Sample records for johannite

  1. A Raman spectroscopic study of the uranyl sulphate mineral johannite.

    PubMed

    Frost, Ray L; Erickson, Kristy L; Cejka, Jirí; Reddy, B Jagannadha

    2005-09-01

    Raman spectroscopy at 298 and 77K has been used to study the secondary uranyl mineral johannite of formula (Cu(UO2)2(SO4)2(OH)2 x 8H2O). Four Raman bands are observed at 3593, 3523, 3387 and 3234cm(-1) and four infrared bands at 3589, 3518, 3389 and 3205cm(-1). The first two bands are assigned to OH- units (hydroxyls) and the second two bands to water units. Estimations of the hydrogen bond distances for these four bands are 3.35, 2.92, 2.79 and 2.70 A. A sharp intense band at 1042 cm(-1) is attributed to the (SO4)2- symmetric stretching vibration and the three Raman bands at 1147, 1100 and 1090cm(-1) to the (SO4)2- anti-symmetric stretching vibrations. The nu2 bending modes were at 469, 425 and 388 cm(-1) at 77K confirming the reduction in symmetry of the (SO4)2- units. At 77K two bands at 811 and 786 cm(-1) are attributed to the nu1 symmetric stretching modes of the (UO2)2+ units suggesting the non-equivalence of the UO bonds in the (UO2)2+ units. The band at 786cm(-1), however, may be related to water molecules libration modes. In the 77K Raman spectrum, bands are observed at 306, 282, 231 and 210cm(-1) with other low intensity bands found at 191, 170 and 149cm(-1). The two bands at 282 and 210 cm(-1) are attributed to the doubly degenerate nu2 bending vibration of the (UO2)2+ units. Raman spectroscopy can contribute significant knowledge in the study of uranyl minerals because of better band separation with significantly narrower bands, avoiding the complex spectral profiles as observed with infrared spectroscopy.

  2. Wine from the Netherlands: investigating the effect of soil-type on taste

    NASA Astrophysics Data System (ADS)

    Vis, Geert-Jan; Maljers, Denise; Beurskens, Stan

    2016-04-01

    During the last decade professional viticulture has seen a strong increase in the Netherlands, reaching 270 ha in 2015. Although on a European scale this is a small area, the number of prize-winning quality wines is steadily growing. This growth can largely be ascribed to new grape varieties from Germany and Switzerland, that are better adapted to the cooler and moister climate at the northern fringe of the viticultural zone, as well as to increasing viticultural expertise. The distribution of vineyards across the Netherlands shows that they occur on a plethora of substrates. Dutch substrate is dominated by typical lowland deposits such as fluvial and marine sands and clays and aeolian sands. Unlike many European countries, bedrock is scarce. Only in the south-eastern extremity and in the east of the country, carbonate bedrock is present at or near the surface. This wide variety of substrate triggered our interest in the effect of the various soil-types on the smell and taste characteristics of wines. An effect which is often mentioned concerning well-known foreign wines. We wondered whether an Auxerrois wine from carbonate rocks tastes significantly different from a wine from the same grape variety from loess. And how about a Johanniter wine from fluvial deposits versus windblown sands? And what happens if you make wine in exactly the same way with the same grape variety and from the same vineyard, but with three different yeast types? To answer our questions, we selected ten Dutch vineyards with varying soil-types and the grape varieties Auxerrois and Johanniter. In October 2014 we harvested the grapes and wine was made under controlled identical conditions (in a double setup). The wines were scientifically tested at the institute of Viticulture and Oenology in Neustadt, Germany. The results show no significant effect of soil-type on the smell and taste of Dutch wines in our experiment. Varying yeast types (Cryarome, 3079, VL2) used on Souvignier Gris grapes from

  3. Progress report on the Happy Jack mine, Which Canyon area, San Juan county, Utah

    USGS Publications Warehouse

    Trites, Albert F.; Chew, Randall T.

    1954-01-01

    The Happy Jack mine is in the White Canyon area, San Juan county, Utah. Production is from high-grade uranium deposits in the Shinarump conglomerate of the Triassic age. In this area the Shinarump beds range from about 16 to 40 feet in thickness and the lower part of these beds fills an east-trending channel this is note than 750 feet wide and 10 feet deep. The Shinarump conglomerate consists of beds of coarse- to fine-grained quartzose sandstone, conglomerate, siltstone, and claystone. Carbonized wood is abundant in these beds, and in the field it was classified as mineral charcoal and coal. Intra-Shinarump channels, cross-stratification, current lineation, and slumping and compaction structures have been recognized in the mine. Steeply dipping fractures have dominant trends in four directions -- N 65°W, N 60°E, N 85°E, and due north. Uranium occurs as bedded deposits, as replacement bodies in accumulations of "trash", and as replacements of larger fragments of wood. An "ore shoot" is formed where the three types of uranium deposits occur together; these ore shoots appear to be elongate masses with sharp boundaries. Uranium minerals include uraninite, sooty pitchblende(?), and the sulfate--betazippeite, johannite, and uranopilite. Associated with the uraninite are the sulfide minerals covellite, bornite, chalcopyritw, and pyrite. Galena and sphalerite have been found in close association with uranium minerals. The gaunge minerals include: limonite and hematite present in most of the sandstone beds throughout the deposit, jarosite that impregnates much of the sandstone in the outer parts of the mine workings, gypsum that fills many of the fractures, and barite that impregnates the sandstone in at least one part of the mine. Secondary copper minerals, mainly copper sulfates, occur throughout the mine, but most abundant near the adits in the outermost 30 feet of the workings. The minerals comprising the bulk of the country rock include quartz, feldspar, and clay

  4. The German approach to emergency/disaster management.

    PubMed

    Domres, B; Schauwecker, H H; Rohrmann, K; Roller, G; Maier, G W; Manger, A

    2000-01-01

    Disaster control and disaster relief in Germany are public tasks. But the government has shifted the responsibility of the administration of these tasks to the 16 states, the so called "Lander", because the EFG is a federal republic. The same is valid for the civil defense and the civil protection in the case of military or international risks. The 16 states are also responsible for the legislation of rescue service, fire fighting service and disaster control (natural and technical disasters). Counties and district-free cities are responsible for the organisation of these services. The German system is based on the principle of subsidiary between official and private institutions. A lot of official and private relief organisations are responsible for the execution of disaster relief tasks. In Germany the following organisations exist: Official (GO): Technisches Hilfswerk (THW/Federal Technical Support Service), Feuerwehren (Fire Brigades/professionals and volunteers) Academie of Emergency Planning and Civil Defense Private (NGO): Arbeiter-Samariter-Bund Deutschland (ASB/Workers' Samaritan Association Germany), Deutsche Gesellschaft zur Rettung Schiffbruchiger (DGzRS, German Lifesaving Association), Deutsches Rotes Kreuz (DRK/German Red Cross), Johanniter-Unfall-Hilfe (JUH/St. John's Ambulance), Malteser Hilfsdienst (MEID/Maltese-Relief-Organisation). ASB, DRK, JUH and MHD are specialised in the field of rescue, medical and welfare services and medical disaster relief. 80% of the German rescue service and 95% of the German disaster medical relief are realised by these NGO's. NGO's and GO's employ more than 1.2 million volunteers and appr. 100,000 professionals. Rescue service is carried out by professionals, disaster relief by volunteers. The German constitution allows to call the federal army in case of disaster, to support the disaster relief organisations (for example: flood Oder River 1997, train-crash "ICE" 1998). In all counties and district free cities