticut River (U.S.A.) using passive integrated transponder (PIT) tags implanted into fish and then detected at a downstream fish bypass collection facility at Turners Falls, MA (river length 192 km). In two successive years, hatchery-reared smolts were released in mid-April and early May at two sites: the West River (river length 241 km) or the Passumpsic (river length 450 km). Hatchery-reared smolts released higher in the catchment arrived 7 to 14 days later and had significantly lower detection rates than smolts stocked lower in the catchment. Hatchery-reared smolts released 3 weeks apart at the same location were detected downstream at similar times, indicating that early-release smolts had a lower average speed after release and longer residence time. The size and gill Na+/K+-ATPase (NKA) activity of smolts at the time of release were significantly greater for detected fish (those that survived and migrated) than for those that were not detected. Stream-reared pre-smolts (>11·5 cm) from four tributaries (length 261–551 km) were tagged in autumn and detected during smolt migration the following spring. Stream-reared smolts higher in the catchment arrived later and had significantly lower detection rates. The results indicate that both hatchery and stream-reared smolts from the upper catchment will arrive at the mouth of the river later and experience higher overall mortality than fish from lower reaches, and that both size and gill NKA activity are related to survival during downstream migration.

  9. DEVELOPMENT OF A METHOD FOR DETERMINING PHOSPHORUS NUTRIENT CRITERIA IN STREAMS AND RIVERS OF THE MID-ATLANTIC REGION

    EPA Science Inventory

    Nutrient enrichment of phosphorus and nitrogen is the second most cited cause for impairment of streams and rivers in the U.S. There is a need to develop stream nutrient criteria to control nutrient loadings. Since biotic metrics can assess the overall impact of nutrient enrichm...

  10. The effects of increased stream temperatures on juvenile steelhead growth in the Yakima River Basin based on projected climate change scenarios

    USGS Publications Warehouse

    Hardiman, Jill M.; Mesa, Matthew G.

    2013-01-01

    Stakeholders within the Yakima River Basin expressed concern over impacts of climate change on mid-Columbia River steelhead (Oncorhynchus mykiss), listed under the Endangered Species Act. We used a bioenergetics model to assess the impacts of changing stream temperatures—resulting from different climate change scenarios—on growth of juvenile steelhead in the Yakima River Basin. We used diet and fish size data from fieldwork in a bioenergetics model and integrated baseline and projected stream temperatures from down-scaled air temperature climate modeling into our analysis. The stream temperature models predicted that daily mean temperatures of salmonid-rearing streams in the basin could increase by 1–2°C and our bioenergetics simulations indicated that such increases could enhance the growth of steelhead in the spring, but reduce it during the summer. However, differences in growth rates of fish living under different climate change scenarios were minor, ranging from about 1–5%. Because our analysis focused mostly on the growth responses of steelhead to changes in stream temperatures, further work is needed to fully understand the potential impacts of climate change. Studies should include evaluating changing stream flows on fish activity and energy budgets, responses of aquatic insects to climate change, and integration of bioenergetics, population dynamics, and habitat responses to climate change.

  11. Climate Change Effects on Stream and River Biological Indicators: A Preliminary Analysis (Final Report)

    EPA Science Inventory

    EPA announced the availability of the final report,Climate Change Effects on Stream and River Biological Indicators: A Preliminary Analysis. This report is a preliminary assessment that describes how biological indicators are likely to respond to climate change, how wel...

  12. Procedures for Delineating and Characterizing Watersheds for Stream and River Monitoring Programs (Final Report)

    EPA Science Inventory

    EPA has released the document, Procedures for Delineating and Characterizing Watersheds for Stream and River Monitoring Programs (EPA/600/R-17/448F). This manual describes how states and tribes can delineate and characterize watersheds. It explains how to delineate water...

  13. Heat Budget of Large Rivers: Sensitivity to Stream Morphology

    NASA Astrophysics Data System (ADS)

    Lancaster, S. T.; Haggerty, R.

    2014-12-01

    In order to assess the feasibility of effecting measurable changes in the heat budget of a large river through restoration, we use a numerical model to analyze the sensitivity of that heat budget to morphological manipulations, specifically those resulting in a narrower main channel with more alcoves. We base model parameters primarily on the gravel-bedded middle Snake River near Marsing, Idaho. The heat budget is represented by an advection-dispersion-reaction equation with, in addition to radiative, evaporative, and sensible heat fluxes, a hyporheic flux term that models lateral flow from the main stream, through bars, and into alcoves and side channels. This term effectively introduces linear dispersion of water temperatures with respect to time, so that the magnitude of the hyporheic term in the heat budget is expected to scale with the ``hyporheic number," defined as , where is dimensionless hyporheic flow rate and is dimensionless mean residence time of water entering the hyporheic zone. Simulations varying the parameters for channel width and hyporheic flow indicate that, for a large river such as the middle Snake River, feasible changes in channel width would produce downstream changes in heat flux an order of magnitude larger than would relatively extreme changes in hyporheic number. Changes, such as reduced channel width and increased hyporheic number, that tend to reduce temperatures in the summer, when temperatures are increasing with time and downstream distance, actually tend to increase temperatures in the fall, when temperatures are decreasing with time and distance.

  14. Pilot-Scale Selenium Bioremediation of San Joaquin Drainage Water with Thauera selenatis

    PubMed Central

    Cantafio, A. W.; Hagen, K. D.; Lewis, G. E.; Bledsoe, T. L.; Nunan, K. M.; Macy, J. M.

    1996-01-01

    This report describes a simple method for the bioremediation of selenium from agricultural drainage water. A medium-packed pilot-scale biological reactor system, inoculated with the selenate-respiring bacterium Thauera selenatis, was constructed at the Panoche Water District, San Joaquin Valley, Calif. The reactor was used to treat drainage water (7.6 liters/min) containing both selenium and nitrate. Acetate (5 mM) was the carbon source-electron donor reactor feed. Selenium oxyanion concentrations (selenate plus selenite) in the drainage water were reduced by 98%, to an average of 12 (plusmn) 9 (mu)g/liter. Frequently (47% of the sampling days), reactor effluent concentrations of less than 5 (mu)g/liter were achieved. Denitrification was also observed in this system; nitrate and nitrite concentrations in the drainage water were reduced to 0.1 and 0.01 mM, respectively (98% reduction). Analysis of the reactor effluent showed that 91 to 96% of the total selenium recovered was elemental selenium; 97.9% of this elemental selenium could be removed with Nalmet 8072, a new, commercially available precipitant-coagulant. Widespread use of this system (in the Grasslands Water District) could reduce the amount of selenium deposited in the San Joaquin River from 7,000 to 140 lb (ca. 3,000 to 60 kg)/year. PMID:16535401

  15. Nutrient and sediment concentrations, yields, and loads in impaired streams and rivers in the Taunton River Basin, Massachusetts, 1997-2008

    USGS Publications Warehouse

    Barbaro, Jeffrey R.; Sorenson, Jason R.

    2013-01-01

    Rapid development, population growth, and the changes in land and water use accompanying development are placing increasing stress on water resources in the Taunton River Basin. An assessment by the Massachusetts Department of Environmental Protection determined that a number of tributary streams to the Taunton River are impaired for a variety of beneficial uses because of nutrient enrichment. Most of the impaired reaches are in the Matfield River drainage area in the vicinity of the City of Brockton. In addition to impairments of stream reaches in the basin, discharge of nutrient-rich water from the Taunton River contributes to eutrophication of Mount Hope and Narragansett Bays. To assess water quality and loading in the impaired tributary stream reaches in the basin, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection compiled existing water-quality data from previous studies for the period 1997-2006, developed and calibrated a Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model to simulate streamflow in areas of the basin that contain the impaired reaches for the same time period, and collected additional streamflow and water-quality data from sites on the Matfield and Taunton Rivers in 2008. A majority of the waterquality samples used in the study were collected between 1999 and 2006. Overall, the concentration, yield, and load data presented in this report represent water-quality conditions in the basin for the period 1997-2008. Water-quality data from 52 unique sites were used in the study. Most of the samples from previous studies were collected between June and September under dry weather conditions. Simulated or measured daily mean streamflow and water-quality data were used to estimate constituent yields and loads in the impaired tributary stream reaches and the main stem of the Taunton River and to develop yield-duration plots for reaches with sufficient water-quality data. Total

  16. Stream water quality in coal mined areas of the lower Cheat River Basin, West Virginia and Pennsylvania, during low-flow conditions, July 1997

    USGS Publications Warehouse

    Williams, Donald R.; Clark, Mary E.; Brown, Juliane B.

    1999-01-01

    IntroductionThe Cheat River Basin is in the Allegheny Plateau and Allegheny Mountain Sections of the Appalachian Plateau Physiographic Province (Fenneman, 1946) and is almost entirely within the state of West Virginia. The Cheat River drains an area of 1,422 square miles in Randolph, Tucker, Preston, and Monongalia Counties in West Virginia and Fayette County in Pennsylvania. From its headwaters in Randolph County, W.Va., the Cheat River flows 157 miles north to the Pennsylvania state line, where it enters the Monongahela River. The Cheat River drainage comprises approximately 19 percent of the total Monongahela River Basin. The Cheat River and streams within the Cheat River Basin are characterized by steep gradients, rock channels, and high flow velocities that have created a thriving white-water rafting industry for the area. The headwaters of the Cheat River contain some of the most pristine and aesthetic streams in West Virginia. The attraction to the area, particularly the lower part of the Cheat River Basin (the lower 412 square miles of the basin), has been suppressed because of poor water quality. The economy of the Lower Cheat River Basin has been dominated by coal mining over many decades. As a result, many abandoned deep and surface mines discharge untreated acid mine drainage (AMD), which degrades water quality, into the Cheat River and many of its tributary streams. Approximately 60 regulated mine-related discharges (West Virginia Department of Environmental Protection, 1996) and 185 abandoned mine sites (U.S. Office of Surface Mining, 1998) discharge treated and untreated AMD into the Cheat River and its tributaries.The West Virginia Department of Environmental Protection (WVDEP) Office of Abandoned Mine Lands and Reclamation (AML&R) has recently completed several AMD reclamation projects throughout the Cheat River Basin that have collectively improved the mainstem water quality. The AML&R office is currently involved in acquiring grant funds and

  17. Evaluation of an alternate method for sampling benthic macroinvertebrates in low-gradient streams sampled as part of the National Rivers and Streams Assessment

    EPA Science Inventory

    Benthic macroinvertebrates are sampled in streams and rivers as one of the assessment elements of the U.S. Environmental Protection Agency’s National Aquatic Resource Surveys. In a 2006 report, the recommendation was made that different yet comparable methods be evaluated for di...

  18. Multi-scale analysis of the fluxes between terrestrial water storage, groundwater, and stream discharge in the Columbia River Basin

    EPA Science Inventory

    The temporal relationships between the measurements of terrestrial water storage (TWS), groundwater, and stream discharge were analyzed at three different scales in the Columbia River Basin (CRB) for water years 2004 - 2012. Our nested watershed approach examined the Snake River ...

  19. Gazetteer of hydrologic characteristics of streams in Massachusetts; Housatonic River basin

    USGS Publications Warehouse

    Wandle, S.W.; Lippert, R.G.

    1984-01-01

    The Housatonic River basin includes streams that drain 504 square miles in western Massachusetts and 30.5 square miles in eastern New York. Drainage areas, using the latest available 1:24,000 scale topographic maps, were computed for the first time for streams draining more than 3 square miles and were recomputed for data-collection sites. Streamflow characteristics for four gaged streams were calculated using a new data base with daily flow records through 1981. These characteristics include annual and monthly flow statistics, duration of daily flow values, and the annual 7-day mean low flow at the 2-year and 10-year recurrence intervals. Seven-day low-flow statistics are presented for 52 partial-record sites, and the procedures used to determine the hydrologic characteristics of the basin are summarized. Basin characteristics representing 14 commonly used indices to estimate various streamflows are provided for selected gaging stations. This gazetteer will aid in the planning and siting of water-resources related activities and will provide a common data base for governmental agencies and the engineering and planning communities. (USGS)

  20. Stream seepage and groundwater levels, Wood River Valley, south-central Idaho, 2012-13

    USGS Publications Warehouse

    Bartolino, James R.

    2014-01-01

    Stream discharge and water levels in wells were measured at multiple sites in the Wood River Valley, south-central Idaho, in August 2012, October 2012, and March 2013, as a component of data collection for a groundwater-flow model of the Wood River Valley aquifer system. This model is a cooperative and collaborative effort between the U.S. Geological Survey and the Idaho Department of Water Resources. Stream-discharge measurements for determination of seepage were made during several days on three occasions: August 27–28, 2012, October 22–24, 2012, and March 27–28, 2013. Discharge measurements were made at 49 sites in August and October, and 51 sites in March, on the Big Wood River, Silver Creek, their tributaries, and nearby canals. The Big Wood River generally gains flow between the Big Wood River near Ketchum streamgage (13135500) and the Big Wood River at Hailey streamgage (13139510), and loses flow between the Hailey streamgage and the Big Wood River at Stanton Crossing near Bellevue streamgage (13140800). Shorter reaches within these segments may differ in the direction or magnitude of seepage or may be indeterminate because of measurement uncertainty. Additional reaches were measured on Silver Creek, the North Fork Big Wood River, Warm Springs Creek, Trail Creek, and the East Fork Big Wood River. Discharge measurements also were made on the Hiawatha, Cove, District 45, Glendale, and Bypass Canals, and smaller tributaries to the Big Wood River and Silver Creek. Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established by the U.S. Geological Survey in 2006. Maps of the October 2012 water-table altitude in the unconfined aquifer and the potentiometric-surface altitude of the confined aquifer have similar topology to those on maps of October 2006 conditions. Between October 2006 and October 2012, water-table altitude in the unconfined aquifer rose by

  1. Navigability Potential of Washington Rivers and Streams Determined with Hydraulic Geometry and a Geographic Information System

    USGS Publications Warehouse

    Magirl, Christopher S.; Olsen, Theresa D.

    2009-01-01

    Using discharge and channel geometry measurements from U.S. Geological Survey streamflow-gaging stations and data from a geographic information system, regression relations were derived to predict river depth, top width, and bottom width as a function of mean annual discharge for rivers in the State of Washington. A new technique also was proposed to determine bottom width in channels, a parameter that has received relatively little attention in the geomorphology literature. These regression equations, when combined with estimates of mean annual discharge available in the National Hydrography Dataset, enabled the prediction of hydraulic geometry for any stream or river in the State of Washington. Predictions of hydraulic geometry can then be compared to thresholds established by the Washington State Department of Natural Resources to determine navigability potential of rivers. Rivers with a mean annual discharge of 1,660 cubic feet per second or greater are 'probably navigable' and rivers with a mean annual discharge of 360 cubic feet per second or less are 'probably not navigable'. Variance in the dataset, however, leads to a relatively wide range of prediction intervals. For example, although the predicted hydraulic depth at a mean annual discharge of 1,660 cubic feet per second is 3.5 feet, 90-percent prediction intervals indicate that the actual hydraulic depth may range from 1.8 to 7.0 feet. This methodology does not determine navigability - a legal concept determined by federal common law - instead, this methodology is a tool for predicting channel depth, top width, and bottom width for rivers and streams in Washington.

  2. Small stream ecosystem variability in the Sierra Nevada of California

    Treesearch

    C.T. Hunsaker; S.M. Eagan

    2003-01-01

    The quality of aquatic and riparian ecosystems is a function of their condition and the integrity of adjacent uplands in their watersheds. While small streams make up a large proportion of the overall stream network, our knowledge of how they function is still limited. The Kings River Experimental Watershed (KREW) was initiated in 2000 to quantify the variability in...

  3. Subsurface flow in lowland river gravel bars

    NASA Astrophysics Data System (ADS)

    Bray, E. N.; Dunne, T.

    2017-09-01

    Geomorphic and hydraulic processes, which form gravel bars in large lowland rivers, have distinctive characteristics that control the magnitude and spatial patterns of infiltration and exfiltration between rivers and their immediate subsurface environments. We present a bedform-infiltration relation together with a set of field measurements along two reaches of the San Joaquin River, CA to illustrate the conditions required for infiltration and exfiltration of flow between a stream and its undulating bed, and a numerical model to investigate the factors that affect paths and residence times of flow through barforms at different discharges. It is shown that asymmetry of bar morphology is a first-order control on the extent and location of infiltration, which would otherwise produce equal areas of infiltration and exfiltration under the assumption of sinusoidal bedforms. Hydraulic conductivity varies by orders of magnitude due to fine sediment accumulation and downstream coarsening related to the process of bar evolution. This systematic variability not only controls the magnitude of infiltration, but also the residence time of flow through the bed. The lowest hydraulic conductivity along the reach occurred where the difference between the topographic gradient and the water-surface gradient is at a maximum and thus where infiltration would be greatest into a homogeneous bar, indicating the importance of managing sand supply to maintain the ventilation and flow through salmon spawning riffles. Numerical simulations corroborate our interpretation that infiltration patterns and rates are controlled by distinctive features of bar morphology.

  4. Physical characteristics of stream subbasins in the Pomme de Terre River Basin, west-central Minnesota

    USGS Publications Warehouse

    Lorenz, D.L.; Payne, G.A.

    1994-01-01

    Data describing the physical characteristics of stream subbasins upstream from selected points on streams in the Pomme de Terre River Basin, located in west-central Minnesota, are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slope. The points on the stream include outlets of subbasins of at least 5 square miles, outfalls of sewage treatment plants, and locations of U.S. Geological Survey low-flow, high-flow, and continuous-record gaging stations.

  5. Weirs: Counting and sampling adult salmonids in streams and rivers

    USGS Publications Warehouse

    Zimmerman, Christian E.; Zabkar, Laura M.; Johnson, David H.; Shrier, Brianna M.; O'Neal, Jennifer S.; Knutzen, John A.; Augerot, Xanthippe; O'Neal, Thomas A.; Pearsons, Todd N.

    2007-01-01

    Weirs—which function as porous barriers built across stream—have long been used to capture migrating fish in flowing waters. For example, the Netsilik peoples of northern Canada used V-shaped weirs constructed of river rocks gathered onsite to capture migrating Arctic char Salvelinus alpinus (Balikci 1970). Similarly, fences constructed of stakes and a latticework of willow branches or staves were used by Native Americans to capture migrating salmon in streams along the West Coast of North America (Stewart 1994). In modern times, weirs have also been used in terminal fisheries and to capture brood fish for use in fish culture. Weirs have been used to gather data on age structure, condition, sex ratio, spawning escapement, abundance, and migratory patterns of fish in streams. One of the critical elements of fisheries management and stock assessment of salmonids is a count of adult fish returning to spawn. Weirs are frequently used to capture or count fish to determine status and trends of populations or direct inseason management of fisheries; generally, weirs are the standard against which other techniques are measured. To evaluate fishery management actions, the number of fish escaping to spawn is often compared to river-specific target spawning requirements (O’Connell and Dempson 1995). A critical factor in these analyses is the determination of total run size (O’Connell 2003). O’Connell compared methods of run-size estimation against absolute counts from a rigid weir and concluded that, given the uncertainty of estimators, the absolute counts obtained at the weir wer significantly better than modeled estimates, which deviated as much as 50–60% from actual counts. The use of weirs is generally restricted to streams and small rivers because of construction expense, formation of navigation barriers, and the tendency of weirs to clog with debris, which can cause flooding and collapse of the structure (Hubert 1996). When feasible, however, weirs are

  6. Effect of Climate Extremes, Seasonal Change, and Agronomic Practices on Measured Evapotranspiration and CO2 Exchange in Sacramento-San Joaquin River Delta Alfalfa Fields

    NASA Astrophysics Data System (ADS)

    Clay, J.; Kent, E. R.; Leinfelder-Miles, M.; Paw U, K. T.; Little, C.; Lambert, J. J.

    2017-12-01

    Evapotranspiration and CO2 exchange was measured in five alfalfa fields in the Sacramento-San Joaquin River Delta region from 2016 to 2017 using eddy covariance and surface renewal methods. Seasonal changes of evapotranspiration and CO2 fluxes were compared between 2016, a drought year, and 2017, a high rainfall year. Additionally, changes in evapotranspiration and CO2 flux were investigated across various agronomic considerations, such as irrigation methods (border-check flood and sub-surface), stand life, and herbicide programs. Components of the energy balance, including net radiation, latent heat, ground heat flux, and sensible heat, were evaluated considering correlations to wind speed measured by three sonic anemometers, irrigation frequency, and crop cutting cycle. Comparisons between two different types of radiometers were also carried out. Under drought conditions, we observed higher amounts of evapotranspiration in a field having a stand life of less than two years of age compared to older stands, and in a sub-surface irrigated field compared to flood irrigated fields.

  7. Ictalurids in Iowa’s streams and rivers: Status, distribution, and relationships with biotic integrity

    USGS Publications Warehouse

    Sindt, Anthony R.; Fischer, Jesse R.; Quist, Michael C.; Pierce, Clay

    2011-01-01

    Anthropogenic alterations to Iowa’s landscape have greatly altered lotic systems with consequent effects on the biodiversity of freshwater fauna. Ictalurids are a diverse group of fishes and play an important ecological role in aquatic ecosystems. However, little is known about their distribution and status in lotic systems throughout Iowa. The purpose of this study was to describe the distribution of ictalurids in Iowa and examine their relationship with ecological integrity of streams and rivers. Historical data (i.e., 1884–2002) compiled for the Iowa Aquatic Gap Analysis Project (IAGAP) were used to detect declines in the distribution of ictalurids in Iowa streams and rivers at stream segment and watershed scales. Eight variables characterizing ictalurid assemblages were used to evaluate relationships with index of biotic integrity (IBI) ratings. Comparisons of recent and historic data from the IAGAP database indicated that 9 of Iowa’s 10 ictalurid species experienced distribution declines at one or more spatial scales. Analysis of variance indicated that ictalurid assemblages differed among samples with different IBI ratings. Specifically, total ictalurid, sensitive ictalurid, and Noturus spp. richness increased as IBI ratings increased. Results indicate declining ictalurid species distributions and biotic integrity are related, and management strategies aimed to improve habitat and increase biotic integrity will benefit ictalurid species.

  8. Estimation of river and stream temperature trends under haphazard sampling

    USGS Publications Warehouse

    Gray, Brian R.; Lyubchich, Vyacheslav; Gel, Yulia R.; Rogala, James T.; Robertson, Dale M.; Wei, Xiaoqiao

    2015-01-01

    Long-term temporal trends in water temperature in rivers and streams are typically estimated under the assumption of evenly-spaced space-time measurements. However, sampling times and dates associated with historical water temperature datasets and some sampling designs may be haphazard. As a result, trends in temperature may be confounded with trends in time or space of sampling which, in turn, may yield biased trend estimators and thus unreliable conclusions. We address this concern using multilevel (hierarchical) linear models, where time effects are allowed to vary randomly by day and date effects by year. We evaluate the proposed approach by Monte Carlo simulations with imbalance, sparse data and confounding by trend in time and date of sampling. Simulation results indicate unbiased trend estimators while results from a case study of temperature data from the Illinois River, USA conform to river thermal assumptions. We also propose a new nonparametric bootstrap inference on multilevel models that allows for a relatively flexible and distribution-free quantification of uncertainties. The proposed multilevel modeling approach may be elaborated to accommodate nonlinearities within days and years when sampling times or dates typically span temperature extremes.

  9. The Contribution of the Future SWOT Mission to Improve Simulations of River Stages and Stream-Aquifer Interactions at Regional Scale

    NASA Astrophysics Data System (ADS)

    Saleh, Firas; Filipo, Nicolas; Biancamaria, Sylvain; Habets, Florence; Rodriguez, Enersto; Mognard, Nelly

    2013-09-01

    The main objective of this study is to provide a realistic simulation of river stage in regional river networks in order to improve the quantification of stream-aquifer exchanges and better assess the associated aquifer responses that are often impacted by the magnitude and the frequency of the river stage fluctuations. This study extends the earlier work to improve the modeling of the Seine basin with a focus on simulating the hydrodynamics behavior of the Bassée alluvial wetland, a 120 km reach of the Seine River valley located south- east of Paris. The Bassée is of major importance for the drinking-water supply of Paris and surroundings, in addition to its particular hydrodynamic behavior due to the presence of a number of gravels. In this context, the understanding of stream-aquifer interactions is required for water quantity and quality preservation. A regional distributed process-based hydro(geo)logical model, Eau-Dyssée, is used. It aims at the integrated modeling of the hydrosystem to manage the various elements involved in the quantitative and qualitative aspects of water resources. Eau-Dyssée simulates pseudo 3D flow in aquifer systems solving the diffusivity equation with a finite difference numerical scheme. River flow is simulated with a Muskingum model. In addition to the in-stream discharge, a river stage estimate is needed to calculate the water exchange at the stream-aquifer interface using a conductance model. In this context, the future SWOT mission and its high-spatial resolution imagery can provide surface water level measurements at the regional scale that will permit to better characterize the Bassée complex hydro(geo)logical system and better assess soil water content. Moreover, the Bassée is considered as a potential target for the framework of the AirSWOT airborne campaign in France, 2013.

  10. An Index of Biotic Integrity for shallow streams of the Hondo River basin, Yucatan Peninsula.

    PubMed

    Schmitter-Soto, Juan J; Ruiz-Cauich, Lissie E; Herrera, Roberto L; González-Solís, David

    2011-01-15

    An Index of Biotic Integrity (IBI) is proposed, based on the fish communities and populations in streams of the Hondo River basin, Mexico-Belize. Freshwater environments in this area are threatened by exotic fishes, eutrophication, and pesticide pollution, among other problems. This IBI should allow to identify the most vulnerable sites and eventually guide rehabilitation efforts. Data on composition, structure, and function of fish communities were evaluated. Twenty-three sites in the Mexican part of the basin were explored; a stratified sample of 13 sites was used to design the IBI, and the rest were used to test and refine the index. Thirty-four candidate indicator metrics were scanned for their correlation with an index of water and habitat quality (IWHQ), as well as for the possible influence of stream width and altitude or distance to the Hondo River mainstem. Twelve variables were selected to constitute the IBI: relative abundances of Astyanax aeneus, 'Cichlasoma' urophthalmus, Poecilia mexicana, Poecilia sp. (a new species, probably endemic to the upper Hondo River basin), Xiphophorus hellerii, and X. maculatus; relative abundances of bentholimnetic, herbivore, and sensitive species; percentage of native and tolerant species; and Pielou's evenness index. Most of the sites have a low-medium quality and integrity, showing impact due to partial channelization or to suboptimal water quality, reflected in scarcity or absence of sensitive species, frequent excess of tolerant species, occasional presence of exotics, dominance of herbivores (perhaps due to proliferation of filamentous algae), or dominance of the opportunistic species P. mexicana. The streams with better water and habitat quality are those farthest away from the river mainstem, probably because of lower human population and economical production. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Evaluation of water quality at the source of streams of the Sinos River Basin, southern Brazil.

    PubMed

    Benvenuti, T; Kieling-Rubio, M A; Klauck, C R; Rodrigues, M A S

    2015-05-01

    The Sinos River Basin (SRB) is located in the northeastern region of the state of Rio Grande do Sul (29º20' to 30º10'S and 50º15' to 51º20'W), southern Brazil, and covers two geomorphologic provinces: the southern plateau and the central depression. It is part of the Guaíba basin, has an area of approximately 800 km 2 and contains 32 counties. The basin provides drinking water for 1.6 million inhabitants in one of the most important industrial centres in Brazil. This study describes different water quality indices (WQI) used for the sub-basins of three important streams in the SRB: Pampa, Estância Velha/Portão and Schmidt streams. Physical, chemical and microbiological parameters assessed bimonthly using samples collected at each stream source were used to calculate the Horton Index (HI), the Dinius Index (DI) and the water quality index adopted by the US National Sanitation Foundation (NSF WQI) in the additive and multiplicative forms. These indices describe mean water quality levels at the streams sources. The results obtained for these 3 indexes showed a worrying scenario in which water quality has already been negatively affected at the sites where three important sub-basins in the Sinos River Basin begin to form.

  12. River-ice break-up/freeze-up: a review of climatic drivers, historical trends and future predictions

    NASA Astrophysics Data System (ADS)

    Prowse, T. D.; Bonsal, B. R.; Duguay, C. R.; Lacroix, M. P.

    2007-10-01

    River ice plays a fundamental role in biological, chemical and physical processes that control freshwater regimes of the cold regions. Moreover, it can have enormous economic implications for river-based developments. All such activities and processes can be modified significantly by any changes to river-ice thickness, composition or event timing and severity. This paper briefly reviews some of the major hydraulic, mechanical and thermodynamic processes controlling river-ice events and how these are influenced by variations in climate. A regional and temporal synthesis is also made of the observed historical trends in river-ice break-up/freeze-up occurrence from the Eurasian and North American cold regions. This involves assessment of several hydroclimatic variables that have influenced past trends and variability in river-ice break-up/freeze-up dates including air-temperature indicators (e.g. seasonal temperature, 0°C isotherm dates and various degree-days) and large-scale atmospheric circulation patterns or teleconnections. Implications of future climate change on the timing and severity of river-ice events are presented and discussed in relation to the historical trends. Attention is drawn to the increasing trends towards the occurrence of mid-winter break-up events that can produce especially severe flood conditions but prove to be the most difficult type of event to model and predict.

  13. Use of BasinTemp to model summer stream temperatures in the south fork of Ten Mile River, CA

    Treesearch

    Rafael Real de Asua; Ethan Bell; Bruce Orr; Peter Baker; Kevin Faucher

    2012-01-01

    We used BasinTemp to predict summer stream temperatures in South Fork Ten Mile River (SFTMR), Mendocino County. BasinTemp is a temperature model that attempts to quantify the basin-wide effects of high summer stream temperatures in basins where the data inputs are scarce. It assumes that direct solar radiation is the chief...

  14. Solar forcing of the stream flow of a continental scale South American river.

    PubMed

    Mauas, Pablo J D; Flamenco, Eduardo; Buccino, Andrea P

    2008-10-17

    Solar forcing on climate has been reported in several studies although the evidence so far remains inconclusive. Here, we analyze the stream flow of one of the largest rivers in the world, the Paraná in southeastern South America. For the last century, we find a strong correlation with the sunspot number, in multidecadal time scales, and with larger solar activity corresponding to larger stream flow. The correlation coefficient is r=0.78, significant to a 99% level. In shorter time scales we find a strong correlation with El Niño. These results are a step toward flood prediction, which might have great social and economic impacts.

  15. Biogenic polycyclic aromatic hydrocarbons in sediments of the San Joaquin River in California (USA), and current paradigms on their formation.

    PubMed

    Wakeham, Stuart G; Canuel, Elizabeth A

    2016-06-01

    Biogenic perylene and higher plant pentacyclic triterpenoid-derived alkylated and partially aromatized tetra- and pentacyclic derivatives of chrysene (3,4,7-trimethyl- and 3,3,7-trimethyl-1,2,3,4-tetrahydrochrysene, THC) and picene (1,2,9-trimethyl- and 2,2,9-trimethyl-1,2,3,4-tetrahydropicene, THP) were two- to four-fold more abundant than pyrogenic PAH in two sediment cores from the San Joaquin River in Northern California (USA). In a core from Venice Cut (VC), located in the river, PAH concentrations varied little downcore and the whole-core PAH concentration (biogenics + pyrogenics) was 250.6 ± 73.7 ng g(-1) dw; biogenic PAH constituted 67 ± 4 % of total PAH. THC were 26 ± 9 % of total biogenic PAH, THP were 36 ± 7 %, and perylene was 38 ± 7 %. PAH distributions in a core from Franks Tract (FT), a former wetland that was converted to an agricultural tract in the late 1800s and flooded in 1938, were more variable. Surface sediments were dominated by pyrogenic PAH so that biogenic PAH were only ~30 % of total PAH. Deeper in the core, biogenic PAH constituted 60-93 % of total PAH; THC, THP and perylene were 31 ± 28 %, 24 ± 32 %, and 45 ± 36 % of biogenic PAH. At 100-103 cm depth, THP constituted 80 % of biogenic PAH and at 120-123 cm perylene was 95 % of biogenic PAH. Current concepts related to precursors and transformation processes responsible for the diagenetic generation of perylene and triterpenoid-derived PAH are discussed. Distributions of biogenic PAH in VC and FT sediments suggest that they may not form diagenetically within these sediments but rather might be delivered pre-formed from the river's watershed.

  16. Seasonal Stream Partitioning and Critical Zone Feedbacks within a Colorado River Headwater Basin

    NASA Astrophysics Data System (ADS)

    Carroll, R. W. H.; Bearup, L. A.; Williams, K. H.; Brown, W. S.; Dong, W.; Bill, M.

    2017-12-01

    Groundwater contribution to streams can modulate discharge response to climate extremes, thereby protecting ecosystem health and water supply for downstream users. However, much uncertainty exists on the role of groundwater contribution in snow-dominated, mountainous systems. To better understand seasonal stream source, we employ the empirical approach of end-member mixing analysis (EMMA) using a suite of natural chemical and isotopic observations within the East River; a headwater catchment of the Colorado River and recently designated as a Science Focus Area with Lawrence Berkeley National Laboratory. EMMA relies on principal component analysis to reduce the number of dimensions of variability (U-space) for use in hydrograph separation. The mixing model was constructed for the furthest downstream and most heavily characterized stream gauge in the study site (PH; 84.7 km2). Potential tracers were identified from PH discharge as near linear (Mg, Ca, Sr, U, SO4, DIC, δ2H and δ18O) with alternative groupings evaluated. The best model was able to describe 97% of the tracer variance in 2-dimensions with low error and lack of residual structure. U-space positioning resulted in seasonal stream water source contributions of rain (8-16%), snow (48-74%) and groundwater (18-42%). EMMA developed for PH did not scale across 10 nested sub-basins (ranging from 0.38 km2 to 69.9 km2). Differences in mixing ratios are attributable to feedbacks in the critical zone with a focus on (1) source rock contributions of SO4 and U; (2) biogeochemical processes of enhanced SO4 reduction in the floodplain sediments, (3) flow path length as expressed by carbonate weathering, and (4) enhanced groundwater contributions as related to snow distribution and ecosystem structure. EMMA is an initial step to elucidate source contributions to streamflow and address scalability and applicability of mixing processes in a complex, highly heterogeneous, snow-dominated catchment. Work will aid hydrologic

  17. Spatial heterogeneity of stream environmental conditions and macroinvertebrates community in an agriculture dominated watershed and management implications for a large river (the Liao River, China) basin.

    PubMed

    Gao, Xin; Niu, Cuijuan; Chen, Yushun; Yin, Xuwang

    2014-04-01

    Understanding the effects of watershed land uses (e.g., agriculture, urban industry) on stream ecological conditions is important for the management of large river basins. A total of 41 and 56 stream sites (from first to fourth order) that were under a gradient of watershed land uses were monitored in 2009 and 2010, respectively, in the Liao River Basin, Northeast China. The monitoring results showed that a total of 192 taxa belonging to four phyla, seven classes, 21 orders and 91 families were identified. The composition of macroinvertebrate community in the Liao River Basin was dominated by aquatic insect taxa (Ephemeroptera and Diptera), Oligochaeta and Molluscs. The functional feeding group GC (Gatherer/Collector) was dominant in the whole basin. Statistical results showed that sites with less watershed impacts (lower order sites) were characterized by higher current velocity and habitat score, more sensitive taxa (e.g., Ephemeroptera), and the substrate was dominated by high percentage of cobble and pebble. The sites with more impacts from agriculture and urban industry (higher order sites) were characterized by higher biochemical (BOD5) and chemical oxygen demand (COD), more tolerant taxa (e.g., Chironominae), and the substrate was dominated by silt and sand. Agriculture and urban-industry activities have reduced habitat condition, increased organic pollutants, reduced macroinvertebrate abundance, diversity, and sensitive taxa in streams of the lower Liao River Basin. Restoration of degraded habitat condition and control of watershed organic pollutants could be potential management priorities for the Basin.

  18. Relations among geology, physiography, land use, and stream habitat conditions in the Buffalo and Current River Systems, Missouri and Arkansas

    USGS Publications Warehouse

    Panfil, Maria S.; Jacobson, Robert B.

    2001-01-01

    This study investigated links between drainage-basin characteristics and stream habitat conditions in the Buffalo National River, Arkansas and the Ozark National Scenic Riverways, Missouri. It was designed as an associative study - the two parks were divided into their principle tributary drainage basins and then basin-scale and stream-habitat data sets were gathered and compared between them. Analyses explored the relative influence of different drainage-basin characteristics on stream habitat conditions. They also investigated whether a relation between land use and stream characteristics could be detected after accounting for geologic and physiographic differences among drainage basins. Data were collected for three spatial scales: tributary drainage basins, tributary stream reaches, and main-stem river segments of the Current and Buffalo Rivers. Tributary drainage-basin characteristics were inventoried using a Geographic Information System (GIS) and included aspects of drainage-basin physiography, geology, and land use. Reach-scale habitat surveys measured channel longitudinal and cross-sectional geometry, substrate particle size and embeddedness, and indicators of channel stability. Segment-scale aerial-photo based inventories measured gravel-bar area, an indicator of coarse sediment load, along main-stem rivers. Relations within and among data sets from each spatial scale were investigated using correlation analysis and multiple linear regression. Study basins encompassed physiographically distinct regions of the Ozarks. The Buffalo River system drains parts of the sandstone-dominated Boston Mountains and of the carbonate-dominated Springfield and Salem Plateaus. The Current River system is within the Salem Plateau. Analyses of drainage-basin variables highlighted the importance of these physiographic differences and demonstrated links among geology, physiography, and land-use patterns. Buffalo River tributaries have greater relief, steeper slopes, and more

  19. Major element concentrations in six Alaskan arctic rivers from melt to freeze-up

    NASA Astrophysics Data System (ADS)

    Douglas, T. A.; Barker, A.; Jacobson, A. D.; McClelland, J. W.; Khosh, M. S.; Lehn, G. O.

    2010-12-01

    It is increasingly evident that permafrost in the Arctic is responding to climate warming. An expected response to this warming is permafrost degradation and the downward migration of the seasonally thawed (active) layer into previously frozen material. This could allow weathering of previously frozen soils and influence surface water biogeochemistry in Arctic rivers. The weathering signal would most likely be evident in surface waters during summer and early fall base flow when the active layer is at its deepest extent. Studies collecting water samples from spring through late fall could capture these flows. Fieldwork in remote regions often requires long storage times for samples prior to analysis. One aspect of our study was to investigate whether waters collected for major element analyses should be preserved by acidification. We collected up to 60 surface water samples from each of six rivers between April and October, 2009. Two rivers were underlain by organic rich permafrost, two of the rivers drained mountainous bedrock, and two rivers were underlain by a combination of both bedrock and organic rich permafrost. We collected duplicate samples from each river. Samples were filtered in the field to less than 0.45 microns and collected into high density polyethylene bottles. Waters were stored for six months prior to analysis. One set of samples was analyzed without acidification while the second set was acidified with nitric acid to a pH of 2 after 6 months of storage. Concentrations of sodium, potassium, magnesium, calcium, ammonium, fluoride, chloride, nitrate, sulfate and phosphate were measured from all samples by ion chromatography. Sulfate, calcium, magnesium, sodium and potassium concentrations increase steadily through the summer from the end of spring melt into early fall. In all six rivers the potassium concentrations are unaffected by acidification. In the two streams underlain by organic rich permafrost and in one of the bedrock streams the calcium

  20. Tracing Causes of Hypoxia in the San Joaquin River Using Isotopic Techniques

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Silva, S. R.; Doctor, D. H.; Chang, C. C.; Fleenor, W. E.

    2005-05-01

    Fish migration through the deep-water shipping channel in the San Joaquin River near the city of Stockton CA is inhibited by periodic low dissolved oxygen (DO) concentrations during low flow conditions. There is considerable controversy regarding the relative roles of two mechanisms that can contribute to DO depletion: decomposition of algae from upstream locations and nitrification of ammonium from a nearby waste water treatment facility. Development of a successful remediation plan requires knowledge of the controls on spatial and temporal differences in oxygen-consuming mechanisms. To better understand the timing and relative importance of the mechanisms responsible for oxygen depletion, samples were collected for isotopic and chemical analysis during two intensive two-day sampling trips in August 2004. Samples were taken from a stationary houseboat in the channel, and from upstream and downstream traveling boats. Water samples at the houseboat were collected at five depths at 2-4 h intervals, and samples from 1 m were collected at about 4 h intervals from the traveling boats. All samples were analyzed for DO-d18O, seston-d15N/d13C, nitrate-d15N/d18O, DIC-d13C, water-d18O/d2H, DO, ammonium, and nitrate concentrations. Of all the measured parameters, ammonium, DO, and DO-d18O showed the strongest diurnal fluctuations, as well as significant changes with depth. Physico-chemical parameters indicated diurnal stratification and overturn of the channel. The general increase in the DO-d18O coincident with decreases in DO suggests that the night-time decrease in DO is caused largely by O2 consumption, either by respiration of organic matter or by nitrification. The DIC-d13C and nitrate-d15N data indicate that nitrification may affect DO concentrations as much or more than respiration. Preliminary principle components analysis indicates that photosynthesis is the main control over DO concentrations during this period of DO depletion, and that both nitrification and

  1. Geological literature on the San Joaquin Valley of California

    USGS Publications Warehouse

    Maher, J.C.; Trollman, W.M.; Denman, J.M.

    1973-01-01

    The following list of references includes most of the geological literature on the San Joaquin Valley and vicinity in central California (see figure 1) published prior to January 1, 1973. The San Joaquin Valley comprises all or parts of 11 counties -- Alameda, Calaveras, Contra Costa, Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare (figure 2). As a matter of convenient geographical classification the boundaries of the report area have been drawn along county lines, and to include San Benito and Santa Clara Counties on the west and Mariposa and Tuolumne Counties on the east. Therefore, this list of geological literature includes some publications on the Diablo and Temblor Ranges on the west, the Tehachapi Mountains and Mojave Desert on the south, and the Sierra Nevada Foothills and Mountains on the east.

  2. Implications for future survival of delta smelt from four climate change scenarios for the Sacramento–San Joaquin Delta, California

    USGS Publications Warehouse

    Brown, Larry R.; Bennett, William A.; Wagner, R. Wayne; Morgan-King, Tara; Knowles, Noah; Feyrer, Frederick; Schoellhamer, David H.; Stacey, Mark T.; Dettinger, Mike

    2013-01-01

    Changes in the position of the low salinity zone, a habitat suitability index, turbidity, and water temperature modeled from four 100-year scenarios of climate change were evaluated for possible effects on delta smelt Hypomesus transpacificus, which is endemic to the Sacramento–San Joaquin Delta. The persistence of delta smelt in much of its current habitat into the next century appears uncertain. By mid-century, the position of the low salinity zone in the fall and the habitat suitability index converged on values only observed during the worst droughts of the baseline period (1969–2000). Projected higher water temperatures would render waters historically inhabited by delta smelt near the confluence of the Sacramento and San Joaquin rivers largely uninhabitable. However, the scenarios of climate change are based on assumptions that require caution in the interpretation of the results. Projections like these provide managers with a useful tool for anticipating long-term challenges to managing fish populations and possibly adapting water management to ameliorate those challenges.

  3. Assessing the contribution of wetlands and subsided islands to dissolved organic matter and disinfection byproduct precursors in the Sacramento-San Joaquin River Delta: A geochemical approach

    USGS Publications Warehouse

    Kraus, T.E.C.; Bergamaschi, B.A.; Hernes, P.J.; Spencer, R.G.M.; Stepanauskas, R.; Kendall, C.; Losee, R.F.; Fujii, R.

    2008-01-01

    This study assesses how rivers, wetlands, island drains and open water habitats within the Sacramento-San Joaquin River Delta affect dissolved organic matter (DOM) content and composition, and disinfection byproduct (DBP) formation. Eleven sites representative of these habitats were sampled on six dates to encompass seasonal variability. Using a suite of qualitative analyses, including specific DBP formation potential, absorbance, fluorescence, lignin content and composition, C and N stable isotopic compositions, and structural groupings determined using CPMAS (cross polarization, magic angle spinning) 13C NMR, we applied a geochemical fingerprinting approach to characterize the DOM from different Delta habitats, and infer DOM and DBP precursor sources and estimate the relative contribution from different sources. Although river input was the predominant source of dissolved organic carbon (DOC), we observed that 13-49% of the DOC exported from the Delta originated from sources within the Delta, depending on season. Interaction with shallow wetlands and subsided islands significantly increased DOC and DBP precursor concentrations and affected DOM composition, while deep open water habitats had little discernable effect. Shallow wetlands contributed the greatest amounts of DOM and DBP precursors in the spring and summer, in contrast to island drains which appeared to be an important source during winter months. The DOM derived from wetlands and island drains had greater haloacetic acid precursor content relative to incoming river water, while two wetlands contributed DOM with greater propensity to form trihalomethanes. These results are pertinent to restoration of the Delta. Large scale introduction of shallow wetlands, a proposed restoration strategy, could alter existing DOC and DBP precursor concentrations, depending on their hydrologic connection to Delta channels. ?? 2008 Elsevier Ltd.

  4. A Decision Support System for Mitigating Stream Temperature Impacts in the Sacramento River

    NASA Astrophysics Data System (ADS)

    Caldwell, R. J.; Zagona, E. A.; Rajagopalan, B.

    2014-12-01

    Increasing demands on the limited and variable water supply across the West can result in insufficient streamflow to sustain healthy fish habitat. We develop an integrated decision support system (DSS) for modeling and mitigating stream temperature impacts and demonstrate it on the Sacramento River system in California. Water management in the Sacramento River is a complex task with a diverse set of demands ranging from municipal supply to mitigation of fisheries impacts due to high water temperatures. Current operations utilize the temperature control device (TCD) structure at Shasta Dam to mitigate these high water temperatures downstream at designated compliance points. The TCD structure at Shasta Dam offers a rather unique opportunity to mitigate water temperature violations through adjustments to both release volume and temperature. In this study, we develop and evaluate a model-based DSS with four broad components that are coupled to produce the decision tool for stream temperature mitigation: (i) a suite of statistical models for modeling stream temperature attributes using hydrology and climate variables of critical importance to fish habitat; (ii) a reservoir thermal model for modeling the thermal structure and, consequently, the water release temperature, (iii) a stochastic weather generator to simulate weather sequences consistent with seasonal outlooks; and, (iv) a set of decision rules (i.e., 'rubric') for reservoir water releases in response to outputs from the above components. Multiple options for modifying releases at Shasta Dam were considered in the DSS, including mixing water from multiple elevations through the TCD and using different acceptable levels of risk. The DSS also incorporates forecast uncertainties and reservoir operating options to help mitigate stream temperature impacts for fish habitat, while efficiently using the reservoir water supply and cold pool storage. The use of these coupled tools in simulating impacts of future climate

  5. Habitat and Populations of the Valley Elderberry Longhorn Beetle Along the Sacramento River

    Treesearch

    F. Jordan Lang; James D. Jokerst; Gregory E. Sutter

    1989-01-01

    Prior to 1985, the valley elderberry longhorn beetle, a threatened species protected under the federal Endangered Species Act, was known only from northern California riparian areas along the American River and Putah Creek in the Sacramento Valley, and along several rivers in the northern San Joaquin Valley. During 1985-1987, our study extended the known range of the...

  6. Stressor-Response Models Relating Nutrient Enrichment to Algal Communities in Pacific Northwest Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.

    2015-12-01

    Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.

  7. The biogeochemistry of carbon across a gradient of streams and rivers within the Congo Basin

    NASA Astrophysics Data System (ADS)

    Mann, P. J.; Spencer, R. G. M.; Dinga, B. J.; Poulsen, J. R.; Hernes, P. J.; Fiske, G.; Salter, M. E.; Wang, Z. A.; Hoering, K. A.; Six, J.; Holmes, R. M.

    2014-04-01

    Dissolved organic carbon (DOC) and inorganic carbon (DIC, pCO2), lignin biomarkers, and theoptical properties of dissolved organic matter (DOM) were measured in a gradient of streams and rivers within the Congo Basin, with the aim of examining how vegetation cover and hydrology influences the composition and concentration of fluvial carbon (C). Three sampling campaigns (February 2010, November 2010, and August 2011) spanning 56 sites are compared by subbasin watershed land cover type (savannah, tropical forest, and swamp) and hydrologic regime (high, intermediate, and low). Land cover properties predominately controlled the amount and quality of DOC, chromophoric DOM (CDOM) and lignin phenol concentrations (∑8) exported in streams and rivers throughout the Congo Basin. Higher DIC concentrations and changing DOM composition (lower molecular weight, less aromatic C) during periods of low hydrologic flow indicated shifting rapid overland supply pathways in wet conditions to deeper groundwater inputs during drier periods. Lower DOC concentrations in forest and swamp subbasins were apparent with increasing catchment area, indicating enhanced DOC loss with extended water residence time. Surface water pCO2 in savannah and tropical forest catchments ranged between 2,600 and 11,922 µatm, with swamp regions exhibiting extremely high pCO2 (10,598-15,802 µatm), highlighting their potential as significant pathways for water-air efflux. Our data suggest that the quantity and quality of DOM exported to streams and rivers are largely driven by terrestrial ecosystem structure and that anthropogenic land use or climate change may impact fluvial C composition and reactivity, with ramifications for regional C budgets and future climate scenarios.

  8. Status of native stream fishes within selected protected areas of Niobrara River in western Nebraska

    USGS Publications Warehouse

    Spurgeon, Jonathan J.; Stasiak, Richard H.; Cunningham, George R.; Pope, Kevin L.; Pegg, Mark A.

    2014-01-01

    Lotic systems within the Great Plains are characterized by highly fluctuating conditions through both space and time. Fishes inhabiting these systems have adopted specific life-history strategies to survive in such environments; however, anthropogenic disturbance to prairie streams has resulted in declines and extirpation of many native stream fishes. Terrestrial protected areas (i.e., parks and reserves) are designated to support native flora and fauna and, it is assumed, to provide protection to native fishes. We assessed the presence and relative abundance of stream fish populations within protected areas along the Niobrara River in western Nebraska based on data collected during 1979, 1989, 2008, and 2011. The spatial extent of protection, landscape changes resulting in degraded physiochemical parameters, and introduced species may reduce the effectiveness of these terrestrial protected areas in protecting native fishes in Great Plains stream environments.

  9. California GAMA Special Study: Importance of River Water Recharge to Selected Groundwater Basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, Ate; Moran, Jean E.; Singleton, Michael J.

    River recharge represents 63%, 86% and 46% of modern groundwater in the Mojave Desert, Owens Valley, and San Joaquin Valley, respectively. In pre-modern groundwater, river recharge represents a lower fraction: 36%, 46%, and 24% respectively. The importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a total increase of recharge of 40%, caused by river water irrigation return flows. This emphasizes the importance of recharge of river water via irrigation for renewal of groundwater resources. Mountain front recharge and local precipitation contribute to recharge of desert groundwater basins in partmore » as the result of geological features focusing scarce precipitation promoting infiltration. River water recharges groundwater systems under lower temperatures and with larger water table fluctuations than local precipitation recharge. Surface storage is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast recharge, compared to the large capacity for subsurface storage. Groundwater banking of seasonal surface water flows therefore appears to be a natural and promising method for increasing the resilience of water supply systems. The distinct isotopic and noble gas signatures of river water recharge, compared to local precipitation recharge, reflecting the source and mechanism of recharge, are valuable constraints for numerical flow models.« less

  10. Changes in stream chemistry and biology in response to reduced levels of acid deposition during 1987-2003 in the Neversink River Basin, Catskill Mountains

    USGS Publications Warehouse

    Burns, Douglas A.; Riva-Murray, K.; Bode, R.W.; Passy, S.

    2008-01-01

    Atmospheric acid deposition has decreased in the northeastern United States since the 1970s, resulting in modest increases in pH, acid-neutralizing capacity (ANC), and decreases in inorganic monomeric aluminum (AlIM) concentrations since stream chemistry monitoring began in the 1980s in the acid-sensitive upper Neversink River basin in the Catskill Mountains of New York. Stream pH has increased by 0.01 units/year during 1987-2003 at three sites in the Neversink basin as determined by Seasonal Kendall trend analysis. In light of this observed decrease in stream acidity, we sampled 12 stream sites within the Neversink River watershed for water chemistry, macroinvertebrates, fish, and periphytic diatoms in 2003 to compare with a similar data set collected in 1987. Metrics and indices that reflect sensitivity to stream acidity were developed with these biological data to determine whether changes in stream biota over the intervening 16 years parallel those of stream chemistry. Statistical comparisons of data on stream chemistry and an acid biological assessment profile (Acid BAP) derived from invertebrate data showed no significant differences between the two years. For pH and ANC, however, values in 2003 were generally lower than those in 1987; this difference likely resulted from higher streamflow in summer 2003. Despite these likely flow-induced changes in summer 2003, an ordination and cluster analysis of macroinvertebrate taxa based on the Acid BAP indicated that the most acidic sites in the upstream half of the East Branch Neversink River form a statistically significant separate cluster consistent with less acidic stream conditions. This analysis is consistent with limited recovery of invertebrate species in the most acidic reaches of the river, but will require additional improvement in stream chemistry before a stronger conclusion can be drawn. Data on the fish and periphytic diatom communities in 2003 indicate that slimy sculpin had not extended their habitat

  11. Animation of Tropical Storm Joaquin right before it intensified into a hurricane on September 29, 2015

    NASA Image and Video Library

    2017-12-08

    -- Joaquin became a tropical storm Monday evening (EDT) midway between the Bahamas and Bermuda and has now formed into a hurricane, the 3rd of the season--the difference is Joaquin could impact the US East Coast. GPM captured Joaquin Tuesday, September 29th at 21:39 UTC (5:39 pm EDT) as the hurricane moved slowly towards the west-southwest about 400 miles east of the northwestern Bahamas. At the time, Joaquin had been battling northerly wind shear, which was impeding the storm's ability to strengthen. However, compared to earlier in the day, the system was beginning to gain the upper hand as the shear began to relax its grip. At the time of this data visualization, Joaquin's low-level center of circulation was located further within the cloud shield, and the rain area was beginning to wrap farther around the center on the eastern side of the storm while showing signs of increased banding and curvature, a sure sign that Joaquin's circulation was intensifying. GPM shows a large area of very intense rain with rain rates ranging from around 50 to 132 mm/hr (~2 to 5 inches, shown in red and magenta) just to the right of the center. This is a strong indication that large amounts of heat are being released into the storm's center, fueling its circulation and providing the means for its intensification. Associated with the area of intense rain is an area of tall convective towers, known as a convective burst, with tops reaching up to 16.3 km (shown in orange). These towers when located near the storm's core are a strong indication that the storm is poised to strengthen as they too reveal the release of heat into the storm. At the time this data was taken, the National Hurricane Center reported that Joaquin's maximum sustained winds had increased to 65 mph from 40 mph earlier in the day, making Joaquin a strong tropical storm but poised to become a hurricane, which occurred this morning at 8:00 am EDT. With the inhibiting wind shear expected to continue to diminish and the

  12. Lower food chain community study: thermal effects and post-thermal recovery in the streams and swamps of the Savannah River Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratieff, P.; Kondratieff, B.C.

    1985-07-01

    The effects of thermal stress on lower food chain communities of streams and swamps of the Savannah River Plant. Both the autotroph assemblages and the macro invertebrate communities were studied in streams receiving heated reactor effluent. To document stream and swamp ecosystem recovery from thermal stress, the same communities of organisms were studied in a stream/swamp ecosystem which had received heated reactor effluent in the past. (ACR)

  13. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers

    Treesearch

    Jennifer J. Follstad Shah; John S. Kominoski; Marcelo Ardón; Walter K. Dodds; Mark O. Gessner; Natalie A. Griffiths; Charles P. Hawkins; Sherri L. Johnson; Antoine Lecerf; Carri J. LeRoy; David W. P. Manning; Amy D. Rosemond; Robert L. Sinsabaugh; Christopher M. Swan; Jackson R. Webster; Lydia H. Zeglin

    2017-01-01

    Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community...

  14. Vulnerability Assessment of Natural Disasters for Small and Mid-Sized Streams due to Climate Change and Stream Improvement

    NASA Astrophysics Data System (ADS)

    Choi, D.; Jun, H. D.; Kim, S.

    2012-04-01

    Vulnerability assessment plays an important role in drawing up climate change adaptation plans. Although there are some studies on broad vulnerability assessment in Korea, there have been very few studies to develop and apply locally focused and specific sector-oriented climate change vulnerability indicators. Especially, there has seldom been any study to investigate the effect of an adaptation project on assessing the vulnerability status to climate change for fundamental local governments. In order to relieve adverse effects of climate change, Korean government has performed the project of the Major Four Rivers (Han, Geum, Nakdong and Yeongsan river) Restoration since 2008. It is expected that water level in main stream of 4 rivers will be dropped through this project, but flood effect will be mainly occurred in small and mid-sized streams which flows in main stream. Hence, we examined how much the project of the major four rivers restoration relieves natural disasters. Conceptual framework of vulnerability-resilience index to climate change for the Korean fundamental local governments is defined as a function of climate exposure, sensitivity, and adaptive capacity. Then, statistical data on scores of proxy variables assumed to comprise climate change vulnerability for local governments are collected. Proxy variables and estimated temporary weights of them are selected by surveying a panel of experts using Delphi method, and final weights are determined by modified Entropy method. Developed vulnerability-resilience index was applied to Korean fundamental local governments and it is calculated under each scenario as follows. (1) Before the major four rivers restoration, (2) 100 years after represented climate change condition without the major four rivers restoration, (3) After the major four rivers restoration without representing climate change (this means present climate condition) and (4) After the major four rivers restoration and 100 years after represented

  15. Mapping Spatial Distributions of Stream Power and Channel Change along a Gravel-Bed River in Northern Yellowstone

    NASA Astrophysics Data System (ADS)

    Lea, D. M.; Legleiter, C. J.

    2014-12-01

    Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing. This study used remotely sensed data and field measurements to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8 km reach. Aerial photographs from 1994-2012 and cross-section surveys were used to assess lateral channel mobility and develop a morphologic sediment budget for quantifying net sediment flux for a series of budget cells. A drainage area-to-discharge relationship and digital elevation model (DEM) developed from LiDAR data were used to obtain the discharge and slope values, respectively, needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of channel mobility and sediment transfer. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volume of sediment eroded or deposited during each time increment. Our results indicated a lack of strong correlation between stream power gradients and sediment flux, which we attributed to the geomorphic complexity of the Soda Butte Creek watershed and the inability of our relatively simple statistical approach to link sediment dynamics expressed at a sub-budget cell scale to larger-scale driving forces such as stream power gradients. Future studies should compare the moderate spatial resolution techniques used in this study to very-high resolution data acquired from new fluvial remote sensing technologies to better understand the amount of error associated with stream power

  16. Low Frequencies of Interference to EPA Quantitative Polymerase Chain Reaction (qPCR) Methods for Microbial Water Quality Monitoring in U.S. Rivers and Streams and Coastal Waters

    EPA Science Inventory

    In collaboration with U.S States and Tribes, the United States Environmental Protection Agency (EPA) conducts periodic and rotating, statistically based surveys of U.S. rivers and streams (National Rivers and Streams Assessment, NRSA), estuarine and Great Lakes nearshore coastal ...

  17. A floodplain continuum for Atlantic coast rivers of the Southeastern US: Predictable changes in floodplain biota along a river's length

    USGS Publications Warehouse

    Batzer, Darold P.; Noe, Gregory; Lee, Linda; Galatowitsch, Mark

    2018-01-01

    Floodplains are among the world’s economically-most-valuable, environmentally-most-threatened, and yet conceptually-least-understood ecosystems. Drawing on concepts from existing riverine and wetland models, and empirical data from floodplains of Atlantic Coast rivers in the Southeastern US (and elsewhere when possible), we introduce a conceptual model to explain a continuum of longitudinal variation in floodplain ecosystem functions with a particular focus on biotic change. Our hypothesis maintains that major controls on floodplain ecology are either external (ecotonal interactions with uplands or stream/river channels) or internal (wetland-specific functions), and the relative importance of these controls changes progressively from headwater to mid-river to lower-river floodplains. Inputs of water, sediments, nutrients, flora, and fauna from uplands-to-floodplains decrease, while the impacts of wetland biogeochemistry and obligate wetland plants and animals within-floodplains increase, along the length of a river floodplain. Inputs of water, sediment, nutrients, and fauna from river/stream channels to floodplains are greatest mid-river, and lower either up- or down-stream. While the floodplain continuum we develop is regional in scope, we review how aspects may apply more broadly. Management of coupled floodplain-river ecosystems would be improved by accounting for how factors controlling the floodplain ecosystem progressively change along longitudinal riverine gradients.

  18. Stream classification of the Apalachicola-Chattahoochee-Flint River System to support modeling of aquatic habitat response to climate change

    USGS Publications Warehouse

    Elliott, Caroline M.; Jacobson, Robert B.; Freeman, Mary C.

    2014-01-01

    A stream classification and associated datasets were developed for the Apalachicola-Chattahoochee-Flint River Basin to support biological modeling of species response to climate change in the southeastern United States. The U.S. Geological Survey and the Department of the Interior’s National Climate Change and Wildlife Science Center established the Southeast Regional Assessment Project (SERAP) which used downscaled general circulation models to develop landscape-scale assessments of climate change and subsequent effects on land cover, ecosystems, and priority species in the southeastern United States. The SERAP aquatic and hydrologic dynamics modeling efforts involve multiscale watershed hydrology, stream-temperature, and fish-occupancy models, which all are based on the same stream network. Models were developed for the Apalachicola-Chattahoochee-Flint River Basin and subbasins in Alabama, Florida, and Georgia, and for the Upper Roanoke River Basin in Virginia. The stream network was used as the spatial scheme through which information was shared across the various models within SERAP. Because these models operate at different scales, coordinated pair versions of the network were delineated, characterized, and parameterized for coarse- and fine-scale hydrologic and biologic modeling. The stream network used for the SERAP aquatic models was extracted from a 30-meter (m) scale digital elevation model (DEM) using standard topographic analysis of flow accumulation. At the finer scale, reaches were delineated to represent lengths of stream channel with fairly homogenous physical characteristics (mean reach length = 350 m). Every reach in the network is designated with geomorphic attributes including upstream drainage basin area, channel gradient, channel width, valley width, Strahler and Shreve stream order, stream power, and measures of stream confinement. The reach network was aggregated from tributary junction to tributary junction to define segments for the

  19. Synthetic River Valleys

    NASA Astrophysics Data System (ADS)

    Brown, R.; Pasternack, G. B.

    2011-12-01

    The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D

  20. Similarity of Stream Width Distributions Across Headwater Systems

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; Pavelsky, T.; Barefoot, E. A.; Tashie, A.; Butman, D. E.

    2016-12-01

    The morphology and abundance of streams control the rates of hydraulic and biogeochemical exchange between streams, groundwater, and the atmosphere. In large river systems, studies have used remote sensing to quantify river morphology, and have found that the relationship between river width and abundance is fractal, such that narrow rivers are proportionally more common than wider rivers. However, in headwater systems (stream order 1-3), where many biogeochemical reactions are most rapid, the relationship between stream width and abundance is unknown, reducing the certainty of biogeochemical flux estimates. To constrain this uncertainty, we surveyed two components of stream morphology (wetted stream width and length) in seven physiographically contrasting stream networks in Kings Creek in Konza Prarie, KS; Sagehen Creek in the N. Sierra Nevada Mtns., CA; Elder Creek in Angelo Coast Range Preserve, CA; Caribou Creek in the Caribou Poker Creek Research Watershed, AK; V40 Stream, NZ; Blue Duck Creek, NZ; Stony Creek in Duke Forest, NC. To assess temporal variations, we also surveyed stream geometry in a subcatchment of Stony Creek six times over a range of moderate streamflow conditions (discharge less than 90 percentile of gauge record). Here we show a strikingly consistent gamma statistical distribution of stream width in all surveys and a characteristic most abundant stream width of 32±7 cm independent of flow conditions or basin size. This consistency is remarkable given the substantial physical diversity among the studied catchments. We propose a model that invokes network topology theory and downstream hydraulic geometry to show that, as active drainage networks expand and contract in response to changes in streamflow, the most abundant stream width remains approximately static. This framework can be used to better extrapolate stream size and abundance from large rivers to small headwater streams, with significant impact on understanding of the hydraulic

  1. Scaling up watershed model parameters: flow and load simulations of the Edisto River Basin, South Carolina, 2007-09

    USGS Publications Warehouse

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul

    2014-01-01

    hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variable in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD–H, and LOADEST. Because the focus of this investigation was on scaling up the models from McTier Creek, water-quality concentrations that were previously collected in the McTier Creek Basin were used in the water-quality load models.

  2. Characterization of Sea Lamprey stream entry using dual‐frequency identification sonar

    USGS Publications Warehouse

    McCain, Erin L.; Johnson, Nicholas; Hrodey, Peter J.; Pangle, Kevin L.

    2018-01-01

    Effective methods to control invasive Sea Lampreys Petromyzon marinus in the Laurentian Great Lakes often rely on knowledge of the timing of the Sea Lamprey spawning migration, which has previously been characterized using data gathered from traps. Most assessment traps are located many kilometers upstream from the river mouth, so less is known about when Sea Lampreys enter spawning streams and which environmental cues trigger their transition from lakes to rivers. To decide how to develop barriers and traps that target Sea Lampreys when they enter a stream, the stream entry of Sea Lampreys into a Lake Huron tributary during 2 years was assessed using dual‐frequency identification sonar (DIDSON). Sea Lampreys entered the stream in low densities when temperatures first reached 4°C, which was up to 6 weeks and a mean of 4 weeks earlier than when they were first captured in traps located upstream. The probability of stream entry was significantly affected by stream temperature and discharge, and stream entry timing peaked when stream temperatures rose to 12°C and discharge was high. Examination of the entry at a finer temporal resolution (i.e., minutes) indicated that Sea Lampreys did not exhibit social behavior (e.g., shoaling) during stream entry. Our findings indicate that Sea Lampreys may be vulnerable to alternative trap types near river mouths and hydraulic challenges associated with traditional traps. Also, seasonal migration barriers near stream mouths may need to be installed soon after ice‐out to effectively block the entire adult Sea Lamprey cohort from upstream spawning habitat.

  3. Compositional dynamics of dissolved lignin in watersheds: small temperate streams to large tropical rivers

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Keil, R. G.; Medeiros, P. M.; Brito, D.; Krusche, A. V.; Richey, J. E.

    2012-12-01

    The most abundant biochemicals on land are cellulose, hemicellulose, and lignin. Lignin, alone, composes roughly 30% of the organic carbon (OC) in the terrestrial biosphere (Boerjan et al., 2003) and a significant portion of the OC mobilized into stream and river networks worldwide. Here we present a synthesis of several studies examining (i) the mobilization dynamics/compositional changes in dissolved lignin during rapid storm events in small temperate streams (Hood Canal, WA, USA), and (ii) the respiration dynamics/biological overturning of dissolved (and particulate) lignin in the Amazon River mainstem. Rapid sampling (3 hour intervals) during short-term rainfall events has revealed that the concentration of dissolved lignin phenols (as well as DOC) in small temperate streams is strongly correlated with river discharge (Ward et al., 2012). Additionally, rapid discharge increases resulted in an increase in Ad/Al and C/V ratios and decrease in the S/V ratio of dissolved lignin phenols, indicating a mobilization of relatively degraded non-woody/gymnosperm-derived material in the dissolved phase during storms occurring after a long dry period. We hypothesize that sorption to soil surfaces imparts an additional control on lignin mobilization: degraded phenols are relatively more soluble than their non-degraded counterparts and are easily mobilized by rapid flow, whereas non-degraded phenols are slowly mobilized by base flow and continuously degraded in soils. Once lignin is mobilized into the aquatic setting it is often assumed to be refractory. However, evidence in the Amazon River mainstem suggests the contrary. We have assessed the biodegradability of dissolved (and particulate) lignin, as well as a vast suite (~120) of similar phenolic compounds with a series of incubation experiments performed on four Amazon River cruises. We estimate that on average the degradation of lignin and similar phenolic compounds supports 30-50% of bulk respiration rates in the river

  4. The dynamics of fish populations in the Palancar stream,a small tributary of the river Guadalquivir, Spain

    NASA Astrophysics Data System (ADS)

    Bravo, Ramón; Soriguer, Mila C.; Villar, Noelia; Hernando, José A.

    2001-02-01

    The relationship between flooding and changes in the size distribution of fish populations in the Palancar stream confirms observations in other rivers. On average, density decreased by 36.2 % and biomass increased by 14.5 %, passing from a period of severe drought to one of heavier than normal rains. Precipitation is the most important of the many factors affecting the populations of the Palancar stream; the most evident changes all occurred after the drought. During the drought period, the marked seasonal fluctuation in flow was the most important factor regulating the population dynamics. Fish density and biomass varied in proportion to the water volume. During the rainy period, the studied section of the river was found to be an important reproduction and nursery area, with juveniles and individuals of reproduction age dominating. The presence of Micropterus salmoides, an introduced piscivorous species, is another factor affecting the population dynamics in the Palancar stream. The observed absence of age 0+ individuals of the dominant populations is considered a direct effect of predation.

  5. Analyzing indicators of stream health for Minnesota streams

    USGS Publications Warehouse

    Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.

    2005-01-01

    Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.

  6. Source water controls on the character and origin of dissolved organic matter in streams of the Yukon River basin, Alaska

    USGS Publications Warehouse

    O'Donnell, Jonathan A.; Aiken, George R.; Kane, Evan S.; Jones, Jeremy B.

    2010-01-01

    Climate warming and permafrost degradation at high latitudes will likely impact watershed hydrology, and consequently, alter the concentration and character of dissolved organic carbon (DOC) in northern rivers. We examined seasonal variation of DOC chemistry in 16 streams of the Yukon River basin, Alaska. Our primary objective was to evaluate the relationship between source water (shallow versus deep groundwater flow paths) and DOC chemical composition. Using base cation chemistry and principal component analysis, we observed high contributions of deep groundwater to glacial and clearwater streams, whereas blackwater streams received larger contributions from shallow groundwater sources. DOC concentration and specific ultraviolet absorbance peaked during spring snowmelt in all streams, and were consistently higher in blackwater streams than in glacial and clearwater streams. The hydrophobic acid fraction of DOC dominated across all streams and seasons, comprising between 35% and 56% of total DOC. The hydrophilic acid fraction of DOC was more prominent in glacial (23% ± 3%) and clearwater streams (19% ± 1%) than in blackwater streams (16% ± 1%), and was enriched during winter base flow (29% ± 1%) relative to snowmelt and summer base flow. We observed that an increase in the contribution of deep groundwater to streamflow resulted in decreased DOC concentration, aromaticity, and DOC-to-dissolved organic nitrogen ratio, and an increase in the proportion of hydrophilic acids relative to hydrophobic acids. Our findings suggest that future permafrost degradation and higher contributions of groundwater to streamflow may result in a higher fraction of labile DOM in streams of the Yukon basin.

  7. Geographic Information Systems Methods for Determining Drainage-Basin Areas, Stream-Buffered Areas, Stream Length, and Land Uses for the Neosho and Spring Rivers in Northeastern Oklahoma

    USGS Publications Warehouse

    Masoner, Jason R.; March, Ferrella

    2006-01-01

    Geographic Information Systems have many uses, one of which includes the reproducible computation of environmental characteristics that can be used to categorize hydrologic features. The Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality are investigating Geographic Information Systems techniques to determine partial drainage-basin areas, stream-buffer areas, stream length, and land uses (drainage basin and stream characteristics) in northeastern Oklahoma. The U.S Geological Survey, in cooperation with Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality, documented the methods used to determine drainage-basin and stream characteristics for the Neosho and Spring Rivers above Grand Lake Of the Cherokees in northeastern Oklahoma and calculated the characteristics. The drainage basin and stream characteristics can be used by the Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality to aid in natural-resource assessments.

  8. FIELD OPERATIONS AND METHODS FOR MEASURING THE ECOLOGICAL CONDITION OF NON-WADEABLE RIVERS AND STREAMS

    EPA Science Inventory

    The methods and instructions for field operations presented in this manual for surveys of non-wadeable streams and rivers were developed and tested based on 55 sample sites in the Mid-Atlantic region and 53 sites in an Oregon study during two years of pilot and demonstration proj...

  9. Variability, trends, and teleconnections of stream flows with large-scale climate signals in the Omo-Ghibe River Basin, Ethiopia.

    PubMed

    Degefu, Mekonnen Adnew; Bewket, Woldeamlak

    2017-04-01

    This study assesses variability, trends, and teleconnections of stream flow with large-scale climate signals (global sea surface temperatures (SSTs)) for the Omo-Ghibe River Basin of Ethiopia. Fourteen hydrological indices of variability and extremes were defined from daily stream flow data series and analyzed for two common periods, which are 1972-2006 for 5 stations and 1982-2006 for 15 stations. The Mann-Kendall's test was used to detect trends at 0.05 significance level, and simple correlation analysis was applied to evaluate associations between the selected stream flow indices and SSTs. We found weak and mixed (upward and downward) trend signals for annual and wet (Kiremt) season flows. Indices generated for high-flow (flood) magnitudes showed the same weak trend signals. However, trend tests for flood frequencies and low-flow magnitudes showed little evidences of increasing change. It was also found that El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are the major anomalies affecting stream flow variability in the Omo-Ghibe Basin. The strongest associations are observed between ENSO/Niño3.4 and the stream flow in August and September, mean Kiremt flow (July-September), and flood frequency (peak over threshold on average three peaks per year (POT3_Fre)). The findings of this study provide a general overview on the long-term stream flow variability and predictability of stream flows for the Omo-Ghibe River Basin.

  10. 76 FR 68103 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the... State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District Rule 4692...

  11. Voice of the Rivers: Quantifying the Sound of Rivers into Streamflow and Using the Audio for Education and Outreach

    NASA Astrophysics Data System (ADS)

    Santos, J.

    2014-12-01

    I have two goals with my research. 1. I proposed that sound recordings can be used to detect the amount of water flowing in a particular river, which could then be used to measure stream flow in rivers that have no instrumentation. My locations are in remote watersheds where hand instrumentation is the only means to collect data. I record 15 minute samples, at varied intervals, of the streams with a stereo microphone suspended above the river perpendicular to stream flow forming a "profile" of the river that can be compared to other stream-flow measurements of these areas over the course of a year. Through waveform analysis, I found a distinct voice for each river and I am quantifying the sound to track the flow based on amplitude, pitch, and wavelengths that these rivers produce. 2. Additionally, I plan to also use my DVD quality sound recordings with professional photos and HD video of these remote sites in education, outreach, and therapeutic venues. The outreach aspect of my research follows my goal of bridging communication between researchers and the public. Wyoming rivers are unique in that we export 85% of our water downstream. I would also like to take these recordings to schools, set up speakers in the four corners of a classroom and let the river flow as the teacher presents on water science. Immersion in an environment can help the learning experience of students. I have seen firsthand the power of drawing someone into an environment through sound and video. I will have my river sounds with me at AGU presented as an interactive touch-screen sound experience.

  12. Ballast Water Self Monitoring

    DTIC Science & Technology

    2011-11-01

    Analytical Methods .........................................................22  7 Estimated Capital Cost for Vessels Needing Additional Ballast Water...streams; narrative water-quality based effluent limits; inspection, monitoring, recordkeeping, and reporting requirements; and additional requirements...decline of several pelagic fish species in the Sacramento-San Joaquin River Delta by reducing the plankton food base of the ecosystem (California State

  13. Aquatic communities and contaminants in fish from streams of the Red River of the North basin, Minnesota and North Dakota

    USGS Publications Warehouse

    Goldstein, R.M.

    1995-01-01

    Available data on the ecology of aquatic organisms in the Red River of the North Basin, a study unit of the U.S. Geological Survey's National Water-Quality Assessment program, were collated from numerous sources. Lack of information for invertebrates and algae precluded a general summary of distribution and ecology throughout the basin. Data on fish species distributions in the major streams of the Red River of the North Basin were analyzed based on the drainage area of the stream and the number of ecoregions the stream flowed through. Species richness increased with both drainage area (log drainage area in square kilometers, R2=0.41, p=0.0055) and the number of ecoregions a river flowed through. However, theses two factors are autocorrelated because the larger the drainage, the more likely that the river will flow through more than one ecoregion. A cluster analysis identified five river groups based on similarity of species within the fish community. Analysis of trophic and taxonomic composition provided justification for the cluster groups. There were significant differences (p=0.05) in the trophic composition of the river cluster groups with respect to the number of predator species, omnivore species, benthic insectivore species, and general insectivore species. Although there were no significant differences in the number of species in the bass and sunfish family or the sucker family, the number of species in the minnow family and the darter subfamily were different (p=0.05) among the groups identified by cluster analysis. Data on contaminant concentrations in fish from the Red River of the North indicated that most trace elements and organochlorine compounds present in tissues were not at levels toxic to fish or humans. Minnesota and North Dakota have issued a fish consumption advisory based on levels of mercury and (or) PCBs found in some species.

  14. Diel activity patterns of juvenile late fall-run Chinook salmon with implications for operation of a gated water diversion in the Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Plumb, John M.; Adams, Noah S.; Perry, Russell W.; Holbrook, Christopher; Romine, Jason G.; Blake, Aaron R.; Burau, Jon R.

    2016-01-01

    In the Sacramento-San Joaquin River Delta, California, tidal forces that reverse river flows increase the proportion of water and juvenile late fall-run Chinook salmon diverted into a network of channels that were constructed to support agriculture and human consumption. This area is known as the interior delta, and it has been associated with poor fish survival. Under the rationale that the fish will be diverted in proportion to the amount of water that is diverted, the Delta Cross Channel (DCC) has been prescriptively closed during the winter out-migration to reduce fish entrainment and mortality into the interior delta. The fish are thought to migrate mostly at night, and so daytime operation of the DCC may allow for water diversion that minimizes fish entrainment and mortality. To assess this, the DCC gate was experimentally opened and closed while we released 2983 of the fish with acoustic transmitters upstream of the DCC to monitor their arrival and entrainment into the DCC. We used logistic regression to model night-time arrival and entrainment probabilities with covariates that included the proportion of each diel period with upstream flow, flow, rate of change in flow and water temperature. The proportion of time with upstream flow was the most important driver of night-time arrival probability, yet river flow had the largest effect on fish entrainment into the DCC. Modelling results suggest opening the DCC during daytime while keeping the DCC closed during night-time may allow for water diversion that minimizes fish entrainment into the interior delta.

  15. A REVIEW OF BIOLOGICAL ASSESSMENT TOOLS AND BIOCRITERIA FOR STREAMS AND RIVERS IN NEW ENGLAND STATES

    EPA Science Inventory

    The primary purpose of this document is to serve as a detailed description of the biological assessment programs for wadeable streams and rivers within U.S. Environmental Protection Agency Region 1 states (i.e., Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island and V...

  16. Adaptive Management Using Remote Sensing and Ecosystem Modeling in Response to Climate Variability and Invasive Aquatic Plants for the California Sacramento-San Joaquin Delta Water Resource

    NASA Astrophysics Data System (ADS)

    Bubenheim, D.; Potter, C. S.; Zhang, M.; Madsen, J.

    2017-12-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern and Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant management in the California Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they improve decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.

  17. Adaptive Management Using Remote Sensing and Ecosystem Modeling in Response to Climate Variability and Invasive Aquatic Plants for the California Sacramento-San Joaquin Delta Water Resource

    NASA Technical Reports Server (NTRS)

    Bubenheim, David; Potter, Christopher; Zhang, Minghua; Madsen, John

    2017-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern to Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant in the Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they are improving decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.

  18. 75 FR 4759 - Withdrawal of Proposed Rule Revising the California State Implementation Plan, San Joaquin Valley...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... Proposed Rule Revising the California State Implementation Plan, San Joaquin Valley Unified Air Pollution... approval of revisions to the San Joaquin Valley Unified Air Pollution Control District portion of the... revisions to the San Joaquin Valley Unified Air Pollution Control District (``District'') portion of the...

  19. 75 FR 28509 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of... Joaquin Valley Unified Air Pollution Control District, No. 08-17309 (9th Circuit)). In that case, NAHB...

  20. Composition of fish communities in relation to stream acidification and habitat in the Neversink River, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Lawrence, G.B.

    2000-01-01

    The effects of acidification in lotic systems are not well documented. Spatial and temporal variability of habitat and water quality complicate the evaluation of acidification effects in streams and river. The Neversink River in the Catskill Mountains of southeastern New York, the tributaries of which vary from well buffered to severely acidified, provided an opportunity to investigate the external and magnitude of acidification effects on fish communities of headwater systems. Composition of fish communities, water quality, stream hydrology, stream habitat, and physiographic factors were characterized from 1991 to 1995 at 16 first- to fourth-order sites in the basin. Correlation and regression analyses were used to develop empirical models and to assess the relations among fish species richness, total fish density, and total biomass and environmental variables. Chronic and episodic acidification and elevated concentrations of inorganic monomeric aluminum were common, and fish populations were rare or absent from several sites in the upper reaches of the basin; as many as six fish species were collected from sites in the lower reaches of the basin. Species distribution and species richness were most highly related to stream pH, acid-neutralizing capacity (ANC), inorganic monomeric aluminum (Al(im)), calcium (Ca)2+, and potassium (K)+ concentrations, site elevation, watershed drainage area, and water temperature. Fish density was most highly related to stream pH, Al(im), ANC, K+, Ca2+, and magnesium (Mg)2+ concentrations. Fish biomass, unlike species richness and fish density, was most highly related to physical habitat characteristics, water temperature, and concentrations of Mg2+ and silicon. Acidity characteristics were of secondary importance to fish biomass at all but the most severely acidified sites. Our results indicate that (1) the total biomass of fish communities was not seriously affected at moderately to strongly acidified sites; (2) species richness

  1. Coordinating Mitigation Strategies for Meeting In-Stream Flow Requirements in the Skagit River Basin, WA

    NASA Astrophysics Data System (ADS)

    Padowski, J.; Yang, Q.; Brady, M.; Jessup, E.; Yoder, J.

    2016-12-01

    In 2013, the Washington State Supreme Court ruled against a 2001 amendment that set aside groundwater reservations for development within the Skagit River Basin (Swinomish Indian Tribal Community v. Washington State Department of Ecology). As a consequence, hundreds of properties no longer have a secure, uninterruptible water right and must be fully mitigated to offset their impacts on minimum in-stream flows. To date, no solutions have been amenable to the private, tribal and government parties involved. The objective of this study is to identify implementable, alternative water mitigation strategies for meeting minimum in-stream flow requirements while providing non-interruptible water to 455 property owners without legal water rights in the Skagit Basin. Three strategies of interest to all parties involved were considered: 1) streamflow augmentation from small-gauge municipal pipes, or trucked water deliveries for either 2) direct household use or 3) streamflow augmentation. Each mitigation strategy was assessed under two different demand scenarios and five augmentation points along 19 sub-watershed (HUC12) stream reaches. Results indicate that water piped for streamflow augmentation could provide mitigation at a cost of <10,000 per household for 20 - 60% of the properties in question, but a similar approach could be up to twenty times more expensive for those remaining properties in basins furthest from existing municipal systems. Trucked water costs also increase for upper basin properties, but over a 20-year period are still less expensive for basins where piped water costs would be high (e.g., 100,000 for trucking vs. $200,000 for piped water). This work suggests that coordination with municipal water systems to offset in-stream flow reductions, in combination with strategic mobile water delivery, could provide mitigation solutions within the Skagit Basin that may satisfy concerned parties.

  2. Stream quality in the San Lorenzo River Basin, Santa Cruz County, California

    USGS Publications Warehouse

    Sylvester, Marc A.; Covay, Kenneth J.

    1978-01-01

    Stream quality was studied from November 1973 through June 1975 in the San Lorenzo River basin, Calif., a rapidly developing mountainous area. Dissolved-ion concentrations indicate the basin can be divided into three water-quality areas corresponding to three geologic areas. Pronounced changes in water quality occurred during storms when streamflow, turbidity, nitrogen, phosphorus, potassium, and fecal-coliform bacteria concentrations increased, while dissolved-ion concentrations decreased owing to dilution. Total nitrogen and fecal-coliform concentrations exceeded State objectives in the Zayante and Branciforte Creek drainages probably because of domestic sewage from improperly operating septic-tank systems or the primary-treated sewage effluent discharged into a pit near Scotts Valley. Diel studies did not show appreciable dissolved-oxygen depletion in streams. Greater streamflows and residential development appear responsible for reduced diversity of benthic invertebrates downstream of the residential areas in the basin. (Woodard-USGS)

  3. Water-quality assessment of the Trinity River Basin, Texas - Nutrients in two coastal prairie streams draining agricultural areas, 1994-95

    USGS Publications Warehouse

    Land, Larry F.

    1996-01-01

    In 1991, the U.S. Geological Survey (USGS) began nationwide implementation of the National Water-Quality Assessment (NAWQA) Program. Long-term goals of NAWQA are to describe the status of and trends in the quality of a large, representative part of the Nation?s surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources (Leahy and others, 1990). The Trinity River Basin in east-central Texas (fig. 1) was among the first 20 hydrologic areas, called study units, to be assessed by this program. The first intensive data-collection phase for the Trinity River Basin NAWQA began in March 1993 and ended in September 1995. Streams in the Trinity River Basin were assessed by sampling water, bed sediment, and tissue of biota and characterizing the aquatic communities and their habitat. Aquifers were assessed by sampling water from wells. The coastal prairie is a small part of the Trinity River Basin, but it is environmentally important because of its proximity to Galveston Bay and the extensive use of agricultural chemicals on many irrigated farms. Galveston Bay (fig. 1) was selected by Congress as an estuary of national significance and was included on a priority list for the National Estuary Program. The Trinity River is especially important because its watershed dominates the total Galveston Bay drainage area and because its flow contributes substantial amounts of freshwater and water-quality constituents to the bay. Historically, measurements of the quantity and quality of water entering Galveston Bay from the Trinity River Basin have been made using data from a station about 113 kilometers (70 miles) upstream from Trinity Bay, an inlet bay to Galveston Bay. With a focused objective of providing additional water-quality information in the intervening coastal prairie area and an overall objective of improving the understanding of the relations between farming practices

  4. Effects of stream acidification and habitat on fish populations of a North American river

    USGS Publications Warehouse

    Baldigo, Barry P.; Lawrence, G.B.

    2001-01-01

    Water quality, physical habitat, and fisheries at sixteen reaches in the Neversink River Basin were studied during 1991-95 to identify the effects of acidic precipitation on stream-water chemistry and on selected fish-species populations, and to test the hypothesis that the degree of stream acidification affected the spatial distribution of each fish-species population. Most sites on the East Branch Neversink were strongly to severely acidified, whereas most sites on the West Branch were minimally to moderately acidified. Mean density of fish populations ranged from 0 to 2.15 fish/m2; biomass ranged from 0 to 17.5 g/m2. Where brook trout were present, their population density ranged from 0.04 to 1.09 fish/m2, biomass ranged from 0.76 to 12.2 g/m2, and condition (K) ranged from 0.94 to 1.07. Regression analyses revealed strong relations (r2 ?? 0.41 to 0.99; p ??? 0.05) between characteristics of the two most common species (brook trout and slimy sculpin) populations and mean concentrations of inorganic monomeric aluminum (Alim), pH, Si, K+, NO3/-, NH4/+, DOC, Ca2+, and Na+; acid neutralizing capacity (ANC); and water temperature. Stream acidification may have adversely affected fish populations at most East Branch sites, but in other parts of the Neversink River Basin these effects were masked or mitigated by other physical habitat, geochemical, and biological factors.

  5. Hot and Cool Spots of Primary Production, Respiration and 15N Nitrate and Ammonium Uptake: Spatial Heterogeneity in Tropical Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Dodds, W. K.; Tromboni, F.; Neres-Lima, V.; Zandoná, E.; Moulton, T. P.

    2016-12-01

    While whole-stream measures of metabolism and uptake have become common methods to characterize biogeochemical transport and processing, less is known about how nitrogen (N) uptake, gross primary production (GPP) and ecosystem respiration (ER) covary among different stream substrata as smaller scales. We measured 15N ammonium and nitrate uptake seperately, and GPP and ER of ecosystem compartments (leaves, epilithon, sand-associated biota and macrophytes) in closed circulating chambers in three streams/ rivers of varied size. The streams drain pristine Brazilian Atlantic Rainforest watersheds and are all within a few km of eachother. The smallest stream had dense forest canopy cover; the largest river was almost completely open. GPP could not be detected in the closed canopy stream. Epilithon (biofilms on rocks) was a dominant compartment for GPP and N uptake in the two open streams, and macrophytes rivaled epilithon GPP and N uptake rates in the most open stream. Even though leaves covered only 1-3% of the stream bottom, they could account for around half of all the ER in the streams but almost no N uptake. Sand had minimal rates of N uptake, GPP and R associated with it in all streams due to relatively low organic material content. The data suggest that N uptake, GPP and ER of different substrata are not closely linked over relatively small spatial (dm) scales, and that different biogeochemical processes may map to different hot and cool spots for ecosystem rates.

  6. Low-Flow Characteristics and Discharge Profiles for Selected Streams in the Cape Fear River Basin, North Carolina, Through 1998

    USGS Publications Warehouse

    Weaver, J.C.; Pope, B.F.

    2001-01-01

    An understanding of the magnitude and frequency of low-flow discharges is an important part of evaluating surface-water resources and planning for municipal and industrial economic expansion. Low-flow characteristics are summarized in this report for 67 continuous-record gaging stations and 121 partial-record measuring sites in the Cape Fear River Basin of North Carolina. Records of discharge collected through the 1998 water year were used in the analyses. Flow characteristics included in the summary are (1) average annual unit flow; (2) 7Q10 low-flow discharge, the minimum average discharge for a 7-consecutive-day period occurring, on average, once in 10 years; (3) 30Q2 low-flow discharge; (4) W7Q10 low-flow discharge, similar to 7Q10 discharge except that only flow during November through March is considered; and (5) 7Q2 low-flow discharge. Low-flow characteristics in the Cape Fear River Basin vary widely in response to changes in geology and soil types. The area of the basin with the lowest potentials for sustained base flows is underlain by the Triassic basin in parts of Durham, Wake, and Chatham Counties. Typically, these soils are derived from basalt and fine-grained sedimentary rocks that allow very little infiltration of water into the shallow aquifers for storage and later release to streams during periods of base flow. The area of the basin with the highest base flows is the Sand Hills region in parts of Moore, Harnett, Hoke, and Cumberland Counties. Streams in the Sand Hills have the highest unit low flows in the study area as well as in much of North Carolina. Well-drained sandy soils in combination with higher topographic relief relative to other areas in the Coastal Plain contribute to the occurrence of high potentials for sustained base flows. A number of sites in the upper part of the Cape Fear River Basin underlain by the Carolina Slate Belt and Triassic basin, as well many sites in lower areas of the Coastal Plain (particularly the Northeast Cape

  7. Assessing the Importance of Cross-Stream Transport in Bedload Flux Estimates from Migrating Dunes: Colorado River, Grand Canyon National Park

    NASA Astrophysics Data System (ADS)

    Leary, K. P.; Buscombe, D.; Schmeeckle, M.; Kaplinski, M. A.

    2017-12-01

    Bedforms are ubiquitous in sand-bedded rivers, and understanding their morphodynamics is key to quantifying bedload transport. As such, mechanistic understanding of the spatiotemporal details of sand transport through and over bedforms is paramount to quantifying total sediment flux in sand-bedded river systems. However, due to the complexity of bedform field geometries and migration in natural settings, our ability to relate migration to bedload flux, and to quantify the relative role of tractive and suspended processes in their dynamics, is incomplete. Recent flume and numerical investigations indicate the potential importance of cross-stream transport, a process previously regarded as secondary and diffusive, to the three-dimensionality of bedforms and spatially variable translation and deformation rates. This research seeks to understand and quantify the importance of cross-stream transport in bedform three-dimensionality in a field setting. This work utilizes a high-resolution (0.25 m grid) data set of bedforms migrating in the channel of the Colorado River in Grand Canyon National Park. This data set comprises multi-beam sonar surveys collected at 3 different flow discharges ( 283, 566, and 1076 m3/s) along a reach of the Colorado River just upstream of the Diamond Creek USGS gage. Data were collected every 6 minutes almost continuously for 12 hours. Using bed elevation profiles (BEPs), we extract detailed bedform geometrical data (i.e. bedform height, wavelength) and spatial sediment flux data over a suite of bedforms at each flow. Coupling this spatially extensive data with a generalized Exner equation, we conduct mass balance calculations that evaluate the possibility, and potential importance, of cross-stream transport in the spatial variability of translation and deformation rates. Preliminary results suggest that intra-dune cross-stream transport can partially account for changes in the planform shape of dunes and may play an important role in spatially

  8. Analysis of stream quality in the Yampa River Basin, Colorado and Wyoming

    USGS Publications Warehouse

    Wentz, Dennis A.; Steele, Timothy Doak

    1980-01-01

    Historic data show no significant water-temperature changes since 1951 for the Little Snake or Yampa Rivers, the two major streams of the Yampa River basin in Colorado and Wyoming. Regional analyses indicate that harmonic-mean temperature is negatively correlated with altitude. No change in specific conductance since 1951 was noted for the Little Snake River; however, specific conductance in the Yampa River has increaed 14 % since that time and is attributed to increased agricultural and municipal use of water. Site-specific relationships between major inorganic constituents and specific conductance for the Little Snake and Yampa Rivers were similar to regional relationships developed from both historic and recent (1975) data. These relationships provide a means for estimating concentrations of major inorganic constituents from specific conductance, which is easily measured. Trace-element and nutrient data collected from August 1975 through September 1976 at 92 sites in the Yampa River basin indicate that water-quality degradation occurred upstream from 3 sites. The degradation resulted from underground drainage from pyritic materials that probably are associated with coal at one site, discharge from powerplant cooling-tower blowdown water at a second site, and runoff from a small watershed containing a gas field at the third site. Ambient concentrations of dissolved and total iron and manganese frequently exceeded proposed Colorado water-quality standards. The concentrations of many dissolved and total trace elements and nutrients were greatest during March 1976. These were associated with larger suspended-sediment concentrations and smaller pH values than at other times of the year. (USGS)

  9. Estimates of ground-water recharge, base flow, and stream reach gains and losses in the Willamette River basin, Oregon

    USGS Publications Warehouse

    Lee, Karl K.; Risley, John C.

    2002-03-19

    Precipitation-runoff models, base-flow-separation techniques, and stream gain-loss measurements were used to study recharge and ground-water surface-water interaction as part of a study of the ground-water resources of the Willamette River Basin. The study was a cooperative effort between the U.S. Geological Survey and the State of Oregon Water Resources Department. Precipitation-runoff models were used to estimate the water budget of 216 subbasins in the Willamette River Basin. The models were also used to compute long-term average recharge and base flow. Recharge and base-flow estimates will be used as input to a regional ground-water flow model, within the same study. Recharge and base-flow estimates were made using daily streamflow records. Recharge estimates were made at 16 streamflow-gaging-station locations and were compared to recharge estimates from the precipitation-runoff models. Base-flow separation methods were used to identify the base-flow component of streamflow at 52 currently operated and discontinued streamflow-gaging-station locations. Stream gain-loss measurements were made on the Middle Fork Willamette, Willamette, South Yamhill, Pudding, and South Santiam Rivers, and were used to identify and quantify gaining and losing stream reaches both spatially and temporally. These measurements provide further understanding of ground-water/surface-water interactions.

  10. Estimation of stream conditions in tributaries of the Klamath River, northern California

    USGS Publications Warehouse

    Manhard, Christopher V.; Som, Nicholas A.; Jones, Edward C.; Perry, Russell W.

    2018-01-01

    Because of their critical ecological role, stream temperature and discharge are requisite inputs for models of salmonid population dynamics. Coho Salmon inhabiting the Klamath Basin spend much of their freshwater life cycle inhabiting tributaries, but environmental data are often absent or only seasonally available at these locations. To address this information gap, we constructed daily averaged water temperature models that used simulated meteorological data to estimate daily tributary temperatures, and we used flow differentials recorded on the mainstem Klamath River to estimate daily tributary discharge. Observed temperature data were available for fourteen of the major salmon bearing tributaries, which enabled estimation of tributary-specific model parameters at those locations. Water temperature data from six mid-Klamath Basin tributaries were used to estimate a global set of parameters for predicting water temperatures in the remaining tributaries. The resulting parameter sets were used to simulate water temperatures for each of 75 tributaries from 1980-2015. Goodness-of-fit statistics computed from a cross-validation analysis demonstrated a high precision of the tributary-specific models in predicting temperature in unobserved years and of the global model in predicting temperatures in unobserved streams. Klamath River discharge has been monitored by four gages that broadly intersperse the 292 kilometers from the Iron Gate Dam to the Klamath River mouth. These gages defined the upstream and downstream margins of three reaches. Daily discharge of tributaries within a reach was estimated from 1980-2015 based on drainage-area proportionate allocations of the discharge differential between the upstream and downstream margin. Comparisons with measured discharge on Indian Creek, a moderate-sized tributary with naturally regulated flows, revealed that the estimates effectively approximated both the variability and magnitude of discharge.

  11. Source water controls on the character and origin of dissolved organic matter in streams of the Yukon River basin, Alaska

    Treesearch

    Jonathan A. O' Donnell; George R. Aiken; Evan S. Kane; Jeremy B. Jones

    2010-01-01

    Climate warming and permafrost degradation at high latitudes will likely impact watershed hydrology, and consequently, alter the concentration and character of dissolved organic carbon (DOC) in northern rivers. We examined seasonal variation of DOC chemistry in 16 streams of the Yukon River basin, Alaska. Our primary objective was to evaluate DOC chemical composition....

  12. Sediment transport data and related information for selected coarse-bed streams and rivers in Idaho

    Treesearch

    John G. King; William W. Emmett; Peter J. Whiting; Robert P. Kenworthy; Jeffrey J. Barry

    2004-01-01

    This report and associated web site files provide sediment transport and related data for coarse-bed streams and rivers to potential users. Information on bedload and suspended sediment transport, streamflow, channel geometry, channel bed material, floodplain material, and large particle transport is provided for 33 study reaches in Idaho that represent a wide range of...

  13. Preliminary assessment of sources, distribution, and mobility of selenium in the San Joaquin Valley, California

    USGS Publications Warehouse

    Gilliom, R.J.

    1989-01-01

    Selenium in tile drain water from parts of the western San Joaquin Valley, California, has adversely affected fish and waterfowl where drain water was impounded. Soils in these drained areas were derived from Coast Range marine sedimentary formations, were naturally saline and probably contained abundant soluble selenium. Decades of irrigation have redistributed the most soluble forms of selenium from the soil into groundwater and have caused the water table to rise 1 to 4 ft/year. Selenium in shallow groundwater has been further concentrated because of evapotranspiration. The rising water table has caused a large area of farmland to require artificial drainage of groundwater that contains high concentrations of selenium. The present areal distribution of selenium in shallow groundwater reflects the natural distribution of saline soils. The depth distribution of selenium in groundwater reflects the history of irrigation. The highest concentrations of selenium in groundwater (50 to more than 1,000 micrograms/L) are in a zone of variable thickness located between 20 and 150 ft below the water table. The toxic water in this zone was recharged during the first few decades of irrigation. The large volume of high selenium groundwater makes it desirable to leave this water where it is, rather than bring it to the land surface or allow it to move into parts of the aquifer that may be used for water supply. Selenium concentrations in the San Joaquin River depend on the magnitude of the selenium load from drain water and dilution by water with low concentrations of selenium from all other sources of streamflow. The San Joaquin Valley is a regional-scale example of how manipulation of the hydrologic system can cause water quality problems if naturally occurring toxic substances are mobilized. (USGS)

  14. 12. Close up view of construction on the downstream face. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Close up view of construction on the downstream face. Track at lower center conveyed aggregate from the stream bed to the mixing plant. Photographer unknown, October 15, 1924. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  15. Low productivity of Chinook salmon strongly correlates with high summer stream discharge in two Alaskan rivers in the Yukon drainage

    USGS Publications Warehouse

    Neuswanger, Jason R.; Wipfli, Mark S.; Evenson, Matthew J.; Hughes, Nicholas F.; Rosenberger, Amanda E.

    2015-01-01

    Yukon River Chinook salmon (Oncorhynchus tshawytscha) populations are declining for unknown reasons, creating hardship for thousands of stakeholders in subsistence and commercial fisheries. An informed response to this crisis requires understanding the major sources of variation in Chinook salmon productivity. However, simple stock–recruitment models leave much of the variation in this system’s productivity unexplained. We tested adding environmental predictors to stock–recruitment models for two Yukon drainage spawning streams in interior Alaska — the Chena and Salcha rivers. Low productivity was strongly associated with high stream discharge during the summer of freshwater residency for young-of-the-year Chinook salmon. This association was more consistent with the hypothesis that sustained high discharge negatively affects foraging conditions than with acute mortality during floods. Productivity may have also been reduced in years when incubating eggs experienced major floods or cold summers and falls. These freshwater effects — especially density dependence and high discharge — helped explain population declines in both rivers. They are plausible as contributors to the decline of Chinook salmon throughout the Yukon River drainage.

  16. Characteristics of fish assemblages and related environmental variables for streams of the upper Snake River basin, Idaho and western Wyoming, 1993-95

    USGS Publications Warehouse

    Maret, Terry R.

    1997-01-01

    limited designation for the middle reach of the Snake River between Milner Dam and King Hill and provide a framework for developing indices of biotic integrity by using fish assemblages to evaluate water quality of streams in the upper Snake River Basin.

  17. Native fishes in the Truckee River: Are in-stream structures and patterns of population genetic structure related?

    PubMed

    Peacock, Mary M; Gustin, Mae S; Kirchoff, Veronica S; Robinson, Morgan L; Hekkala, Evon; Pizzarro-Barraza, Claudia; Loux, Tim

    2016-09-01

    In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers

    DOE PAGES

    Follstad Shah, Jennifer J.; Kominoski, John S.; Ardón, Marcelo; ...

    2017-02-28

    Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. We synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by themore » activation energy (Ea, in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5–21% with a 1–4 °C rise in water temperature, rather than a 10–45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global

  19. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follstad Shah, Jennifer J.; Kominoski, John S.; Ardón, Marcelo

    Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. We synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by themore » activation energy (Ea, in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5–21% with a 1–4 °C rise in water temperature, rather than a 10–45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global

  20. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers.

    PubMed

    Follstad Shah, Jennifer J; Kominoski, John S; Ardón, Marcelo; Dodds, Walter K; Gessner, Mark O; Griffiths, Natalie A; Hawkins, Charles P; Johnson, Sherri L; Lecerf, Antoine; LeRoy, Carri J; Manning, David W P; Rosemond, Amy D; Sinsabaugh, Robert L; Swan, Christopher M; Webster, Jackson R; Zeglin, Lydia H

    2017-08-01

    Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. Here, we synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by the activation energy (E a , in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which E a could be calculated. Higher values of E a were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). E a values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the E a was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5-21% with a 1-4 °C rise in water temperature, rather than a 10-45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in E a values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that E a values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the

  1. St. Lawrence River Freeze-Up Forecast Procedure.

    ERIC Educational Resources Information Center

    Assel, R. A.

    A standard operating procedure (SOP) is presented for calculating the date of freeze-up on the St. Lawrence River at Massena, N.Y. The SOP is based on two empirical temperature decline equations developed for Kingston, Ontario, and Massena, N.Y., respectively. Input data needed to forecast freeze-up consist of the forecast December flow rate and…

  2. The effect of submerged aquatic vegetation expansion on a declining turbidity trend in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Hestir, E.L.; Schoellhamer, David H.; Jonathan Greenberg,; Morgan-King, Tara L.; Ustin, S.L.

    2016-01-01

    Submerged aquatic vegetation (SAV) has well-documented effects on water clarity. SAV beds can slow water movement and reduce bed shear stress, promoting sedimentation and reducing suspension. However, estuaries have multiple controls on turbidity that make it difficult to determine the effect of SAV on water clarity. In this study, we investigated the effect of primarily invasive SAV expansion on a concomitant decline in turbidity in the Sacramento-San Joaquin River Delta. The objective of this study was to separate the effects of decreasing sediment supply from the watershed from increasing SAV cover to determine the effect of SAV on the declining turbidity trend. SAV cover was determined by airborne hyperspectral remote sensing and turbidity data from long-term monitoring records. The turbidity trends were corrected for the declining sediment supply using suspended-sediment concentration data from a station immediately upstream of the Delta. We found a significant negative trend in turbidity from 1975 to 2008, and when we removed the sediment supply signal from the trend it was still significant and negative, indicating that a factor other than sediment supply was responsible for part of the turbidity decline. Turbidity monitoring stations with high rates of SAV expansion had steeper and more significant turbidity trends than those with low SAV cover. Our findings suggest that SAV is an important (but not sole) factor in the turbidity decline, and we estimate that 21–70 % of the total declining turbidity trend is due to SAV expansion.

  3. Nutrients in Streams and Rivers Across the Nation -- 1992-2001

    USGS Publications Warehouse

    Mueller, David K.; Spahr, Norman E.

    2006-01-01

    Nutrient compounds of nitrogen and phosphorus were investigated in streams and rivers sampled as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. Nutrient data were collected in 20 NAWQA study units during 1992-95, 16 study units during 1996-98, and 15 study units during 1999-2001. To facilitate comparisons among sampling sites with variable sampling frequency, daily loads were determined by using regression models that relate constituent transport to streamflow and time. Model results were used to compute mean annual loads, yields, and concentrations of ammonia, nitrate, total nitrogen, orthophosphate, and total phosphorus, which were compared among stream and river sampling sites. Variations in the occurrence and distribution of nutrients in streams and rivers on a broad national scale reflect differences in the sources of nutrient inputs to the upstream watersheds and in watershed characteristics that affect movement of those nutrients. Sites were classified by watershed size and by land use in the upstream watershed: agriculture, urban, and undeveloped (forest or rangeland). Selection of NAWQA urban sites was intended to avoid effects of major wastewater-treatment plants and other point sources, but in some locations this was not feasible. Nutrient concentrations and yields generally increased with anthropogenic development in the watershed. Median concentrations and yields for all constituents at sites downstream from undeveloped areas were less than at sites downstream from agricultural or urban areas. Concentrations of ammonia, orthophosphate, and total phosphorus at agricultural and urban sites were not significantly different; however, concentrations of nitrate and total nitrogen were higher at agricultural than at urban sites. Total nitrogen concentrations at agricultural sites were higher in areas of high nitrogen input or enhanced transport, such as irrigation or artificial drainage that can rapidly move water from

  4. Evaluation of Stream Loads Used to Calibrate a SPARROW Model for California, USA

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.; Saleh, D.

    2012-12-01

    scale. An efficiency of one indicates a perfect fit. Median NS efficiency for TN in the forested mountains was 0.65 to 0.7 for the Central Valley, and 0.81 for the arid region, suggesting that the model better fits the load when the form of nitrogen is predominantly in the dissolved phase. The NS equation indicates the load models are under-predicting the true load at these sites as the efficiency index is less than one. TP is mostly transported in the suspended phase and the NS equation also shows that the model under-predicts TP as the median efficiency for all sites was 0.56. A further examination of the residuals shows that the discharge-concentration relationship under-prediction is greater at higher discharges. Two major rivers in the study area, the Sacramento and San Joaquin Rivers, supply much of the fresh water and nutrient load to the San Francisco Estuary, but have different forms of TN. The ratio of nitrate to TN in the Sacramento River changes from 0.11 in the headwaters to 0.29 as the river enters the Estuary, while the ratio in the San Joaquin changes from 0.19 in the headwaters to 0.61, demonstrating the effect that land use has on river water quality. Understanding how the forms of nitrogen affect the calculation of load is necessary in order to provide the best possible calibration for subsequent calculations of land to water transport by the SPARROW model.

  5. Atrazine concentrations in stream water and streambed sediment pore water in the St. Joseph and Galien River basins, Michigan and Indiana, May 2001-September 2003

    USGS Publications Warehouse

    Duris, Joseph W.; Reeves, Howard W.; Kiesler, James L.

    2005-01-01

    The U.S. Geological Survey (USGS) sampled multiple stream sites across the St. Joseph and Galien River Basins to detect and quantify the herbicide atrazine using a field enzyme-linked immunosorbent assay (ELISA) triazine test. In May 2001, July 2001, April 2002, August 2002, August 2003 and September 2003, composite samples were collected across streams at USGS streamflow-gaging stations. Concentrations and instantaneous loading for atrazine sampled in stream water throughout the St. Joseph River and Galien River Basins in Michigan and Indiana ranged from nondetection (< 0.05 part per billion (ppb)) with an associated load less than 0.001 kilogram per day (kg/d) to 6 ppb and a maximum load of 10 kg/d. Atrazine concentrations were highest in May 2001 just after the planting season. The lowest concentration was found in April 2002 just before planting. Atrazine concentrations in streambed-sediment pore water were not spatially connected with atrazine concentrations in stream-water samples. This study showed that atrazine concentrations were elevated from May to July in the St. Joseph and Galien River Basins. At many sites, concentrations exceeded the level that has been shown to feminize frog populations (0.2 ppb). There were 8 sites where concentrations exceeded 0.2 ppb atrazine in May 2001 and July 2001.

  6. InSTREAM: the individual-based stream trout research and environmental assessment model

    Treesearch

    Steven F. Railsback; Bret C. Harvey; Stephen K. Jackson; Roland H. Lamberson

    2009-01-01

    This report documents Version 4.2 of InSTREAM, including its formulation, software, and application to research and management problems. InSTREAM is a simulation model designed to understand how stream and river salmonid populations respond to habitat alteration, including altered flow, temperature, and turbidity regimes and changes in channel morphology. The model...

  7. A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California

    USGS Publications Warehouse

    Flint, L.E.; Flint, A.L.

    2008-01-01

    Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  8. Comparison of Traditional and Modeled Fish Multimetric Indices for Rivers and Streams in the Western U.S.

    EPA Science Inventory

    The development of multimetric indices (MMIs) for use in assessing the ecological condition of rivers and streams has advanced in recent years with the use of various types of modeling approaches to factor out the influence of natural variability and improve performance. New mod...

  9. SRTM Perspective View with Landsat Overlay: San Joaquin Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    San Joaquin, the name given to the southern portion of California's vast Central Valley, has been called the world's richest agricultural valley. In this perspective view generated using data from the Shuttle Radar Topography Mission and an enhanced Landsat image, we are looking toward the southwest over a checkerboard pattern of agricultural fields. Mt. Pinos, a popular location for stargazing at 2,692 meters (8,831 feet) looms above the valley floor and is visible on the left side of the image. The productive southern San Joaquin is in reality a desert, averaging less than 12.7 cm (5 inches) of rain per year. Through canals and irrigation, the region nurtures some two hundred crops including grapes, figs, apricots, oranges, and more than 4,047 square-km (1,000,000 acres) of cotton. The California Aqueduct, transporting water from the Sacramento River Delta through the San Joaquin, runs along the base of the low-lying Wheeler Ridge on the left side of the image. The valley is not all agriculture though. Kern County, near the valley's southern end, is the United States' number one oil producing county, and actually produces more crude oil than Oklahoma. For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors, from Landsat data, approximate natural color.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U

  10. Inverted Streams in the Aeolis Region

    NASA Image and Video Library

    2015-12-10

    The sinuous ridges in this image display strong characteristics of ancient meandering riverbeds that are preserved as inverted topography (blue). The ancient river sediments that make up the ridges might have allowed fluids to produce cements (e.g., calcite or iron oxides) to make the channel lithology resistant to weathering and erosion. Later, physical and/or chemical processes removed the weaker surrounding flood plain material and left inverted river channels, or "positive relief." On closer inspection, degradation along sections of some inverted channels display large blocks of cemented sediment that were transported downslope by mass wasting. The sinuous character of the ridges resembles multi-thread river branches, implying that the ancient river flowed down a gentle to nearly horizontal slope (i.e., a moderate to low stream gradient). This ancient river was a mature meandering system, with flow from south to north. Multiple branches that diverted from the main flow later converged back with it. http://photojournal.jpl.nasa.gov/catalog/PIA20210

  11. Dominance of organic nitrogen from headwater streams to large rivers across the conterminous United States

    USGS Publications Warehouse

    Scott, D.; Harvey, J.; Alexander, R.; Schwarz, G.

    2007-01-01

    The frequency and magnitude of hypoxic areas in coastal waterbodies are increasing across the globe, partially in response to the increase in nitrogen delivery from the landscape (Diaz, 2001; Rabalais et al., 2002). Although studies of annual total nitrogen and nitrate yields have greatly improved understanding of the contaminant sources that contribute to riverine nitrogen loads (Alexander et al., 2000; Caraco and Cole, 1999), the emphasis of these studies on annual timescales and selected nitrogen forms is not sufficient to understand the factors that control the cycling, transport, and fate of reactive nitrogen. Here we use data from 850 river stations to calculate long-term mean-annual and interannual loads of organic, ammonia, and nitrate-nitrite nitrogen suitable for spatial analysis. We find that organic nitrogen is the dominant nitrogen pool within rivers across most of the United States and is significant even in basins with high anthropogenic sources of nitrogen. Downstream organic nitrogen patterns illustrate that organic nitrogen is an abundant fraction of the nitrogen loads in all regions. Although the longitudinal patterns are not consistent across regions, these patterns are suggestive of cycling between ON and NO3- on seasonal timescales influenced by land use, stream morphology, and riparian connectivity with active floodplains. Future regional studies need to incorporate multinitrogen species at intraannual timescales, as well as stream characteristics beyond channel depth, to elucidate the roles of nitrogen sources and in-stream transformations on the fate and reactivity of riverine nitrogen transported to coastal seas.

  12. Dominance of organic nitrogen from headwater streams to large rivers across the conterminous United States

    NASA Astrophysics Data System (ADS)

    Scott, Durelle; Harvey, Judson; Alexander, Richard; Schwarz, Gregory

    2007-03-01

    The frequency and magnitude of hypoxic areas in coastal waterbodies are increasing across the globe, partially in response to the increase in nitrogen delivery from the landscape (Diaz, 2001; Rabalais et al., 2002). Although studies of annual total nitrogen and nitrate yields have greatly improved understanding of the contaminant sources that contribute to riverine nitrogen loads (Alexander et al., 2000; Caraco and Cole, 1999), the emphasis of these studies on annual timescales and selected nitrogen forms is not sufficient to understand the factors that control the cycling, transport, and fate of reactive nitrogen. Here we use data from 850 river stations to calculate long-term mean-annual and interannual loads of organic, ammonia, and nitrate-nitrite nitrogen suitable for spatial analysis. We find that organic nitrogen is the dominant nitrogen pool within rivers across most of the United States and is significant even in basins with high anthropogenic sources of nitrogen. Downstream organic nitrogen patterns illustrate that organic nitrogen is an abundant fraction of the nitrogen loads in all regions. Although the longitudinal patterns are not consistent across regions, these patterns are suggestive of cycling between ON and NO3- on seasonal timescales influenced by land use, stream morphology, and riparian connectivity with active floodplains. Future regional studies need to incorporate multinitrogen species at intraannual timescales, as well as stream characteristics beyond channel depth, to elucidate the roles of nitrogen sources and in-stream transformations on the fate and reactivity of riverine nitrogen transported to coastal seas.

  13. Diel variations in stream chemistry and isotopic composition of dissolved inorganic carbon, upper Clark Fork River, Montana, USA

    USGS Publications Warehouse

    Parker, Stephen R.; Gammons, Christopher H.; Poulson, Simon R.; DeGrandpre, Michael D.

    2007-01-01

    Many rivers undergo diel (24-h) concentration fluctuations of pH, dissolved gases, trace metals, nutrients, and other chemical species. A study conducted in 1994 documented such behavior in the upper Clark Fork River, Montana, a stream whose headwaters have been severely impacted by historic metal mining, milling, and smelting. The purpose of the present investigation was to expand on these earlier findings by conducting simultaneous diel samplings at two sites on the upper Clark Fork River separated by 2.5 h of stream travel time. By monitoring two stations, it was possible to more closely examine the processes that control temporal and spatial gradients in stream chemistry. Another objective was to examine diel changes in the δ13C composition of dissolved inorganic C (DIC) and their relationship to biological activity in the stream. The most important findings of this study include: (1) concentrations of dissolved and particulate heavy metals increased during the night and decreased during the day, in agreement with previous work; (2) these changes were positively correlated to diel changes in pH, dissolved O2, and water temperature; (3) dissolved concentrations increased during the night at the lower site, but showed the opposite behavior at the upper site; and (4) diel changes in δ13C-DIC were noted at both sites, although the timing and magnitudes of the cycles differed. Hypotheses to explain the first two observations include: cyclic co-precipitation of divalent metals with carbonate minerals; pH- and temperature-dependent sorption of metal cations onto the streambed and suspended particles; or photosynthetically enhanced oxidation and removal of Fe and Mn oxides at biofilm surfaces during the daytime. The latter model explains the majority of the field observations, including night-time increases in particulate forms of Fe and other elements.

  14. Reconnaissance of Pharmaceutical Chemicals in Urban Streams of the Tualatin River Basin, Oregon, 2002

    USGS Publications Warehouse

    Rounds, Stewart A.; Doyle, Micelis C.; Edwards, Patrick M.; Furlong, Edward T.

    2009-01-01

    A reconnaissance of pharmaceutical chemicals in urban streams of the Tualatin River basin was conducted in July 2002 in an effort to better understand the occurrence and distribution of such compounds, and to determine whether they might be useful indicators of human-related stream contamination. Of the 21 pharmaceutical chemicals and metabolites tested, only 6 (acetaminophen, caffeine, carbamazepine, codeine, cotinine, and sulfamethoxazole) were detected in filtered stream samples from 10 sites. The concentrations of most of the detected compounds were relatively low (less than 0.05 microgram per liter). The most frequently detected compounds were cotinine (a nicotine metabolite, 8 of 10 samples) and caffeine (a stimulant, 7 of 10 samples). More compounds were detected in urban stream samples than in samples from forested or agricultural drainages. Filtered water samples also were collected from four locations within an advanced wastewater treatment facility to quantify the relative amounts of these chemicals in a municipal waste stream and to determine the degree to which those chemicals are removed by treatment processes. Fifteen pharmaceutical chemicals or metabolites were detected in wastewater treatment facility influent, with concentrations far exceeding those measured in streams. Only five of those compounds, however, were detected in the treated effluent (carbamazepine, cotinine, ibuprofen, metformin, and sulfamethoxazole) and most of those were at concentrations less than 0.2 microgram per liter. The target pharmaceutical chemicals and metabolites showed limited potential for use as tracers of specific types of human-related contamination in Tualatin River basin streams because of widespread sources (caffeine, for example) or extremely low concentrations. Caffeine and cotinine are likely to be good indicators of sources that can occur in urban areas, such as sewage spills or leaks or the widespread use and careless disposal of tobacco products and

  15. Prediction of fish and sediment mercury in streams using landscape variables and historical mining

    USGS Publications Warehouse

    Alpers, Charles N.; Yee, Julie L.; Ackerman, Joshua T.; Orlando, James L.; Slotton, Darrell G.; Marvin-DiPasquale, Mark C.

    2016-01-01

    Widespread mercury (Hg) contamination of aquatic systems in the Sierra Nevada of California, U.S., is associated with historical use to enhance gold (Au) recovery by amalgamation. In areas affected by historical Au mining operations, including the western slope of the Sierra Nevada and downstream areas in northern California, such as San Francisco Bay and the Sacramento River–San Joaquin River Delta, microbial conversion of Hg to methylmercury (MeHg) leads to bioaccumulation of MeHg in food webs, and increased risks to humans and wildlife. This study focused on developing a predictive model for THg in stream fish tissue based on geospatial data, including land use/land cover data, and the distribution of legacy Au mines. Data on total mercury (THg) and MeHg concentrations in fish tissue and streambed sediment collected during 1980–2012 from stream sites in the Sierra Nevada, California were combined with geospatial data to estimate fish THg concentrations across the landscape. THg concentrations of five fish species (Brown Trout, Rainbow Trout, Sacramento Pikeminnow, Sacramento Sucker, and Smallmouth Bass) within stream sections were predicted using multi-model inference based on Akaike Information Criteria, using geospatial data for mining history and landscape characteristics as well as fish species and length (r2 = 0.61, p < 0.001). Including THg concentrations in streambed sediment did not improve the model's fit, however including MeHg concentrations in streambed sediment, organic content (loss on ignition), and sediment grain size resulted in an improved fit (r2 = 0.63, p < 0.001). These models can be used to estimate THg concentrations in stream fish based on landscape variables in the Sierra Nevada in areas where direct measurements of THg concentration in fish are unavailable.

  16. Climate change effects on stream and river temperatures across the northwest U.S. from 1980-2009 and implications for salmonid fishes

    Treesearch

    D. J. Isaak; S. Wollrab; D. Horan; G. Chandler

    2011-01-01

    Thermal regimes in rivers and streams are fundamentally important to aquatic ecosystems and are expected to change in response to climate forcing as the Earth’s temperature warms. Description and attribution of stream temperature changes are key to understanding how these ecosystems may be affected by climate change, but difficult given the rarity of long-term...

  17. Legacy and emerging halogenated flame retardants in the middle and lower stream of the Yellow River.

    PubMed

    Su, Xianfa; Li, Qilu; Feng, Jinglan; Guo, Liya; Sun, Jianhui

    2017-12-01

    Halogenated flame retardants (HFRs), mainly encompassing polybrominated diphenylethers (PBDEs), dechlorane plus (DP) and emerging bromine flame retardants (EBFRs), are widely employed nowadays in daily lives. However, limited knowledge has been gained to date on the concentrations and distributions of HFRs in particular within certain regions. In the present study, legacy and emerging HFRs were systematically measured in suspended particle matter (SPM) and sediments collected in 2014 from the middle and lower reach of the Yellow River in Henan province. The total concentrations of HFRs in SPM among the three seasons were 42.2±91.2ngg -1 , which was far higher than the corresponding values of HFRs in sediments (1.82±2.94ngg -1 ). In this study, PBDEs, DP and EBFRs in sediment almost exhibited relatively lower levels as compared to those found in other studies, where the limited usage of HFRs in the middle and lower stream of the Yellow River was probably the major impact factor. EBFR was the predominate pollutant from SPM and sediments in most of the sampling sites, suggesting that EBFRs were widely used nowadays as substitute materials of 'old' FRs. The mean concentration values of DBDPE/BDE-209 in SPM and sediments were apparently higher than those of previous studies. Furthermore, it is interesting to reveal that herein almost all of the HFR concentrations were unrelated to the population and GDP, which might be attributed to the characteristics of 'elevated stream' of the Yellow River as well as the complex river systems in Henan province. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Probing Subsurface and Stream Particle Composition Through Optical Analysis at the Eel River Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Nghiem, A.; Thurnhoffer, B. M.; Bishop, J. K. B.; Kim, H.

    2014-12-01

    Particles constitute a significant portion of the flux weathered material from continents to ocean basins but little is understood about their seasonal dynamics particularly in subsurface and headwater stream environments. At the Eel River Critical Zone Observatory, located near the headwaters of the South Fork Eel River in the Angelo Coast Range Reserve (Northern California), groundwater from weathered bedrock and stream waters are sampled at a frequency of one to three days from three wells (Well 1 down-slope, Well 3 mid-slope, Well 10 upper-slope) and Elder Creek. Approximately one thousand samples collected by automated ISCO Gravity Filtration System (GFS; Kim et al. 2012, EST) since 2011 have been filtered through 0.45 μm 25 mm diameter Supor filters. Filters imaged under controlled lighting are analyzed for red, green, and blue optical density (OD) to enable rapid assessment of sample loading and color as a prelude to and selection aid for more labor-intensive ICP-MS and Scanning Electron Microscopic analysis. For example, samples with lower red OD relative to green and blue may correspond to samples high in Mn/Fe oxides. Optical imaging of the loaded filters provides a time-series over three years and color anomalies in these filters along with chemical analysis of dissolved and particulate filtrate is used to establish a method for calibrating optical data to interpret chemical composition of water and particles. Results are interpreted within a framework of environmental data such as rainfall, stream discharge and turbidity, and water table depth measured at the heavily monitored forested hillslope. Data from the four locations range up to 0.6 OD units with a typical detection limit of better than 0.01 OD units. At Well 10, wet season filter samples exhibit highest particle loading (OD ~ 0.3) with values rapidly decreasing during the dry season (OD < D.L.) water table recession. At Well 1, particle loads instantaneously reflect intense rain events

  19. Invertebrate communities of small streams in northeastern Wyoming

    USGS Publications Warehouse

    Peterson, D.A.

    1990-01-01

    Invertebrate communities of small streams in an energy-mineral- development area in the Powder River structural basin of northeastern Wyoming were studied during 1980-81. The largest average density of benthic invertebrates among 11 sites was 983 invertebrates/sq ft at a site on a perennial stream, the Little Powder River at State Highway 59. The smallest average densities were 3.4 invertebrates/sq ft in Salt Creek and 16.6 invertebrates/sq ft in the Cheyenne River, two streams where the invertebrates were stressed by degraded water quality or inadequate substrate or both. The rates of invertebrate drift were fastest in three perennial streams, compared to the rates in intermittent and ephemeral streams. Analysis of the invertebrate communities using the Jaccard coefficient of community similarity and a cluster diagram showed communities inhabiting perennial streams were similar to each other, because of the taxa adapted to flowing water in riffles and runs. Communities from sites on ephemeral streams were similar to each other, because of the taxa adapted to standing water and vegetation in pools. Communities of intermittent streams did not form a group; either they were relatively similar to those of perennial or ephemeral streams or they were relatively dissimilar to other communities. The communities of the two streams stressed by degraded water quality or inadequate substrate or both, Salt Creek and the Cheyenne River, were relatively dissimilar to communities of the other streams in the study. (USGS)

  20. WADEABLE STREAMS ASSESSMENT

    EPA Science Inventory

    This Wadeable Streams Assessment (WSA) provides the first statistically defensible summary of the condition of the nation’s streams and small rivers, which are so integrally tied to our history. This report brings the results of this ground-breaking study to the American public....

  1. Surface area estimates of streams and rivers occupied by nonnative fish and amphibians in the Western USA

    EPA Science Inventory

    Statistically robust, broad-scale measures of the portion of an aquatic resource (e.g., a stream and river network) occupied by nonnative fish and amphibian species should be useful to resource managers but with a few exceptions have not been available. We used data from the west...

  2. Dam removal increases American eel abundance in distant headwater streams

    USGS Publications Warehouse

    Hitt, Nathaniel P.; Eyler, Sheila; Wofford, John E.B.

    2012-01-01

    American eel Anguilla rostrata abundances have undergone significant declines over the last 50 years, and migration barriers have been recognized as a contributing cause. We evaluated eel abundances in headwater streams of Shenandoah National Park, Virginia, to compare sites before and after the removal of a large downstream dam in 2004 (Embrey Dam, Rappahannock River). Eel abundances in headwater streams increased significantly after the removal of Embrey Dam. Observed eel abundances after dam removal exceeded predictions derived from autoregressive models parameterized with data prior to dam removal. Mann–Kendall analyses also revealed consistent increases in eel abundances from 2004 to 2010 but inconsistent temporal trends before dam removal. Increasing eel numbers could not be attributed to changes in local physical habitat (i.e., mean stream depth or substrate size) or regional population dynamics (i.e., abundances in Maryland streams or Virginia estuaries). Dam removal was associated with decreasing minimum eel lengths in headwater streams, suggesting that the dam previously impeded migration of many small-bodied individuals (<300 mm TL). We hypothesize that restoring connectivity to headwater streams could increase eel population growth rates by increasing female eel numbers and fecundity. This study demonstrated that dams may influence eel abundances in headwater streams up to 150 river kilometers distant, and that dam removal may provide benefits for eel management and conservation at the landscape scale.

  3. A shower look-up table to trace the dynamics of meteoroid streams and their sources

    NASA Astrophysics Data System (ADS)

    Jenniskens, Petrus

    2018-04-01

    Meteor showers are caused by meteoroid streams from comets (and some primitive asteroids). They trace the comet population and its dynamical evolution, warn of dangerous long-period comets that can pass close to Earth's orbit, outline volumes of space with a higher satellite impact probability, and define how meteoroids evolve in the interplanetary medium. Ongoing meteoroid orbit surveys have mapped these showers in recent years, but the surveys are now running up against a more and more complicated scene. The IAU Working List of Meteor Showers has reached 956 entries to be investigated (per March 1, 2018). The picture is even more complicated with the discovery that radar-detected streams are often different, or differently distributed, than video-detected streams. Complicating matters even more, some meteor showers are active over many months, during which their radiant position gradually changes, which makes the use of mean orbits as a proxy for a meteoroid stream's identity meaningless. The dispersion of the stream in space and time is important to that identity and contains much information about its origin and dynamical evolution. To make sense of the meteor shower zoo, a Shower Look-Up Table was created that captures this dispersion. The Shower Look-Up Table has enabled the automated identification of showers in the ongoing CAMS video-based meteoroid orbit survey, results of which are presented now online in near-real time at http://cams.seti.org/FDL/. Visualization tools have been built that depict the streams in a planetarium setting. Examples will be presented that sample the range of meteoroid streams that this look-up table describes. Possibilities for further dynamical studies will be discussed.

  4. Instream flow characterization of Upper Salmon River basin streams, central Idaho, 2005

    USGS Publications Warehouse

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2006-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model simulation results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing or decreasing streamflow. In 2005, instream flow characterization studies were completed on Big Boulder, Challis, Bear, Mill, and Morgan Creeks. Continuous streamflow data were recorded upstream of all diversions on Big Boulder. Instantaneous measurements of discharge were also made at selected sites. In

  5. Isotopic Responses to Processes Related to Oxygen Cycling During Diel Studies in the San Joaquin River, California

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Young, M. B.; Kendall, C.; Dahlgren, R. A.; Stringfellow, W. T.

    2008-12-01

    Episodic conditions of low dissolved oxygen (DO) occurring in the San Joaquin River deep water shipping channel (DWSC) at Stockton, California inhibit salmon migration during late summer and early fall. As part of a CALFED study to determine the sources of organic matter and nutrients related to the low DO problem, four diel studies were undertaken: two at the DWSC in 2006 and 2007 and two about 40 miles upstream at Crows Landing in 2005 and 2007. The purpose of the diel studies was to gain a better understanding of the transient processes controlling oxygen concentrations and to compare the range of diel variations of various isotopic measurements with those collected on a less frequent basis. The DWSC is dredged to about 40 feet deep and is tidally influenced. The river at Crows Landing is about 5 feet deep and well above tidal influence. Crows Landing was therefore used for comparison with the DWSC as a hydrologically less complicated portion of the river that has not been dredged. Samples were collected at two hour intervals from a one meter depth at Crows Landing. Values of d18O-DO, DO concentrations and pH showed a strong diel response linked to photosynthesis and the effects of bacterial respiration. The d13C of POM (composed mostly of algae) increased at night as expected while the C:N ratio of POM unexpectedly decreases, possibly due to an increased presence of zooplankton at night. Opposing trends of d15N and d18O of nitrate unrelated to a diurnal cycle suggest that source mixing was largely responsible for nitrate composition and concentration through much of the study. Samples were collected at two hour intervals from 1, 5, and 8 meter depths at Rough and Ready Island in the DWSC. Isotope and concentration data showed a distinct diurnal photosynthetic response at the 1 meter depth only. The 2007 DIC and POM isotopic data suggested that nitrification was significantly responsible for oxygen consumption through the duration of the study. The particularly

  6. Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the upper Animas River watershed, Colorado

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; May, T.W.; Church, S.E.; Kimball, B.A.

    2001-01-01

    The water quality, habitats, and biota of streams in the upper Animas River watershed of Colorado, USA, are affected by metal contamination associated with acid drainage. We determined metal concentrations in components of the food web of the Animas River and its tributaries - periphyton (aufwuchs), benthic invertebrates, and livers of brook trout (Salvelinus fontinalis) - and evaluated pathways of metal exposure and hazards of metal toxicity to stream biota. Concentrations of the toxic metals cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in periphyton, benthic invertebrates, and trout livers from one or more sites in the upper Animas River were significantly greater than those from reference sites. Periphyton from sites downstream from mixing zones of acid and neutral waters had elevated concentrations of aluminum (Al) and iron (Fe) reflecting deposition of colloidal Fe and Al oxides, and reduced algal biomass. Metal concentrations in benthic invertebrates reflected differences in feeding habits and body size among taxa, with greatest concentrations of Zn, Cu, and Cd in the small mayfly Rhithrogena, which feeds on periphyton, and greatest concentrations of Pb in the small stonefly Zapada, a detritivore. Concentrations of Zn and Pb decreased across each trophic linkage, whereas concentrations of Cu and Cd were similar across several trophic levels, suggesting that Cu and Cd were more efficiently transferred via dietary exposure. Concentrations of Cu in invertebrates and trout livers were more closely associated with impacts on trout populations and invertebrate communities than were concentrations of Zn, Cd, or Pb. Copper concentrations in livers of brook trout from the upper Animas River were substantially greater than background concentrations and approached levels associated with reduced brook trout populations in field studies and with toxic effects on other salmonids in laboratory studies. These results indicate that bioaccumulation and transfer of

  7. A simple protocol using underwater epoxy to install annual temperature monitoring sites in rivers and streams

    Treesearch

    Daniel J. Isaak; Dona L. Horan; Sherry P. Wollrab

    2013-01-01

    Thermal regimes in rivers and streams are fundamental determinants of biological processes and are often monitored for regulatory compliance. Here, we describe a simple technique for establishing annual monitoring sites that uses underwater epoxy to attach miniature sensors to large rocks and cement bridge supports, which then serve as protective anchors. More than 500...

  8. DIC transport in "flashy" streams - constraints from time series ionic- and δ13C data from the Manoa River (Hawaii)

    NASA Astrophysics Data System (ADS)

    Hagedorn, B.

    2016-12-01

    Hawaiian streams are flashy in nature because watersheds are small and steep and receive intense and unevenly distributed rainfall. As a result, stream chemistry is characterized by considerable spatiotemporal variability. To examine how rainfall and streamflow affect the solute content of the Manoa River in Hawaii, time-series geochemical data collected during 17 sampling campaigns in spring-fall of 2010 were evaluated in a coupled δ13CDIC/major ion inversion model. Spatially, the stream is characterized by a distinct shift from a low HCO3 (43 mg/L), low pCO2 (3,760 ppmv) and heavy δ13CDIC (-6.5‰) fingerprint in the upper reaches to a high HCO3 (91 mg/L), high pCO2 (8,961 ppmv) and light δ13CDIC (-11.7‰) signature in the lowlands. These trends are attributed to (1) progressive weathering of exposed aluminosilicates, and (2) downstream enrichment in CO2 from organic matter decay in the soil zone. Solute (i.e., nitrate) yields from nitric acid weathering are generally low (<1% of TDS), even in the developed lowlands, where runoff of nitrate and ammonium-enriched urban effluent has historically been documented. Data furthermore indicate a significant positive correlation between δ13CDIC and rainfall rates in the mid-stream section of the river which is consistent with an atmospheric CO2 dilution effect during high rainfall events. This dilution effect needs to be accounted for to reliably describe the role of volcanic island river systems in global assessments of CO2 consumption via silicate weathering and CO2 degassing.

  9. Satellite imagery of the onset of streaming flow of ice streams C and D, West Antarctica

    USGS Publications Warehouse

    Hodge, S.M.; Doppelhammer, S.K.

    1996-01-01

    Five overlapping Landsat multispectral scanner satellite images of the interior of the West Antarctic ice sheet were enhanced with principal component analysis, high-pass filtering, and linear contrast stretching and merged into a mosaic by aligning surface features in the overlap areas. The mosaic was registered to geodetic coordinates, to an accuracy of about 1 km, using the five scene centers as control points. The onset of streaming flow of two tributaries of ice stream C and one tributary of ice stream D is visible in the mosaic. The onset appears to occur within a relatively short distance, less than the width of the ice stream, typically at a subglacial topographic feature such as a step or ridge. The ice streams extend farther up into the interior than previously mapped. Ice stream D starts about 150 km from the ice divide, at an altitude of about 1500 m, approximately halfway up the convex-upward dome shape of the interior ice sheet. Ice stream D is relatively much longer than ice stream C, possibly because ice stream D is currently active whereas ice stream C is currently inactive. The grounded portion of the West Antarctic ice sheet is perhaps best conceptualized as an ice sheet in which ice streams are embedded over most of its area, with slow moving ice converging into fast moving ice streams in a widely distributed pattern, much like that of streams and rivers in a hydrologic basin. A relic margin appears to parallel most of the south margin of the tributary of ice stream D, separated from the active shear margin by about 10 km or less for a distance of over 200 km. This means there is now evidence for recent changes having occurred in three of the five major ice streams which drain most of West Antarctica (B, C, and D), two of which (B and D) are currently active.

  10. Developing a large-scale model to predict the effects of land use and climatic variation on the biological condition of USA streams and rivers

    EPA Science Inventory

    The US EPA’s National Rivers and Streams Assessment (NRSA) uses spatially balanced sampling to estimate the proportion of streams within the continental US (CONUS) that fail to support healthy biological communities. However, to manage these systems, we also must understand...

  11. Wild, scenic, and transcendental rivers

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    “A more lovely stream than this has never flowed on Earth,” 19th century American author Nathaniel Hawthorne wrote about the confluence of the Assabet and Concord Rivers, streams that meander about 40 km west of Boston, Massachusetts.Segments of these streams as well as the Assabet River became the newest additions to the U.S. National Wild and Scenic Rivers System, when President Bill Clinton signed into law the “Sudbury, Assabet, and Concord Wild and Scenic River Act” on April 9.

  12. Determination of pesticides associated with suspended sediments in the San Joaquin River, California, USA, using gas chromatography-ion trap mass spectrometry

    USGS Publications Warehouse

    Bergamaschi, B.A.; Baston, D.S.; Crepeau, K.L.; Kuivila, K.M.

    1999-01-01

    An analytical method useful for the quantification of a range of pesticides and pesticide degradation products associated with suspended sediments was developed by testing a variety of extraction and cleanup schemes. The final extraction and cleanup methods chosen for use are suitable for the quantification of the listed pesticides using gas chromatography-ion trap mass spectrometry and the removal of interfering coextractable organic material found in suspended sediments. Methylene chloride extraction followed by Florisil cleanup proved most effective for separation of coextractives from the pesticide analytes. Removal of elemental sulfur was accomplished with tetrabutylammonium hydrogen sulfite. The suitability of the method for the analysis of a variety of pesticides was evaluated, and the method detection limits (MDLs) were determined (0.1-6.0 ng/g dry weight of sediment) for 21 compounds. Recovery of pesticides dried onto natural sediments averaged 63%. Analysis of duplicate San Joaquin River suspended-sediment samples demonstrated the utility of the method for environmental samples with variability between replicate analyses lower than between environmental samples. Eight of 21 pesticides measured were observed at concentrations ranging from the MDL to more than 80 ng/g dry weight of sediment and exhibited significant temporal variability. Sediment-associated pesticides, therefore, may contribute to the transport of pesticides through aquatic systems and should be studied separately from dissolved pesticides.

  13. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... executing river and harbor improvement work for the United States, and displaying the signals prescribed by... exercise special caution to avoid interference with the work on which the plant is engaged. Dredges...); a wharf or other structure; work under construction; plant engaged in river and harbor improvement...

  14. Timber resource statistics for the San Joaquin and southern resource areas of California.

    Treesearch

    Karen L. Waddell; Patricia M. Bassett

    1997-01-01

    This report is a summary of timber resource statistics for the San Joaquin and Southern Resource Areas of California, which include Alpine, Amador, Calaveras, Fresno, Imperial, Inyo, Kern, Kings, Los Angeles, Madera, Mariposa, Merced, Mono, Orange, Riverside, San Bernardino, San Diego, San Joaquin, Stanislaus, Tulare, and Tuolumne Counties. Data were collected as part...

  15. Inferring Groundwater Age in an Alluvial Aquifer from Tracer Concentrations in the Stream - Little Wind River, Wyoming

    NASA Astrophysics Data System (ADS)

    Goble, D.; Gardner, W. P.; Naftz, D. L.; Solder, J. E.

    2017-12-01

    We use environmental tracers: CFC's, SF6, and 222Rn measured in stream water to determine volume and mean age of groundwater discharging to the Little Wind River, near Riverton, Wyoming. Samples of 222Rn were collected every 200 m along a 2 km reach, surrounding a known groundwater discharge zone. Nearby groundwater wells, in-stream piezometers and seepage meters were sampled for 222Rn, CFC's and SF6. Tracer concentrations measured in groundwater and in-stream piezometers were used to estimate the mean age of the subsurface system. High resolution 222Rn samples were used to determine the location and volume of groundwater inflow using a model of instream transport that includes radioactive decay and gas exchange with the atmosphere. The age of groundwater entering the stream was then estimated from in-stream measured CFC and SF6 concentrations using a new coupled stream transport and lumped-parameter groundwater age model. Ages derived from in-stream measurements were then compared to the age of subsurface water measured in piezometers, seepage meters, and groundwater wells. We then asses the ability of groundwater age inferred from in-stream samples to provide constraint on the age of the subsurface discharge to the stream. The ability to asses groundwater age from in-stream samples can provide a convenient method to constrain the regional distribution of groundwater circulation rates when groundwater sampling is challenging or wells are not in place.

  16. A brief history of oil and gas exploration in the southern San Joaquin Valley of California: Chapter 3 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Takahashi, Kenneth I.; Gautier, Donald L.

    2007-01-01

    The Golden State got its nickname from the Sierra Nevada gold that lured so many miners and settlers to the West, but California has earned much more wealth from so-called “black gold” than from metallic gold. The San Joaquin Valley has been the principal source for most of the petroleum produced in the State during the past 145 years. In attempting to assess future additions to petroleum reserves in a mature province such as the San Joaquin Basin, it helps to be mindful of the history of resource development. In this chapter we present a brief overview of the long and colorful history of petroleum exploration and development in the San Joaquin Valley. This chapter relies heavily upon the work of William Rintoul, who wrote extensively on the history of oil and gas exploration in California and especially in the San Joaquin Valley. No report on the history of oil and gas exploration in the San Joaquin Valley would be possible without heavily referencing his publications. We also made use of publications by Susan Hodgson and a U.S. Geological Survey Web site, Natural Oil and Gas Seeps in California (http://seeps.wr.usgs.gov/seeps/index.html), for much of the material describing the use of petroleum by Native Americans in the San Joaquin Valley. Finally, we wish to acknowledge the contribution of Don Arnot, who manages the photograph collection at the West Kern Oil Museum in Taft, California. The collection consists of more than 10,000 photographs that have been scanned and preserved in digital form on CD-ROM. Many of the historical photographs used in this paper are from that collection. Finally, to clarify our terminology, we use the term “San Joaquin Valley” when we refer to the geographical or topographical feature and the term “San Joaquin Basin” when we refer to geological province and the rocks therein.

  17. Geochemical characteristics of Heavy metals of river sediment from the main rivers at Texas, USA.

    NASA Astrophysics Data System (ADS)

    Matsumoto, I.; Hoffman, D.; MacAlister, J.; Ishiga, H.

    2008-12-01

    Trinity River is one of the biggest rivers which flows through Dallas and Fort Worth two big cities of USA and are highly populated. Trinity river drains into the Gulf of Mexico. Sediment samples collected from various points along the upper and lower streams were subjected to content analysis and elution analysis (using liquate (flow) out test) on the heavy metals like Cd, CN, Pb, Cr, As, Hg, Ni, Zn and Cu from the river sediment for the purpose of environment assessment. A total of 22 sample points were identified from upper stream to lower stream and samples were collected such that almost the whole stream length of Trinity River is covered. Results show that heavy metal content through out the river stream is below the recommended limits posing no immediate environmental threat. However, the experimental results show clear impact of human population in bigger cities on heavy metal concentrations in the river sediments as compared to smaller cities with low human population. It could be seen from the analysis that all the heavy metals show relatively high content and high elution value in Dallas and Fort Worth. As we move away from the big cities, the value of content and elution of sediment decreased by natural dilution effect by the river. And we also present the data of the Colorado and San Antonio rivers.

  18. Priority River Metrics for Urban Residents of the Santa Cruz River Watershed

    EPA Science Inventory

    Indicator selection is a persistent question in river and stream assessment and management. We employ qualitative research techniques to identify features of rivers and streams important to urban residents recruited from the general public in the Santa Cruz watershed. Interviews ...

  19. Stream response to repeated coseismic folding, Tiptonville dome, New Madrid seismic zone

    NASA Astrophysics Data System (ADS)

    Guccione, M. J.; Mueller, K.; Champion, J.; Shepherd, S.; Carlson, S. D.; Odhiambo, B.; Tate, A.

    2002-03-01

    Fluvial response to tectonic deformation is dependent on the amount and style of surface deformation and the relative size of the stream. Active folding in the New Madrid seismic zone (NMSZ) forms the Tiptonville dome, a 15-km long and 5-km wide surface fold with up to 11 m of late Holocene structural relief. The fold is crossed by streams of varying size, from the Mississippi River to small flood-plain streams. Fluvial response of these streams to repeated coseismic folding has only been preserved for the past 2.3 ka, since the Tiptonville meander of the Mississippi River migrated across the area forming the present flood plain. This surface comprises a sandy point-bar deposit locally overlain by clayey overbank and silty sand crevasse-splay deposits, an abandoned chute channel infilled with laminated sandy silt and silty clay, and an abandoned neck cutoff filled with a sandy cutoff bar and silty clay oxbow lake deposits. Dating various stream responses to coseismic folding has more tightly constrained the timing of earthquake events in the central NMSZ and provides a means of partitioning the deformation amount into individual seismic events. Three earthquakes have been dated in the Reelfoot Lake area, ca. A.D. 900, 1470, and 1812. The latter two earthquakes had large local coseismic deformation. Both of these events were responsible for numerous stream responses such as shifting depocenters, modification of Mississippi River channel geometry, and derangement of small streams. Overbank sedimentation ceased on the dome as it was uplifted above the normal flood stage, and sedimentation of crevasse-splay deposits from the Mississippi River, colluvium from the scarp, and lacustrine sediment accumulated in the adjacent Reelfoot basin. The much larger Mississippi River channel responded to uplift by increasing its sinuosity across the uplift relative to both upstream and downstream, increasing its width/depth ratio across and downstream of the uplift, and decreasing

  20. Formation of transformation products from wastewater-derived pharmaceuticals in an urban lowland stream

    NASA Astrophysics Data System (ADS)

    Jäger, A.; Posselt, M.; Schaper, J. L.; Lewandowski, J.

    2017-12-01

    Not only transport, but especially transformation of polar organic micropollutants in urban streams is of increasing concern for urban water management. While concentrations of pharmaceuticals might decrease down the river, concentrations of their more persistent metabolites potentially increase due to microbial transformation. The river Erpe, an urban lowland stream located in Berlin, Germany, receives high loads of treated waste water. A Lagrangian sampling scheme was applied to follow water parcels 4.7 km down the river using the diurnal fluctuations of electrical conductivity as an intrinsic conservative tracer. Each experiment comprised of hourly sample collection for two days, accompanied by discharge measurements and continuous data logging of electrical conductivity. The fate of pharmaceuticals and their transformation products was compared between seasons (April and June) and before and after a stretch of the river has been cleared of macrophytes. The set of micropollutants was analysed by a newly developed direct injection-UHPLC-MS/MS method. The behaviour of individual micropollutants was compound-specific. Valsartan and metoprolol were attenuated by up to 18% of their original concentration. At the same time the transformation products valsartan acid and metoprolol acid increased in concentration by up to 24%. Their formation along the reach varied between seasons and was influenced by macrophyte removal. The findings indicate that the self-purification capacity of urban rivers is variable in time and sensitive to changes in the river's hydrological regime and emphasize the relevance of formation of transformation products in urban rivers.

  1. Indirect nitrous oxide emissions from streams within the US Corn Belt scale with stream order

    PubMed Central

    Turner, Peter A.; Griffis, Timothy J.; Lee, Xuhui; Baker, John M.; Venterea, Rodney T.; Wood, Jeffrey D.

    2015-01-01

    N2O is an important greenhouse gas and the primary stratospheric ozone depleting substance. Its deleterious effects on the environment have prompted appeals to regulate emissions from agriculture, which represents the primary anthropogenic source in the global N2O budget. Successful implementation of mitigation strategies requires robust bottom-up inventories that are based on emission factors (EFs), simulation models, or a combination of the two. Top-down emission estimates, based on tall-tower and aircraft observations, indicate that bottom-up inventories severely underestimate regional and continental scale N2O emissions, implying that EFs may be biased low. Here, we measured N2O emissions from streams within the US Corn Belt using a chamber-based approach and analyzed the data as a function of Strahler stream order (S). N2O fluxes from headwater streams often exceeded 29 nmol N2O-N m−2⋅s−1 and decreased exponentially as a function of S. This relation was used to scale up riverine emissions and to assess the differences between bottom-up and top-down emission inventories at the local to regional scale. We found that the Intergovernmental Panel on Climate Change (IPCC) indirect EF for rivers (EF5r) is underestimated up to ninefold in southern Minnesota, which translates to a total tier 1 agricultural underestimation of N2O emissions by 40%. We show that accounting for zero-order streams as potential N2O hotspots can more than double the agricultural budget. Applying the same analysis to the US Corn Belt demonstrates that the IPCC EF5r underestimation explains the large differences observed between top-down and bottom-up emission estimates. PMID:26216994

  2. Ecological research and management of intermittent rivers: an historical review and future directions

    EPA Science Inventory

    Rivers and streams that do not flow permanently (herein intermittent rivers; IRs) make up a large proportion of the world's inland waters and are gaining widespread attention. We review the research on IRs from its early focus on natural history through to current application in ...

  3. Physical characteristics of stream subbasins in the Hawk Creek-Yellow Medicine River basin, southwestern Minnesota and eastern South Dakota

    USGS Publications Warehouse

    Sanocki, Christopher A.

    1996-01-01

    Data that describe the physical characteristics of stream subbasins upstream from selected sites on streams in the Hawk Creek-Yellow Medicine River Basin, located in southwestern Minnesota and eastern South Dakota are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slope. Stream sites include outlets of subbasins of at least 5 square miles, outlets of sewage treatment plants, and locations of U.S. Geological Survey low-flow, high-flow, and continuous-record gaging stations.

  4. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin

    USGS Publications Warehouse

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

    2014-01-01

    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  5. Managing Environmental Flows for Impounded Rivers in Semi-Arid Regions- A Habitat Suitability Index (HSI) Approach for the Assessment of River Habitat for Salmonid Populations

    NASA Astrophysics Data System (ADS)

    Pai, H.; Sivakumaran, K.; Villamizar, S. R.; Flanagan, J.; Guo, Q.; Harmon, T. C.

    2013-12-01

    Balancing ecosystem health in water-scarce, agriculturally dominated river basins remains a challenge. In dry water years, maintaining conditions for restored and sustained indigenous fish populations (a frequently used indicator for ecosystem health) is particularly challenging. Competing human demands include urban and agricultural water supplies, hydropower, and flood control. In many semi-arid regions, increasing drought intensity and frequency under future climate scenarios will combine with population increases to water scarcity. The goal of this work is to better understand how reservoir releases affect fish habitat and overall river aquatic ecosystem quality. Models integrating a diverse array of physical and biological processes and system state are used to forecast the river ecosystem response to changing drivers. We propose a distributed parameter-based Habitat Suitability Index (HSI) approach for assessing fish habitat quality. Our river ecosystem HSI maps are based on a combination of the following: (1) In situ data describing stream flow and water quality conditions; (2) Spatial observations, including surveyed cross-sections, aerial imagery and digital elevation maps (DEM) of the river and its riparian corridor; and (3) Simulated spatially distributed water depths, flow velocities, and temperatures estimated from 1D and 2D river flow and temperature models (HEC-RAS and CE-QUAL-W2, respectively). With respect to (2), image processing schemes are used to classify and map key habitat features, namely riparian edge and shallow underwater vegetation. HSI maps can be modified temporally to address specific life cycle requirements of indicator fish species. Results are presented for several reaches associated with the San Joaquin River Restoration Project, focusing on several components of the Chinook salmon life cycle. HSI maps and interpretations are presented in the context of a range of prescribed reservoir release hydrographs linked to California water

  6. Spatial and temporal patterns of stream burial and its effect on habitat connectivity across headwater stream communities of the Potomac River Basin, USA

    NASA Astrophysics Data System (ADS)

    Weitzell, R.; Guinn, S. M.; Elmore, A. J.

    2012-12-01

    The process of directing streams into culverts, pipes, or concrete-lined ditches during urbanization, known as stream burial, alters the primary physical, chemical, and biological processes of streams. Knowledge of the cumulative impacts of reduced structure and ecological function within buried stream networks is crucial for informing management of stream ecosystems, in light of continued growth in urban areas, and the uncertain response of freshwater ecosystems to the stresses of global climate change. To address this need, we utilized recently improved stream maps for the Potomac River Basin (PRB) to describe the extent and severity of stream burial across the basin. Observations of stream burial made from high resolution aerial photographs (>1% of total basin area) and a decision tree using spatial statistics from impervious cover data were used to predict stream burial at 4 time-steps (1975, 1990, 2001, 2006). Of the roughly 95,500 kilometers (km) of stream in the PRB, approximately 4551 km (4.76%) were buried by urban development as of 2001. Analysis of county-level burial trends shows differential patterns in the timing and rates of headwater stream burial, which may be due to local development policies, topographical constraints, and/or time since development. Consistently higher rates of stream burial were observed for small streams, decreasing with stream order. Headwater streams (1st-2nd order) are disproportionately affected, with burial rates continuing to increase over time in relation to larger stream orders. Beyond simple habitat loss, headwater burial decreases connectivity among headwater populations and habitats, with potential to affect a wide range of important ecological processes. To quantify changes to regional headwater connectivity we applied a connectivity model based on electrical circuit theory. Circuit-theoretical models function by treating the landscape as a resistance surface, representing hypothesized relationships between

  7. Multi-scale Sensitivity and Predictability of Hurricane Joaquin (2015) Illuminated Through Adjoint Studies

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Holdaway, D.; Amerault, C. M.

    2017-12-01

    Hurricane Joaquin (2015) was a strong category 4 hurricane (maximum winds of 135 kts) that developed from an upper-level low over the western Atlantic and was noteworthy because of its large impact in the Bahamas, as well as the sinking of the cargo ship El Farroand loss of her 33 crew members. Joaquin initially moved southwest towards the Bahamas and rapidly intensified before sharply turning northeastward. Nearly all operational model forecasts failed to provide an accurate prediction of the rapid intensification and track, even at short lead times. As a result, the National Hurricane Center forecasted landfall in the mid-Atlantic, while in reality the storm moved well offshore. In this study, we utilize two adjoint modeling systems, the Navy COAMPS and the NASA GEOS-5, to investigate the role of initial condition errors that may have led to the relatively poor track and intensity predictions of Hurricane Joaquin. Adjoint models can provide valuable insight into the practical limitations of our ability to predict the path of tropical cyclones and their strength. An adjoint model can be used for the efficient and rigorous computation of numerical weather forecast sensitivity to changes in the initial state. The adjoint sensitivity diagnostics illustrate complex influences on the evolution of Joaquin that occur over a wide range of spatial scales. The sensitivity results highlight the importance of an upper-level trough to the northeast that provided the steering flow for the poorly-predicted southwesterly movement of the hurricane in its early phase. The steering flow and hurricane track are found to be very sensitive to relatively small changes in the initial state to the east-northeast of the hurricane. Additionally, the intensity prediction of Hurricane Joaquin is found to be very sensitive to the initial state moisture including highly structured regions around the storm and in remote regions as well. Hurricane Joaquin was observed in four NASA WB-57 research

  8. Winters-Domengine Total Petroleum System—Northern Nonassociated Gas Assessment Unit of the San Joaquin Basin Province: Chapter 21 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Hosford Scheirer, Allegra; Magoon, Leslie B.

    2008-01-01

    Stanislaus-San Joaquin county line, which also defines the northern boundary of the San Joaquin Basin Province. In the vertical dimension, the AU extends from the uppermost crystalline basement to the topographic surface (fig. 21.3), to allow for the possibility of down-section charge across fault surfaces and up-dip migration. The gas in this AU may be sourced from the Winters- Domengine(?) petroleum system, located in the Sacramento Valley north of the San Joaquin Valley, as defined by Magoon and others (1994a,b) (question mark notation derives from convention of Magoon and Dow, 1994, and indicates speculative genetic relationship between hydrocarbons and source rock). The Winters-Domengine Total Petroleum System defined for this assessment contains about 7.2 trillion cubic feet (TCF) of known, recoverable gas and includes the Rio Vista gas field, which alone accounts for 4 TCF of recoverable gas through 2002 (CDOGGR, 2003). Alternatively, the northern nonassociated gas may be sourced from the Moreno Formation within the San Joaquin Valley itself.

  9. Stream fish colonization but not persistence varies regionally across a large North American river basin

    USGS Publications Warehouse

    Wheeler, Kit; Wengerd, Seth J.; Walsh, Stephen J.; Martin, Zachary P.; Jelks, Howard L.; Freeman, Mary C.

    2018-01-01

    Many species have distributions that span distinctly different physiographic regions, and effective conservation of such taxa will require a full accounting of all factors that potentially influence populations. Ecologists recognize effects of physiographic differences in topography, geology and climate on local habitat configurations, and thus the relevance of landscape heterogeneity to species distributions and abundances. However, research is lacking that examines how physiography affects the processes underlying metapopulation dynamics. We used data describing occupancy dynamics of stream fishes to evaluate evidence that physiography influences rates at which individual taxa persist in or colonize stream reaches under different flow conditions. Using periodic survey data from a stream fish assemblage in a large river basin that encompasses multiple physiographic regions, we fit multi-species dynamic occupancy models. Our modeling results suggested that stream fish colonization but not persistence was strongly governed by physiography, with estimated colonization rates considerably higher in Coastal Plain streams than in Piedmont and Blue Ridge systems. Like colonization, persistence was positively related to an index of stream flow magnitude, but the relationship between flow and persistence did not depend on physiography. Understanding the relative importance of colonization and persistence, and how one or both processes may change across the landscape, is critical information for the conservation of broadly distributed taxa, and conservation strategies explicitly accounting for spatial variation in these processes are likely to be more successful for such taxa.

  10. Variation of stream temperature among mesoscale habitats within stream reaches: southern Appalachians

    Treesearch

    S. Lynsey Long; C. Rhett. Jackson

    2014-01-01

    Stream mesoscale habitats have systematic topographic relationships to hyporheic flow patterns, which may create predictable temperature variation between mesoscale habitat types. We investigated whether systematic differences in temperature metrics occurred between mesoscale habitats within reaches of small streams tributary to the upper Little Tennessee River,...

  11. San Joaquin, California, High-Speed Rail Grade Crossing Data Acquisition Characteristics, Methodology, and Risk Assessment

    DOT National Transportation Integrated Search

    2006-11-01

    This report discusses data acquisition and analysis for grade crossing risk analysis at the proposed San Joaquin High-Speed Rail Corridor in San Joaquin, California, and documents the data acquisition and analysis methodologies used to collect and an...

  12. Analyzing Conductivity Profiles in Stream Waters Influenced by Mine Water Discharges

    NASA Astrophysics Data System (ADS)

    Räsänen, Teemu; Hämäläinen, Emmy; Hämäläinen, Matias; Turunen, Kaisa; Pajula, Pasi; Backnäs, Soile

    2015-04-01

    Conductivity is useful as a general measure of stream water quality. Each stream inclines to have a quite constant range of conductivity that can be used as a baseline for comparing and detecting influence of contaminant sources. Conductivity in natural streams and rivers is affected primarily by the geology of the watershed. Thus discharges from ditches and streams affect not only the flow rate in the river but also the water quality and conductivity. In natural stream waters, the depth and the shape of the river channel change constantly, which changes also the water flow. Thus, an accurate measuring of conductivity or other water quality indicators is difficult. Reliable measurements are needed in order to have holistic view about amount of contaminants, sources of discharges and seasonal variation in mixing and dilution processes controlling the conductivity changes in river system. We tested the utility of CastAway-CTD measuring device (SonTek Inc) to indicate the influence of mine waters as well as mixing and dilution occurring in the recipient river affected by treated dewatering and process effluent water discharges from a Finnish gold mine. The CastAway-CTD measuring device is a small, rugged and designed for profiling of depths of up to 100m. Device measures temperature, salinity, conductivity and sound of speed using 5 Hz response time. It has also built-in GPS which produces location information. CTD casts are normally used to produce vertical conductivity profile for rather deep waters like seas or lakes. We did seasonal multiple Castaway-CTD measurements during 2013 and 2014 and produced scaled vertical and horizontal profiles of conductivity and water temperature at the river. CastAway-CTD measurement pinpoints how possible contaminants behave and locate in stream waters. The conductivity profiles measured by CastAway-CTD device show the variation in maximum conductivity values vertically in measuring locations and horizontally in measured cross

  13. Assessing the impacts of climate change and tillage practices on stream flow, crop and sediment yields from the Mississippi River Basin

    Treesearch

    P.B. Parajuli; P. Jayakody; G.F. Sassenrath; Y. Ouyang

    2016-01-01

    This study evaluated climate change impacts on stream flow, crop and sediment yields from three differ-ent tillage systems (conventional, reduced 1–close to conservation, and reduced 2–close to no-till), in theBig Sunflower River Watershed (BSRW) in Mississippi. The Soil and Water Assessment Tool (SWAT) modelwas applied to the BSRW using observed stream flow and crop...

  14. Understanding Public Views about Air Quality and Air Pollution Sources in the San Joaquin Valley, California.

    PubMed

    Cisneros, Ricardo; Brown, Paul; Cameron, Linda; Gaab, Erin; Gonzalez, Mariaelena; Ramondt, Steven; Veloz, David; Song, Anna; Schweizer, Don

    2017-01-01

    The San Joaquin Valley of California has poor air quality and high rates of asthma. Surveys were collected from 744 residents of the San Joaquin Valley from November 2014 to January 2015 to examine the public's views about air quality. The results of this study suggest that participants exposed to high PM 2.5 (particulate matter less than 2.5 microns in size) concentrations perceived air pollution to be of the worst quality. Air quality in the San Joaquin Valley was primarily perceived as either moderate or unhealthy for sensitive groups. Females perceived air pollution to be of worse quality compared to males. Participants perceived unemployment, crime, and obesity to be the top three most serious community problems in the San Joaquin Valley. Participants viewed cars and trucks, windblown dust, and factories as the principle contributors to air pollution in the area. There is a need to continue studying public perceptions of air quality in the San Joaquin Valley with a more robust survey with more participants over several years and seasons.

  15. Understanding Public Views about Air Quality and Air Pollution Sources in the San Joaquin Valley, California

    PubMed Central

    Brown, Paul; Cameron, Linda; Gaab, Erin; Gonzalez, Mariaelena; Ramondt, Steven; Veloz, David; Song, Anna; Schweizer, Don

    2017-01-01

    The San Joaquin Valley of California has poor air quality and high rates of asthma. Surveys were collected from 744 residents of the San Joaquin Valley from November 2014 to January 2015 to examine the public's views about air quality. The results of this study suggest that participants exposed to high PM2.5 (particulate matter less than 2.5 microns in size) concentrations perceived air pollution to be of the worst quality. Air quality in the San Joaquin Valley was primarily perceived as either moderate or unhealthy for sensitive groups. Females perceived air pollution to be of worse quality compared to males. Participants perceived unemployment, crime, and obesity to be the top three most serious community problems in the San Joaquin Valley. Participants viewed cars and trucks, windblown dust, and factories as the principle contributors to air pollution in the area. There is a need to continue studying public perceptions of air quality in the San Joaquin Valley with a more robust survey with more participants over several years and seasons. PMID:28469673

  16. Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river?

    NASA Astrophysics Data System (ADS)

    Trimmel, Heidelinde; Weihs, Philipp; Leidinger, David; Formayer, Herbert; Kalny, Gerda; Melcher, Andreas

    2018-01-01

    Global warming has already affected European rivers and their aquatic biota, and climate models predict an increase of temperature in central Europe over all seasons. We simulated the influence of expected changes in heat wave intensity during the 21st century on water temperatures of a heavily impacted pre-alpine Austrian river and analysed future mitigating effects of riparian vegetation shade on radiant and turbulent energy fluxes using the deterministic Heat Source model. Modelled stream water temperature increased less than 1.5 °C within the first half of the century. Until 2100, a more significant increase of around 3 °C in minimum, maximum and mean stream temperatures was predicted for a 20-year return period heat event. The result showed clearly that in a highly altered river system riparian vegetation was not able to fully mitigate the predicted temperature rise caused by climate change but would be able to reduce water temperature by 1 to 2 °C. The removal of riparian vegetation amplified stream temperature increases. Maximum stream temperatures could increase by more than 4 °C even in annual heat events. Such a dramatic water temperature shift of some degrees, especially in summer, would indicate a total shift of aquatic biodiversity. The results demonstrate that effective river restoration and mitigation require re-establishing riparian vegetation and emphasize the importance of land-water interfaces and their ecological functioning in aquatic environments.

  17. Does the river continuum concept apply on a tropical island? Longitudinal variation in a Puerto Rican stream.

    Treesearch

    Effie A. Greathouse; Catherine M. Pringle

    2006-01-01

    We examined whether a tropical stream in Puerto Rico matched predictions of the river continuum concept (RCC) for macroinvertebrate functional feeding groups (FFGs). Sampling sites for macroinvertebrates, basal resources, and fishes ranged from headwaters to within 2.5 km of the fourth-order estuary. In a comparison with a model temperate system in which RCC...

  18. 76 FR 67369 - Revisions to the California State Implementation Plan, Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... the California State Implementation Plan, Joaquin Valley Unified Air Pollution Control District and Imperial County Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution...

  19. Juvenile salmon and steelhead occupancy of stream pools treated and not treated with restoration structures, Entiat River, Washington

    Treesearch

    Karl M. Polivka; E. Ashley Steel; Jenni L. Novak; Bror Jonsson

    2015-01-01

    We observed habitat occupancy by juvenile Chinook salmon (Oncorhynchus tschawytscha) and steelhead trout (Oncorhynchus mykiss) at in-stream habitat restoration structures constructed in the Entiat River, Washington, USA. In 2009–2013, fish abundance measurements during rearing (July–October) showed high temporal variability in...

  20. AQUATIC VERTEBRATE ASSEMBLAGES AT LEAST- AND MOST-IMPACTED STREAM AND RIVER SITES IN THE WESTERN FORESTED MOUNTAINS AGGREGATE ECOREGIONS

    EPA Science Inventory

    In the West, development of indicators of aquatic vertebrate assemblages condition in streams and rivers is challenged by low species richness (often < 3 species), by strong natural gradients (e.g., elevation), by human impact gradients that often co-vary with natural gradients, ...

  1. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China.

    PubMed

    Ouyang, Wei-Ying; Huang, Fu-Yi; Zhao, Yi; Li, Hu; Su, Jian-Qiang

    2015-07-01

    The rapid global urbanization and other extensive anthropogenic activities exacerbated the worldwide human health risks induced by antibiotic resistance genes (ARGs). Knowledge of the origins and dissemination of ARGs is essential for understanding modern resistome, while little information is known regarding the overall resistance levels in urban river. In this study, the abundance of multi-resistant bacteria (MRB) and ARGs was investigated using culture-based method and high-throughput qPCR in water samples collected from urban stream and source of Jiulongjiang River, China, respectively. The abundance of MRB (conferring resistance to three combinations of antibiotics and vancomycin) was significantly higher in urban samples. A total of 212 ARGs were detected among all the water samples, which encoded resistance to almost all major classes of antibiotics and encompassed major resistant mechanisms. The total abundance of ARGs in urban samples (ranging from 9.72 × 10(10) to 1.03 × 10(11) copies L(-1)) was over two orders of magnitude higher than that in pristine samples (7.18 × 10(8) copies L(-1)), accompanied with distinct ARGs structures, significantly higher diversity, and enrichment of ARGs. Significant correlations between the abundance of ARGs and mobile genetic elements (MGEs) were observed, implicating the potential of horizontal transfer of ARGs. High abundance and enrichment of diverse ARGs and MGEs detected in urban river provide evidence that anthropogenic activities are responsible for the emergence and dissemination of ARGs to the urban river and management options should be taken into account for minimizing the spread of ARGs.

  2. The Gulf Stream and Density of Fluids

    ERIC Educational Resources Information Center

    Landstrom, Erich

    2006-01-01

    A few kilometers from the shores of Palm Beach County, Florida, is the Gulf Stream current--a remarkable "river" within an ocean. The current's journey across the Atlantic Ocean connects southeast Florida and southwest Great Britain as it streams steadily north at speeds of 97 km a day; moving 100 times as much water as all the rivers on…

  3. 77 FR 7536 - Revisions to the California State Implementation Plan, Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... the California State Implementation Plan, Joaquin Valley Unified Air Pollution Control District AGENCY... the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portions of the California... U.S.C. 804(2). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  4. Environmental Factors and Internal Processes Contributing to Interrupted Rapid Decay of Hurricane Joaquin (2015)

    NASA Astrophysics Data System (ADS)

    Hendricks, E. A.; Elsberry, R. L.; Velden, C.; Creasey, R.; Jorgensen, A.; Jordan, M.

    2017-12-01

    Hurricane Joaquin (2015) was the most intense Atlantic hurricane with a non-tropical origin during the satellite era. In addition to its rapid intensification, Joaquin was noteworthy for the difficulty in forecasting its post-recurvature track to the northeast after having struck the Bahama Islands. Such a track typically leads to a decay as the hurricane moves poleward over colder water, and Joaquin had an extreme decay rate from 135 kt to 65 kt in only 30 h. The focus of this study is on the environmental and internal factors that interrupted this extreme decay at 1800 UTC 4 October, and then how Joaquin re-intensified to 75 kt and maintained that intensity for 30 hours. The real-time Statistical Hurricane Intensity Prediction System (SHIPS) database is used to calculate each six hours six environmental variables that Hendricks et al. (2010) had found contributed to intensity change. Only the deep-layer vertical wind shear (VWS) from SHIPS, and also from the Cooperative Institute for Meteorological Satellite Studies (CIMSS), had a well-defined relationship with both the interrupted rapid decay and the subsequent constant intensity period. A special dataset of Atmospheric Motion Vectors (AMVs) at 15-minute intervals prepared by CIMSS is then utilized to create a continuous VWS record that documents the large ( 15 m s-1) VWS throughout most of the rapid decay period, and then a rapid decrease in VWS to moderate ( 8 m s-1) values at and following the rapid decay period. Horizontal distributions of these CIMSS VWSs demonstrate that during this period Joaquin was located in a large gradient region between large VWSs to the north and near-zero VWSs to the south, which was favorable for sustaining Joaquin at hurricane intensity.

  5. Monitoring ice break-up on the Mackenzie River using MODIS data

    NASA Astrophysics Data System (ADS)

    Muhammad, P.; Duguay, C.; Kang, K.-K.

    2016-03-01

    The aim of this study was to develop an approach for estimating ice break-up dates on the Mackenzie River (MR) using more than a decade of MODIS Level 3 500 m snow products (MOD/MYD10A1), complemented with 250 m Level 1B radiance products (MOD/MYD02QKM) from the Terra and Aqua satellite platforms. The analysis showed break-up began on average between days of year (DOYs) 115 and 125 and ended between DOYs 145 and 155 over 13 ice seasons (2001-2013), resulting in an average melt duration of ca. 30-40 days. Thermal processes were more important in driving ice break-up south of the MR confluence with the Liard River, while dynamically driven break-up was more important north of the Liard. A comparison of the timing of ice disappearance with snow disappearance from surrounding land areas of the MR with MODIS Level 3 snow products showed varying relationships along the river. Ice-off and snow-off timing were in sync north of the MR-Liard River confluence and over sections of the MR before it enters the Mackenzie Delta, but ice disappeared much later than snow on land in regions where thermal ice break-up processes dominated. MODIS observations revealed that channel morphology is a more important control of ice break-up patterns than previously believed with ice runs on the MR strongly influenced by channel morphology (islands and bars, confluences and channel constriction). Ice velocity estimates from feature tracking were able to be made in 2008 and 2010 and yielded 3-4-day average ice velocities of 1.21 and 1.84 m s-1 respectively, which is in agreement with estimates from previous studies. These preliminary results confirm the utility of daily MODIS data for monitoring ice break-up processes along the Mackenzie River. The addition of optical and synthetic aperture radar data from recent and upcoming satellite missions (e.g. Sentinel-1/2/3 and RADARSAT Constellation) would improve the monitoring of ice break-up in narrower sections of the MR.

  6. The investigation of chemical quality of water in tidal rivers

    USGS Publications Warehouse

    Keighton, Walter B.

    1954-01-01

    This report has been prepared for the guidance of personnel of the Water Resources Division who are engaged in water-quality investigations of tidal rivers. The study of tidal rivers is beset with many complexities not present in the investigation of non-tidal rivers. The periodic rise and fall of the tide may result in a corresponding periodic change in salinity at a sampling location on the tidal river. When the fresh water discharge is low, saline water may intrude up-river, and any factor changing the relative elevations of the ocean and the mean river level has an effect on the extent of salt-water intrusion. Variations in water composition between samples taken at several locations up or down river, at different depths, or at several locations across the stream are likely to be more pronounced than for similar sets of samples from a non-tidal stream. The nature of these variations and factors responsible for them are discussed, and the need for consideration of them in planning a sampling routine is stressed. The nature and mechanism of ocean-water intrusion in tidal rivers is discussed and sampling procedures for its detection are described. lllustrative examples - mostly from the work of the United States Geological Survey or State agencies - show various methods for correlating and presenting data from quality-of-water surveys of tidal rivers. Each tidal river presents an individual problem which can best be understood from a study of the factors involved. To that end the report is supplemented by an annotated bibliography of selected publications in the field.

  7. Effects of landscape features on population genetic variation of a tropical stream fish, Stone lapping minnow, Garra cambodgiensis, in the upper Nan River drainage basin, northern Thailand.

    PubMed

    Jaisuk, Chaowalee; Senanan, Wansuk

    2018-01-01

    Spatial genetic variation of river-dwelling freshwater fishes is typically affected by the historical and contemporary river landscape as well as life-history traits. Tropical river and stream landscapes have endured extended geological change, shaping the existing pattern of genetic diversity, but were not directly affected by glaciation. Thus, spatial genetic variation of tropical fish populations should look very different from the pattern observed in temperate fish populations. These data are becoming important for designing appropriate management and conservation plans, as these aquatic systems are undergoing intense development and exploitation. This study evaluated the effects of landscape features on population genetic diversity of Garra cambodgiensis, a stream cyprinid , in eight tributary streams in the upper Nan River drainage basin ( n  = 30-100 individuals/location), Nan Province, Thailand. These populations are under intense fishing pressure from local communities. Based on 11 microsatellite loci, we detected moderate genetic diversity within eight population samples (average number of alleles per locus = 10.99 ± 3.00; allelic richness = 10.12 ± 2.44). Allelic richness within samples and stream order of the sampling location were negatively correlated ( P  < 0.05). We did not detect recent bottleneck events in these populations, but we did detect genetic divergence among populations (Global F ST = 0.022, P  < 0.01). The Bayesian clustering algorithms (TESS and STRUCTURE) suggested that four to five genetic clusters roughly coincide with sub-basins: (1) headwater streams/main stem of the Nan River, (2) a middle tributary, (3) a southeastern tributary and (4) a southwestern tributary. We observed positive correlation between geographic distance and linearized F ST ( P  < 0.05), and the genetic differentiation pattern can be moderately explained by the contemporary stream network (STREAMTREE analysis, R 2 = 0.75). The MEMGENE analysis

  8. Fish Assemblage Indicators for the National Rivers and Streams Assessment: Performance of model-based vs. traditionally constructed multimetric indices

    EPA Science Inventory

    The development of multimetric indices (MMIs) for use in assessing the ecological condition of rivers and streams has advanced in recent years with the use of various types of modeling approaches to factor out the influence of natural variability and improve the performance. Ass...

  9. Simulated effects of ground-water pumpage on stream-aquifer flow in the vicinity of federally protected species of freshwater mussels in the lower Apalachicola-Chattahoochee-Flint River basin (Subarea 4), southeastern Alabama, northwestern Florida, and southwestern Georgia

    USGS Publications Warehouse

    Albertson, Phillip N.; Torak, Lynn J.

    2002-01-01

    Simulation results indicate that ground-water withdrawal in the lower Apalachicola-Chattahoochee-Flint River basin during times of drought could reduce stream-aquifer flow and cause specific stream reaches to go dry. Of the 37 reaches that were studied, 8 reaches ranked highly sensitive to pumpage, 13 reaches ranked medium, and 16 reaches ranked low. Of the eight reaches that ranked high, seven contain at least one federally protected mussel species. Small tributary streams such as Gum, Jones, Muckalee, Spring, and Cooleewahee Creeks would go dry at lower pumping rates than needed to dry up larger streams. Other streams that were ranked high may go dry depending on the amount of upstream flow entering the reach; this condition is indicated for some reaches on Spring Creek. A dry stream condition is of particular concern to water and wildlife managers because adequate streamflow is essential for mussel survival.

  10. 77 FR 5709 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the... pollution control, Incorporation by reference, Intergovernmental relations, Nitrogen dioxide, Ozone...

  11. The ecology and biogeochemistry of stream biofilms.

    PubMed

    Battin, Tom J; Besemer, Katharina; Bengtsson, Mia M; Romani, Anna M; Packmann, Aaron I

    2016-04-01

    Streams and rivers form dense networks, shape the Earth's surface and, in their sediments, provide an immensely large surface area for microbial growth. Biofilms dominate microbial life in streams and rivers, drive crucial ecosystem processes and contribute substantially to global biogeochemical fluxes. In turn, water flow and related deliveries of nutrients and organic matter to biofilms constitute major constraints on microbial life. In this Review, we describe the ecology and biogeochemistry of stream biofilms and highlight the influence of physical and ecological processes on their structure and function. Recent advances in the study of biofilm ecology may pave the way towards a mechanistic understanding of the effects of climate and environmental change on stream biofilms and the biogeochemistry of stream ecosystems.

  12. Use of Sediment Core Records to Understand Anthropogenic Impacts on Carbon Delivery to the Sacramento-San Joaquin River Delta, CA

    NASA Astrophysics Data System (ADS)

    Canuel, E. A.; Lerberg, E.; Kuehl, S. S.; Dickhut, R. M.; Bianchi, T. S.; Wakeham, S. G.; Smith, R.

    2008-12-01

    Anthropogenic activities, including climate change, will influence connections between the hydrologic and carbon cycles as well as the exchange of materials between terrestrial and aquatic systems. Altered precipitation will influence the delivery of water, suspended sediment and carbon, while construction of dams and reservoirs and changes in land use alter the flow paths and transport of sediment and associated materials to downstream ecosystems. We used the Sacramento-San Joaquin River Delta CA (Delta, hereafter) as a model system for understanding how human activities influenced the delivery and composition of organic carbon (OC) over the past 50-60 years. Sediment cores from the Delta were used to examine human impacts on carbon sources, amounts, and ages. Sediment and carbon accumulation rates were four to eight-fold higher pre-1972 relative to post-1972, coincident with completion of several large reservoirs and increased agriculture and urbanization in the Delta watershed. Several classes of biomarkers demonstrate that terrigenous OC has decreased since the 1940s. Radiocarbon isotopes of TOC and fatty acids in surface sediments indicate that much of the OC is highly reworked (900-1400 years BP) and vascular plant biomarkers have the oldest ages suggesting erosion of soils. Together, these data suggest that human activities have altered the amount, sources, and ages of carbon accumulating in the Delta. Projected increases in aridity and changes in the timing and amounts of freshwater delivery associated with anthropogenic climate change are likely to exacerbate these modifications to the delivery of carbon and sediment.

  13. River banks and channel axis curvature: Effects on the longitudinal dispersion in alluvial rivers

    NASA Astrophysics Data System (ADS)

    Lanzoni, Stefano; Ferdousi, Amena; Tambroni, Nicoletta

    2018-03-01

    The fate and transport of soluble contaminants released in natural streams are strongly dependent on the spatial variations of the flow field and of the bed topography. These variations are essentially related to the presence of the channel banks and to the planform configuration of the channel. Large velocity gradients arise near to the channel banks, where the flow depth decreases to zero. Moreover, single thread alluvial rivers are seldom straight, and usually exhibit meandering planforms and a bed topography that deviates from the plane configuration. Channel axis curvature and movable bed deformations drive secondary helical currents which enhance both cross sectional velocity gradients and transverse mixing, thus crucially influencing longitudinal dispersion. The present contribution sets up a rational framework which, assuming mild sloping banks and taking advantage of the weakly meandering character often exhibited by natural streams, leads to an analytical estimate of the contribution to longitudinal dispersion associated with spatial non-uniformities of the flow field. The resulting relationship stems from a physics-based modeling of the flow in natural rivers, and expresses the bend averaged longitudinal dispersion coefficient as a function of the relevant hydraulic and morphologic parameters. The treatment of the problem is river specific, since it relies on an explicit spatial description, although linearized, of the flow field that establishes in the investigated river. Comparison with field data available from tracer tests supports the robustness of the proposed framework, given also the complexity of the processes that affect dispersion dynamics in real streams.

  14. 76 FR 70886 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the... CFR Part 52 Environmental protection, Air pollution control, Incorporation by reference...

  15. 76 FR 33181 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approve a revision to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of..., Air pollution control, Intergovernmental relations, Ozone, Reporting and recordkeeping requirements...

  16. 76 FR 5276 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the... protection, Air pollution control, Incorporation by reference, Intergovernmental relations, Nitrogen dioxide...

  17. Erosion Characteristics and Horizontal Variability for Small Erosion Depths in the Sacramento - San Joaquin River Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Schoellhamer, D. H.; Manning, A. J.; Work, P. A.

    2015-12-01

    Cohesive sediment in the Sacramento-San Joaquin River Delta affects pelagic fish habitat, contaminant transport, and marsh accretion. Observations of suspended-sediment concentration in the delta indicate that about 0.05 to 0.20 kg/m2 are eroded from the bed during a tidal cycle. If erosion is horizontally uniform, the erosion depth is about 30 to 150 microns, the typical range in diameter of suspended flocs. Application of an erosion microcosm produces similarly small erosion depths. In addition, core erodibility in the microcosm calculated with a horizontally homogeneous model increases with depth, contrary to expectations for a consolidating bed, possibly because the eroding surface area increases as applied shear stress increases. Thus, field observations and microcosm experiments, combined with visual observation of horizontally varying biota and texture at the surface of sediment cores, indicate that a conceptual model of erosion that includes horizontally varying properties may be more appropriate than assuming horizontally homogeneous erosive properties. To test this hypothesis, we collected five cores and measured the horizontal variability of shear strength within each core in the top 5.08 cm with a shear vane. Small tubes built by a freshwater worm and macroalgae were observed on the surface of all cores. The shear vane was inserted into the sediment until the top of the vane was at the top of the sediment, torque was applied to the vane until the sediment failed and the vane rotated, and the corresponding dial reading in Nm was recorded. The dial reading was assumed to be proportional to the surface strength. The horizontal standard deviation of the critical shear stress was about 30% of the mean. Results of the shear vane test provide empirical evidence that surface strength of the bed varies horizontally. A numerical simulation of erosion with an areally heterogeneous bed reproduced erosion characteristics observed in the microcosm.

  18. Summary of and factors affecting pesticide concentrations in streams and shallow wells of the lower Susquehanna River basin, Pennsylvania and Maryland, 1993-95

    USGS Publications Warehouse

    Hainly, Robert A.; Zimmerman, Tammy M.; Loper, Connie A.; Lindsey, Bruce D.

    2001-01-01

    This report presents the detection frequency of 83 analyzed pesticides, describes the concentrations of those pesticides measured in water from streams and shallow wells, and presents conceptual models of the major factors affecting seasonal and areal patterns of pesticide concentrations in water from streams and shallow wells in the Lower Susquehanna River Basin. Seasonal and areal patterns of pesticide concentrations were observed in 577 samples and nearly 40,000 pesticide analyses collected from 155 stream sites and 169 shallow wells from 1993 to 1995. For this study, shallow wells were defined as those generally less than 200 feet deep.The most commonly detected pesticides were agricultural herbicides?atrazine, metolachlor, simazine, prometon, alachlor, and cyanazine. Atrazine and metolachlor are the two most-used agricultural pesticides in the Lower Susquehanna River Basin. Atrazine was detected in 92 percent of all the samples and in 98 percent of the stream samples. Metolachlor was detected in 83 percent of all the samples and in 95 percent of the stream samples. Nearly half of all the analyzed pesticides were not detected in any sample. Of the 45 pesticides that were detected at least once, the median concentrations of 39 of the pesticides were less than the detection limit for the individual compounds, indicating that for at least 50 percent of the samples collected, those pesticides were not detected. Only 10 (less than 0.025 percent) of the measured concentrations exceeded any established drinking-water standards; 25 concentrations exceeded 2 mg/L (micrograms per liter) and 55 concentrations exceeded 1 mg/L. None of the elevated concentrations were measured in samples collected from streams that are used for public drinking-water supplies, and 8 of the 10 were measured in storm-affected samples.The timing and rate of agricultural pesticide applications affect the seasonal and areal concentration patterns of atrazine, simazine, chlorpyrifos, and diazinon

  19. Yazoo River Basin (Lower Mississippi River) Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Cheng, A.; Davidson, G.; Altinakar, M.; Holt, R.

    2004-12-01

    The proposed Yazoo River Basin Hydrologic Observatory consists of the 34,000 square km Yazoo River watershed in northwestern Mississippi and a 320 km segment of the Mississippi River separated from the watershed by a manmade levee. Discharge from the basin flows from the Yazoo River into the Mississippi River north of Vicksburg, MS. Major streams within the basin include the Yazoo, Tallahatchie, Yalobusha, Coldwater, Yocona, and Big Sunflower Rivers. Four large flood control reservoirs (Arkabutla, Enid, Sardis, and Grenada) and two national forests (Delta and Holly Springs) are also located within the basin. The watershed is divided between upland forested hills and intensively cultivated lowlands. The lowland area, locally known as the "Delta", lies on the ancestral floodplain of the Mississippi River. Flooding by the Mississippi River was once a common event, but is now limited by the levee system. Abundant wetlands occupy abandoned stream channels throughout the Delta. The Yazoo River Basin has many unique features that make it an attractive site for an Hydrologic Observatory. Example features and issues of scientific interest include: 1) Extensive system of levees which have altered recharge to the regional aquifer, shifted population centers, and created backwater flooding areas. 2) Abundant wetlands with a century-long history of response to agricultural sediment and chemical fluxes. 3) Erosion of upland streams, and stream sediment loads that are the highest in the nation. 4) Groundwater mining in spite of abundant precipitation due to a regional surface clay layer that limits infiltration. 5) A history of agricultural Best Management Practices enabling evaluation of the effectiveness of such measures. 6) Large scale catfish farming with heavy reliance on groundwater. 7) Near enough to the Gulf coast to be impacted by hurricane events. 8) Already existing network of monitoring stations for stream flow, sediment-load, and weather, including complete coverage

  20. 75 FR 10690 - Revisions to the California State Implementation Plan, San Joaquin Valley Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... the California State Implementation Plan, San Joaquin Valley Air Pollution Control District AGENCY... the San Joaquin Valley Air Pollution Control District (SJVAPCD) portion of the California State...)(2)). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  1. 76 FR 37044 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of... Glass Manufacturing'', US EPA, June 1994. 7. ``Integrated Pollution Prevention and Control (IPPC...

  2. 77 FR 66429 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of... 1994. 11. ``Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available...

  3. 76 FR 40660 - Revisions to the California State Implementation Plan, San Joaquin Valley Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... the California State Implementation Plan, San Joaquin Valley Air Pollution Control District (SJVUAPCD... approve revisions to the San Joaquin Valley Air Pollution Control District (SJVUAPCD) portion of the....0 for the following terms: Air Pollution Control Officer, Board, Environmental Protection Agency...

  4. 77 FR 24883 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of... of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Intergovernmental...

  5. 76 FR 52623 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of... Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Intergovernmental relations...

  6. 76 FR 41745 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approval and limited disapproval of revisions to the San Joaquin Valley Unified Air Pollution Control... Valley Unified Air Pollution Control District (SJVUAPCD) Rule 4682, Polystyrene, Polyethylene, and...

  7. 76 FR 56706 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of... of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Intergovernmental...

  8. 77 FR 35329 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of... of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Intergovernmental...

  9. Local and Long-Distance Effects of Land Use Change on Nutrient Levels in Streams and Rivers of the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Alexander, R. B.; Schwarz, G. E.

    2003-12-01

    Determining the effects of land use change (e.g. urbanization, deforestation) on water quality at large spatial scales has been difficult because water quality measurements in large rivers with heterogeneous basins show the integrated effects of multiple factors. Moreover, the observed effects of land use changes on water quality in small homogeneous stream basins may not be indicative of downstream effects (including effects on such ecologically relevant characteristics as nutrient levels and elemental ratios) because of loss processes occurring during downstream transport in river channels. In this study we used the USGS SPARROW (Spatially-Referenced Regression on Watersheds) models of total nitrogen (TN) and total phosphorus (TP) in streams and rivers of the conterminous US to examine the effects of various aspects of land use change on nutrient concentrations and flux from the pre-development era to the present. The models were calibrated with data from 370 long-term monitoring stations representing a wide range of basin sizes, land use/cover classes, climates, and physiographies. The non-linear formulation for each model includes 20+ statistically estimated parameters relating to land use/cover characteristics and other environmental variables such as temperature, soil conditions, hill slope, and the hydraulic characteristics of 2200 large lakes and reservoirs. Model predictions are available for 62,000 river/stream channel nodes. Model predictions of pre-development water quality compare favorably with nutrient data from 63 undeveloped (reference) sites. Error statistics are available for predictions at all nodes. Model simulations were chosen to compare the effects of selected aspects of land use change on nutrient levels at large and small basin scales, lacustrine and coastal receiving waters, and among the major US geographic regions.

  10. Field testing and adaptation of a methodology to measure "in-stream" values in the Tongue River, northern Great Plains (NGP) region

    USGS Publications Warehouse

    Bovee, Ken D.; Gore, James A.; Silverman, Arnold J.

    1978-01-01

    A comprehensive, multi-component in-stream flow methodology was developed and field tested in the Tongue River in southeastern Montana. The methodology incorporates a sensitivity for the flow requirements of a wide variety of in-stream uses, and the flexibility to adjust flows to accommodate seasonal and sub-seasonal changes in the flow requirements for different areas. In addition, the methodology provides the means to accurately determine the magnitude of the water requirement for each in-stream use. The methodology can be a powerful water management tool in that it provides the flexibility and accuracy necessary in water use negotiations and evaluation of trade-offs. In contrast to most traditional methodologies, in-stream flow requirements were determined by additive independent methodologies developed for: 1) fisheries, including spawning, rearing, and food production; 2) sediment transport; 3) the mitigation of adverse impacts of ice; and 4) evapotranspiration losses. Since each flow requirement varied in important throughout the year, the consideration of a single in-stream use as a basis for a flow recommendation is inadequate. The study shows that the base flow requirement for spawning shovelnose sturgeon was 13.0 m3/sec. During the same period of the year, the flow required to initiate the scour of sediment from pools is 18.0 m3/sec, with increased scour efficiency occurring at flows between 20.0 and 25.0 m3/sec. An over-winter flow of 2.83 m3/sec. would result in the loss of approximately 80% of the riffle areas to encroachment by surface ice. At the base flow for insect production, approximately 60% of the riffle area is lost to ice. Serious damage to the channel could be incurred from ice jams during the spring break-up period. A flow of 12.0 m3/sec. is recommended to alleviate this problem. Extensive ice jams would be expected at the base rearing and food production levels. The base rearing flow may be profoundly influenced by the loss of streamflow

  11. Radiotelemetry to estimate stream life of adult chum salmon in the McNeil River, Alaska

    USGS Publications Warehouse

    Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.

    2011-01-01

    Estimating salmon escapement is one of the fundamental steps in managing salmon populations. The area-under-the-curve (AUC) method is commonly used to convert periodic aerial survey counts into annual salmon escapement indices. The AUC requires obtaining accurate estimates of stream life (SL) for target species. Traditional methods for estimating SL (e.g., mark–recapture) are not feasible for many populations. Our objective in this study was to determine the average SL of chum salmon Oncorhynchus keta in the McNeil River, Alaska, through radiotelemetry. During the 2005 and 2006 runs, 155 chum salmon were fitted with mortality-indicating radio tags as they entered the McNeil River and tracked until they died. A combination of remote data loggers, aerial surveys, and foot surveys were used to determine the location of fish and provide an estimate of time of death. Higher predation resulted in tagged fish below McNeil Falls having a significantly shorter SL (12.6 d) than those above (21.9 d). The streamwide average SL (13.8 d) for chum salmon at the McNeil River was lower than the regionwide value (17.5 d) previously used to generate AUC indices of chum salmon escapement for the McNeil River. We conclude that radiotelemetry is an effective tool for estimating SL in rivers not well suited to other methods.

  12. Evaluation of stream flow effects on smolt survival in the Yakima River Basin, Washington, 2012-2014

    USGS Publications Warehouse

    Courter, Ian; Garrison, Tommy; Kock, Tobias J.; Perry, Russell W.

    2015-01-01

    The influence of stream flow on survival of emigrating juvenile (smolts) Pacific salmon Oncorhynchus spp. and steelhead trout O. mykiss is of key management interest. However, few studies have quantified flow effects on smolt migration survival, and available information does not indicate a consistent flow-survival relationship within the typical range of flows under management control. It is hypothesized that smolt migration and dam passage survival are positively correlated with stream flow because higher flows increase migration rates, potentially reducing exposure to predation, and reduce delays in reservoirs. However, available empirical data are somewhat equivocal concerning the influence of flow on smolt survival and the underlying mechanisms driving this relationship. Stream flow effects on survival of emigrating anadromous salmonids in the Yakima Basin have concerned water users and fisheries managers for over 20 years, and previous studies do not provide sufficient information at the resolution necessary to inform water operations, which typically occur on a small spatiotemporal scale. Using a series of controlled flow releases from 2012-2014, combined with radio telemetry, we quantified the relationship between flow and smolt survival from Roza Dam 208 km downstream to the Yakima River mouth, as well as for specific routes of passage at Roza Dam. A novel multistate mark-recapture model accounted for weekly variation in flow conditions experienced by radio-tagged fish. Groups of fish were captured and radio-tagged at Roza Dam and released at two locations, upstream at the Big Pines Campground (river kilometer [rkm] 211) and downstream in the Roza Dam tailrace (rkm 208). A total of 904 hatchery-origin yearling Chinook salmon O. tshawytscha were captured in the Roza Dam fish bypass, radio-tagged and released upstream of Roza Dam. Two hundred thirty seven fish were released in the tailrace of Roza Dam. Fish released in the tailrace of Roza Dam were tagged

  13. The science and practice of river restoration

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen; Lane, Stuart N.; Wilcox, Andrew C.

    2015-08-01

    River restoration is one of the most prominent areas of applied water-resources science. From an initial focus on enhancing fish habitat or river appearance, primarily through structural modification of channel form, restoration has expanded to incorporate a wide variety of management activities designed to enhance river process and form. Restoration is conducted on headwater streams, large lowland rivers, and entire river networks in urban, agricultural, and less intensively human-altered environments. We critically examine how contemporary practitioners approach river restoration and challenges for implementing restoration, which include clearly identified objectives, holistic understanding of rivers as ecosystems, and the role of restoration as a social process. We also examine challenges for scientific understanding in river restoration. These include: how physical complexity supports biogeochemical function, stream metabolism, and stream ecosystem productivity; characterizing response curves of different river components; understanding sediment dynamics; and increasing appreciation of the importance of incorporating climate change considerations and resiliency into restoration planning. Finally, we examine changes in river restoration within the past decade, such as increasing use of stream mitigation banking; development of new tools and technologies; different types of process-based restoration; growing recognition of the importance of biological-physical feedbacks in rivers; increasing expectations of water quality improvements from restoration; and more effective communication between practitioners and river scientists.

  14. 76 FR 69135 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the... of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Incorporation by...

  15. 76 FR 76046 - Interim Final Determination To Defer Sanctions, San Joaquin Valley Unified Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... Determination To Defer Sanctions, San Joaquin Valley Unified Air Pollution Control District AGENCY... Valley Unified Air Pollution Control District (SJVUAPCD or District) portion of the California State...), we finalized a limited approval and limited disapproval of San Joaquin Valley Unified Air Pollution...

  16. 77 FR 64427 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the..., Gas, and Geothermal Resources confirmed that in the Ventura County Air Pollution Control District...

  17. 76 FR 16696 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVAPCD) portion of the...)(2)). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  18. 75 FR 24408 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVAPCD) portion of the...)(2)). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  19. 75 FR 1715 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVAPCD) portion of the...)(2)). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  20. 76 FR 68106 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the...)(2)). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  1. 76 FR 45212 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... proposing to approve San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) Rule 3170... (CAA or Act). EPA is also proposing to approve SJVUAPCD's fee-equivalent program, which includes Rule...

  2. Seasonal nutrient dynamics in a chalk stream: the River Frome, Dorset, UK.

    PubMed

    Bowes, M J; Leach, D V; House, W A

    2005-01-05

    Chalk streams provide unique, environmentally important habitats, but are particularly susceptible to human activities, such as water abstraction, fish farming and intensive agricultural activity on their fertile flood-meadows, resulting in increased nutrient concentrations. Weekly phosphorus, nitrate, dissolved silicon, chloride and flow measurements were made at nine sites along a 32 km stretch of the River Frome and its tributaries, over a 15 month period. The stretch was divided into two sections (termed the middle and lower reach) and mass balances were calculated for each determinand by totalling the inputs from upstream, tributaries, sewage treatment works and an estimate of groundwater input, and subtracting this from the load exported from each reach. Phosphorus and nitrate were retained within the river channel during the summer months, due to bioaccumulation into river biota and adsorption of phosphorus to bed sediments. During the autumn to spring periods, there was a net export, attributed to increased diffuse inputs from the catchment during storms, decomposition of channel biomass and remobilisation of phosphorus from the bed sediment. This seasonality of retention and remobilisation was higher in the lower reach than the middle reach, which was attributed to downstream changes in land use and fine sediment availability. Silicon showed much less seasonality, but did have periods of rapid retention in spring, due to diatom uptake within the river channel, and a subsequent release from the bed sediments during storm events. Chloride did not produce a seasonal pattern, indicating that the observed phosphorus and nitrate seasonality was a product of annual variation in diffuse inputs and internal riverine processes, rather than an artefact of sampling, flow gauging and analytical errors.

  3. Snow Cover, Snowmelt Timing and Stream Power in the Wind River Range, Wyoming

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather, including earlier snowmelt, has been documented in the western United States over at least the last 50 years. Because the majority (is greater than 70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for the management of streamflow. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work, such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud-gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period as a whole. The extent of snow-cover (percent of basin covered) derived from the lowest elevation zone (2500-3000 m) of the WRR, using MODIS CGF snow-cover maps, is strongly correlated with maximum monthly discharge on 30 April, where Spearman's Rank correlation, rs,=0.89 for the decade of the 2000s. We also investigated stream power for Bull Lake Creek above Bull Lake; and found a trend (significant at the 90% confidence level) toward reduced stream power from 1970 to 2009. Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature

  4. Regional skew for California, and flood frequency for selected sites in the Sacramento-San Joaquin River Basin, based on data through water year 2006

    USGS Publications Warehouse

    Parrett, Charles; Veilleux, Andrea; Stedinger, J.R.; Barth, N.A.; Knifong, Donna L.; Ferris, J.C.

    2011-01-01

    Improved flood-frequency information is important throughout California in general and in the Sacramento-San Joaquin River Basin in particular, because of an extensive network of flood-control levees and the risk of catastrophic flooding. A key first step in updating flood-frequency information is determining regional skew. A Bayesian generalized least squares (GLS) regression method was used to derive a regional-skew model based on annual peak-discharge data for 158 long-term (30 or more years of record) stations throughout most of California. The desert areas in southeastern California had too few long-term stations to reliably determine regional skew for that hydrologically distinct region; therefore, the desert areas were excluded from the regional skew analysis for California. Of the 158 long-term stations used to determine regional skew, 145 have minimally regulated annual-peak discharges, and 13 stations are dam sites for which unregulated peak discharges were estimated from unregulated daily maximum discharge data furnished by the U.S. Army Corp of Engineers. Station skew was determined by using an expected moments algorithm (EMA) program for fitting the Pearson Type 3 flood-frequency distribution to the logarithms of annual peak-discharge data. The Bayesian GLS regression method previously developed was modified because of the large cross correlations among concurrent recorded peak discharges in California and the use of censored data and historical flood information with the new expected moments algorithm. In particular, to properly account for these cross-correlation problems and develop a suitable regression model and regression diagnostics, a combination of Bayesian weighted least squares and generalized least squares regression was adopted. This new methodology identified a nonlinear function relating regional skew to mean basin elevation. The regional skew values ranged from -0.62 for a mean basin elevation of zero to 0.61 for a mean basin elevation

  5. Managing salinity in Upper Colorado River Basin streams: Selecting catchments for sediment control efforts using watershed characteristics and random forests models

    USGS Publications Warehouse

    Tillman, Fred; Anning, David W.; Heilman, Julian A.; Buto, Susan G.; Miller, Matthew P.

    2018-01-01

    Elevated concentrations of dissolved-solids (salinity) including calcium, sodium, sulfate, and chloride, among others, in the Colorado River cause substantial problems for its water users. Previous efforts to reduce dissolved solids in upper Colorado River basin (UCRB) streams often focused on reducing suspended-sediment transport to streams, but few studies have investigated the relationship between suspended sediment and salinity, or evaluated which watershed characteristics might be associated with this relationship. Are there catchment properties that may help in identifying areas where control of suspended sediment will also reduce salinity transport to streams? A random forests classification analysis was performed on topographic, climate, land cover, geology, rock chemistry, soil, and hydrologic information in 163 UCRB catchments. Two random forests models were developed in this study: one for exploring stream and catchment characteristics associated with stream sites where dissolved solids increase with increasing suspended-sediment concentration, and the other for predicting where these sites are located in unmonitored reaches. Results of variable importance from the exploratory random forests models indicate that no simple source, geochemical process, or transport mechanism can easily explain the relationship between dissolved solids and suspended sediment concentrations at UCRB monitoring sites. Among the most important watershed characteristics in both models were measures of soil hydraulic conductivity, soil erodibility, minimum catchment elevation, catchment area, and the silt component of soil in the catchment. Predictions at key locations in the basin were combined with observations from selected monitoring sites, and presented in map-form to give a complete understanding of where catchment sediment control practices would also benefit control of dissolved solids in streams.

  6. Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the Savannah River Site, Georgia and South Carolina

    USGS Publications Warehouse

    Clarke, John S.; West, Christopher T.

    1998-01-01

    Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the U.S. Department of Energy Savannah River Site, Georgia and South Carolina, were evaluated as part of a cooperative study between the U.S. Geological Survey, U.S. Department of Energy, and Georgia Department of Natural Resources. As part of this evaluation: (1) ground-water-level fluctuations and trends in three aquifer systems in sediment of Cretaceous and Tertiary age were described and related to patterns of ground-water use and precipitations; (2) a conceptual model ofthe stream-aquifer flow system was developed; (3) the predevelopment ground-water flow system, configuration of potentiometric surfaces, trans-river flow, and recharge-discharge relations were described; and (4) stream-aquifer relations and the influence of river incision on ground-water flow and stream-aquifer relations were described. The 5,147-square mile study area is located in the northern part of the Coastal Plain physiographic province of Georgia and South Carolina. Coastal Plain sediments comprise three aquifer systems consisting of seven aquifers that are separated hydraulically by confining units. The aquifer systems are, in descending order: (1) the Floridan aquifer system?consisting of the Upper Three Runs and Gordon aquifers in sediments of Eocene age; (2) the Dublin aquifer system?consisting of the Millers Pond, upper Dublin, and lower Dublin aquifers in sediments of Paleocene-Late Cretaceous age; and (3) the Midville aquifer system?consisting of the upper Midville and lower Midville aquifers in sediments of Late Cretaceous age. The Upper Three Runs aquifer is the shallowest aquifer and is unconfined to semi-confined throughout most of the study area. Ground-water levels in the Upper Three Runs aquifer respond to a local flow system and are affected mostly by topography and climate. Ground-water flow in the deeper, Gordon aquifer and Dublin and Midville aquifer systems is

  7. Determination of bench-mark elevations at Bethel Island and vicinity, Contra Costa and San Joaquin counties, California, 1987

    USGS Publications Warehouse

    Blodgett, J.C.; Ikehara, M.E.; McCaffrey, William F.

    1988-01-01

    Elevations of 49 bench marks in the southwestern part of the Sacramento-San Joaquin River Delta were determined during October and November 1987. A total of 58 miles of level lines were run in the vicinity of Bethel Island and the community of Discovery Bay. The datum of these surveys is based on a National Geodetic Survey bench mark T934 situated on bedrock 10.5 mi east of Mount Diablo and near Marsh Creek Reservoir. The accuracy of these levels, based on National Geodetic Survey standards, was of first, second, and third order, depending on the various segments surveyed. Several bench marks were noted as possibly being stable, but most show evidence of instability. (USGS)

  8. 76 FR 56134 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of... preempt Tribal law. List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  9. 76 FR 53640 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-29

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the... section 307(b)(2)). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  10. 76 FR 56132 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of... preempt Tribal law. List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  11. 77 FR 214 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-04

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approval of revisions to the San Joaquin Valley Air Pollution Control District (SJVUAPCD) portion of the... used by the California Air Resources Board and air districts for evaluating air pollution control...

  12. 75 FR 57862 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the... section 307(b)(2)). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  13. 77 FR 58312 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control... section 307(b)(2)). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  14. 75 FR 3996 - Revisions to the California State Implementation Plan, San Joaquin Valley Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... the California State Implementation Plan, San Joaquin Valley Air Pollution Control District AGENCY... limited disapproval of revisions to the San Joaquin Valley Air Pollution Control District (SJVAPCD or... Valley Air Pollution Control District; letter dated and received August 17, 2009. After the close of the...

  15. Data on dissolved pesticides and volatile organic compounds in surface and ground waters in the San Joaquin-Tulare basins, California, water years 1992-1995

    USGS Publications Warehouse

    Kinsey, Willie B.; Johnson, Mark V.; Gronberg, JoAnn M.

    2005-01-01

    This report contains pesticide, volatile organic compound, major ion, nutrient, tritium, stable isotope, organic carbon, and trace-metal data collected from 149 ground-water wells, and pesticide data collected from 39 surface-water stream sites in the San Joaquin Valley of California. Included with the ground-water data are field measurements of pH, specific conductance, alkalinity, temperature, and dissolved oxygen. This report describes data collection procedures, analytical methods, quality assurance, and quality controls used by the National Water-Quality Assessment Program to ensure data reliability. Data contained in this report were collected during a four year period by the San Joaquin?Tulare Basins Study Unit of the United States Geological Survey's National Water-Quality Assessment Program. Surface-water-quality data collection began in April 1992, with sampling done three times a week at three sites as part of a pilot study conducted to provide background information for the surface-water-study design. Monthly samples were collected at 10 sites for major ions and nutrients from January 1993 to March 1995. Additional samples were collected at four of these sites, from January to December 1993, to study spatial and temporal variability in dissolved pesticide concentrations. Samples for several synoptic studies were collected from 1993 to 1995. Ground-water-quality data collection was restricted to the eastern alluvial fans subarea of the San Joaquin Valley. Data collection began in 1993 with the sampling of 21 wells in vineyard land-use settings. In 1994, 29 wells were sampled in almond land-use settings and 9 in vineyard land-use settings; an additional 11 wells were sampled along a flow path in the eastern Fresno County vineyard land-use area. Among the 79 wells sampled in 1995, 30 wells were in the corn, alfalfa, and vegetable land-use setting, and 1 well was in the vineyard land-use setting; an additional 20 were flow-path wells. Also sampled in 1995

  16. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Clearwater, Salmon, Weiser, and Payette River Basins, 1934-1942, Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    This document contains summary reports of stream habitat surveys, conducted in Idaho, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942.. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. The Idaho portion of the survey consisted of extensivemore » surveys of the Clearwater, Salmon, Weiser, and Payette River Subbasins. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database

  17. The effects of run-of-river hydroelectric power schemes on invertebrate community composition in temperate streams and rivers.

    PubMed

    Bilotta, Gary S; Burnside, Niall G; Turley, Matthew D; Gray, Jeremy C; Orr, Harriet G

    2017-01-01

    Run-of-river (ROR) hydroelectric power (HEP) schemes are often presumed to be less ecologically damaging than large-scale storage HEP schemes. However, there is currently limited scientific evidence on their ecological impact. The aim of this article is to investigate the effects of ROR HEP schemes on communities of invertebrates in temperate streams and rivers, using a multi-site Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 22 systematically-selected ROR HEP schemes and 22 systematically-selected paired control sites. Five widely-used family-level invertebrate metrics (richness, evenness, LIFE, E-PSI, WHPT) were analysed using a linear mixed effects model. The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the evenness of the invertebrate community. However, no statistically significant effects were detected on the four other metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future invertebrate community impact studies.

  18. The effects of run-of-river hydroelectric power schemes on invertebrate community composition in temperate streams and rivers

    PubMed Central

    2017-01-01

    Run-of-river (ROR) hydroelectric power (HEP) schemes are often presumed to be less ecologically damaging than large-scale storage HEP schemes. However, there is currently limited scientific evidence on their ecological impact. The aim of this article is to investigate the effects of ROR HEP schemes on communities of invertebrates in temperate streams and rivers, using a multi-site Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 22 systematically-selected ROR HEP schemes and 22 systematically-selected paired control sites. Five widely-used family-level invertebrate metrics (richness, evenness, LIFE, E-PSI, WHPT) were analysed using a linear mixed effects model. The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the evenness of the invertebrate community. However, no statistically significant effects were detected on the four other metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future invertebrate community impact studies. PMID:28158282

  19. Numerical modelling of fine-grained sediments remobilization in heavily polluted streams. Case study: Elbe and Bílina River, Czech Republic.

    NASA Astrophysics Data System (ADS)

    Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar

    2014-05-01

    The study aimed to estimate remobilization of channel and riparian cohesive sediment of streams, heavily polluted by industrial emmissions. There were analyzed four stream stretches in Czech Republic: (1) Elbe River from Usti nad Labem to the boundary with Germany; (2) Bílina river, draining industrial and mining areas of Northwest Bohemia; (3) Midstream reach of Czech Elbe by the confluence with Vltava river, affected by chemical industry and (4) fluvial lakes in the riparian zone of Czech Elbe river downstream of Pardubice burdened by old loads from heavy chemical industry. Sediments of clay and silt character bedded in the riparian water-courses are regarded heavily polluted by wide range of toxic matters. In the sediment samples, there were found elevated concentrations of persistent organic matters (DDT, PCB, HCH, Fluoranthen), Heavy metals (Hg, As, Cd), and others. The pollution in sediment is resulting from the unregulated heavy industrial production in the area in the second half of 20th century during the socialistic regime in Czech republic that still play an important role in Elbe river water quality. The main goal of the study was to evaluate the risk of remobilization of polluted sediments by the assessment of discharge (values and return periods), initiating remobilization of sediment from the river bed. The modeling stems on basic assumption, that once the sediment is elevated from the bed, it could be transported far downstream in the form of suspended load. The evaluation was made on the basis of numerical hydrodynamic calculation coupled with sediment transport model. The MIKE by DHI modelling software with different levels of schematization was used according the flow conditions and available data sources. For 50 km stretch of Bílina river the 1D schematization (MIKE 11) was selected as the discharges driving remobilization were expected within the extent of channel capacity due to the stream regulation. For the lower and middle course of Elbe

  20. Keeping it clean: Creating and maintaining high quality fish data for the U.S. EPA National Rivers and Streams Assessment

    EPA Science Inventory

    One primary biological indicator of condition used in the National Rivers and Streams Assessment (NRSA) is the fish assemblage. Data for the 2008-2009 assessment were collected on field forms from over 2100 sites. After field forms were scanned into the NRSA database, we develope...

  1. 76 FR 45199 - Interim Final Determination To Defer Sanctions, San Joaquin Valley Unified Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... Determination To Defer Sanctions, San Joaquin Valley Unified Air Pollution Control District, CA AGENCY... limited approval and limited disapproval of revisions to the San Joaquin Valley Unified Air Pollution... section 307(b)(2)). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  2. An expanded role for river networks

    Treesearch

    Jonathan P. Benstead; David S. Leigh

    2012-01-01

    Estimates of stream and river area have relied on observations at coarse resolution. Consideration of the smallest and most dynamic streams could reveal a greater role for river networks in global biogeochemical cycling than previously thought.

  3. Application of acoustic velocity meters for gaging discharge of three low-velocity tidal streams in the St. Johns River basin, northeast Florida

    USGS Publications Warehouse

    Sloat, J.V.; Gain, W.S.

    1995-01-01

    Index-velocity data collected with acoustic velocity meters, stage data, and cross-sectional area data were used to calculate discharge at three low-velocity, tidal streamflow stations in north-east Florida. Discharge at three streamflow stations was computed as the product of the channel cross-sectional area and the mean velocity as determined from an index velocity measured in the stream using an acoustic velocity meter. The tidal streamlflow stations used in the study were: Six Mile Creek near Picolata, Fla.; Dunns Creek near Satsuma, Fla.; and the St. Johns River at Buffalo Bluff. Cross-sectional areas at the measurement sections ranged from about 3,000 square feet at Six Mile Creek to about 18,500 square feet at St. Johns River at Buffalo Bluff. Physical characteristics for all three streams were similar except for drainage area. The topography primarily is low-relief, swampy terrain; stream velocities ranged from about -2 to 2 feet per second; and the average change in stage was about 1 foot. Instantaneous discharge was measured using a portable acoustic current meter at each of the three streams to develop a relation between the mean velocity in the stream and the index velocity measured by the acoustic velocity meter. Using least-squares linear regression, a simple linear relation between mean velocity and index velocity was determined. Index velocity was the only significant linear predictor of mean velocity for Six Mile Creek and St. Johns River at Buffalo Bluff. For Dunns Creek, both index velocity and stage were used to develop a multiple-linear predictor of mean velocity. Stage-area curves for each stream were developed from bathymetric data. Instantaneous discharge was computed by multiplying results of relations developed for cross-sectional area and mean velocity. Principal sources of error in the estimated discharge are identified as: (1) instrument errors associated with measurement of stage and index velocity, (2) errors in the representation of

  4. Analysis of High Temporal and Spatial Observations of Hurricane Joaquin During TCI-15

    NASA Technical Reports Server (NTRS)

    Creasey, Robert; Elsberry, Russell L.; Velden, Chris; Cecil, Daniel J.; Bell, Michael; Hendricks, Eric A.

    2016-01-01

    Objectives: Provide an example of why analysis of high density soundings across Hurricane Joaquin also require highly accurate center positions; Describe technique for calculating 3-D zero-wind center positions from the highly accurate GPS positions of sequences of High-Density Sounding System (HDSS) soundings as they fall from 10 km to the ocean surface; Illustrate the vertical tilt of the vortex above 4-5 km during two center passes through Hurricane Joaquin on 4 October 2015.

  5. Applications of a New England stream temperature model to ...

    EPA Pesticide Factsheets

    We have applied a statistical stream network (SSN) model to predict stream thermal metrics (summer monthly medians, growing season maximum magnitude and timing, and daily rates of change) across New England nontidal streams and rivers, excluding northern Maine watersheds that extend into Canada (Detenbeck et al., in review). We excluded stream temperature observations within one kilometer downstream of dams from our model development, so our predictions for those reaches represent potential thermal regimes in the absence of dam effects. We used stream thermal thresholds for mean July temperatures delineating transitions between coldwater, transitional coolwater, and warmwater fish communities derived by Beauchene et al. (2014) to classify expected stream and river thermal regimes across New England. Within the model domain and based on 2006 land-use and air temperatures, the model predicts that 21.8% of stream + river kilometers would support coldwater fish communities (mean July water temperatures 22.3 degrees C mean July temperatures). Application of the model allows us to assess potential condition given full riparian zone restoration as well as potential loss of cold or coolwater habitat given loss of riparian shading. Given restoration of all ripa

  6. Ichthyofauna of two streams (silted and reference) in the Upper Paraná river basin, Southeastern Brazil.

    PubMed

    Casatti, L

    2004-11-01

    In this study the fish assemblages of the silted Aguas Claras stream (AC) was compared with that of a reference, the São Carlos stream (SC), so as to identify potential fish indicators of integrity or degradation. Both streams, located about 5 km from one another, are part of the Upper Paraná river basin, Brazil, and present similar physiographical features. Twenty-one species were collected in AC (1,271 specimens) and 18 in SC (940 specimens). In AC, dominant species e.g., Corydoras aeneus (sandy pools), Serrapinnus notomelas, and Pyrrhulina australis (warm marginal shallow pools) were those favored by new microhabitats linked to siltation and removal of the riparian vegetation. Changes in the composition of the marginal vegetation resulted in dominance of species such as Hisonotus francirochai (marginal grasses). In SC the dominant species was Phalloceros caudimacultus, abundant in marginal shallow pools, and Trichomycterus diabolus. and Hypostomus nigromaculatus, exclusively riffle-dwelling species, which were absent in AC. Fish assemblage monitoring is recommended for use in riparian management programs in order to evaluate negative instream sedimentation effects.

  7. Tracing Nitrate Contributions to Streams During Varying Flow Regimes at the Sleepers River Research Watershed, Vermont, USA

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Ohte, N.; Doctor, D. H.; Kendall, C.

    2003-12-01

    Quantifying sources and transformations of nitrate in headwater catchments is fundamental to understanding the movement of nitrogen to streams. At the Sleepers River Research Watershed in northeastern Vermont (USA), we are using multiple chemical tracer and mixing model approaches to quantify sources and transport of nitrate to streams under varying flow regimes. We sampled streams, lysimeters, and wells at nested locations from the headwaters to the outlet of the 41 ha W-9 watershed under the entire range of flow regimes observed throughout 2002-2003, including baseflow and multiple events (stormflow and snowmelt). Our results suggest that nitrogen sources, and consequently stream nitrate concentrations, are rapidly regenerated during several weeks of baseflow and nitrogen is flushed from the watershed by stormflow events that follow baseflow periods. Both basic chemistry data (anions, cations, & dissolved organic carbon) and isotopic data (nitrate, dissolved organic carbon, and dissolved inorganic carbon) indicate that nitrogen source contributions vary depending upon the extent of saturation in the watershed, the initiation of shallow subsurface water inputs, and other hydrological processes. Stream nitrate concentrations typically peak with discharge and are higher on the falling than the rising limb of the hydrograph. Our data also indicate the importance of terrestrial and aquatic biogeochemical processes, in addition to hydrological connectivity in controlling how nitrate moves from the terrestrial landscape to streams. Our detailed sampling data from multiple flow regimes are helping to identify and quantify the "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nitrogen fluxes in streams.

  8. Changes of hydrodynamic parameters on mountain stream bed within the block ramp influence and possibility of their use for integrated river management

    NASA Astrophysics Data System (ADS)

    Radecki-Pawlik, Artur; Plesiński, Karol

    2016-04-01

    In modern river management practices and philosophy one can notice coming more into use ecological friendly hydraulic structures. Those, which are especially needed for river training works, as far as expectation of Water Framework Directive is concerned, are block ramps which are hydraulic structures working similar to riffles known very well from fluvial geomorphology studies and are natural features in streams and rivers. What is important well designed block ramps do not stop fish and invertebrates against migrating, provide natural and esthetical view being built within the river channel, still working as hydraulic engineering structures and might be used in river management in different river ecosystems. The main aim of the research was to describe changes of values of hydrodynamics parameters upstream and downstream of the block ramps and to find out their influence on hydrodynamics of the stream. The study was undertaken on the Porębianka River in the Gorce Mountains, Polish Carpathians. Observed hydrodynamic parameters within the reach of the block ramps depend on the location of measuring point and the influence of individual part of the structure. We concluded that: 1. Hydrodynamic parameters close to block ramps depend on the location of the measurement points in relation to particular elements of the structure; 2. The highest value of velocities don't cause the highest force values, which acting on the bed of the watercourse, because they are rather related to the water level of the channel; 3. The values of mean velocities, shear velocities and shear stresses were similar upstream and downstream the block ramps, which means that the structures stabilize the river bed. This study was performed within the scope of the Science Activity money from Ministry of High Education and Young Scientist's Activity Money of Department of Hydraulics Engineering and Geotechnique, University of Agriculture, Cracow, Poland

  9. An algal model for predicting attainment of tiered biological criteria of Maine's streams and rivers

    USGS Publications Warehouse

    Danielson, Thomas J.; Loftin, Cyndy; Tsomides, Leonidas; DiFranco, Jeanne L.; Connors, Beth; Courtemanch, David L.; Drummond, Francis; Davies, Susan

    2012-01-01

    State water-quality professionals developing new biological assessment methods often have difficulty relating assessment results to narrative criteria in water-quality standards. An alternative to selecting index thresholds arbitrarily is to include the Biological Condition Gradient (BCG) in the development of the assessment method. The BCG describes tiers of biological community condition to help identify and communicate the position of a water body along a gradient of water quality ranging from natural to degraded. Although originally developed for fish and macroinvertebrate communities of streams and rivers, the BCG is easily adapted to other habitats and taxonomic groups. We developed a discriminant analysis model with stream algal data to predict attainment of tiered aquatic-life uses in Maine's water-quality standards. We modified the BCG framework for Maine stream algae, related the BCG tiers to Maine's tiered aquatic-life uses, and identified appropriate algal metrics for describing BCG tiers. Using a modified Delphi method, 5 aquatic biologists independently evaluated algal community metrics for 230 samples from streams and rivers across the state and assigned a BCG tier (1–6) and Maine water quality class (AA/A, B, C, nonattainment of any class) to each sample. We used minimally disturbed reference sites to approximate natural conditions (Tier 1). Biologist class assignments were unanimous for 53% of samples, and 42% of samples differed by 1 class. The biologists debated and developed consensus class assignments. A linear discriminant model built to replicate a priori class assignments correctly classified 95% of 150 samples in the model training set and 91% of 80 samples in the model validation set. Locally derived metrics based on BCG taxon tolerance groupings (e.g., sensitive, intermediate, tolerant) were more effective than were metrics developed in other regions. Adding the algal discriminant model to Maine's existing macroinvertebrate discriminant

  10. Trace elements and organic contaminants in stream sediments from the Red River of the North Basin

    USGS Publications Warehouse

    Brigham, M.E.; Tornes, L.H.

    1996-01-01

    To assess the presence and distribution of a variety of hydro-phobic chemicals in streams in the Red River of the North Basin, bottom sediments were analyzed for trace elements, organochlorines, and polycyclic aromatic hydrocarbons (PAHs). Glaciolacustrine clays and carbonate minerals are common in fine sediments of the region, and can help explain the distribution of many elements. Aluminum (Al), an indicator of glaciolacustrine clay minerals, correlates strongly (r>0.75, p<0.05) with Cr, Co, Fe, La, Li, K, Sc, and Ti; and moderately (0.55River Basin, Eu, Nb, Ce, La, Nd, and Ni also have strong correlations with Al. Al correlates negatively with major elements associated with carbonate minerals (Ca, Mg, and inorganic carbon). No significant correlations with Al, Ca, or Mg were observed for As, Pb, Mn, Hg, Se, or Ag, which implies that these elements have different environmental sources or behaviors than glaciolacustrine clays or carbonate minerals. Reduction-oxidation processes may influence Mn distribution. Lead (Pb) and mercury (Hg) are known to be anthropogenically enriched in the environment--their distribution may indicate environmental enrichment in Red River of the North Basin streams. Organochlorines detected are limited to traces of DDT and its metabolites (mostlyp,p'-DDE). Fourteen PAHs, which are constituents of fossil fuels and of combustion byproducts, were detected in at least halfthe sediment samples; pyrene and fluoranthene were detected in about 90 percent of samples. The contaminants detected in this study were present at low levels, likely indicative of diffuse or remote sources; they occur widely in the environment. 

  11. Chemical analyses for selected wells in San Joaquin County and part of Contra Costa County, California

    USGS Publications Warehouse

    Keeter, Gail L.

    1980-01-01

    The study area of this report includes the eastern valley area of Contra Costa County and all of San Joaquin County, an area of approximately 1,600 square miles in the northern part of the San Joaquin Valley, Calif. Between December 1977 and December 1978, 1,489 wells were selectively canvassed. During May and June in 1978 and 1979, water samples were collected for chemical analysis from 321 of these wells. Field determinations of alkalinity, conductance, pH, and temperature were made, and individual constituents were analyzed. This report is the fourth in a series of baseline data reports on wells in the Sacramento and San Joaquin Valleys. (USGS)

  12. Development of a stream-aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin.

    PubMed

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo

    2012-12-01

    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  13. Impacts of Climate Change on Stream Temperatures in the Clearwater River, Idaho

    NASA Astrophysics Data System (ADS)

    Yearsley, J. R.; Chegwidden, O.; Nijssen, B.

    2016-12-01

    Dworshak Dam in northern Idaho impounds the waters of the North Fork of the Clearwater River, creating a reservoir of approximately 4.278 km3 at full pool elevation. The dam's primary purpose is for flood control and hydroelectric power generation. It also provides important water quality benefits by releasing cold water into the Clearwater River during the summer when conditions become critical for migrating endangered species of salmon. Changes in the climate may have an impact on the ability of Dworshak Dam and Reservoir to provide these benefits. To investigate the potential for extreme outcomes that would limit cold water releases from Dworshak Reservoir and compromise the fishery, we implemented a system of hydrologic and water temperature models that simulate daily-averaged water temperatures in both the riverine and reservoir environments. We used the macroscale hydrologic model, VIC, to simulate land surface water and energy fluxes, the one-dimensional, time-dependent stream temperature model, RBM, to simulate river temperatures and a modified version of CEQUAL-W2 to simulate water temperatures in Dworshak Reservoir. A long-term hydrologically based gridded data set of meteorological forcing provided the input for comparing model results with available observations of flow and water temperature. For purposes of investigating the impacts of climate change, we used the results from ten of the most recent Climate Model Intercomparison Project (CMIP5) climate change models scenarios in conjunction with the estimates of anthropogenic inputs of climate change gases from two representative concentration pathways (RCP). We compared the simulated results associated with a range of outcomes at critical river locations from the climate scenarios with existing conditions assuming that the reservoir would be operated under a rule curve based on the average reservoir elevation for the period 2006-2015 rule curve and for power demands represented by that same period.

  14. Climate change and other stressors change modeled population size and hybridization potential for San Joaquin kit fox

    EPA Science Inventory

    The San Joaquin kit fox was once widely distributed across the southern San Joaquin Valley, but agriculture and development have replaced much of the endangered subspecies’ habitat. We modeled impacts of climate change, land-use change, and rodenticide exposure on kit fox p...

  15. 76 FR 56116 - Interim Final Determination To Stay and Defer Sanctions, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... Determination To Stay and Defer Sanctions, San Joaquin Valley Unified Air Pollution Control District AGENCY... on a proposed approval of revisions to the San Joaquin Valley Unified Air Pollution Control District... Part 52 Environmental protection, Air pollution control, Incorporation by reference, Intergovernmental...

  16. 76 FR 56114 - Interim Final Determination to Stay and Defer Sanctions, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... Determination to Stay and Defer Sanctions, San Joaquin Valley Unified Air Pollution Control District AGENCY... on a proposed approval of revisions to the San Joaquin Valley Unified Air Pollution Control District... Part 52 Environmental protection, Air pollution control, Incorporation by reference, Intergovernmental...

  17. 77 FR 74355 - Approval of Air Quality Implementation Plans; California; San Joaquin Valley; Attainment Plan for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... update the air quality modeling in the San Joaquin Valley 8-Hour Ozone SIP by December 31, 2014. DATES... modeling in the San Joaquin Valley 8-Hour Ozone SIP to reflect emissions inventory improvements and any...) * * * (396) * * * (ii) * * * (A) * * * (2) * * * (ii) Commitment to update the air quality modeling in the...

  18. Assessing the Effects of Water Right Purchases on Stream Temperatures and Fish Habitat

    NASA Astrophysics Data System (ADS)

    Elmore, L.; Null, S. E.

    2012-12-01

    Warm stream temperature and low flow conditions are limiting factors for native trout species in Nevada's Walker River. Water rights purchases are being considered to increase instream flow and improve habitat conditions. However, the effect of water rights purchases on stream temperatures and fish habitat have yet to be assessed. Manipulating flow conditions affect stream temperatures by altering water depth, velocity, and thermal mass. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate flows and stream temperatures in the Walker River. The model is developed for two wet years (2010-2011). Study results highlight reaches with cold-water habitat that is suitable for native trout species. Previous research on the Walker River has evaluated instream flow changes with water rights purchases. This study incorporates stream temperatures as a proxy for trout habitat, and thus explicitly incorporates water quality and fish habitat into decision-making regarding water rights purchases. Walker River

  19. Fish assemblages of the upper Little Sioux River basin, Iowa, USA: Relationships with stream size and comparison with historical assemblages

    USGS Publications Warehouse

    Palic, D.; Helland, L.; Pedersen, B.R.; Pribil, J.R.; Grajeda, R.M.; Loan-Wilsey, Anna; Pierce, C.L.

    2007-01-01

    We characterized the fish assemblages in second to fifth order streams of the upper Little Sioux River basin in northwest Iowa, USA and compared our results with historical surveys. The fish assemblage consisted of over twenty species, was dominated numerically by creek chub, sand shiner, central stoneroller and other cyprinids, and was dominated in biomass by common carp. Most of the species and the great majority of all individuals present were at least moderately tolerant to environmental degradation, and biotic integrity at most sites was characterized as fair. Biotic integrity declined with increasing stream size, and degraded habitat in larger streams is a possible cause. No significant changes in species richness or the relative distribution of species' tolerance appear to have occurred since the 1930s.

  20. Assesment of future river habitat suitability under climate change scenarios in a mesoscale Alpine watershed of Italy (Serio River, Italian Alps)

    NASA Astrophysics Data System (ADS)

    Groppelli, B.; Confortola, G.; Soncini, A.; Bocchiola, D.; Rosso, R.

    2011-12-01

    We merge hydraulic river modelling, use of suitability functions for fish guild colonization and hydrological modelling of catchment response to investigate future (until 2100) hydrological cycle and fish habitat suitability for an Alpine catchment in Italy, Serio river (drainage area 450 Km2, average altitude 1300 m a.s.l., main channel length ca. 36 km). Based upon detailed river channel morphology data for 73 river sections and direct local investigation we then set up and tune a quasi 2-D (i.e. with floodplains) hydraulic model for in channel flows hydraulics, depending upon daily in stream discharge. We then evaluate distributed values of hydraulic variables and therein composite habitat suitability indexes CS for a representative target species (brown trout, Salmo Trutta Fario L.), resulting into usable wetted area WUA for fish colonization. We consider both juvenile JUV and adults AD, and we evaluate the frequency (days in a year/season) of yearly/seasonal, spatially distributed and bulk (whole stream) habitat quality. We then provide synthetic indicators of (yearly/seasonal) suitability level and duration within the river. We then set up a minimal (T, P), properly tuned hydrological model able to mimick Serio river's hydrological cycle. We then use downscaled future precipitation and temperature from three general circulation models, GCMs (PCM, CCSM3, and HadCM3) available within the IPCC's data base chosen for the purpose based upon previous studies, to feed our hydrological model and provide projected hydrological regime of the catchment, together with modified habitat suitability. We then comment upon modified flow regime, habitat suitability as obtained and related uncertainty. The proposed results may be of use for river managers and may provide a template for investigation about future river habitat quality pending climate change.