Sample records for johansen formation numerical

  1. Modeling CO2 distribution in a heterogeneous sandstone reservoir: the Johansen Formation, northern North Sea

    NASA Astrophysics Data System (ADS)

    Sundal, Anja; Miri, Rohaldin; Petter Nystuen, Johan; Dypvik, Henning; Aagaard, Per

    2013-04-01

    The last few years there has been broad attention towards finding permanent storage options for CO2. The Norwegian continental margin holds great potential for storage in saline aquifers. Common for many of these reservoir candidates, however, is that geological data are sparse relative to thoroughly mapped hydrocarbon reservoirs in the region. Scenario modeling provides a method for estimating reservoir performances for potential CO2 storage sites and for testing injection strategies. This approach is particularly useful in the evaluation of uncertainties related to reservoir properties and geometry. In this study we have tested the effect of geological heterogeneities in the Johansen Formation, which is a laterally extensive sandstone and saline aquifer at burial depths of 2 - 4 km, proposed as a suitable candidate for CO2 storage by Norwegian authorities. The central parts of the Johansen Formation are underlying the operating hydrocarbon field Troll. In order not to interfere with ongoing gas production, a potential CO2 injection well should be located at a safe distance from the gas reservoir, which consequently implies areas presently without well control. From 3D seismic data, prediction of spatial extent of sandstone is possible to a certain degree, whereas intra-reservoir flow baffles such as draping mudstone beds and calcite cemented layers are below seismic resolution. The number and lateral extent of flow baffles, as well as porosity- and permeability distributions are dependent of sedimentary facies and diagenesis. The interpretation of depositional environment and burial history is thus of crucial importance. A suite of scenario models was established for a potential injection area south of the Troll field. The model grids where made in Petrel based on our interpretations of seismic data, wire line logs, core and cuttings samples. Using Eclipse 300 the distribution of CO2 is modeled for different geological settings; with and without the presence of

  2. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2011-02-01

    1. Historical notes on planet formation Bodenheimer; 2. The formation and evolution of planetary systems Bouwman et al.; 3. Destruction of protoplanetary disks by photoevaporation Richling, Hollenbach and Yorke; 4. Turbulence in protoplanetary accretion disks Klahr, Rozyczka, Dziourkevitch, Wunsch and Johansen; 5. The origin of solids in the early solar system Trieloff and Palme; 6. Experiments on planetesimal formation Wurm and Blum; 7. Dust coagulation in protoplanetary disks Henning, Dullemond, Wolf and Dominik; 8. The accretion of giant planet cores Thommes and Duncan; 9. Planetary transits: direct vision of extrasolar planets Lecavelier des Etangs and Vidal-Madjar; 10. The core accretion - gas capture model Hubickyj; 11. Properties of exoplanets Marcy, Fischer, Butler and Vogt; 12. Giant planet formation: theories meet observations Boss; 13. From hot Jupiters to hot Neptures … and below Lovis, Mayor and Udry; 14. Disk-planet interaction and migration Masset and Kley; 15. The Brown Dwarf - planet relation Bate; 16. From astronomy to astrobiology Brandner; 17. Overview and prospective Lin.

  3. Numerical analysis of bubble-cluster formation in an ultrasonic field

    NASA Astrophysics Data System (ADS)

    Kim, Donghyun; Son, Gihun

    2016-11-01

    Bubble-cluster formation in an ultrasonic field is investigated numerically solving the conservation equations of mass, momentum and energy. The liquid-gas interface is calculated using the volume-of-fluid method with variable gas density to consider the bubble compressibility. The effect of liquid-gas phase change is also included as the interface source terms of the mass and energy equations. The numerical approach is tested through the simulation of the expansion and contraction motion of a compressed bubble adjacent to a wall. When the bubble is placed in an ultrasonic field, it oscillates radially and then collapses violently. Numerical simulation is also performed for bubble-cluster formation induced by an ultrasonic generator, where the generated bubbles are merged into a macrostructure along the acoustic flow field. The effects of ultrasonic power and frequency, liquid properties and pool temperature on the bubble-cluster formation are investigated. This work was supported by the Korea Institute of Energy Research.

  4. Experimental and numerical analysis of interlocking rib formation at sheet metal blanking

    NASA Astrophysics Data System (ADS)

    Bolka, Špela; Bratuš, Vitoslav; Starman, Bojan; Mole, Nikolaj

    2018-05-01

    Cores for electrical motors are typically produced by blanking of laminations and then stacking them together, with, for instance, interlocking ribs or welding. Strict geometrical tolerances, both on the lamination and on the stack, combined with complex part geometry and harder steel strip material, call for use of predictive methods to optimize the process before actual blanking to reduce the costs and speed up the process. One of the major influences on the final stack geometry is the quality of the interlocking ribs. A rib is formed in one step and joined with the rib of the preceding lamination in the next. The quality of the joint determines the firmness of the stack and also influences its. The geometrical and positional accuracy is thus crucial in rib formation process. In this study, a complex experimental and numerical analysis of interlocking rib formation has been performed. The aim of the analysis is to numerically predict the shape of the rib in order to perform a numerical simulation of the stack formation in the next step of the process. A detailed experimental research has been performed in order to characterize influential parameters on the rib formation and the geometry of the ribs itself, using classical and 3D laser microscopy. The formation of the interlocking rib is then simulated using Abaqus Explicit. The Hilll 48 constitutive material model is based on extensive and novel material characterization process, combining data from in-plane and out-of-plane material tests to perform a 3D analysis of both, rib formation and rib joining. The study shows good correlation between the experimental and numerical results.

  5. Numerical simulation of the formation of a spiral galaxy

    NASA Astrophysics Data System (ADS)

    Williams, P. R.; Nelson, A. H.

    2001-08-01

    A simulation is described in which the numerical galaxy formed compares favourably in every measurable respect with contemporary bright spiral galaxies, including the formation of a distinct stellar bulge and large scale spiral arm shocks in the gas component. This is achieved in spite of the fact that only idealized proto-galactic initial conditions were used, and only simple phenomenological prescriptions for the physics of the interstellar medium (ISM) and star formation were implemented. In light of the emphasis in recent literature on the importance of the link between galaxy formation and models of the universe on cosmological scales, on the details of the physics of the ISM and star formation, and on apparent problems therein, the implications of this result are discussed.

  6. The Formation of Terrestrial Planets from the Direct Accretion of Pebbles

    NASA Astrophysics Data System (ADS)

    Levison, Harold F.; Kretke, Katherine; Walsh, Kevin

    2014-11-01

    A radical new scenario has recently been suggested for the formation of giant planet cores that reports to solve this long-standing problem. This scenario, known as pebble accretion, envisions: 1) Planetesimals form directly from millimeter- to meter-sized objects (the pebbles) that are concentrated by turbulent eddies and then gravitationally collapse to form 100 — 1000 km objects (Cuzzi+ 2008, AJ 687, 1432; Johansen+ 2007, Nature 448, 1022). 2) These planetesimals quickly sweep up the remaining pebbles because their capture cross sections are significantly enhanced by aerodynamic drag (Lambrechts & Johansen 2012, A&A 544, A32; Ormel & Klahr (2010) A&A Volume 520, id.A43). Calculations show that a single 1000 km object embedded in a swarm of pebbles can grow to ~10 Earth-masses in less than 10,000 years. These short timescales present a problem in the terrestrial planet region because it took many tens of millions of years for the Earth to form (Touboul+ 2007, Nature 450, 1206). However, recent full-scale simulations of core formation have shown that the only way to grow a small number of giant planets in the Solar System is for the pebbles to form over a long period of time (Kretke & Levison 2014, AJ, submitted; Levison & Kretke in prep.) in a process we call 'Slow Pebble Accretion'. Thus, here we will present preliminary results of a study of slow pebble accretion in the terrestrial planet zone.

  7. Numerical two-dimensional calculations of the formation of the solar nebula

    NASA Technical Reports Server (NTRS)

    Bodenheimer, Peter H.

    1991-01-01

    Numerical two dimensional calculations of the formation of the solar nebula are presented. The following subject areas are covered: (1) observational constraints of the properties of the initial solar nebula; (2) the physical problem; (3) review if two dimensional calculations of the formation phase; (4) recent models with hydrodynamics and radiative transport; and (5) further evolution of the system.

  8. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    NASA Astrophysics Data System (ADS)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  9. Cross-format physical similarity effects and their implications for the numerical cognition architecture

    PubMed Central

    Cohen, Dale J.; Warren, Erin; Blanc-Goldhammer, Daryn

    2013-01-01

    The sound |faiv| is visually depicted as a written number word “five” and as an Arabic digit “5.” Here, we present four experiments – two quantity same/different experiments and two magnitude comparison experiments – that assess whether auditory number words (|faiv|), written number words (“five”), and Arabic digits (“5”) directly activate one another and/or their associated quantity. The quantity same/different experiments reveal that the auditory number words, written number words, and Arabic digits directly activate one another without activating their associated quantity. That is, there are cross-format physical similarity effects but no numerical distance effects. The cross-format magnitude comparison experiments reveal significant effects of both physical similarity and numerical distance. We discuss these results in relation to the architecture of numerical cognition. PMID:23624377

  10. Verbal and numerical consumer recommendations: switching between recommendation formats leads to preference inconsistencies.

    PubMed

    Maciejovsky, Boris; Budescu, David V

    2013-06-01

    Many Web sites provide consumers with product recommendations, which are typically presented by a sequence of verbal reviews and numerical ratings. In three experiments, we demonstrate that when participants switch between formats (e.g., from verbal to numerical), they are more prone to preference inconsistencies than when they aggregate the recommendations within the same format (e.g., verbal). When evaluating recommendations, participants rely primarily on central-location measures (e.g., mean) and less on other distribution characteristics (e.g., variance). We explain our findings within the theoretical framework of stimulus-response compatibility and we make practical recommendations for the design of recommendation systems and Web portals.

  11. Comet formation

    NASA Astrophysics Data System (ADS)

    Blum, J.

    2014-07-01

    There has been vast progress in our understanding of planetesimal formation over the past decades, owing to a number of laboratory experiments as well as to refined models of dust and ice agglomeration in protoplanetary disks. Coagulation rapidly forms cm-sized ''pebbles'' by direct sticking in collisions at low velocities (Güttler et al. 2010; Zsom et al. 2010). For the further growth, two model approaches are currently being discussed: (1) Local concentration of pebbles in nebular instabilities until gravitational instability occurs (Johansen et al. 2007). (2) A competition between fragmentation and mass transfer in collisions among the dusty bodies, in which a few ''lucky winners'' make it to planetesimal sizes (Windmark et al. 2012a,b; Garaud et al. 2013). Predictions of the physical properties of the resulting bodies in both models allow a distinction of the two formation scenarios of planetesimals. In particular, the tensile strength (i.e, the inner cohesion) of the planetesimals differ widely between the two models (Skorov & Blum 2012; Blum et al. 2014). While model (1) predicts tensile strengths on the order of ˜ 1 Pa, model (2) results in rather compactified dusty bodies with tensile strengths in the kPa regime. If comets are km-sized survivors of the planetesimal-formation era, they should in principle hold the secret of their formation process. Water ice is the prime volatile responsible for the activity of comets. Thermophysical models of the heat and mass transport close to the comet-nucleus surface predict water-ice sublimation temperatures that relate to maximum sublimation pressures well below the kPa regime predicted for formation scenario (2). Model (1), however, is in agreement with the observed dust and gas activity of comets. Thus, a formation scenario for cometesimals involving gravitational instability is favored (Blum et al. 2014).

  12. Numerical Simulation of Vortex Ring Formation in the Presence of Background Flow: Implications for Squid Propulsion

    NASA Astrophysics Data System (ADS)

    Jiang, Houshuo; Grosenbaugh, Mark A.

    2002-11-01

    Numerical simulations are used to study the laminar vortex ring formation in the presence of background flow. The numerical setup includes a round-headed axisymmetric body with a sharp-wedged opening at the posterior end where a column of fluid is pushed out by a piston inside the body. The piston motion is explicitly included into the simulations by using a deforming mesh. The numerical method is verified by simulating the standard vortex ring formation process in quiescent fluid for a wide range of piston stroke to cylinder diameter ratios (Lm/D). The results from these simulations confirm the existence of a universal formation time scale (formation number) found by others from experimental and numerical studies. For the case of vortex ring formation by the piston/cylinder arrangement in a constant background flow (i.e. the background flow is in the direction of the piston motion), the results show that a smaller fraction of the ejected circulation is delivered into the leading vortex ring, thereby decreasing the formation number. The mechanism behind this reduction is believed to be related to the modification of the shear layer profile between the jet flow and the background flow by the external boundary layer on the outer surface of the cylinder. In effect, the vorticity in the jet is cancelled by the opposite signed vorticity in the external boundary layer. Simulations using different end geometries confirm the general nature of the phenomenon. The thrust generated from the jet and the drag forces acting on the body are calculated with and without background flow for different piston programs. The implications of these results for squid propulsion are discussed.

  13. Externally fed star formation: a numerical study

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Motahareh; Stahler, Steven W.

    2013-08-01

    We investigate, through a series of numerical calculations, the evolution of dense cores that are accreting external gas up to and beyond the point of star formation. Our model clouds are spherical, unmagnetized configurations with fixed outer boundaries, across which gas enters subsonically. When we start with any near-equilibrium state, we find that the cloud's internal velocity also remains subsonic for an extended period, in agreement with observations. However, the velocity becomes supersonic shortly before the star forms. Consequently, the accretion rate building up the protostar is much greater than the benchmark value c_s^3/G, where cs is the sound speed in the dense core. This accretion spike would generate a higher luminosity than those seen in even the most embedded young stars. Moreover, we find that the region of supersonic infall surrounding the protostar races out to engulf much of the cloud, again in violation of the observations, which show infall to be spatially confined. Similar problematic results have been obtained by all other hydrodynamic simulations to date, regardless of the specific infall geometry or boundary conditions adopted. Low-mass star formation is evidently a quasi-static process, in which cloud gas moves inward subsonically until the birth of the star itself. We speculate that magnetic tension in the cloud's deep interior helps restrain the infall prior to this event.

  14. Numerical analysis of fume formation mechanism in arc welding

    NASA Astrophysics Data System (ADS)

    Tashiro, Shinichi; Zeniya, Tasuku; Yamamoto, Kentaro; Tanaka, Manabu; Nakata, Kazuhiro; Murphy, Anthony B.; Yamamoto, Eri; Yamazaki, Kei; Suzuki, Keiichi

    2010-11-01

    In order to clarify the fume formation mechanism in arc welding, a quantitative investigation based on the knowledge of interaction among the electrode, arc and weld pool is indispensable. A fume formation model consisting of a heterogeneous condensation model, a homogeneous nucleation model and a coagulation model has been developed and coupled with the GTA or GMA welding model. A series of processes from evaporation of metal vapour to fume formation from the metal vapour was totally investigated by employing this simulation model. The aim of this paper is to visualize the fume formation process and clarify the fume formation mechanism theoretically through a numerical analysis. Furthermore, the reliability of the simulation model was also evaluated through a comparison of the simulation result with the experimental result. As a result, it was found that the size of the secondary particles consisting of small particles with a size of several tens of nanometres reached 300 nm at maximum and the secondary particle was in a U-shaped chain form in helium GTA welding. Furthermore, it was also clarified that most part of the fume was produced in the downstream region of the arc originating from the metal vapour evaporated mainly from the droplet in argon GMA welding. The fume was constituted by particles with a size of several tens of nanometres and had similar characteristics to that of GTA welding. On the other hand, if the metal transfer becomes unstable and the metal vapour near the droplet diffuses directly towards the surroundings of the arc not getting into the plasma flow, the size of the particles reaches several hundred nanometres.

  15. Numerical studies of film formation in context of steel coating

    NASA Astrophysics Data System (ADS)

    Aniszewski, Wojciech; Zaleski, Stephane; Popinet, Stephane

    2017-11-01

    In this work, we present a detailed example of numerical study of film formation in the context of metal coating. Liquid metal is drawn from a reservoir onto a retracting solid sheet, forming a coating film characterized by phenomena such as longitudinal thickness variation (in 3D) or waves akin to that predicted by Kapitza and Kapitza (visible in two dimensions as well). While the industry standard configuration for Zinc coating is marked by coexistence of medium Capillary number (Ca = 0.03) and film Reynolds number above 1000, we present also parametric studies in order to establish more clearly to what degree does the numerical method influence film regimes obtained in the target configuration. The simulations have been performed using Basilisk, a grid-adapting, strongly optimized code derived from Gerris . Mesh adaptation allows for arbitrary precision in relevant regions such as the contact line or the meniscus, while a coarse grid is applied elsewhere. This adaptation strategy, as the results indicate, is the only realistic approach for numerical method to cover the wide range of necessary scales from the predicted film thickness (hundreds of microns) to the domain size (meters).

  16. Numerical modeling of NO formation in laminar Bunsen flames -- A flamelet approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, C.P.; Chen, J.Y.; Yam, C.G.

    1998-08-01

    Based on the flamelet concept, a numerical model has been developed for fast predictions of NO{sub x} and CO emissions from laminar flames. The model is applied to studying NO formation in the secondary nonpremixed flame zone of fuel-rich methane Bunsen flames. By solving the steady-state flamelet equations with the detailed GR12.1 methane-air mechanism, a flamelet library is generated containing thermochemical information for a range of scalar dissipation rates at the ambient pressure condition. Modeling of NO formation is made by solving its conservation equation with chemical source term evaluated based on flamelet library using the extended Zeldovich mechanism andmore » NO reburning reactions. The optically-thin radiation heat transfer model is used to explore the potential effect of heat loss on thermal NO formation. The numerical scheme solves the two-dimensional Navier-Stokes equations as well as three additional equations: the mixture fraction, the NO mass fraction, and the enthalpy deficit due to radiative heat loss. With an established flamelet library, typical computing times are about 5 hours per calculation on a DEC-3000 300LX workstation. The predicted mixing field, radial temperature profiles, and NO distributions compare favorably with recent experimental data obtained by Nguyen et al. The dependence of NO{sub x} emission on equivalence ratio is studied numerically and the predictions are found to agree reasonably well with the measurements by Muss. The computed results show a decreasing trend of NO{sub x} emission with the equivalence ratio but an increasing trend in the CO emission index. By examining this trade-off between NO{sub x} and CO, an optimal equivalence ratio of 1.4 is found to yield the lowest combined emission.« less

  17. Patients were more consistent in randomized trial at prioritizing childbirth preferences using graphic-numeric than verbal formats.

    PubMed

    Eden, Karen B; Dolan, James G; Perrin, Nancy A; Kocaoglu, Dundar; Anderson, Nicholas; Case, James; Guise, Jeanne-Marie

    2009-04-01

    We developed an evidence-based decision aid to help women with a prior cesarean to prioritize their childbirth preferences related to a future birth. Because there was uncertainty about which scale format would assist the patients in being most consistent in prioritizing preferences in a multiattribute decision model, we compared a graphic-numeric scale with a text-anchored scale. Ninety-six postnatal women with a prior cesarean were randomized to use 1 of 2 preference scale formats in a computerized childbirth decision aid. We measured the level of inconsistency (intransitivity) when patients prioritized their childbirth preferences and clarity of values before and after using the decision aid. When the trade-offs involved risk, women were more consistent when using graphic-numeric than text-anchored formats (P=0.015). They prioritized safety to their baby as 4 times more important than any other decision factor including safety to self. Both groups reduced unclear childbirth values over time (P<0.001). Women who over-used the extreme ends of the scale when evaluating risk were more likely to be inconsistent (P<0.001). Patients were more consistent in making trade-offs involving risk using graphic-numeric formats than text-anchored formats to measure patient preferences.

  18. Numerical study of Si nanoparticle formation by SiCl4 hydrogenation in RF plasma

    NASA Astrophysics Data System (ADS)

    Rehmet, Christophe; Cao, Tengfei; Cheng, Yi

    2016-04-01

    Nanocrystalline silicon (nc-Si) is a promising material for many applications related to electronics and optoelectronics. This work performs numerical simulations in order to understand a new process with high deposition rate production of nc-Si in a radio-frequency plasma reactor. Inductive plasma formation, reaction kinetics and nanoparticle formation have been considered in a sophisticated model. Results show that the plasma parameters could be adjusted in order to improve selectivity between nanoparticle and molecule formation and, thus, the deposition rate. Also, a parametric study helps to optimize the system with appropriate operating conditions.

  19. Numerical simulation of advection fog formation on multi-disperse aerosols due to combustion-related pollutants

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.

    1980-01-01

    The effects of multi-disperse distribution of the aerosol population are presented. Single component and multi-component aerosol species on the condensation/nucleation processes which affect the reduction in visibility are described. The aerosol population with a high particle concentration provided more favorable conditions for the formation of a denser fog than the aerosol population with a greater particle size distribution when the value of the mass concentration of the aerosols was kept constant. The results were used as numerical predictions of fog formation. Two dimensional observations in horizontal and vertical coordinates, together with time-dependent measurements were needed as initial values for the following physical parameters: (1)wind profiles; (2) temperature profiles; (3) humidity profiles; (4) mass concentration of aerosol particles; (5) particle size distribution of aerosols; and (6) chemical composition of aerosols. Formation and dissipation of advection fog, thus, can be forecasted numerically by introducing initial values obtained from the observations.

  20. Numerical approaches to model perturbation fire in turing pattern formations

    NASA Astrophysics Data System (ADS)

    Campagna, R.; Brancaccio, M.; Cuomo, S.; Mazzoleni, S.; Russo, L.; Siettos, K.; Giannino, F.

    2017-11-01

    Turing patterns were observed in chemical, physical and biological systems described by coupled reaction-diffusion equations. Several models have been formulated proposing the water as the causal mechanism of vegetation pattern formation, but this isn't an exhaustive hypothesis in some natural environments. An alternative explanation has been related to the plant-soil negative feedback. In Marasco et al. [1] the authors explored the hypothesis that both mechanisms contribute in the formation of regular and irregular vegetation patterns. The mathematical model consists in three partial differential equations (PDEs) that take into account for a dynamic balance between biomass, water and toxic compounds. A numerical approach is mandatory also to investigate on the predictions of this kind of models. In this paper we start from the mathematical model described in [1], set the model parameters such that the biomass reaches a stable spatial pattern (spots) and present preliminary studies about the occurrence of perturbing events, such as wildfire, that can affect the regularity of the biomass configuration.

  1. Numerical modelling of the formation process of planets from protoplanetary cloud

    NASA Technical Reports Server (NTRS)

    Kozlov, N. N.; Eneyev, T. M.

    1979-01-01

    Evolution of the plane protoplanetary cloud, consisting of a great number of gravitationally interacting and uniting under collision bodies (protoplanets) moving in the central field of a large mass (the Sun or a planet), is considered. It is shown that in the course of protoplanetary cloud evolution the ring zones of matter expansion and compression occur with the subsequent development leading to formation of planets, rotating about their axes mainly directly. The principal numerical results were obtained through digital simulation of planetary accumulation.

  2. Does format matter for comprehension of a facial affective scale and a numeric scale for pain by adults with Down syndrome?

    PubMed

    de Knegt, N C; Evenhuis, H M; Lobbezoo, F; Schuengel, C; Scherder, E J A

    2013-10-01

    People with intellectual disabilities are at high risk for pain and have communication difficulties. Facial and numeric scales for self-report may aid pain identification. It was examined whether the comprehension of a facial affective scale and a numeric scale for pain in adults with Down syndrome (DS) varies with presentation format. Adults with DS were included (N=106, mild to severe ID, mean age 37 years), both with (N=57) and without (N=49) physical conditions that may cause pain or discomfort. The Facial Affect Scale (FAS) and a numeric rating scale (NRS) were compared. One subgroup of participants (N=50) had to choose the two items within each format to indicate 'least pain' and 'most pain'. The other subgroup of participants (N=56) had to order three faces of the FAS from 'least pain' to 'most pain', and to answer questions about the magnitude of numbers for the NRS. Comprehension percentages were compared between two subgroups. More participants understood the FAS than the NRS, irrespective of the presentation format. The comprehension percentage for the FAS did not differ between the least-most extremities format and the ordering/magnitude format. In contrast, comprehension percentages for the NRS differed significantly between the least-most extremities format (61%) and the ordering/magnitude format (32%). The inclusion of ordering and magnitude in a presentation format is essential to assess thorough comprehension of facial and numeric scales for self-reported pain. The use of this format does not influence the number of adults with DS who pass the comprehension test for the FAS, but reduces the number of adults with DS who pass the comprehension test for the NRS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The Formation of a Milky Way-sized Disk Galaxy. I. A Comparison of Numerical Methods

    NASA Astrophysics Data System (ADS)

    Zhu, Qirong; Li, Yuexing

    2016-11-01

    The long-standing challenge of creating a Milky Way- (MW-) like disk galaxy from cosmological simulations has motivated significant developments in both numerical methods and physical models. We investigate these two fundamental aspects in a new comparison project using a set of cosmological hydrodynamic simulations of an MW-sized galaxy. In this study, we focus on the comparison of two particle-based hydrodynamics methods: an improved smoothed particle hydrodynamics (SPH) code Gadget, and a Lagrangian Meshless Finite-Mass (MFM) code Gizmo. All the simulations in this paper use the same initial conditions and physical models, which include star formation, “energy-driven” outflows, metal-dependent cooling, stellar evolution, and metal enrichment. We find that both numerical schemes produce a late-type galaxy with extended gaseous and stellar disks. However, notable differences are present in a wide range of galaxy properties and their evolution, including star-formation history, gas content, disk structure, and kinematics. Compared to Gizmo, the Gadget simulation produced a larger fraction of cold, dense gas at high redshift which fuels rapid star formation and results in a higher stellar mass by 20% and a lower gas fraction by 10% at z = 0, and the resulting gas disk is smoother and more coherent in rotation due to damping of turbulent motion by the numerical viscosity in SPH, in contrast to the Gizmo simulation, which shows a more prominent spiral structure. Given its better convergence properties and lower computational cost, we argue that the MFM method is a promising alternative to SPH in cosmological hydrodynamic simulations.

  4. THE FORMATION OF A MILKY WAY-SIZED DISK GALAXY. I. A COMPARISON OF NUMERICAL METHODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Qirong; Li, Yuexing, E-mail: qxz125@psu.edu

    The long-standing challenge of creating a Milky Way- (MW-) like disk galaxy from cosmological simulations has motivated significant developments in both numerical methods and physical models. We investigate these two fundamental aspects in a new comparison project using a set of cosmological hydrodynamic simulations of an MW-sized galaxy. In this study, we focus on the comparison of two particle-based hydrodynamics methods: an improved smoothed particle hydrodynamics (SPH) code Gadget, and a Lagrangian Meshless Finite-Mass (MFM) code Gizmo. All the simulations in this paper use the same initial conditions and physical models, which include star formation, “energy-driven” outflows, metal-dependent cooling, stellarmore » evolution, and metal enrichment. We find that both numerical schemes produce a late-type galaxy with extended gaseous and stellar disks. However, notable differences are present in a wide range of galaxy properties and their evolution, including star-formation history, gas content, disk structure, and kinematics. Compared to Gizmo, the Gadget simulation produced a larger fraction of cold, dense gas at high redshift which fuels rapid star formation and results in a higher stellar mass by 20% and a lower gas fraction by 10% at z = 0, and the resulting gas disk is smoother and more coherent in rotation due to damping of turbulent motion by the numerical viscosity in SPH, in contrast to the Gizmo simulation, which shows a more prominent spiral structure. Given its better convergence properties and lower computational cost, we argue that the MFM method is a promising alternative to SPH in cosmological hydrodynamic simulations.« less

  5. Numerical simulation of submicron particles formation by condensation at coals burning

    NASA Astrophysics Data System (ADS)

    Kortsenshteyn, N. M.; Petrov, L. V.

    2017-11-01

    The thermodynamic analysis of the composition of the combustion products of 15 types of coals was carried out with consideration for the formation of potassium and sodium aluminosilicates and solid and liquid slag removal. Based on the results of the analysis, the approximating temperature dependences of the concentrations of condensed components (potassium and sodium sulfates) were obtained for the cases of two-phase and single-phase equilibriums; conclusions on the comparative influence of solid and liquid slag removal on the probability of the formation of submicron particles on the combustion of coals were made. The found dependences was make it possible to perform a numerical simulation of the bulk condensation of potassium and sodium sulfate vapors upon the cooling of coal combustion products in a process flow. The number concentration and size distribution of the formed particles have been determined. Agreement with experimental data on the fraction composition of particles has been reached at a reasonable value of a free parameter of the model.

  6. Laboratory and Numerical Modeling of Smoke Characteristics for Superfog Formation

    NASA Astrophysics Data System (ADS)

    Bartolome, C.; Lu, V.; Tsui, K.; Princevac, M.; Venkatram, A.; Mahalingam, S.; Achtemeier, G.; Weise, D.

    2011-12-01

    Land management techniques in wildland areas include prescribed fires to promote biodiversity and reduce risk of severe wildfires across the United States. Several fatal car pileups have been associated with smoke-related visibility reduction from prescribed burns. Such events have occurred in year 2000 on the interstate highways I-10 and I-95, 2001 on the I-4, 2006 on the I-95, and 2008 on the I-4 causing numerous fatalities, injuries, and damage to property. In some of the cases visibility reduction caused by smoke and fog combinations traveling over roadways have been reported to be less than 3 meters, defined as superfog. Our research focuses on delineating the conditions that lead to formation of the rare phenomena of superfog and creating a tool to enable land managers to effectively plan prescribed burns and prevent tragic events. It is hypothesized that the water vapor from combustion, live fuels, soil moisture, and ambient air condense onto the cloud condensation nuclei (CCN) particles emitted from low intensity smoldering fires. Physical and numerical modeling has been used to investigate these interactions. A physical model in the laboratory has been developed to characterize the properties of smoke resulting from smoldering pine needle litters at the PSW Forest Service in Riverside, CA. Temporal measurements of temperature, relative humidity, sensible heat flux, radiation heat flux, convective heat flux, particulate matter concentrations and visibilities have been measured for specific cases. The size distribution and number concentrations of the fog droplets formed inside the chamber by mixing cool dry and moist warm air masses to produce near superfog visibilities were measured by a Phase Doppler Particle Analyzer. Thermodynamic modeling of smoke and ambient air was conducted to estimate liquid water contents (LWC) available to condense into droplets and form significant reductions in visibility. The results show that LWC of less than 2 g m-3 can be

  7. The Next Generation of Numerical Modeling in Mergers- Constraining the Star Formation Law

    NASA Astrophysics Data System (ADS)

    Chien, Li-Hsin

    2010-09-01

    Spectacular images of colliding galaxies like the "Antennae", taken with the Hubble Space Telescope, have revealed that a burst of star/cluster formation occurs whenever gas-rich galaxies interact. A?The ages and locations of these clusters reveal the interaction history and provide crucial clues to the process of star formation in galaxies. A?We propose to carry out state-of-the-art numerical simulations to model six nearby galaxy mergers {Arp 256, NGC 7469, NGC 4038/39, NGC 520, NGC 2623, NGC 3256}, hence increasing the number with this level of sophistication by a factor of 3. These simulations provide specific predictions for the age and spatial distributions of young star clusters. The comparison between these simulation results and the observations will allow us to answer a number of fundamental questions including: 1} is shock-induced or density-dependent star formation the dominant mechanism; 2} are the demographics {i.e. mass and age distributions} of the clusters in different mergers similar, i.e. "universal", or very different; and 3} will it be necessary to include other mechanisms, e.g., locally triggered star formation, in the models to better match the observations?

  8. The formation of granular fronts in debris flow - A combined experimental-numerical study

    NASA Astrophysics Data System (ADS)

    Leonardi, Alessandro; Cabrera, Miguel; Wittel, Falk K.; Kaitna, Roland; Mendoza, Miller; Wu, Wei; Herrmann, Hans J.

    2015-04-01

    Granular fronts are amongst the most spectacular features of debris flows, and are also one of the reasons why such events are associated with a strong destructive power. They are usually believed to be the result of the convective mechanism of the debris flow, combined with internal size segregation of the grains. However, the knowledge about the conditions leading to the formation of a granular front is not up to date. We present a combined study with experimental and numerical features that aims at providing insight into the phenomenon. A stationary, long-lived avalanche is created within a rotating drum. In order to mimic the composition of an actual debris flow, the material is composed by a mixture of a plastic fluid, obtained with water and kaolin powder, and a collection of monodisperse spherical particles heavier than the fluid. Tuning the material properties and the drum settings, we are able to reproduce and control the formation of a granular front. To gain insight into the internal mechanism, the same scenario is replicated in a numerical environment, using a coupling technique between a discrete solver for the particles, the Discrete Element Method, and a continuum solver for the plastic fluid, the Lattice-Boltzmann Method. The simulations compare well with the experiments, and show the internal reorganization of the material transport. The formation of a granular front is shown to be favored by a higher drum rotational speed, which in turn forces a higher shear rate on the particles, breaks their internal organization, and contrasts their natural tendency to settle. Starting from dimensional analysis, we generalize the obtained results and are able to draw implications for debris flow research.

  9. Formation factor in Bentheimer and Fontainebleau sandstones: Theory compared with pore-scale numerical simulations

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Berg, Carl F.

    2017-09-01

    Accurate quantification of formation resistivity factor F (also called formation factor) provides useful insight into connectivity and pore space topology in fully saturated porous media. In particular the formation factor has been extensively used to estimate permeability in reservoir rocks. One of the widely applied models to estimate F is Archie's law (F = ϕ- m in which ϕ is total porosity and m is cementation exponent) that is known to be valid in rocks with negligible clay content, such as clean sandstones. In this study we compare formation factors determined by percolation and effective-medium theories as well as Archie's law with numerical simulations of electrical resistivity on digital rock models. These digital models represent Bentheimer and Fontainebleau sandstones and are derived either by reconstruction or directly from micro-tomographic images. Results show that the universal quadratic power law from percolation theory accurately estimates the calculated formation factor values in network models over the entire range of porosity. However, it crosses over to the linear scaling from the effective-medium approximation at the porosity of 0.75 in grid models. We also show that the effect of critical porosity, disregarded in Archie's law, is nontrivial, and the Archie model inaccurately estimates the formation factor in low-porosity homogeneous sandstones.

  10. Numerical simulation of particle jet formation induced by shock wave acceleration in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Osnes, A. N.; Vartdal, M.; Pettersson Reif, B. A.

    2018-05-01

    The formation of jets from a shock-accelerated cylindrical shell of particles, confined in a Hele-Shaw cell, is studied by means of numerical simulation. A number of simulations have been performed, systematically varying the coupling between the gas and solid phases in an effort to identify the primary mechanism(s) responsible for jet formation. We find that coupling through drag is sufficient for the formation of jets. Including the effect of particle volume fraction and particle collisions did not alter the general behaviour, but had some influence on the length, spacing and number of jets. Furthermore, we find that the jet selection process starts early in the dispersal process, during the initial expansion of the particle layer.

  11. A numerical model for aggregations formation and magnetic driving of spherical particles based on OpenFOAM®.

    PubMed

    Karvelas, E G; Lampropoulos, N K; Sarris, I E

    2017-04-01

    This work presents a numerical model for the formation of particle aggregations under the influence of a permanent constant magnetic field and their driving process under a gradient magnetic field, suitably created by a Magnetic Resonance Imaging (MRI) device. The model is developed in the OpenFOAM platform and it is successfully compared to the existing experimental and numerical results in terms of aggregates size and their motion in water solutions. Furthermore, several series of simulations are performed for two common types of particles of different diameter in order to verify their aggregation and flow behaviour, under various constant and gradient magnetic fields in the usual MRI working range. Moreover, the numerical model is used to measure the mean length of aggregations, the total time needed to form and their mean velocity under different permanent and gradient magnetic fields. The present model is found to predict successfully the size, velocity and distribution of aggregates. In addition, our simulations showed that the mean length of aggregations is proportional to the permanent magnetic field magnitude and particle diameter according to the relation : l¯ a =7.5B 0 d i 3/2 . The mean velocity of the aggregations is proportional to the magnetic gradient, according to : u¯ a =6.63G˜B 0 and seems to reach a steady condition after a certain period of time. The mean time needed for particles to aggregate is proportional to permanent magnetic field magnitude, scaled by the relationship : t¯ a ∝7B 0 . A numerical model to predict the motion of magnetic particles for medical application is developed. This model is found suitable to predict the formation of aggregations and their motion under the influence of permanent and gradient magnetic fields, respectively, that are produced by an MRI device. The magnitude of the external constant magnetic field is the most important parameter for the aggregations formation and their driving. Copyright © 2017

  12. Numerical study of core formation of asymmetrically driven cone-guided targets

    DOE PAGES

    Sawada, Hiroshi; Sakagami, Hitoshi

    2017-09-22

    Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less

  13. Numerical study of core formation of asymmetrically driven cone-guided targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Hiroshi; Sakagami, Hitoshi

    Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less

  14. Pattern formation and filamentation in low temperature, magnetized plasmas - a numerical approach

    NASA Astrophysics Data System (ADS)

    Menati, Mohamad; Konopka, Uwe; Thomas, Edward

    2017-10-01

    In low-temperature discharges under the influence of high magnetic field, pattern and filament formation in the plasma has been reported by different groups. The phenomena present themselves as bright plasma columns (filaments) oriented parallel to the magnetic field lines at high magnetic field regime. The plasma structure can filament into different shapes from single columns to spiral and bright rings when viewed from the top. In spite of the extensive experimental observations, the observed effects lack a detailed theoretical and numerical description. In an attempt to numerically explain the plasma filamentation, we present a simplified model for the plasma discharge and power deposition into the plasma. Based on the model, 2-D and 3-D codes are being developed that solve Poisson's equation along with the fluid equations to obtain a self-consistent description of the plasma. The model and preliminary results applied to the specific plasma conditions will be presented. This work was supported by the US Dept. of Energy and NSF, DE-SC0016330, PHY-1613087.

  15. Cenosphere formation from heavy fuel oil: a numerical analysis accounting for the balance between porous shells and internal pressure

    NASA Astrophysics Data System (ADS)

    Reddy, Vanteru M.; Rahman, Mustafa M.; Gandi, Appala N.; Elbaz, Ayman M.; Schrecengost, Robert A.; Roberts, William L.

    2016-01-01

    Heavy fuel oil (HFO) as a fuel in industrial and power generation plants ensures the availability of energy at economy. Coke and cenosphere emissions from HFO combustion need to be controlled by particulate control equipment such as electrostatic precipitators, and collection effectiveness is impacted by the properties of these particulates. The cenosphere formation is a function of HFO composition, which varies depending on the source of the HFO. Numerical modelling of the cenosphere formation mechanism presented in this paper is an economical method of characterising cenosphere formation potential for HFO in comparison to experimental analysis of individual HFO samples, leading to better control and collection. In the present work, a novel numerical model is developed for understanding the global cenosphere formation mechanism. The critical diameter of the cenosphere is modelled based on the balance between two pressures developed in an HFO droplet. First is the pressure (Prpf) developed at the interface of the liquid surface and the inner surface of the accumulated coke due to the flow restriction of volatile components from the interior of the droplet. Second is the pressure due to the outer shell strength (PrC) gained from van der Walls energy of the coke layers and surface energy. In this present study it is considered that when PrC ≥ Prpf the outer shell starts to harden. The internal motion in the shell layer ceases and the outer diameter (DSOut) of the shell is then fixed. The entire process of cenosphere formation in this study is analysed in three phases: regression, shell formation and hardening, and post shell hardening. Variations in pressures during shell formation are analysed. Shell (cenosphere) dimensions are evaluated at the completion of droplet evaporation. The rate of fuel evaporation, rate of coke formation and coke accumulation are analysed. The model predicts shell outer diameters of 650, 860 and 1040 µm, and inner diameters are 360, 410

  16. Numerical modelling of the formation of fibrous bedding-parallel veins

    NASA Astrophysics Data System (ADS)

    Torremans, Koen; Muchez, Philippe; Sintubin, Manuel

    2014-05-01

    Bedding-parallel veins with a fibrous infill oriented orthogonal to the vein wall, are often observed in fine-grained metasedimentary sequences. Several mechanisms have been proposed for their formation, mostly with respect to effects of fluid overpressures and anisotropy of the host-rock fabric in order to explain the inferred extensional failure with sub-vertical opening. Abundant pre-folding, bedding-parallel fibrous dolomite veins are found associated with the Nkana-Mindola stratiform Cu-Co deposit in Zambia. The goal of this study is to better understand the formation mechanisms of these veins and to explain their particular spatial and thickness distribution, with respect to failure of transversely isotropic rocks. The spatial distribution and thickness variation of these veins was quantified during a field campaign in thirteen line transects perpendicular to undeformed veins in underground crosscuts. The fibrous dolomite veins studied are not related to lithological contrasts, but to a strong bedding-parallel shaly fabric, typical for the black shale facies of the Copperbelt Orebody Member. The host rock can hence be considered as transversely isotropic. Growth morphologies vary from antitaxial with a pronounced median surface to asymmetric syntaxial, always with small but quantifiable growth competition. A microstructural fabric study reveals that the undeformed dolomite veins show low-tortuosity vein walls and quantifiable growth competition. Here, we use a Discrete Element Method numerical modelling approach with ESyS-Particle (http://launchpad.net/esys-particle) to simulate the observed properties of the veins. Calibrated numerical specimens with a transversely isotropic matrix are repeatedly brought to failure under constant strain rates by changing the effective strain rates at model boundaries. After each fracture event, fractures in the numerical model are filled with cohesive vein material and the experiment is repeated. By systematically varying

  17. Coupled Thermo-Hydro-Mechanical Numerical Framework for Simulating Unconventional Formations

    NASA Astrophysics Data System (ADS)

    Garipov, T. T.; White, J. A.; Lapene, A.; Tchelepi, H.

    2016-12-01

    Unconventional deposits are found in all world oil provinces. Modeling these systems is challenging, however, due to complex thermo-hydro-mechanical processes that govern their behavior. As a motivating example, we consider in situ thermal processing of oil shale deposits. When oil shale is heated to sufficient temperatures, kerogen can be converted to oil and gas products over a relatively short timespan. This phase change dramatically impact both the mechanical and hydrologic properties of the rock, leading to strongly coupled THMC interactions. Here, we present a numerical framework for simulating tightly-coupled chemistry, geomechanics, and multiphase flow within a reservoir simulator (the AD-GPRS General Purpose Research Simulator). We model changes in constitutive behavior of the rock using a thermoplasticity model that accounts for microstructural evolution. The multi-component, multiphase flow and transport processes of both mass and heat are modeled at the macroscopic (e.g., Darcy) scale. The phase compositions and properties are described by a cubic equation of state; Arrhenius-type chemical reactions are used to represent kerogen conversion. The system of partial differential equations is discretized using a combination of finite-volumes and finite-elements, respectively, for the flow and mechanics problems. Fully implicit and sequentially implicit method are used to solve resulting nonlinear problem. The proposed framework is verified against available analytical and numerical benchmark cases. We demonstrate the efficiency, performance, and capabilities of the proposed simulation framework by analyzing near well deformation in an oil shale formation.

  18. Star Formation and Gas Dynamics in Galactic Disks: Physical Processes and Numerical Models

    NASA Astrophysics Data System (ADS)

    Ostriker, Eve C.

    2011-04-01

    Star formation depends on the available gaseous ``fuel'' as well as galactic environment, with higher specific star formation rates where gas is predominantly molecular and where stellar (and dark matter) densities are higher. The partition of gas into different thermal components must itself depend on the star formation rate, since a steady state distribution requires a balance between heating (largely from stellar UV for the atomic component) and cooling. In this presentation, I discuss a simple thermal and dynamical equilibrium model for the star formation rate in disk galaxies, where the basic inputs are the total surface density of gas and the volume density of stars and dark matter, averaged over ~kpc scales. Galactic environment is important because the vertical gravity of the stars and dark matter compress gas toward the midplane, helping to establish the pressure, and hence the cooling rate. In equilibrium, the star formation rate must evolve until the gas heating rate is high enough to balance this cooling rate and maintain the pressure imposed by the local gravitational field. In addition to discussing the formulation of this equilibrium model, I review the current status of numerical simulations of multiphase disks, focusing on measurements of quantities that characterize the mean properties of the diffuse ISM. Based on simulations, turbulence levels in the diffuse ISM appear relatively insensitive to local disk conditions and energetic driving rates, consistent with observations. It remains to be determined, both from observations and simulations, how mass exchange processes control the ratio of cold-to-warm gas in the atomic ISM.

  19. Formation and maintenance of tubular membrane projections: experiments and numerical calculations.

    PubMed

    Umeda, Tamiki; Inaba, Takehiko; Ishijima, Akihiko; Takiguchi, Kingo; Hotani, Hirokazu

    2008-01-01

    To study the mechanical properties of lipid membranes, we manipulated liposomes by using a system comprising polystyrene beads and laser tweezers, and measured the force required to transform their shapes. When two beads pushed the membrane from inside, spherical liposomes transformed into a lemon-shape. Then a discontinuous shape transformation occurred to form a membrane tube from either end of the liposomes, and the force dropped drastically. We analyzed these processes using a mathematical model based on the bending elasticity of the membranes. Numerical calculations showed that when the bead size was taken into account, the model reproduced both the liposomal shape transformation and the force-extension relation. This result suggests that the size of the beads is responsible for the existence of a force barrier for the tube formation.

  20. Numerical Simulation on a Possible Formation Mechanism of Interplanetary Magnetic Cloud Boundaries

    NASA Astrophysics Data System (ADS)

    Fan, Quan-Lin; Wei, Feng-Si; Feng, Xue-Shang

    2003-08-01

    The formation mechanism of the interplanetary magnetic cloud (MC) boundaries is numerically investigated by simulating the interactions between an MC of some initial momentum and a local interplanetary current sheet. The compressible 2.5D MHD equations are solved. Results show that the magnetic reconnection process is a possible formation mechanism when an MC interacts with a surrounding current sheet. A number of interesting features are found. For instance, the front boundary of the MCs is a magnetic reconnection boundary that could be caused by a driven reconnection ahead of the cloud, and the tail boundary might be caused by the driving of the entrained flow as a result of the Bernoulli principle. Analysis of the magnetic field and plasma data demonstrates that at these two boundaries appear large value of the plasma parameter β, clear increase of plasma temperature and density, distinct decrease of magnetic magnitude, and a transition of magnetic field direction of about 180 degrees. The outcome of the present simulation agrees qualitatively with the observational results on MC boundary inferred from IMP-8, etc. The project supported by National Natural Science Foundation of China under Grant Nos. 40104006, 49925412, and 49990450

  1. Eddy formation behind a coastal cape in a flow generated by transient longshore wind (Numerical experiments)

    NASA Astrophysics Data System (ADS)

    Zhurbas, V. M.; Kuzmina, N. P.; Lyzhkov, D. A.

    2017-05-01

    It is shown that the process of eddy formation behind a coastal cape essentially depends on the method by which longshore flow is generated. Numerical simulations of the flow around a cape generated by transient longshore wind have revealed different modes of eddy formation in a rotating stratified environment depending on such dimensionless parameters as the Burger and Kibel-Rossby numbers, Bu and Ro, respectively. At Ro < 0.6, depending on the magnitude of Bu, either a trapped anticyclonic or cyclonic eddy (at Bu < 0.2) or periodic eddy shedding (at Bu < 0.2) forms. The eddies are weakened and stretched along the coastline at 0.4-0.6 < Ro < 1.4 and ultimately disappear at Ro < 1.4.

  2. Testing the Injectivity of CO2 in a Sub-surface Heterogeneous Reservoir

    NASA Astrophysics Data System (ADS)

    Sundal, A.; Nystuen, J.; Dypvik, H.; Aagaard, P.

    2011-12-01

    This case study on subsurface reservoir characterization, considers the effect of geological heterogeneities on the storage capacity and injectivity of the Johansen Formation, which is a deep, saline aquifer underlying the Troll Gas Field off the Norwegian coast. The Johansen Formation has been interpreted as a sandy, prograding unit, deposited in a shallow marine environment during Early Jurassic time, and is overlain by a shaly unit; the Amundsen Formation. It appears as a wedge shaped sandstone body, up to 140m thick, with an areal extent in the order of 10 000 km2. The Johansen Formation is currently being considered for large scale CO2 storage from two gas power plants situated on the west coast of Norway, both of which will operate with full scale CO2 handling, as proposed by Norwegian authorities. The storage capacity needed is in the order of 3 Mt CO2/year. With access to a new 3D seismic survey (Gassnova, 2010), and based on existing well log data from 25 penetrating wells, we have studied large scale geometries and intra-formational features, and built a geo-conceptual model of the Johansen Formation. The reservoir is heterogeneous, with distinct permeability zonation within clinothems separated by less permeable layers. In order to obtain better understanding of crucial reservoir parameters and supplement limited data, comparison of data from easily accessible analogue rock units is useful. For this purpose the unit should be well exposed and thoroughly documented, such as the Panther Tongue Member (Star Point Formation, Mesa Verde Group) in Book Cliffs, from which we have collected some comparable permeability estimates for the model. On a micro scale, mineralogy, grain size/shape and pore geometry constitue major controls on reservoir porosity and permeability. Direct geological information is at this point in time limited to a few meters of core, from which detailed mineralogical information has been derived (optical microscopy, SEM, XRD), and some

  3. Recirculation System for Geothermal Energy Recovery in Sedimentary Formations: Laboratory Experiments and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Elkhoury, J. E.; Detwiler, R. L.; Serajian, V.; Bruno, M. S.

    2012-12-01

    Geothermal energy resources are more widespread than previously thought and have the potential for providing a significant amount of sustainable clean energy worldwide. In particular, hot permeable sedimentary formations provide many advantages over traditional geothermal recovery and enhanced geothermal systems in low permeability crystalline formations. These include: (1) eliminating the need for hydraulic fracturing, (2) significant reduction in risk for induced seismicity, (3) reducing the need for surface wastewater disposal, (4) contributing to decreases in greenhouse gases, and (5) potential use for CO2 sequestration. Advances in horizontal drilling, completion, and production technology from the oil and gas industry can now be applied to unlock these geothermal resources. Here, we present experimental results from a laboratory scale circulation system and numerical simulations aimed at quantifying the heat transfer capacity of sedimentary rocks. Our experiments consist of fluid flow through a saturated and pressurized sedimentary disc of 23-cm diameter and 3.8-cm thickness heated along its circumference at a constant temperature. Injection and production ports are 7.6-cm apart in the center of the disc. We used DI de-aired water and mineral oil as working fluids and explored temperatures from 20 to 150 oC and flow rates from 2 to 30 ml/min. We performed experiments on sandstone samples (Castlegate and Kirby) with different porosity, permeability and thermal conductivity to evaluate the effect of hydraulic and thermal properties on the heat transfer capacity of sediments. The producing fluid temperature followed an exponential form with time scale transients between 15 and 45 min. Steady state outflow temperatures varied between 60% and 95% of the set boundary temperature, higher percentages were observed for lower temperatures and flow rates. We used the flow and heat transport simulator TOUGH2 to develop a numerical model of our laboratory setting. Given

  4. Assessing Probabilistic Reasoning in Verbal-Numerical and Graphical-Pictorial Formats: An Evaluation of the Psychometric Properties of an Instrument

    ERIC Educational Resources Information Center

    Agus, Mirian; Penna, Maria Pietronilla; Peró-Cebollero, Maribel; Guàrdia-Olmos, Joan

    2016-01-01

    Research on the graphical facilitation of probabilistic reasoning has been characterised by the effort expended to identify valid assessment tools. The authors developed an assessment instrument to compare reasoning performances when problems were presented in verbal-numerical and graphical-pictorial formats. A sample of undergraduate psychology…

  5. A numerical analysis of the Born approximation for image formation modeling of differential interference contrast microscopy for human embryos

    NASA Astrophysics Data System (ADS)

    Trattner, Sigal; Feigin, Micha; Greenspan, Hayit; Sochen, Nir

    2008-03-01

    The differential interference contrast (DIC) microscope is commonly used for the visualization of live biological specimens. It enables the view of the transparent specimens while preserving their viability, being a non-invasive modality. Fertility clinics often use the DIC microscope for evaluation of human embryos quality. Towards quantification and reconstruction of the visualized specimens, an image formation model for DIC imaging is sought and the interaction of light waves with biological matter is examined. In many image formation models the light-matter interaction is expressed via the first Born approximation. The validity region of this approximation is defined in a theoretical bound which limits its use to very small specimens with low dielectric contrast. In this work the Born approximation is investigated via the Helmholtz equation, which describes the interaction between the specimen and light. A solution on the lens field is derived using the Gaussian Legendre quadrature formulation. This numerical scheme is considered both accurate and efficient and has shortened significantly the computation time as compared to integration methods that required a great amount of sampling for satisfying the Whittaker - Shannon sampling theorem. By comparing the numerical results with the theoretical values it is shown that the theoretical bound is not directly relevant to microscopic imaging and is far too limiting. The numerical exhaustive experiments show that the Born approximation is inappropriate for modeling the visualization of thick human embryos.

  6. Comparing Psychology Undergraduates' Performance in Probabilistic Reasoning under Verbal-Numerical and Graphical-Pictorial Problem Presentation Format: What Is the Role of Individual and Contextual Dimensions?

    ERIC Educational Resources Information Center

    Agus, Mirian; Peró-Cebollero, Maribel; Penna, Maria Pietronilla; Guàrdia-Olmos, Joan

    2015-01-01

    This study aims to investigate about the existence of a graphical facilitation effect on probabilistic reasoning. Measures of undergraduates' performances on problems presented in both verbal-numerical and graphical-pictorial formats have been related to visuo-spatial and numerical prerequisites, to statistical anxiety, to attitudes towards…

  7. Flow and Transport in Highly Heterogeneous Porous Formations: Numerical Experiments Performed Using the Analytic Element Method

    NASA Astrophysics Data System (ADS)

    Jankovic, I.

    2002-05-01

    Flow and transport in porous formations are analyzed using numerical simulations. Hydraulic conductivity is treated as a spatial random function characterized by a probability density function and a two-point covariance function. Simulations are performed for a multi-indicator conductivity structure developed by Gedeon Dagan (personal communication). This conductivity structure contains inhomogeneities (inclusions) of elliptical and ellipsoidal geometry that are embedded in a homogeneous background. By varying the distribution of sizes and conductivities of inclusions, any probability density function and two-point covariance may be reproduced. The multi-indicator structure is selected since it yields simple approximate transport solutions (Aldo Fiori, personal communication) and accurate numerical solutions (based on the Analytic Element Method). The dispersion is examined for two conceptual models. Both models are based on the multi-indicator conductivity structure. The first model is designed to examine dispersion in aquifers with continuously varying conductivity. The inclusions in this model cover as much area/volume of the porous formation as possible. The second model is designed for aquifers that contain clay/sand/gravel lenses embedded in otherwise homogeneous background. The dispersion in both aquifer types is simulated numerically. Simulation results are compared to those obtained using simple approximate solutions. In order to infer transport statistics that are representative of an infinite domain using the numerical experiments, the inclusions are placed in a domain that was shaped as a large ellipse (2D) and a large spheroid (3D) that were submerged in an unbounded homogeneous medium. On a large scale, the large body of inclusions behaves like a single large inhomogeneity. The analytic solution for a uniform flow past the single inhomogeneity of such geometry yields uniform velocity inside the domain. The velocity differs from that at infinity and

  8. Experimental and numerical study of spatter formation and composition change in fiber laser welding of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Wu, Dongsheng; Hua, Xueming; Ye, Youxiong; Huang, Lijin; Li, Fang; Huang, Ye

    2018-05-01

    A laser welding experiment with glass is conducted to directly observe the keyhole behavior and spatter formation in fiber laser welding of aluminum alloy. A 3D model is developed to investigate the spatter formation and composition change. An additional conservation equation is introduced to describe the Mg element distribution, and the Mg element loss due to evaporation is also considered. Based on numerical and experimental results, it is found that the keyhole geometry in laser welding of aluminum alloy is different from that in laser welding of steel. There are three required steps for spatter formation around the keyhole. The high momentum of the molten metal, the high recoil pressure and vapor shear stress, and the low surface tension around the keyhole contribute to the easy formation of spatter. The in-homogeneous distribution of Mg element in the weld can be attributable to the continuous evaporation of Mg element at the top surface of keyhole rear, the upward flow of low Mg element region from the bottom of the keyhole to the top surface of keyhole rear along the fusion line, the collapse of the keyhole, and the ejection of spatters.

  9. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-07-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disc galaxy set-ups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disc. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation, and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine-tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, and require a better star formation prescription or most likely some combination of these issues.

  10. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-04-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.

  11. Numerically Simulating Carbonate Mineralization of Basalt with Injection of Carbon Dioxide into Deep Saline Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Mark D.; McGrail, B. Peter; Schaef, Herbert T.

    2006-07-08

    composition and mineral assemblages on the reaction rates. This study numerically investigates the injection, migration and sequestration of supercritical carbon dioxide in deep Columbia River basalt formations using the multifluid subsurface flow and reactive transport simulator STOMP-CO2 with its ECKEChem module. Simulations are executed on high resolution multiple stochastic realizations of the layered basalt systems and demonstrate the migration behavior through layered basalt formations and the mineralization of dissolved carbon dioxide. Reported results include images of the migration behavior, distribution of carbonate formation, quantities of injected and sequestered carbon dioxide, and percentages of the carbon dioxide sequestered by different mechanisms over time.« less

  12. Constant DI pacing suppresses cardiac alternans formation in numerical cable models

    NASA Astrophysics Data System (ADS)

    Zlochiver, S.; Johnson, C.; Tolkacheva, E. G.

    2017-09-01

    Cardiac repolarization alternans describe the sequential alternation of the action potential duration (APD) and can develop during rapid pacing. In the ventricles, such alternans may rapidly turn into life risking arrhythmias under conditions of spatial heterogeneity. Thus, suppression of alternans by artificial pacing protocols, or alternans control, has been the subject of numerous theoretical, numerical, and experimental studies. Yet, previous attempts that were inspired by chaos control theories were successful only for a short spatial extent (<2 cm) from the pacing electrode. Previously, we demonstrated in a single cell model that pacing with a constant diastolic interval (DI) can suppress the formation of alternans at high rates of activation. We attributed this effect to the elimination of feedback between the pacing cycle length and the last APD, effectively preventing restitution-dependent alternans from developing. Here, we extend this idea into cable models to study the extent by which constant DI pacing can control alternans during wave propagation conditions. Constant DI pacing was applied to ventricular cable models of up to 5 cm, using human kinetics. Our results show that constant DI pacing significantly shifts the onset of both cardiac alternans and conduction blocks to higher pacing rates in comparison to pacing with constant cycle length. We also demonstrate that constant DI pacing reduces the propensity of spatially discordant alternans, a precursor of wavebreaks. We finally found that the protective effect of constant DI pacing is stronger for increased electrotonic coupling along the fiber in the sense that the onset of alternans is further shifted to higher activation rates. Overall, these results support the potential clinical applicability of such type of pacing in improving protocols of implanted pacemakers, in order to reduce the risk of life-threatening arrhythmias. Future research should be conducted in order to experimentally validate

  13. Investigation of cellular detonation structure formation via linear stability theory and 2D and 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Borisov, S. P.; Kudryavtsev, A. N.

    2017-10-01

    Linear and nonlinear stages of the instability of a plane detonation wave (DW) and the subsequent process of formation of cellular detonation structure are investigated. A simple model with one-step irreversible chemical reaction is used. The linear analysis is employed to predict the DW front structure at the early stages of its formation. An emerging eigenvalue problem is solved with a global method using a Chebyshev pseudospectral method and the LAPACK software library. A local iterative shooting procedure is used for eigenvalue refinement. Numerical simulations of a propagation of a DW in plane and rectangular channels are performed with a shock capturing WENO scheme of 5th order. A special method of a computational domain shift is implemented in order to maintain the DW in the domain. It is shown that the linear analysis gives certain predictions about the DW structure that are in agreement with the numerical simulations of early stages of DW propagation. However, at later stages, a merger of detonation cells occurs so that their number is approximately halved. Computations of DW propagation in a square channel reveal two different types of spatial structure of the DW front, "rectangular" and "diagonal" types. A spontaneous transition from the rectangular to diagonal type of structure is observed during propagation of the DW.

  14. Representations of numerical and non-numerical magnitude both contribute to mathematical competence in children.

    PubMed

    Lourenco, Stella F; Bonny, Justin W

    2017-07-01

    A growing body of evidence suggests that non-symbolic representations of number, which humans share with nonhuman animals, are functionally related to uniquely human mathematical thought. Other research suggesting that numerical and non-numerical magnitudes not only share analog format but also form part of a general magnitude system raises questions about whether the non-symbolic basis of mathematical thinking is unique to numerical magnitude. Here we examined this issue in 5- and 6-year-old children using comparison tasks of non-symbolic number arrays and cumulative area as well as standardized tests of math competence. One set of findings revealed that scores on both magnitude comparison tasks were modulated by ratio, consistent with shared analog format. Moreover, scores on these tasks were moderately correlated, suggesting overlap in the precision of numerical and non-numerical magnitudes, as expected under a general magnitude system. Another set of findings revealed that the precision of both types of magnitude contributed shared and unique variance to the same math measures (e.g. calculation and geometry), after accounting for age and verbal competence. These findings argue against an exclusive role for non-symbolic number in supporting early mathematical understanding. Moreover, they suggest that mathematical understanding may be rooted in a general system of magnitude representation that is not specific to numerical magnitude but that also encompasses non-numerical magnitude. © 2016 John Wiley & Sons Ltd.

  15. On a silicon-based photonic-crystal cavity for the near-IR region: Numerical simulation and formation technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serafimovich, P. G.; Stepikhova, M. V., E-mail: mst@ipm.sci-nnov.ru; Kazanskiy, N. L.

    2016-08-15

    The production technology of a photonic-crystal cavity formed as a group of holes in a silicon strip waveguide by ion-beam etching is described. The parasitic effect associated with hole conicity which develops upon hole formation by the given technology is studied. Numerical simulation shows that the hole-conicity induced decrease in the cavity quality factor can be compensated with consideration for the hole volume. The influence of the waveguide thickness on the resonance wavelength and quality factor of the photonic-crystal cavity is analyzed.

  16. Representations of Numerical and Non-Numerical Magnitude Both Contribute to Mathematical Competence in Children

    ERIC Educational Resources Information Center

    Lourenco, Stella F.; Bonny, Justin W.

    2017-01-01

    A growing body of evidence suggests that non-symbolic representations of number, which humans share with nonhuman animals, are functionally related to uniquely human mathematical thought. Other research suggesting that numerical and non-numerical magnitudes not only share analog format but also form part of a general magnitude system raises…

  17. Executive Function Effects and Numerical Development in Children: Behavioural and ERP Evidence from a Numerical Stroop Paradigm

    ERIC Educational Resources Information Center

    Soltesz, Fruzsina; Goswami, Usha; White, Sonia; Szucs, Denes

    2011-01-01

    Most research on numerical development in children is behavioural, focusing on accuracy and response time in different problem formats. However, Temple and Posner (1998) used ERPs and the numerical distance task with 5-year-olds to show that the development of numerical representations is difficult to disentangle from the development of the…

  18. Numerical Simulation of Sediment Plug Formation in Alluvial Channels

    NASA Astrophysics Data System (ADS)

    Posner, A. J.; Duan, J. G.

    2011-12-01

    A sediment plug is the aggregation of sediment in a river reach that completely blocks the original channel resulting in plug growth upstream by accretion and flooding in surrounding areas. Sediment plugs historically form over relatively short periods, in many cases a matter of weeks. Although sediment plugs are much more common in reach constrictions associated with large woody debris, the mouths of tributaries, and along coastal regions, this investigation focuses on sediment plug formation in an alluvial river. During high flows in the years 1991, 1995, 2005, and 2008, a sediment plug formed in the San Marcial reach of the Middle Rio Grande. The Bureau of Reclamation has had to spend millions of dollars dredging the channel to restore flows to Elephant Butte Reservoir. The hydrodynamic and sediment transport processes, associated with plug formation, occurring in this reach are driven by 1) a flow constriction associated with a rock outcrop, 2) a railroad bridge, and 3) the water level of the downstream reservoir. The three-dimensional hydrodynamic model, Delft3D, was implemented to determine the hydrodynamic and sediment transport parameters and variables required to simulate plug formation in an effort to identify hydro- and morphodynamic thresholds. Several variables were identified by previous studies as metrics for plug formation. These variables were used in our investigation to detect the relative magnitude of each process. Both duration and degree of high flow events were simulated, along with extent of cohesive sediment deposits, reservoir level, and percent of fines in suspended sediment distribution. Results of this analysis illustrate that this model is able to reproduce the sediment plug formation. Model calibration was based on measured water levels and changes in bathymetry using both sediment transport and morphologic change parameters. Changes to hydraulic and sediment parameters are not proportional to morphologic changes and are asymptotic in

  19. Analytical and Numerical Models of Pressurization for CO2 Storage in Deep Saline Formations

    NASA Astrophysics Data System (ADS)

    Wildgust, N.; Cavanagh, A.

    2010-12-01

    Deep saline formations are expected to store gigatonnes of CO2 over the coming decades, making a significant contribution to greenhouse gas mitigation. At present, our experience of deep saline formation storage is limited to a small number of demonstration projects that have successfully injected megatonnes of captured CO2. However, concerns have been raised over pressurization, and related brine displacement, in deep saline formations, given the anticipated scale of future storage operations. Whilst industrial-scale demonstration projects such as Sleipner and In Salah have not experienced problems, generic flow models have indicated that, in some cases, pressure may be an issue. The problem of modeling deep saline formation pressurization has been approached in a number of different ways by researchers, with published analytical and numerical solutions showing a wide range of outcomes. The divergence of results (either supporting or negating the pressurization issue) principally reflects the a priori choice of boundary conditions. These approaches can be summed up as either 'open' or 'closed': a) open system models allow the formation pressure to dissipate laterally, resulting in reasonable storage scenarios; b) closed system models predict pressurization, resulting in a loss of injectivity and/or storage formation leakage. The latter scenario predicts that storage sites will commonly fail to accommodate injected CO2 at a rate sufficient to handle routine projects. Our models aim to demonstrate that pressurization, and the related brine displacement issue, need to be addressed at a regional scale with geologically accurate boundary conditions. Given that storage formations are unlikely to have zero-flow boundaries (closed system assumption), the boundary contribution to pressure relief from low permeability shales may be significant. At a field scale, these shales are effectively perfect seals with respect to multiphase flow, but are open with respect to single

  20. Effect of risk ladder format on risk perception in high- and low-numerate individuals.

    PubMed

    Keller, Carmen; Siegrist, Michael; Visschers, Vivianne

    2009-09-01

    Utilizing a random sample from the general population (N= 257), we examined the effect of the radon risk ladder on risk perception, as qualified by respondents' numeracy. The radon risk ladder provides comparative risk information about the radon equivalent of smoking risk. We compared a risk ladder providing smoking risk information with a risk ladder not providing this information. A 2 (numeracy; high, low) x 3 (risk level; high, medium, low) x 2 (smoking risk comparison: with/without) between subjects experimental design was used. A significant (p < 0.045) three-way interaction between format, risk level, and numeracy was identified. Participants with low numeracy skills, as well as participants with high numeracy skills, generally distinguished between low, medium, and high risk levels when the risk ladder with comparative smoking risk information was presented. When the risk ladder without the comparative information about the smoking risk was presented, low-numerate individuals differentiated between risk levels to a much lesser extent than high-numerate individuals did. These results provide empirical evidence that the risk ladder can be a useful tool in enabling people to interpret various risk levels. Additionally, these results allow us to conclude that providing comparative information within a risk ladder is particularly helpful to the understanding of different risk levels by people with low numeracy skills.

  1. Surface of the comet 67P from PHILAE/CIVA images as clues to the formation of the comet nucleus

    NASA Astrophysics Data System (ADS)

    Poulet, Francois; Bibring, Jean-Pierre; Carter, John; Eng, Pascal; Gondet, Brigitte; Jorda, Laurent; Langevin, Yves; Le Mouélic, Stéphane; Pilorget, Cédric

    2015-04-01

    The CIVA cameras onboard PHILAE provided the first ever in situ images of the surface of a comet (Bibring et al., this conf). The panorama acquired by CIVA at the landing site reveals a rough terrain dominated by agglomerates of consolidated materials similar to cm-sized pebbles. While the composition of these materials is unknown, their nature will be discussed in relation to both endogenic and exogenic processes that may sculpted the landscape of the landing site. These processes includes erosion (spatially non-uniform) by sublimation, redeposition of particles after ejection, fluidization and transport of cometary material on the surface, sintering effect, thermal fatigue, thermal stress, size segregation due to shaking, eolian erosion due to local outflow of cometary vapor and impact cratering at various scales. Recent advancements in planet formation theory suggest that the initial planetesimals (or cometestimals) may grow directly from the gravitational collapse of aerodynamically concentrated small particles, often referred to as "pebbles" (Johansen et al. 2007, Nature 448, 1022; Cuzzi et al. 2008, AJ 687, 1432). We will then discuss the possibility that the observed pebble pile structures are indicative of the formation process from which the initial nucleus formed, and how we can use this idea to learn about protoplanetary disks and the early processes involved in the Solar System formation.

  2. Numerical simulation of spatter formation during fiber laser welding of 5083 aluminum alloy at full penetration condition

    NASA Astrophysics Data System (ADS)

    Wu, Dongsheng; Hua, Xueming; Huang, Lijin; Zhao, Jiang

    2018-03-01

    The droplet escape condition in laser welding is established in this paper. A three-dimensional numerical model is developed to study the weld pool convection and spatter formation at full penetration during the fiber laser welding of 5083 aluminum alloy. It is found that when laser power is 9 kW, the bottom of the keyhole is dynamically opened and closed. When the bottom of the keyhole is closed, the molten metal at the bottom of the back keyhole wall flows upwards along the fusion line. When the bottom of the keyhole is opened, few spatters can be seen around the keyhole at the top surface, two flow patterns exists in the rear part of the keyhole: a portion of molten metal flows upwards along the fusion line, other portion of molten metal flows to the bottom of the keyhole, which promote the spatter formation at the bottom of the keyhole rear wall.

  3. On the role of disks in the formation of stellar systems: A numerical parameter study of rapid accretion

    DOE PAGES

    Kratter, Kaitlin M.; Matzner, Christopher D.; Krumholz, Mark R.; ...

    2009-12-23

    We study rapidly accreting, gravitationally unstable disks with a series of idealized global, numerical experiments using the code ORION. Our numerical parameter study focuses on protostellar disks, showing that one can predict disk behavior and the multiplicity of the accreting star system as a function of two dimensionless parameters which compare the infall rate to the disk sound speed and orbital period. Although gravitational instabilities become strong, we find that fragmentation into binary or multiple systems occurs only when material falls in several times more rapidly than the canonical isothermal limit. The disk-to-star accretion rate is proportional to the infallmore » rate and governed by gravitational torques generated by low-m spiral modes. Furthermore, we also confirm the existence of a maximum stable disk mass: disks that exceed ~50% of the total system mass are subject to fragmentation and the subsequent formation of binary companions.« less

  4. Numerical modelling of lithospheric flexure at subduction zones: what controls the formation of petit-spot volcanoes?

    NASA Astrophysics Data System (ADS)

    Bessat, Annelore; Pilet, Sébastien; Duretz, Thibault; Schmalholz, Stefan M.

    2017-04-01

    Petit-spot volcanoes were discovered fifteen years ago by Japanese researchers at the top of the down going plate in front of Japan (1). The location of these small lava flows is unusual, and seems related to the plate flexure in front of the subduction zone. Their formation seems, therefore, not to correspond to any classical type of volcanism such as MORB generation at mid ocean ridges, arc volcanism in subduction zones or intraplate volcanoes classically associated to deep mantle plumes. The discovery of petit-spot volcanoes is of great significance as it demonstrates, for the first time, that tectonic processes could generate intraplate volcanism and supports the existence of small-degree melts at the base of the lithosphere. First models for the formation of petit-spot volcanoes suggest that plate bending produces extension at the base of the lithosphere, thus allowing large cracks to propagate across the lithosphere. These cracks promote the extraction of low degree melts from the base of the lithosphere (2). However, the study of petit-spot mantle xenoliths from Japan (3) demonstrates that low degree melts are not directly extracted to the surface, but percolate and metasomatize the oceanic lithosphere. The aim of this study is to better understand the physical processes associated with the formation of petit-spot volcanoes. These thermo-mechanical processes will be studied using upper-mantle scale numerical simulations based on a 2D finite difference code. The numerical model considers viscoelastoplastic deformation; combination of laboratory-derived flow laws (e.g. diffusion and dislocation creep, Peierls creep) and heat transfer. The first step is to quantify the deformation processes that occur in the lithosphere and at the Lithosphere-Asthenosphere Boundary (LAB). The aims are to investigate, in particular, extensional deformation at the base of the lithosphere which is induced by plate flexure in front of a subduction zone. This study focuses on

  5. Gyrotactic trapping: A numerical study

    NASA Astrophysics Data System (ADS)

    Ghorai, S.

    2016-04-01

    Gyrotactic trapping is a mechanism proposed by Durham et al. ["Disruption of vertical motility by shear triggers formation of thin Phytoplankton layers," Science 323, 1067-1070 (2009)] to explain the formation of thin phytoplankton layer just below the ocean surface. This mechanism is examined numerically using a rational model based on the generalized Taylor dispersion theory. The crucial role of sedimentation speed in the thin layer formation is demonstrated. The effects of variation in different parameters on the thin layer formation are also investigated.

  6. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations

    PubMed Central

    Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz

    2014-01-01

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. PMID:25024412

  7. Presenting numeric information with percentages and descriptive risk labels: A randomized trial

    PubMed Central

    Sinayev, Aleksandr; Peters, Ellen; Tusler, Martin; Fraenkel, Liana

    2015-01-01

    Background Previous research demonstrated that providing (vs. not providing) numeric information about medications’ adverse effects (AEs) increased comprehension and willingness to use medication, but left open the question about which numeric format is best. Objective To determine which of four tested formats (percentage, frequency, percentage+risk label, frequency+risk label) maximizes comprehension and willingness to use medication across age and numeracy levels. Design In a cross-sectional internet survey (N=368; American Life Panel, 5/15/08–6/18/08), respondents were presented with a hypothetical prescription medication for high cholesterol. AE likelihoods were described using one of four tested formats. Main outcome measures were risk comprehension (ability to identify AE likelihood from a table) and willingness to use the medication (7-point scale; not likely=0, very likely=6). Results The percentage+risk label format resulted in the highest comprehension and willingness to use the medication compared to the other three formats (mean comprehension in percentage + risk label format=95% vs mean across the other three formats = 81%; mean willingness= 3.3 vs 2.95, respectively). Comprehension differences between percentage and frequency formats were smaller among the less numerate. Willingness to use medication depended less on age and numeracy when labels were used. Limitations Generalizability is limited by use of a sample that was older, more educated, and better off financially than national averages. Conclusions Providing numeric AE-likelihood information in a percentage format with risk labels is likely to increase risk comprehension and willingness to use a medication compared to other numeric formats. PMID:25952743

  8. Presenting Numeric Information with Percentages and Descriptive Risk Labels: A Randomized Trial.

    PubMed

    Sinayev, Aleksandr; Peters, Ellen; Tusler, Martin; Fraenkel, Liana

    2015-11-01

    Previous research demonstrated that providing (v. not providing) numeric information about the adverse effects (AEs) of medications increased comprehension and willingness to use medication but left open the question about which numeric format is best. The objective was to determine which of 4 tested formats (percentage, frequency, percentage + risk label, frequency + risk label) maximizes comprehension and willingness to use medication across age and numeracy levels. In a cross-sectional internet survey (N = 368; American Life Panel, 15 May 2008 to 18 June 2008), respondents were presented with a hypothetical prescription medication for high cholesterol. AE likelihoods were described using 1 of 4 tested formats. Main outcome measures were risk comprehension (ability to identify AE likelihood from a table) and willingness to use the medication (7-point scale; not likely = 0, very likely = 6). The percentage + risk label format resulted in the highest comprehension and willingness to use the medication compared with the other 3 formats (mean comprehension in percentage + risk label format = 95% v. mean across the other 3 formats = 81%; mean willingness = 3.3 v. 2.95, respectively). Comprehension differences between percentage and frequency formats were smaller among the less numerate. Willingness to use medication depended less on age and numeracy when labels were used. Generalizability is limited by the use of a sample that was older, more educated, and better off financially than national averages. Providing numeric AE-likelihood information in a percentage format with risk labels is likely to increase risk comprehension and willingness to use a medication compared with other numeric formats. © The Author(s) 2015.

  9. libvaxdata: VAX data format conversion routines

    USGS Publications Warehouse

    Baker, Lawrence M.

    2005-01-01

    libvaxdata provides a collection of routines for converting numeric data-integer and floating-point-to and from the formats used on a Digital Equipment Corporation1 (DEC) VAX 32-bit minicomputer (Brunner, 1991). Since the VAX numeric data formats are inherited from those used on a DEC PDP-11 16-bit minicomputer, these routines can be used to convert PDP-11 data as well. VAX numeric data formats are also the default data formats used on DEC Alpha 64-bit minicomputers running OpenVMS The libvaxdata routines are callable from Fortran or C. They require that the caller use two's-complement format for integer data and IEEE 754 format (ANSI/IEEE, 1985) for floating-point data. They also require that the 'natural' size of a C int type (integer) is 32 bits. That is the case for most modern 32-bit and 64-bit computer systems. Nevertheless, you may wish to consult the Fortran or C compiler documentation on your system to be sure. Some Fortran compilers support conversion of VAX numeric data on-the-fly when reading or writing unformatted files, either as a compiler option or a run-time I/O option. This feature may be easier to use than the libvaxdata routines. Consult the Fortran compiler documentation on your system to determine if this alternative is available to you. 1Later Compaq Computer Corporation, now Hewlett-Packard Company

  10. Clinical evaluation of the WOMAC 3.0 OA Index in numeric rating scale format using a computerized touch screen version.

    PubMed

    Theiler, R; Spielberger, J; Bischoff, H A; Bellamy, N; Huber, J; Kroesen, S

    2002-06-01

    The Western Ontario and McMaster Universities (WOMAC) Osteoarthritis Index is a previously described self-administered questionnaire covering three domains: pain, stiffness and function. It has been validated in patients with osteoarthritis (OA) of the hip or knee in a paper-based format. To validate the WOMAC 3.0 using a numerical rating scale in a computerized touch screen format allowing immediate evaluation of the questionnaire. In the computed version cartoons, written and audio instruments were included in order facilitate application. Fifty patients, demographically balanced, with radiographically proven primary hip or knee OA completed the classical paper and the new computerized WOMAC version. Subjects were randomized either to paper format or computerized format first to balance possible order effects. The intra-class correlation coefficients for pain, stiffness and function values were 0.915, 0.745 and 0.940, respectively. The Spearman correlation coefficients for pain, stiffness and function were 0.88, 0.77 and 0.87, respectively. These data indicate that the computerized WOMAC OA index 3.0 is comparable to the paper WOMAC in all three dimensions. The computerized version would allow physicians to get an immediate result and if present a direct comparison with a previous exam. Copyright 2002 OsteoArthritis Research Society International. Published by Elsevier Science Ltd. All rights reserved.

  11. Ionization impact on molecular clouds and star formation. Numerical simulations and observations

    NASA Astrophysics Data System (ADS)

    Tremblin, P.

    2012-11-01

    At all the scales of Astrophysics, the impact of the ionization from massive stars is a crucial issue. At the galactic scale, the ionization can regulate star formation by supporting molecular clouds against gravitational collapse and at the stellar scale, indications point toward a possible birth place of the Solar System close to massive stars. At the molecular cloud scale, it is clear that the hot ionized gas compresses the surrounding cold gas, leading to the formation of pillars, globules, and shells of dense gas in which some young stellar objects are observed. What are the formation mechanisms of these structures? Are the formation of these young stellar objects triggered or would have they formed anyway? Do massive stars have an impact on the distribution of the surrounding gas? Do they have an impact on the mass distribution of stars (the initial mass function, IMF)? This thesis aims at shedding some light on these questions, by focusing especially on the formation of the structures between the cold and the ionized gas. We present the state of the art of the theoretical and observational works on ionized regions (H ii regions) and we introduce the numerical tools that have been developed to model the ionization in the hydrodynamic simulations with turbulence performed with the HERACLES code. Thanks to the simulations, we present a new model for the formation of pillars based on the curvature and collapse of the dense shell on itself and a new model for the formations of cometary globules based on the turbulence of the cold gas. Several diagnostics have been developed to test these new models in the observations. If pillars are formed by the collapse of the dense shell on itself, the velocity spectrum of a nascent pillar presents a large spectra with a red-shifted and a blue-shifted components that are caused by the foreground and background parts of the shell that collapse along the line of sight. If cometary globules emerge because of the turbulence of

  12. Numerical modelling and experimental study of liquid evaporation during gel formation

    NASA Astrophysics Data System (ADS)

    Pokusaev, B. G.; Khramtsov, D. P.

    2017-11-01

    Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.

  13. Numerical Study on the Thermal Stress and its Formation Mechanism of a Thermoelectric Device

    NASA Astrophysics Data System (ADS)

    Pan, Tao; Gong, Tingrui; Yang, Wei; Wu, Yongjia

    2018-06-01

    The strong thermo-mechanical stress is one of the most critical failure mechanisms that affect the durability of thermoelectric devices. In this study, numerical simulations on the formation mechanism of the maximum thermal stress inside the thermoelectric device have been performed by using finite element method. The influences of the material properties and the thermal radiation on the thermal stress have been examined. The results indicate that the maximum thermal stress was located at the contact position between the two materials and occurred due to differential thermal expansions and displacement constraints of the materials. The difference in the calculated thermal stress value between the constant and the variable material properties was between 3% and 4%. At a heat flux of 1 W·cm-2 and an emissivity of 0.5, the influence of the radiation heat transfer on the thermal stress was only about 5%; however, when the heat flux was 20 W·cm-2 and the emissivity was 0.7, the influence of the radiation heat transfer was more than 30%.

  14. Complex crater formation: Insights from combining observations of shock pressure distribution with numerical models at the West Clearwater Lake impact structure

    NASA Astrophysics Data System (ADS)

    Rae, A. S. P.; Collins, G. S.; Grieve, R. A. F.; Osinski, G. R.; Morgan, J. V.

    2017-07-01

    Large impact structures have complex morphologies, with zones of structural uplift that can be expressed topographically as central peaks and/or peak rings internal to the crater rim. The formation of these structures requires transient strength reduction in the target material and one of the proposed mechanisms to explain this behavior is acoustic fluidization. Here, samples of shock-metamorphosed quartz-bearing lithologies at the West Clearwater Lake impact structure, Canada, are used to estimate the maximum recorded shock pressures in three dimensions across the crater. These measurements demonstrate that the currently observed distribution of shock metamorphism is strongly controlled by the formation of the structural uplift. The distribution of peak shock pressures, together with apparent crater morphology and geological observations, is compared with numerical impact simulations to constrain parameters used in the block-model implementation of acoustic fluidization. The numerical simulations produce craters that are consistent with morphological and geological observations. The results show that the regeneration of acoustic energy must be an important feature of acoustic fluidization in crater collapse, and should be included in future implementations. Based on the comparison between observational data and impact simulations, we conclude that the West Clearwater Lake structure had an original rim (final crater) diameter of 35-40 km and has since experienced up to 2 km of differential erosion.

  15. Planet Formation in Binaries

    NASA Astrophysics Data System (ADS)

    Thebault, P.; Haghighipour, N.

    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in particular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the "standard" planet-formation scenario. Some tentative solutions to this apparent paradox are presented. The last part of our review presents a thorough description of the problem of planet habitability, for which the binary environment creates a complex situation because of the presence of two irradation sources of varying distance.

  16. Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames

    NASA Astrophysics Data System (ADS)

    Liu, Fengshan; Guo, Hongsheng; Smallwood, Gregory J.; Gülder, Ömer L.

    2003-06-01

    A numerical study of soot formation and oxidation in axisymmetric laminar coflow non-smoking and smoking ethylene diffusion flames was conducted using detailed gas-phase chemistry and complex thermal and transport properties. A modified two-equation soot model was employed to describe soot nucleation, growth and oxidation. Interaction between the gas-phase chemistry and soot chemistry was taken into account. Radiation heat transfer by both soot and radiating gases was calculated using the discrete-ordinates method coupled with a statistical narrow-band correlated-k based band model, and was used to evaluate the simple optically thin approximation. The governing equations in fully elliptic form were solved. The current models in the literature describing soot oxidation by O2 and OH have to be modified in order to predict the smoking flame. The modified soot oxidation model has only moderate effects on the calculation of the non-smoking flame, but dramatically affects the soot oxidation near the flame tip in the smoking flame. Numerical results of temperature, soot volume fraction and primary soot particle size and number density were compared with experimental data in the literature. Relatively good agreement was found between the prediction and the experimental data. The optically thin approximation radiation model significantly underpredicts temperatures in the upper portion of both flames, seriously affecting the soot prediction.

  17. Using hypothetical data to assess the effect of numerical format and context on the perception of coronary heart disease risk.

    PubMed

    Fair, Anna K I; Murray, Peter G; Thomas, Anna; Cobain, Mark R

    2008-01-01

    To test the hypothesis that responses to coronary heart disease (CHD) risk estimates are heightened by use of ratio formats, peer group risk information, and long time frames. Cross-sectional, experimental, between-factors design. Three regions in England. A total of 740 men and women ages 30 to 70 years. Risk perception, "emotional" response, intention to change lifestyle. Logistic regression was used to investigate the impact of numerical format (ratio vs. percentage), peer group risk (personal vs. peer group), and time frame (10-year vs. 30-year) on risk perception. Analysis of variance was used to investigate the impact of these factors on emotional response and intention to change lifestyle questions. Higher perceived risk was observed when risk was presented as a ratio (p < .001) and when it was supplemented with peer group risk estimates (p = .006). Emotional responses to risk information were heightened when risk was presented as a ratio (p = .0004) and supplemented with peer group risk estimates (p = .002). Presentation with ratios also increased intention to make lifestyle changes (p = .047). Perception of CHD risk information is affected by the presentation format. Where absolute risks may appear low, use of ratios and supplementation of personal risk estimates with peer group risk may increase risk perception.

  18. Porous media deformation due to fluid flow: From hydrofracture formation to seismic liquefaction, a numerical and experimental study

    NASA Astrophysics Data System (ADS)

    Toussaint, R.; Turkaya, S.; Eriksen, F.; Clément, C.; Sanchez-Colina, G.; Maloy, K. J.; Flekkoy, E.; Aharonov, E.; Lengliné, O.; Daniel, G.; Altshuler, E.; Batista-Leyva, A.; Niebling, M.

    2016-12-01

    We present here the deformation of porous media in two different situations: 1. The formation of channels and fracture during pressurization of pore fluids, as happens during eruptions or injection of fluids and gas into soils and rocks. 2. The liquefaction of soils at different degrees of saturations during Earthquakes. The formation of channels during hydrofracture and pneumatic fractures is studied in laboratory experiments and in numerical models. The experiments are done on different types of porous media in Hele-Shaw cells, where fluid is injected at controlled overpressures, and various boundary conditions are used. Using fast cameras, we determine the strain and velocity fields from the images. We also record the characteristics of micro-seismic emissions during the process, and link this seismic record features and the direct image of the displacement responsible for the seismic sources in the medium. We also carry out numerical simulations, using coupled fluid/solid hydrid models that capture solid stress, pore pressure, solid and fluid elasticity - a full poro-elasto-plastic model using granular representation of the solid and a continuous one for the fluid.Next, Soil liquefaction is a significant natural hazard associated with earthquakes. Some of its devastating effects include tilting and sinking of buildings and bridges, and destruction of pipelines. Conventional geotechnical engineering assumes liquefaction occurs via elevated pore pressure. This assumption guides construction for seismically hazardous locations, yet evidence suggests that liquefaction strikes also under currently unpredicted conditions. We show, using theory, simulations and experiments, another mechanism for liquefaction in saturated soils, without high pore fluid pressure and without special soils, whereby liquefaction is controlled by buoyancy forces. This new mechanism enlarges the window of conditions under which liquefaction is predicted to occur, and may explain previously

  19. Task-specific performance effects with different numeric keypad layouts.

    PubMed

    Armand, Jenny T; Redick, Thomas S; Poulsen, Joan R

    2014-07-01

    Two commonly used keypad arrangements are the telephone and calculator layouts. The purpose of this study was to determine if entering different types of numeric information was quicker and more accurate with the telephone or the calculator layout on a computer keyboard numeric keypad. Fifty-seven participants saw a 10-digit numeric stimulus to type with a computer number keypad as quickly and as accurately as possible. Stimuli were presented in either a numerical [1,234,567,890] or phone [(123) 456-7890] format. The results indicated that participants' memory of the layout for the arrangement of keys on a telephone was significantly better than the layout of a calculator. In addition, the results showed that participants were more accurate when entering stimuli using the calculator keypad layout. Critically, participants' response times showed an interaction of stimulus format and keypad layout: participants were specifically slowed when entering numeric stimuli using a telephone keypad layout. Responses made using the middle row of keys were faster and more accurate than responses using the top and bottom row of keys. Implications for keypad design and cell phone usage are discussed. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  20. 3D numerical model of the southern polar giant impact for the formation of the Martian dichotomy

    NASA Astrophysics Data System (ADS)

    Leone, Giovanni; Tackley, Paul J.; Gerya, Taras; May, David A.; Zhu, Guizhi

    2013-04-01

    Lack of volcanism and/or crustal flows in the northern lowlands poses serious problems to the hypothesis of formation of the Borealis basin by giant impact in the Northern Polar region of Mars. We use numerical modeling integrated with a geologic and volcanologic study of the surface of Mars to investigate an alternative process of formation that involves a giant impact on the South Pole, resulting in a hemispherical magma pond and resulting thicker crust. We have performed 3D simulations of Martian evolution from the immediate post-impact stage to the present day for different combinations of impactor sizes and compositions, ranging from 900 km radius and sideritic composition (up to 80% radius iron) to 1750 km radius and mesosiderite-type composition (50% radius iron; nickel neglected at the moment). The main reason for considering siderites is the presence of M-type asteroids like 16 Psyche (and several others) in the asteroid belt, the likely remnants of larger parent bodies in the 1-2 AU range which then migrated to their current position after giant impacts with protoplanets. We assume an impactor speed similar to the escape velocity of the target body, consistent with N-body simulations. Our results show that this is a viable formation hypothesis for the southern highlands. Our preferred scenario is of a lunar sized impactor of 1600 km radius with a 70% iron (by radius) fraction, hitting the south Pole at a speed of 5 km/s (the escape velocity of Mars), melting much of the interior and 1/2 of the planetary surface with the creation of a magma ocean that formed the highlands upon cooling and solidification. Regarding timing, we find that this should have happened after 4 Ma after CAI, because before this the strong heating from short-lived radiogenic elements coupled with the thermal anomaly generated by the giant impact would erase by re-melting any newly formed crust. Using a combination of I3ELVIS (immediate post-impact and core formation) and STAGYY (long

  1. The effect of graphical and numerical presentation of hypothetical prenatal diagnosis results on risk perception.

    PubMed

    Siegrist, Michael; Orlow, Pascale; Keller, Carmen

    2008-01-01

    To evaluate various formats for the communication of prenatal test results. In study 1 (N=400), female students completed a questionnaire assessing risk perception, affect, and perceived usefulness of prenatal test results. A randomized, 2 (risk level; low, high) x 4 (format; ratio with numerator 1, ratio with denominator 1000, Paling Perspective Scale, pictograms) design was used. Study 2 (N=200) employed a 2 (risk level; low, high) x 2 (format; Paling Perspective Scale, risk comparisons in numerical format) design. In study 1, the Paling Perspective Scale resulted in a higher level of perceived risk across different risk levels compared with the other formats. Furthermore, participants in the low-risk group perceived the test results as less risky compared with participants in the high-risk group (P < 0.001) when the Paling Perspective Scale was used. No significant differences between low and high risks were observed for the other 3 formats. In study 2, the Paling Perspective Scale evoked higher levels of perceived risks relative to the numerical presentation of risk comparisons. For both formats, we found that participants confronted with a high risk perceived test results as more risky compared with participants confronted with a low risk. The Paling Perspective Scale resulted in a higher level of perceived risk compared with the other formats. This effect must be taken into account when choosing a graphical or numerical format for risk communication.

  2. Non-robust numerical simulations of analogue extension experiments

    NASA Astrophysics Data System (ADS)

    Naliboff, John; Buiter, Susanne

    2016-04-01

    Numerical and analogue models of lithospheric deformation provide significant insight into the tectonic processes that lead to specific structural and geophysical observations. As these two types of models contain distinct assumptions and tradeoffs, investigations drawing conclusions from both can reveal robust links between first-order processes and observations. Recent studies have focused on detailed comparisons between numerical and analogue experiments in both compressional and extensional tectonics, sometimes involving multiple lithospheric deformation codes and analogue setups. While such comparisons often show good agreement on first-order deformation styles, results frequently diverge on second-order structures, such as shear zone dip angles or spacing, and in certain cases even on first-order structures. Here, we present finite-element experiments that are designed to directly reproduce analogue "sandbox" extension experiments at the cm-scale. We use material properties and boundary conditions that are directly taken from analogue experiments and use a Drucker-Prager failure model to simulate shear zone formation in sand. We find that our numerical experiments are highly sensitive to numerous numerical parameters. For example, changes to the numerical resolution, velocity convergence parameters and elemental viscosity averaging commonly produce significant changes in first- and second-order structures accommodating deformation. The sensitivity of the numerical simulations to small parameter changes likely reflects a number of factors, including, but not limited to, high angles of internal friction assigned to sand, complex, unknown interactions between the brittle sand (used as an upper crust equivalent) and viscous silicone (lower crust), highly non-linear strain weakening processes and poor constraints on the cohesion of sand. Our numerical-analogue comparison is hampered by (a) an incomplete knowledge of the fine details of sand failure and sand

  3. Numerical treatment of free surface problems in ferrohydrodynamics

    NASA Astrophysics Data System (ADS)

    Lavrova, O.; Matthies, G.; Mitkova, T.; Polevikov, V.; Tobiska, L.

    2006-09-01

    The numerical treatment of free surface problems in ferrohydrodynamics is considered. Starting from the general model, special attention is paid to field-surface and flow-surface interactions. Since in some situations these feedback interactions can be partly or even fully neglected, simpler models can be derived. The application of such models to the numerical simulation of dissipative systems, rotary shaft seals, equilibrium shapes of ferrofluid drops, and pattern formation in the normal-field instability of ferrofluid layers is given. Our numerical strategy is able to recover solitary surface patterns which were discovered recently in experiments.

  4. Numerical Simulation of the Global Star Formation Pattern in the LMC

    NASA Astrophysics Data System (ADS)

    Gardiner, L. T.; Turfus, C.

    Dottori et al. (1996, ApJ 461, 742) have recently presented evidence for the idea that the observed distribution of young star clusters in the Large Magellanic Cloud (LMC) has resulted from the gravitational perturbation induced by a bar potential offset from the LMC disk center. We have constructed a dynamical model of the LMC to examine the effects of such an off-center perturbation on the global distribution of the gas and star formation activity. We have used a newly developed hybrid N-body/cellular automaton scheme for modeling star formation in galaxies which incorporates the dual mechanisms of gravitational instability and self-propagating star formation, combined with feedback of kinetic energy from star-forming regions into the interstellar medium. We find that a weak rotating bar perturbation, whose center is displaced by 0.6 kpc from the disk center, gives rise to an asymmetric spiral structure which mimics the chains of recent star formation observed in the LMC as well as delineating activity in the bar region. Large gas concentrations are produced where the spiral arms merge in the northern part of the galaxy, and such structures may have observed counterparts in giant star-forming complexes such as Constellation III in the NE part of the LMC.

  5. Numerical simulation of the hair formation -modeling of hair cycle

    NASA Astrophysics Data System (ADS)

    Kajihara, Narumichi; Nagayama, Katsuya

    2018-01-01

    In the recent years, the fields of study of anti-aging, health and beauty, cosmetics, and hair diseases have attracted significant attention. In particular, human hair is considered to be an important aspect with regard to an attractive appearance. To this end, many workers have sought to understand the formation mechanism of the hair root. However, observing growth in the hair root is difficult, and a detailed mechanism of the process has not yet been elucidated. Hair repeats growth, retraction, and pause cycles (hair cycle) in a repetitive process. In the growth phase, hair is formed through processes of cell proliferation and differentiation (keratinization). During the retraction phase, hair growth stops, and during the resting period, hair fall occurs and new hair grows. This hair cycle is believed to affect the elongation rate, thickness, strength, and shape of hair. Therefore, in this study, we introduce a particle model as a new method to elucidate the unknown process of hair formation, and to model the hair formation process accompanying the proliferation and differentiation of the hair root cells in all three dimensions. In addition, to the growth period, the retraction and the resting periods are introduced to realize the hair cycle using this model.

  6. Numerical simulation of electrically stimulated osteogenesis in dental implants.

    PubMed

    Vanegas-Acosta, J C; Garzón-Alvarado, D A; Lancellotti, V

    2014-04-01

    Cell behavior and tissue formation are influenced by a static electric field (EF). Several protocols for EF exposure are aimed at increasing the rate of tissue recovery and reducing the healing times in wounds. However, the underlying mechanisms of the EF action on cells and tissues are still a matter of research. In this work we introduce a mathematical model for electrically stimulated osteogenesis at the bone-dental implant interface. The model describes the influence of the EF in the most critical biological processes leading to bone formation at the bone-dental implant interface. The numerical solution is able to reproduce the distribution of spatial-temporal patterns describing the influence of EF during blood clotting, osteogenic cell migration, granulation tissue formation, displacements of the fibrillar matrix, and formation of new bone. In addition, the model describes the EF-mediated cell behavior and tissue formation which lead to an increased osteogenesis in both smooth and rough implant surfaces. Since numerical results compare favorably with experimental evidence, the model can be used to predict the outcome of using electrostimulation in other types of wounds and tissues. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Fast Fourier transform-based solution of 2D and 3D magnetization problems in type-II superconductivity

    NASA Astrophysics Data System (ADS)

    Prigozhin, Leonid; Sokolovsky, Vladimir

    2018-05-01

    We consider the fast Fourier transform (FFT) based numerical method for thin film magnetization problems (Vestgården and Johansen 2012 Supercond. Sci. Technol. 25 104001), compare it with the finite element methods, and evaluate its accuracy. Proposed modifications of this method implementation ensure stable convergence of iterations and enhance its efficiency. A new method, also based on the FFT, is developed for 3D bulk magnetization problems. This method is based on a magnetic field formulation, different from the popular h-formulation of eddy current problems typically employed with the edge finite elements. The method is simple, easy to implement, and can be used with a general current–voltage relation; its efficiency is illustrated by numerical simulations.

  8. Evaluation of the Mangled Extremity Severity Score in Combat-Related Type III Tibia Fracture

    DTIC Science & Technology

    2014-09-01

    Return to duty rates of amputee soldiers in the current conflicts in Afghanistan and Iraq. J Trauma. 2010; 68:1476–1479. 5. Johansen K, Daines M, Howey T...severity score (MESS) in combat related type III tibia fracture. J Orthop Trauma. 2013. 4. Johansen K, Daines M, Howey T, et al. Objective criteria

  9. Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling

    NASA Astrophysics Data System (ADS)

    Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting

    2018-02-01

    Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep

  10. Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid.

    PubMed

    Edwards, Ryan W J; Doster, Florian; Celia, Michael A; Bandilla, Karl W

    2017-12-05

    Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aquifers. We implement a numerical model of two-phase water and gas flow in a shale gas formation to test the hypothesis that the remaining water is imbibed into the shale rock by capillary forces and retained there indefinitely. The model includes the essential physics of the system and uses the simplest justifiable geometrical structure. We apply the model to simulate wells from a specific well pad in the Horn River Basin, British Columbia, where there is sufficient available data to build and test the model. Our simulations match the water and gas production data from the wells remarkably closely and show that all the injected water can be accounted for within the shale system, with most imbibed into the shale rock matrix and retained there for the long term.

  11. Calibration and validation of a numerical model against experimental data of methane hydrate formation and dissociation in a sandy porous medium

    NASA Astrophysics Data System (ADS)

    Yin, Z.; Moridis, G. J.; Chong, Z. R.; Linga, P.

    2017-12-01

    Methane hydrates (MH) are known to trap enormous amounts of CH4 in oceanic and permafrost-associated deposits, and are being considered as a potential future energy source. Several powerful numerical simulators were developed to describe the behavior of natural hydrate-bearing sediments (HBS). The complexity and strong nonlinearities in HBS do not allow analytical solutions for code validation. The only reliable method to develop confidence in these models is through comparisons to laboratory and/or field experiments. The objective of this study is to reproduce numerically the results from earlier experiments of MH formation and depressurization (and the corresponding fluid production) in 1.0L reactor involving unconsolidated sand, thus validating and calibrating the TOUGH+Hydrate v1.5 simulator. We faithfully describe the reactor geometry and the experimental process that involves both hydrate formation and dissociation. We demonstrate that the laboratory experiments can only be captured by a kinetic hydration model. There is an excellent agreement between observations and predictions (a) of the cumulative gas depletion (during formation) and production (during dissociation) and (b) of pressure over time. The temperature agreement is less satisfactory, and the deviations are attributed to the fixed locations of the limited number of sensors that cannot fully capture the hydrate heterogeneity. We also predict the spatial distributions over time of the various phase (gas, aqueous and hydrate) saturations. Thus, hydrates form preferentially along the outer boundary of the sand core, and the hydrate front moves inward leaving a significant portion of the sand at the center hydrate-free. During depressurization, dissociation advances again inward from the reactor boundary to the center of the reactor. As expected, methane gas accumulates initially at the locations of most intense dissociation, and then gradually migrates to the upper section of the reactor because of

  12. Some observations on boundary conditions for numerical conservation laws

    NASA Technical Reports Server (NTRS)

    Kamowitz, David

    1988-01-01

    Four choices of outflow boundary conditions are considered for numerical conservation laws. All four methods are stable for linear problems, for which examples are presented where either a boundary layer forms or the numerical scheme, together with the boundary condition, is unstable due to the formation of a reflected shock. A simple heuristic argument is presented for determining the suitability of the boundary condition.

  13. The numerical modelling of MHD astrophysical flows with chemistry

    NASA Astrophysics Data System (ADS)

    Kulikov, I.; Chernykh, I.; Protasov, V.

    2017-10-01

    The new code for numerical simulation of magnetic hydrodynamical astrophysical flows with consideration of chemical reactions is given in the paper. At the heart of the code - the new original low-dissipation numerical method based on a combination of operator splitting approach and piecewise-parabolic method on the local stencil. The chemodynamics of the hydrogen while the turbulent formation of molecular clouds is modeled.

  14. How do family physicians communicate about cardiovascular risk? Frequencies and determinants of different communication formats.

    PubMed

    Neuner-Jehle, Stefan; Senn, Oliver; Wegwarth, Odette; Rosemann, Thomas; Steurer, Johann

    2011-04-05

    Patients understand information about risk better if it is communicated in numerical or visual formats (e.g. graphs) compared to verbal qualifiers only. How frequently different communication formats are used in clinical primary care settings is unknown. We collected socioeconomic and patient understanding data using questionnaires and audio-recorded consultations about cardiovascular disease risk. The frequencies of the communication formats were calculated and multivariate regression analysis of associations between communication formats, patient and general practitioner characteristics, and patient subjective understanding was performed. In 73% of 70 consultations, verbal qualifiers were used exclusively to communicate cardiovascular risk, compared to numerical (11%) and visual (16%) formats. Female GPs and female patient's gender were significantly associated with a higher use of verbal formats compared to visual formats (p=0.001 and p=0.039, respectively). Patient subjective understanding was significantly higher in visual counseling compared to verbal counseling (p=0.001). Verbal qualifiers are the most often used communication format, though recommendations favor numerical and visual formats, with visual formats resulting in better understanding than others. Also, gender is associated with the choice of communication format. Barriers against numerical and visual communication formats among GPs and patients should be studied, including gender aspects. Adequate risk communication should be integrated into physicians' education.

  15. A numerical experiment on the formation of the tropopause inversion layer associated with an explosive cyclogenesis: possible role of gravity waves

    NASA Astrophysics Data System (ADS)

    Otsuka, Shigenori; Takeshita, Megumi; Yoden, Shigeo

    2014-12-01

    The tropopause inversion layer (TIL) is a persistent layer with high static stability. Although some mechanisms for the formation of the TIL have been proposed, the time evolution of the TIL under realistic conditions especially when factoring in the contribution of small-scale processes such as gravity waves is not well understood. To gain an understanding of this factor, we conducted a numerical experiment on an explosive cyclogenesis in mid-latitudes using a nonhydrostatic regional atmospheric model. Although the TIL in the model is consistent with previous observations in the sense that it is stronger in the negative vorticity areas, the relationship is clear only in the development and mature stages of a cyclone, suggesting that the evolution of the cyclone plays an important role in the formation of the TIL. To ascertain the effects of gravity waves on the TIL, vertical convergence at the tropopause is analyzed. Histograms of maximum buoyancy frequency squared within the TIL show that regions of vertical convergence have higher , in addition to regions with high ∂ 2 w/ ∂ z 2, implying that waves having downward phase propagation also play an important role in the dynamical formation of the TIL. This tendency is clearer in regions of negative relative vorticity at the tropopause. By taking account of the fact that the gravity wave activities associated with the cyclone and the jet streak are enhanced during the development and mature stages of the cyclone, vertical convergence due to gravity waves associated with synoptic weather systems can be seen to be a key process in the formation of the negative correlation between the strength of the TIL and the local relative vorticity at the tropopause.

  16. Numerical model of frazil ice and suspended sediment concentrations and formation of sediment laden ice in the Kara Sea

    USGS Publications Warehouse

    Sherwood, C.R.

    2000-01-01

    A one-dimensional (vertical) numerical model of currents, mixing, frazil ice concentration, and suspended sediment concentration has been developed and applied in the shallow southeastern Kara Sea. The objective of the calculations is to determine whether conditions suitable for turbid ice formation can occur during times of rapid cooling and wind- and wave-induced sediment resuspension. Although the model uses a simplistic approach to ice particles and neglects ice-sediment interactions, the results for low-stratification, shallow (∼20-m) freeze-up conditions indicate that the coconcentrations of frazil ice and suspended sediment in the water column are similar to observed concentrations of sediment in turbid ice. This suggests that wave-induced sediment resuspension is a viable mechanism for turbid ice formation, and enrichment mechanisms proposed to explain the high concentrations of sediment in turbid ice relative to sediment concentrations in underlying water may not be necessary in energetic conditions. However, salinity stratification found near the Ob' and Yenisey Rivers damps mixing between ice-laden surface water and sediment-laden bottom water and probably limits incorporation of resuspended sediment into turbid ice until prolonged or repeated wind events mix away the stratification. Sensitivity analyses indicate that shallow (≤20 m), unstratified waters with fine bottom sediment (settling speeds of ∼1 mm s−1 or less) and long open water fetches (>25 km) are ideal conditions for resuspension.

  17. Role of cold water and beta-effect in the formation of the East Korean Warm Current in the East/Japan Sea: a numerical experiment

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Yub; Cho, Yang-Ki; Kim, Young Ho

    2018-06-01

    The contributions of bottom cold water and planetary β-effect to the formation of the East Korean Warm Current (EKWC), the western boundary current in the East/Japan Sea (EJS), were evaluated using an idealized three-dimensional numerical model. The model results suggest that the bottom cold water and, to a lesser extent, the planetary β-effect both contribute to the formation of the EKWC. The cold water functions as the bottom of the upper layer, to control the EKWC via conservation of potential vorticity. It is known that cold waters, such as the North Korean Cold Water and Korea Strait Bottom Cold Water often observed during summer along the southwestern coast of the EJS, originate from the winter convection in the northern area. Observational studies consistently show that the EKWC strengthens in summer when the cold water extends further south along the western boundary.

  18. The numerical analysis of the rotational theory for the formation of lunar globules

    NASA Technical Reports Server (NTRS)

    Ross, J.; Bastin, J.; Stewart, K.

    1982-01-01

    The morphology of lunar globules is studied through the application of a numerical analysis of their rotation in space during cooling. It is assumed that molten rock is shot from the surface of the moon, solidifies in space above the moon and then falls back to the surface. The rotational theory studied makes the following assumptions: the volume of the molten rock does not change during cooling; the angular momentum is conserved; there are no internal motions because of the high viscosity of the molten rock, i.e., in equilibrium the globule is rotating as a rigid body; finally, the kinetic reaction of the globule to the forces is fast relative to the rate of cooling, i.e., the globule reaches equilibrium at constant energy. These assumptions are subjected to numerical analysis yielding good agreement between the actual globule shapes and the numerical results, but leaving some doubt as to the validity of the rotational theory due to the failure to establish the existence of true local minima and an incomplete understanding of the thermokentics.

  19. Mantle dynamics following supercontinent formation

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.

    This thesis presents mantle convection numerical simulations of supercontinent formation. Approximately 300 million years ago, through the large-scale subduction of oceanic sea floor, continental material amalgamated to form the supercontinent Pangea. For 100 million years after its formation, Pangea remained relatively stationary, and subduction of oceanic material featured on its margins. The present-day location of the continents is due to the rifting apart of Pangea, with supercontinent dispersal being characterized by increased volcanic activity linked to the generation of deep mantle plumes. The work presented here investigates the thermal evolution of mantle dynamics (e.g., mantle temperatures and sub-continental plumes) following the formation of a supercontinent. Specifically, continental insulation and continental margin subduction are analyzed. Continental material, as compared to oceanic material, inhibits heat flow from the mantle. Previous numerical simulations have shown that the formation of a stationary supercontinent would elevate sub-continental mantle temperatures due to the effect of continental insulation, leading to the break-up of the continent. By modelling a vigorously convecting mantle that features thermally and mechanically distinct continental and oceanic plates, this study shows the effect of continental insulation on the mantle to be minimal. However, the formation of a supercontinent results in sub-continental plume formation due to the re-positioning of subduction zones to the margins of the continent. Accordingly, it is demonstrated that continental insulation is not a significant factor in producing sub-supercontinent plumes but that subduction patterns control the location and timing of upwelling formation. A theme throughout the thesis is an inquiry into why geodynamic studies would produce different results. Mantle viscosity, Rayleigh number, continental size, continental insulation, and oceanic plate boundary evolution are

  20. A field investigation and numerical simulation of coastal fog

    NASA Technical Reports Server (NTRS)

    Mack, E. J.; Eadie, W. J.; Rogers, C. W.; Kocmond, W. C.; Pilie, R. J.

    1973-01-01

    A field investigation of the microphysical and micrometeorological features of fogs occurring near Los Angeles and Vandenberg, California was conducted. Observations of wind speed and direction, temperature, dew point, vertical wind velocity, dew deposition, drop-size distribution, liquid water content, and haze and cloud nucleus concentration were obtained. These observations were initiated in late evening prior to fog formation and continued until the time of dissipation in both advection and radiation fogs. Data were also acquired in one valley fog and several dense haze situations. The behavior of these parameters prior to and during fog are discussed in detail. A two-dimensional numerical model was developed to investigate the formation and dissipation of advection fogs under the influence of horizontal variations in surface temperature. The model predicts the evolution of potential temperature, water vapor content, and liquid water content in a vertical plane as determined by vertical turbulent transfer and horizontal advection. Results are discussed from preliminary numerical experiments on the formation of warm-air advection fog and dissipation by natural and artificial heating from the surface.

  1. An experimental and numerical study of nitrogen oxide formation mechanisms in ammonia-hydrogen-air flames

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen

    The demand for sustainable alternative fuels is ever-increasing in the power generation, transportation, and energy sectors due to the inherent non-sustainable characteristics and political constraints of current energy resources. A number of alternative fuels derived from cellulosic biomass, algae, or waste are being considered, along with the conversion of electricity to non-carbon fuels such as hydrogen or ammonia (NH3). The latter is receiving attention recently because it is a non-carbon fuel that is readily produced in large quantities, stored and transported with current infrastructure, and is often a byproduct of biomass or waste conversion processes. However, pure or anhydrous ammonia combustion is severely challenging due to its high auto-ignition temperature (650 °C), low reactivity, and tendency to promote NOx formation. As such, the present study focuses on two major aspects of the ammonia combustion. The first is an applied investigation of the potential to achieve pure NH3 combustion with low levels of emissions in flames of practical interest. In this study, a swirl-stabilized flame typically used in fuel-oil home-heating systems is optimized for NH3 combustion, and measurements of NO and NH3 are collected for a wide range of operating conditions. The second major focus of this work is on fundamental investigation of NO x formation mechanisms in flames with high levels of NH3 in H2. For laminar premixed and diffusion jet flames, experimental measurements of flame speeds, exhaust-gas sampling, and in-situ NO measurements (NO PLIF) are compared with numerically predicted flames using complex chemical kinetics within CHEMKIN and reacting CFD codes i.e., UNICORN. From the preliminary testing of the NOx formation mechanisms, (1) Tian (2) Konnov and (3) GRI-Mech3.0 in laminar premixed H2/NH 3 flames, the Tian and Konnov mechanisms are found to capture the reduction in measured flame speeds with increasing NH3 in the fuel mixture, both qualitatively and

  2. Progress and Challenges in SPH Simulations of Disk Galaxy Formation: The Combined Role of Resolution and the Star Formation Density Threshold

    NASA Astrophysics Data System (ADS)

    Mayer, L.

    2012-07-01

    We review progress in cosmological SPH simulations of disk galaxy formation. We discuss the role of numerical resolution and sub-grid recipes of star formation and feedback from supernovae, higlighting the important role of a high star formation density threshold comparable to that of star forming molecular gas phase. Two recent succesfull examples, in simulations of the formation of gas-rich bulgeless dwarf galaxies and in simulations of late-type spirals (the ERIS simulations), are presented and discussed. In the ERIS simulations, already in the progenitors at z = 3 the resolution is above the threshold indicated by previous idealized numerical experiments as necessary to minimize numerical angular momentum loss (Kaufmann et al. 2007). A high star formation density threshold maintains an inhomogeneous interstellar medium, where star formation is clustered, and thus the local effect of supernovae feedback is enhanced. As a result, outflows are naturally generated removing 2/3 of the baryons in galaxies with Vvir˜50 km/s and ˜ 30% of the baryons in galaxies with (Vvir ˜ 150 km/s). Low angular momentum baryons are preferentially removed since the strongest bursts of star formation occur predominantly near the center, especially after a merger event. This produces pure exponential disks or small bulges depending on galaxy mass, and, correspondingly, slowly rising or nearly flat rotation curves that match those of observed disk galaxies. In dwarfs the rapid mass removal by outflows generates a core-like distribution in the dark matter. Furthermore, contrary to the common picture, in the ERIS spiral galaxies a bar/pseudobulge forms rapidly, and not secularly, as a result of mergers and interactions at high-z.

  3. Numerical Analysis of Incipient Separation on 53 Deg Swept Diamond Wing

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.

    2015-01-01

    A systematic analysis of incipient separation and subsequent vortex formation from moderately swept blunt leading edges is presented for a 53 deg swept diamond wing. This work contributes to a collective body of knowledge generated within the NATO/STO AVT-183 Task Group titled 'Reliable Prediction of Separated Flow Onset and Progression for Air and Sea Vehicles'. The objective is to extract insights from the experimentally measured and numerically computed flow fields that might enable turbulence experts to further improve their models for predicting swept blunt leading-edge flow separation. Details of vortex formation are inferred from numerical solutions after establishing a good correlation of the global flow field and surface pressure distributions between wind tunnel measurements and computed flow solutions. From this, significant and sometimes surprising insights into the nature of incipient separation and part-span vortex formation are derived from the wealth of information available in the computational solutions.

  4. Numerical Simulation of the Effect of 3D Needle Movement on Cavitation and Spray Formation in a Diesel Injector

    NASA Astrophysics Data System (ADS)

    Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.

    2015-12-01

    Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.

  5. On the formation, growth, and shapes of solution pipes - insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Szymczak, Piotr; Tredak, Hanna; Upadhyay, Virat; Kondratiuk, Paweł; Ladd, Anthony J. C.

    2015-04-01

    Cylindrical, vertical structures called solution pipes are a characteristic feature of epikarst, encountered in different parts of the world, both in relatively cold areas such as England and Poland (where their formation is linked to glacial processes) [1] and in coastal areas in tropical or subtropical climate (Bermuda, Australia, South Africa, Caribbean, Mediterranean) [2,3]. They are invariably associated with weakly cemented, porous limestones and relatively high groundwater fluxes. Many of them develop under the colluvial sandy cover and contain the fill of clayey silt. Although it is widely accepted that they are solutional in origin, the exact mechanism by which the flow becomes focused is still under debate. The hypotheses include the concentration of acidified water around stems and roots of plants, or the presence of pre-existing fractures or steeply dipping bedding planes, which would determine the points of entry for the focused groundwater flows. However, there are field sites where neither of this mechanisms was apparently at play and yet the pipes are formed in large quantities [1]. In this communication we show that the systems of solution pipes can develop spontaneously in nearly uniform matrix due to the reactive-infiltration instability: a homogeneous porous matrix is unstable with respect to small variations in local permeability; regions of high permeability dissolve faster because of enhanced transport of reactants, which leads to increased rippling of the front. This leads to the formation of a system of solution pipes which then advance into the matrix. We study this process numerically, by a combination of 2d- and 3d-simulations, solving the coupled flow and transport equations at the Darcy scale. The relative simplicity of this system (pipes developing in a uniform porous matrix, without any pre-existing structure) makes it very attractive from the modeling standpoint. We quantify the factors which control the pipe diameters and the

  6. KEY ISSUES REVIEW: Insights from simulations of star formation

    NASA Astrophysics Data System (ADS)

    Larson, Richard B.

    2007-03-01

    Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the gas being accreted by the forming stars, and accretion from these discs may be episodic, driven by gravitational instabilities or by protostellar interactions. Star-forming clouds typically develop filamentary structures, which may, along with the thermal physics, play an important role in the origin of stellar masses because of the sensitivity of filament fragmentation to temperature variations. Simulations of the formation of star clusters show that the most massive stars form by continuing accretion in the dense cluster cores, and this again is a runaway process that couples star formation and cluster formation. Star-forming clouds also tend to develop hierarchical structures, and smaller groups of forming objects tend to merge into progressively larger ones, a generic feature of self-gravitating systems that is common to star formation and galaxy formation. Because of the large range of scales and the complex dynamics involved, analytic models cannot adequately describe many aspects of star formation, and detailed numerical simulations are needed to advance our understanding of the subject. 'The purpose of computing is insight, not numbers.' Richard W Hamming, in Numerical Methods for Scientists and Engineers (1962) 'There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.' William Shakespeare, in Hamlet, Prince of Denmark (1604)

  7. Numerical Simulations of the Thermodynamic Process of Granite Formation on the Geological model of In-situ Melting

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Wang, Y. J.; Chen, G. N.; Liu, J.; Liu, Y. J.

    2017-12-01

    The In-situ Melting model of granite reveals that granitic magma generated by anatexis is layer-like and magma convection results in thickening of the layer. On the basis and by integrating the research findings on rheological transitions of rocks in crustal melting, we simulated the thermodynamic process of granite formation by using Underworld1.7. The size of the numerical model is 100km×25km with free-slip boundary. The solidus temperature is postulated being 600° and the fusing-off temperatures is 705° that corresponds to the solid-liquid transition (SLT) of the partial melting system with the melt fraction percentage around 40%. The viscosities of rock and magma are separately calculated according to this melt percentage. The model runs on Tian-He2 supercomputer and the result indicates: 1) when temperature exceeds the solidus of rock, anatexis appears in the area below the 600° isotherm; 2) when temperature surpasses the fusing-off temperature of rock, a magma layer occurs in the area below 705° isotherm; 3) the initiation of magma convection accompanied with stoping is at the temperature around 739.6°, and the upper surface of magma layer, i.e. the MI (magma interface)/SLT (solid-liquid transition) moves upwards with time; 4) the velocity of the upward motion of MI/SLT depends on the bottom temperature and the thickness of magma layer depends on the duration of convection. Summing up, this modeling result demonstrates that the In-situ Melting model of granite meets the basic principle of physics and reveals details on the thermodynamic circumstances interacting with the development of melting and granite formation.Acknowledgement: This research is financially supported by NSFC (No 41372223, No 41230206 and No 41574087).

  8. Role of the cold water on the formation of the East Korean Warm Current in the East/Japan Sea : A numerical experiment

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, Y. H.; Cho, Y. K.

    2016-12-01

    The East/Japan Sea (EJS) is a marginal sea of the western Pacific with an average depth of 2,000 m. The water exchange between the EJS and the Pacific occurs through the Korea Strait and Tsugaru Strait corresponding to the inlet and outlet respectively. The Tsushima Current flowing into the ESJ through the Korea Strait is divided into two main branches, the Nearshore Branch flowing along the Japanese coast, and the East Korean Warm Current (EKWC) heading northward along the Korean coast. Many previous studies reported the effects of cold water on the formation of the EKWC using 2-dimensional model that was limited in the Korea Strait. However, 3-dimensional structure of the cold water in relation to the EKWC have not been examined. In this study, we investigated the effects of cold water on the formation of the EKWC using 3-dimension numerical model. Model results indicate that the thickness and relative vorticity of the upper layer decrease due to the presence of the lower cold water along the Korean coast. Correspondingly, the negative relative vorticity also intensifies the EKWC along the Korean coast.

  9. Formation Flying Design and Applications in Weak Stability Boundary Regions

    NASA Technical Reports Server (NTRS)

    Folta, David

    2003-01-01

    Weak Stability regions serve as superior locations for interferometric scientific investigations. These regions are often selected to minimize environmental disturbances and maximize observing efficiency. Design of formations in these regions are becoming ever more challenging as more complex missions are envisioned. The development of algorithms to enable the capability for formation design must be further enabled to incorporate better understanding of WSB solution space. This development will improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple formation missions in WSB regions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes both algorithm and software development. The Constellation-X, Maxim, and Stellar Imager missions are examples of the use of improved numerical methods for attaining constrained formation geometries and controlling their dynamical evolution. This paper presents a survey of formation missions in the WSB regions and a brief description of the formation design using numerical and dynamical techniques.

  10. Numerical studies of singularity formation at free surfaces and fluid interfaces in two-dimensional Stokes flow

    NASA Astrophysics Data System (ADS)

    Pozrikidis, C.

    1997-01-01

    We consider the analytic structure of interfaces in several families of steady and unsteady two-dimensional Stokes flows, focusing on the formation of corners and cusps. Previous experimental and theoretical studies have suggested that, without surface tension, the interfaces spontaneously develop such singular points. We investigate whether and how corners and cusps actually develop in a time-dependent flow, and assess the stability of stationary cusped shapes predicted by previous authors. The motion of the interfaces is computed with high resolution using a boundary integral method for three families of flows. In the case of a bubble that is subjected to the family of straining flows devised by Antanovskii, we find that a stationary cusped shape is not likely to occur as the asymptotic limit of a transient deformation. Instead, the pointed ends of the bubble disintegrate in a process that is reminiscent of tip streaming. In the case of the flow due to an array of point-source dipoles immersed beneath a free surface, which is the periodic version of a flow proposed by Jeong & Moffatt, we find evidence that a cusped shape indeed arises as the result of a transient deformation. In the third part of the numerical study, we show that, under certain conditions, the free surface of a liquid film that is levelling under the action of gravity on a horizontal or slightly inclined surface develops an evolving corner or cusp. In certain cases, the film engulfs a small air bubble of ambient fluid to obtain a composite shape. The structure of a corner or a cusp in an unsteady flow does not have a unique shape, as it does at steady state. In all cases, a small amount of surface tension is able to prevent the formation of a singularity, but replacing the inviscid gas with a viscous liquid does not have a smoothing effect. The ability of the thin-film lubrication equation to produce mathematical singularities at the free surface of a levelling film is also discussed.

  11. Health Professionals Prefer to Communicate Risk-Related Numerical Information Using "1-in-X" Ratios.

    PubMed

    Sirota, Miroslav; Juanchich, Marie; Petrova, Dafina; Garcia-Retamero, Rocio; Walasek, Lukasz; Bhatia, Sudeep

    2018-04-01

    Previous research has shown that format effects, such as the "1-in-X" effect-whereby "1-in-X" ratios lead to a higher perceived probability than "N-in-N*X" ratios-alter perceptions of medical probabilities. We do not know, however, how prevalent this effect is in practice; i.e., how often health professionals use the "1-in-X" ratio. We assembled 4 different sources of evidence, involving experimental work and corpus studies, to examine the use of "1-in-X" and other numerical formats quantifying probability. Our results revealed that the use of the "1-in-X" ratio is prevalent and that health professionals prefer this format compared with other numerical formats (i.e., the "N-in-N*X", %, and decimal formats). In Study 1, UK family physicians preferred to communicate prenatal risk using a "1-in-X" ratio (80.4%, n = 131) across different risk levels and regardless of patients' numeracy levels. In Study 2, a sample from the UK adult population ( n = 203) reported that most GPs (60.6%) preferred to use "1-in-X" ratios compared with other formats. In Study 3, "1-in-X" ratios were the most commonly used format in a set of randomly sampled drug leaflets describing the risk of side effects (100%, n = 94). In Study 4, the "1-in-X" format was the most commonly used numerical expression of medical probabilities or frequencies on the UK's NHS website (45.7%, n = 2,469 sentences). The prevalent use of "1-in-X" ratios magnifies the chances of increased subjective probability. Further research should establish clinical significance of the "1-in-X" effect.

  12. Continental crust formation: Numerical modelling of chemical evolution and geological implications

    NASA Astrophysics Data System (ADS)

    Walzer, U.; Hendel, R.

    2017-05-01

    Oceanic plateaus develop by decompression melting of mantle plumes and have contributed to the growth of the continental crust throughout Earth's evolution. Occasional large-scale partial melting events of parts of the asthenosphere during the Archean produced large domains of precursor crustal material. The fractionation of arc-related crust during the Proterozoic and Phanerozoic contributed to the growth of continental crust. However, it remains unclear whether the continents or their precursors formed during episodic events or whether the gaps in zircon age records are a function of varying preservation potential. This study demonstrates that the formation of the continental crust was intrinsically tied to the thermoconvective evolution of the Earth's mantle. Our numerical solutions for the full set of physical balance equations of convection in a spherical shell mantle, combined with simplified equations of chemical continent-mantle differentiation, demonstrate that the actual rate of continental growth is not uniform through time. The kinetic energy of solid-state mantle creep (Ekin) slowly decreases with superposed episodic but not periodic maxima. In addition, laterally averaged surface heat flow (qob) behaves similarly but shows peaks that lag by 15-30 Ma compared with the Ekin peaks. Peak values of continental growth are delayed by 75-100 Ma relative to the qob maxima. The calculated present-day qob and total continental mass values agree well with observed values. Each episode of continental growth is separated from the next by an interval of quiescence that is not the result of variations in mantle creep velocity but instead reflects the fact that the peridotite solidus is not only a function of pressure but also of local water abundance. A period of differentiation results in a reduction in regional water concentrations, thereby increasing the temperature of the peridotite solidus and the regional viscosity of the mantle. By plausibly varying the

  13. The Morphological Characteristics and Mechanical Formation of Giant Radial Dike Swarms on Venus: An Overview Emphasizing Recent Numerical Modeling Insights

    NASA Astrophysics Data System (ADS)

    McGovern, P. J., Jr.; Grosfils, E. B.; Le Corvec, N.; Ernst, R. E.; Galgana, G. A.

    2017-12-01

    Over 200 giant radial dike swarms have been identified on Venus using Magellan data, yielding insight into morphological characteristics long since erased by erosion and other processes on Earth. Since such radial dike systems are typically associated with magma reservoirs, large volcanoes and/or larger-scale plume activity—and because dike geometry reflects stress conditions at the time of intrusion—assessing giant radial dike formation in the context of swarm morphology can place important constraints upon this fundamental volcanotectonic process. Recent numerical models reveal that, contrary to what is reported in much of the published literature, it is not easy, mechanically, to produce either large or small radial dike systems. After extensive numerical examination of reservoir inflation, however, under conditions ranging from a simple halfspace to complex flexural loading, we have thus far identified four scenarios that produce radial dike systems. Two of these scenarios yield dike systems akin to those often associated with shield and stratocone volcanoes on Earth, while the other two, our focus here, are more consistent with the giant radial dike system geometries catalogued on Venus. In this presentation we will (a) review key morphological characteristics of the giant radial systems identified on Venus, (b) briefly illustrate why it is not easy, mechanically, to produce a radial dike system, (c) present the two volcanological circumstances we have identified that do allow a giant radial dike system to form, and (d) discuss current model limitations and potentially fruitful directions for future research.

  14. Numerical modeling of mountain formation on Io

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Jaeger, W. L.; McEwen, A. S.; Keszthelyi, L.

    2000-10-01

    Io has ~ 100 mountains [1] that, although often associated with patera [2], do not appear to be volcanic structures. The mountains are up to 16 km high [3] and are generally isolated from each other. We have performed finite-element simulations of the formation of these mountains, investigating several mountain building scenarios: (1) a volcanic construct due to heterogeneous resurfacing on a coherent, homogeneous lithosphere; (2) a volcanic construct on a faulted, homogeneous lithosphere; (3) a volcanic construct on a faulted, homogeneous lithosphere under compression induced by subsidence due to Io's high resurfacing rate; (4) a faulted, homogeneous lithosphere under subsidence-induced compression; (5) a faulted, heterogeneous lithosphere under subsidence-induced compression; and (6) a mantle upwelling beneath a coherent, homogeneous lithosphere under subsidence-induced compression. The models of volcanic constructs do not produce mountains similar to those observed on Io. Neither do those of pervasively faulted lithospheres under compression; these predict a series of tilted lithospheric blocks or plateaus, as opposed to the isolated structures that are observed. Our models show that rising mantle material impinging on the base of the lithosphere can focus the compressional stresses to localize thrust faulting and mountain building. Such faults could also provide conduits along which magma could reach the surface as is observed near several mountains. [1] Carr et al., Icarus 135, pp. 146-165, 1998. [2] McEwen et al., Science 288, pp. 1193-1198, 2000. [3] Schenk and Bulmer, Science 279, pp. 1514-1517, 1998.

  15. Efficient numerical simulation of heat storage in subsurface georeservoirs

    NASA Astrophysics Data System (ADS)

    Boockmeyer, A.; Bauer, S.

    2015-12-01

    The transition of the German energy market towards renewable energy sources, e.g. wind or solar power, requires energy storage technologies to compensate for their fluctuating production. Large amounts of energy could be stored in georeservoirs such as porous formations in the subsurface. One possibility here is to store heat with high temperatures of up to 90°C through borehole heat exchangers (BHEs) since more than 80 % of the total energy consumption in German households are used for heating and hot water supply. Within the ANGUS+ project potential environmental impacts of such heat storages are assessed and quantified. Numerical simulations are performed to predict storage capacities, storage cycle times, and induced effects. For simulation of these highly dynamic storage sites, detailed high-resolution models are required. We set up a model that accounts for all components of the BHE and verified it using experimental data. The model ensures accurate simulation results but also leads to large numerical meshes and thus high simulation times. In this work, we therefore present a numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly for use in larger scale simulations. The numerical model includes all BHE components and represents the temporal and spatial temperature distribution with an accuracy of less than 2% deviation from the fully discretized model. By changing the BHE geometry and using equivalent parameters, the simulation time is reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. Results of a sensitivity study that quantify the effects of different design and storage formation parameters on temperature distribution and storage efficiency for heat storage using multiple BHEs are then shown. It is found that storage efficiency strongly depends on the number of BHEs composing the storage site, their distance and

  16. Star formation in evolving molecular clouds

    NASA Astrophysics Data System (ADS)

    Völschow, M.; Banerjee, R.; Körtgen, B.

    2017-09-01

    Molecular clouds are the principle stellar nurseries of our universe; they thus remain a focus of both observational and theoretical studies. From observations, some of the key properties of molecular clouds are well known but many questions regarding their evolution and star formation activity remain open. While numerical simulations feature a large number and complexity of involved physical processes, this plethora of effects may hide the fundamentals that determine the evolution of molecular clouds and enable the formation of stars. Purely analytical models, on the other hand, tend to suffer from rough approximations or a lack of completeness, limiting their predictive power. In this paper, we present a model that incorporates central concepts of astrophysics as well as reliable results from recent simulations of molecular clouds and their evolutionary paths. Based on that, we construct a self-consistent semi-analytical framework that describes the formation, evolution, and star formation activity of molecular clouds, including a number of feedback effects to account for the complex processes inside those objects. The final equation system is solved numerically but at much lower computational expense than, for example, hydrodynamical descriptions of comparable systems. The model presented in this paper agrees well with a broad range of observational results, showing that molecular cloud evolution can be understood as an interplay between accretion, global collapse, star formation, and stellar feedback.

  17. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework.

    PubMed

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.

  18. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework

    PubMed Central

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811

  19. Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation

    USGS Publications Warehouse

    Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.

    2011-01-01

    Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.

  20. Numerical simulation of fire vortex

    NASA Astrophysics Data System (ADS)

    Barannikova, D. D.; Borzykh, V. E.; Obukhov, A. G.

    2018-05-01

    The article considers the numerical simulation of the swirling flow of air around the smoothly heated vertical cylindrical domain in the conditions of gravity and Coriolis forces action. The solutions of the complete system of Navie-Stocks equations are numerically solved at constant viscosity and heat conductivity factors. Along with the proposed initial and boundary conditions, these solutions describe the complex non-stationary 3D flows of viscous compressible heat conducting gas. For various instants of time of the initial flow formation stage using the explicit finite-difference scheme the calculations of all gas dynamics parameters, that is density, temperature, pressure and three velocity components of gas particles, have been run. The current instant lines corresponding to the trajectories of the particles movement in the emerging flow have been constructed. A negative direction of the air flow swirling occurred in the vertical cylindrical domain heating has been defined.

  1. A numerical study of drop-on-demand ink jets

    NASA Technical Reports Server (NTRS)

    Fromm, J.

    1982-01-01

    Ongoing work related to development and utilization of a numerical model for treating the fluid dynamics of ink jets is discussed. The model embodies the complete nonlinear, time dependent, axi-symmetric equations in finite difference form. The jet nozzle geometry with no-slip boundary conditions and the existence of a contact circle are included. The contact circle is allowed some freedom of movement, but wetting of exterior surfaces is not addressed. The principal objective in current numerical experiments is to determine what pressure history, in conjunction with surface forces, will lead to clean drop formation.

  2. First principles numerical model of avalanche-induced arc discharges in electron-irradiated dielectrics

    NASA Technical Reports Server (NTRS)

    Beers, B. L.; Pine, V. W.; Hwang, H. C.; Bloomberg, H. W.; Lin, D. L.; Schmidt, M. J.; Strickland, D. J.

    1979-01-01

    The model consists of four phases: single electron dynamics, single electron avalanche, negative streamer development, and tree formation. Numerical algorithms and computer code implementations are presented for the first three phases. An approach to developing a code description of fourth phase is discussed. Numerical results are presented for a crude material model of Teflon.

  3. Formation flying design and applications in weak stability boundary regions.

    PubMed

    Folta, David

    2004-05-01

    Weak stability regions serve as superior locations for interferomertric scientific investigations. These regions are often selected to minimize environmental disturbances and maximize observation efficiency. Designs of formations in these regions are becoming ever more challenging as more complex missions are envisioned. The development of algorithms to enable the capability for formation design must be further enabled to incorporate better understanding of weak stability boundary solution space. This development will improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple formation missions in weak stability boundary regions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes both algorithm and software development. The Constellation-X, Maxim, and Stellar Imager missions are examples of the use of improved numeric methods to attain constrained formation geometries and control their dynamical evolution. This paper presents a survey of formation missions in the weak stability boundary regions and a brief description of formation design using numerical and dynamical techniques.

  4. Galaxy formation

    PubMed Central

    Peebles, P. J. E.

    1998-01-01

    It is argued that within the standard Big Bang cosmological model the bulk of the mass of the luminous parts of the large galaxies likely had been assembled by redshift z ∼ 10. Galaxy assembly this early would be difficult to fit in the widely discussed adiabatic cold dark matter model for structure formation, but it could agree with an isocurvature version in which the cold dark matter is the remnant of a massive scalar field frozen (or squeezed) from quantum fluctuations during inflation. The squeezed field fluctuations would be Gaussian with zero mean, and the distribution of the field mass therefore would be the square of a random Gaussian process. This offers a possibly interesting new direction for the numerical exploration of models for cosmic structure formation. PMID:9419326

  5. Plasmoid formation and evolution in a numerical simulation of a substorm

    NASA Technical Reports Server (NTRS)

    Slinker, S. P.; Fedder, J. A.; Lyon, J. G.

    1995-01-01

    Plasmoids are thought to occur as a consequence of the formation of a near-Earth neutral line during the evolution of a geomagnetic substorm. Using a 3D, global MHD simulation of the interaction of the Earth's magnetosphere with the solar wind, we initiate a substorm by a southward turning of the Interplanetary Magnetic Field (IMF) after a long period of steady northward field. A large plasmoid is formed and ejected. We show field line maps of its shape and relate its formation time to the progress of the substorm as indicated by the cross polar potential. Because of the large region of closed field in the magnetotail at the time of the substorm, this plasmoid is longer in axial dimension than is typically observed. We compare the simulation results with the type of satellite observations which have been used to argue for the existence of plasmoids or of traveling compression regions (TCRs) in the lobes or magnetosheath. The simulation predicts that plasmoid passage would result in a strong signal in the cross tail electric field.

  6. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing.

    PubMed

    Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan

    2015-07-17

    To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system.

  7. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing

    PubMed Central

    Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan

    2015-01-01

    To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system. PMID:26193281

  8. Numerical simulation of tip vortices of wings in subsonic and transonic flows

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.; Mccroskey, W. J.; Baeder, J. D.; Edwards, T. A.

    1986-01-01

    A multi block zonal algorithm which solves the thin-layer Navier-Stokes and the Euler equations is used to numerically simulate the formation and roll-up of the tip vortex in both subsonic and transonic flows. Four test cases which used small and large aspect ratio wings have been considered to examine the influence of the tip-cap shape, the tip planform and the free-stream Mach number. It appears that both the tip-planform and the tip-cap shape have some influence on the formation of the tip vortex, but its subsequent roll-up seems to be more influenced by the tip-planform shape. In general, a good definition of the formation and the roll-up of the tip vortex has been observed for all the cases considered here. Comparions of the numerical results with the limited, available experimental data show good agreement with both the surface pressures and the tip-vortex strength.

  9. Investigation into the Formation, Structure, and Evolution of an EF4 Tornado in East China Using a High-Resolution Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Yao, Dan; Xue, Haile; Yin, Jinfang; Sun, Jisong; Liang, Xudong; Guo, Jianping

    2018-04-01

    Devastating tornadoes in China have received growing attention in recent years, but little is known about their formation, structure, and evolution on the tornadic scale. Most of these tornadoes develop within the East Asian monsoon regime, in an environment quite different from tornadoes in the U.S. In this study, we used an idealized, highresolution (25-m grid spacing) numerical simulation to investigate the deadly EF4 (Enhanced Fujita scale category 4) tornado that occurred on 23 June 2016 and claimed 99 lives in Yancheng, Jiangsu Province. A tornadic supercell developed in the simulation that had striking similarities to radar observations. The violent tornado in Funing County was reproduced, exceeding EF4 (74 m s-1), consistent with the on-site damage survey. It was accompanied by a funnel cloud that extended to the surface, and exhibited a double-helix vorticity structure. The signal of tornado genesis was found first at the cloud base in the pressure perturbation field, and then developed both upward and downward in terms of maximum vertical velocity overlapping with the intense vertical vorticity centers. The tornado's demise was found to accompany strong downdrafts overlapping with the intense vorticity centers. One of the interesting findings of this work is that a violent surface vortex was able to be generated and maintained, even though the simulation employed a free-slip lower boundary condition. The success of this simulation, despite using an idealized numerical approach, provides a means to investigate more historical tornadoes in China.

  10. Testing Numerical Models of Cool Core Galaxy Cluster Formation with X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Henning, Jason W.; Gantner, Brennan; Burns, Jack O.; Hallman, Eric J.

    2009-12-01

    Using archival Chandra and ROSAT data along with numerical simulations, we compare the properties of cool core and non-cool core galaxy clusters, paying particular attention to the region beyond the cluster cores. With the use of single and double β-models, we demonstrate a statistically significant difference in the slopes of observed cluster surface brightness profiles while the cluster cores remain indistinguishable between the two cluster types. Additionally, through the use of hardness ratio profiles, we find evidence suggesting cool core clusters are cooler beyond their cores than non-cool core clusters of comparable mass and temperature, both in observed and simulated clusters. The similarities between real and simulated clusters supports a model presented in earlier work by the authors describing differing merger histories between cool core and non-cool core clusters. Discrepancies between real and simulated clusters will inform upcoming numerical models and simulations as to new ways to incorporate feedback in these systems.

  11. Boundary acquisition for setup of numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diegert, C.

    1997-12-31

    The author presents a work flow diagram that includes a path that begins with taking experimental measurements, and ends with obtaining insight from results produced by numerical simulation. Two examples illustrate this path: (1) Three-dimensional imaging measurement at micron scale, using X-ray tomography, provides information on the boundaries of irregularly-shaped alumina oxide particles held in an epoxy matrix. A subsequent numerical simulation predicts the electrical field concentrations that would occur in the observed particle configurations. (2) Three-dimensional imaging measurement at meter scale, again using X-ray tomography, provides information on the boundaries fossilized bone fragments in a Parasaurolophus crest recently discoveredmore » in New Mexico. A subsequent numerical simulation predicts acoustic response of the elaborate internal structure of nasal passageways defined by the fossil record. The author must both add value, and must change the format of the three-dimensional imaging measurements before the define the geometric boundary initial conditions for the automatic mesh generation, and subsequent numerical simulation. The author applies a variety of filters and statistical classification algorithms to estimate the extents of the structures relevant to the subsequent numerical simulation, and capture these extents as faceted geometries. The author will describe the particular combination of manual and automatic methods used in the above two examples.« less

  12. Soliton interactions and the formation of solitonic patterns

    NASA Astrophysics Data System (ADS)

    Sears, Suzanne M.

    From the stripes of a zebra, to the spirals of cream in a hot cup of coffee, we are surrounded by patterns in the natural world. But why are there patterns? Why drives their formation? In this thesis we study some of the diverse ways patterns can arise due to the interactions between solitary waves in nonlinear systems, sometimes starting from nothing more than random noise. What follows is a set of three studies. In the first, we show how a nonlinear system that supports solitons can be driven to generate exact (regular) Cantor set fractals. As an example, we use numerical simulations to demonstrate the formation of Cantor set fractals by temporal optical solitons. This fractal formation occurs in a cascade of nonlinear optical fibers through the dynamical evolution of a single input soliton. In the second study, we investigate pattern formation initiated by modulation instability in nonlinear partially coherent wave fronts and show that anisotropic noise and/or anisotropic correlation statistics can lead to ordered patterns such as grids and stripes. For the final study, we demonstrate the spontaneous clustering of solitons in partially coherent wavefronts during the final stages of pattern formation initiated by modulation instability and noise. Experimental observations are in agreement with theoretical predictions and are confirmed using numerical simulations.

  13. Collisional and dynamical processes in moon and planet formation

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Davis, D. R.; Weidenschilling, S. J.; Hartmann, W. K.; Spaute, D.

    1987-01-01

    Research on a variety of dynamical processes relevant to the formation of planets, satellites and ring systems is discussed. The main focus is on studies of accretionary formation of early protoplanets using a numerical model, structures and evolution of ring systems and individual bodies within planetary rings, and theories of lunar origin.

  14. Symbolic Estrangement: Evidence against a Strong Association between Numerical Symbols and the Quantities They Represent

    ERIC Educational Resources Information Center

    Lyons, Ian M.; Ansari, Daniel; Beilock, Sian L.

    2012-01-01

    Are numerals estranged from a sense of the actual quantities they represent? We demonstrate that, irrespective of numerical size or distance, direct comparison of the relative quantities represented by symbolic and nonsymbolic formats leads to performance markedly worse than when comparing 2 nonsymbolic quantities (Experiment 1). Experiment 2…

  15. How does the color influence figure and shape formation, grouping, numerousness and reading? The role of chromatic wholeness and fragmentation.

    PubMed

    Pinna, Baingio; Uccula, Arcangelo; Tanca, Maria

    2010-09-01

    In this work it is suggested that color induces phenomenal wholeness, part-whole organization and fragmentation. The phenomenal wholeness subsumes the set of its main attributes: homogeneity, continuity, univocality, belongingness, and oneness. If color induces wholeness, it can also induce fragmentation. Therefore, in order to understand the role played by color within the process of part-whole organization, color is used both as a wholeness and as a fragmentation tool, thus operating synergistically or antagonistically with other wholeness processes. Therefore, color is expected to influence figure-ground segregation, grouping, shape formation and other visual processes that are related to the phenomenal wholeness. The purpose of this study is to rate the influence of color in inducing whole and part-whole organization and, consequently, in determining the perception of figure-ground segregation, grouping, shape formation, numerousness evaluation and time reading. We manipulated experimental conditions by using equiluminant colors to favor or break (parcel-out) the wholeness of objects like geometrical composite figures and words. The results demonstrated that color is aimed, among other psychological and biological purposes, at: (1) relating each chromatic component of an object, thus favoring the emergence of the whole object; (2) eliciting a part-whole organization, whose components are interdependent; (3) eliciting fragments and then breaking up the whole and favoring the emergence of single components. Wholeness, part-whole organization and fragmentation can be considered as three further purposes of color. © 2010 The Authors, Ophthalmic and Physiological Optics © 2010 The College of Optometrists.

  16. Numerical Modeling of Methane Leakage from a Faulty Natural Gas Well into Fractured Tight Formations.

    PubMed

    Moortgat, Joachim; Schwartz, Franklin W; Darrah, Thomas H

    2018-03-01

    Horizontal drilling and hydraulic fracturing have enabled hydrocarbon recovery from unconventional reservoirs, but led to natural gas contamination of shallow groundwaters. We describe and apply numerical models of gas-phase migration associated with leaking natural gas wells. Three leakage scenarios are simulated: (1) high-pressure natural gas pulse released into a fractured aquifer; (2) continuous slow leakage into a tilted fractured formation; and (3) continuous slow leakage into an unfractured aquifer with fluvial channels, to facilitate a generalized evaluation of natural gas transport from faulty natural gas wells. High-pressure pulses of gas leakage into sparsely fractured media are needed to produce the extensive and rapid lateral spreading of free gas previously observed in field studies. Transport in fractures explains how methane can travel vastly different distances and directions laterally away from a leaking well, which leads to variable levels of methane contamination in nearby groundwater wells. Lower rates of methane leakage (≤1 Mcf/day) produce shorter length scales of gas transport than determined by the high-pressure scenario or field studies, unless aquifers have low vertical permeabilities (≤1 millidarcy) and fractures and bedding planes have sufficient tilt (∼10°) to allow a lateral buoyancy component. Similarly, in fractured rock aquifers or where permeability is controlled by channelized fluvial deposits, lateral flow is not sufficiently developed to explain fast-developing gas contamination (0-3 months) or large length scales (∼1 km) documented in field studies. Thus, current efforts to evaluate the frequency, mechanism, and impacts of natural gas leakage from faulty natural gas wells likely underestimate contributions from small-volume, low-pressure leakage events. © 2018, National Ground Water Association.

  17. Numerical analysis of the formation process of aerosols in the alveoli

    NASA Astrophysics Data System (ADS)

    Haslbeck, Karsten; Seume, Jörg R.

    2008-11-01

    For a successful diagnosis of lung diseases through an analysis of non-volatile molecules in the exhaled breath, an exact understanding of the aerosol formation process is required. This process is modeled using Computational Fluid Dynamics (CFD). The model shows the interaction of the boundary surface between the streamed airway and the local epithelial liquid layer. A 2-D volume mesh of an alveolus is generated by taking into account the connection of the alveoli with the sacculi alveolares (SA). The Volume of Fluid (VOF) Method is used to model the interface between the gas and the liquid film. The non-Newtonian flow is modeled by the implementation of the Ostwald de Waele model. Surface tension is a function of the surfactant concentration. The VOF-Method allows the distribution of the concentration of the epithelial liquid layer at the surface to be traced in a transient manner. The simulations show the rupturing of the liquid film through the drop formation. Aerosol particles are ejected into the SA and do not collide with the walls. The quantity, the geometrical size as well as the velocity distributions of the generated aerosols are determined. The data presented in the paper provide the boundary conditions for future CFD analysis of the aerosol transport through the airways up to exhalation.

  18. Numerical simulation of the three-dimensional river antidunes

    NASA Astrophysics Data System (ADS)

    Iwasaki, T.; Inoue, T.; Onda, S.; Yabe, H.

    2017-12-01

    This study presents numerical simulations of the formation and development of the three-dimensional river antidunes. We use a Boussinesq type depth-integrated hydrodynamic model to account for the non-hydrostatic pressure effects on the flow field, dissipative feature of the free surface and the bed shear stress distribution. In addition, a non-equilibrium bedload transport model is incorporated into the model to consider the lag effect of the bedload transport on the bedform dynamics. The model is applied to idealized laboratory-scale conditions, i.e., steady water and sediment supplies, uniform sediment and a straight channel with constant slope and channel width, to understand the model performance and applicability. The results show that the model is able to reproduce an upstream-migrating antidunes and associated free surface dynamics. The model also captures the formation of the two dimensional and the three-dimensional antidunes. The antidunes reproduced by the model are somewhat unstable, i.e., the repeated cycle of dissipation and regeneration of antidunes is observed. In addition, as the calculation progresses, the modelled three-dimensional antidunes generally tend to lose their three-dimensionality, i.e., the reduction of the spanwise wavenumber. In the early stage of the calculation, the antidune mode is dominant, whereas, the free bars also develop when the formative condition of bars is satisfied. The numerical results show the coexisting of free bars and antidunes, which are a common evident in flume experiments and field observations.

  19. Numerical Function Generators Using LUT Cascades

    DTIC Science & Technology

    2007-06-01

    either algebraically (for example, sinðxÞ) or as a table of input/ output values. The user defines the numerical function by using the syntax of Scilab ...defined function in Scilab or specify it directly. Note that, by changing the parser of our system, any format can be used for the design entry. First...Methods for Multiple-Valued Input Address Generators,” Proc. 36th IEEE Int’l Symp. Multiple-Valued Logic (ISMVL ’06), May 2006. [29] Scilab 3.0, INRIA-ENPC

  20. A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations

    NASA Astrophysics Data System (ADS)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.

    2017-06-01

    Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical

  1. Numerical investigation of flow on NACA4412 aerofoil with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Demir, Hacımurat; Özden, Mustafa; Genç, Mustafa Serdar; Çağdaş, Mücahit

    2016-03-01

    In this study, the flow over NACA4412 was investigated both numerically and experimentally at a different Reynolds numbers. The experiments were carried out in a low speed wind tunnel with various angles of attack and different Reynolds numbers (25000 and 50000). Airfoil was manufactured using 3D printer with a various aspect ratios (AR = 1 and AR = 3). Smoke-wire and oil flow visualization methods were used to visualize the surface flow patterns. NACA4412 aerofoil was designed by using SOLIDWORKS. The structural grid of numerical model was constructed by ANSYS ICEM CFD meshing software. Furthermore, ANSYS FLUENT™ software was used to perform numerical calculations. The numerical results were compared with experimental results. Bubble formation was shown in CFD streamlines and smoke-wire experiments at z / c = 0.4. Furthermore, bubble shrunk at z / c = 0.2 by reason of the effects of tip vortices in both numerical and experimental studies. Consequently, it was seen that there was a good agreement between numerical and experimental results.

  2. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations.

    PubMed

    Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K

    2017-09-15

    Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion

  3. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations

    NASA Astrophysics Data System (ADS)

    Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K.

    2018-05-01

    Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion

  4. Molded underfill (MUF) encapsulation for flip-chip package: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Abdullah, M. K.; Abdullah, M. Z.; Ariff, Z. M.; Saad, Abdullah Aziz; Hamid, M. F.; Ismail, M. A.

    2017-07-01

    This paper presents the numerical simulation of epoxy molding compound (EMC) filling in multi flip-chip packages during encapsulation process. The empty and a group flip chip packages were considered in the mold cavity in order to study the flow profile of the EMC. SOLIDWORKS software was used for three-dimensional modeling and it was incorporated into fluid analysis software namely as ANSYS FLUENT. The volume of fluid (VOF) technique was used for capturing the flow front profiles and Power Law model was applied for its rheology model. The numerical result are compared and discussed with previous experimental and it was shown a good conformity for model validation. The prediction of flow front was observed and analyzed at different filling time. The possibility and visual of void formation in the package is captured and the number of flip-chip is one factor that contributed to the void formation.

  5. The formation of topological defects in phase transitions

    NASA Technical Reports Server (NTRS)

    Hodges, Hardy M.

    1989-01-01

    It was argued, and fought through numerical work that the results of non-dynamical Monte Carlo computer simulations cannot be applied to describe the formation of topological defects when the correlation length at the Ginzburg temperature is significantly smaller than the horizon size. To test the current hypothesis that infinite strings at formation are essentially described by Brownian walks of size the correlation length at the Ginzburg temperature, fields at the Ginzburg temperature were equilibrated. Infinite structure do not exist in equilibrium for reasonable definitions of the Ginzburg temperature, and horizons must be included in a proper treatment. A phase transition, from small-scale to large-scale string or domain wall structure, is found to occur very close to the Ginzburg temperature, in agreement with recent work. The formation process of domain walls and global strings were investigated through the breaking of initially ordered states. To mimic conditions in the early Universe, cooling times are chosen so that horizons exist in the sample volume when topological structure formation occurs. The classical fields are evolved in real-time by the numerical solution of Langevin equations of motion on a three dimensional spatial lattice. The results indicate that it is possible for most of the string energy to be in small loops, rather than in long strings, at formation.

  6. Eye-movement patterns during nonsymbolic and symbolic numerical magnitude comparison and their relation to math calculation skills.

    PubMed

    Price, Gavin R; Wilkey, Eric D; Yeo, Darren J

    2017-05-01

    A growing body of research suggests that the processing of nonsymbolic (e.g. sets of dots) and symbolic (e.g. Arabic digits) numerical magnitudes serves as a foundation for the development of math competence. Performance on magnitude comparison tasks is thought to reflect the precision of a shared cognitive representation, as evidence by the presence of a numerical ratio effect for both formats. However, little is known regarding how visuo-perceptual processes are related to the numerical ratio effect, whether they are shared across numerical formats, and whether they relate to math competence independently of performance outcomes. The present study investigates these questions in a sample of typically developing adults. Our results reveal a pattern of associations between eye-movement measures, but not their ratio effects, across formats. This suggests that ratio-specific visuo-perceptual processing during magnitude processing is different across nonsymbolic and symbolic formats. Furthermore, eye movements are related to math performance only during symbolic comparison, supporting a growing body of literature suggesting symbolic number processing is more strongly related to math outcomes than nonsymbolic magnitude processing. Finally, eye-movement patterns, specifically fixation dwell time, continue to be negatively related to math performance after controlling for task performance (i.e. error rate and reaction time) and domain general cognitive abilities (IQ), suggesting that fluent visual processing of Arabic digits plays a unique and important role in linking symbolic number processing to formal math abilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A new numerical approximation of the fractal ordinary differential equation

    NASA Astrophysics Data System (ADS)

    Atangana, Abdon; Jain, Sonal

    2018-02-01

    The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.

  8. A numerical study of incompressible juncture flows

    NASA Technical Reports Server (NTRS)

    Kwak, D.; Rogers, S. E.; Kaul, U. K.; Chang, J. L. C.

    1986-01-01

    The laminar, steady juncture flow around single or multiple posts mounted between two flat plates is simulated using the three dimensional incompressible Navier-Stokes code, INS3D. The three dimensional separation of the boundary layer and subsequent formation and development of the horseshoe vortex is computed. The computed flow compares favorably with the experimental observation. The recent numerical study to understand and quantify the juncture flow relevant to the Space Shuttle main engine power head is summarized.

  9. Sheet, ligament and droplet formation in swirling primary atomization

    NASA Astrophysics Data System (ADS)

    Shao, Changxiao; Luo, Kun; Chai, Min; Fan, Jianren

    2018-04-01

    We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF) method coupled with adapted mesh refinement (AMR) technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  10. Numerical investigation into blood clotting at the bone-dental implant interface in the presence of an electrical stimulus.

    PubMed

    Vanegas-Acosta, J C; Garzón-Alvarado, D A; Lancellotti, V

    2013-12-01

    The insertion of a dental implant activates a sequence of wound healing events ending with bone formation and implant osseointegration. This sequence starts with the blood coagulation process and the formation of a fibrin network that detains spilt blood. Fibrin formation can be simplified as the kinetic reaction between thrombin and fibrinogen preceding the conversion of fibrinogen into fibrin. Based on experimental observations of the electrical properties of these molecules, we present a hypothesis for the mechanism of a static electrical stimulus in controlling the formation of the blood clot. Specifically, the electrical stimulus increases the fibrin network formation in such a way that a preferential region of higher fibrin density is obtained. This hypothesis is validated by means of a numerical model for the blood clot formation at the bone-dental implant interface. Numerical results compare favorably to experimental observations for blood clotting with and without the static electrical stimulus. It is concluded that the density of the fibrin network depends on the strength of the static electrical stimulus, and that the blood clot formation has a preferential direction of formation in the presence of the electrical signal. © 2013 Published by Elsevier Ltd. All rights reserved.

  11. Interactive numerals

    PubMed Central

    2017-01-01

    Although Arabic numerals (like ‘2016’ and ‘3.14’) are ubiquitous, we show that in interactive computer applications they are often misleading and surprisingly unreliable. We introduce interactive numerals as a new concept and show, like Roman numerals and Arabic numerals, interactive numerals introduce another way of using and thinking about numbers. Properly understanding interactive numerals is essential for all computer applications that involve numerical data entered by users, including finance, medicine, aviation and science. PMID:28484609

  12. Neuronal foundations of human numerical representations.

    PubMed

    Eger, E

    2016-01-01

    The human species has developed complex mathematical skills which likely emerge from a combination of multiple foundational abilities. One of them seems to be a preverbal capacity to extract and manipulate the numerosity of sets of objects which is shared with other species and in humans is thought to be integrated with symbolic knowledge to result in a more abstract representation of numerical concepts. For what concerns the functional neuroanatomy of this capacity, neuropsychology and functional imaging have localized key substrates of numerical processing in parietal and frontal cortex. However, traditional fMRI mapping relying on a simple subtraction approach to compare numerical and nonnumerical conditions is limited to tackle with sufficient precision and detail the issue of the underlying code for number, a question which more easily lends itself to investigation by methods with higher spatial resolution, such as neurophysiology. In recent years, progress has been made through the introduction of approaches sensitive to within-category discrimination in combination with fMRI (adaptation and multivariate pattern recognition), and the present review summarizes what these have revealed so far about the neural coding of individual numbers in the human brain, the format of these representations and parallels between human and monkey neurophysiology findings. © 2016 Elsevier B.V. All rights reserved.

  13. Analytical and numerical analysis of the slope of von Mises planar trusses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalina, M.; Frantík, P.

    2016-06-08

    In the present paper, there are presented post-critical stress states which will occur at loading by vertical shift of the top joint in the direction downwards. The formation of certain stress states depends on the size of the angle formed by a straight beam of the von Mises planar truss with horizontal plane. Numerical and analytical methods and their problems with finding the angle were described. The numerical solution applies the method of searching for a minimum of potential energy.

  14. Numerical simulation of freckle formation in directional solidification of binary alloys

    NASA Technical Reports Server (NTRS)

    Felicelli, Sergio D.; Heinrich, Juan C.; Poirier, David R.

    1992-01-01

    A mathematical model of solidification is presented which simulates the formation of segregation models known as 'freckles' during directional solidification of binary alloys. The growth of the two-phase or dendritic zone is calculated by solving the coupled equations of momentum, energy, and solute transport, as well as maintaining the thermodynamic constraints dictated by the phase diagram of the alloy. Calculations for lead-tin alloys show that the thermosolutal convection in the dendritic zone during solidification can produce heavily localized inhomogeneities in the composition of the final alloy.

  15. Coupling Effects of Unsteady River Discharges and Wave Conditions on Mouth Bar Formation

    NASA Astrophysics Data System (ADS)

    Gao, W.; Shao, D.; Zheng Bing, W.; Yang, W.; Sun, T.; Cui, B.

    2017-12-01

    As a key morphological unit at delta front, the evolution of mouth bar is of critical importance to channel bifurcation and the formation of deltaic distributaries, and therefore have received wide attention, primarily using numerical modelling approaches. Notably, the existing numerical modelling studies were mostly carried out under the assumption that most of the sediments are delivered to the ocean during bankfull discharge stages, so is the most significant deltaic morphological evolution, and hence periods of relatively low river discharge were `safely' neglected, leaving out the effects of unsteadiness of river discharge on the relevant morphodynamic processes altogether. However, the above assumption is worth reviewing in the context of combined fluvial and marine forcing as the relative wave strength has been repeatedly proved to be a critical parameter in estuarine-deltaic morphodynamics. In natural deltas, the period of high river discharge may or may not coincide with the occurrence of maximum wave strength, which further complicates their coupling effects. To assess the coupling effects of unsteady river discharges and wave conditions on mouth bar formation, numerical experiments using Delft3D-SWAN were conducted in this study. A host of combined high-and-low river discharges coupled with varying wave strengths were assumed to mimic the natural variability. Numerical simulation results suggest the existence of three regimes for mouth bar formation, namely, nonexistence of mouth bar (G1), formation of ephemeral mouth bar (G2) and formation of stable mouth bar (G3), which were dictated by the relative wave strength during both onset and reworking stages as well as the reworking time. Implications of the mouth bar formation regimes on delta distributary networks were also discussed. The findings have implications for coastal management at estuaries and deltas such as erosion prevention and mitigation, water and sediment regulation scheme, etc.

  16. Approximate numerical abilities and mathematics: Insight from correlational and experimental training studies.

    PubMed

    Hyde, D C; Berteletti, I; Mou, Y

    2016-01-01

    Humans have the ability to nonverbally represent the approximate numerosity of sets of objects. The cognitive system that supports this ability, often referred to as the approximate number system (ANS), is present in early infancy and continues to develop in precision over the life span. It has been proposed that the ANS forms a foundation for uniquely human symbolic number and mathematics learning. Recent work has brought two types of evidence to bear on the relationship between the ANS and human mathematics: correlational studies showing individual differences in approximate numerical abilities correlate with individual differences in mathematics achievement and experimental studies showing enhancing effects of nonsymbolic approximate numerical training on exact, symbolic mathematical abilities. From this work, at least two accounts can be derived from these empirical data. It may be the case that the ANS and mathematics are related because the cognitive and brain processes responsible for representing numerical quantity in each format overlap, the Representational Overlap Hypothesis, or because of commonalities in the cognitive operations involved in mentally manipulating the representations of each format, the Operational Overlap hypothesis. The two hypotheses make distinct predictions for future work to test. © 2016 Elsevier B.V. All rights reserved.

  17. Influence of design parameters in Water-Alternating-Gas Injection on enhancement of CO2 trapping in heterogeneous formations: A numerical study

    NASA Astrophysics Data System (ADS)

    Joodaki, S.; Yang, Z.; Niemi, A. P.

    2016-12-01

    CO2 trapping in saline aquifers can be enhanced by applying specific injection strategies. Water-alternating-gas (WAG) injection, in which intermittent slugs of CO2 and water are injected, is one of the suggested methods to increase the trapping of CO2 as a result of both capillary forces (residual trapping) and dissolution into the ambient water (dissolution trapping). In this study, 3D numerical modeling was used to investigate the importance of parameters needed to design an effective WAG injection sequence including (i) CO2 and water injection rates, (ii) WAG ratio, (iii) number of cycles and their duration. We employ iTOUGH2-EOS17 model to simulate the CO2 injection and subsequent trapping in heterogeneous formations. Spatially correlated random permeability fields are generated using GSLIB based on available data at the Heletz, a pilot injection site in Israel, aimed for scientifically motivated CO2 injection experiments. Hysteresis effects on relative permeability and capillary pressure function are taken into account based on the Land model (1968). The results showed that both residual and dissolution trapping can be enhanced by increasing in CO2 injection rate due to the fact that higher CO2 injection rate reduces the gravity segregation and increases the reservoir volume swept by CO2. Faster water injection will favor the residual and dissolution trapping due to improved mixing. Increasing total amount of water injection will increase the dissolution trapping but also the cost of the injection. It causes higher pressure increases as well. Using numerical modeling, it is possible to predict the best parameter combination to optimize the trapping and find the balance between safety and cost of the injection process.

  18. A comparison of the primal and semi-dual variational formats of gradient-extended crystal inelasticity

    NASA Astrophysics Data System (ADS)

    Carlsson, Kristoffer; Runesson, Kenneth; Larsson, Fredrik; Ekh, Magnus

    2017-10-01

    In this paper we discuss issues related to the theoretical as well as the computational format of gradient-extended crystal viscoplasticity. The so-called primal format uses the displacements, the slip of each slip system and the dissipative stresses as the primary unknown fields. An alternative format is coined the semi-dual format, which in addition includes energetic microstresses among the primary unknown fields. We compare the primal and semi-dual variational formats in terms of advantages and disadvantages from modeling as well as numerical viewpoints. Finally, we perform a series of representative numerical tests to investigate the rate of convergence with finite element mesh refinement. In particular, it is shown that the commonly adopted microhard boundary condition poses a challenge in the special case that the slip direction is parallel to a grain boundary.

  19. Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Musgrave, M. E.

    1996-01-01

    Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultrastructure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyosomes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.

  20. Numerical relativity beyond astrophysics.

    PubMed

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  1. Numerical relativity beyond astrophysics

    NASA Astrophysics Data System (ADS)

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  2. Numerical modeling of keyhole dynamics in laser welding

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Hai; Zhou, Jun; Tsai, Hai-Lung

    2003-03-01

    Mathematical models and the associated numerical techniques have been developed to study the following cases: (1) the formation and collapse of a keyhole, (2) the formation of porosity and its control strategies, (3) laser welding with filler metals, and (4) the escape of zinc vapor in laser welding of galvanized steel. The simulation results show that the formation of porosity in the weld is caused by two competing mechanisms: one is the solidification rate of the molten metal and the other is the speed that molten metal backfills the keyhole after laser energy is terminated. The models have demonstrated that porosity can be reduced or eliminated by adding filler metals, controlling laser tailing power, or applying an electromagnetic force during keyhole collapse process. It is found that a uniform composition of weld pool is difficult to achieve by filler metals due to very rapid solidification of the weld pool in laser welding, as compared to that in gas metal arc welding.

  3. Numerical modelling of emissions of nitrogen oxides in solid fuel combustion.

    PubMed

    Bešenić, Tibor; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven

    2018-06-01

    Among the combustion products, nitrogen oxides are one of the main contributors to a negative impact on the environment, participating in harmful processes such as tropospheric ozone and acid rains production. The main source of emissions of nitrogen oxides is the human combustion of fossil fuels. Their formation models are investigated and implemented with the goal of obtaining a tool for studying the nitrogen-containing pollutant production. In this work, numerical simulation of solid fuel combustion was carried out on a three-dimensional model of a drop tube furnace by using the commercial software FIRE. It was used for simulating turbulent fluid flow and temperature field, concentrations of the reactants and products, as well as the fluid-particles interaction by numerically solving the integro-differential equations describing these processes. Chemical reactions mechanisms for the formation of nitrogen oxides were implemented by the user functions. To achieve reasonable calculation times for running the simulations, as well as efficient coupling with the turbulent mixing process, the nitrogen scheme is limited to sufficiently few homogeneous reactions and species. Turbulent fluctuations that affect the reaction rates of nitrogen oxides' concentration are modelled by probability density function approach. Results of the implemented model for nitrogen oxides' formation from coal and biomass are compared to the experimental data. Temperature, burnout and nitrogen oxides' concentration profiles are compared, showing satisfactory agreement. The new model allows the simulation of pollutant formation in the real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Informing patients: the influence of numeracy, framing, and format of side effect information on risk perceptions.

    PubMed

    Peters, Ellen; Hart, P Sol; Fraenkel, Liana

    2011-01-01

    Given the importance of effective patient communication, findings about influences on risk perception in nonmedical domains need replication in medical domains. To examine whether numeracy influences risk perceptions when different information frames and number formats are used to present medication risks. The authors manipulated the frame and number format of risk information in a 3 (frame: positive, negative, combined) × 2 (number format: frequency, percentage) design. Participants from an Internet sample (N = 298), randomly assigned to condition, responded to a single, hypothetical scenario. The main effects and interactions of numeracy, framing, and number format on risk perception were measured. Participants given the positive frame perceived the medication as less risky than those given the negative frame. Mean risk perceptions for the combined frame fell between the positive and negative frames. Numeracy did not moderate these framing effects. Risk perceptions also varied by number format and numeracy, with less-numerate participants given risk information in a percentage format perceiving the medication as less risky than when given risk information in a frequency format; highly numerate participants perceived similar risks in both formats. The generalizability of the findings is limited due to the use of non-patients, presented a hypothetical scenario. Given the design, one cannot know whether observed differences would translate into clinically significant differences in patient behaviors. Frequency formats appear to increase risk perceptions over percentage formats for less-numerate respondents. Health communicators need to be aware that different formats generate different risk perceptions among patients varying in numeracy.

  5. Numerical investigation of cavitation performance on bulb tubular turbine

    NASA Astrophysics Data System (ADS)

    Sun, L. G.; Guo, P. C.; Zheng, X. B.; Luo, X. Q.

    2016-05-01

    The cavitation flow phenomena may occur in the bulb tubular turbine at some certain operation conditions, which even decrease the performance of units and causes insatiably noise and vibration when it goes worse. A steady cavitating flow numerical simulations study is carried out on the bulb tubular unit with the same blade pitch angle and different guide vane openings by using the commercial code ANSYS CFX in this paper. The phenomena of cavitation induction areas and development process are obtained and draws cavitation performance curves. The numerical results show that the travelling bubble cavity is the main types of cavitation development over a wide operating range of discharge and this type of cavitation begins to sensitive to the value of cavitation number when the discharge exceeding a certain valve, in this condition, it can lead to a severe free bubble formation with the gradually decrement of cavitation number. The reported cavitation performance curves results indicate that the flow blockage incident would happen because of a mount of free bubble formation in the flow passage when the cavity developed to certain extend, which caused head drop behavior and power broken dramatically and influenced the output power.

  6. Detailed Numerical Simulations on the Formation of Pillars Around H II Regions

    NASA Astrophysics Data System (ADS)

    Gritschneder, Matthias; Burkert, Andreas; Naab, Thorsten; Walch, Stefanie

    2010-11-01

    We study the structural evolution of turbulent molecular clouds under the influence of ionizing radiation emitted from a nearby massive star by performing a high-resolution parameter study with the iVINE code. The temperature is taken to be 10 K or 100 K, the mean number density is either 100 cm-3 or 300 cm-3. Furthermore, the turbulence is varied between Mach 1.5 and Mach 12.5, the main driving scale of the turbulence is varied between 1 pc and 8 pc. We vary the ionizing flux by an order of magnitude, corresponding to allowing between 0.5% and 5% of the mass in the domain to be ionized immediately. In our simulations, the ionizing radiation enhances the initial turbulent density distribution and thus leads to the formation of pillar-like structures observed adjacent to H II regions in a natural way. Gravitational collapse occurs regularly at the tips of the structures. We find a clear correlation between the initial state of the turbulent cold cloud and the final morphology and physical properties of the structures formed. The most favorable regime for the formation of pillars is Mach 4-10. Structures and therefore stars only form if the initial density contrast between the high-density unionized gas and the gas that is going to be ionized is lower than the temperature contrast between the hot and the cold gas. The density of the resulting pillars is determined by a pressure equilibrium between the hot and the cold gas. A thorough analysis of the simulations shows that the complex kinematical and geometrical structure of the formed elongated filaments reflects that of observed pillars to an impressive level of detail. In addition, we find that the observed line-of-sight velocities allow for a distinct determination of different formation mechanisms. Comparing the current simulations to previous results and recent observations, we conclude that, e.g., the pillars of creation in M16 formed by the mechanism proposed here and not by the radiation driven implosion of

  7. Numerical simulations of an impinging liquid spray in a cross-flow

    NASA Astrophysics Data System (ADS)

    Gomatam, Sreekar; Vengadesan, S.; Chakravarthy, S. R.

    2017-11-01

    The characteristics of a liquid spray in a uniform cross-flow field are numerically simulated in this study. A hollow cone liquid spray is injected perpendicular to the air stream flowing through a rectangular duct under room temperature and pressure. An Eulerian-Lagrangian framework is adopted to simulate the spray in cross-flow phenomenon. The cross-flow velocity is varied from 6-12 m/s while the liquid injection pressure is varied from 0.3-0.6 MPa. The liquid droplets from the injected spray undergo breakup and/or coalescence further in the cross-flow. Moreover, the spray injected into the cross-flow impinges on the opposite wall resulting in the formation of a liquid film. This liquid film disintegrates further into discrete droplets because of the impingement of the droplets from the spray and the shear from the cross-flow. The overall distribution of the droplets in the cross-flow for varying conditions is studied in detail. The evolution of the liquid film with space and time for varying conditions is also investigated. Suitable sub-models are used to numerically model the droplet break-up, coalescence, liquid film formation and disintegration, splashing of the droplets on the film and subsequent formation of daughter droplets. Department of Applied Mechanics, Indian Inst of Tech-Madras.

  8. 3D relativistic MHD numerical simulations of X-shaped radio sources

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Bodo, G.; Capetti, A.; Massaglia, S.

    2017-10-01

    Context. A significant fraction of extended radio sources presents a peculiar X-shaped radio morphology: in addition to the classical double lobed structure, radio emission is also observed along a second axis of symmetry in the form of diffuse wings or tails. In a previous investigation we showed the existence of a connection between the radio morphology and the properties of the host galaxies. Motivated by this connection we performed two-dimensional numerical simulations showing that X-shaped radio sources may naturally form as a jet propagates along the major axis a highly elliptical density distribution, because of the fast expansion of the cocoon along the minor axis of the distribution. Aims: We intend to extend our analysis by performing three-dimensional numerical simulations and investigating the role of different parameters in determining the formation of the X-shaped morphology. Methods: The problem is addressed by numerical means, carrying out three-dimensional relativistic magnetohydrodynamic simulations of bidirectional jets propagating in a triaxial density distribution. Results: We show that only jets with power ≲ 1044 erg s-1 can give origin to an X-shaped morphology and that a misalignment of 30° between the jet axis and the major axis of the density distribution is still favourable to the formation of this kind of morphology. In addition we compute synthetic radio emission maps and polarization maps. Conclusions: In our scenario for the formation of X-shaped radio sources only low power FRII can give origin to such kind of morphology. Our synthetic emission maps show that the different observed morphologies of X-shaped sources can be the result of similar structures viewed under different perspectives.

  9. GVE-Based Dynamics and Control for Formation Flying Spacecraft

    NASA Technical Reports Server (NTRS)

    Breger, Louis; How, Jonathan P.

    2004-01-01

    Formation flying is an enabling technology for many future space missions. This paper presents extensions to the equations of relative motion expressed in Keplerian orbital elements, including new initialization techniques for general formation configurations. A new linear time-varying form of the equations of relative motion is developed from Gauss Variational Equations and used in a model predictive controller. The linearizing assumptions for these equations are shown to be consistent with typical formation flying scenarios. Several linear, convex initialization techniques are presented, as well as a general, decentralized method for coordinating a tetrahedral formation using differential orbital elements. Control methods are validated using a commercial numerical propagator.

  10. Numerical simulation of eigenmodes of ring and race-track optical microresonators

    NASA Astrophysics Data System (ADS)

    Raskhodchikov, A. V.; Raskhodchikov, D. V.; Scherbak, S. A.; Lipovskii, A. A.

    2017-11-01

    We have performed a numerical study of whispering gallery modes of ring and race-track optical microresonators. Mode excitation was considered and their spectra and electromagnetic field distributions were calculated via numerical solution of the Helmholtz equation. We pay additional attention to features of eigenmodes in race-tracks in contrast with ring resonators. Particularly, we demonstrate that modes in race-tracks are not “classic” WGM in terms of total internal reflection from a single boundary, and an inner boundary is essential for their formation. The dependence of effective refractive index of race-tracks modes on the resonator width is shown.

  11. Pattern formation and self-organization in plasmas interacting with surfaces

    NASA Astrophysics Data System (ADS)

    Trelles, Juan Pablo

    2016-10-01

    Pattern formation and self-organization are fascinating phenomena commonly observed in diverse types of biological, chemical and physical systems, including plasmas. These phenomena are often responsible for the occurrence of coherent structures found in nature, such as recirculation cells and spot arrangements; and their understanding and control can have important implications in technology, e.g. from determining the uniformity of plasma surface treatments to electrode erosion rates. This review comprises theoretical, computational and experimental investigations of the formation of spatiotemporal patterns that result from self-organization events due to the interaction of low-temperature plasmas in contact with confining or intervening surfaces, particularly electrodes. The basic definitions associated to pattern formation and self-organization are provided, as well as some of the characteristics of these phenomena within natural and technological contexts, especially those specific to plasmas. Phenomenological aspects of pattern formation include the competition between production/forcing and dissipation/transport processes, as well as nonequilibrium, stability, bifurcation and nonlinear interactions. The mathematical modeling of pattern formation in plasmas has encompassed from theoretical approaches and canonical models, such as reaction-diffusion systems, to drift-diffusion and nonequilibrium fluid flow models. The computational simulation of pattern formation phenomena imposes distinct challenges to numerical methods, such as high sensitivity to numerical approximations and the occurrence of multiple solutions. Representative experimental and numerical investigations of pattern formation and self-organization in diverse types of low-temperature electrical discharges (low and high pressure glow, dielectric barrier and arc discharges, etc) in contact with solid and liquid electrodes are reviewed. Notably, plasmas in contact with liquids, found in diverse

  12. Formation and stability of a double subduction system: a numerical study

    NASA Astrophysics Data System (ADS)

    Pusok, A. E.; Stegman, D. R.

    2017-12-01

    Examples of double subduction systems can be found in both modern (Izu-Bonin-Marianas and Ryukyu arcs, e.g. Hall [1997]) and ancient (Kohistan arc in Western Himalayas, e.g. Burg et al. [2006]) tectonic record. A double subduction system has been proposed to explain the high convergence rate observed for the India-Eurasia convergence [Aitchison et al., 2000, Jagoutz et al., 2015; Holt et al., 2017]. Rates of convergence across coupled double subduction systems can be significantly faster than across single subduction systems because of slab pull by two slabs. However, despite significant geological and geophysical observations, questions regarding double subduction remain largely unexplored. For example, it is unclear how a double subduction system forms and remains stable over millions of years. Previous numerical studies of double subduction either introduced weak zones to initiate subduction [Mishin et al., 2008] or both the subduction systems were already initiated [Jagoutz et al., 2015, Holt et al., 2017], thus assuming a priori information regarding the initial position of the two subduction zones. Moreover, the driving forces initiating a stable double subduction system remain unclear. In the context of India-Eurasia, Cande and Stegman [2011] found evidence the Reunion mantle plume head provided an ephemeral driving force on both the Indian and African plates for as long as 25 Million years, and had significant influence on plate boundaries in the region. In this study, we perform 2D and 3D numerical simulations using the code LaMEM [Kaus et al., 2016] to investigate i) subduction initiation of a secondary system in an already initiated single subduction system, and ii) the dynamics and stability of the newly formed double subduction system. We start from a single subduction setup, where subduction is already initiated (mature) and we stress the system by controlling the convergence rate of the system (i.e. imposing influx/outflux boundary conditions). Under

  13. Unified theory of the exciplex formation/dissipation.

    PubMed

    Khokhlova, Svetlana S; Burshtein, Anatoly I

    2010-11-04

    The natural extension and reformulation of the unified theory (UT) proposed here makes it integro-differential and capable of describing the distant quenching of excitation by electron transfer, accompanied with contact but reversible exciplex formation. The numerical solution of the new UT equations allows specifying the kinetics of the fluorescence quenching and exciplex association/dissociation as well as those reactions' quantum yields. It was demonstrated that the distant electron transfer in either the normal or inverted Marcus regions screens the contact reaction of exciplex formation, especially at slow diffusion.

  14. Permeability Variations Associated With Fault Reactivation in a Claystone Formation Investigated by Field Experiments and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny; Nussbaum, Christophe; Birkholzer, Jens

    2018-02-01

    We studied the relation between rupture and changes in permeability within a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). A series of water injection experiments were performed in a borehole straddle interval set within the damage zone of the main fault. A three-component displacement sensor allowed an estimation of the displacement of a minor fault plane reactivated during a succession of step rate pressure tests. The experiment reveals that the fault hydromechanical (HM) behavior is different from one test to the other with varying pressure levels needed to trigger rupture and different slip behavior under similar pressure conditions. Numerical simulations were performed to better understand the reason for such different behavior and to investigate the relation between rupture nucleation, permeability change, pressure diffusion, and rupture propagation. Our main findings are as follows: (i) a rate frictional law and a rate-and-state permeability law can reproduce the first test, but it appears that the rate constitutive parameters must be pressure dependent to reproduce the complex HM behavior observed during the successive injection tests; (ii) almost similar ruptures can create or destroy the fluid diffusion pathways; (iii) a too high or too low diffusivity created by the main rupture prevents secondary rupture events from occurring whereas "intermediate" diffusivity favors the nucleation of a secondary rupture associated with the fluid diffusion. However, because rupture may in certain cases destroy permeability, this succession of ruptures may not necessarily create a continuous hydraulic pathway.

  15. Developmental specialization in the right intraparietal sulcus for the abstract representation of numerical magnitude.

    PubMed

    Holloway, Ian D; Ansari, Daniel

    2010-11-01

    Because number is an abstract quality of a set, the way in which a number is externally represented does not change its quantitative meaning. In this study, we examined the development of the brain regions that support format-independent representation of numerical magnitude. We asked children and adults to perform both symbolic (Hindu-Arabic numerals) and nonsymbolic (arrays of squares) numerical comparison tasks as well as two control tasks while their brains were scanned using fMRI. In a preliminary analysis, we calculated the conjunction between symbolic and nonsymbolic numerical comparison. We then examined in which brain regions this conjunction differed between children and adults. This analysis revealed a large network of visual and parietal regions that showed greater activation in adults relative to children. In our primary analysis, we examined age-related differences in the conjunction of symbolic and nonsymbolic comparison after subtracting the control tasks. This analysis revealed a much more limited set of regions including the right inferior parietal lobe near the intraparietal sulcus. In addition to showing increased activation to both symbolic and nonsymbolic magnitudes over and above activation related to response selection, this region showed age-related differences in the distance effect. Our findings demonstrate that the format-independent representation of numerical magnitude in the right inferior parietal lobe is the product of developmental processes of cortical specialization and highlight the importance of using appropriate control tasks when conducting developmental neuroimaging studies.

  16. Displaying uncertainty: investigating the effects of display format and specificity.

    PubMed

    Bisantz, Ann M; Marsiglio, Stephanie Schinzing; Munch, Jessica

    2005-01-01

    We conducted four studies regarding the representation of probabilistic information. Experiments 1 through 3 compared performance on a simulated stock purchase task, in which information regarding stock profitability was probabilistic. Two variables were manipulated: display format for probabilistic information (blurred and colored icons, linguistic phrases, numeric expressions, and combinations) and specificity level (in which the number and size of discrete steps into which the probabilistic information was mapped differed). Results indicated few performance differences attributable to display format; however, performance did improve with greater specificity. Experiment 4, in which participants generated membership functions corresponding to three display formats, found a high degree of similarity in functions across formats and participants and a strong relationship between the shape of the membership function and the intended meaning of the representation. These results indicate that participants can successfully interpret nonnumeric representations of uncertainty and can use such representations in a manner similar to the way numeric expressions are used in a decision-making task. Actual or potential applications of this research include the use of graphical representations of uncertainty in systems such as command and control and situation displays.

  17. Three-Dimensional Model of Holographic Formation of Inhomogeneous PPLC Diffraction Structures

    NASA Astrophysics Data System (ADS)

    Semkin, A. O.; Sharangovich, S. N.

    2018-05-01

    A three-dimensional theoretical model of holographic formation of inhomogeneous diffraction structures in composite photopolymer - liquid crystal materials is presented considering both the nonlinearity of recording and the amplitude-phase inhomogeneity of the recording light field. Based on the results of numerical simulation, the kinematics of formations of such structures and their spatial profile are investigated.

  18. DETAILED NUMERICAL SIMULATIONS ON THE FORMATION OF PILLARS AROUND H II REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritschneder, Matthias; Burkert, Andreas; Naab, Thorsten

    2010-11-10

    We study the structural evolution of turbulent molecular clouds under the influence of ionizing radiation emitted from a nearby massive star by performing a high-resolution parameter study with the iVINE code. The temperature is taken to be 10 K or 100 K, the mean number density is either 100 cm{sup -3} or 300 cm{sup -3}. Furthermore, the turbulence is varied between Mach 1.5 and Mach 12.5, the main driving scale of the turbulence is varied between 1 pc and 8 pc. We vary the ionizing flux by an order of magnitude, corresponding to allowing between 0.5% and 5% of themore » mass in the domain to be ionized immediately. In our simulations, the ionizing radiation enhances the initial turbulent density distribution and thus leads to the formation of pillar-like structures observed adjacent to H II regions in a natural way. Gravitational collapse occurs regularly at the tips of the structures. We find a clear correlation between the initial state of the turbulent cold cloud and the final morphology and physical properties of the structures formed. The most favorable regime for the formation of pillars is Mach 4-10. Structures and therefore stars only form if the initial density contrast between the high-density unionized gas and the gas that is going to be ionized is lower than the temperature contrast between the hot and the cold gas. The density of the resulting pillars is determined by a pressure equilibrium between the hot and the cold gas. A thorough analysis of the simulations shows that the complex kinematical and geometrical structure of the formed elongated filaments reflects that of observed pillars to an impressive level of detail. In addition, we find that the observed line-of-sight velocities allow for a distinct determination of different formation mechanisms. Comparing the current simulations to previous results and recent observations, we conclude that, e.g., the pillars of creation in M16 formed by the mechanism proposed here and not by the radiation

  19. Full-Scale Direct Numerical Simulation of Two- and Three-Dimensional Instabilities and Rivulet Formulation in Heated Falling Films

    NASA Technical Reports Server (NTRS)

    Krishnamoorthy, S.; Ramaswamy, B.; Joo, S. W.

    1995-01-01

    A thin film draining on an inclined plate has been studied numerically using finite element method. Three-dimensional governing equations of continuity, momentum and energy with a moving boundary are integrated in an arbitrary Lagrangian Eulerian frame of reference. Kinematic equation is solved to precisely update interface location. Rivulet formation based on instability mechanism has been simulated using full-scale computation. Comparisons with long-wave theory are made to validate the numerical scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and spontaneous rupture forming rivulets under the influence of combined thermocapillary and surface-wave instabilities is performed.

  20. Numerical investigation of slag formation in an entrained-flow gasifier

    NASA Astrophysics Data System (ADS)

    Zageris, G.; Geza, V.; Jakovics, A.

    2018-05-01

    A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification in account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and viable solutions such as radial inlet positioning for decreasing the amount of undesirable deposits are proposed. We also conclude that the particular chemical reactions that take place inside the gasifier play a significant role in determining how slagging occurs inside a gasifier.

  1. Numerical Investigation of the Formation of a Convective Column and a Fire Tornado by Forest Fires

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.; Matvienko, O. V.

    2014-09-01

    Computational modeling of the formation of a convective column by forest fires has been carried out. It has been established that in the case of an unstable atmosphere stratification the basic factor influencing the thermal column formation is the intensification of the processes of turbulent mixing and that at a stable atmosphere stratification a more significant factor determining the convective column formation is the action of the buoyancy force. It has been shown that a swirling flow in the convective column is formed due to the appearance of a tangential velocity component as a consequence of the local circulation arising against the background of large-scale motion owing to the thermal and orographic inhomogeneities of the underlying surface.

  2. Numerical simulation of phenomenon on zonal disintegration in deep underground mining in case of unsupported roadway

    NASA Astrophysics Data System (ADS)

    Han, Fengshan; Wu, Xinli; Li, Xia; Zhu, Dekang

    2018-02-01

    Zonal disintegration phenomenon was found in deep mining roadway surrounding rock. It seriously affects the safety of mining and underground engineering and it may lead to the occurrence of natural disasters. in deep mining roadway surrounding rock, tectonic stress in deep mining roadway rock mass, horizontal stress is much greater than the vertical stress, When the direction of maximum principal stress is parallel to the axis of the roadway in deep mining, this is the main reasons for Zonal disintegration phenomenon. Using ABAQUS software to numerical simulation of the three-dimensional model of roadway rupture formation process systematically, and the study shows that when The Direction of maximum main stress in deep underground mining is along the roadway axial direction, Zonal disintegration phenomenon in deep underground mining is successfully reproduced by our numerical simulation..numerical simulation shows that using ABAQUA simulation can reproduce Zonal disintegration phenomenon and the formation process of damage of surrounding rock can be reproduced. which have important engineering practical significance.

  3. Numerical Study of Periodic Traveling Wave Solutions for the Predator-Prey Model with Landscape Features

    NASA Astrophysics Data System (ADS)

    Yun, Ana; Shin, Jaemin; Li, Yibao; Lee, Seunggyu; Kim, Junseok

    We numerically investigate periodic traveling wave solutions for a diffusive predator-prey system with landscape features. The landscape features are modeled through the homogeneous Dirichlet boundary condition which is imposed at the edge of the obstacle domain. To effectively treat the Dirichlet boundary condition, we employ a robust and accurate numerical technique by using a boundary control function. We also propose a robust algorithm for calculating the numerical periodicity of the traveling wave solution. In numerical experiments, we show that periodic traveling waves which move out and away from the obstacle are effectively generated. We explain the formation of the traveling waves by comparing the wavelengths. The spatial asynchrony has been shown in quantitative detail for various obstacles. Furthermore, we apply our numerical technique to the complicated real landscape features.

  4. Numerical study on determining formation porosity using a boron capture gamma ray technique and MCNP.

    PubMed

    Liu, Juntao; Zhang, Feng; Wang, Xinguang; Han, Fei; Yuan, Zhelong

    2014-12-01

    Formation porosity can be determined using the boron capture gamma ray counting ratio with a near to far detector in a pulsed neutron-gamma element logging tool. The thermal neutron distribution, boron capture gamma spectroscopy and porosity response for formations with different water salinity and wellbore diameter characteristics were simulated using the Monte Carlo method. We found that a boron lining improves the signal-to-noise ratio and that the boron capture gamma ray counting ratio has a higher sensitivity for determining porosity than total capture gamma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The shock formation distance in a bounded sound beam of finite amplitude.

    PubMed

    Tao, Chao; Ma, Jian; Zhu, Zhemin; Du, Gonghuan; Ping, Zihong

    2003-07-01

    This paper investigates the shock formation distance in a bounded sound beam of finite amplitude by solving the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation using frequency-domain numerical method. Simulation results reveal that, besides the nonlinearity and absorption, the diffraction is another important factor that affects the shock formation of a bounded sound beam. More detailed discussions of the shock formation in a bounded sound beam, such as the waveform of sound pressure and the spatial distribution of shock formation, are also presented and compared for different parameters.

  6. Numerical modeling of seismic anomalies at impact craters on a laboratory scale

    NASA Astrophysics Data System (ADS)

    Wuennemann, K.; Grosse, C. U.; Hiermaier, S.; Gueldemeister, N.; Moser, D.; Durr, N.

    2011-12-01

    Almost all terrestrial impact craters exhibit a typical geophysical signature. The usually observed circular negative gravity anomaly and reduced seismic velocities in the vicinity of crater structures are presumably related to an approximately hemispherical zone underneath craters where rocks have experienced intense brittle plastic deformation and fracturing during formation (see Fig.1). In the framework of the "MEMIN" (multidisciplinary experimental and modeling impact crater research network) project we carried out hypervelocity cratering experiments at the Fraunhofer Institute for High-Speed Dynamics on a decimeter scale to study the spatiotemporal evolution of the damage zone using ultrasound, acoustic emission techniques, and numerical modeling of crater formation. 2.5-10 mm iron projectiles were shot at 2-5.5 km/s on dry and water-saturated sandstone targets. The target material was characterized before, during and after the impact with high spatial resolution acoustic techniques to detect the extent of the damage zone, the state of rocks therein and to record the growth of cracks. The ultrasound measurements are applied analog to seismic surveys at natural craters but used on a different - i.e. much smaller - scale. We compare the measured data with dynamic models of crater formation, shock, plastic and elastic wave propagation, and tensile/shear failure of rocks in the impacted sandstone blocks. The presence of porosity and pore water significantly affects the propagation of waves. In particular the crushing of pores due to shock compression has to be taken into account. We present preliminary results showing good agreement between experiments and numerical model. In a next step we plan to use the numerical models to upscale the results from laboratory dimensions to the scale of natural impact craters.

  7. Rapid gas hydrate formation processes: Will they work?

    DOE PAGES

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuousmore » formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.« less

  8. On physical and numerical instabilities arising in simulations of non-stationary radiatively cooling shocks

    NASA Astrophysics Data System (ADS)

    Badjin, D. A.; Glazyrin, S. I.; Manukovskiy, K. V.; Blinnikov, S. I.

    2016-06-01

    We describe our modelling of the radiatively cooling shocks and their thin shells with various numerical tools in different physical and calculational setups. We inspect structure of the dense shell, its formation and evolution, pointing out physical and numerical factors that sustain its shape and also may lead to instabilities. We have found that under certain physical conditions, the circular shaped shells show a strong bending instability and successive fragmentation on Cartesian grids soon after their formation, while remain almost unperturbed when simulated on polar meshes. We explain this by physical Rayleigh-Taylor-like instabilities triggered by corrugation of the dense shell surfaces by numerical noise. Conditions for these instabilities follow from both the shell structure itself and from episodes of transient acceleration during re-establishing of dynamical pressure balance after sudden radiative cooling onset. They are also easily excited by physical perturbations of the ambient medium. The widely mentioned non-linear thin shell instability, in contrast, in tests with physical perturbations is shown to have only limited chances to develop in real radiative shocks, as it seems to require a special spatial arrangement of fluctuations to be excited efficiently. The described phenomena also set new requirements on further simulations of the radiatively cooling shocks in order to be physically correct and free of numerical artefacts.

  9. Baseline metal enrichment from Population III star formation in cosmological volume simulations

    NASA Astrophysics Data System (ADS)

    Jaacks, Jason; Thompson, Robert; Finkelstein, Steven L.; Bromm, Volker

    2018-04-01

    We utilize the hydrodynamic and N-body code GIZMO coupled with our newly developed sub-grid Population III (Pop III) Legacy model, designed specifically for cosmological volume simulations, to study the baseline metal enrichment from Pop III star formation at z > 7. In this idealized numerical experiment, we only consider Pop III star formation. We find that our model Pop III star formation rate density (SFRD), which peaks at ˜ 10- 3 M⊙ yr- 1 Mpc- 1 near z ˜ 10, agrees well with previous numerical studies and is consistent with the observed estimates for Pop II SFRDs. The mean Pop III metallicity rises smoothly from z = 25 to 7, but does not reach the critical metallicity value, Zcrit = 10-4 Z⊙, required for the Pop III to Pop II transition in star formation mode until z ≃ 7. This suggests that, while individual haloes can suppress in situ Pop III star formation, the external enrichment is insufficient to globally terminate Pop III star formation. The maximum enrichment from Pop III star formation in star-forming dark matter haloes is Z ˜ 10-2 Z⊙, whereas the minimum found in externally enriched haloes is Z ≳ 10-7 Z⊙. Finally, mock observations of our simulated IGM enriched with Pop III metals produce equivalent widths similar to observations of an extremely metal-poor damped Lyman alpha system at z = 7.04, which is thought to be enriched by Pop III star formation only.

  10. On the Numerical Study of Heavy Rainfall in Taiwan

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chen, Ching-Sen; Chen, Yi-Leng; Jou, Ben Jong-Dao; Lin, Pay-Liam; Starr, David OC. (Technical Monitor)

    2001-01-01

    Heavy rainfall events are frequently observed over the western side of the CMR (central mountain range), which runs through Taiwan in a north-south orientation, in a southwesterly flow regime and over the northeastern side of the CMR in a northeasterly flow regime. Previous studies have revealed the mechanisms by which the heavy rainfall events are formed. Some of them have examined characteristics of the heavy rainfall via numerical simulations. In this paper, some of the previous numerical studies on heavy rainfall events around Taiwan during the Mei-Yu season (May and June), summer (non-typhoon cases) and autumn will be reviewed. Associated mechanisms proposed from observational studies will be reviewed first, and then characteristics of numerically simulated heavy rainfall events will be presented. The formation mechanisms of heavy rainfall from simulated results and from observational analysis are then compared and discussed. Based on these previous modeling studies, we will also discuss what are the major observations and modeling processes which will be needed for understanding the heavy precipitation in the future.

  11. Fuel-optimal low-thrust formation reconfiguration via Radau pseudospectral method

    NASA Astrophysics Data System (ADS)

    Li, Jing

    2016-07-01

    This paper investigates fuel-optimal low-thrust formation reconfiguration near circular orbit. Based on the Clohessy-Wiltshire equations, first-order necessary optimality conditions are derived from the Pontryagin's maximum principle. The fuel-optimal impulsive solution is utilized to divide the low-thrust trajectory into thrust and coast arcs. By introducing the switching times as optimization variables, the fuel-optimal low-thrust formation reconfiguration is posed as a nonlinear programming problem (NLP) via direct transcription using multiple-phase Radau pseudospectral method (RPM), which is then solved by a sparse nonlinear optimization software SNOPT. To facilitate optimality verification and, if necessary, further refinement of the optimized solution of the NLP, formulas for mass costate estimation and initial costates scaling are presented. Numerical examples are given to show the application of the proposed optimization method. To fix the problem, generic fuel-optimal low-thrust formation reconfiguration can be simplified as reconfiguration without any initial and terminal coast arcs, whose optimal solutions can be efficiently obtained from the multiple-phase RPM at the cost of a slight fuel increment. Finally, influence of the specific impulse and maximum thrust magnitude on the fuel-optimal low-thrust formation reconfiguration is analyzed. Numerical results shown the links and differences between the fuel-optimal impulsive and low-thrust solutions.

  12. Multistage Core Formation in Planetesimals Revealed by Numerical Modeling and Hf-W Chronometry of Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Neumann, W.; Kruijer, T. S.; Breuer, D.; Kleine, T.

    2018-02-01

    Iron meteorites provide some of the most direct insights into the processes and timescales of core formation in planetesimals. Of these, group IVB irons stand out by having one of the youngest 182Hf-182W model ages for metal segregation (2.9 ± 0.6 Ma after solar system formation), as well as the lowest bulk sulfur content and hence highest liquidus temperature. Here, using a new model for the internal evolution of the IVB parent body, we show that a single stage of metal-silicate separation cannot account for the complete melting of pure Fe metal at the relatively late time given by the Hf-W model age. Instead, a complex metal-silicate separation scenario is required that includes migration of partial silicate melts, formation of a shallow magma ocean, and core formation in two distinct stages of metal segregation. In the first stage, a protocore formed at ≈1.5 Ma via settling of metal particles in a mantle magma ocean, followed by metal segregation from a shallow magma ocean at ≈5.4 Ma. As these stages of metal segregation occurred at different times, the two metal fractions had different 182W compositions. Consequently, the final 182W composition of the IVB core does not correspond to a single differentiation event, but represents the average composition of early- and late-segregated core fractions. Our best fit model indicates an ≈100 km radius for the IVB parent body and provides an accretion age of ≈0.1-0.5 Ma after solar system formation. The computed solidification time is, furthermore, consistent with the Re-Os age for crystallization of the IVB core.

  13. Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model

    NASA Astrophysics Data System (ADS)

    Ong, L.; Melosh, H. J.

    2012-12-01

    Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient

  14. Fabrication of a novel aluminum surface covered by numerous high-aspect-ratio anodic alumina nanofibers

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2015-11-01

    The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The density of the anodic alumina nanofibers decreased as the applied voltage increased in the 10-75 V range. However, active electrochemical dissolution of the aluminum substrate occurred at a higher voltage of 90 V. Low temperature anodizing at 273 K resulted in the formation of long alumina nanofibers measuring several micrometers in length, even though a long processing time was required due to the low current density during the low temperature anodizing. In contrast, high temperature anodizing easily resulted in the formation and chemical dissolution of alumina nanofibers. The structural nanofeatures of the anodic alumina nanofibers were controlled by choosing of the appropriate electrochemical conditions, and numerous high-aspect-ratio alumina nanofibers (>100) can be successfully fabricated. The anodic alumina nanofibers consisted of a pure amorphous aluminum oxide without anions from the employed electrolyte.

  15. Numerical parametric studies of spray combustion instability

    NASA Technical Reports Server (NTRS)

    Pindera, M. Z.

    1993-01-01

    A coupled numerical algorithm has been developed for studies of combustion instabilities in spray-driven liquid rocket engines. The model couples gas and liquid phase physics using the method of fractional steps. Also introduced is a novel, efficient methodology for accounting for spray formation through direct solution of liquid phase equations. Preliminary parametric studies show marked sensitivity of spray penetration and geometry to droplet diameter, considerations of liquid core, and acoustic interactions. Less sensitivity was shown to the combustion model type although more rigorous (multi-step) formulations may be needed for the differences to become apparent.

  16. Numerical study of ambient pressure for laser-induced bubble near a rigid boundary

    NASA Astrophysics Data System (ADS)

    Li, BeiBei; Zhang, HongChao; Han, Bing; Lu, Jian

    2012-07-01

    The dynamics of the laser-induced bubble at different ambient pressures was numerically studied by Finite Volume Method (FVM). The velocity of the bubble wall, the liquid jet velocity at collapse, and the pressure of the water hammer while the liquid jet impacting onto the boundary are found to increase nonlinearly with increasing ambient pressure. The collapse time and the formation time of the liquid jet are found to decrease nonlinearly with increasing ambient pressure. The ratios of the jet formation time to the collapse time, and the displacement of the bubble center to the maximal radius while the jet formation stay invariant when ambient pressure changes. These ratios are independent of ambient pressure.

  17. Numerical Modeling of River Ice Processes on the Lower Nelson River

    NASA Astrophysics Data System (ADS)

    Malenchak, Jarrod Joseph

    Water resource infrastructure in cold regions of the world can be significantly impacted by the existence of river ice. Major engineering concerns related to river ice include ice jam flooding, the design and operation of hydropower facilities and other hydraulic structures, water supplies, as well as ecological, environmental, and morphological effects. The use of numerical simulation models has been identified as one of the most efficient means by which river ice processes can be studied and the effects of river ice be evaluated. The continued advancement of these simulation models will help to develop new theories and evaluate potential mitigation alternatives for these ice issues. In this thesis, a literature review of existing river ice numerical models, of anchor ice formation and modeling studies, and of aufeis formation and modeling studies is conducted. A high level summary of the two-dimensional CRISSP numerical model is presented as well as the developed freeze-up model with a focus specifically on the anchor ice and aufeis growth processes. This model includes development in the detailed heat transfer calculations, an improved surface ice mass exchange model which includes the rapids entrainment process, and an improved dry bed treatment model along with the expanded anchor ice and aufeis growth model. The developed sub-models are tested in an ideal channel setting as somewhat of a model confirmation. A case study of significant anchor ice and aufeis growth on the Nelson River in northern Manitoba, Canada, will be the primary field test case for the anchor ice and aufeis model. A second case study on the same river will be used to evaluate the surface ice components of the model in a field setting. The results from these cases studies will be used to highlight the capabilities and deficiencies in the numerical model and to identify areas of further research and model development.

  18. Initial Satellite Formation Flight Results from the Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Ottenstein, Neil; Palmer, Eric; Farahmand, Mitra

    2016-01-01

    This paper describes the underlying dynamics of formation flying in a high-eccentricity orbit such as that of the Magnetospheric Multiscale mission. The GPS-based results used for MMS navigation is summarized, as well as the procedures that are used to design the maneuvers used to place the spacecraft into a tetrahedron formation and then maintain it. The details of how to carry out these maneuvers are then discussed. Finally, the numerical results that have been obtained concerning formation flying for the MMS mission to date (e.g. tetrahedron sizes flown, maneuver execution error, fuel usage, etc.) are presented in detail.

  19. Multistage Core Formation in Planetesimals Revealed by Numerical Modeling and Hf-W Chronometry of Iron Meteorites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumann, W.; Kruijer, T. S.; Breuer, D.

    Iron meteorites provide some of the most direct insights into the processes and timescales of core formation in planetesimals. Of these, group IVB irons stand out by having one of the youngest 182Hf- 182W model ages for metal segregation (2.9 ± 0.6 Ma after solar system formation), as well as the lowest bulk sulfur content and hence highest liquidus temperature. Here in this paper, using a new model for the internal evolution of the IVB parent body, we show that a single stage of metal-silicate separation cannot account for the complete melting of pure Fe metal at the relatively latemore » time given by the Hf-W model age. Instead, a complex metal-silicate separation scenario is required that includes migration of partial silicate melts, formation of a shallow magma ocean, and core formation in two distinct stages of metal segregation. In the first stage, a protocore formed at ≈1.5 Ma via settling of metal particles in a mantle magma ocean, followed by metal segregation from a shallow magma ocean at ≈5.4 Ma. As these stages of metal segregation occurred at different times, the two metal fractions had different 182W compositions. Consequently, the final 182W composition of the IVB core does not correspond to a single differentiation event, but represents the average composition of early- and late-segregated core fractions. Our best fit model indicates an ≈100 km radius for the IVB parent body and provides an accretion age of ≈0.1–0.5 Ma after solar system formation. The computed solidification time is, furthermore, consistent with the Re-Os age for crystallization of the IVB core.« less

  20. Multistage Core Formation in Planetesimals Revealed by Numerical Modeling and Hf-W Chronometry of Iron Meteorites

    DOE PAGES

    Neumann, W.; Kruijer, T. S.; Breuer, D.; ...

    2018-02-01

    Iron meteorites provide some of the most direct insights into the processes and timescales of core formation in planetesimals. Of these, group IVB irons stand out by having one of the youngest 182Hf- 182W model ages for metal segregation (2.9 ± 0.6 Ma after solar system formation), as well as the lowest bulk sulfur content and hence highest liquidus temperature. Here in this paper, using a new model for the internal evolution of the IVB parent body, we show that a single stage of metal-silicate separation cannot account for the complete melting of pure Fe metal at the relatively latemore » time given by the Hf-W model age. Instead, a complex metal-silicate separation scenario is required that includes migration of partial silicate melts, formation of a shallow magma ocean, and core formation in two distinct stages of metal segregation. In the first stage, a protocore formed at ≈1.5 Ma via settling of metal particles in a mantle magma ocean, followed by metal segregation from a shallow magma ocean at ≈5.4 Ma. As these stages of metal segregation occurred at different times, the two metal fractions had different 182W compositions. Consequently, the final 182W composition of the IVB core does not correspond to a single differentiation event, but represents the average composition of early- and late-segregated core fractions. Our best fit model indicates an ≈100 km radius for the IVB parent body and provides an accretion age of ≈0.1–0.5 Ma after solar system formation. The computed solidification time is, furthermore, consistent with the Re-Os age for crystallization of the IVB core.« less

  1. Theoretical model of a polarization diffractive elements for the light beams conversion holographic formation in PDLCs

    NASA Astrophysics Data System (ADS)

    Sharangovich, Sergey N.; Semkin, Artem O.

    2017-12-01

    In this work a theoretical model of the holographic formation of the polarization diffractive optical elements for the transformation of Gaussian light beams into Bessel-like ones in polymer-dispersed liquid crystals (PDLC) is developed. The model is based on solving the equations of photo-induced Fredericks transition processes for polarization diffractive elements formation by orthogonally polarized light beams with inhomogeneous amplitude and phase profiles. The results of numerical simulation of the material's dielectric tensor changing due to the structure's formation process are presented for various recording beams' polarization states. Based on the results of numerical simulation, the ability to form the diffractive optical elements for light beams transformation by the polarization holography methods is shown.

  2. Two-fluid Numerical Simulations of Solar Spicules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuźma, Błażej; Murawski, Kris; Kayshap, Pradeep

    2017-11-10

    We aim to study the formation and evolution of solar spicules by means of numerical simulations of the solar atmosphere. With the use of newly developed JOANNA code, we numerically solve two-fluid (for ions + electrons and neutrals) equations in 2D Cartesian geometry. We follow the evolution of a spicule triggered by the time-dependent signal in ion and neutral components of gas pressure launched in the upper chromosphere. We use the potential magnetic field, which evolves self-consistently, but mainly plays a passive role in the dynamics. Our numerical results reveal that the signal is steepened into a shock that propagatesmore » upward into the corona. The chromospheric cold and dense plasma lags behind this shock and rises into the corona with a mean speed of 20–25 km s{sup −1}. The formed spicule exhibits the upflow/downfall of plasma during its total lifetime of around 3–4 minutes, and it follows the typical characteristics of a classical spicule, which is modeled by magnetohydrodynamics. The simulated spicule consists of a dense and cold core that is dominated by neutrals. The general dynamics of ion and neutral spicules are very similar to each other. Minor differences in those dynamics result in different widths of both spicules with increasing rarefaction of the ion spicule in time.« less

  3. Numerical research of reburning-process of burning of coal-dust torch

    NASA Astrophysics Data System (ADS)

    Trinchenko, Alexey; Paramonov, Aleksandr; Kadyrov, Marsel; Koryabkin, Aleksey

    2017-10-01

    This work is dedicated to numerical research of ecological indicators of technological method of decrease in emissions of nitrogen oxides at combustion of solid fuel in coal-dust torch to improve the energy efficiency of steam boilers. The technology of step burning with additional input in zone of the maximum concentration of pollutant of strongly crushed fuel for formation of molecular nitrogen on surface of the burning carbon particles is considered. Results of modeling and numerical researches of technology, their analysis and comparison with the experimental data of the reconstructed boiler are given. Results of work show that input of secondary fuel allows to reduce emissions of nitrogen oxides by boiler installation without prejudice to its economic indicators.

  4. Freeze/Thaw-Induced Embolism: Probability of Critical Bubble Formation Depends on Speed of Ice Formation

    DOE PAGES

    Sevanto, Sanna; Holbrook, N. Michele; Ball, Marilyn C.

    2012-06-06

    Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumptionmore » that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.« less

  5. Freeze/Thaw-induced embolism: probability of critical bubble formation depends on speed of ice formation.

    PubMed

    Sevanto, Sanna; Holbrook, N Michele; Ball, Marilyn C

    2012-01-01

    Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.

  6. Collision and Break-off : Numerical models and surface observables

    NASA Astrophysics Data System (ADS)

    Bottrill, Andrew; van Hunen, Jeroen; Allen, Mark

    2013-04-01

    The process of continental collision and slab break-off has been explored by many authors using a number of different numerical models and approaches (Andrews and Billen, 2009; Gerya et al., 2004; van Hunen and Allen, 2011). One of the challenges of using numerical models to explore collision and break-off is relating model predictions to real observables from current collision zones. Part of the reason for this is that collision zones by their nature destroy a lot of potentially useful surface evidence of deep dynamics. One observable that offers the possibility for recording mantle dynamics at collision zones is topography. Here we present topography predictions from numerical models and show how these can be related to actual topography changes recoded in the sedimentary record. Both 2D and 3D numerical simulation of the closure of a small oceanic basin are presented (Bottrill et al., 2012; van Hunen and Allen, 2011). Topography is calculated from the normal stress at the surface applied to an elastic beam, to give a more realist prediction of topography by accounting for the expected elasticity of the lithosphere. Predicted model topography showed a number of interesting features on the overriding plate. The first is the formation of a basin post collision at around 300km from the suture. Our models also showed uplift postdating collision between the suture and this basin, caused by subduction of buoyant material. Once break-off has occurred we found that this uplift moved further into the overriding plate due to redistribution of stresses from the subducted plate. With our 3D numerical models we simulate a collision that propagates laterally along a subduction system. These models show that a basin forms, similar to that found in our 2D models, which propagates along the system at the same rate as collision. The apparent link between collision and basin formation leads to the investigation into the stress state in the overriding lithosphere. Preliminary

  7. Demixing-stimulated lane formation in binary complex plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, C.-R.; Jiang, K.; Suetterlin, K. R.

    2011-11-29

    Recently lane formation and phase separation have been reported for experiments with binary complex plasmas in the PK3-Plus laboratory onboard the International Space Station (ISS). Positive non-additivity of particle interactions is known to stimulate phase separation (demixing), but its effect on lane formation is unknown. In this work, we used Langevin dynamics (LD) simulation to probe the role of non-additivity interactions on lane formation. The competition between laning and demixing leads to thicker lanes. Analysis based on anisotropic scaling indices reveals a crossover from normal laning mode to a demixing-stimulated laning mode. Extensive numerical simulations enabled us to identify amore » critical value of the non-additivity parameter {Delta} for the crossover.« less

  8. Direct numerical simulation of annular flows

    NASA Astrophysics Data System (ADS)

    Batchvarov, Assen; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Vertical counter-current two-phase flows are investigated using direct numerical simulations. The computations are carried out using Blue, a front-tracking-based CFD solver. Preliminary results show good qualitative agreement with experimental observations in terms of interfacial phenomena; these include three-dimensional, large-amplitude wave formation, the development of long ligaments, and droplet entrainment. The flooding phenomena in these counter current systems are closely investigated. The onset of flooding in our simulations is compared to existing empirical correlations such as Kutateladze-type and Wallis-type. The effect of varying tube diameter and fluid properties on the flooding phenomena is also investigated in this work. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  9. Direct numerical simulation of microcavitation processes in different bio environments

    NASA Astrophysics Data System (ADS)

    Ly, Kevin; Wen, Sy-Bor; Schmidt, Morgan S.; Thomas, Robert J.

    2017-02-01

    Laser-induced microcavitation refers to the rapid formation and expansion of a vapor bubble inside the bio-tissue when it is exposed to intense, pulsed laser energy. With the associated microscale dissection occurring within the tissue, laserinduced microcavitation is a common approach for high precision bio-surgeries. For example, laser-induced microcavitation is used for laser in-situ keratomileusis (LASIK) to precisely reshape the midstromal corneal tissue through excimer laser beam. Multiple efforts over the last several years have observed unique characteristics of microcavitions in biotissues. For example, it was found that the threshold energy for microcavitation can be significantly reduced when the size of the biostructure is increased. Also, it was found that the dynamics of microcavitation are significantly affected by the elastic modules of the bio-tissue. However, these efforts have not focused on the early events during microcavitation development. In this study, a direct numerical simulation of the microcavitation process based on equation of state of the biotissue was established. With the direct numerical simulation, we were able to reproduce the dynamics of microcavitation in water-rich bio tissues. Additionally, an experimental setup in deionized water and 10% PAA gel was made to verify the results of the simulation for early micro-cavitation formation for 10% Polyacrylamide (PAA) gel in deionized water.

  10. Formation of large-scale structure from cosmic strings and massive neutrinos

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Melott, Adrian L.; Bertschinger, Edmund

    1989-01-01

    Numerical simulations of large-scale structure formation from cosmic strings and massive neutrinos are described. The linear power spectrum in this model resembles the cold-dark-matter power spectrum. Galaxy formation begins early, and the final distribution consists of isolated density peaks embedded in a smooth background, leading to a natural bias in the distribution of luminous matter. The distribution of clustered matter has a filamentary appearance with large voids.

  11. Numerical simulations of the charged-particle flow dynamics for sources with a curved emission surface

    NASA Astrophysics Data System (ADS)

    Altsybeyev, V. V.

    2016-12-01

    The implementation of numerical methods for studying the dynamics of particle flows produced by pulsed sources is discussed. A particle tracking method with so-called gun iteration for simulations of beam dynamics is used. For the space charge limited emission problem, we suggest a Gauss law emission model for precise current-density calculation in the case of a curvilinear emitter. The results of numerical simulations of particle-flow formation for cylindrical bipolar diode and for diode with elliptical emitter are presented.

  12. Techniques and resources for storm-scale numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Droegemeier, Kelvin; Grell, Georg; Doyle, James; Soong, Su-Tzai; Skamarock, William; Bacon, David; Staniforth, Andrew; Crook, Andrew; Wilhelmson, Robert

    1993-01-01

    The topics discussed include the following: multiscale application of the 5th-generation PSU/NCAR mesoscale model, the coupling of nonhydrostatic atmospheric and hydrostatic ocean models for air-sea interaction studies; a numerical simulation of cloud formation over complex topography; adaptive grid simulations of convection; an unstructured grid, nonhydrostatic meso/cloud scale model; efficient mesoscale modeling for multiple scales using variable resolution; initialization of cloud-scale models with Doppler radar data; and making effective use of future computing architectures, networks, and visualization software.

  13. MECHANISMS OF HUMAN KIDNEY STONE FORMATION

    PubMed Central

    Evan, Andrew P.; Worcester, Elaine M.; Coe, Fredric L.; Williams, James; Lingeman, James E.

    2014-01-01

    The precise mechanisms of kidney stone formation and growth are not completely known, even though human stone disease appears to be one of the oldest diseases known to medicine. With the advent of the new digital endoscope and detailed renal physiological studies performed on well phenotyped stone formers, substantial advances have been made in our knowledge of the pathogenesis of the most common type of stone former, the idiopathic calcium oxalate stone former (ICSF) as well as nine other stone forming groups. The observations from our group on human stone formers and those of others on model systems have suggested four entirely different pathways for kidney stone formation. Calcium oxalate stone growth over sites of Randall’s plaque appear to be the primary mode of stone formation for those patients with hypercalciuria. Overgrowths off the ends of Bellini duct plugs have been noted in most stone phenotypes, do they result in a clinical stone? Micro-lith formation does occur within the lumens of dilated inner medullary collecting ducts of cystinuric stone formers and appear to be confined to this space. Lastly, cystinuric stone formers also have numerous small, oval, smooth yellow appearing calyceal stones suggestive of formation in free solution. The scientific basis for each of these four modes of stone formation are reviewed and used to explore novel research opportunities. PMID:25108546

  14. Effects of convection patterns on freckle formation of directionally solidified Nickel-based superalloy casting with abruptly varying cross-sections

    NASA Astrophysics Data System (ADS)

    Qin, Ling; Shen, Jun; Li, Qiudong; Shang, Zhao

    2017-05-01

    The effects of convection patterns on freckle formation of directionally solidified Nickel-based superalloy sample with abruptly varying cross-sections were investigated experimentally and numerically. The experimental results demonstrate that freckles were only observed at the bottom of larger cross-section. Numerical results indicate that this phenomenon should be attributed to the different convection patterns at front of solidification interface. As the withdrawal rate increased, the primary dendrites spacing has an obvious influence on freckle formation. A more in-depth investigation of the convection patterns can provide a better understanding of freckle formation and perhaps offer methods to minimize freckles in turbine blades.

  15. Protoplanetary Disks and Planet Formation a Computational Perspective

    NASA Astrophysics Data System (ADS)

    Backus, Isaac

    In this thesis I present my research on the early stages of planet formation. Using advanced computational modeling techniques, I study global gas and gravitational dynamics in proto- planetary disks (PPDs) on length scales from the radius of Jupiter to the size of the solar system. In that environment, I investigate the formation of gas giants and the migration, enhancement, and distribution of small solids--the precursors to planetesimals and gas giant cores. I examine numerical techniques used in planet formation and PPD modeling, especially methods for generating initial conditions (ICs) in these unstable, chaotic systems. Disk simulation outcomes may depend strongly on ICs, which may explain results in the literature. I present the largest suite of high resolution PPD simulations to-date and argue that direct fragmentations of PPDs around M-Dwarfs is a plausible path to rapidly forming gas giants. I implement dust physics to track the migration of centimeter and smaller dust grains in very high resolution PPD simulations. While current dust methods are slow, with strict resolution and/or time-stepping requirements, and have some serious numerical issues, we can still demonstrate that dust does not concentrate at the pressure maxima of spiral arms, an indication that spiral features observed in the dust component are at least as well resolved in the gas. Additionally, coherent spiral arms do not limit dust settling. We suggest a novel mechanism for disk fragmentation at large radii driven by dust accretion from the surrounding nebula. We also investigate self induced dust traps, a mechanism which may help explain the growth of solids beyond meter sizes. We argue that current apparent demonstrations of this mechanism may be due to numerical artifacts and require further investigation.

  16. Solidification effects on sill formation: An experimental approach

    NASA Astrophysics Data System (ADS)

    Chanceaux, L.; Menand, T.

    2014-10-01

    Sills represent a major mechanism for constructing continental Earth's crust because these intrusions can amalgamate and form magma reservoirs and plutons. As a result, numerous field, laboratory and numerical studies have investigated the conditions that lead to sill emplacement. However, all previous studies have neglected the potential effect magma solidification could have on sill formation. The effects of solidification on the formation of sills are studied and quantified with scaled analogue laboratory experiments. The experiments presented here involved the injection of hot vegetable oil (a magma analogue) which solidified during its propagation as a dyke in a colder and layered solid of gelatine (a host rock analogue). The gelatine solid had two layers of different stiffness, to create a priori favourable conditions to form sills. Several behaviours were observed depending on the injection temperature and the injection rate: no intrusions (extreme solidification effects), dykes stopping at the interface (high solidification effects), sills (moderate solidification effects), and dykes passing through the interface (low solidification effects). All these results can be explained quantitatively as a function of a dimensionless temperature θ, which describes the experimental thermal conditions, and a dimensionless flux ϕ, which describes their dynamical conditions. The experiments reveal that sills can only form within a restricted domain of the (θ , ϕ) parameter space. These experiments demonstrate that contrary to isothermal experiments where cooling could not affect sill formation, the presence of an interface that would be a priori mechanically favourable is not a sufficient condition for sill formation; solidification effects restrict sill formation. The results are consistent with field observations and provide a means to explain why some dykes form sills when others do not under seemingly similar geological conditions.

  17. Numerical Simulation of Thin Film Breakup on Nonwettable Surfaces

    NASA Astrophysics Data System (ADS)

    Suzzi, N.; Croce, G.

    2017-01-01

    When a continuous film flows on a nonwettable substrate surface, it may break up, with the consequent formation of a dry-patch. The actual shape of the resulting water layer is of great interest in several engineering applications, from in-flight icing simulation to finned dehumidifier behavior modeling. Here, a 2D numerical solver for the prediction of film flow behavior is presented. The effect of the contact line is introduced via the disjoining pressure terms, and both gravity and shear are included in the formulation. The code is validated with literature experimental data for the case of a stationary dry-patch on an inclined plane. Detailed numerical results are compared with literature simplified model prediction. Numerical simulation are then performed in order to predict the threshold value of the film thickness allowing for film breakup and to analyze the dependence of the dynamic contact angle on film velocity and position along the contact line. Those informations will be useful in order to efficiently predict more complex configuration involving multiple breakups on arbitrarily curved substrate surfaces (as those involved in in-flight icing phenomena on aircraft).

  18. Instrument Formatting with Computer Data Entry in Mind.

    ERIC Educational Resources Information Center

    Boser, Judith A.; And Others

    Different formats for four types of research items were studied for ease of computer data entry. The types were: (1) numeric response items; (2) individual multiple choice items; (3) multiple choice items with the same response items; and (4) card column indicator placement. Each of the 13 experienced staff members of a major university's Data…

  19. Study of Shell Zone Formation in Lithographic and Anodizing Quality Aluminum Alloys: Experimental and Numerical Approach

    NASA Astrophysics Data System (ADS)

    Brochu, Christine; Larouche, André; Hark, Robert

    Shell thickness is an important quality factor for lithographic and anodizing quality aluminum alloys. Increasing pressure is placed on casting plants to produce a thinner shell zone for these alloys. This study, based on plant trials and mathematical modelling highlights the most significant parameters influencing shell zone formation. Results obtained show the importance of metal temperature and distribution and mould metal level on shell zone formation. As an answer to specific plant problems, this study led to the development of improved metal distribution systems for DC casting of litho and anodizing quality alloys.

  20. Interaction between Meso-scale Eddies and Sub-polar Front in the East (Japan) Sea based on ARGO, AVHRR, and Numerical Model

    NASA Astrophysics Data System (ADS)

    Ro, Y.; Kim, E.

    2008-12-01

    The East (Japan) Sea is drawing keen international attentions from broad spectrum of groups such as scientists, diplomats, and defense officers for its geopolitical situation, peculiar scientific assets recognized as miniature ocean. From physical oceanographic aspect, it is very rich with many features such as basin-wide circulation pattern, boundary currents, sub-polar front, meso-scale eddy activities and deep water formation. The circulation pattern in the East (Japan) Sea has been of major interests for its peculiar gyre, a western boundary current and its separation that resembles the currents such as Kuroshio and Gulf Stream. In relation to the gyre system in the East Sea, the formation of the East Korea Warm Current (EKWC) has brought up with many numerical experiments. Numerical experiments suggested a new idea to explain the formation of the EKWC in that the potential energy supply into the Ulleung Basin (UB) from the meso-scale eddy is a key process. This is closely linked with the baroclinic instability and the meandering of offshore component of Tsushima Warm Current. The UB has drawn attentions for its role of the formation of two major boundary currents, EKWC, North Korea Warm Current (NKCC), their interaction with the mesoscale UWE, watermass exchange between the Northern Japan Basin and UB. Numerical experiments along with hydrographic and other satellite datasets such as AVHRR, altimeter and ARGO profiles have been analyzed to understand the formation of the UWE. We found that the influence of the bottom topography and frictional forcing against lateral boundary are all closely associated with the sub-polar front. Meandering of the axis of the sub-polar front is closely linked with the separation point of the EKWC, Ulleung Warm Eddy, and other small and meso-scale eddies on the sub-polar front. These will be demonstrated with results of the numerical modeling experiments and animation movie will be presented.

  1. Plasma flows and magnetic field interplay during the formation of a pore

    NASA Astrophysics Data System (ADS)

    Ermolli, I.; Cristaldi, A.; Giorgi, F.; Giannattasio, F.; Stangalini, M.; Romano, P.; Tritschler, A.; Zuccarello, F.

    2017-04-01

    Aims: Recent simulations of solar magneto-convection have offered new levels of understanding of the interplay between plasma motions and magnetic fields in evolving active regions. We aim at verifying some aspects of the formation of magnetic regions derived from recent numerical studies in observational data. Methods: We studied the formation of a pore in the active region (AR) NOAA 11462. We analysed data obtained with the Interferometric Bidimensional Spectrometer (IBIS) at the Dunn Solar Telescope on April 17, 2012, consisting of full Stokes measurements of the Fe I 617.3 nm lines. Furthermore, we analysed SDO/HMI observations in the continuum and vector magnetograms derived from the Fe I 617.3 nm line data taken from April 15 to 19, 2012. We estimated the magnetic field strength and vector components and the line-of-sight (LOS) and horizontal motions in the photospheric region hosting the pore formation. We discuss our results in light of other observational studies and recent advances of numerical simulations. Results: The pore formation occurs in less than 1 h in the leading region of the AR. We observe that the evolution of the flux patch in the leading part of the AR is faster (<12 h) than the evolution (20-30 h) of the more diffuse and smaller scale flux patches in the trailing region. During the pore formation, the ratio between magnetic and dark area decreases from 5 to 2. We observe strong downflows at the forming pore boundary and diverging proper motions of plasma in the vicinity of the evolving feature that are directed towards the forming pore. The average values and trends of the various quantities estimated in the AR are in agreement with results of former observational studies of steady pores and with their modelled counterparts, as seen in recent numerical simulations of a rising-tube process. The agreement with the outcomes of the numerical studies holds for both the signatures of the flux emergence process (e.g. appearance of small

  2. Jet Formation and Penetration Study of Double-Layer Shaped Charge

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Jiang, Jian-Wei; Wang, Shu-You; Liu, Han

    2018-04-01

    A theoretical analysis on detonation wave propagation in a double-layer shaped charge (DLSC) is performed. Numerical simulations using the AUTODYN software are carried out to compare the distinctions between jet formations in DLSC and ordinary shaped charge (OSC), in particular, the OSC made using a higher detonation velocity explosive, which is treated as the outer layer charge in the DLSC. The results show that the improved detonation velocity ratio and radial charge percentage of outer-to-inner layer charge are conducive to the formation of a convergent detonation wave, which contributes to enhancement of jet tip velocity in DLSC. The thickness and mass percentages of liner flowing into jet in DLSC closely follow the exponential distribution along the radial direction, but the percentages in DLSC and the mass of effective jet, which have significant influence on the penetration depth, are lower than those in OSC with the outer layer charge. This implies that the total charge energy is the major factor controlling the effective jet formation, which is confirmed by the verification tests using flash X-ray system and following penetration tests. The numerical simulation and test results compare well, while penetration test results indicate that the performance of DLSC is not better than that of OSC with the outer layer charge, due to the differences in jet formation.

  3. Formation of rarefaction waves in origami-based metamaterials

    NASA Astrophysics Data System (ADS)

    Yasuda, H.; Chong, C.; Charalampidis, E. G.; Kevrekidis, P. G.; Yang, J.

    2016-04-01

    We investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system. We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.

  4. Anaerobic Formate and Hydrogen Metabolism.

    PubMed

    Pinske, Constanze; Sawers, R Gary

    2016-10-01

    Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.

  5. Experimental and numerical study of hydraulic fracture geometry in shale formations with complex geologic conditions

    NASA Astrophysics Data System (ADS)

    Ma, Xinfang; Zhou, Tong; Zou, Yushi

    2017-05-01

    Strike-slip fault geostress and dipping laminated structures in Lujiaping shale formation typically result in difficultly predicting hydraulic fracture (HF) geometries. In this study, a novel 3D fracture propagation model based on discrete element method (DEM) is established. A series of simulations is performed to illustrate the influence of vertical stress difference (△σv = σv-σh), fluid viscosity, and injection rate, on HF growth geometry in the dipping layered formation. Results reveal that the fracturing fluid can easily infiltrate the dipping bedding plane (BP) interfaces with low net pressure for △σv = 1 MPa. HF height growth is also restricted. With increased △σv, fracture propagation in the vertical direction is enhanced, and a fracture network is formed by VF and partially opened dipping BPs. However, it is likely to create simple VF for △σv = 20 MPa. Appropriately increasing fracturing fluid viscosity and injection rate is conductive to weakening the containment effect of BPs on HF growth by increasing the fluid net pressure. However, no indication is found on whether a higher fracturing fluid viscosity is better. Higher viscosity can reduce the activation of BPs, so a stimulated reservoir volume is not necessarily increased. All these results can serve as theoretical guidance for the optimization of fracturing treatments in Lujiaping shale formation.

  6. Numeric stratigraphic modeling: Testing sequence Numeric stratigraphic modeling: Testing sequence stratigraphic concepts using high resolution geologic examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armentrout, J.M.; Smith-Rouch, L.S.; Bowman, S.A.

    1996-08-01

    Numeric simulations based on integrated data sets enhance our understanding of depositional geometry and facilitate quantification of depositional processes. Numeric values tested against well-constrained geologic data sets can then be used in iterations testing each variable, and in predicting lithofacies distributions under various depositional scenarios using the principles of sequence stratigraphic analysis. The stratigraphic modeling software provides a broad spectrum of techniques for modeling and testing elements of the petroleum system. Using well-constrained geologic examples, variations in depositional geometry and lithofacies distributions between different tectonic settings (passive vs. active margin) and climate regimes (hothouse vs. icehouse) can provide insight tomore » potential source rock and reservoir rock distribution, maturation timing, migration pathways, and trap formation. Two data sets are used to illustrate such variations: both include a seismic reflection profile calibrated by multiple wells. The first is a Pennsylvanian mixed carbonate-siliciclastic system in the Paradox basin, and the second a Pliocene-Pleistocene siliciclastic system in the Gulf of Mexico. Numeric simulations result in geometry and facies distributions consistent with those interpreted using the integrated stratigraphic analysis of the calibrated seismic profiles. An exception occurs in the Gulf of Mexico study where the simulated sediment thickness from 3.8 to 1.6 Ma within an upper slope minibasin was less than that mapped using a regional seismic grid. Regional depositional patterns demonstrate that this extra thickness was probably sourced from out of the plane of the modeled transect, illustrating the necessity for three-dimensional constraints on two-dimensional modeling.« less

  7. Terrestrial planet formation.

    PubMed

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  8. Terrestrial planet formation

    PubMed Central

    Righter, K.; O’Brien, D. P.

    2011-01-01

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (∼106 y), followed by planetesimals to embryos (lunar to Mars-sized objects; few × 106 y), and finally embryos to planets (107–108 y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  9. Star Formation History In Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Chien, Li-Hsin

    2009-01-01

    Interacting and merging galaxies are believed to play an important role in many aspects of galactic evolution. Their violent interactions can trigger starbursts, which lead to formation of young globular clusters. Therefore the ages of these young globular clusters can be interpreted to yield the timing of interaction-triggered events, and thus provide a key to reconstruct the star formation history in merging galaxies. The link between galaxy interaction and star formation is well established, but the triggers of star formation in interacting galaxies are still not understood. To date there are two competing formulas that describe the star formation mechanism--density-dependent and shock-induced rules. Numerical models implementing the two rules predict significantly different star formation histories in merging galaxies. My dissertation combines these two distinct areas of astrophysics, stellar evolution and galactic dynamics, to investigate the star formation history in galaxies at various merging stages. Begin with NGC 4676 as an example, I will briefly describe its model and illustrate the idea of using the ages of clusters to constrain the modeling. The ages of the clusters are derived from spectra that were taken with multi-object spectroscopy on Keck. Using NGC 7252 as a second example, I will present a state of the art dynamical model which predicts NGC7252's star formation history and other properties. I will then show a detailed comparison and analysis between the clusters and the modeling. In the end, I will address this important link as the key to answer the fundamental question of my thesis: what is the trigger of star formation in merging galaxies?

  10. Kinetic model for multidimensional opinion formation

    NASA Astrophysics Data System (ADS)

    Boudin, Laurent; Monaco, Roberto; Salvarani, Francesco

    2010-03-01

    In this paper, we deal with a kinetic model to describe the evolution of the opinion in a closed group with respect to a choice between multiple options (e.g., political parties), which takes into account two main mechanisms of opinion formation, namely, the interaction between individuals and the effect of the mass media. We numerically test the model in some relevant cases and eventually provide an existence and a uniqueness result for it.

  11. A delta-rule model of numerical and non-numerical order processing.

    PubMed

    Verguts, Tom; Van Opstal, Filip

    2014-06-01

    Numerical and non-numerical order processing share empirical characteristics (distance effect and semantic congruity), but there are also important differences (in size effect and end effect). At the same time, models and theories of numerical and non-numerical order processing developed largely separately. Currently, we combine insights from 2 earlier models to integrate them in a common framework. We argue that the same learning principle underlies numerical and non-numerical orders, but that environmental features determine the empirical differences. Implications for current theories on order processing are pointed out. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  12. Three-dimensional numerical simulation during laser processing of CFRP

    NASA Astrophysics Data System (ADS)

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro

    2017-09-01

    We performed three-dimensional numerical simulation about laser processing of carbon-fiber-reinforced plastic (CFRP) using OpenFOAM as libraries of finite volume method (FVM). Although a little theoretical or numerical studies about heat affected zone (HAZ) formation were performed, there is no research discussing how HAZ is generated considering time development about removal of each material. It is important to understand difference of removal speed of carbon fiber and resin in order to improve quality of cut surface of CFRP. We demonstrated how the carbon fiber and resin are removed by heat of ablation plume by our simulation. We found that carbon fiber is removed faster than resin at first stage because of the difference of thermal conductivity, and after that, the resin is removed faster because of its low combustion temperature. This result suggests the existence of optimal contacting time of the laser ablation and kerf of the target.

  13. Galaxy formation through hierarchical clustering

    NASA Astrophysics Data System (ADS)

    White, Simon D. M.; Frenk, Carlos S.

    1991-09-01

    Analytic methods for studying the formation of galaxies by gas condensation within massive dark halos are presented. The present scheme applies to cosmogonies where structure grows through hierarchical clustering of a mixture of gas and dissipationless dark matter. The simplest models consistent with the current understanding of N-body work on dissipationless clustering, and that of numerical and analytic work on gas evolution and cooling are adopted. Standard models for the evolution of the stellar population are also employed, and new models for the way star formation heats and enriches the surrounding gas are constructed. Detailed results are presented for a cold dark matter universe with Omega = 1 and H(0) = 50 km/s/Mpc, but the present methods are applicable to other models. The present luminosity functions contain significantly more faint galaxies than are observed.

  14. Numerical study on the impacts of heterogeneous reactions on ozone formation in the Beijing urban area

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zhang, Yuanhang; Wang, Wei

    2006-12-01

    The air quality model CMAQ-MADRID (Community Multiscale Air Quality-Model of Aerosol Dynamics, Reaction, Ionization and Dissolution) was employed to simulate summer O3 formation in Beijing China, in order to explore the impacts of four heterogeneous reactions on O3 formation in an urban area. The results showed that the impacts were obvious and exhibited the characteristics of a typical response of a VOC-limited regime in the urban area. For the four heterogeneous reactions considered, the NO2 and HO2 heterogeneous reactions have the most severe impacts on O3 formation. During the O3 formation period, the NO2 heterogeneous reaction increased new radical creation by 30%, raising the atmospheric activity as more NO→NO2 conversion occurred, thus causing the O3 to rise. The increase of O3 peak concentration reached a maximum value of 67 ppb in the urban area. In the morning hours, high NO titration reduced the effect of the photolysis of HONO, which was produced heterogeneously at night in the surface layer. The NO2 heterogeneous reaction in the daytime is likely one of the major reasons causing the O3 increase in the Beijing urban area. The HO2 heterogeneous reaction accelerated radical termination, resulting in a decrease of the radical concentration by 44% at the most. O3 peak concentration decreased by a maximum amount of 24 ppb in the urban area. The simulation results were improved when the heterogeneous reactions were included, with the O3 and HONO model results close to the observations.

  15. Numerical Modeling of High-Temperature Corrosion Processes

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    1995-01-01

    Numerical modeling of the diffusional transport associated with high-temperature corrosion processes is reviewed. These corrosion processes include external scale formation and internal subscale formation during oxidation, coating degradation by oxidation and substrate interdiffusion, carburization, sulfidation and nitridation. The studies that are reviewed cover such complexities as concentration-dependent diffusivities, cross-term effects in ternary alloys, and internal precipitation where several compounds of the same element form (e.g., carbides of Cr) or several compounds exist simultaneously (e.g., carbides containing varying amounts of Ni, Cr, Fe or Mo). In addition, the studies involve a variety of boundary conditions that vary with time and temperature. Finite-difference (F-D) techniques have been applied almost exclusively to model either the solute or corrodant transport in each of these studies. Hence, the paper first reviews the use of F-D techniques to develop solutions to the diffusion equations with various boundary conditions appropriate to high-temperature corrosion processes. The bulk of the paper then reviews various F-D modeling studies of diffusional transport associated with high-temperature corrosion.

  16. Pool Formation in Boulder-Bed Streams: Implications From 1-D and 2-D Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Keller, E. A.

    2003-12-01

    In mountain rivers of Southern California, boulder-large roughness elements strongly influence flow hydraulics and pool formation and maintenance. In these systems, boulders appear to control the stream morphology by converging flow and producing deep pools during channel forming discharges. Our research goal is to develop quantitative relationships between boulder roughness elements, temporal patterns of scour and fill, and geomorphic processes that are important in producing pool habitat. The longitudinal distribution of shear stress, unit stream power and velocity were estimated along a 48 m reach on Rattlesnake Creek, using the HEC-RAS v 3.0 and River 2-D numerical models. The reach has an average slope of 0.02 and consists of a pool-riffle sequence with a large boulder constriction directly above the pool. Model runs were performed for a range of stream discharges to test if scour and fill thresholds for pool and riffle environments could be identified. Results from the HEC-RAS simulations identified that thresholds in shear stress, unit stream power and mean velocity occur above a discharge of 5.0 cms. Results from the one-dimensional analysis suggest that the reversal in competency is likely due to changes in cross-sectional width at varying flows. River 2-D predictions indicated that strong transverse velocity gradients were present through the pool at higher modeled discharges. At a flow of 0.5 cms (roughly 1/10th bankfull discharge), velocities are estimated at 0.6 m/s and 1.3 m/s for the pool and riffle, respectively. During discharges of 5.15 cms (approximate bankfull discharge), the maximum velocity in the pool center increased to nearly 3.0 m/s, while the maximum velocity over the riffle is estimated at approximately 2.5 cms. These results are consistent with those predicted by HEC-RAS, though the reversal appears to be limited to a narrow jet that occurs through the pool head and pool center. Model predictions suggest that the velocity reversal is

  17. Black-hole-regulated star formation in massive galaxies.

    PubMed

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  18. Black-hole-regulated star formation in massive galaxies

    NASA Astrophysics Data System (ADS)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  19. Spongiosa Primary Development: A Biochemical Hypothesis by Turing Patterns Formations

    PubMed Central

    López-Vaca, Oscar Rodrigo; Garzón-Alvarado, Diego Alexander

    2012-01-01

    We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13) and vascular endothelial growth factor (VEGF). It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification. PMID:23193429

  20. Numerical Convergence in the Dark Matter Halos Properties Using Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Mosquera-Escobar, X. E.; Muñoz-Cuartas, J. C.

    2017-07-01

    Nowadays, the accepted cosmological model is the so called -Cold Dark Matter (CDM). In such model, the universe is considered to be homogeneous and isotropic, composed of diverse components as the dark matter and dark energy, where the latter is the most abundant one. Dark matter plays an important role because it is responsible for the generation of gravitational potential wells, commonly called dark matter halos. At the end, dark matter halos are characterized by a set of parameters (mass, radius, concentration, spin parameter), these parameters provide valuable information for different studies, such as galaxy formation, gravitational lensing, etc. In this work we use the publicly available code Gadget2 to perform cosmological simulations to find to what extent the numerical parameters of the simu- lations, such as gravitational softening, integration time step and force calculation accuracy affect the physical properties of the dark matter halos. We ran a suite of simulations where these parameters were varied in a systematic way in order to explore accurately their impact on the structural parameters of dark matter halos. We show that the variations on the numerical parameters affect the structural pa- rameters of dark matter halos, such as concentration, virial radius, and concentration. We show that these modifications emerged when structures become non- linear (at redshift 2) for the scale of our simulations, such that these variations affected the formation and evolution structure of halos mainly at later cosmic times. As a quantitative result, we propose which would be the most appropriate values for the numerical parameters of the simulations, such that they do not affect the halo properties that are formed. For force calculation accuracy we suggest values smaller or equal to 0.0001, integration time step smaller o equal to 0.005 and for gravitational softening we propose equal to 1/60th of the mean interparticle distance, these values, correspond to the

  1. Numerical model of the plasma formation at electron beam welding

    NASA Astrophysics Data System (ADS)

    Trushnikov, D. N.; Mladenov, G. M.

    2015-01-01

    The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondary and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.

  2. Numerical model of the plasma formation at electron beam welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru; The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm 614990; Mladenov, G. M., E-mail: gmmladenov@abv.bg

    2015-01-07

    The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondarymore » and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.« less

  3. Numerical and Experimental Studies on the Explosive Welding of Tungsten Foil to Copper

    PubMed Central

    Zhou, Qiang; Feng, Jianrui; Chen, Pengwan

    2017-01-01

    This work verifies that the W foil could be successfully welded on Cu through conventional explosive welding, without any cracks. The microstructure was observed through scanning electron microscopy (SEM), optical microscopy and energy-dispersive X-ray spectrometry (EDS). The W/Cu interface exhibited a wavy morphology, and no intermetallic or transition layer was observed. The wavy interface formation, as well as the distributions of temperature, pressure and plastic strain at the interface were studied through numerical simulation with Smoothed Particle Hydrodynamics (SPH). The welding mechanism of W/Cu was analyzed according to the numerical results and experimental observation, which was in accordance with the indentation mechanism proposed by Bahrani. PMID:28832527

  4. Formation of rarefaction waves in origami-based metamaterials

    DOE PAGES

    Yasuda, H.; Chong, C.; Charalampidis, E. G.; ...

    2016-04-15

    Here, we investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system.more » We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.« less

  5. The numerical frontier of the high-redshift Universe

    NASA Astrophysics Data System (ADS)

    Greif, Thomas H.

    2015-03-01

    The first stars are believed to have formed a few hundred million years after the big bang in so-called dark matter minihalos with masses . Their radiation lit up the Universe for the first time, and the supernova explosions that ended their brief lives enriched the intergalactic medium with the first heavy elements. Influenced by their feedback, the first galaxies assembled in halos with masses , and hosted the first metal-enriched stellar populations. In this review, I summarize the theoretical progress made in the field of high-redshift star and galaxy formation since the turn of the millennium, with an emphasis on numerical simulations. These have become the method of choice to understand the multi-scale, multi-physics problem posed by structure formation in the early Universe. In the first part of the review, I focus on the formation of the first stars in minihalos - in particular the post-collapse phase, where disk fragmentation, protostellar evolution, and radiative feedback become important. I also discuss the influence of additional physical processes, such as magnetic fields and streaming velocities. In the second part of the review, I summarize the various feedback mechanisms exerted by the first stars, followed by a discussion of the first galaxies and the various physical processes that operate in them.

  6. Stochastic nonlinear dynamics pattern formation and growth models

    PubMed Central

    Yaroslavsky, Leonid P

    2007-01-01

    Stochastic evolutionary growth and pattern formation models are treated in a unified way in terms of algorithmic models of nonlinear dynamic systems with feedback built of a standard set of signal processing units. A number of concrete models is described and illustrated by numerous examples of artificially generated patterns that closely imitate wide variety of patterns found in the nature. PMID:17908341

  7. Graphical introduction to chromospheric line formation

    NASA Astrophysics Data System (ADS)

    Rutten, Rob

    2012-03-01

    The basics of chromospheric line formation theory were laid out in the 1960s and 1970s by e.g., Thomas, Avrett, Hummer, Jefferies, Mihalas, Shine, Milkey. Since then there has been a long silence, without much progress in understanding the chromosphere or its diagnostics. At present, the situation changes thanks to better ground-based observing, space-based monitoring, and increasingly realistic numerical simulations. There is a now a strong need to revamp classical one-dimensional static modeling as basis for chromospheric line interpretation into 3D dynamic understanding of the major diagnostics, including IRIS's Mg II h&k. In this introduction I aim to explain the old wisdom in tutorial fashion, using cartoons and graphs as means towards an intuitive grasp of fads and fallacies of chromospheric line formation.

  8. Getting a Kick Out of Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Centrella, Joan; Dale, Choi; Koppitz, Michael; vanMeter, James R.; Miller, M. Coleman

    2005-01-01

    Recent developments in numerical relativity have made it possible to follow reliably the coalescence of two black holes from near the innermost stable circular orbit to final ringdown. This opens up a wide variety of exciting astrophysical applications of these simulations. Chief among these is the net kick received when two unequal mass or spinning black holes merge. The magnitude of this kick has bearing on the production and growth of supermassive black holes during the epoch of structure formation; and on the retention of black holes in stellar clusters. Here we report the first accurate numerical calculation of this kick, for two nonspinning black holes in a 1.5:1 mass ratio, which is expected based on analytic considerations to give a significant fraction of the maximum possible recoil. Our estimated kick is 10(exp 5) km/s with an error of less than 10%. This is intermediate between the estimates from two recent post-Newtonian analyses and suggests that at redshifts z greater than or approx. equal to 10, halos with masses less than or approx. equal to 10(exp 9) Solar Mass will have difficulty retaining coalesced black holes after major mergers.

  9. Numerical Simulations of Blood Flows in the Left Atrium

    NASA Astrophysics Data System (ADS)

    Zhang, Lucy

    2008-11-01

    A novel numerical technique of solving complex fluid-structure interactions for biomedical applications is introduced. The method is validated through rigorous convergence and accuracy tests. In this study, the technique is specifically used to study blood flows in the left atrium, one of the four chambers in the heart. Stable solutions are obtained at physiologic Reynolds numbers by applying pulmonary venous inflow, mitral valve outflow and appropriate constitutive equations to closely mimic the behaviors of biomaterials. Atrial contraction is also implemented as a time-dependent boundary condition to realistically describe the atrial wall muscle movements, thus producing accurate interactions with the surrounding blood. From our study, the transmitral velocity, filling/emptying velocity ratio, durations and strengths of vortices are captured numerically for sinus rhythms (healthy heart beat) and they compare quite well with reported clinical studies. The solution technique can be further used to study heart diseases such as the atrial fibrillation, thrombus formation in the chamber and their corresponding effects in blood flows.

  10. Adaptive PID formation control of nonholonomic robots without leader's velocity information.

    PubMed

    Shen, Dongbin; Sun, Weijie; Sun, Zhendong

    2014-03-01

    This paper proposes an adaptive proportional integral derivative (PID) algorithm to solve a formation control problem in the leader-follower framework where the leader robot's velocities are unknown for the follower robots. The main idea is first to design some proper ideal control law for the formation system to obtain a required performance, and then to propose the adaptive PID methodology to approach the ideal controller. As a result, the formation is achieved with much more enhanced robust formation performance. The stability of the closed-loop system is theoretically proved by Lyapunov method. Both numerical simulations and physical vehicle experiments are presented to verify the effectiveness of the proposed adaptive PID algorithm. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Active Problem Solving and Applied Research Methods in a Graduate Course on Numerical Methods

    ERIC Educational Resources Information Center

    Maase, Eric L.; High, Karen A.

    2008-01-01

    "Chemical Engineering Modeling" is a first-semester graduate course traditionally taught in a lecture format at Oklahoma State University. The course as taught by the author for the past seven years focuses on numerical and mathematical methods as necessary skills for incoming graduate students. Recent changes to the course have included Visual…

  12. Towards predictive simulations of soot formation: from surrogate to turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanquart, Guillaume

    The combustion of transportation fuels leads to the formation of several kinds of pollutants, among which are soot particles. These particles, also formed during coal combustion and in fires, are the source of several health problems and environmental issues. Unfortunately, our current understanding of the chemical and physical phenomena leading to the formation of soot particles remains incomplete, and as a result, the predictive capability of our numerical tools is lacking. The objective of the work was to reduce the gap in the present understanding and modeling of soot formation both in laminar and turbulent flames. The effort spanned severalmore » length scales from the molecular level to large scale turbulent transport.« less

  13. Numerous nanopores developed in organo-clay complexes during the shale formations

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Wang, T.; Lu, H.; Liao, J.

    2017-12-01

    Shale gas as new energy resource is either stored in nano pores and microfractures or absorbed on the surface of kerogen and clay aggregate (Chalmers et al., 2012). Nano pores developed in organic matters is very important, because these organic pores have better connectivity than inorganic pores (Loucks et al., 2012) and can form an effective pore system where shale gas flows dominantly (Curtis et al., 2010). In order to figure out how the organic pores is affected by shale compositions, we conduct in-situ FE-SEM and EDS analysis on organic-rich Longmaxi shales. The data indicate that 1) organic matter, mixed with clay minerals, can form an organo-clay complex containing many nanopores; 2)furthermore, larger organic pores are developed in organo-clay complexes with higher clay content than in those with lower clay content(Wang et al., 2017). It seems that the presence of organo-clay complex raises the heterogeneous than pure organic matters. Organo-clay complex may bring in lots of intergranular nanopores between organic matter and clay minerals. Another potential interpretation is that clay minerals may influence kerogen thermal decomposition, generation of hydrocarbons and thus the development of organic pores. The presence of numerous nanopores in organo-clay complexes may promote the connectivity of the pore network and enhance the hydrocarbon production efficiency for shale gas field.

  14. Mathematical study on robust tissue pattern formation in growing epididymal tubule.

    PubMed

    Hirashima, Tsuyoshi

    2016-10-21

    Tissue pattern formation during development is a reproducible morphogenetic process organized by a series of kinetic cellular activities, leading to the building of functional and stable organs. Recent studies focusing on mechanical aspects have revealed physical mechanisms on how the cellular activities contribute to the formation of reproducible tissue patterns; however, the understanding for what factors achieve the reproducibility of such patterning and how it occurs is far from complete. Here, I focus on a tube pattern formation during murine epididymal development, and show that two factors influencing physical design for the patterning, the proliferative zone within the tubule and the viscosity of tissues surrounding to the tubule, control the reproducibility of epididymal tubule pattern, using a mathematical model based on experimental data. Extensive numerical simulation of the simple mathematical model revealed that a spatially localized proliferative zone within the tubule, observed in experiments, results in more reproducible tubule pattern. Moreover, I found that the viscosity of tissues surrounding to the tubule imposes a trade-off regarding pattern reproducibility and spatial accuracy relating to the region where the tubule pattern is formed. This indicates an existence of optimality in material properties of tissues for the robust patterning of epididymal tubule. The results obtained by numerical analysis based on experimental observations provide a general insight on how physical design realizes robust tissue pattern formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Numerical simulation of solitary waves on deep water with constant vorticity

    NASA Astrophysics Data System (ADS)

    Dosaev, A. S.; Shishina, M. I.; Troitskaya, Yu I.

    2018-01-01

    Characteristics of solitary deep water waves on a flow with constant vorticity are investigated by numerical simulation within the framework of fully nonlinear equations of motion (Euler equations) using the method of surface-tracking conformal coordinates. To ensure that solutions observed are stable, soliton formation as a result of disintegration of an initial pulse-like disturbance is modeled. Evidence is obtained that solitary waves with height above a certain threshold are unstable.

  16. Comparing the Effectiveness of Blended, Semi-Flipped, and Flipped Formats in an Engineering Numerical Methods Course

    ERIC Educational Resources Information Center

    Clark, Renee M.; Kaw, Autar; Besterfield-Sacre, Mary

    2016-01-01

    Blended, flipped, and semi-flipped instructional approaches were used in various sections of a numerical methods course for undergraduate mechanical engineers. During the spring of 2014, a blended approach was used; in the summer of 2014, a combination of blended and flipped instruction was used to deliver a semi-flipped course; and in the fall of…

  17. Numerical Tests of the Cosmic Censorship Conjecture with Collisionless Matter Collapse

    NASA Astrophysics Data System (ADS)

    Okounkova, Maria; Hemberger, Daniel; Scheel, Mark

    2016-03-01

    We present our results of numerical tests of the weak cosmic censorship conjecture (CCC), which states that generically, singularities of gravitational collapse are hidden within black holes, and the hoop conjecture, which states that black holes form when and only when a mass M gets compacted into a region whose circumference in every direction is C <= 4 πM . We built a smooth particle methods module in SpEC, the Spectral Einstein Code, to simultaneously evolve spacetime and collisionless matter configurations. We monitor RabcdRabcd for singularity formation, and probe for the existence of apparent horizons. We include in our simulations the prolate spheroid configurations considered in Shapiro and Teukolsky's 1991 numerical study of the CCC. This research was partially supported by the Dominic Orr Fellowship at Caltech.

  18. Studies on equatorial shock formation during plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1994-01-01

    Investigations based on small-scale simulations of microprocesses occurring when a magnetic flux tube refills with a cold plasma are summarized. Results of these investigations are reported in the following attached papers: (1) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: The Role of Ion Beam-Driven Instabilities'; and (2) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: Effects of Magnetically Trapped Hot Plasma'. Other papers included are: 'Interaction of Field-Aligned Cold Plasma Flows with an Equatorially-Trapped Hot Plasma: Electrostatic Shock Formation'; and 'Comparison of Hydrodynamic and Semikinetic Treatments for a Plasma Flow along Closed Field Lines'. A proposal for further research is included.

  19. Coupled numerical modeling of gas hydrates bearing sediments from laboratory to field-scale conditions

    NASA Astrophysics Data System (ADS)

    Sanchez, M. J.; Santamarina, C.; Gai, X., Sr.; Teymouri, M., Sr.

    2017-12-01

    Stability and behavior of Hydrate Bearing Sediments (HBS) are characterized by the metastable character of the gas hydrate structure which strongly depends on thermo-hydro-chemo-mechanical (THCM) actions. Hydrate formation, dissociation and methane production from hydrate bearing sediments are coupled THCM processes that involve, amongst other, exothermic formation and endothermic dissociation of hydrate and ice phases, mixed fluid flow and large changes in fluid pressure. The analysis of available data from past field and laboratory experiments, and the optimization of future field production studies require a formal and robust numerical framework able to capture the very complex behavior of this type of soil. A comprehensive fully coupled THCM formulation has been developed and implemented into a finite element code to tackle problems involving gas hydrates sediments. Special attention is paid to the geomechanical behavior of HBS, and particularly to their response upon hydrate dissociation under loading. The numerical framework has been validated against recent experiments conducted under controlled conditions in the laboratory that challenge the proposed approach and highlight the complex interaction among THCM processes in HBS. The performance of the models in these case studies is highly satisfactory. Finally, the numerical code is applied to analyze the behavior of gas hydrate soils under field-scale conditions exploring different features of material behavior under possible reservoir conditions.

  20. Hydrogen or formate: Alternative key players in methanogenic degradation.

    PubMed

    Schink, Bernhard; Montag, Dominik; Keller, Anja; Müller, Nicolai

    2017-06-01

    Hydrogen and formate are important electron carriers in methanogenic degradation in anoxic environments such as sediments, sewage sludge digestors and biogas reactors. Especially in the terminal steps of methanogenesis, they determine the energy budgets of secondary (syntrophically) fermenting bacteria and their methanogenic partners. The literature provides considerable data on hydrogen pool sizes in such habitats, but little data exist for formate concentrations due to technical difficulties in formate determination at low concentration. Recent evidence from biochemical and molecular biological studies indicates that several secondary fermenters can use both hydrogen and formate for electron release, and may do so even simultaneously. Numerous strictly anaerobic bacteria contain enzymes which equilibrate hydrogen and formate pools to energetically equal values, and recent measurements in sewage digestors and biogas reactors indicate that - beyond occasional fluctuations - the pool sizes of hydrogen and formate are indeed energetically nearly equivalent. Nonetheless, a thermophilic archaeon from a submarine hydrothermal vent, Thermococcus onnurineus, can obtain ATP from the conversion of formate to hydrogen plus bicarbonate at 80°C, indicating that at least in this extreme environment the pools of formate and hydrogen are likely to be sufficiently different to support such an unusual type of energy conservation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Numerical Modeling of Anaerobic Microzones Development in Bulk Oxic Porous Media: An Assessment of Different Microzone Formation Processes

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, S.; Zarnetske, J. P.; Briggs, M. A.; Day-Lewis, F. D.; Singha, K.

    2017-12-01

    Soil and groundwater research indicates that unique biogeochemical "microzones" commonly form within bulk soil masses. The formation of these microzones at the pore-scale has been attributed to a number of causes, including variability of in situ carbon or nutrient sources, intrinsic physical conditions that lead to dual-porosity and mass transfer conditions, or microbial bioclogging of the porous media. Each of these causes, while documented in different porous media systems, potentially can lead to the presence of anaerobic pores residing in a bulk oxic domain. The relative role of these causes operating independently or in conjunction with each other to form microzones is not known. Here, we use a single numerical modeling framework to assess the relative roles of each process in creating anaerobic microzones. Using a two-dimensional pore-network model, coupled with a microbial growth model based on Monod kinetics, simulations were performed to explore the development of these anoxic microzones and their fate under a range of hydrologic, nutrient, and microbial conditions. Initial results parameterized for a stream-groundwater exchange environment (i.e., a hyporheic zone) indicate that external forcing of fluid flux in the domain is a key soil characteristic to anaerobic microzone development as fluid flux governs the nutrient flux. The initial amount of biomass present in the system also plays a major role in the development of the microzones. In terms of dominant in situ causes, the intrinsic physical structure of the local pore space is found to play the key role in development of anaerobic sites by regulating fluxes to reaction sites. Acknowledging and understanding the drivers of these microzones will improve the ability of multiple disciplines to measure and model reactive mass transport in soils and assess if they play a significant role for particular biogeochemical processes and ecosystem functions, such as denitrification and greenhouse gas production.

  2. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.

    PubMed

    Hasan, Nusair; Farouk, Bakhtier

    2015-10-01

    Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.

  3. Observer enhanced control for spin-stabilized tethered formation in earth orbit

    NASA Astrophysics Data System (ADS)

    Guang, Zhai; Yuyang, Li; Liang, Bin

    2018-04-01

    This paper addresses the issues relevant to control of spin-stabilized tethered formation in circular orbit. Due to the dynamic complexities and nonlinear perturbations, it is challenging to promote the control precision for the formation deployment and maintenance. In this work, the formation dynamics are derived with considering the spinning rate of the central body, then major attention is dedicated to develop the nonlinear disturbance observer. To achieve better control performance, the observer-enhanced controller is designed by incorporating the disturbance observer into the control loop, benefits from the disturbance compensation are demonstrated, and also, the dependences of the disturbance observer performance on some important parameters are theoretically and numerically analyzed.

  4. Vortex formation through inertial wave focusing

    NASA Astrophysics Data System (ADS)

    Duran-Matute, Matias; Flor, Jan-Bert; Godeferd, Fabien

    2011-11-01

    We present a novel experimental and numerical study on the formation of columnar vortical structures by inertial waves in a rotating fluid. Two inertial-wave cones are generated by a vertically oscillating torus in a fluid in solid body rotation At the tip of the cones, there is a singular point towards which the energy of the waves gets focused. The particularity of this configuration, as compared to those of previous experiments (e.g. oscillating sphere or disc), is that the singular point's position within the fluid leads to complex non-linear wave interaction, which may lead to the formation of a localized vortex that expands in the vertical in the form of a Taylor column. Using detailed PIV measurements we consider the flow evolution from the localized wave overturning motion to the Taylor column formation as well as the inertial wave dynamics during this process, The results are discussed in the context of turbulence in rotating fluids. We acknowledge financial support from projects ANR ANISO and CIBLE.

  5. Satellite Formation Flight Results from Phase 1 of the Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Ottenstein, Neil; Palmer, Eric; Godine, Dominic

    2017-01-01

    This paper describes the underlying dynamics of formation flying in a high-eccentricity orbit such as that of the Magnetospheric Multiscale mission. The GPS-based results used for MMS navigation are summarized, as well as the procedures that are used to design the maneuvers used to place the spacecraft into a tetrahedron formation and then maintain it. The details of how to carry out these maneuvers are then discussed. Finally, the numerical results that have been obtained concerning formation flying for the MMS mission to date (e.g. tetrahedron sizes flown, maneuver execution error, fuel usage, etc.) are presented in detail.

  6. The role of fanatics in consensus formation

    NASA Astrophysics Data System (ADS)

    Gündüç, Semra

    2015-08-01

    A model of opinion dynamics with two types of agents as social actors are presented, using the Ising thermodynamic model as the dynamics template. The agents are considered as opportunists which live at sites and interact with the neighbors, or fanatics/missionaries which move from site to site randomly in persuasion of converting agents of opposite opinion with the help of opportunists. Here, the moving agents act as an external influence on the opportunists to convert them to the opposite opinion. It is shown by numerical simulations that such dynamics of opinion formation may explain some details of consensus formation even when one of the opinions are held by a minority. Regardless the distribution of the opinion, different size societies exhibit different opinion formation behavior and time scales. In order to understand general behavior, the scaling relations obtained by comparing opinion formation processes observed in societies with varying population and number of randomly moving agents are studied. For the proposed model two types of scaling relations are observed. In fixed size societies, increasing the number of randomly moving agents give a scaling relation for the time scale of the opinion formation process. The second type of scaling relation is due to the size dependent information propagation in finite but large systems, namely finite-size scaling.

  7. Developmental Specialization in the Right Intraparietal Sulcus for the Abstract Representation of Numerical Magnitude

    ERIC Educational Resources Information Center

    Holloway, Ian D.; Ansari, Daniel

    2010-01-01

    Because number is an abstract quality of a set, the way in which a number is externally represented does not change its quantitative meaning. In this study, we examined the development of the brain regions that support format-independent representation of numerical magnitude. We asked children and adults to perform both symbolic (Hindu-Arabic…

  8. Formation of Polar Stratospheric Clouds in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Aloyan, Artash; Yermakov, Alex; Arutyunyan, Vardan; Larin, Igor

    2014-05-01

    A new mathematical model of the global transport of gaseous species and aerosols in the atmosphere and the formation of polar stratospheric clouds (PSCs) in both hemispheres was constructed. PSCs play a significant role in ozone chemistry since heterogeneous reactions proceed on their particle surfaces and in the bulk, affecting the gas composition of the atmosphere, specifically, the content of chlorine and nitrogen compounds, which are actively involved in the destruction of ozone. Stratospheric clouds are generated by co-condensation of water vapor and nitric acid on sulfate particles and in some cases during the freezing of supercooled water as well as when nitric acid vapors are dissolved in sulfate aerosol particles [1]. These clouds differ in their chemical composition and microphysics [2]. In this study, we propose new kinetic equations describing the variability of species in the gas and condensed phases to simulate the formation of PSCs. Most models for the formation of PSCs use constant background values of sulfate aerosols in the lower stratosphere. This approach is too simplistic since sulfate aerosols in the stratosphere are characterized by considerably nonuniform spatial and temporal variations. Two PSC types are considered: Type 1 refers to the formation of nitric acid trihydrate (NAT) and Type 2 refers to the formation of particles composed of different proportions of H2SO4/HNO3/H2O. Their formation is coupled with the spatial problem of sulfate aerosol generation in the upper troposphere and lower stratosphere incorporating the chemical and kinetic transformation processes (photochemistry, nucleation, condensation/evaporation, and coagulation) and using a non-equilibrium particle-size distribution [3]. In this formulation, the system of equations is closed and allows an adequate description of the PSC dynamics in the stratosphere. Using the model developed, numerical experiments were performed to reproduce the spatial and temporal variability of

  9. Numerical Modeling of Turbulent Combustion

    NASA Technical Reports Server (NTRS)

    Ghoneim, A. F.; Chorin, A. J.; Oppenheim, A. K.

    1983-01-01

    The work in numerical modeling is focused on the use of the random vortex method to treat turbulent flow fields associated with combustion while flame fronts are considered as interfaces between reactants and products, propagating with the flow and at the same time advancing in the direction normal to themselves at a prescribed burning speed. The latter is associated with the generation of specific volume (the flame front acting, in effect, as the locus of volumetric sources) to account for the expansion of the flow field due to the exothermicity of the combustion process. The model was applied to the flow in a channel equipped with a rearward facing step. The results obtained revealed the mechanism of the formation of large scale turbulent structure in the wake of the step, while it showed the flame to stabilize on the outer edges of these eddies.

  10. Kinetics and mechanism of soot formation in hydrocarbon combustion

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1990-01-01

    The focus of this work was on kinetic modeling. The specific objectives were: detailed modeling of soot formation in premixed flames, elucidation of the effects of fuel structure on the pathway to soot, and the development of a numerical technique for accurate modeling of soot particle coagulation and surface growth. Those tasks were successfully completed and are briefly summarized.

  11. A numerical study of zone-melting process for the thermoelectric material of Bi2Te3

    NASA Astrophysics Data System (ADS)

    Chen, W. C.; Wu, Y. C.; Hwang, W. S.; Hsieh, H. L.; Huang, J. Y.; Huang, T. K.

    2015-06-01

    In this study, a numerical model has been established by employing a commercial software; ProCAST, to simulate the variation/distribution of temperature and the subsequent microstructure of Bi2Te3 fabricated by zone-melting technique. Then an experiment is conducted to measure the temperature variation/distribution during the zone-melting process to validate the numerical system. Also, the effects of processing parameters on crystallization microstructure such as moving speed and temperature of heater are numerically evaluated. In the experiment, the Bi2Te3 powder are filled into a 30mm diameter quartz cylinder and the heater is set to 800°C with a moving speed 12.5 mm/hr. A thermocouple is inserted in the Bi2Te3 powder to measure the temperature variation/distribution of the zone-melting process. The temperature variation/distribution measured by experiment is compared to the results of numerical simulation. The results show that our model and the experiment are well matched. Then the model is used to evaluate the crystal formation for Bi2Te3 with a 30mm diameter process. It's found that when the moving speed is slower than 17.5 mm/hr, columnar crystal is obtained. In the end, we use this model to predict the crystal formation of zone-melting process for Bi2Te3 with a 45 mm diameter. The results show that it is difficult to grow columnar crystal when the diameter comes to 45mm.

  12. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.

    PubMed

    Inobe, Tomonao; Nukina, Nobuyuki

    2016-07-01

    Most proteins form larger protein complexes and perform multiple functions in the cell. Thus, artificial regulation of protein complex formation controls the cellular functions that involve protein complexes. Although several artificial dimerization systems have already been used for numerous applications in biomedical research, cellular protein complexes form not only simple dimers but also larger oligomers. In this study, we showed that fusion proteins comprising the induced heterodimer formation proteins FRB and FKBP formed various oligomers upon addition of rapamycin. By adjusting the configuration of fusion proteins, we succeeded in generating an inducible tetramer formation system. Proteins of interest also formed tetramers by fusing to the inducible tetramer formation system, which exhibits its utility in a broad range of biological applications. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Star Formation and the Hall Effect

    NASA Astrophysics Data System (ADS)

    Braiding, Catherine

    2011-10-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well-studied. This thesis describes a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, presenting similarity solutions that demonstrate that the Hall effect has a profound influence on the dynamics of collapse. ... Hall diffusion also determines the strength of the magnetic diffusion and centrifugal shocks that bound the pseudo and rotationally-supported discs, and can introduce subshocks that further slow accretion onto the protostar. In cores that are not initially rotating Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field would be worth exploring in future numerical simulations of star formation.

  14. Formation of Sprays From Conical Liquid Sheets

    NASA Technical Reports Server (NTRS)

    Peck, Bill; Mansour, N. N.; Koga, Dennis (Technical Monitor)

    1999-01-01

    Our objective is to predict droplet size distributions created by fuel injector nozzles in Jet turbines. These results will be used to determine the initial conditions for numerical simulations of the combustion process in gas turbine combustors. To predict the droplet size distribution, we are currently constructing a numerical model to understand the instability and breakup of thin conical liquid sheets. This geometry serves as a simplified model of the liquid jet emerging from a real nozzle. The physics of this process is difficult to study experimentally as the time and length scales are very short. From existing photographic data, it does seem clear that three-dimensional effects such as the formation of streamwise ligaments and the pulling back of the sheet at its edges under the action of surface tension are important.

  15. The impact of numeric and graphic displays of ST-segment deviation levels on cardiologists' decisions of reperfusion therapy for patients with acute coronary occlusion.

    PubMed

    Nimmermark, Magnus O; Wang, John J; Maynard, Charles; Cohen, Mauricio; Gilcrist, Ian; Heitner, John; Hudson, Michael; Palmeri, Sebastian; Wagner, Galen S; Pahlm, Olle

    2011-01-01

    The study purpose is to determine whether numeric and/or graphic ST measurements added to the display of the 12-lead electrocardiogram (ECG) would influence cardiologists' decision to provide myocardial reperfusion therapy. Twenty ECGs with borderline ST-segment deviation during elective percutaneous coronary intervention and 10 controls before balloon inflation were included. Only 5 of the 20 ECGs during coronary balloon occlusion met the 2007 American Heart Association guidelines for ST-elevation myocardial infarction (STEMI). Fifteen cardiologists read 4 sets of these ECGs as the basis for a "yes/no" reperfusion therapy decision. Sets 1 and 4 were the same 12-lead ECGs alone. Set 2 also included numeric ST-segment measurements, and set 3 included both numeric and graphically displayed ST measurements ("ST Maps"). The mean (range) positive reperfusion decisions were 10.6 (2-15), 11.4 (1-19), 9.7 (2-14), and 10.7 (1-15) for sets 1 to 4, respectively. The accuracies of the observers for the 5 STEMI ECGs were 67%, 69%, and 77% for the standard format, the ST numeric format, and the ST graphic format, respectively. The improved detection rate (77% vs 67%) with addition of both numeric and graphic displays did achieve statistical significance (P < .025). The corresponding specificities for the 10 control ECGs were 85%, 79%, and 89%, respectively. In conclusion, a wide variation of reperfusion decisions was observed among clinical cardiologists, and their decisions were not altered by adding ST deviation measurements in numeric and/or graphic displays. Acute coronary occlusion detection rate was low for ECGs meeting STEMI criteria, and this was improved by adding ST-segment measurements in numeric and graphic forms. These results merit further study of the clinical value of this technique for improved acute coronary occlusion treatment decision support. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Numerical model for dendritic solidification of binary alloys

    NASA Technical Reports Server (NTRS)

    Felicelli, S. D.; Heinrich, J. C.; Poirier, D. R.

    1993-01-01

    A finite element model capable of simulating solidification of binary alloys and the formation of freckles is presented. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. Numerical simulations are shown in which an NH4Cl-H2O mixture and a Pb-Sn alloy melt are cooled. The solidification process is followed in time. Instabilities in the process can be clearly observed and the final compositions obtained.

  17. HOW GALACTIC ENVIRONMENT REGULATES STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meidt, Sharon E.

    2016-02-10

    In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars—internal structure versus external, environmental influences—providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itselfmore » inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.« less

  18. Orogenic structural inheritance and rifted passive margin formation

    NASA Astrophysics Data System (ADS)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  19. An Introduction to Numerical Control. Problems for Numerical Control Part Programming.

    ERIC Educational Resources Information Center

    Campbell, Clifton P.

    This combination text and workbook is intended to introduce industrial arts students to numerical control part programming. Discussed in the first section are the impact of numerical control, training efforts, numerical control in established programs, related information for drafting, and the Cartesian Coordinate System and dimensioning…

  20. Formation of surface nanobubbles on nanostructured substrates.

    PubMed

    Wang, Lei; Wang, Xingya; Wang, Liansheng; Hu, Jun; Wang, Chun Lei; Zhao, Binyu; Zhang, Xuehua; Tai, Renzhong; He, Mengdong; Chen, Liqun; Zhang, Lijuan

    2017-01-19

    The nucleation and stability of nanoscale gas bubbles located at a solid/liquid interface are attracting significant research interest. It is known that the physical and chemical properties of the solid surface are crucial for the formation and properties of the surface nanobubbles. Herein, we experimentally and numerically investigated the formation of nanobubbles on nanostructured substrates. Two kinds of nanopatterned surfaces, namely, nanotrenches and nanopores, were fabricated using an electron beam lithography technique and used as substrates for the formation of nanobubbles. Atomic force microscopy images showed that all nanobubbles were selectively located on the hydrophobic domains but not on the hydrophilic domains. The sizes and contact angles of the nanobubbles became smaller with a decrease in the size of the hydrophobic domains. The results indicated that the formation and stability of the nanobubbles could be controlled by regulating the sizes and periods of confinement of the hydrophobic nanopatterns. The experimental results were also supported by molecular dynamics simulations. The present study will be very helpful for understanding the effects of surface features on the nucleation and stability of nanobubbles/nanodroplets at a solid/liquid interface.

  1. Hot spot formation from shock reflections

    NASA Astrophysics Data System (ADS)

    Menikoff, R.

    2011-04-01

    Heterogeneities sensitize an explosive to shock initiation. This is due to hot-spot formation and the sensitivity of chemical reaction rates to temperature. Here, we describe a numerical experiment aimed at elucidating a mechanism for hot-spot formation that occurs when a shock wave passes over a high-density impurity. The simulation performed is motivated by a physical experiment in which glass beads are added to liquid nitromethane. The impedance mismatch between the beads and the nitromethane results in shock reflections. These, in turn, give rise to transverse waves along the lead shock front. Hot spots arise on local portions of the lead front with a higher shock strength, rather than on the reflected shocks behind the beads. Moreover, the interactions generated by reflected waves from neighboring beads can significantly increase the peak hot-spot temperature when the beads are suitably spaced.

  2. Cirrus clouds. I - A cirrus cloud model. II - Numerical experiments on the formation and maintenance of cirrus

    NASA Technical Reports Server (NTRS)

    Starr, D. OC.; Cox, S. K.

    1985-01-01

    A simplified cirrus cloud model is presented which may be used to investigate the role of various physical processes in the life cycle of a cirrus cloud. The model is a two-dimensional, time-dependent, Eulerian numerical model where the focus is on cloud-scale processes. Parametrizations are developed to account for phase changes of water, radiative processes, and the effects of microphysical structure on the vertical flux of ice water. The results of a simulation of a thin cirrostratus cloud are given. The results of numerical experiments performed with the model are described in order to demonstrate the important role of cloud-scale processes in determining the cloud properties maintained in response to larger scale forcing. The effects of microphysical composition and radiative processes are considered, as well as their interaction with thermodynamic and dynamic processes within the cloud. It is shown that cirrus clouds operate in an entirely different manner than liquid phase stratiform clouds.

  3. Three-dimensional transient numerical simulation for intake process in the engine intake port-valve-cylinder system.

    PubMed

    Luo, Ma-Ji; Chen, Guo-Hua; Ma, Yuan-Hao

    2003-01-01

    This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine intake system.

  4. Effect of plasticity and atmospheric pressure on the formation of donut- and croissantlike buckles.

    PubMed

    Hamade, S; Durinck, J; Parry, G; Coupeau, C; Cimetière, A; Grilhé, J; Colin, J

    2015-01-01

    The formation of donut- and croissantlike buckles has been observed onto the free surface of gold thin films deposited on silicon substrates. Numerical simulations clearly evidence that the coupling effect between the atmospheric pressure acting on the free surface and the plastic folding of the ductile film is responsible for the circular blister destabilization and the formation of the donut- and croissantlike buckling patterns.

  5. Attitude coordination of multi-HUG formation based on multibody system theory

    NASA Astrophysics Data System (ADS)

    Xue, Dong-yang; Wu, Zhi-liang; Qi, Er-mai; Wang, Yan-hui; Wang, Shu-xin

    2017-04-01

    Application of multiple hybrid underwater gliders (HUGs) is a promising method for large scale, long-term ocean survey. Attitude coordination has become a requisite for task execution of multi-HUG formation. In this paper, a multibody model is presented for attitude coordination among agents in the HUG formation. The HUG formation is regarded as a multi-rigid body system. The interaction between agents in the formation is described by artificial potential field (APF) approach. Attitude control torque is composed of a conservative torque generated by orientation potential field and a dissipative term related with angular velocity. Dynamic modeling of the multibody system is presented to analyze the dynamic process of the HUG formation. Numerical calculation is carried out to simulate attitude synchronization with two kinds of formation topologies. Results show that attitude synchronization can be fulfilled based on the multibody method described in this paper. It is also indicated that different topologies affect attitude control quality with respect to energy consumption and adjusting time. Low level topology should be adopted during formation control scheme design to achieve a better control effect.

  6. Massive stars, disks, and clustered star formation

    NASA Astrophysics Data System (ADS)

    Moeckel, Nickolas Barry

    The formation of an isolated massive star is inherently more complex than the relatively well-understood collapse of an isolated, low-mass star. The dense, clustered environment where massive stars are predominantly found further complicates the picture, and suggests that interactions with other stars may play an important role in the early life of these objects. In this thesis we present the results of numerical hydrodynamic experiments investigating interactions between a massive protostar and its lower-mass cluster siblings. We explore the impact of these interactions on the orientation of disks and outflows, which are potentially observable indications of encounters during the formation of a star. We show that these encounters efficiently form eccentric binary systems, and in clusters similar to Orion they occur frequently enough to contribute to the high multiplicity of massive stars. We suggest that the massive protostar in Cepheus A is currently undergoing a series of interactions, and present simulations tailored to that system. We also apply the numerical techniques used in the massive star investigations to a much lower-mass regime, the formation of planetary systems around Solar- mass stars. We perform a small number of illustrative planet-planet scattering experiments, which have been used to explain the eccentricity distribution of extrasolar planets. We add the complication of a remnant gas disk, and show that this feature has the potential to stabilize the system against strong encounters between planets. We present preliminary simulations of Bondi-Hoyle accretion onto a protoplanetary disk, and consider the impact of the flow on the disk properties as well as the impact of the disk on the accretion flow.

  7. Numerical Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.

  8. Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.; Braithwaite, David W.

    2016-01-01

    In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…

  9. The accelerating pace of star formation

    NASA Astrophysics Data System (ADS)

    Caldwell, Spencer; Chang, Philip

    2018-03-01

    We study the temporal and spatial distribution of star formation rates in four well-studied star-forming regions in local molecular clouds (MCs): Taurus, Perseus, ρ Ophiuchi, and Orion A. Using published mass and age estimates for young stellar objects in each system, we show that the rate of star formation over the last 10 Myr has been accelerating and is (roughly) consistent with a t2 power law. This is in line with previous studies of the star formation history of MCs and with recent theoretical studies. We further study the clustering of star formation in the Orion nebula cluster. We examine the distribution of young stellar objects as a function of their age by computing an effective half-light radius for these young stars subdivided into age bins. We show that the distribution of young stellar objects is broadly consistent with the star formation being entirely localized within the central region. We also find a slow radial expansion of the newly formed stars at a velocity of v = 0.17 km s-1, which is roughly the sound speed of the cold molecular gas. This strongly suggests the dense structures that form stars persist much longer than the local dynamical time. We argue that this structure is quasi-static in nature and is likely the result of the density profile approaching an attractor solution as suggested by recent analytic and numerical analysis.

  10. Numerical models of jet disruption in cluster cooling flows

    NASA Technical Reports Server (NTRS)

    Loken, Chris; Burns, Jack O.; Roettiger, Kurt; Norman, Mike

    1993-01-01

    We present a coherent picture for the formation of the observed diverse radio morphological structures in dominant cluster galaxies based on the jet Mach number. Realistic, supersonic, steady-state cooling flow atmospheres are evolved numerically and then used as the ambient medium through which jets of various properties are propagated. Low Mach number jets effectively stagnate due to the ram pressure of the cooling flow atmosphere while medium Mach number jets become unstable and disrupt in the cooling flow to form amorphous structures. High Mach number jets manage to avoid disruption and are able to propagate through the cooling flow.

  11. Recent advances in numerical PDEs

    NASA Astrophysics Data System (ADS)

    Zuev, Julia Michelle

    In this thesis, we investigate four neighboring topics, all in the general area of numerical methods for solving Partial Differential Equations (PDEs). Topic 1. Radial Basis Functions (RBF) are widely used for multi-dimensional interpolation of scattered data. This methodology offers smooth and accurate interpolants, which can be further refined, if necessary, by clustering nodes in select areas. We show, however, that local refinements with RBF (in a constant shape parameter [varepsilon] regime) may lead to the oscillatory errors associated with the Runge phenomenon (RP). RP is best known in the case of high-order polynomial interpolation, where its effects can be accurately predicted via Lebesgue constant L (which is based solely on the node distribution). We study the RP and the applicability of Lebesgue constant (as well as other error measures) in RBF interpolation. Mainly, we allow for a spatially variable shape parameter, and demonstrate how it can be used to suppress RP-like edge effects and to improve the overall stability and accuracy. Topic 2. Although not as versatile as RBFs, cubic splines are useful for interpolating grid-based data. In 2-D, we consider a patch representation via Hermite basis functions s i,j ( u, v ) = [Special characters omitted.] h mn H m ( u ) H n ( v ), as opposed to the standard bicubic representation. Stitching requirements for the rectangular non-equispaced grid yield a 2-D tridiagonal linear system AX = B, where X represents the unknown first derivatives. We discover that the standard methods for solving this NxM system do not take advantage of the spline-specific format of the matrix B. We develop an alternative approach using this specialization of the RHS, which allows us to pre-compute coefficients only once, instead of N times. MATLAB implementation of our fast 2-D cubic spline algorithm is provided. We confirm analytically and numerically that for large N ( N > 200), our method is at least 3 times faster than the

  12. On the ab initio calculation of vibrational formation entropy of point defect: the case of the silicon vacancy

    NASA Astrophysics Data System (ADS)

    Seeberger, Pia; Vidal, Julien

    2017-08-01

    Formation entropy of point defects is one of the last crucial elements required to fully describe the temperature dependence of point defect formation. However, while many attempts have been made to compute them for very complicated systems, very few works have been carried out such as to assess the different effects of finite size effects and precision on such quantity. Large discrepancies can be found in the literature for a system as primitive as the silicon vacancy. In this work, we have proposed a systematic study of formation entropy for silicon vacancy in its 3 stable charge states: neutral, +2 and -2 for supercells with size not below 432 atoms. Rationalization of the formation entropy is presented, highlighting importance of finite size error and the difficulty to compute such quantities due to high numerical requirement. It is proposed that the direct calculation of formation entropy of VSi using first principles methods will be plagued by very high computational workload (or large numerical errors) and finite size dependent results.

  13. Formation and evolution of dwarf elliptical galaxies - II. Spatially resolved star formation histories

    NASA Astrophysics Data System (ADS)

    Koleva, Mina; de Rijcke, Sven; Prugniel, Philippe; Zeilinger, Werner W.; Michielsen, Dolf

    2009-07-01

    We present optical Very Large Telescope spectroscopy of 16 dwarf elliptical galaxies (dEs) comparable in mass to NGC 205, and belonging to the Fornax cluster and to nearby groups of galaxies. Using full-spectrum fitting, we derive radial profiles of the SSP-equivalent ages and metallicities. We make a detailed analysis with ULYSS and STECKMAP of the star formation history in the core of the galaxies and in an aperture of one effective radius. We resolved the history into one to four epochs. The statistical significance of these reconstructions was carefully tested; the two programs give remarkably consistent results. The old stellar population of the dEs, which dominates their mass, is likely coeval with that of massive ellipticals or bulges, but the star formation efficiency is lower. Important intermediate age (1-5 Gyr) populations and frequently tails of star formation until recent times are detected. These histories are reminiscent of their lower mass dwarf spheroidal counterparts of the Local Group. Most galaxies (10/16) show significant metallicity gradients, with metallicity declining by 0.5 dex over one half-light radius on average. These gradients are already present in the old population. The flattened (or discy), rotating objects (6/16) have flat metallicity profiles. This may be consistent with a distinct origin for these galaxies or it may be due to their geometry. The central single stellar population equivalent age varies between 1 and 6 Gyr, with the age slowly increasing with radius in the vast majority of objects. The group and cluster galaxies have similar radial gradients and star formation histories. The strong and old metallicity gradients place important constraints on the possible formation scenarios of dEs. Numerical simulations of the formation of spherical low-mass galaxies reproduce these gradients, but they require a longer time for them to build up. A gentle depletion of the gas, by ram pressure stripping or starvation, could drive the

  14. Numerical simulation of water and sand blowouts when penetrating through shallow water flow formations in deep water drilling

    NASA Astrophysics Data System (ADS)

    Ren, Shaoran; Liu, Yanmin; Gong, Zhiwu; Yuan, Yujie; Yu, Lu; Wang, Yanyong; Xu, Yan; Deng, Junyu

    2018-02-01

    In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow (SWF) formations during deepwater drilling. We define `sand' as a pseudo-component with high density and viscosity, which can begin to flow with water when a critical pressure difference is attained. We calculated the water and sand blowout rates and analyzed the influencing factors from them, including overpressure of the SWF formation, as well as its zone size, porosity and permeability, and drilling speed (penetration rate). The obtained data can be used for the quantitative assessment of the potential severity of SWF hazards. The results indicate that overpressure of the SWF formation and its zone size have significant effects on SWF blowout. A 10% increase in the SWF formation overpressure can result in a more than 90% increase in the cumulative water blowout and a 150% increase in the sand blowout when a typical SWF sediment is drilled. Along with the conventional methods of well flow and pressure control, chemical plugging, and the application of multi-layer casing, water and sand blowouts can be effectively reduced by increasing the penetration rate. As such, increasing the penetration rate can be a useful measure for controlling SWF hazards during deepwater drilling.

  15. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, Sergio; Kirwan, Matthew L.; Mudd, Simon M.; Guntenspergen, Glenn R.; Temmerman, Stijn; D'Alpaos, Andrea; van de Koppel, Johan; Rybczyk, John; Reyes, Enrique; Craft, Chris; Clough, Jonathan

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise.

  16. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D'Alpaos, A.; Van De Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; Clough, J.

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise. Copyright 2012 by the American Geophysical Union.

  17. Numerical simulation of anomalous wave phenomena in hot nuclear matter

    NASA Astrophysics Data System (ADS)

    Konyukhov, A. V.; Likhachev, A. P.

    2015-11-01

    The collective dynamic phenomena accompanying the collision of high-energy heavy ions are suggested to be approximately described in the framework of ideal relativistic hydrodynamics. If the transition from hadron state to quark-gluon plasma is the first-order phase transition (presently this view is prevailing), the hydrodynamic description of the nuclear matter must demonstrate several anomalous wave phenomena—such as the shock splitting and the formation of rarefaction shock and composite waves, which may be indicative of this transition. The present work is devoted to numerical study of these phenomena.

  18. Graduate Student Experiences: The Impact of a Mixed-Cohort Format

    ERIC Educational Resources Information Center

    Hayes, Kacy Kilner

    2012-01-01

    Student cohorts have been regaining popularity among graduate programs over the past few decades because they offer numerous advantages for students and can be molded to fit programmatic needs. The format of these cohorts range from open to closed according to the inclusion or exclusion of additional students during the life of the program.…

  19. Sensitivity of Simulated Warm Rain Formation to Collision and Coalescence Efficiencies, Breakup, and Turbulence: Comparison of Two Bin-Resolved Numerical Models

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann; Seifert, Axel; Ackerman, Andrew; Jensen, Eric

    2004-01-01

    Numerical models that resolve cloud particles into discrete mass size distributions on an Eulerian grid provide a uniquely powerful means of studying the closely coupled interaction of aerosols, cloud microphysics, and transport that determine cloud properties and evolution. However, such models require many experimentally derived paramaterizations in order to properly represent the complex interactions of droplets within turbulent flow. Many of these parameterizations remain poorly quantified, and the numerical methods of solving the equations for temporal evolution of the mass size distribution can also vary considerably in terms of efficiency and accuracy. In this work, we compare results from two size-resolved microphysics models that employ various widely-used parameterizations and numerical solution methods for several aspects of stochastic collection.

  20. THE REBOUND CONDITION OF DUST AGGREGATES REVEALED BY NUMERICAL SIMULATION OF THEIR COLLISIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wada, Koji; Tanaka, Hidekazu; Yamamoto, Tetsuo

    2011-08-10

    Collisional growth of dust aggregates is a plausible root of planetesimals forming in protoplanetary disks. However, a rebound of colliding dust aggregates prevents dust from growing into planetesimals. In fact, rebounding aggregates are observed in laboratory experiments but not in previous numerical simulations. Therefore, the condition of rebound between dust aggregates should be clarified to better understand the processes of dust growth and planetesimal formation. We have carried out numerical simulations of aggregate collisions for various types of aggregates and succeeded in reproducing a rebound of colliding aggregates under specific conditions. Our finding is that in the rebound process, themore » key factor of the aggregate structure is the coordination number, namely, the number of particles in contact with a particle. A rebound is governed by the energy dissipation along with restructuring of the aggregates and a large coordination number inhibits the restructuring at collisions. Results of our numerical simulation for various aggregates indicate that they stick to each other when the mean coordination number is less than 6, regardless of their materials and structures, as long as their collision velocity is less than the critical velocity for fragmentation. This criterion of the coordination number would correspond to a filling factor of {approx}0.3, which is somewhat larger than that reported in laboratory experiments. In protoplanetary disks, dust aggregates are expected to have low bulk densities (<0.1 g cm{sup -3}) during their growth, which would prevent dust aggregates from rebounding. This result supports the formation of planetesimals with direct dust growth in protoplanetary disks.« less

  1. Handwritten numeral databases of Indian scripts and multistage recognition of mixed numerals.

    PubMed

    Bhattacharya, Ujjwal; Chaudhuri, B B

    2009-03-01

    This article primarily concerns the problem of isolated handwritten numeral recognition of major Indian scripts. The principal contributions presented here are (a) pioneering development of two databases for handwritten numerals of two most popular Indian scripts, (b) a multistage cascaded recognition scheme using wavelet based multiresolution representations and multilayer perceptron classifiers and (c) application of (b) for the recognition of mixed handwritten numerals of three Indian scripts Devanagari, Bangla and English. The present databases include respectively 22,556 and 23,392 handwritten isolated numeral samples of Devanagari and Bangla collected from real-life situations and these can be made available free of cost to researchers of other academic Institutions. In the proposed scheme, a numeral is subjected to three multilayer perceptron classifiers corresponding to three coarse-to-fine resolution levels in a cascaded manner. If rejection occurred even at the highest resolution, another multilayer perceptron is used as the final attempt to recognize the input numeral by combining the outputs of three classifiers of the previous stages. This scheme has been extended to the situation when the script of a document is not known a priori or the numerals written on a document belong to different scripts. Handwritten numerals in mixed scripts are frequently found in Indian postal mails and table-form documents.

  2. Spurious sea ice formation caused by oscillatory ocean tracer advection schemes

    NASA Astrophysics Data System (ADS)

    Naughten, Kaitlin A.; Galton-Fenzi, Benjamin K.; Meissner, Katrin J.; England, Matthew H.; Brassington, Gary B.; Colberg, Frank; Hattermann, Tore; Debernard, Jens B.

    2017-08-01

    Tracer advection schemes used by ocean models are susceptible to artificial oscillations: a form of numerical error whereby the advected field alternates between overshooting and undershooting the exact solution, producing false extrema. Here we show that these oscillations have undesirable interactions with a coupled sea ice model. When oscillations cause the near-surface ocean temperature to fall below the freezing point, sea ice forms for no reason other than numerical error. This spurious sea ice formation has significant and wide-ranging impacts on Southern Ocean simulations, including the disappearance of coastal polynyas, stratification of the water column, erosion of Winter Water, and upwelling of warm Circumpolar Deep Water. This significantly limits the model's suitability for coupled ocean-ice and climate studies. Using the terrain-following-coordinate ocean model ROMS (Regional Ocean Modelling System) coupled to the sea ice model CICE (Community Ice CodE) on a circumpolar Antarctic domain, we compare the performance of three different tracer advection schemes, as well as two levels of parameterised diffusion and the addition of flux limiters to prevent numerical oscillations. The upwind third-order advection scheme performs better than the centered fourth-order and Akima fourth-order advection schemes, with far fewer incidents of spurious sea ice formation. The latter two schemes are less problematic with higher parameterised diffusion, although some supercooling artifacts persist. Spurious supercooling was eliminated by adding flux limiters to the upwind third-order scheme. We present this comparison as evidence of the problematic nature of oscillatory advection schemes in sea ice formation regions, and urge other ocean/sea-ice modellers to exercise caution when using such schemes.

  3. Luminescence quenching by reversible ionization or exciplex formation/dissociation.

    PubMed

    Ivanov, Anatoly I; Burshtein, Anatoly I

    2008-11-20

    The kinetics of fluorescence quenching by both charge transfer and exciplex formation is investigated, with an emphasis on the reversibility and nonstationarity of the reactions. The Weller elementary kinetic scheme of bimolecular geminate ionization and the Markovian rate theory are shown to lead to identical results, provided the rates of the forward and backward reactions account for the numerous recontacts during the reaction encounter. For excitation quenching by the reversible exciplex formation, the Stern-Volmer constant is specified in the framework of the integral encounter theory. The bulk recombination affecting the Stern-Volmer quenching constant makes it different for pulse excited and stationary luminescence. The theory approves that the free energy gap laws for ionization and exciplex formation are different and only the latter fits properly the available data (for lumiflavin quenching by aliphatic amines and aromatic donors) in the endergonic region.

  4. Supracolloidal fullerene-like cages: design principles and formation mechanisms.

    PubMed

    Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan

    2016-11-30

    How to create novel desired structures by rational design of building blocks represents a significant challenge in materials science. Here we report a conceptually new design principle for creating supracolloidal fullerene-like cages through the self-assembly of soft patchy particles interacting via directional nonbonded interactions by mimicking non-planar sp 2 hybridized carbon atoms in C 60 . Our numerical investigations demonstrate that the rational design of patch configuration, size, and interaction can drive soft three-patch particles to reversibly self-assemble into a vast collection of supracolloidal fullerene-like cages. We further elucidate the formation mechanisms of supracolloidal fullerene-like cages by analyzing the structural characteristics and the formation process. Our results provide conceptual and practical guidance towards the experimental realization of supracolloidal fullerene-like cages, as well as a new perspective on understanding the fullerene formation mechanisms.

  5. On star formation in stellar systems. II - Photoionization in protodwarf galaxies

    NASA Technical Reports Server (NTRS)

    Noriega-Crespo, A.; Bodenheimer, P.; Lin, D. N. C.; Tenorio-Tagle, G.

    1989-01-01

    Numerical hydrodynamical calculations are used to study the effects of the onset of star formation on the residual gas in a primordial low-mass Local-Group dwarf spheroidal galaxy in the size range 0.3-1.0 kpc. It is demonstrated that photoionization in the presence of a moderate gas-density gradient can be responsible for gas ejection on a time-scale of a few times 10 to the 7th yr. The results indicate that, given a normal initial mass function, many protodwarf galaxies may have been dispersed by the onset of star formation.

  6. Flow Visualization and Pattern Formation in Vertically Falling Liquid Films

    NASA Astrophysics Data System (ADS)

    Balakotaiah, Vemuri; Malamataris, Nikolaos

    2008-11-01

    Analytical results of a low-dimensional two equation h-q model and results of a direct numerical simulation of the transient two-dimensional Navier Stokes equations are presented for vertically falling liquid films along a solid wall. The numerical study aims at the elucidation of the hydrodynamics of the falling film. The analytical study aims at the calculation of the parameter space where pattern formation occurs for this flow. It has been found that when the wave amplitude exceeds a certain magnitude, flow reversal occurs in the film underneath the minimum of the waves [1]. The instantaneous vortical structures possess two hyperbolic points on the vertical wall and an elliptic point in the film. As the wave amplitude increases further, the elliptic point reaches the free surface of the film and two more hyperbolic points are formed in the free surface that replace the elliptic point. Between the two hyperbolic points on the free surface, the streamwise component of velocity is negative and the film is divided into asymmetric patterns of up and down flows. Depending on the value of the Kapitza number, these patterns are either stationary or oscillatory. Physical reasons for the influence of the Kapitza number on pattern formation are given. Movies are shown where the pattern formation is demonstrated. [1] N.A.Malamataris and V.Balakotaiah (2008), AIChE J., 54(7), p. 1725-1740

  7. Pattern formation for NO+N H3 on Pt(100): Two-dimensional numerical results

    NASA Astrophysics Data System (ADS)

    Uecker, Hannes

    2005-01-01

    The Lombardo-Fink-Imbihl model of the NO+NH3 reaction on a Pt(100) surface consists of seven coupled ordinary differential equations (ODE) and shows stable relaxation oscillations with sharp transitions in the relevant temperature range. Here we study numerically the effect of coupling of these oscillators by surface diffusion in two dimensions. We find different types of patterns, in particular phase clusters and standing waves. In models of related surface reactions such clustered solutions are known to exist only under a global coupling through the gas phase. This global coupling is replaced here by relatively fast diffusion of two variables which are kinetically slaved in the ODE. We also compare our simulations with experimental results and discuss some shortcomings of the model.

  8. Extracting numeric measurements and temporal coordinates from Japanese radiological reports

    NASA Astrophysics Data System (ADS)

    Imai, Takeshi; Onogi, Yuzo

    2004-04-01

    Medical records are written mainly, in natural language. The focus of this study is narrative radiological reports written in natural Japanese. These reports cannot be used for advanced retrieval, data mining, and so on, unless they are stored, using a structured format such as DICOM-SR. The goal is to structure narrative reports progressively, using natural language processing (NLP). Structure has many different levels, for example, DICOM-SR has three established levels -- basic text, enhanced and comprehensive. At the enhanced level, it is necessary to use numerical measurements and spatial & temporal coordinates. In this study, the wording used in the reports was first standardized, dictionaries were organized, and morphological analysis performed. Next, numerical measurements and temporal coordinates were extracted, and the objects to which they referred, analyzed. 10,000 CT and MR reports were separated into 82,122 sentences, and 34,269 of the 36,444 numerical descriptions were tagged. Periods, slashes, hyphens, and parentheses are ambiguously used in the description of enumerated lists, dates, image numbers, and anatomical names, as well as at the end of sentences; to resolve this ambiguity, descriptions were processed, according to the order -- date, size, unit, enumerated list, and abbreviation -- then, the tagged reports were separated into sentences.

  9. Numerical study of droplet impact and rebound on superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Cai, Xuan; Wu, Yanchen; Woerner, Martin; Frohnapfel, Bettina

    2017-11-01

    Droplet impact and rebound on superhydrophobic surface is an important process in many applications; among them are developing self-cleaning or anti-icing materials and limiting liquid film formation of Diesel Exhaust Fluid (DEF) in exhaust gas pipe. In the latter field, rebound of DEF droplet from wall is desired as an effective mean for avoiding or reducing unwanted solid deposition. Our goal is to numerically study influence of surface wettability on DEF droplet impact and rebound behavior. A phase-field method is chosen, which was implemented in OpenFOAM by us and validated for wetting-related interfacial flow problems. In the present contribution we first numerically reproduce relevant experimental studies in literature, to validate the code for droplet impact and rebound problem. There we study droplet-surface contact time, maximum/instantaneous spreading factor and droplet shape evolution. Our numerical results show good agreement with experimental data. Next we investigate for DEF droplets the effects of diameter, impact velocity and surface wettability on rebound behavior and jumping height. Based on Weber number and equilibrium contact angle, two regimes are identified. We show that surface wettability is a deciding factor for achieving rebound event. This work is supported by Foundation ``Friedrich-und-Elisabeth Boysen Stiftung fuer Forschung und Innovation'' (BOY-127-TP1).

  10. Magnetoacoustic Wave Energy from Numerical Simulations of an Observed Sunspot Umbra

    NASA Astrophysics Data System (ADS)

    Felipe, T.; Khomenko, E.; Collados, M.

    2011-07-01

    We aim at reproducing the height dependence of sunspot wave signatures obtained from spectropolarimetric observations through three-dimensional MHD numerical simulations. A magnetostatic sunspot model based on the properties of the observed sunspot is constructed and perturbed at the photosphere, introducing the fluctuations measured with the Si I λ10827 line. The results of the simulations are compared with the oscillations observed simultaneously at different heights from the He I λ10830 line, the Ca II H core, and the Fe I blends in the wings of the Ca II H line. The simulations show a remarkable agreement with the observations. They reproduce the velocity maps and power spectra at the formation heights of the observed lines, as well as the phase and amplification spectra between several pairs of lines. We find that the stronger shocks at the chromosphere are accompanied with a delay between the observed signal and the simulated one at the corresponding height, indicating that shocks shift the formation height of the chromospheric lines to higher layers. Since the simulated wave propagation matches very well the properties of the observed one, we are able to use the numerical calculations to quantify the energy contribution of the magnetoacoustic waves to the chromospheric heating in sunspots. Our findings indicate that the energy supplied by these waves is too low to balance the chromospheric radiative losses. The energy contained at the formation height of the lowermost Si I λ10827 line in the form of slow magnetoacoustic waves is already insufficient to heat the higher layers, and the acoustic energy which reaches the chromosphere is around 3-9 times lower than the required amount of energy. The contribution of the magnetic energy is even lower.

  11. Numerical Solution of the Kzk Equation for Pulsed Finite Amplitude Sound Beams in Thermoviscous Fluids

    NASA Astrophysics Data System (ADS)

    Lee, Yang-Sub

    A time-domain numerical algorithm for solving the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is developed for pulsed, axisymmetric, finite amplitude sound beams in thermoviscous fluids. The KZK equation accounts for the combined effects of diffraction, absorption, and nonlinearity at the same order of approximation. The accuracy of the algorithm is established via comparison with analytical solutions for several limiting cases, and with numerical results obtained from a widely used algorithm for solving the KZK equation in the frequency domain. The time domain algorithm is used to investigate waveform distortion and shock formation in directive sound beams radiated by pulsed circular piston sources. New results include predictions for the entire process of self-demodulation, and for the effect of frequency modulation on pulse envelope distortion. Numerical results are compared with measurements, and focused sources are investigated briefly.

  12. Numerical studies of solar chromospheric jets

    NASA Astrophysics Data System (ADS)

    Iijima, Haruhisa

    2016-03-01

    The solar chromospheric jet is one of the most characteristic structures near the solar surface. The quantitative understanding of chromospheric jets is of substantial importance for not only the partially ionized phenomena in the chromosphere but also the energy input and dissipation processes in the corona. In this dissertation, the formation and dynamics of chromospheric jets are investigated using the radiation magnetohydrodynamic simulations. We newly develop a numerical code for the radiation magnetohydrodynamic simulations of the comprehensive modeling of solar atmosphere. Because the solar chromosphere is highly nonlinear, magnetic pressure dominated, and turbulent, a robust and high-resolution numerical scheme is required. In Chapter 2, we propose a new algorithm for the simulation of magnetohydrodynamics. Through the test problems and accuracy analyses, the proposed scheme is proved to satisfy the requirements. In Chapter 3, the effect of the non-local radiation energy transport, Spitzer-type thermal conduction, latent heat of partial ionization and molecule formation, and gravity are implemented to the magnetohydrodynamic code. The numerical schemes for the radiation transport and thermal conduction is carefully chosen in a view of the efficiency and compatibility with the parallel computation. Based on the developed radiation magnetohydrodynamic code, the formation and dynamics of chromospheric jets are investigated. In Chapter 4, we investigate the dependence of chromospheric jets on the coronal temperature in the two-dimensional simulations. Various scale of chromospheric jets with the parabolic trajectory are found with the maximum height of 2-8 Mm, lifetime of 2-7 min, maximum upward velocity of 10- 50 km/s, and deceleration of 100-350 m/s2. We find that chromospheric jets are more elongated under the cool corona and shorter under the hot corona. We also find that the pressure gradient force caused by the periodic shock waves accelerates some of the

  13. Star Formation in low mass galaxies

    NASA Astrophysics Data System (ADS)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  14. MUFITS Code for Modeling Geological Storage of Carbon Dioxide at Sub- and Supercritical Conditions

    NASA Astrophysics Data System (ADS)

    Afanasyev, A.

    2012-12-01

    liquid and gaseous CO2. We consider CO2 injection into highly heterogeneous the 10th SPE reservoir. We provide analysis of physical phenomena that have control temperature distribution in the reservoir. The distribution is non-monotonic with regions of high and low temperature. The main phenomena responsible for considerable temperature decline around CO2 injection point is the liquid CO2 evaporation process. We also apply the code to real-scale 3D simulations of CO2 geological storage at supercritical conditions in Sleipner field and Johansen formation (Fig). The work is supported financially by the Russian Foundation for Basic Research (12-01-31117) and grant for leading scientific schools (NSh 1303.2012.1). CO2 phase saturation in Johansen formation after 50 years of injection and 1000 years of rest period

  15. Comparing abstract numerical and visual depictions of risk in survey of parental assessment of risk in sickle cell hydroxyurea treatment.

    PubMed

    Patterson, Chavis A; Barakat, Lamia P; Henderson, Phyllis K; Nall, Faith; Westin, Anna; Dampier, Carlton D; Hsu, Lewis L

    2011-01-01

    Communicating risk is an important activity in medical decision-making; yet, numeracy is not a universal skill among the American public. We examined the hypothesis that numerical risk information about the use of hydroxyurea for children with sickle cell disease would elicit different risk assessment responses when visual depictions were used instead of abstract numbers and depending on the disease severity. Parents of 81 children with sickle cell disease participated in a survey in which hydroxyurea was first described as carrying a certain chance of risk for both birth defects and cancer. Then, the parents indicated the highest risk at which they would hypothetically consent to the treatment to help their child. Risk presentations were repeated with abstract numerical, pie graph, and 1000 people histogram formats. The χ analyses comparing high-risk to low-risk assessment across presentation formats showed high consistency between visual depictions but low consistency of abstract numerical with visual depictions. The parents of children with SC and other less severe types of SCD were less willing to accept higher risk than those with SS when the data were presented numerically. Given earlier concerns about poor "numeracy" in the US population, visual depictions of risk could be an effective tool for routine communication in health education and medical decision-making.

  16. Finger-Based Numerical Skills Link Fine Motor Skills to Numerical Development in Preschoolers.

    PubMed

    Suggate, Sebastian; Stoeger, Heidrun; Fischer, Ursula

    2017-12-01

    Previous studies investigating the association between fine-motor skills (FMS) and mathematical skills have lacked specificity. In this study, we test whether an FMS link to numerical skills is due to the involvement of finger representations in early mathematics. We gave 81 pre-schoolers (mean age of 4 years, 9 months) a set of FMS measures and numerical tasks with and without a specific finger focus. Additionally, we used receptive vocabulary and chronological age as control measures. FMS linked more closely to finger-based than to nonfinger-based numerical skills even after accounting for the control variables. Moreover, the relationship between FMS and numerical skill was entirely mediated by finger-based numerical skills. We concluded that FMS are closely related to early numerical skill development through finger-based numerical counting that aids the acquisition of mathematical mental representations.

  17. The Formation of Students' National Self-Awareness in EFL Class

    ERIC Educational Resources Information Center

    Yarmakeev, Iskander E.; Pimenova, Tatiana S.

    2014-01-01

    In the epoch of globalization it is urgently important to draw attention to the problem of the formation of national self-awareness of school students. Numerous researches in the Russian Federation show that there is a tendency of cultural level decreasing, according to which a great many school students are not aware not only of the world's…

  18. Experimental Investigation of the Formation of Complex Craters

    NASA Astrophysics Data System (ADS)

    Martellato, E.; Dörfler, M. A.; Schuster, B.; Wünnemman, K.; Kenkmann, T.

    2017-09-01

    The formation of complex impact craters is still poorly understood, because standard material models fail to explain the gravity-driven collapse at the observed size-range of a bowl-shaped transient crater into a flat-floored crater structure with a central peak or ring and terraced rim. To explain such a collapse the so-called Acoustic Fluidization (AF) model has been proposed. The AF assumes that heavily fractured target rocks surrounding the transient crater are temporarily softened by an acoustic field in the wake of an expanding shock wave generated upon impact. The AF has been successfully employed in numerous modeling studies of complex crater formation; however, there is no clear relationship between model parameters and observables. In this study, we present preliminary results of laboratory experiments aiming at relating the AF parameters to observables such as the grain size, average wave length of the acoustic field and its decay time τ relative to the crater formation time.

  19. NUMERICAL STUDY ON IN SITU PROMINENCE FORMATION BY RADIATIVE CONDENSATION IN THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, T.; Yokoyama, T., E-mail: kaneko@eps.s.u-tokyo.ac.jp

    2015-06-10

    We propose an in situ formation model for inverse-polarity solar prominences and demonstrate it using self-consistent 2.5 dimensional MHD simulations, including thermal conduction along magnetic fields and optically thin radiative cooling. The model enables us to form cool dense plasma clouds inside a flux rope by radiative condensation, which is regarded as an inverse-polarity prominence. Radiative condensation is triggered by changes in the magnetic topology, i.e., formation of the flux rope from the sheared arcade field, and by thermal imbalance due to the dense plasma trapped inside the flux rope. The flux rope is created by imposing converging and shearingmore » motion on the arcade field. Either when the footpoint motion is in the anti-shearing direction or when heating is proportional to local density, the thermal state inside the flux rope becomes cooling-dominant, leading to radiative condensation. By controlling the temperature of condensation, we investigate the relationship between the temperature and density of prominences and derive a scaling formula for this relationship. This formula suggests that the proposed model reproduces the observed density of prominences, which is 10–100 times larger than the coronal density. Moreover, the time evolution of the extreme ultraviolet emission synthesized by combining our simulation results with the response function of the Solar Dynamics Observatory Atmospheric Imaging Assembly filters agrees with the observed temporal and spatial intensity shift among multi-wavelength extreme ultraviolet emission during in situ condensation.« less

  20. Numerical Simulations of Martian Fog Formation in the Low Latitudes

    NASA Astrophysics Data System (ADS)

    Inada, A.

    2002-09-01

    The formation of Martian surface fog is simulated by a one-dimensional model including the micro-physical processes of heterogeneous nucleation, condensation, and sublimation. The model includes diurnal cycle of water vapor in the 1 km surface layer which is spatially resolved. The results show that the column density of water ice in fog strongly depends on the water vapor density near the surface. If the mixing ratio of water vapor is 300 ppm near the surface, the simulations show that a thin fog layer appears with a maximum column density of 0.145 precipitable microns. If the mixing ratio is 600 ppm, the value measured by the Mars Pathfinder, the column density of water ice reaches 0.75 precipitable microns. It is also found that if the boundary layer is strongly turbulent the total amount of ice formed is small, since the ice particles are transported to the unsaturated higher atmospheric layers and sublimate there. Fog particles, which are large enough to precipitate to the lower atmosphere play a significant role in determining the altitude distribution of water vapor. It is noteworthy that the size distribution of all of the aerosols has two peaks once fog appears. This is because nucleation on large dust particles is so much faster than on the small ones, that the small dust particles are hardly coated by ice. The simulations assume an initial dust distribution with effective radius of 1.6 microns. Once fog forms this peak remains and is populated with particles with little water ice. A secondary peak is formed at about 10 microns corresponding to particles which are mostly water ice. This research was carried out under the partial support of JSPS Postdoctoral Fellowships for Research Abroad.

  1. Gas Accretion and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, Jorge

    Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star formation are analyzed, specifically, the short gas-consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the α-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.

  2. Is Cu involved in prion oligopeptide stability? Experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Minicozzi, V.; Morante, S.

    The high-sociological impact of neurodegenerative diseases (like Alzheimer disease, Transmissible Spongiform Encephalopathies, Parkinson disease, etc.) has renewed the interest of researchers in the study of misfolding processes and in particular of the rôle played by metals in plaque formation as their unbalanced concentration can be regarded as a possible concurrent cause of protein aggregation. Metals are essential players in many of the fundamental activities of cells. Storing, metabolism, and trafficking of metals through the cellular membrane and within the cytoplasm are mediated by many proteins via well-tuned mechanisms because of the toxicity of free ions. In this review article, we summarize the results of the most recent experimental and numerical investigations aimed at understanding the possible rôle of Cu in stabilizing the Prion protein structure and in the formation of protein polymers.

  3. Numerical modeling of continental lithospheric weak zone over plume

    NASA Astrophysics Data System (ADS)

    Perepechko, Y. V.; Sorokin, K. E.

    2011-12-01

    The work is devoted to the development of magmatic systems in the continental lithosphere over diffluent mantle plumes. The areas of tension originating over them are accompanied by appearance of fault zones, and the formation of permeable channels, which are distributed magmatic melts. The numerical simulation of the dynamics of deformation fields in the lithosphere due to convection currents in the upper mantle, and the formation of weakened zones that extend up to the upper crust and create the necessary conditions for the formation of intermediate magma chambers has been carried out. Thermodynamically consistent non-isothermal model simulates the processes of heat and mass transfer of a wide class of magmatic systems, as well as the process of strain localization in the lithosphere and their influence on the formation of high permeability zones in the lower crust. The substance of the lithosphere is a rheologic heterophase medium, which is described by a two-velocity hydrodynamics. This makes it possible to take into account the process of penetration of the melt from the asthenosphere into the weakened zone. The energy dissipation occurs mainly due to interfacial friction and inelastic relaxation of shear stresses. The results of calculation reveal a nonlinear process of the formation of porous channels and demonstrate the diversity of emerging dissipative structures which are determined by properties of both heterogeneous lithosphere and overlying crust. Mutual effect of a permeable channel and the corresponding filtration process of the melt on the mantle convection and the dynamics of the asthenosphere have been studied. The formation of dissipative structures in heterogeneous lithosphere above mantle plumes occurs in accordance with the following scenario: initially, the elastic behavior of heterophase lithosphere leads to the formation of the narrow weakened zone, though sufficiently extensive, with higher porosity. Further, the increase in the width of

  4. A numerical simulation of magnetic reconnection and radiative cooling in line-tied current sheets

    NASA Technical Reports Server (NTRS)

    Forbes, T. G.; Malherbe, J. M.

    1991-01-01

    Radiative MHD equations are used for an optically thin plasma to carry out a numerical experiment related to the formation of 'postflare' loops. The numerical experiment starts with a current sheet that is in mechanical and thermal equilibrium but is unstable to both tearing-mode and thermal-condensation instabilities. The current sheet is line-tied at one end to a photospheric-like boundary and evolves asymmetrically. The effects of thermal conduction, resistivity variation, and gravity are ignored. In general, reconnection in the nonlinear stage of the tearing-mode instability can strongly affect the onset of condensations unless the radiative-cooling time scale is much smaller than the tearing-mode time scale. When the ambient plasma is less than 0.2, the reconnection enters a regime where the outflow from the reconnection region is supermagnetosonic with respect to the fast-mode wave speed. In the supermagnetosonic regime the most rapidly condensing regions occur downstream of a fast-mode shock that forms where the outflow impinges on closed loops attached to the photospheric-like boundary. A similar shock-induced condensation might occur during the formation of 'postflare' loops.

  5. Formation and dispersion of mycelial pellets of Streptomyces coelicolor A3(2).

    PubMed

    Kim, Yul-Min; Kim, Jae-heon

    2004-03-01

    The pellets from a culture of Streptomyces coelicolor A3(2) that were submerged shaken were disintegrated into numerous hyphal fragments by DNase treatment. The pellets were increasingly dispersed by hyaluronidase treatment, and mycelial fragments were easily detached from the pellets. The submerged mycelium grew by forming complexes with calcium phosphate precipitates or kaolin, a soil particle. Therefore, the pellet formation of Streptomyces coelicolor A3(2) can be considered a biofilm formation, including the participation of adhesive extracellular polymers and the insoluble substrates.

  6. Numerical study of electromagnetic waves generated by a prototype dielectric logging tool

    USGS Publications Warehouse

    Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.

    2004-01-01

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.

  7. DOES MAGNETIC-FIELD-ROTATION MISALIGNMENT SOLVE THE MAGNETIC BRAKING CATASTROPHE IN PROTOSTELLAR DISK FORMATION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhiyun; Krasnopolsky, Ruben; Shang, Hsien

    2013-09-01

    Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. In the simplest case of a laminar (non-turbulent) core with the magnetic field aligned with the rotation axis, both analytic considerations and numerical simulations have shown that the formation of a large, 10{sup 2} AU scale, rotationally supported protostellar disk is suppressed by magnetic braking in the ideal MHD limit for a realistic level of core magnetization. This theoretical difficulty in forming protostellar disks is termed the ''magnetic braking catastrophe''. A possible resolution to this problem, proposed by Hennebelle and Ciardi and Joos et al.,more » is that misalignment between the magnetic field and rotation axis may weaken the magnetic braking enough to enable disk formation. We evaluate this possibility quantitatively through numerical simulations. We confirm the basic result of Joos et al. that the misalignment is indeed conducive to disk formation. In relatively weakly magnetized cores with dimensionless mass-to-flux ratio {approx}> 4, it enabled the formation of rotationally supported disks that would otherwise be suppressed if the magnetic field and rotation axis are aligned. For more strongly magnetized cores, disk formation remains suppressed, however, even for the maximum tilt angle of 90 Degree-Sign . If dense cores are as strongly magnetized as indicated by OH Zeeman observations (with a mean dimensionless mass-to-flux ratio {approx}2), it would be difficult for the misalignment alone to enable disk formation in the majority of them. We conclude that, while beneficial to disk formation, especially for the relatively weak field case, misalignment does not completely solve the problem of catastrophic magnetic braking in general.« less

  8. Numerical simulation of thermal stress distributions in Czochralski-grown silicon crystals

    NASA Astrophysics Data System (ADS)

    Kumar, M. Avinash; Srinivasan, M.; Ramasamy, P.

    2018-04-01

    Numerical simulation is one of the important tools in the investigation and optimization of the single-crystal silicon grown by the Czochralski (Cz) method. A 2D steady global heat transfer model was used to investigate the temperature distribution and the thermal stress distributions at particular crystal position during the Cz growth process. The computation determines the thermal stress such as von Mises stress and maximum shear stress distribution along grown crystal and shows possible reason for dislocation formation in the Cz-grown single-crystal silicon.

  9. Social power and opinion formation in complex networks

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi

    2013-02-01

    In this paper we investigate the effects of social power on the evolution of opinions in model networks as well as in a number of real social networks. A continuous opinion formation model is considered and the analysis is performed through numerical simulation. Social power is given to a proportion of agents selected either randomly or based on their degrees. As artificial network structures, we consider scale-free networks constructed through preferential attachment and Watts-Strogatz networks. Numerical simulations show that scale-free networks with degree-based social power on the hub nodes have an optimal case where the largest number of the nodes reaches a consensus. However, given power to a random selection of nodes could not improve consensus properties. Introducing social power in Watts-Strogatz networks could not significantly change the consensus profile.

  10. An Update on Binary Formation by Rotational Fission

    NASA Astrophysics Data System (ADS)

    Tohline, Joel E.; Durisen, Richard H.

    During the 1980s, numerical simulations showed that dynamic growth of a barlike mode in initially axisymmetric, equilibrium protostars does not lead to prompt binary formation, i. e., fission. Instead, such evolutions usually produce a dynamically stable, spinning barlike configuration. In recent years, this result has been confirmed by numerous groups using a variety of different hydrodynamical tools, and stability analyses have convincingly shown that fission does not occur in such systems because gravitational torques cause nonlinear saturation of the mode amplitude. Other possible routes to fission have been much less well scrutinized because they rely upon a detailed understanding of the structure and stability of initially nonaxisymmetric structures and/or evolutions that are driven by secular, rather than dynamic processes. Efforts are underway to examine these other fission scenarios.

  11. Formation of magnetic discontinuities through viscous relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sanjay; Bhattacharyya, R.; Smolarkiewicz, P. K.

    2014-05-15

    According to Parker's magnetostatic theorem, tangential discontinuities in magnetic field, or current sheets (CSs), are generally unavoidable in an equilibrium magnetofluid with infinite electrical conductivity and complex magnetic topology. These CSs are due to a failure of a magnetic field in achieving force-balance everywhere and preserving its topology while remaining in a spatially continuous state. A recent work [Kumar, Bhattacharyya, and Smolarkiewicz, Phys. Plasmas 20, 112903 (2013)] demonstrated this CS formation utilizing numerical simulations in terms of the vector magnetic field. The magnetohydrodynamic simulations presented here complement the above work by demonstrating CS formation by employing a novel approach ofmore » describing the magnetofluid evolution in terms of magnetic flux surfaces instead of the vector magnetic field. The magnetic flux surfaces being the possible sites on which CSs develop, this approach provides a direct visualization of the CS formation, helpful in understanding the governing dynamics. The simulations confirm development of tangential discontinuities through a favorable contortion of magnetic flux surfaces, as the magnetofluid undergoes a topology-preserving viscous relaxation from an initial non-equilibrium state with twisted magnetic field. A crucial finding of this work is in its demonstration of CS formation at spatial locations away from the magnetic nulls.« less

  12. Planet Formation in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca

    About half of observed exoplanets are estimated to be in binary systems. Understanding planet formation and evolution in binaries is therefore essential for explaining observed exoplanet properties. Recently, we discovered that a highly misaligned circumstellar disk in a binary system can undergo global Kozai-Lidov (KL) oscillations of the disk inclination and eccentricity. These oscillations likely have a significant impact on the formation and orbital evolution of planets in binary star systems. Planet formation by core accretion cannot operate during KL oscillations of the disk. First, we propose to consider the process of disk mass transfer between the binary members. Secondly, we will investigate the possibility of planet formation by disk fragmentation. Disk self gravity can weaken or suppress the oscillations during the early disk evolution when the disk mass is relatively high for a narrow range of parameters. Thirdly, we will investigate the evolution of a planet whose orbit is initially aligned with respect to the disk, but misaligned with respect to the orbit of the binary. We will study how these processes relate to observations of star-spin and planet orbit misalignment and to observations of planets that appear to be undergoing KL oscillations. Finally, we will analyze the evolution of misaligned multi-planet systems. This theoretical work will involve a combination of analytic and numerical techniques. The aim of this research is to shed some light on the formation of planets in binary star systems and to contribute to NASA's goal of understanding of the origins of exoplanetary systems.

  13. Formation Flying of Tethered and Nontethered Spacecraft

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.

    2005-01-01

    A paper discusses the effect of the dynamic interaction taking place within a formation composed of a rigid and a deformable vehicle, and presents the concept of two or more tethered spacecraft flying in formation with one or more separated free-flying spacecraft. Although progress toward formation flight of nontethered spacecraft has already been achieved, the document cites potential advantages of tethering, including less consumption of fuel to maintain formation, very high dynamic stability of a rotating tethered formation, and intrinsically passive gravity-gradient stabilization. The document presents a theoretical analysis of the dynamics of a system comprising one free-flying spacecraft and two tethered spacecraft in orbit, as a prototype of more complex systems. The spacecraft are modeled as rigid bodies and the tether as a mass-less spring with structural viscous damping. Included in the analysis is a study of the feasibility of a centralized control system for maintaining a required formation in low Earth orbit. A numerical simulation of a retargeting maneuver is reported to show that even if the additional internal dynamics of the system caused by flexibility is considered, high pointing precision can be achieved if a fictitious rigid frame is used to track the tethered system, and it should be possible to position the spacecraft with centimeter accuracy and to orient the formation within arc seconds of the desired direction also in the presence of low Earth orbit environmental perturbations. The results of the study demonstrate that the concept is feasible in Earth orbit and point the way to further study of these hybrid tethered and free-flying systems for related applications in orbit around other Solar System bodies.

  14. Numerical evaluation of gas core length in free surface vortices

    NASA Astrophysics Data System (ADS)

    Cristofano, L.; Nobili, M.; Caruso, G.

    2014-11-01

    The formation and evolution of free surface vortices represent an important topic in many hydraulic intakes, since strong whirlpools introduce swirl flow at the intake, and could cause entrainment of floating matters and gas. In particular, gas entrainment phenomena are an important safety issue for Sodium cooled Fast Reactors, because the introduction of gas bubbles within the core causes dangerous reactivity fluctuation. In this paper, a numerical evaluation of the gas core length in free surface vortices is presented, according to two different approaches. In the first one, a prediction method, developed by the Japanese researcher Sakai and his team, has been applied. This method is based on the Burgers vortex model, and it is able to estimate the gas core length of a free surface vortex starting from two parameters calculated with single-phase CFD simulations. The two parameters are the circulation and the downward velocity gradient. The other approach consists in performing a two-phase CFD simulation of a free surface vortex, in order to numerically reproduce the gas- liquid interface deformation. Mapped convergent mesh is used to reduce numerical error and a VOF (Volume Of Fluid) method was selected to track the gas-liquid interface. Two different turbulence models have been tested and analyzed. Experimental measurements of free surface vortices gas core length have been executed, using optical methods, and numerical results have been compared with experimental measurements. The computational domain and the boundary conditions of the CFD simulations were set consistently with the experimental test conditions.

  15. The influence of acetabular bone cracks in the press-fit hip replacement: Numerical and experimental analysis.

    PubMed

    Ramos, A; Duarte, R J; Relvas, C; Completo, A; Simões, J A

    2013-07-01

    The press-fit hip acetabular prosthesis implantation can cause crack formation in the thin regions surrounding the acetabular. As a consequence the presence of cracks in this region can lead to poor fixation and fibrous tissue formation. Numerical and experimental models of commercial press-fit hip replacements were developed to compare the behavior between the intact and implanted joints. Numerical models with an artificial crack and without crack were considered. The iliac and the femur were created through 3D geometry acquisition based on composite human replicas and 3D-Finite Element models were generated. The mechanical behavior was assessed numerically and experimentally considering the principal strains. The comparison between Finite Element model predictions and experimental measurements revealed a maximum difference of 9%. Similar distribution of the principal strains around the acetabular cavity was obtained for the intact and implanted models. When comparing the Von Mises stresses, it is possible to observe that the intact model is the one that presents the highest stress values in the entire acetabular cavity surface. The crack in the posterior side changes significantly the principal strain distribution, suggesting bone loss after hip replacement. Relatively to micromotions, these were higher on the superior side of the acetabular cavity and can change the implant stability and bone ingrowth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Numerical Boundary Condition Procedures

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.

  17. A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow

    NASA Technical Reports Server (NTRS)

    Baker, Gregory; Siegel, Michael; Tanveer, Saleh

    1995-01-01

    We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. This situation is disastrous for numerical computation, as small round-off errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. The method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out.

  18. Influences of Problem Format and SES on Preschoolers' Understanding of Approximate Addition

    ERIC Educational Resources Information Center

    McNeil, Nicole M.; Fuhs, Mary Wagner; Keultjes, M. Claire; Gibson, Matthew H.

    2011-01-01

    Recent studies suggest that 5-year-olds can add and compare large numerical quantities through approximate representations of number. However, the nature of this understanding and its susceptibility to environmental influences remain unclear. We examined whether children's early competence depends on the canonical problem format (i.e., arithmetic…

  19. Holographic Formation of Diffraction Elements for Transformation of Light Beams in Liquid Crystal - Photopolymer Compositions

    NASA Astrophysics Data System (ADS)

    Semkin, A. O.; Sharangovich, S. N.

    2018-03-01

    A theoretical model of holographic formation of diffractive optical elements for transformation of light beam field into Bessel-like fields in liquid crystal - photopolymer (LC-PPM) composite materials with a dyesensitizer is developed. Results of numerical modeling of kinetics ofvariation of the refractive index of a material in the process of formation with different relationships between the photopolymerization rates and diffusion processes are presented. Based on the results of numerical simulation, it is demonstrated that when the photopolarization process dominates, the diffractive element being formed is distorted. This leads to a change in the light field distribution at its output and consequently, to ineffective transformation of the reading beam. Thus, the necessity of optimizing of the recording conditions and of the prepolymeric composition to increase the transformation efficiency of light beam fields is demonstrated.

  20. Simulation for Carbon Nanotube Dispersion and Microstructure Formation in CNTs/AZ91D Composite Fabricated by Ultrasonic Processing

    NASA Astrophysics Data System (ADS)

    Yang, Yuansheng; Zhao, Fuze; Feng, Xiaohui

    2017-10-01

    The dispersion of carbon nanotubes (CNTs) in AZ91D melt by ultrasonic processing and microstructure formation of CNTs/AZ91D composite were studied using numerical and physical simulations. The sound field and acoustic streaming were predicted using finite element method. Meanwhile, optimal immersion depth of the ultrasonic probe and suitable ultrasonic power were obtained. Single-bubble model was used to predict ultrasonic cavitation in AZ91D melt. The relationship between sound pressure amplitude and ultrasonic cavitation was established. Physical simulations of acoustic streaming and ultrasonic cavitation agreed well with the numerical simulations. It was confirmed that the dispersion of carbon nanotubes was remarkably improved by ultrasonic processing. Microstructure formation of CNTs/AZ91D composite was numerically simulated using cellular automation method. In addition, grain refinement was achieved and the growth of dendrites was changed due to the uniform dispersion of CNTs.

  1. Numerical study on the Welander oscillatory natural circulation problem using high-order numerical methods

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Kim, Seung Jun

    2016-11-16

    In this study, the classical Welander’s oscillatory natural circulation problem is investigated using high-order numerical methods. As originally studied by Welander, the fluid motion in a differentially heated fluid loop can exhibit stable, weakly instable, and strongly instable modes. A theoretical stability map has also been originally derived from the stability analysis. Numerical results obtained in this paper show very good agreement with Welander’s theoretical derivations. For stable cases, numerical results from both the high-order and low-order numerical methods agree well with the non-dimensional flow rate analytically derived. The high-order numerical methods give much less numerical errors compared to themore » low-order methods. For stability analysis, the high-order numerical methods could perfectly predict the stability map, while the low-order numerical methods failed to do so. For all theoretically unstable cases, the low-order methods predicted them to be stable. The result obtained in this paper is a strong evidence to show the benefits of using high-order numerical methods over the low-order ones, when they are applied to simulate natural circulation phenomenon that has already gain increasing interests in many future nuclear reactor designs.« less

  2. Drop impact into a deep pool: vortex shedding and jet formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agbaglah, G.; Thoraval, M. -J.; Thoroddsen, S. T.

    2015-02-01

    One of the simplest splashing scenarios results from the impact of a single drop on a deep pool. The traditional understanding of this process is that the impact generates an axisymmetric sheet-like jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are transitions in the multiplicity of jets as the experimental parameters are varied. Here, we use experiments and numerical simulations of a single drop impacting on a deep pool to examine themore » transition from impacts that produce a single jet to those that produce two jets. Using high-speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet. Using numerical simulations we develop a phase diagram for this transition and show that the capillary number is the most appropriate order parameter for the transition.« less

  3. Influence of fast advective flows on pattern formation of Dictyostelium discoideum

    PubMed Central

    Bae, Albert; Zykov, Vladimir; Bodenschatz, Eberhard

    2018-01-01

    We report experimental and numerical results on pattern formation of self-organizing Dictyostelium discoideum cells in a microfluidic setup under a constant buffer flow. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. At high flow velocities, elongated cAMP waves are formed that cover the whole length of the channel and propagate both parallel and perpendicular to the flow direction. While the wave period and transverse propagation velocity are constant, parallel wave velocity and the wave width increase linearly with the imposed flow. We also observe that the acquired wave shape is highly dependent on the wave generation site and the strength of the imposed flow. We compared the wave shape and velocity with numerical simulations performed using a reaction-diffusion model and found excellent agreement. These results are expected to play an important role in understanding the process of pattern formation and aggregation of D. discoideum that may experience fluid flows in its natural habitat. PMID:29590179

  4. Numerical investigation of the effects of iron oxidation reactions on the fume formation mechanism in arc welding

    NASA Astrophysics Data System (ADS)

    Sanibondi, Paolo

    2015-09-01

    Fume formation during arc welding has been modelled using a stochastic approach taking into account iron oxidation reactions. The model includes the nucleation and condensation of Fe and FeO vapours, the reaction of gaseous O2 and O on the nanoparticle surface, the coagulation of the nanoparticles including a sintering time as a function of temperature and composition, assuming chemical equilibrium for species in the gaseous phase. Results suggest that fumes generated in gas metal arc welding with oxidizing shielding mixtures are composed of aggregates of primary particles that are nucleated from gas-phase FeO and further oxidized to Fe3O4 and Fe2O3 in the liquid and solid phase, respectively. The composition of the fumes at the end of the formation process depends on the relative initial concentration of Fe and O2 species in the gas mixture and on the diameter of the primary particles that compose the aggregates: as the oxidation reactions are driven by deposition of oxygen on nanoparticle surface, the oxidation of larger particles is slower than that of smaller particles because of their lower surface to volume ratio. Solid-state diffusion is limiting the oxidation process at temperatures lower than 1500 K, inducing the formation of not fully oxidized particles composed of Fe3O4.

  5. Accretion Disks and the Formation of Stellar Systems

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin Michelle

    2011-02-01

    In this thesis, we examine the role of accretion disks in the formation of stellar systems, focusing on young massive disks which regulate the flow of material from the parent molecular core down to the star. We study the evolution of disks with high infall rates that develop strong gravitational instabilities. We begin in chapter 1 with a review of the observations and theory which underpin models for the earliest phases of star formation and provide a brief review of basic accretion disk physics, and the numerical methods that we employ. In chapter 2 we outline the current models of binary and multiple star formation, and review their successes and shortcomings from a theoretical and observational perspective. In chapter 3 we begin with a relatively simple analytic model for disks around young, high mass stars, showing that instability in these disks may be responsible for the higher multiplicity fraction of massive stars, and perhaps the upper mass to which they grow. We extend these models in chapter 4 to explore the properties of disks and the formation of binary companions across a broad range of stellar masses. In particular, we model the role of global and local mechanisms for angular momentum transport in regulating the relative masses of disks and stars. We follow the evolution of these disks throughout the main accretion phase of the system, and predict the trajectory of disks through parameter space. We follow up on the predictions made in our analytic models with a series of high resolution, global numerical experiments in chapter 5. Here we propose and test a new parameterization for describing rapidly accreting, gravitationally unstable disks. We find that disk properties and system multiplicity can be mapped out well in this parameter space. Finally, in chapter 6, we address whether our studies of unstable disks are relevant to recently detected massive planets on wide orbits around their central stars.

  6. Decentralised consensus-based formation tracking of multiple differential drive robots

    NASA Astrophysics Data System (ADS)

    Chu, Xing; Peng, Zhaoxia; Wen, Guoguang; Rahmani, Ahmed

    2017-11-01

    This article investigates the control problem for formation tracking of multiple nonholonomic robots under distributed manner which means each robot only needs local information exchange. A class of general state and input transform is introduced to convert the formation-tracking issue of multi-robot systems into the consensus-like problem with time-varying reference. The distributed observer-based protocol with nonlinear dynamics is developed for each robot to achieve the consensus tracking of the new system, which namely means a group of nonholonomic mobile robots can form the desired formation configuration with its centroid moving along the predefined reference trajectory. The finite-time stability of observer and control law is analysed rigorously by using the Lyapunov direct method, algebraic graph theory and matrix analysis. Numerical examples are finally provided to illustrate the effectiveness of the theory results proposed in this paper.

  7. Polariton Pattern Formation and Photon Statistics of the Associated Emission

    NASA Astrophysics Data System (ADS)

    Whittaker, C. E.; Dzurnak, B.; Egorov, O. A.; Buonaiuto, G.; Walker, P. M.; Cancellieri, E.; Whittaker, D. M.; Clarke, E.; Gavrilov, S. S.; Skolnick, M. S.; Krizhanovskii, D. N.

    2017-07-01

    We report on the formation of a diverse family of transverse spatial polygon patterns in a microcavity polariton fluid under coherent driving by a blue-detuned pump. Patterns emerge spontaneously as a result of energy-degenerate polariton-polariton scattering from the pump state to interfering high-order vortex and antivortex modes, breaking azimuthal symmetry. The interplay between a multimode parametric instability and intrinsic optical bistability leads to a sharp spike in the value of second-order coherence g(2 )(0 ) of the emitted light, which we attribute to the strongly superlinear kinetics of the underlying scattering processes driving the formation of patterns. We show numerically by means of a linear stability analysis how the growth of parametric instabilities in our system can lead to spontaneous symmetry breaking, predicting the formation and competition of different pattern states in good agreement with experimental observations.

  8. Impact of a single drop on the same liquid: formation, growth and disintegration of jets

    NASA Astrophysics Data System (ADS)

    Agbaglah, G. Gilou; Deegan, Robert

    2015-11-01

    One of the simplest splashing scenarios results from the impact of a single drop on on the same liquid. The traditional understanding of this process is that the impact generates a jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are bifurcations in the multiplicity of jets. First, we study the formation, growth and disintegration of jets following the impact of a drop on a thin film of the same liquid using a combination of numerical simulations and linear stability theory. We obtain scaling relations from our simulations and use these as inputs to our stability analysis. We also use experiments and numerical simulations of a single drop impacting on a deep pool to examine the bifurcation from a single jet into two jets. Using high speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet.

  9. Evolution of crustal stress, pressure and temperature around shear zones during orogenic wedge formation: a 2D thermo-mechanical numerical study

    NASA Astrophysics Data System (ADS)

    Markus Schmalholz, Stefan; Jaquet, Yoann

    2016-04-01

    We study the formation of an orogenic wedge during lithospheric shortening with 2D numerical simulations. We consider a viscoelastoplastic rheology, thermo-mechanical coupling by shear heating and temperature-dependent viscosities, gravity and erosion. In the initial model configuration there is either a lateral temperature variation at the model base or a lateral variation in crustal thickness to generate slight stress variations during lithospheric shortening. These stress variations can trigger the formation of shear zones which are caused by thermal softening associated with shear heating. We do not apply any kind of strain softening, such as reduction of friction angle with progressive plastic strain. The first major shear zone that appears during shortening crosscuts the entire crust and initiates the asymmetric subduction/underthrusting of mainly the mechanically strong lower crust. After some deformation, the first shear zone in the upper crust is abandoned, the deformation propagates towards the foreland and a new shear zone forms only in the upper crust. The shear zone propagation occurs several times where new shear zones form in the upper crust and the mechanically strong top of the lower crust acts as detachment horizon. We calculate the magnitudes of the maximal and minimal principal stresses and of the mean stress (or dynamic pressure), and we record also the temperature for several marker points in the upper and lower crust. We analyse the evolution of stresses and temperature with burial depth and time. Deviatoric stresses (half the differential stress) in the upper crust are up to 200 MPa and associated shear heating in shear zones ranges between 40 - 80 °C. Lower crustal rocks remain either at the base of the orogenic wedge at depths of around 50 km or are subducted to depths of up to 120 km, depending on their position when the first shear zone formed. Largest deviatotric stresses in the strong part of the lower crust are about 1000 MPa and

  10. Micro-foundation using percolation theory of the finite time singular behavior of the crash hazard rate in a class of rational expectation bubbles

    NASA Astrophysics Data System (ADS)

    Seyrich, Maximilian; Sornette, Didier

    2016-04-01

    We present a plausible micro-founded model for the previously postulated power law finite time singular form of the crash hazard rate in the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles. The model is based on a percolation picture of the network of traders and the concept that clusters of connected traders share the same opinion. The key ingredient is the notion that a shift of position from buyer to seller of a sufficiently large group of traders can trigger a crash. This provides a formula to estimate the crash hazard rate by summation over percolation clusters above a minimum size of a power sa (with a>1) of the cluster sizes s, similarly to a generalized percolation susceptibility. The power sa of cluster sizes emerges from the super-linear dependence of group activity as a function of group size, previously documented in the literature. The crash hazard rate exhibits explosive finite time singular behaviors when the control parameter (fraction of occupied sites, or density of traders in the network) approaches the percolation threshold pc. Realistic dynamics are generated by modeling the density of traders on the percolation network by an Ornstein-Uhlenbeck process, whose memory controls the spontaneous excursion of the control parameter close to the critical region of bubble formation. Our numerical simulations recover the main stylized properties of the JLS model with intermittent explosive super-exponential bubbles interrupted by crashes.

  11. Numerical modelling of powder caking at REV scale by using DEM

    NASA Astrophysics Data System (ADS)

    Guessasma, Mohamed; Silva Tavares, Homayra; Afrassiabian, Zahra; Saleh, Khashayar

    2017-06-01

    This work deals with numerical simulation of powder caking process caused by capillary condensation phenomenon. Caking consists in unwanted agglomeration of powder particles. This process is often irreversible and not easy to predict. To reproduce mechanism involved by caking phenomenon we have used the Discrete Elements Method (DEM). In the present work, we mainly focus on the role of capillary condensation and subsequent liquid bridge formation within a granular medium exposed to fluctuations of ambient relative humidity. Such bridges cause an attractive force between particles, leading to the formation of a cake with intrinsic physicochemical and mechanical properties. By considering a Representative Elementary Volume (REV), the DEM is then performed by means of a MULTICOR-3D software tacking into account the properties of the cake (degree of saturation) in order to establish relationships between the microscopic parameters and the macroscopic behaviour (tensile strength).

  12. A review of laboratory and numerical modelling in volcanology

    NASA Astrophysics Data System (ADS)

    Kavanagh, Janine L.; Engwell, Samantha L.; Martin, Simon A.

    2018-04-01

    Modelling has been used in the study of volcanic systems for more than 100 years, building upon the approach first applied by Sir James Hall in 1815. Informed by observations of volcanological phenomena in nature, including eye-witness accounts of eruptions, geophysical or geodetic monitoring of active volcanoes, and geological analysis of ancient deposits, laboratory and numerical models have been used to describe and quantify volcanic and magmatic processes that span orders of magnitudes of time and space. We review the use of laboratory and numerical modelling in volcanological research, focussing on sub-surface and eruptive processes including the accretion and evolution of magma chambers, the propagation of sheet intrusions, the development of volcanic flows (lava flows, pyroclastic density currents, and lahars), volcanic plume formation, and ash dispersal. When first introduced into volcanology, laboratory experiments and numerical simulations marked a transition in approach from broadly qualitative to increasingly quantitative research. These methods are now widely used in volcanology to describe the physical and chemical behaviours that govern volcanic and magmatic systems. Creating simplified models of highly dynamical systems enables volcanologists to simulate and potentially predict the nature and impact of future eruptions. These tools have provided significant insights into many aspects of the volcanic plumbing system and eruptive processes. The largest scientific advances in volcanology have come from a multidisciplinary approach, applying developments in diverse fields such as engineering and computer science to study magmatic and volcanic phenomena. A global effort in the integration of laboratory and numerical volcano modelling is now required to tackle key problems in volcanology and points towards the importance of benchmarking exercises and the need for protocols to be developed so that models are routinely tested against real world data.

  13. Pillars and globules at the edges of H ii regions. Confronting Herschel observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Tremblin, P.; Minier, V.; Schneider, N.; Audit, E.; Hill, T.; Didelon, P.; Peretto, N.; Arzoumanian, D.; Motte, F.; Zavagno, A.; Bontemps, S.; Anderson, L. D.; André, Ph.; Bernard, J. P.; Csengeri, T.; Di Francesco, J.; Elia, D.; Hennemann, M.; Könyves, V.; Marston, A. P.; Nguyen Luong, Q.; Rivera-Ingraham, A.; Roussel, H.; Sousbie, T.; Spinoglio, L.; White, G. J.; Williams, J.

    2013-12-01

    Context. Herschel far-infrared imaging observations have revealed the density structure of the interface between H ii regions and molecular clouds in great detail. In particular, pillars and globules are present in many high-mass star-forming regions, such as the Eagle nebula (M 16) and the Rosette molecular cloud, and understanding their origin will help characterize triggered star formation. Aims: The formation mechanisms of these structures are still being debated. The initial morphology of the molecular cloud and its turbulent state are key parameters since they generate deformations and curvatures of the shell during the expansion of the H ii region. Recent numerical simulations have shown how pillars can arise from the collapse of the shell in on itself and how globules can be formed from the interplay of the turbulent molecular cloud and the ionization from massive stars. The goal here is to test this scenario through recent observations of two massive star-forming regions, M 16 and the Rosette molecular cloud. Methods: First, the column density structure of the interface between molecular clouds and associated H ii regions was characterized using column density maps obtained from far-infrared imaging of the Herschel HOBYS key programme. Then, the DisPerSe algorithm was used on these maps to detect the compressed layers around the ionized gas and pillars in different evolutionary states. Column density profiles were constructed. Finally, their velocity structure was investigated using CO data, and all observational signatures were tested against some distinct diagnostics established from simulations. Results: The column density profiles have revealed the importance of compression at the edge of the ionized gas. The velocity properties of the structures, i.e. pillars and globules, are very close to what we predict from the numerical simulations. We have identified a good candidate of a nascent pillar in the Rosette molecular cloud that presents the velocity

  14. Station-Keeping Strategies for Lead-Trail Formation Flying

    NASA Astrophysics Data System (ADS)

    Martinot, V.; Rozanes, P.

    Numerous projects in the Science and Observation domains involve the use of formation flying to ensure the mission performance. The formation flying configurations proposed in some of them are quite complex with several satellites in different planes generating relative differential motions between the satellites like in case of circular projected formation-flying. However, more simple designs consisting of two satellites in a lead-trail formation appear to be sufficient for a wide range of applications (interferometry, geodesy,...). This article concentrates on the station- keeping phase of such formations in Low-Earth Orbits The station-keeping criterion for such formations can be expressed for example in terms of difference in argument of latitude between both satellites and at the altitudes considered, it evolves mainly under the differential effect of the atmospheric drag between the trailing and leading satellites. In the present paper, this differential effect is supposed to originate from the difference in the area-to-mass ratio between the satellites due to their different designs. A preliminary estimation of the navigation performance is first given assuming that on-board GPS receiver are mounted on each satellite of the formation to acquire pseudo-range measurements between the LEO satellites and the MEO GPS constellation. The distance between both satellites of the formation is derived from independent orbit restitution performed for each LEO satellite in a ground master control station processing the GPS measurements. A strategy for controlling the satellite formation disturbed by the differential effect of the drag is then proposed. Simulations are performed to assess the feasibility of the station-keeping with different types of engines. As by-products, the propellant budget and the frequency of the station-keeping manoeuvres are also given. A case study inspired from the ESA project Acechem/Metop is used for the simulations.

  15. Circumbinary discs: Numerical and physical behaviour

    NASA Astrophysics Data System (ADS)

    Thun, Daniel; Kley, Wilhelm; Picogna, Giovanni

    2017-08-01

    Aims: Discs around a central binary system play an important role in star and planet formation and in the evolution of galactic discs. These circumbinary discs are strongly disturbed by the time varying potential of the binary system and display a complex dynamical evolution that is not well understood. Our goal is to investigate the impact of disc and binary parameters on the dynamical aspects of the disc. Methods: We study the evolution of circumbinary discs under the gravitational influence of the binary using two-dimensional hydrodynamical simulations. To distinguish between physical and numerical effects we apply three hydrodynamical codes. First we analyse in detail numerical issues concerning the conditions at the boundaries and grid resolution. We then perform a series of simulations with different binary parameters (eccentricity, mass ratio) and disc parameters (viscosity, aspect ratio) starting from a reference model with Kepler-16 parameters. Results: Concerning the numerical aspects we find that the length of the inner grid radius and the binary semi-major axis must be comparable, with free outflow conditions applied such that mass can flow onto the central binary. A closed inner boundary leads to unstable evolutions. We find that the inner disc turns eccentric and precesses for all investigated physical parameters. The precession rate is slow with periods (Tprec) starting at around 500 binary orbits (Tbin) for high viscosity and a high aspect ratio H/R where the inner hole is smaller and more circular. Reducing α and H/R increases the gap size and Tprec reaches 2500 Tbin. For varying binary mass ratios qbin the gap size remains constant, whereas Tprec decreases with increasing qbin. For varying binary eccentricities ebin we find two separate branches in the gap size and eccentricity diagram. The bifurcation occurs at around ecrit ≈ 0.18 where the gap is smallest with the shortest Tprec. For ebin lower and higher than ecrit, the gap size and Tprec

  16. Low-rank approximation in the numerical modeling of the Farley-Buneman instability in ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Dolgov, S. V.; Smirnov, A. P.; Tyrtyshnikov, E. E.

    2014-04-01

    We consider numerical modeling of the Farley-Buneman instability in the Earth's ionosphere plasma. The ion behavior is governed by the kinetic Vlasov equation with the BGK collisional term in the four-dimensional phase space, and since the finite difference discretization on a tensor product grid is used, this equation becomes the most computationally challenging part of the scheme. To relax the complexity and memory consumption, an adaptive model reduction using the low-rank separation of variables, namely the Tensor Train format, is employed. The approach was verified via a prototype MATLAB implementation. Numerical experiments demonstrate the possibility of efficient separation of space and velocity variables, resulting in the solution storage reduction by a factor of order tens.

  17. Communicating Numerical Risk: Human Factors That Aid Understanding in Health Care

    PubMed Central

    Brust-Renck, Priscila G.; Royer, Caisa E.; Reyna, Valerie F.

    2014-01-01

    In this chapter, we review evidence from the human factors literature that verbal and visual formats can help increase the understanding of numerical risk information in health care. These visual representations of risk are grounded in empirically supported theory. As background, we first review research showing that people often have difficulty understanding numerical risks and benefits in health information. In particular, we discuss how understanding the meanings of numbers results in healthier decisions. Then, we discuss the processes that determine how communication of numerical risks can enhance (or degrade) health judgments and decisions. Specifically, we examine two different approaches to risk communication: a traditional approach and fuzzy-trace theory. Applying research on the complications of understanding and communicating risks, we then highlight how different visual representations are best suited to communicating different risk messages (i.e., their gist). In particular, we review verbal and visual messages that highlight gist representations that can better communicate health information and improve informed decision making. This discussion is informed by human factors theories and methods, which involve the study of how to maximize the interaction between humans and the tools they use. Finally, we present implications and recommendations for future research on human factors in health care. PMID:24999307

  18. Project Fog Drops 5. Task 1: A numerical model of advection fog. Task 2: Recommendations for simplified individual zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.

    1975-01-01

    A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.

  19. Molecular formation in the stagnation region of colliding laser-produced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Shboul, K. F.; Hassan, S. M.; Harilal, S. S.

    2016-10-27

    The laser-produced colliding plasmas have numerous attractive applications and stagnation layer formed during collisions between plasmas is a useful system for understanding particle collisions and molecular formation in a controlled way. In this article, we explore carbon dimer formation and its evolutionary paths in a stagnation layer formed during the interaction of two laser-produced plasmas. Colliding laser produced plasmas are generated by splitting a laser beam into two sub-beams and then focus them into either a single flat (laterally colliding plasmas) or a V-shaped graphite targets (orthogonally colliding plasmas). The C2 formation in the stagnation region of both colliding plasmamore » schemes is investigated using optical spectroscopic means and compared with emission features from single seed plasma. Our results show that the collisions among the plasmas followed by the stagnation layer formation lead to rapid cooling causing enhanced carbon dimer formation. In addition, plasma electron temperature, density and C2 molecular temperature were measured for the stagnation zone and compared with seed plasma.« less

  20. Constraints on Lithospheric Rheology From Fault Displacement Rate Histories and Numerical Experiments

    NASA Astrophysics Data System (ADS)

    Lavier, L. L.; Bennett, R. A.; Anderson, M. L.; Matti, J. C.

    2005-05-01

    Recent displacement rate and geodetic data on the San Andreas, San Jacinto and eastern California shear zone suggest that changes in the geometry and/or the magnitude of the applied forces on the crust (e.g., a general or local change in fault strike relative to plate motion) can generate strain repartitioning within the crust on time scales of millions to thousands of years. The rates over which this repartitioning takes place in response to changing forces are controlled by the rheological evolution of the lithosphere. We investigate the implications of observed fault displacement histories for the rheology of the lithosphere using 2.5 D numerical experiments of deformation in an analogue system. The numerical technique used allows for the spontaneous formation of elastoplastic shear zones and flow in a Maxwell viscoelastic lower crust. The results show that when a strike slip fault is rotated to strike obliquely to the direction of relative plate motion it causes changes in bending and frictional stresses due to the formation of topography. To accommodate these changes, a conjugate system of oblique-striking strike slip faults develops. The total displacement is then slowly distributed over the new fault system on the time scale of mountain building (i.e. million of years). The rate of change is dependent on the strength of the lithosphere as well as the amount of obliquity applied on the initial strike-slip fault. In other numerical experiments we show that in a system of multiple strike-slip fault zones, displacement rate changes can occur over a time scale of about 100 kyr. This time scale corresponds to the Maxwell time at the brittle ductile transition (BDT). In such a system the lithospheric displacement is alternatively distributed (over 100 kyr) in clusters localized in lower crustal channels and over strike-slip fault zones. We show that the clustering time scale is controlled by the ratio of upper to lower crustal strength. This incomplete exercise

  1. Thermodynamics and kinetics of vesicles formation processes.

    PubMed

    Guida, Vincenzo

    2010-12-15

    Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications. Copyright © 2009. Published by Elsevier B.V.

  2. Simulation and Characterization of Methane Hydrate Formation

    NASA Astrophysics Data System (ADS)

    Dhakal, S.; Gupta, I.

    2017-12-01

    The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate

  3. Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China

    NASA Astrophysics Data System (ADS)

    Yang, S.; Shi, Y.

    2015-10-01

    Ice caves exist in locations where annual average air temperature is higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively investigate the mechanism of formation and preservation of the ice cave, we use the finite-element method to simulate the heat transfer process at this ice cave. There are two major control factors. First, there is the seasonal asymmetric heat transfer. Heat is transferred into the ice cave from outside very inefficiently by conduction in spring, summer and fall. In winter, thermal convection occurs that transfers heat very efficiently out of the ice cave, thus cooling it down. Secondly, ice-water phase change provides a heat barrier for heat transfer into the cave in summer. The calculation also helps to evaluate effects of global warming, tourists, colored lights, climatic conditions, etc. for sustainable development of the ice cave as a tourism resource. In some other ice caves in China, managers have installed airtight doors at these ice caves' entrances with the intention of "protecting" these caves, but this in fact prevents cooling in winter and these cave ices will entirely melt within tens of years.

  4. Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China

    NASA Astrophysics Data System (ADS)

    Yang, S.; Shi, Y.

    2015-04-01

    Ice caves exist in locations where annual average temperature in higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively explain the mechanism of formation and preservation of the ice cave, we use Finite Element Method to simulate the heat transfer process at this ice cave. There are two major control factors. First, there is the seasonal asymmetric heat transfer. Heat is transferred into the ice cave from outside, very inefficiently by conduction in spring, summer and fall. In winter, thermal convection occurs that transfers heat very efficiently out of the ice cave, thus cooling it down. Secondly, ice-water phase change provides a heat barrier for heat transfer into the cave in summer. The calculation also helps to evaluate effects of global warming, tourists, etc. for sustainable development of ice cave as tourism resource. In some other ice caves in China, managers installed air-tight doors at these ice caves entrance intending to "protect" these caves, but this prevent cooling down these caves in winters and these cave ices will entirely melt within tens of years.

  5. Numerical simulation of premixed flame propagation in a closed tube

    NASA Astrophysics Data System (ADS)

    Kuzuu, Kazuto; Ishii, Katsuya; Kuwahara, Kunio

    1996-08-01

    Premixed flame propagation of methane-air mixture in a closed tube is estimated through a direct numerical simulation of the three-dimensional unsteady Navier-Stokes equations coupled with chemical reaction. In order to deal with a combusting flow, an extended version of the MAC method, which can be applied to a compressible flow with strong density variation, is employed as a numerical method. The chemical reaction is assumed to be an irreversible single step reaction between methane and oxygen. The chemical species are CH 4, O 2, N 2, CO 2, and H 2O. In this simulation, we reproduce a formation of a tulip flame in a closed tube during the flame propagation. Furthermore we estimate not only a two-dimensional shape but also a three-dimensional structure of the flame and flame-induced vortices, which cannot be observed in the experiments. The agreement between the calculated results and the experimental data is satisfactory, and we compare the phenomenon near the side wall with the one in the corner of the tube.

  6. Multistatic synthetic aperture radar image formation.

    PubMed

    Krishnan, V; Swoboda, J; Yarman, C E; Yazici, B

    2010-05-01

    In this paper, we consider a multistatic synthetic aperture radar (SAR) imaging scenario where a swarm of airborne antennas, some of which are transmitting, receiving or both, are traversing arbitrary flight trajectories and transmitting arbitrary waveforms without any form of multiplexing. The received signal at each receiving antenna may be interfered by the scattered signal due to multiple transmitters and additive thermal noise at the receiver. In this scenario, standard bistatic SAR image reconstruction algorithms result in artifacts in reconstructed images due to these interferences. In this paper, we use microlocal analysis in a statistical setting to develop a filtered-backprojection (FBP) type analytic image formation method that suppresses artifacts due to interference while preserving the location and orientation of edges of the scene in the reconstructed image. Our FBP-type algorithm exploits the second-order statistics of the target and noise to suppress the artifacts due to interference in a mean-square sense. We present numerical simulations to demonstrate the performance of our multistatic SAR image formation algorithm with the FBP-type bistatic SAR image reconstruction algorithm. While we mainly focus on radar applications, our image formation method is also applicable to other problems arising in fields such as acoustic, geophysical and medical imaging.

  7. The influence of graphic format on breast cancer risk communication.

    PubMed

    Schapira, Marilyn M; Nattinger, Ann B; McAuliffe, Timothy L

    2006-09-01

    Graphic displays can enhance quantitative risk communication. However, empiric data regarding the effect of graphic format on risk perception is lacking. We evaluate the effect of graphic format elements on perceptions of risk magnitude and perceived truth of data. Preferences for format also were assessed. Participants (254 female primary care patients) viewed a series of hypothetical risk communications regarding the lifetime risk of breast cancer. Identical numeric risk information was presented using different graphic formats. Risk was perceived to be of lower magnitude when communicated with a bar graph as compared with a pictorial display (p < 0.0001), or with consecutively versus randomly highlighted symbols in a pictorial display (p = 0.0001). Data were perceived to be more true when presented with random versus consecutive highlights in a pictorial display (p < 0.01). A pictorial display was preferred to a bar graph format for the presentation of breast cancer risk estimates alone (p = 0.001). When considering breast cancer risk in comparison to heart disease, stroke, and osteoporosis, however, bar graphs were preferred pictorial displays (p < 0.001). In conclusion, elements of graphic format used to convey quantitative risk information effects key domains of risk perception. One must be cognizant of these effects when designing risk communication strategies.

  8. Unveiling the Role of Galactic Rotation on Star Formation

    NASA Astrophysics Data System (ADS)

    Utreras, José; Becerra, Fernando; Escala, Andrés

    2016-12-01

    We study the star formation process at galactic scales and the role of rotation through numerical simulations of spiral and starburst galaxies using the adaptive mesh refinement code Enzo. We focus on the study of three integrated star formation laws found in the literature: the Kennicutt-Schmidt (KS) and Silk-Elmegreen (SE) laws, and the dimensionally homogeneous equation proposed by Escala {{{Σ }}}{SFR}\\propto \\sqrt{G/L}{{{Σ }}}{gas}1.5. We show that using the last we take into account the effects of the integration along the line of sight and find a unique regime of star formation for both types of galaxies, suppressing the observed bi-modality of the KS law. We find that the efficiencies displayed by our simulations are anti-correlated with the angular velocity of the disk Ω for the three laws studied in this work. Finally, we show that the dimensionless efficiency of star formation is well represented by an exponentially decreasing function of -1.9{{Ω }}{t}{ff}{ini}, where {t}{ff}{ini} is the initial free-fall time. This leads to a unique galactic star formation relation which reduces the scatter of the bi-modal KS, SE, and Escala relations by 43%, 43%, and 35%, respectively.

  9. Investigation of wing crack formation with a combined phase-field and experimental approach

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyun; Reber, Jacqueline E.; Hayman, Nicholas W.; Wheeler, Mary F.

    2016-08-01

    Fractures that propagate off of weak slip planes are known as wing cracks and often play important roles in both tectonic deformation and fluid flow across reservoir seals. Previous numerical models have produced the basic kinematics of wing crack openings but generally have not been able to capture fracture geometries seen in nature. Here we present both a phase-field modeling approach and a physical experiment using gelatin for a wing crack formation. By treating the fracture surfaces as diffusive zones instead of as discontinuities, the phase-field model does not require consideration of unpredictable rock properties or stress inhomogeneities around crack tips. It is shown by benchmarking the models with physical experiments that the numerical assumptions in the phase-field approach do not affect the final model predictions of wing crack nucleation and growth. With this study, we demonstrate that it is feasible to implement the formation of wing cracks in large scale phase-field reservoir models.

  10. On the formation of vortex rings in coaxial tubes

    NASA Astrophysics Data System (ADS)

    Gan, Lian

    2011-11-01

    The formation of vortex rings within coaxial tubes of different diameter is investigated experimentally and numerically. PIV measurements were carried out in a water tank equipped with a piston-cylinder apparatus used to generate vortex rings inside a series of coaxial tubes with tube to piston diameter ratios, DT / D , ranging from 4 to 1.5. In order to distinguish between the effect confinement has on the formation of isolated vortex rings from those formed with a trailing jet flow, non- dimensional stroke ratios below and above the formation number were investigated, L / D = 2 . 5 and 10 respectively. For DT / D > 2 and L / D s below the formation number the kinematics of the vortex rings follow classical inviscid theory in so much as their self-induced velocity decreases linearly with decreasing tube diameter in accordance with the image theorem. For DT / D <= 2 boundary layer separation along the tube wall begins to interfere with the vortex during its roll-up phase. For vortex rings below the formation number, the vortex core is briefly arrested upon completion of the piston stroke. On the other hand, long L / D s give rise to even more complex dynamics. When DT / D = 2 the interaction between boundary layer and the starting jet acts to suppress vortex ring formation altogether. However, as confinement is increased further to DT / D = 1 . 5 the formation of a lead vortex ring re-appears but with a circulation lower than the formation number before rapidly decaying.

  11. Numerical optimization of a multi-jet cooling system for the blown film extrusion

    NASA Astrophysics Data System (ADS)

    Janas, M.; Wortberg, J.

    2015-05-01

    The limiting factor for every extrusion process is the cooling. For the blown film process, this task is usually done by means of a single or dual lip air ring. Prior work has shown that two major effects are responsible for a bad heat transfer. The first one is the interaction between the jet and the ambient air. It reduces the velocity of the jet and enlarges the straight flow. The other one is the formation of a laminar boundary layer on the film surface due to the fast flowing cooling air. In this case, the boundary layer isolates the film and prevents an efficient heat transfer. To improve the heat exchange, a novel cooling approach is developed, called Multi-Jet. The new cooling system uses several slit nozzles over the whole tube formation zone for cooling the film. In contrast to a conventional system, the cooling air is guided vertically on the film surface in different heights to penetrate the boundary sublayer. Simultaneously, a housing of the tube formation zone is practically obtained to reduce the interaction with the ambient air. For the numerical optimization of the Multi-Jet system, a new procedure is developed. First, a prediction model identifies a worth considering cooling configuration. Therefore, the prediction model computes a film curve using the formulation from Zatloukal-Vlcek and the energy balance for the film temperature. Thereafter, the optimized cooling geometry is investigated in detail using a process model for the blown film extrusion that is able to compute a realistic bubble behavior depending on the cooling situation. In this paper, the Multi-Jet cooling system is numerically optimized for several different process states, like mass throughputs and blow-up ratios using one slit nozzle setting. For each process condition, the best cooling result has to be achieved. Therefore, the height of any nozzle over the tube formation zone is adjustable. The other geometrical parameters of the cooling system like the nozzle diameter or the

  12. Assessment of numerical methods for the solution of fluid dynamics equations for nonlinear resonance systems

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Yang, H. Q.

    1989-01-01

    The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.

  13. Rapid magnetosome formation shown by real-time x-ray magnetic circular dichroism.

    PubMed

    Staniland, Sarah; Ward, Bruce; Harrison, Andrew; van der Laan, Gerrit; Telling, Neil

    2007-12-04

    Magnetosomes are magnetite nanoparticles formed by biomineralization within magnetotactic bacteria. Although there have been numerous genetic and proteomic studies of the magnetosome-formation process, there have been only limited and inconclusive studies of mineral-phase evolution during the formation process, and no real-time studies of such processes have yet been performed. Thus, suggested formation mechanisms still need substantiating with data. Here we report the examination of the magnetosome material throughout the formation process in a real-time in vivo study of Magnetospirillum gryphiswaldense, strain MSR-1. Transmission EM and x-ray absorption spectroscopy studies reveal that full-sized magnetosomes are seen 15 min after formation is initiated. These immature magnetosomes contain a surface layer of the nonmagnetic iron oxide-phase hematite. Mature magnetite is found after another 15 min, concurrent with a dramatic increase in magnetization. This rapid formation result is contrary to previously reported studies and discounts the previously proposed slow, multistep formation mechanisms. Thus, we conclude that the biomineralization of magnetite occurs rapidly in magnetotactic bacteria on a similar time scale to high-temperature chemical precipitation reactions, and we suggest that this finding is caused by a biological catalysis of the process.

  14. Numerical Simulation of Supersonic Gap Flow

    PubMed Central

    Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo

    2015-01-01

    Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles. PMID:25635395

  15. Numerical simulation of supersonic gap flow.

    PubMed

    Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo

    2015-01-01

    Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  16. Elucidating severe urban haze formation in China

    NASA Astrophysics Data System (ADS)

    Guo, Song; Hu, Min; Zamora, Misti L.; Peng, Jianfei; Shang, Dongjie; Zheng, Jing; Du, Zhuofei; Wu, Zhijun; Shao, Min; Zeng, Limin; Molina, Mario J.; Zhang, Renyi

    2014-12-01

    As the world's second largest economy, China has experienced severe haze pollution, with fine particulate matter (PM) recently reaching unprecedentedly high levels across many cities, and an understanding of the PM formation mechanism is critical in the development of efficient mediation policies to minimize its regional to global impacts. We demonstrate a periodic cycle of PM episodes in Beijing that is governed by meteorological conditions and characterized by two distinct aerosol formation processes of nucleation and growth, but with a small contribution from primary emissions and regional transport of particles. Nucleation consistently precedes a polluted period, producing a high number concentration of nano-sized particles under clean conditions. Accumulation of the particle mass concentration exceeding several hundred micrograms per cubic meter is accompanied by a continuous size growth from the nucleation-mode particles over multiple days to yield numerous larger particles, distinctive from the aerosol formation typically observed in other regions worldwide. The particle compositions in Beijing, on the other hand, exhibit a similarity to those commonly measured in many global areas, consistent with the chemical constituents dominated by secondary aerosol formation. Our results highlight that regulatory controls of gaseous emissions for volatile organic compounds and nitrogen oxides from local transportation and sulfur dioxide from regional industrial sources represent the key steps to reduce the urban PM level in China.

  17. Elucidating severe urban haze formation in China

    PubMed Central

    Guo, Song; Hu, Min; Zamora, Misti L.; Peng, Jianfei; Shang, Dongjie; Zheng, Jing; Du, Zhuofei; Wu, Zhijun; Shao, Min; Zeng, Limin; Molina, Mario J.; Zhang, Renyi

    2014-01-01

    As the world’s second largest economy, China has experienced severe haze pollution, with fine particulate matter (PM) recently reaching unprecedentedly high levels across many cities, and an understanding of the PM formation mechanism is critical in the development of efficient mediation policies to minimize its regional to global impacts. We demonstrate a periodic cycle of PM episodes in Beijing that is governed by meteorological conditions and characterized by two distinct aerosol formation processes of nucleation and growth, but with a small contribution from primary emissions and regional transport of particles. Nucleation consistently precedes a polluted period, producing a high number concentration of nano-sized particles under clean conditions. Accumulation of the particle mass concentration exceeding several hundred micrograms per cubic meter is accompanied by a continuous size growth from the nucleation-mode particles over multiple days to yield numerous larger particles, distinctive from the aerosol formation typically observed in other regions worldwide. The particle compositions in Beijing, on the other hand, exhibit a similarity to those commonly measured in many global areas, consistent with the chemical constituents dominated by secondary aerosol formation. Our results highlight that regulatory controls of gaseous emissions for volatile organic compounds and nitrogen oxides from local transportation and sulfur dioxide from regional industrial sources represent the key steps to reduce the urban PM level in China. PMID:25422462

  18. High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single Component Reference Fuels

    DTIC Science & Technology

    2015-09-01

    NC. 14. ABSTRACT A high-resolution numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at diesel engine... diesel fuel injector at diesel engine type conditions has been performed. A full understanding of the primary atomization process in diesel fuel... diesel liquid sprays the complexity is further compounded by the physical attributes present including nozzle turbulence, large density ratios

  19. Coupled Hydro-mechanical process of natural fracture network formation in sedimentary basin

    NASA Astrophysics Data System (ADS)

    Ouraga, zady; Guy, Nicolas; Pouya, amade

    2017-04-01

    In sedimentary basin numerous phenomenon depending on the geological time span and its history can lead to a decrease in effective stress and therefore result in fracture initiation. Thus, during its formation, under certain conditions, natural fracturing and fracture network formation can occur in various context such as under erosion, tectonic loading and the compaction disequilibrium due to significant sedimentation rate. In this work, natural fracture network and fracture spacing induced by significant sedimentation rate is studied considering mode I fracture propagation, using a coupled hydro-mechanical numerical methods. Assumption of vertical fracture can be considered as a relevant hypothesis in our case of low ratio of horizontal total stress to vertical stress. A particular emphasis is put on synthetic geological structure on which a constant sedimentation rate is imposed on its top. This synthetic geological structure contains defects initially closed and homogeneously distributed. The Fractures are modeled with a constitutive model undergoing damage and the flow is described by poiseuille's law. The damage parameter affects both the mechanical and the hydraulic opening of the fracture. For the numerical simulations, the code Porofis based on finite element modeling is used, fractures are taken into account by cohesive model and the flow is described by Poiseuille's law. The effect of several parameters is also studied and the analysis lead to a fracture network and fracture spacing criterion for basin modeling.

  20. Numerical cognition is resilient to dramatic changes in early sensory experience.

    PubMed

    Kanjlia, Shipra; Feigenson, Lisa; Bedny, Marina

    2018-06-20

    Humans and non-human animals can approximate large visual quantities without counting. The approximate number representations underlying this ability are noisy, with the amount of noise proportional to the quantity being represented. Numerate humans also have access to a separate system for representing exact quantities using number symbols and words; it is this second, exact system that supports most of formal mathematics. Although numerical approximation abilities and symbolic number abilities are distinct in representational format and in their phylogenetic and ontogenetic histories, they appear to be linked throughout development--individuals who can more precisely discriminate quantities without counting are better at math. The origins of this relationship are debated. On the one hand, symbolic number abilities may be directly linked to, perhaps even rooted in, numerical approximation abilities. On the other hand, the relationship between the two systems may simply reflect their independent relationships with visual abilities. To test this possibility, we asked whether approximate number and symbolic math abilities are linked in congenitally blind individuals who have never experienced visual sets or used visual strategies to learn math. Congenitally blind and blind-folded sighted participants completed an auditory numerical approximation task, as well as a symbolic arithmetic task and non-math control tasks. We found that the precision of approximate number representations was identical across congenitally blind and sighted groups, suggesting that the development of the Approximate Number System (ANS) does not depend on visual experience. Crucially, the relationship between numerical approximation and symbolic math abilities is preserved in congenitally blind individuals. These data support the idea that the Approximate Number System and symbolic number abilities are intrinsically linked, rather than indirectly linked through visual abilities. Copyright

  1. Bar formation as driver of gas inflows in isolated disc galaxies

    NASA Astrophysics Data System (ADS)

    Fanali, R.; Dotti, M.; Fiacconi, D.; Haardt, F.

    2015-12-01

    Stellar bars are a common feature in massive disc galaxies. On a theoretical ground, the response of gas to a bar is generally thought to cause nuclear starbursts and, possibly, AGN activity once the perturbed gas reaches the central supermassive black hole. By means of high-resolution numerical simulations, we detail the purely dynamical effects that a forming bar exerts on the gas of an isolated disc galaxy. The galaxy is initially unstable to the formation of non-axisymmetric structures, and within ˜1 Gyr it develops spiral arms that eventually evolve into a central stellar bar on kpc scale. A first major episode of gas inflow occurs during the formation of the spiral arms while at later times, when the stellar bar is establishing, a low-density region is carved between the bar corotational and inner Lindblad resonance radii. The development of such `dead zone' inhibits further massive gas inflows. Indeed, the gas inflow reaches its maximum during the relatively fast bar-formation phase and not, as often assumed, when the bar is fully formed. We conclude that the low efficiency of long-lived, evolved bars in driving gas towards galactic nuclei is the reason why observational studies have failed to establish an indisputable link between bars and AGNs. On the other hand, the high efficiency in driving strong gas inflows of the intrinsically transient process of bar formation suggests that the importance of bars as drivers of AGN activity in disc galaxies has been overlooked so far. We finally prove that our conclusions are robust against different numerical implementations of the hydrodynamics routinely used in galaxy evolution studies.

  2. Formation and spreading of Red Sea Outflow Water in the Red Sea

    NASA Astrophysics Data System (ADS)

    Zhai, Ping; Bower, Amy S.; Smethie, William M.; Pratt, Larry J.

    2015-09-01

    Hydrographic data, chlorofluorocarbon-12 (CFC-12) and sulfur hexafluoride (SF6) measurements collected in March 2010 and September-October 2011 in the Red Sea, as well as an idealized numerical experiment are used to study the formation and spreading of Red Sea Outflow Water (RSOW) in the Red Sea. Analysis of inert tracers, potential vorticity distributions, and model results confirm that RSOW is formed through mixed-layer deepening caused by sea surface buoyancy loss in winter in the northern Red Sea and reveal more details on RSOW spreading rates, pathways, and vertical structure. The southward spreading of RSOW after its formation is identified as a layer with minimum potential vorticity and maximum CFC-12 and SF6. Ventilation ages of seawater within the RSOW layer, calculated from the partial pressure of SF6 (pSF6), range from 2 years in the northern Red Sea to 15 years at 17°N. The distribution of the tracer ages is in agreement with the model circulation field which shows a rapid transport of RSOW from its formation region to the southern Red Sea where there are longer circulation pathways and hence longer residence time due to basin wide eddies. The mean residence time of RSOW within the Red Sea estimated from the pSF6 age is 4.7 years. This time scale is very close to the mean transit time (4.8 years) for particles from the RSOW formation region to reach the exit at the Strait of Bab el Mandeb in the numerical experiment.

  3. Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder

    NASA Astrophysics Data System (ADS)

    Pei, Wei; Zhengying, Wei; Zhen, Chen; Junfeng, Li; Shuzhe, Zhang; Jun, Du

    2017-08-01

    A three-dimensional numerical model was developed to investigate effects of laser scanning speed, laser power, and hatch spacing on the thermodynamic behaviors of the molten pool during selective laser melting of AlSi10Mg powder. A randomly distributed packed powder bed was achieved using discrete element method (DEM). The powder bed can be treated as a porous media with interconnected voids in the simulation. A good agreement between numerical results and experimental results establish the validity of adopted method. The numerical results show that the Marangoni flow within the molten pool was significantly affected by the processing parameters. An intense Marangoni flow leads to a perturbation within the molten pool. In addition, a relatively high scanning speed tends to cause melt instability. The perturbation or the instability within the molten pool results in the formation of pores during SLM, which have a direct influence on the densification level.

  4. Comparison of Difficulties and Reliabilities of Math-Completion and Multiple-Choice Item Formats.

    ERIC Educational Resources Information Center

    Oosterhof, Albert C.; Coats, Pamela K.

    Instructors who develop classroom examinations that require students to provide a numerical response to a mathematical problem are often very concerned about the appropriateness of the multiple-choice format. The present study augments previous research relevant to this concern by comparing the difficulty and reliability of multiple-choice and…

  5. Double emulsion formation through hierarchical flow-focusing microchannel

    NASA Astrophysics Data System (ADS)

    Azarmanesh, Milad; Farhadi, Mousa; Azizian, Pooya

    2016-03-01

    A microfluidic device is presented for creating double emulsions, controlling their sizes and also manipulating encapsulation processes. As a result of three immiscible liquids' interaction using dripping instability, double emulsions can be produced elegantly. Effects of dimensionless numbers are investigated which are Weber number of the inner phase (Wein), Capillary number of the inner droplet (Cain), and Capillary number of the outer droplet (Caout). They affect the formation process, inner and outer droplet size, and separation frequency. Direct numerical simulation of governing equations was done using volume of fluid method and adaptive mesh refinement technique. Two kinds of double emulsion formation, the two-step and the one-step, were simulated in which the thickness of the sheath of double emulsions can be adjusted. Altering each dimensionless number will change detachment location, outer droplet size and droplet formation period. Moreover, the decussate regime of the double-emulsion/empty-droplet is observed in low Wein. This phenomenon can be obtained by adjusting the Wein in which the maximum size of the sheath is discovered. Also, the results show that Cain has significant influence on the outer droplet size in the two-step process, while Caout affects the sheath in the one-step formation considerably.

  6. Pressure and tension waves from bubble collapse near a solid boundary: A numerical approach.

    PubMed

    Lechner, Christiane; Koch, Max; Lauterborn, Werner; Mettin, Robert

    2017-12-01

    The acoustic waves being generated during the motion of a bubble in water near a solid boundary are calculated numerically. The open source package OpenFOAM is used for solving the Navier-Stokes equation and extended to include nonlinear acoustic wave effects via the Tait equation for water. A bubble model with a small amount of gas is chosen, the gas obeying an adiabatic law. A bubble starting from a small size with high internal pressure near a flat, solid boundary is studied. The sequence of events from bubble growth via axial microjet formation, jet impact, annular nanojet formation, torus-bubble collapse, and bubble rebound to second collapse is described. The different pressure and tension waves with their propagation properties are demonstrated.

  7. Numerical simulation of solar coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Dahlburg, Russell B.; Antiochos, Spiro K.; Zang, T. A.

    1990-01-01

    Many aspects of solar activity are believed to be due to the stressing of the coronal magnetic field by footpoint motions at the photosphere. The results are presented of a fully spectral numerical simulation which is the first 3-D time dependent simulation of footpoint stressing in a geometry appropriate for the corona. An arcade is considered that is initially current-free and impose a smooth footpoint motion that produces a twist in the field of approx 2 pi. The footprints were fixed and the evolution was followed until the field relaxes to another current-free state. No evidence was seen for any instability, either ideal or resistive and no evidence for current sheet formation. The most striking feature of the evolution is that in response to photospheric motions, the field expands rapidly upward to minimize the stress. The expansion has two important effects. First, it suppresses the development of dips in the field that could support dense, cool material. For the motions assumed, the magnetic field does not develop a geometry suitable for prominence formation. Second, the expansion inhibits ideal instabilities such as kinking. The results indicate that simple stearing of a single arcade is unlikely to lead to solar activity such as flares or prominences. Effects are discussed that might possibly lead to such activity.

  8. Few-body modes of binary formation in core collapse

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru; Heggie, Douglas C.; Hut, Piet; Makino, Junichiro

    2013-11-01

    At the moment of deepest core collapse, a star cluster core contains less than ten stars. This small number makes the traditional treatment of hard binary formation, assuming a homogeneous background density, suspect. In a previous paper, we have found that indeed the conventional wisdom of binary formation, based on three-body encounters, is incorrect. Here we refine that insight, by further dissecting the subsequent steps leading to hard binary formation. For this purpose, we add some analysis tools in order to make the study less subjective. We find that the conventional treatment does remain valid for direct three-body scattering, but fails for resonant three-body scattering. Especially democratic resonance scattering, which forms an important part of the analytical theory of three-body binary formation, takes too much space and time to be approximated as being isolated, in the context of a cluster core around core collapse. We conclude that, while three-body encounters can be analytically approximated as isolated, subsequent strong perturbations typically occur whenever those encounters give rise to democratic resonances. We present analytical estimates postdicting our numerical results. If we only had been a bit more clever, we could have predicted this qualitative behaviour.

  9. A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, G.; Siegel, M.; Tanveer, S.

    1995-09-01

    We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. The situation is disastrous for numerical computation, as small roundoff errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. Themore » method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out. 47 refs., 10 figs., 1 tab.« less

  10. Numeral-Incorporating Roots in Numeral Systems: A Comparative Analysis of Two Sign Languages

    ERIC Educational Resources Information Center

    Fuentes, Mariana; Massone, Maria Ignacia; Fernandez-Viader, Maria del Pilar; Makotrinsky, Alejandro; Pulgarin, Francisca

    2010-01-01

    Numeral-incorporating roots in the numeral systems of Argentine Sign Language (LSA) and Catalan Sign Language (LSC), as well as the main features of the number systems of both languages, are described and compared. Informants discussed the use of numerals and roots in both languages (in most cases in natural contexts). Ten informants took part in…

  11. Physical mechanisms of longitudinal vortexes formation, appearance of zones with high heat fluxes and early transition in hypersonic flow over delta wing with blunted leading edges

    NASA Astrophysics Data System (ADS)

    Alexandrov, S. V.; Vaganov, A. V.; Shalaev, V. I.

    2016-10-01

    Processes of vortex structures formation and they interactions with the boundary layer in the hypersonic flow over delta wing with blunted leading edges are analyzed on the base of experimental investigations and numerical solutions of Navier-Stokes equations. Physical mechanisms of longitudinal vortexes formation, appearance of abnormal zones with high heat fluxes and early laminar turbulent transition are studied. These phenomena were observed in many high-speed wind tunnel experiments; however they were understood only using the detailed analysis of numerical modeling results with the high resolution. Presented results allowed explaining experimental phenomena. ANSYS CFX code (the DAFE MIPT license) on the grid with 50 million nodes was used for the numerical modeling. The numerical method was verified by comparison calculated heat flux distributions on the wing surface with experimental data.

  12. On the influence of the char gasification reactions on NO formation in flameless coal combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, Hannes; Toporov, Dobrin; Foerster, Malte

    2009-09-15

    Flameless combustion is a well known measure to reduce NO{sub x} emissions in gas combustion but has not yet been fully adapted to pulverised coal combustion. Numerical predictions can provide detailed information on the combustion process thus playing a significant role in understanding the basic mechanisms for pollutant formation. In simulations of conventional pulverised coal combustion the gasification by CO{sub 2} or H{sub 2} O is usually omitted since its overall contribution to char oxidation is negligible compared to the oxidation with O{sub 2}. In flameless combustion, however, due to the strong recirculation of hot combustion products, primarily CO{sub 2}more » and H{sub 2} O, and the thereby reduced concentration of O{sub 2} in the reaction zone the local partial pressures of CO{sub 2} and H{sub 2} O become significantly higher than that for O{sub 2}. Therefore, the char reaction with CO{sub 2} and H{sub 2} O is being reconsidered. This paper presents a numerical study on the importance of these reactions on pollutant formation in flameless combustion. The numerical models used have been validated against experimental data. By varying the wall temperature and the burner excess air ratio, different cases have been investigated and the impact of considering gasification on the prediction of NO formation has been assessed. It was found that within the investigated ranges of these parameters the fraction of char being gasified increases up to 35%. This leads to changes in the local gas composition, primarily CO distribution, which in turn influences NO formation predictions. Considering gasification the prediction of NO emission is up to 40% lower than the predicted emissions without gasification reactions being taken into account. (author)« less

  13. Mach stem formation in reflection and focusing of weak shock acoustic pulses.

    PubMed

    Karzova, Maria M; Khokhlova, Vera A; Salze, Edouard; Ollivier, Sébastien; Blanc-Benon, Philippe

    2015-06-01

    The aim of this study is to show the evidence of Mach stem formation for very weak shock waves with acoustic Mach numbers on the order of 10(-3) to 10(-2). Two representative cases are considered: reflection of shock pulses from a rigid surface and focusing of nonlinear acoustic beams. Reflection experiments are performed in air using spark-generated shock pulses. Shock fronts are visualized using a schlieren system. Both regular and irregular types of reflection are observed. Numerical simulations are performed to demonstrate the Mach stem formation in the focal region of periodic and pulsed nonlinear beams in water.

  14. The influence of graphic display format on the interpretations of quantitative risk information among adults with lower education and literacy: a randomized experimental study.

    PubMed

    McCaffery, Kirsten J; Dixon, Ann; Hayen, Andrew; Jansen, Jesse; Smith, Sian; Simpson, Judy M

    2012-01-01

    To test optimal graphic risk communication formats for presenting small probabilities using graphics with a denominator of 1000 to adults with lower education and literacy. A randomized experimental study, which took place in adult basic education classes in Sydney, Australia. The participants were 120 adults with lower education and literacy. An experimental computer-based manipulation compared 1) pictographs in 2 forms, shaded "blocks" and unshaded "dots"; and 2) bar charts across different orientations (horizontal/vertical) and numerator size (small <100, medium 100-499, large 500-999). Accuracy (size of error) and ease of processing (reaction time) were assessed on a gist task (estimating the larger chance of survival) and a verbatim task (estimating the size of difference). Preferences for different graph types were also assessed. Accuracy on the gist task was very high across all conditions (>95%) and not tested further. For the verbatim task, optimal graph type depended on the numerator size. For small numerators, pictographs resulted in fewer errors than bar charts (blocks: odds ratio [OR] = 0.047, 95% confidence interval [CI] = 0.023-0.098; dots: OR = 0.049, 95% CI = 0.024-0.099). For medium and large numerators, bar charts were more accurate (e.g., medium dots: OR = 4.29, 95% CI = 2.9-6.35). Pictographs were generally processed faster for small numerators (e.g., blocks: 14.9 seconds v. bars: 16.2 seconds) and bar charts for medium or large numerators (e.g., large blocks: 41.6 seconds v. 26.7 seconds). Vertical formats were processed slightly faster than horizontal graphs with no difference in accuracy. Most participants preferred bar charts (64%); however, there was no relationship with performance. For adults with low education and literacy, pictographs are likely to be the best format to use when displaying small numerators (<100/1000) and bar charts for larger numerators (>100/1000).

  15. Numerical simulation of a helical shape electric arc in the external axial magnetic field

    NASA Astrophysics Data System (ADS)

    Urusov, R. M.; Urusova, I. R.

    2016-10-01

    Within the frameworks of non-stationary three-dimensional mathematical model, in approximation of a partial local thermodynamic equilibrium, a numerical calculation was made of characteristics of DC electric arc burning in a cylindrical channel in the uniform external axial magnetic field. The method of numerical simulation of the arc of helical shape in a uniform external axial magnetic field was proposed. This method consists in that that in the computational algorithm, a "scheme" analog of fluctuations for electrons temperature is supplemented. The "scheme" analogue of fluctuations increases a weak numerical asymmetry of electrons temperature distribution, which occurs randomly in the course of computing. This asymmetry can be "picked up" by the external magnetic field that continues to increase up to a certain value, which is sufficient for the formation of helical structure of the arc column. In the absence of fluctuations in the computational algorithm, the arc column in the external axial magnetic field maintains cylindrical axial symmetry, and a helical form of the arc is not observed.

  16. Numerical Solution of the Radiative Transfer Equation: X-Ray Spectral Formation from Cylindrical Accretion onto a Magnetized Neutron Star

    NASA Technical Reports Server (NTRS)

    Fairnelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L.

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative transfer equation according to the expected physical conditions of the systems under study. Aims. We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. Methods. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system pi using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. Results. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth pi produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles. Conclusions. The algorithm has been implemented in the XPEC package for X-ray fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (approx > 10(exp 12) G). This latter case is expected to be of typical accreting systems such as X

  17. Comprehensive Numerical Simulation of Filling and Solidification of Steel Ingots

    PubMed Central

    Pola, Annalisa; Gelfi, Marcello; La Vecchia, Giovina Marina

    2016-01-01

    In this paper, a complete three-dimensional numerical model of mold filling and solidification of steel ingots is presented. The risk of powder entrapment and defects formation during filling is analyzed in detail, demonstrating the importance of using a comprehensive geometry, with trumpet and runner, compared to conventional simplified models. By using a case study, it was shown that the simplified model significantly underestimates the defects sources, reducing the utility of simulations in supporting mold and process design. An experimental test was also performed on an instrumented mold and the measurements were compared to the calculation results. The good agreement between calculation and trial allowed validating the simulation. PMID:28773890

  18. Metallic glass formation at the interface of explosively welded Nb and stainless steel

    NASA Astrophysics Data System (ADS)

    Bataev, I. A.; Hokamoto, K.; Keno, H.; Bataev, A. A.; Balagansky, I. A.; Vinogradov, A. V.

    2015-07-01

    The interface between explosively welded niobium and stainless steel SUS 304 was studied using scanning electron microscopy, transmission electron microscopy and energy dispersive X-Ray spectroscopy. The wavy interface along which vortex zones were located was observed. The vortex zones formed due to the mixing of materials typically had amorphous structure. Inoue's criteria of glass formation were used to explain this result. The effect of the composition, cooling rate and pressure on the glass formation are discussed. The conditions of deformation, heating, and cooling as well as shockwaves propagation were numerically simulated. We show that the conditions of vortex zone formation resemble the conditions of rapid solidification processes. In contrast to the "classical" methods of rapid solidification of melt, the conditions of metastable phase formation during explosive welding are significantly complicated by the fluctuations of composition and pressure. Possible metastable structures formation at the interface of some common explosively joined materials is predicted.

  19. Numerical Linear Algebra.

    DTIC Science & Technology

    1980-09-08

    February 1979 through 31 March 1980 Title of Research: NUMERICAL LINEAR ALGEBRA Principal Investigators: Gene H. Golub James H. Wilkinson Research...BEFORE COMPLETING FORM 2 OTAgSSION NO. 3. RECIPIENT’S CATALOG NUMBER ITE~ btitle) ~qEE NUMERICAL LINEAR ALGEBRA #I ~ f#7&/8 PER.ORMING ORG. REPORT NUM 27R 7

  20. Application Of Numerical Modelling To Ribbed Wire Rod Dimensions Precision Increase

    NASA Astrophysics Data System (ADS)

    Szota, Piotr; Mróz, Sebastian; Stefanik, Andrzej

    2007-05-01

    The paper presents the results of theoretical and experimental investigations of the process of rolling square ribbed wire rod designed for concrete reinforcement. Numerical modelling of the process of rolling in the finishing and pre-finishing grooves was carried out using the Forge2005® software. In the investigation, particular consideration was given to the analysis of the effect of pre-finished band shape on the formation of ribs on the finished wire rod in the finishing groove. The results of theoretical studies were verified in experimental tests, which were carried out in a wire rolling mill.

  1. Verbal versus Numerical Probabilities: Does Format Presentation of Probabilistic Information regarding Breast Cancer Screening Affect Women's Comprehension?

    ERIC Educational Resources Information Center

    Vahabi, Mandana

    2010-01-01

    Objective: To test whether the format in which women receive probabilistic information about breast cancer and mammography affects their comprehension. Methods: A convenience sample of 180 women received pre-assembled randomized packages containing a breast health information brochure, with probabilities presented in either verbal or numeric…

  2. Terrestrial planet formation in a protoplanetary disk with a local mass depletion: A successful scenario for the formation of Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izidoro, A.; Winter, O. C.; Haghighipour, N.

    Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars' semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e ∼ 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodiesmore » in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50%-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.« less

  3. Numerical Modeling of Shatter Cones Development in Impact Craters

    NASA Technical Reports Server (NTRS)

    Baratoux, D.; Melosh, H. J.

    2003-01-01

    Shatter cones are the characteristic forms of rock fractures in impact structures. They have been used for decades as unequivocal fingerprints of meteoritic impacts on Earth. The abundant data about shapes, apical angles, sizes and distributions of shatter cones for many terrestrial impact structures should provide insights for the determination of impact conditions and characteristics of shock waves produced by high-velocity projectiles in geologic media. However, previously proposed models for the formation of shatter cones do not agree with observations. For example, the widely accepted Johnson-Talbot mechanism requires that the longitudinal stress drops to zero between the arrival of the elastic precursor and the main plastic wave. Unfortunately, observations do not support such a drop. A model has been also proposed to explain the striated features on the surface of shatter cones but can not invoked for their conical shape. The mechanism by which shatter cones form thus remains enigmatic to date. In this paper we present a new model for the formation of shatter cones. Our model has been tested by means of numerical simulations using the hydrocodes SALE 2D enhanced with the Grady-Kipp-Melosh fragmentation model.

  4. Asking better questions: How presentation formats influence information search.

    PubMed

    Wu, Charley M; Meder, Björn; Filimon, Flavia; Nelson, Jonathan D

    2017-08-01

    While the influence of presentation formats have been widely studied in Bayesian reasoning tasks, we present the first systematic investigation of how presentation formats influence information search decisions. Four experiments were conducted across different probabilistic environments, where subjects (N = 2,858) chose between 2 possible search queries, each with binary probabilistic outcomes, with the goal of maximizing classification accuracy. We studied 14 different numerical and visual formats for presenting information about the search environment, constructed across 6 design features that have been prominently related to improvements in Bayesian reasoning accuracy (natural frequencies, posteriors, complement, spatial extent, countability, and part-to-whole information). The posterior variants of the icon array and bar graph formats led to the highest proportion of correct responses, and were substantially better than the standard probability format. Results suggest that presenting information in terms of posterior probabilities and visualizing natural frequencies using spatial extent (a perceptual feature) were especially helpful in guiding search decisions, although environments with a mixture of probabilistic and certain outcomes were challenging across all formats. Subjects who made more accurate probability judgments did not perform better on the search task, suggesting that simple decision heuristics may be used to make search decisions without explicitly applying Bayesian inference to compute probabilities. We propose a new take-the-difference (TTD) heuristic that identifies the accuracy-maximizing query without explicit computation of posterior probabilities. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Soot Formation in Freely-Propagating Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  6. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.

    PubMed

    Chao, Kan; Chen, Bo; Wu, Jiankang

    2010-12-01

    The formation of an electric double layer and electroosmosis are important theoretic foundations associated with microfluidic systems. Field-modulated electroosmotic flows in microchannels can be obtained by applying modulating electric fields in a direction perpendicular to a channel wall. This paper presents a systematic numerical analysis of modulated electroosmotic flows in a microchannel with discrete electrodes on the basis of the Poisson equation of electric fields in a liquid-solid coupled domain, the Navier-Stokes equation of liquid flow, and the Nernst-Planck equation of ion transport. These equations are nonlinearly coupled and are simultaneously solved numerically for the electroosmotic flow velocity, electric potential, and ion concentrations in the microchannel. A number of numerical examples of modulated electroosmotic flows in microchannels with discrete electrodes are presented, including single electrodes, symmetric/asymmetric double electrodes, and triple electrodes. Numerical results indicate that chaotic circulation flows, micro-vortices, and effective fluid mixing can be realized in microchannels by applying modulating electric fields with various electrode configurations. The interaction of a modulating field with an applied field along the channel is also discussed.

  7. Pattern formations and optimal packing.

    PubMed

    Mityushev, Vladimir

    2016-04-01

    Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Spurious Grain Formation at Cross-Sectional Expansion During Directional Solidification: Influence of Thermosolutal Convection

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Lauer, M.; Upadhyay, S. R.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2018-04-01

    Formation of spurious grains during directional solidification (DS) of Al-7 wt.% Si and Al-19 wt.% Cu alloys through an abrupt increase in cross-sectional area has been examined by experiments and by numerical simulations. Stray grains were observed in the Al-19 wt.% Cu samples and almost none in the Al-7 wt.% Si. The locations of the stray grains correlate well where numerical solutions indicate the solute-rich melt to be flowing up the thermal gradient faster than the isotherm velocity. It is proposed that the spurious grain formation occurred by fragmentation of slender tertiary dendrite arms was enhanced by thermosolutal convection. In Al-7 wt.% Si, the dendrite fragments sink in the surrounding melt and get trapped in the dendritic array growing around them, and therefore they do not grow further. In the Al-19 wt.% Cu alloy, on the other hand, the dendrite fragments float in the surrounding melt and some find conducive thermal conditions for further growth and become stray grains.

  9. Numerical simulation of the casting process of titanium removable partial denture frameworks.

    PubMed

    Wu, Menghuai; Wagner, Ingo; Sahm, Peter R; Augthun, Michael

    2002-03-01

    The objective of this work was to study the filling incompleteness and porosity defects in titanium removal partial denture frameworks by means of numerical simulation. Two frameworks, one for lower jaw and one for upper jaw, were chosen according to dentists' recommendation to be simulated. Geometry of the frameworks were laser-digitized and converted into a simulation software (MAGMASOFT). Both mold filling and solidification of the castings with different sprue designs (e.g. tree, ball, and runner-bar) were numerically calculated. The shrinkage porosity was quantitatively predicted by a feeding criterion, the potential filling defect and gas pore sensitivity were estimated based on the filling and solidification results. A satisfactory sprue design with process parameters was finally recommended for real casting trials (four replica for each frameworks). All the frameworks were successfully cast. Through X-ray radiographic inspections it was found that all the castings were acceptably sound except for only one case in which gas bubbles were detected in the grasp region of the frame. It is concluded that numerical simulation aids to achieve understanding of the casting process and defect formation in titanium frameworks, hence to minimize the risk of producing defect casting by improving the sprue design and process parameters.

  10. ASDF: An Adaptable Seismic Data Format with Full Provenance

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Krischer, L.; Tromp, J.; Lefebvre, M. P.

    2015-12-01

    In order for seismologists to maximize their knowledge of how the Earth works, they must extract the maximum amount of useful information from all recorded seismic data available for their research. This requires assimilating large sets of waveform data, keeping track of vast amounts of metadata, using validated standards for quality control, and automating the workflow in a careful and efficient manner. In addition, there is a growing gap between CPU/GPU speeds and disk access speeds that leads to an I/O bottleneck in seismic workflows. This is made even worse by existing seismic data formats that were not designed for performance and are limited to a few fixed headers for storing metadata.The Adaptable Seismic Data Format (ASDF) is a new data format for seismology that solves the problems with existing seismic data formats and integrates full provenance into the definition. ASDF is a self-describing format that features parallel I/O using the parallel HDF5 library. This makes it a great choice for use on HPC clusters. The format integrates the standards QuakeML for seismic sources and StationXML for receivers. ASDF is suitable for storing earthquake data sets, where all waveforms for a single earthquake are stored in a one file, ambient noise cross-correlations, and adjoint sources. The format comes with a user-friendly Python reader and writer that gives seismologists access to a full set of Python tools for seismology. There is also a faster C/Fortran library for integrating ASDF into performance-focused numerical wave solvers, such as SPECFEM3D_GLOBE. Finally, a GUI tool designed for visually exploring the format exists that provides a flexible interface for both research and educational applications. ASDF is a new seismic data format that offers seismologists high-performance parallel processing, organized and validated contents, and full provenance tracking for automated seismological workflows.

  11. Radiation hydrodynamics of super star cluster formation

    NASA Astrophysics Data System (ADS)

    Tsang, Benny Tsz Ho; Milos Milosavljevic

    2018-01-01

    Throughout the history of the Universe, the nuclei of super star clusters represent the most active sites for star formation. The high densities of massive stars within the clusters produce intense radiation that imparts both energy and momentum on the surrounding star-forming gas. Theoretical claims based on idealized geometries have claimed the dominant role of radiation pressure in controlling the star formation activity within the clusters. In order for cluster formation simulations to be reliable, numerical schemes have to be able to model accurately the radiation flows through the gas clumps at the cluster nuclei with high density contrasts. With a hybrid Monte Carlo radiation transport module we developed, we performed 3D radiation hydrodynamical simulations of super star cluster formation in turbulent clouds. Furthermore, our Monte Carlo radiation treatment provides a native capability to produce synthetic observations, which allows us to predict observational indicators and to inform future observations. We found that radiation pressure has definite, but minor effects on limiting the gas supply for star formation, and the final mass of the most massive cluster is about one million solar masses. The ineffective forcing was due to the density variations inside the clusters, i.e. radiation takes the paths of low densities and avoids forcing on dense clumps. Compared to a radiation-free control run, we further found that the presence of radiation amplifies the density variations. The core of the resulting cluster has a high stellar density, about the threshold required for stellar collisions and merging. The very massive star that form from the stellar merging could continue to gain mass from the surrounding gas reservoir that is gravitationally confined by the deep potential of the cluster, seeding the potential formation of a massive black hole.

  12. Frontiers in Numerical Relativity

    NASA Astrophysics Data System (ADS)

    Evans, Charles R.; Finn, Lee S.; Hobill, David W.

    2011-06-01

    Preface; Participants; Introduction; 1. Supercomputing and numerical relativity: a look at the past, present and future David W. Hobill and Larry L. Smarr; 2. Computational relativity in two and three dimensions Stuart L. Shapiro and Saul A. Teukolsky; 3. Slowly moving maximally charged black holes Robert C. Ferrell and Douglas M. Eardley; 4. Kepler's third law in general relativity Steven Detweiler; 5. Black hole spacetimes: testing numerical relativity David H. Bernstein, David W. Hobill and Larry L. Smarr; 6. Three dimensional initial data of numerical relativity Ken-ichi Oohara and Takashi Nakamura; 7. Initial data for collisions of black holes and other gravitational miscellany James W. York, Jr.; 8. Analytic-numerical matching for gravitational waveform extraction Andrew M. Abrahams; 9. Supernovae, gravitational radiation and the quadrupole formula L. S. Finn; 10. Gravitational radiation from perturbations of stellar core collapse models Edward Seidel and Thomas Moore; 11. General relativistic implicit radiation hydrodynamics in polar sliced space-time Paul J. Schinder; 12. General relativistic radiation hydrodynamics in spherically symmetric spacetimes A. Mezzacappa and R. A. Matzner; 13. Constraint preserving transport for magnetohydrodynamics John F. Hawley and Charles R. Evans; 14. Enforcing the momentum constraints during axisymmetric spacelike simulations Charles R. Evans; 15. Experiences with an adaptive mesh refinement algorithm in numerical relativity Matthew W. Choptuik; 16. The multigrid technique Gregory B. Cook; 17. Finite element methods in numerical relativity P. J. Mann; 18. Pseudo-spectral methods applied to gravitational collapse Silvano Bonazzola and Jean-Alain Marck; 19. Methods in 3D numerical relativity Takashi Nakamura and Ken-ichi Oohara; 20. Nonaxisymmetric rotating gravitational collapse and gravitational radiation Richard F. Stark; 21. Nonaxisymmetric neutron star collisions: initial results using smooth particle hydrodynamics

  13. Physical similarity or numerical representation counts in same-different, numerical comparison, physical comparison, and priming tasks?

    PubMed

    Zhang, Li; Xin, Ziqiang; Feng, Tingyong; Chen, Yinghe; Szűcs, Denes

    2018-03-01

    Recent studies have highlighted the fact that some tasks used to study symbolic number representations are confounded by judgments about physical similarity. Here, we investigated whether the contribution of physical similarity and numerical representation differed in the often-used symbolic same-different, numerical comparison, physical comparison, and priming tasks. Experiment 1 showed that subjective physical similarity was the best predictor of participants' performance in the same-different task, regardless of simultaneous or sequential presentation. Furthermore, the contribution of subjective physical similarity was larger in a simultaneous presentation than in a sequential presentation. Experiment 2 showed that only numerical representation was involved in numerical comparison. Experiment 3 showed that both subjective physical similarity and numerical representation contributed to participants' physical comparison performance. Finally, only numerical representation contributed to participants' performance in a priming task as revealed by Experiment 4. Taken together, the contribution of physical similarity and numerical representation depends on task demands. Performance primarily seems to rely on numerical properties in tasks that require explicit quantitative comparison judgments (physical or numerical), while physical stimulus properties exert an effect in the same-different task.

  14. Numeral Incorporation in Japanese Sign Language

    ERIC Educational Resources Information Center

    Ktejik, Mish

    2013-01-01

    This article explores the morphological process of numeral incorporation in Japanese Sign Language. Numeral incorporation is defined and the available research on numeral incorporation in signed language is discussed. The numeral signs in Japanese Sign Language are then introduced and followed by an explanation of the numeral morphemes which are…

  15. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.

    PubMed

    Arruebarrena Di Palma, Andrés; Pereyra, Cintia M; Moreno Ramirez, Lizbeth; Xiqui Vázquez, María L; Baca, Beatriz E; Pereyra, María A; Lamattina, Lorenzo; Creus, Cecilia M

    2013-01-01

    Azospirillum brasilense is a rhizobacterium that provides beneficial effects on plants when they colonize roots. The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with surfaces in response to appropriate signals. Nitric oxide (NO) is a signaling molecule implicated in numerous processes in bacteria, including biofilm formation or dispersion, depending on genera and lifestyle. Azospirillum brasilense Sp245 produces NO by denitrification having a role in root growth promotion. We analyzed the role of endogenously produced NO on biofilm formation in A. brasilense Sp245 and in a periplasmic nitrate reductase mutant (napA::Tn5; Faj164) affected in NO production. Cells were statically grown in media with nitrate or ammonium as nitrogen sources and examined for biofilm formation using crystal violet and by confocal laser microscopy. Both strains formed biofilms, but the mutant produced less than half compared with the wild type in nitrate medium showing impaired nitrite production in this condition. NO measurements in biofilm confirmed lower values in the mutant strain. The addition of a NO donor showed that NO influences biofilm formation in a dose-dependent manner and reverses the mutant phenotype, indicating that Nap positively regulates the formation of biofilm in A. brasilense Sp245. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. The Origin of Scales and Scaling Laws in Star Formation

    NASA Astrophysics Data System (ADS)

    Guszejnov, David; Hopkins, Philip; Grudich, Michael

    2018-01-01

    Star formation is one of the key processes of cosmic evolution as it influences phenomena from the formation of galaxies to the formation of planets, and the development of life. Unfortunately, there is no comprehensive theory of star formation, despite intense effort on both the theoretical and observational sides, due to the large amount of complicated, non-linear physics involved (e.g. MHD, gravity, radiation). A possible approach is to formulate simple, easily testable models that allow us to draw a clear connection between phenomena and physical processes.In the first part of the talk I will focus on the origin of the IMF peak, the characteristic scale of stars. There is debate in the literature about whether the initial conditions of isothermal turbulence could set the IMF peak. Using detailed numerical simulations, I will demonstrate that not to be the case, the initial conditions are "forgotten" through the fragmentation cascade. Additional physics (e.g. feedback) is required to set the IMF peak.In the second part I will use simulated galaxies from the Feedback in Realistic Environments (FIRE) project to show that most star formation theories are unable to reproduce the near universal IMF peak of the Milky Way.Finally, I will present analytic arguments (supported by simulations) that a large number of observables (e.g. IMF slope) are the consequences of scale-free structure formation and are (to first order) unsuitable for differentiating between star formation theories.

  17. Numerical and experimental study of the dynamics of a superheated jet

    NASA Astrophysics Data System (ADS)

    Sinha, Avick; Gopalakrishnan, Shivasubramanian; Balasubramanian, Sridhar

    2015-11-01

    Flash-boiling is a phenomenon where a liquid experiences low pressures in a system resulting in it getting superheated. The sudden drop in pressures results in accelerated expansion and violent vapour formation. Understanding the physics behind the jet disintegration and flash-boiling phenomenon is still an open problem, with applications in automotive and aerospace combustors. The behaviour of a flash-boiling jet is highly dependent on the input parameters, inlet temperature and pressure. In the present study, the external (outside nozzle) and the internal (inside nozzle) flow characteristics of the two-phase flow has been studied numerically and experimentally. The phase change from liquid to vapour takes place over a finite period of time, modeled sing Homogeneous Relaxation Model (HRM). In order to validate the numerical results, controlled experiments were performed. Optical diagnostic techniques such as Particle Image Velocimetry (PIV) and Shadowgraphy were used to study the flow characteristics. Spray angle, penetration depth, droplet spectra were obtained which provides a better understanding of the break-up mechanism. Linear stability analysis is performed to study the stability characteristics of the jet.

  18. Gyre formation within embayments of a large lake (Lake Geneva, Switzerland)

    NASA Astrophysics Data System (ADS)

    Razmi, A.; Barry, D.; Bouffard, D.; Le Dantec, N.; Lemmin, U.; Wuest, A.

    2013-12-01

    Numerical simulations were carried out to examine gyre formation within open, wide lacustrine embayments. The present study was motivated by observed differences in gyre formation within two open and wide embayments (located at Vidy and Morges in Lake Geneva, Switzerland). These two embayments are located within about 3 km of each other on the northern shore of Lake Geneva, and are subjected to similar pelagic currents. Vidy is deeper and has a greater aspect ratio than Morges. The flow field in the embayments was modeled using a previously validated 3D hydrodynamic model (Delft3D-FLOW). The model solved the Reynolds-Averaged Navier-Stokes equations, combined with a k-ɛ turbulence closure in σ (lakebed-following) coordinates. Our study focused on the influence of the embayment geometry on the (uniform) longshore (pelagic) current, specifically the occurrence and magnitude of circulation within the embayment. We built a set of numerical experiments using synthetic embayments, and systematically examined embayment geometry, thereby capturing the differences between the Vidy and Morges embayments. The numerical experiments considered single rectilinear embayments with different aspect ratios (i.e., 1-6), depth, shore-parallel flow rates, and embayment corner angle between 0°-50°. The circulation magnitude changes abruptly for an angle of about 40°. Embayments with angles greater than 40° have much greater circulation then those with lesser angles, other factors remaining the same. Of the factors considered (i.e., aspect ratio, offshore current velocity, corner angle, bottom slope, and viscosity), bottom slope and the viscosity have almost no impact on embayment circulation. For uniform offshore current patterns, gyres form in embayments with large aspect ratios (up to ~3). For the Vidy and Morges embayments, the results showed that gyre formation is more likely in Morges due to its smaller aspect ratio, a finding that is supported by field data gathered in

  19. AN OVERVIEW OF COMPUTATIONAL LIFE SCIENCE DATABASES & EXCHANGE FORMATS OF RELEVANCE TO CHEMICAL BIOLOGY RESEARCH

    PubMed Central

    Hall, Aaron Smalter; Shan, Yunfeng; Lushington, Gerald; Visvanathan, Mahesh

    2016-01-01

    Databases and exchange formats describing biological entities such as chemicals and proteins, along with their relationships, are a critical component of research in life sciences disciplines, including chemical biology wherein small information about small molecule properties converges with cellular and molecular biology. Databases for storing biological entities are growing not only in size, but also in type, with many similarities between them and often subtle differences. The data formats available to describe and exchange these entities are numerous as well. In general, each format is optimized for a particular purpose or database, and hence some understanding of these formats is required when choosing one for research purposes. This paper reviews a selection of different databases and data formats with the goal of summarizing their purposes, features, and limitations. Databases are reviewed under the categories of 1) protein interactions, 2) metabolic pathways, 3) chemical interactions, and 4) drug discovery. Representation formats will be discussed according to those describing chemical structures, and those describing genomic/proteomic entities. PMID:22934944

  20. An overview of computational life science databases & exchange formats of relevance to chemical biology research.

    PubMed

    Smalter Hall, Aaron; Shan, Yunfeng; Lushington, Gerald; Visvanathan, Mahesh

    2013-03-01

    Databases and exchange formats describing biological entities such as chemicals and proteins, along with their relationships, are a critical component of research in life sciences disciplines, including chemical biology wherein small information about small molecule properties converges with cellular and molecular biology. Databases for storing biological entities are growing not only in size, but also in type, with many similarities between them and often subtle differences. The data formats available to describe and exchange these entities are numerous as well. In general, each format is optimized for a particular purpose or database, and hence some understanding of these formats is required when choosing one for research purposes. This paper reviews a selection of different databases and data formats with the goal of summarizing their purposes, features, and limitations. Databases are reviewed under the categories of 1) protein interactions, 2) metabolic pathways, 3) chemical interactions, and 4) drug discovery. Representation formats will be discussed according to those describing chemical structures, and those describing genomic/proteomic entities.

  1. Dust Storm Monitoring Using Satellite Observatory and Numerical Modeling Analysis

    NASA Astrophysics Data System (ADS)

    Taghavi, Farahnaz

    In recent years, the frequency of dust pollution events in the Iran Southwest are increased which caused huge damage and imposed a negative impacts on air quality, airport traffic and people daily life in local areas. Dust storms in this area usually start with the formation of a low-pressure center over the Arabian Peninsula. The main objectives of this study is to asses and monitor the movement of aerosols and pollutions from origin source to local areas using satellite imagery and numerical modeling analysis. Observational analyses from NCEP such as synoptic data (Uwind,Vwind,Vorticity and Divergence Fields), upper air radiosonde, measured visibility distributions, land cover data are also used in model comparisons to show differences in occurrence of dust events. The evolution and dynamics of this phenomena are studied on the based a method to modify the initial state of NWP output using discrepancies between dynamic fields and WV imagery in a grid. Results show that satellite images offers a means to control the behavior of numeric models and also the model using land cover data improving the wind-blown dust modeling.

  2. Impacts into quartz sand: Crater formation, shock metamorphism, and ejecta distribution in laboratory experiments and numerical models

    NASA Astrophysics Data System (ADS)

    Wünnemann, Kai; Zhu, Meng-Hua; Stöffler, Dieter

    2016-10-01

    We investigated the ejection mechanics by a complementary approach of cratering experiments, including the microscopic analysis of material sampled from these experiments, and 2-D numerical modeling of vertical impacts. The study is based on cratering experiments in quartz sand targets performed at the NASA Ames Vertical Gun Range. In these experiments, the preimpact location in the target and the final position of ejecta was determined by using color-coded sand and a catcher system for the ejecta. The results were compared with numerical simulations of the cratering and ejection process to validate the iSALE shock physics code. In turn the models provide further details on the ejection velocities and angles. We quantify the general assumption that ejecta thickness decreases with distance according to a power-law and that the relative proportion of shocked material in the ejecta increase with distance. We distinguish three types of shock metamorphic particles (1) melt particles, (2) shock lithified aggregates, and (3) shock-comminuted grains. The agreement between experiment and model was excellent, which provides confidence that the models can predict ejection angles, velocities, and the degree of shock loading of material expelled from a crater accurately if impact parameters such as impact velocity, impactor size, and gravity are varied beyond the experimental limitations. This study is relevant for a quantitative assessment of impact gardening on planetary surfaces and the evolution of regolith layers on atmosphereless bodies.

  3. Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanemoto, Soshi; Nitani, Ryota; Murakami, Tatsuhiko

    The endoplasmic reticulum (ER) plays a pivotal role in maintaining cellular homeostasis. However, numerous environmental and genetic factors give rise to ER stress by inducing an accumulation of unfolded proteins. Under ER stress conditions, cells initiate the unfolded protein response (UPR). Here, we demonstrate a novel aspect of the UPR by electron microscopy and immunostaining analyses, whereby multivesicular body (MVB) formation was enhanced after ER stress. This MVB formation was influenced by inhibition of ER stress transducers inositol required enzyme 1 (IRE1) and PKR-like ER kinase (PERK). Furthermore, exosome release was also increased during ER stress. However, in IRE1 ormore » PERK deficient cells, exosome release was not upregulated, indicating that IRE1- and PERK-mediated pathways are involved in ER stress-dependent exosome release. - Highlights: • Endoplasmic reticulum (ER) stress induces multivesicular body (MVB) formation. • ER stress transducers IRE1 and PERK mediate MVB formation. • Exosome release is enhanced after ER stress. • IRE1 or PERK deficiency blocks upregulation of ER stress-dependent exosome release.« less

  4. Opinion formation in a social network: The role of human activity

    NASA Astrophysics Data System (ADS)

    Grabowski, Andrzej

    2009-03-01

    The model of opinion formation in human population based on social impact theory is investigated numerically. On the basis of a database received from the on-line game server, we examine the structure of social network and human dynamics. We calculate the activity of individuals, i.e. the relative time devoted daily to interactions with others in the artificial society. We study the influence of correlation between the activity of an individual and its connectivity on the process of opinion formation. We find that such correlations have a significant influence on the temperature of the phase transition and the effect of the mass media, modeled as an external stimulation acting on the social network.

  5. Collisional and dynamical processes in moon and planet formation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The collisional and dynamical processes in moon and planet formation are discussed. A hydrodynamic code of collision calculations, the orbital element changes due to gravitational scattering, a validation of the mass shifting algorithm, a theory of rotations, and the origin of asteroids are studied. A numerical model of planet growth is discussed and a methodology to evaluate the rate at which megaregolith increases its depth as a function of total accumulate number of impacts on an initially smooth, coherent surface is described.

  6. Las Matematicas: Lenguaje Universal. Nivel 1: Numeros y Numeracion (Mathematics: A Universal Language. Level 1: Numbers and Numeration).

    ERIC Educational Resources Information Center

    Dissemination and Assessment Center for Bilingual Education, Austin, TX.

    This is one of a series of student booklets designed for use in a bilingual mathematics program in grades 6-8. The general format is to present each page in both Spanish and English. The mathematical topics in this booklet include graphing on a number line, place value, using exponents, flow charts, and Roman numerals. (MK)

  7. Robust numerical electromagnetic eigenfunction expansion algorithms

    NASA Astrophysics Data System (ADS)

    Sainath, Kamalesh

    This thesis summarizes developments in rigorous, full-wave, numerical spectral-domain (integral plane wave eigenfunction expansion [PWE]) evaluation algorithms concerning time-harmonic electromagnetic (EM) fields radiated by generally-oriented and positioned sources within planar and tilted-planar layered media exhibiting general anisotropy, thickness, layer number, and loss characteristics. The work is motivated by the need to accurately and rapidly model EM fields radiated by subsurface geophysical exploration sensors probing layered, conductive media, where complex geophysical and man-made processes can lead to micro-laminate and micro-fractured geophysical formations exhibiting, at the lower (sub-2MHz) frequencies typically employed for deep EM wave penetration through conductive geophysical media, bulk-scale anisotropic (i.e., directional) electrical conductivity characteristics. When the planar-layered approximation (layers of piecewise-constant material variation and transversely-infinite spatial extent) is locally, near the sensor region, considered valid, numerical spectral-domain algorithms are suitable due to their strong low-frequency stability characteristic, and ability to numerically predict time-harmonic EM field propagation in media with response characterized by arbitrarily lossy and (diagonalizable) dense, anisotropic tensors. If certain practical limitations are addressed, PWE can robustly model sensors with general position and orientation that probe generally numerous, anisotropic, lossy, and thick layers. The main thesis contributions, leading to a sensor and geophysical environment-robust numerical modeling algorithm, are as follows: (1) Simple, rapid estimator of the region (within the complex plane) containing poles, branch points, and branch cuts (critical points) (Chapter 2), (2) Sensor and material-adaptive azimuthal coordinate rotation, integration contour deformation, integration domain sub-region partition and sub

  8. Numerical study into the morphology and formation mechanisms of three-dimensional particle structures in vibrated cylindrical cavities with various heating conditions

    NASA Astrophysics Data System (ADS)

    Lappa, Marcello

    2016-10-01

    The present analysis extends the author's earlier work [Lappa, Phys. Fluids 26, 093301 (2014), 10.1063/1.4893078] on the properties of patterns formed by the spontaneous accumulation and ordering of solid particles in certain types of flow. It is shown that under certain conditions, when subjected to vibrations to induce natural flow, nonisothermal fluids with dispersed solid particles are characterized by intervals of solid-pattern-forming behavior due to particle rearrangements preceded by intervals in which no recognizable structures of solid matter can be detected. The dynamics of these systems are highly nonlinear in nature. Because this family of particle attractors is known to exhibit strong sensitivity to the symmetry properties of the considered vibrated system and related geometrical constraints, the present study attempts to clarify the related dynamics in a geometry with curved walls (cylindrical enclosure). In particular, by assuming vibrations always directed perpendicularly to the imposed temperature gradient, we show that the morphology, spatial extension (percentage of physical volume occupied), separation (spatial distance), and mechanisms responsible for the formation of the resulting particle structures change significantly according to whether the temperature gradient is parallel or perpendicular to the symmetry axis of the cylinder. This indicates that the physics is not invariant with respect to 90° rotations in space of the specific forcing considered (direction of the imposed temperature gradient and associated perpendicular vibrations). Additional insights into the problem are obtained by assessing separately the influence played by the time-averaged (mean) and oscillatory effects. According to the numerical results, the intriguing diversity of particle agglomerates results from the different role or importance played by (curved or straight) boundaries in constraining particles and from the different structure and topology of the

  9. Numerical studies of unsteady two dimensional subsonic flows using the ICE method. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Wieber, P. R.

    1973-01-01

    A numerical program was developed to compute transient compressible and incompressible laminar flows in two dimensions with multicomponent mixing and chemical reaction. The algorithm used the Los Alamos Scientific Laboratory ICE (Implicit Continuous-Fluid Eulerian) method as its base. The program can compute both high and low speed compressible flows. The numerical program incorporating the stabilization techniques was quite successful in treating both old and new problems. Detailed calculations of coaxial flow very close to the entry plane were possible. The program treated complex flows such as the formation and downstream growth of a recirculation cell. An implicit solution of the species equation predicted mixing and reaction rates which compared favorably with the literature.

  10. Numerical prediction of marine propeller noise in non-uniform inflow

    NASA Astrophysics Data System (ADS)

    Pan, Yu-cun; Zhang, Huai-xin

    2013-03-01

    A numerical study on the acoustic radiation of a propeller interacting with non-uniform inflow has been conducted. Real geometry of a marine propeller DTMB 4118 is used in the calculation, and sliding mesh technique is adopted to deal with the rotational motion of the propeller. The performance of the DES (Detached Eddy Simulation) approach at capturing the unsteady forces and moments on the propeller is compared with experiment. Far-field sound radiation is predicted by the formation 1A developed by Farassat, an integral solution of FW-H (Ffowcs Williams-Hawkings) equation in time domain. The sound pressure and directivity patterns of the propeller operating in two specific velocity distributions are discussed.

  11. Accretion of Planetesimals and the Formation of Rocky Planets

    NASA Astrophysics Data System (ADS)

    Chambers, John E.; O'Brien, David P.; Davis, Andrew M.

    2010-02-01

    Here we describe the formation of rocky planets and asteroids in the context of the planetesimal hypothesis. Small dust grains in protoplanetary disks readily stick together forming mm-to-cm-sized aggregates, many of which experience brief heating episodes causing melting. Growth to km-sized planetesimals might proceed via continued pairwise sticking, turbulent concentration, or gravitational instability of a thin particle layer. Gravitational interactions between planetesimals lead to rapid runaway and oligarchic growth forming lunar-to-Mars-sized protoplanets in 10^5 to 10^6 years. Giant impacts between protoplanets form Earth-mass planets in 10^7 to 10^8 years, and occasionally lead to the formation of large satellites. Protoplanets may migrate far from their formation locations due to tidal interactions with the surrounding disk. Radioactive decay and impact heating cause melting and differentiation of planetesimals and protoplanets, forming iron-rich cores and silicate mantles, and leading to some loss of volatiles. Dynamical perturbations from giant planets eject most planetesimals and protoplanets from regions near orbital resonances, leading to asteroid-belt formation. Some of this scattered material will collide with growing terrestrial planets, altering their composition as a result. Numerical simulations and radioisotope dating indicate that the terrestrial planets of the Solar System were essentially fully formed in 100-200 million years.

  12. The accuracy of semi-numerical reionization models in comparison with radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Hutter, Anne

    2018-03-01

    We have developed a modular semi-numerical code that computes the time and spatially dependent ionization of neutral hydrogen (H I), neutral (He I) and singly ionized helium (He II) in the intergalactic medium (IGM). The model accounts for recombinations and provides different descriptions for the photoionization rate that are used to calculate the residual H I fraction in ionized regions. We compare different semi-numerical reionization schemes to a radiative transfer (RT) simulation. We use the RT simulation as a benchmark, and find that the semi-numerical approaches produce similar H II and He II morphologies and power spectra of the H I 21cm signal throughout reionization. As we do not track partial ionization of He II, the extent of the double ionized helium (He III) regions is consistently smaller. In contrast to previous comparison projects, the ionizing emissivity in our semi-numerical scheme is not adjusted to reproduce the redshift evolution of the RT simulation, but directly derived from the RT simulation spectra. Among schemes that identify the ionized regions by the ratio of the number of ionization and absorption events on different spatial smoothing scales, we find those that mark the entire sphere as ionized when the ionization criterion is fulfilled to result in significantly accelerated reionization compared to the RT simulation. Conversely, those that flag only the central cell as ionized yield very similar but slightly delayed redshift evolution of reionization, with up to 20% ionizing photons lost. Despite the overall agreement with the RT simulation, our results suggests that constraining ionizing emissivity sensitive parameters from semi-numerical galaxy formation-reionization models are subject to photon nonconservation.

  13. Simulations of photochemical smog formation in complex urban areas

    NASA Astrophysics Data System (ADS)

    Muilwijk, C.; Schrijvers, P. J. C.; Wuerz, S.; Kenjereš, S.

    2016-12-01

    In the present study we numerically investigated the dispersion of photochemical reactive pollutants in complex urban areas by applying an integrated Computational Fluid Dynamics (CFD) and Computational Reaction Dynamics (CRD) approach. To model chemical reactions involved in smog generation, the Generic Reaction Set (GRS) approach is used. The GRS model was selected since it does not require detailed modeling of a large set of reactive components. Smog formation is modeled first in the case of an intensive traffic emission, subjected to low to moderate wind conditions in an idealized two-dimensional street canyon with a building aspect ratio (height/width) of one. It is found that Reactive Organic Components (ROC) play an important role in the chemistry of smog formation. In contrast to the NOx/O3 photochemical steady state model that predicts a depletion of the (ground level) ozone, the GRS model predicts generation of ozone. Secondly, the effect of direct sunlight and shadow within the street canyon on the chemical reaction dynamics is investigated for three characteristic solar angles (morning, midday and afternoon). Large differences of up to one order of magnitude are found in the ozone production for different solar angles. As a proof of concept for real urban areas, the integrated CFD/CRD approach is applied for a real scale (1 × 1 km2) complex urban area (a district of the city of Rotterdam, The Netherlands) with high traffic emissions. The predicted pollutant concentration levels give realistic values that correspond to moderate to heavy smog. It is concluded that the integrated CFD/CRD method with the GRS model of chemical reactions is both accurate and numerically robust, and can be used for modeling of smog formation in complex urban areas.

  14. Efficient formation of heterokaryotic sclerotia in the filamentous fungus Aspergillus oryzae.

    PubMed

    Wada, Ryuta; Jin, Feng Jie; Koyama, Yasuji; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2014-01-01

    Heterokaryon formation by hyphal fusion occurs during a sexual/parasexual cycle in filamentous fungi, and therefore, it is biotechnologically important for crossbreeding. In the industrial filamentous fungus Aspergillus oryzae, a parasexual cycle has been reported, and it was recently suggested that sexual reproduction should be possible. However, as A. oryzae enters into hyphal fusion with a much lower frequency than Neurospora crassa, the process of heterokaryon formation has not been extensively characterized in A. oryzae. Here, we developed a detection system for heterokaryon formation by expressing red or green fluorescent proteins in nuclei and conferring uridine/uracil or adenine auxotrophy to MAT1-1 and MAT1-2 strains of A. oryzae. The heterokaryon formation of A. oryzae was investigated in paired culture using the genetically modified strains. No sclerotial formation was observed in the hyphal contact regions of the two strains with the same auxotrophy, whereas numerous sclerotia were formed between the strains with different auxotrophies. In most of the formed sclerotia, the uridine/uracil and adenine auxotrophies were complemented, and both red and green fluorescence were detected, indicating that heterokaryotic fusants were formed by hyphal fusion before or during sclerotial formation. Moreover, overexpressing the sclR gene, which encodes a transcription factor promoting sclerotial formation, increased the number of heterokaryotic sclerotia formed between the two auxotrophic strains. Notably, these effects in sclerotial formation of heterokaryotic fusants were observed independently of the mating type pairing combinations. Taken together, these findings demonstrated that paring of different auxotrophs and sclR overexpression promote the formation of heterokaryotic sclerotia in A. oryzae.

  15. Terabit bandwidth-adaptive transmission using low-complexity format-transparent digital signal processing.

    PubMed

    Zhuge, Qunbi; Morsy-Osman, Mohamed; Chagnon, Mathieu; Xu, Xian; Qiu, Meng; Plant, David V

    2014-02-10

    In this paper, we propose a low-complexity format-transparent digital signal processing (DSP) scheme for next generation flexible and energy-efficient transceiver. It employs QPSK symbols as the training and pilot symbols for the initialization and tracking stage of the receiver-side DSP, respectively, for various modulation formats. The performance is numerically and experimentally evaluated in a dual polarization (DP) 11 Gbaud 64QAM system. Employing the proposed DSP scheme, we conduct a system-level study of Tb/s bandwidth-adaptive superchannel transmissions with flexible modulation formats including QPSK, 8QAM and 16QAM. The spectrum bandwidth allocation is realized in the digital domain instead of turning on/off sub-channels, which improves the performance of higher order QAM. Various transmission distances ranging from 240 km to 6240 km are demonstrated with a colorless detection for hardware complexity reduction.

  16. Direct Numerical Simulation of Cell Printing

    NASA Astrophysics Data System (ADS)

    Qiao, Rui; He, Ping

    2010-11-01

    Structural cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use desktop printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells, similar to that in living organs. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation and understanding of cell-cell interactions in truly 3D spaces. Although the feasibility of cell printing has been demonstrated in the recent years, the printing resolution and cell viability remain to be improved. In this work, we investigate one of the unit operations in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids using direct numerical simulations. The dynamics of droplet impact (e.g., crater formation and droplet spreading and penetration) and the evolution of cell shape and internal stress are quantified in details.

  17. A new look at sunspot formation using theory and observations

    NASA Astrophysics Data System (ADS)

    Losada, I. R.; Warnecke, J.; Glogowski, K.; Roth, M.; Brandenburg, A.; Kleeorin, N.; Rogachevskii, I.

    2017-10-01

    Sunspots are of basic interest in the study of the Sun. Their relevance ranges from them being an activity indicator of magnetic fields to being the place where coronal mass ejections and flares erupt. They are therefore also an important ingredient of space weather. Their formation, however, is still an unresolved problem in solar physics. Observations utilize just 2D surface information near the spot, but it is debatable how to infer deep structures and properties from local helioseismology. For a long time, it was believed that flux tubes rising from the bottom of the convection zone are the origin of the bipolar sunspot structure seen on the solar surface. However, this theory has been challenged, in particular recently by new surface observation, helioseismic inversions, and numerical models of convective dynamos. In this article we discuss another theoretical approach to the formation of sunspots: the negative effective magnetic pressure instability. This is a large-scale instability, in which the total (kinetic plus magnetic) turbulent pressure can be suppressed in the presence of a weak large-scale magnetic field, leading to a converging downflow, which eventually concentrates the magnetic field within it. Numerical simulations of forced stratified turbulence have been able to produce strong super-equipartition flux concentrations, similar to sunspots at the solar surface. In this framework, sunspots would only form close to the surface due to the instability constraints on stratification and rotation. Additionally, we present some ideas from local helioseismology, where we plan to use the Hankel analysis to study the pre-emergence phase of a sunspot and to constrain its deep structure and formation mechanism.

  18. Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves

    NASA Astrophysics Data System (ADS)

    Grava, T.; Klein, C.; Pitton, G.

    2018-02-01

    A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev-Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.

  19. Numerically solving the relativistic Grad-Shafranov equation in Kerr spacetimes: numerical techniques

    NASA Astrophysics Data System (ADS)

    Mahlmann, J. F.; Cerdá-Durán, P.; Aloy, M. A.

    2018-07-01

    The study of the electrodynamics of static, axisymmetric, and force-free Kerr magnetospheres relies vastly on solutions of the so-called relativistic Grad-Shafranov equation (GSE). Different numerical approaches to the solution of the GSE have been introduced in the literature, but none of them has been fully assessed from the numerical point of view in terms of efficiency and quality of the solutions found. We present a generalization of these algorithms and give a detailed background on the algorithmic implementation. We assess the numerical stability of the implemented algorithms and quantify the convergence of the presented methodology for the most established set-ups (split-monopole, paraboloidal, BH disc, uniform).

  20. Numerically solving the relativistic Grad-Shafranov equation in Kerr spacetimes: Numerical techniques

    NASA Astrophysics Data System (ADS)

    Mahlmann, J. F.; Cerdá-Durán, P.; Aloy, M. A.

    2018-04-01

    The study of the electrodynamics of static, axisymmetric and force-free Kerr magnetospheres relies vastly on solutions of the so called relativistic Grad-Shafranov equation (GSE). Different numerical approaches to the solution of the GSE have been introduced in the literature, but none of them has been fully assessed from the numerical point of view in terms of efficiency and quality of the solutions found. We present a generalization of these algorithms and give detailed background on the algorithmic implementation. We assess the numerical stability of the implemented algorithms and quantify the convergence of the presented methodology for the most established setups (split-monopole, paraboloidal, BH-disk, uniform).

  1. Surveying the Numeric Databanks.

    ERIC Educational Resources Information Center

    O'Leary, Mick

    1987-01-01

    Describes six leading numeric databank services and compares them with bibliographic databases in terms of customers' needs, search software, pricing arrangements, and the role of the search specialist. A listing of the locations of the numeric databanks discussed is provided. (CLB)

  2. Numerical modeling of field-assisted ion-exchanged channel waveguides by the explicit consideration of space-charge buildup.

    PubMed

    Mrozek, Piotr

    2011-08-01

    A numerical model explicitly considering the space-charge density evolved both under the mask and in the region of optical structure formation was used to predict the profiles of Ag concentration during field-assisted Ag(+)-Na(+) ion exchange channel waveguide fabrication. The influence of the unequal values of diffusion constants and mobilities of incoming and outgoing ions, the value of a correlation factor (Haven ratio), and particularly space-charge density induced during the ion exchange, on the resulting profiles of Ag concentration was analyzed and discussed. It was shown that the incorporation into the numerical model of a small quantity of highly mobile ions other than exclusively Ag(+) and Na(+) may considerably affect the range and shape of calculated Ag profiles in the multicomponent glass. The Poisson equation was used to predict the electric field spread evolution in the glass substrate. The results of the numerical analysis were verified by the experimental data of Ag concentration in a channel waveguide fabricated using a field-assisted process.

  3. Modelling and formation of spatiotemporal patterns of fractional predation system in subdiffusion and superdiffusion scenarios

    NASA Astrophysics Data System (ADS)

    Owolabi, Kolade M.; Atangana, Abdon

    2018-02-01

    This paper primarily focused on the question of how population diffusion can affect the formation of the spatial patterns in the spatial fraction predator-prey system by Turing mechanisms. Our numerical findings assert that modeling by fractional reaction-diffusion equations should be considered as an appropriate tool for studying the fundamental mechanisms of complex spatiotemporal dynamics. We observe that pure Hopf instability gives rise to the formation of spiral patterns in 2D and pure Turing instability destroys the spiral pattern and results to the formation of chaotic or spatiotemporal spatial patterns. Existence and permanence of the species is also guaranteed with the 3D simulations at some instances of time for subdiffusive and superdiffusive scenarios.

  4. Mechanism study and numerical simulation of Uranium nitriding induced by high energy laser

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan; Xu, Jingjing; Qi, Yanwen; Li, Shengpeng; Zhao, Hui

    2018-06-01

    The gradients of interfacial tension induced by local heating led to Marangoni convection, which had a significant effect on surface formation and the process of mass transport in the laser nitriding of uranium. An experimental observation of the underlying processes was very difficult. In present study, the Marangoni convection was considered and the computational fluid dynamic (CFD) analysis technique of FLUENT program was performed to determine the physical processes such as heat transfer and mass transport. The progress of gas-liquid falling film desorption was presented by combining phase-change model with fluid volume function (VOF) model. The time-dependent distribution of the temperature had been derived. Moreover, the concentration and distribution of nitrogen across the laser spot are calculated. The simulation results matched with the experimental data. The numerical resolution method provided a better approach to know the physical processes and dependencies of the coating formation.

  5. GO2OGS 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Naumov, D.; Sattler, S.; Kolditz, O.; Walther, M.

    2015-11-01

    We offer a versatile workflow to convert geological models built with the ParadigmTM GOCAD© (Geological Object Computer Aided Design) software into the open-source VTU (Visualization Toolkit unstructured grid) format for usage in numerical simulation models. Tackling relevant scientific questions or engineering tasks often involves multidisciplinary approaches. Conversion workflows are needed as a way of communication between the diverse tools of the various disciplines. Our approach offers an open-source, platform-independent, robust, and comprehensible method that is potentially useful for a multitude of environmental studies. With two application examples in the Thuringian Syncline, we show how a heterogeneous geological GOCAD model including multiple layers and faults can be used for numerical groundwater flow modeling, in our case employing the OpenGeoSys open-source numerical toolbox for groundwater flow simulations. The presented workflow offers the chance to incorporate increasingly detailed data, utilizing the growing availability of computational power to simulate numerical models.

  6. Numerical investigation of deep-crust behavior under lithospheric extension

    NASA Astrophysics Data System (ADS)

    Korchinski, Megan; Rey, Patrice F.; Mondy, Luke; Teyssier, Christian; Whitney, Donna L.

    2018-02-01

    What are the conditions under which lithospheric extension drives exhumation of the deep orogenic crust during the formation of gneiss domes? The mechanical link between extension of shallow crust and flow of deep crust is investigated using two-dimensional numerical experiments of lithospheric extension in which the crust is 60 km thick and the deep-crust viscosity and density parameter space is explored. Results indicate that the style of extension of the shallow crust and the path, magnitude, and rate of flow of deep crust are dynamically linked through the deep-crust viscosity, with density playing an important role in experiments with a high-viscosity deep crust. Three main groups of domes are defined based on their mechanisms of exhumation across the viscosity-density parameter space. In the first group (low-viscosity, low-density deep crust), domes develop by lateral and upward flow of the deep crust at km m.y-1 velocity rates (i.e. rate of experiment boundary extension). In this case, extension in the shallow crust is localized on a single interface, and the deep crust traverses the entire thickness of the crust to the Earth's near-surface in 5 m.y. This high exhuming power relies on the dynamic feedback between the flow of deep crust and the localization of extension in the shallow crust. The second group (intermediate-viscosity, low-density deep crust) has less exhuming power because the stronger deep crust flows less readily and instead accommodates more uniform extension, which imparts distributed extension to the shallow crust. The third group represents the upper limits of viscosity and density for the deep crust; in this case the low buoyancy of the deep crust results in localized thinning of the crust with large upward motion of the Moho and lithosphere-asthenosphere boundary. These numerical experiments test the exhuming power of the deep crust in the formation of extensional gneiss domes.

  7. 3D numerical simulations of oblique droplet impact onto a deep liquid pool

    NASA Astrophysics Data System (ADS)

    Gelderblom, Hanneke; Reijers, Sten A.; Gielen, Marise; Sleutel, Pascal; Lohse, Detlef; Xie, Zhihua; Pain, Christopher C.; Matar, Omar K.

    2017-11-01

    We study the fluid dynamics of three-dimensional oblique droplet impact, which results in phenomena that include splashing and cavity formation. An adaptive, unstructured mesh modelling framework is employed here, which can modify and adapt unstructured meshes to better represent the underlying physics of droplet dynamics, and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a volume-of-fluid-type method for the interface-capturing based on a compressive control-volume advection method. The framework also features second-order finite-element methods, and a force-balanced algorithm for the surface tension implementation, minimising the spurious velocities often found in many simulations involving capillary-driven flows. The numerical results generated using this framework are compared with high-speed images of the interfacial shapes of the deformed droplet, and the cavity formed upon impact, yielding good agreement. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  8. Composite body movements modulate numerical cognition: evidence from the motion-numerical compatibility effect

    PubMed Central

    Cheng, Xiaorong; Ge, Hui; Andoni, Deljfina; Ding, Xianfeng; Fan, Zhao

    2015-01-01

    A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011) and Fischer (2012), suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher et al. (2008) found that participants’ behavior in a random number generation task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e., a motion-numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion-numerical compatibility effects exist for movements of other important body components, e.g., arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.’s (2008) finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out. PMID:26594188

  9. Numerical Hydrodynamics in General Relativity.

    PubMed

    Font, José A

    2003-01-01

    The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them. Supplementary material is available for this article at 10.12942/lrr-2003-4.

  10. Towards a suite of test cases and a pycomodo library to assess and improve numerical methods in ocean models

    NASA Astrophysics Data System (ADS)

    Garnier, Valérie; Honnorat, Marc; Benshila, Rachid; Boutet, Martial; Cambon, Gildas; Chanut, Jérome; Couvelard, Xavier; Debreu, Laurent; Ducousso, Nicolas; Duhaut, Thomas; Dumas, Franck; Flavoni, Simona; Gouillon, Flavien; Lathuilière, Cyril; Le Boyer, Arnaud; Le Sommer, Julien; Lyard, Florent; Marsaleix, Patrick; Marchesiello, Patrick; Soufflet, Yves

    2016-04-01

    bed to continue research in numerical approaches as well as an efficient tool to maintain any oceanic code and assure the users a stamped model in a certain range of hydrodynamical regimes. Thanks to a common netCDF format, this suite is completed with a python library that encompasses all the tools and metrics used to assess the efficiency of the numerical methods. References - Couvelard X., F. Dumas, V. Garnier, A.L. Ponte, C. Talandier, A.M. Treguier (2015). Mixed layer formation and restratification in presence of mesoscale and submesoscale turbulence. Ocean Modelling, Vol 96-2, p 243-253. doi:10.1016/j.ocemod.2015.10.004. - Soufflet Y., P. Marchesiello, F. Lemarié, J. Jouanno, X. Capet, L. Debreu , R. Benshila (2016). On effective resolution in ocean models. Ocean Modelling, in press. doi:10.1016/j.ocemod.2015.12.004

  11. Numerical methods in heat transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, R.W.

    1985-01-01

    This third volume in the series in Numerical Methods in Engineering presents expanded versions of selected papers given at the Conference on Numerical Methods in Thermal Problems held in Venice in July 1981. In this reference work, contributors offer the current state of knowledge on the numerical solution of convective heat transfer problems and conduction heat transfer problems.

  12. WATER FORMATION IN THE UPPER ATMOSPHERE OF THE EARLY EARTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleury, Benjamin; Carrasco, Nathalie; Marcq, Emmanuel

    2015-07-10

    The water concentration and distribution in the early Earth's atmosphere are important parameters that contribute to the chemistry and the radiative budget of the atmosphere. If the atmosphere above the troposphere is generally considered as dry, photochemistry is known to be responsible for the production of numerous minor species. Here we used an experimental setup to study the production of water in conditions simulating the chemistry above the troposphere of the early Earth with an atmospheric composition based on three major molecules: N{sub 2}, CO{sub 2}, and H{sub 2}. The formation of gaseous products was monitored using infrared spectroscopy. Watermore » was found as the major product, with approximately 10% of the gas products detected. This important water formation is discussed in the context of the early Earth.« less

  13. Numerical study of two disks settling in an Oldroyd-B fluid: From periodic interaction to chaining

    NASA Astrophysics Data System (ADS)

    Pan, Tsorng-Whay; Glowinski, Roland

    2017-12-01

    In this article, we present a numerical study of the dynamics of two disks sedimenting in a narrow vertical channel filled with an Oldroyd-B fluid. Two kinds of particle dynamics are observed: (i) a periodic interaction between the two disks, and (ii) the formation of a two-disk chain. For the periodic interaction of the two disks, two different motions are observed: (a) the two disks stay far apart and interact periodically, and (b) the two disks interact closely and then far apart in a periodic way, like the drafting, kissing, and tumbling of two disks sedimenting in a Newtonian fluid, due to a weak elastic force. Concerning the formation of a two-disk chain occurring at higher values of the elasticity number, either a tilted chain or a vertical chain is observed. Our simulations show that, as expected, the values of the elasticity and Mach numbers are the determining factors concerning the particle chain formation and its orientation.

  14. Numerical study of two disks settling in an Oldroyd-B fluid: From periodic interaction to chaining.

    PubMed

    Pan, Tsorng-Whay; Glowinski, Roland

    2017-12-01

    In this article, we present a numerical study of the dynamics of two disks sedimenting in a narrow vertical channel filled with an Oldroyd-B fluid. Two kinds of particle dynamics are observed: (i) a periodic interaction between the two disks, and (ii) the formation of a two-disk chain. For the periodic interaction of the two disks, two different motions are observed: (a) the two disks stay far apart and interact periodically, and (b) the two disks interact closely and then far apart in a periodic way, like the drafting, kissing, and tumbling of two disks sedimenting in a Newtonian fluid, due to a weak elastic force. Concerning the formation of a two-disk chain occurring at higher values of the elasticity number, either a tilted chain or a vertical chain is observed. Our simulations show that, as expected, the values of the elasticity and Mach numbers are the determining factors concerning the particle chain formation and its orientation.

  15. Log-periodic crashes revisited

    NASA Astrophysics Data System (ADS)

    Matsushita, Raul; da Silva, Sergio; Figueiredo, Annibal; Gleria, Iram

    2006-05-01

    We revisit the finding that crashes can be deterministic and governed by log-periodic formulas [D. Sornette, A. Johansen, Significance of log-periodic precursors to financial crashes, Quant. Finance 1 (2001) 452-471; D. Sornette, W.X. Zhou, The US 2000-2002 market descent: how much longer and deeper?, Quant. Finance 2 (2002) 468-481]. One- and two-harmonic equations are usually employed to fit daily data during bubble episodes. But a three-harmonics has been shown to fit anti-bubbles [A. Johansen, D. Sornette, Financial “anti-bubbles”: log-periodicity in gold and Nikkei collapses, Int. J. Mod. Phys. C 10 (1999) 563-575]. Here we show that the three-harmonic formula can work for bubble episodes as well as anti-bubbles. This is illustrated with daily data from the Brazilian real-US dollar exchange rate. And we also show that the three-harmonics can fit an intraday data set from that foreign exchange rate.

  16. Influence of Working Temperature on The Formation of Electrospun Polymer Nanofibers

    NASA Astrophysics Data System (ADS)

    Yang, Guang-Zhi; Li, Hai-Peng; Yang, Jun-He; Wan, Jia; Yu, Deng-Guang

    2017-01-01

    Temperature is an important parameter during electrospinning, and virtually, all solution electrospinning processes are conducted at ambient temperature. Nanofiber diameters presumably decrease with the elevation of working fluid temperature. The present study investigated the influence of temperature variations on the formation of polymeric nanofibers during single-fluid electrospinning. The surface tension and viscosity of the fluid decreased with increasing working temperature, which led to the formation of high-quality nanofibers. However, the increase in temperature accelerated the evaporation of the solvent and thus terminated the drawing processes prematurely. A balance can be found between the positive and negative influences of temperature elevation. With polyacrylonitrile (PAN, with N, N-dimethylacetamide as the solvent) and polyvinylpyrrolidone (PVP, with ethanol as the solvent) as the polymeric models, relationships between the working temperature ( T, K) and nanofiber diameter ( D, nm) were established, with D = 12598.6 - 72.9 T + 0.11 T 2 ( R = 0.9988) for PAN fibers and D = 107003.4 - 682.4 T + 1.1 T 2 ( R = 0.9997) for PVP nanofibers. Given the fact that numerous polymers are sensitive to temperature and numerous functional ingredients exhibit temperature-dependent solubility, the present work serves as a valuable reference for creating novel functional nanoproducts by using the elevated temperature electrospinning process.

  17. The role of Proteus mirabilis cell wall features in biofilm formation.

    PubMed

    Czerwonka, Grzegorz; Guzy, Anna; Kałuża, Klaudia; Grosicka, Michalina; Dańczuk, Magdalena; Lechowicz, Łukasz; Gmiter, Dawid; Kowalczyk, Paweł; Kaca, Wiesław

    2016-11-01

    Biofilms formed by Proteus mirabilis strains are a serious medical problem, especially in the case of urinary tract infections. Early stages of biofilm formation, such as reversible and irreversible adhesion, are essential for bacteria to form biofilm and avoid eradication by antibiotic therapy. Adhesion to solid surfaces is a complex process where numerous factors play a role, where hydrophobic and electrostatic interactions with solid surface seem to be substantial. Cell surface hydrophobicity and electrokinetic potential of bacterial cells depend on their surface composition and structure, where lipopolysaccharide, in Gram-negative bacteria, is prevailing. Our studies focused on clinical and laboratory P. mirabilis strains, where laboratory strains have determined LPS structures. Adherence and biofilm formation tests revealed significant differences between strains adhered in early stages of biofilm formation. Amounts of formed biofilm were expressed by the absorption of crystal violet. Higher biofilm amounts were formed by the strains with more negative values of zeta potential. In contrast, high cell surface hydrophobicity correlated with low biofilm amount.

  18. Studies of Planet Formation Using a Hybrid N-Body + Planetesimal Code

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.

    2004-01-01

    The goal of our proposal was to use a hybrid multi-annulus planetesimal/n-body code to examine the planetesimal theory, one of the two main theories of planet formation. We developed this code to follow the evolution of numerous 1 m to 1 km planetesimals as they collide, merge, and grow into full-fledged planets. Our goal was to apply the code to several well-posed, topical problems in planet formation and to derive observational consequences of the models. We planned to construct detailed models to address two fundamental issues: (1) icy planets: models for icy planet formation will demonstrate how the physical properties of debris disks - including the Kuiper Belt in our solar system - depend on initial conditions and input physics; and (2) terrestrial planets: calculations following the evolution of 1-10 km planetesimals into Earth-mass planets and rings of dust will provide a better understanding of how terrestrial planets form and interact with their environment.

  19. Dynamical models for the formation of elephant trunks in HII regions

    NASA Astrophysics Data System (ADS)

    Mackey, Jonathan; Lim, Andrew J.

    2010-04-01

    The formation of pillars of dense gas at the boundaries of HII regions is investigated with hydrodynamical numerical simulations including ionizing radiation from a point source. We show that shadowing of ionizing radiation by an inhomogeneous density field is capable of forming so-called elephant trunks (pillars of dense gas as in e.g. M16) without the assistance of self-gravity or of ionization front and cooling instabilities. A large simulation of a density field containing randomly generated clumps of gas is shown to naturally generate elephant trunks with certain clump configurations. These configurations are simulated in isolation and analysed in detail to show the formation mechanism and determine possible observational signatures. Pillars formed by the shadowing mechanism are shown to have rather different velocity profiles depending on the initial gas configuration, but asymmetries mean that the profiles also vary significantly with perspective, limiting their ability to discriminate between formation scenarios. Neutral and molecular gas cooling are shown to have a strong effect on these results.

  20. Bulk Formation of Metallic Glasses and Amorphous Silicon from the Melt

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1985-01-01

    By using metallic glass compositions with a high relative glass transition temperature, such as Pd40Ni40P20, homogeneous nucleation also becomes negligible. Large (5g) masses of this alloys were obtained using a molten B2O3 flux. Presently, bulk glass formation in iron based glasses is being investigated. It is expected that if an undercooling of about 250K can be achieved in a Ge or Si melt, formation of the amorphous semiconductor phase (rather than the crystal) may be kinetically favored. The volumetric behavior of undercooled liquid Ga droplet dispersion is investigated by dilatometry. A theoretical model (both analytical and numerical) was developed for transient nucleation in glass forming melts. The model, originally designed for isothermal conditions, was extended to continuous quenching. It is being applied to glass formation in various metallic and oxide systems. A further refinement will be the inclusion of diffusion controlled interfacial rearrangements governing the growth of the crystal embryos.

  1. Galaxy collisions as a mechanism of ultra diffuse galaxy (UDG) formation

    NASA Astrophysics Data System (ADS)

    Baushev, A. N.

    2018-04-01

    We suggest a possible mechanism of ultra diffuse galaxy formation: the UDGs may occur as a result of a central collision of galaxies. If the galaxies are young and contain a lot of gas, the collision may kick all the gas off the systems and thus strongly suppress any further star formation. As a result, the galaxies now have a very low surface brightness and other properties typical of the ultra diffuse galaxies. We use the Coma cluster (where numerous UDGs were recently discovered) to test the efficiency of the process. The mechanism works very well and can transform a significant fraction of the cluster population into ultra diffuse galaxies. The UDGs formed by the process concentrate towards the center of the cluster, and their globular cluster systems remain undamaged, in accordance with observational results. The projected surface density of UDGs in the cluster may help us to recognize the mechanism of UDG formation, or clarify relative contributions of several possible competitive mechanisms at work.

  2. Distributed attitude synchronization of formation flying via consensus-based virtual structure

    NASA Astrophysics Data System (ADS)

    Cong, Bing-Long; Liu, Xiang-Dong; Chen, Zhen

    2011-06-01

    This paper presents a general framework for synchronized multiple spacecraft rotations via consensus-based virtual structure. In this framework, attitude control systems for formation spacecrafts and virtual structure are designed separately. Both parametric uncertainty and external disturbance are taken into account. A time-varying sliding mode control (TVSMC) algorithm is designed to improve the robustness of the actual attitude control system. As for the virtual attitude control system, a behavioral consensus algorithm is presented to accomplish the attitude maneuver of the entire formation and guarantee a consistent attitude among the local virtual structure counterparts during the attitude maneuver. A multiple virtual sub-structures (MVSSs) system is introduced to enhance current virtual structure scheme when large amounts of spacecrafts are involved in the formation. The attitude of spacecraft is represented by modified Rodrigues parameter (MRP) for its non-redundancy. Finally, a numerical simulation with three synchronization situations is employed to illustrate the effectiveness of the proposed strategy.

  3. Accelerating numerical solution of stochastic differential equations with CUDA

    NASA Astrophysics Data System (ADS)

    Januszewski, M.; Kostur, M.

    2010-01-01

    Numerical integration of stochastic differential equations is commonly used in many branches of science. In this paper we present how to accelerate this kind of numerical calculations with popular NVIDIA Graphics Processing Units using the CUDA programming environment. We address general aspects of numerical programming on stream processors and illustrate them by two examples: the noisy phase dynamics in a Josephson junction and the noisy Kuramoto model. In presented cases the measured speedup can be as high as 675× compared to a typical CPU, which corresponds to several billion integration steps per second. This means that calculations which took weeks can now be completed in less than one hour. This brings stochastic simulation to a completely new level, opening for research a whole new range of problems which can now be solved interactively. Program summaryProgram title: SDE Catalogue identifier: AEFG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Gnu GPL v3 No. of lines in distributed program, including test data, etc.: 978 No. of bytes in distributed program, including test data, etc.: 5905 Distribution format: tar.gz Programming language: CUDA C Computer: any system with a CUDA-compatible GPU Operating system: Linux RAM: 64 MB of GPU memory Classification: 4.3 External routines: The program requires the NVIDIA CUDA Toolkit Version 2.0 or newer and the GNU Scientific Library v1.0 or newer. Optionally gnuplot is recommended for quick visualization of the results. Nature of problem: Direct numerical integration of stochastic differential equations is a computationally intensive problem, due to the necessity of calculating multiple independent realizations of the system. We exploit the inherent parallelism of this problem and perform the calculations on GPUs using the CUDA programming environment. The GPU's ability to execute

  4. Wind-Driven Formation of Ice Bridges in Straits.

    PubMed

    Rallabandi, Bhargav; Zheng, Zhong; Winton, Michael; Stone, Howard A

    2017-03-24

    Ice bridges are static structures composed of tightly packed sea ice that can form during the course of its flow through a narrow strait. Despite their important role in local ecology and climate, the formation and breakup of ice bridges is not well understood and has proved difficult to predict. Using long-wave approximations and a continuum description of sea ice dynamics, we develop a one-dimensional theory for the wind-driven formation of ice bridges in narrow straits, which is verified against direct numerical simulations. We show that for a given wind stress and minimum and maximum channel widths, a steady-state ice bridge can only form beyond a critical value of the thickness and the compactness of the ice field. The theory also makes quantitative predictions for ice fluxes, which are particularly useful to estimate the ice export associated with the breakup of ice bridges. We note that similar ideas are applicable to dense granular flows in confined geometries.

  5. Foundations of children's numerical and mathematical skills: the roles of symbolic and nonsymbolic representations of numerical magnitude.

    PubMed

    Lyons, Ian M; Ansari, Daniel

    2015-01-01

    Numerical and mathematical skills are critical predictors of academic success. The last three decades have seen a substantial growth in our understanding of how the human mind and brain represent and process numbers. In particular, research has shown that we share with animals the ability to represent numerical magnitude (the total number of items in a set) and that preverbal infants can process numerical magnitude. Further research has shown that similar processing signatures characterize numerical magnitude processing across species and developmental time. These findings suggest that an approximate system for nonsymbolic (e.g., dot arrays) numerical magnitude representation serves as the basis for the acquisition of cultural, symbolic (e.g., Arabic numerals) representations of numerical magnitude. This chapter explores this hypothesis by reviewing studies that have examined the relation between individual differences in nonsymbolic numerical magnitude processing and symbolic math abilities (e.g., arithmetic). Furthermore, we examine the extent to which the available literature provides strong evidence for a link between symbolic and nonsymbolic representations of numerical magnitude at the behavioral and neural levels of analysis. We conclude that claims that symbolic number abilities are grounded in the approximate system for the nonsymbolic representation of numerical magnitude are not strongly supported by the available evidence. Alternative models and future research directions are discussed. © 2015 Elsevier Inc. All rights reserved.

  6. Probabilistic numerics and uncertainty in computations

    PubMed Central

    Hennig, Philipp; Osborne, Michael A.; Girolami, Mark

    2015-01-01

    We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations. PMID:26346321

  7. Probabilistic numerics and uncertainty in computations.

    PubMed

    Hennig, Philipp; Osborne, Michael A; Girolami, Mark

    2015-07-08

    We deliver a call to arms for probabilistic numerical methods : algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

  8. Numerical Simulation of Slag Eye Formation and Slag Entrapment in a Bottom-Blown Argon-Stirred Ladle

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Tang, Haiyan; Yang, Shufeng; Wang, Minghui; Li, Jingshe; Liu, Qing; Liu, Jianhui

    2018-06-01

    A transient mathematical model is developed for simulating the bubble-steel-slag-top gas four-phase flow in a bottom-blown argon-stirred ladle with a 70-ton capacity. The Lagrangian discrete phase model (DPM) is used for describing the moving behavior of bubbles in the steel and slag. To observe the formation process of slag eye, the volume of fluid (VOF) model is used to track the interfaces between three incompressible phases: metal/slag, metal/gas, and slag/gas. The complex multiphase turbulent flow induced by bubble-liquid interactions is solved by a large eddy simulation (LES) model. Slag eye area and slag droplet dispersion are investigated under different gas flow rates. The results show that the movement of bubbles, formation and collapse of slag eye, volatility of steel/slag interface and behavior of slag entrapment can be properly predicted in the current model. When the gas flow rate is 300 L/min, the circulation driven by the bubble plume will stir the entire ladle adequately and form a slag eye of the right size. At the same time, it will not cause strong erosion to the ladle wall, and the fluctuation of the interface is of adequate intensity, which will be helpful for improving the desulfurization efficiency; the slag entrapment behavior can also be decreased. Interestingly, with the motion of liquid steel circulation, the collision and coalescence of dispersed slag droplets occur during the floating process in the vicinity of the wall.

  9. Numerical Asymptotic Solutions Of Differential Equations

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.

    1992-01-01

    Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.

  10. The cell adhesion molecule nectin-1 is critical for normal enamel formation in mice

    PubMed Central

    Barron, Martin J.; Brookes, Steven J.; Draper, Clare E.; Garrod, David; Kirkham, Jennifer; Shore, Roger C.; Dixon, Michael J.

    2008-01-01

    Nectin-1 is a member of a sub-family of immunoglobulin-like adhesion molecules and a component of adherens junctions. In the current study, we have shown that mice lacking nectin-1 exhibit defective enamel formation in their incisor teeth. Although the incisors of nectin-1-null mice were hypomineralized, the protein composition of the enamel matrix was unaltered. While strong immunostaining for nectin-1 was observed at the interface between the maturation-stage ameloblasts and the underlying cells of the stratum intermedium (SI), its absence in nectin-1-null mice correlated with separation of the cell layers at this interface. Numerous, large desmosomes were present at this interface in wild-type mice; however, where adhesion persisted in the mutant mice, the desmosomes were smaller and less numerous. Nectins have been shown to regulate tight junction formation; however, this is the first report showing that they may also participate in the regulation of desmosome assembly. Importantly, our results show that integrity of the SI–ameloblast interface is essential for normal enamel mineralization. PMID:18703497

  11. Protostellar Disk Instabilities and the Formation of Substellar Companions

    NASA Astrophysics Data System (ADS)

    Pickett, Brian K.; Durisen, Richard H.; Cassen, Patrick; Mejia, Annie C.

    2000-09-01

    Recent numerical simulations of self-gravitating protostellar disks have suggested that gravitational instabilities can lead to the production of substellar companions. In these simulations, the disk is typically assumed to be locally isothermal; i.e., the initial, axisymmetric temperature in the disk remains everywhere unchanged. Such an idealized condition implies extremely efficient cooling for outwardly moving parcels of gas. While we have seen disk disruption in our own locally isothermal simulations of a small, massive protostellar disk, no long-lived companions formed as a result of the instabilities. Instead, thermal and tidal effects and the complex interactions of the disk material prevented permanent condensations from forming, despite the vigorous growth of spiral instabilities. In order to compare our results more directly with those of other authors, we here present three-dimensional evolutions of an older, larger, but less massive protostellar disk. We show that potentially long-lived condensations form only for the extreme of local isothermality, and then only when severe restrictions are placed on the natural tendency of the protostellar disk to expand in response to gravitational instabilities. A more realistic adiabatic evolution leads to vertical and radial expansion of the disk but no clump formation. We conclude that isothermal disk calculations cannot demonstrate companion formation by disk fragmentation but only suggest it at best. It will be necessary in future numerical work on this problem to treat the disk thermodynamics more realistically.

  12. Tks5-dependent formation of circumferential podosomes/invadopodia mediates cell-cell fusion.

    PubMed

    Oikawa, Tsukasa; Oyama, Masaaki; Kozuka-Hata, Hiroko; Uehara, Shunsuke; Udagawa, Nobuyuki; Saya, Hideyuki; Matsuo, Koichi

    2012-05-14

    Osteoclasts fuse to form multinucleated cells during osteoclastogenesis. This process is mediated by dynamic rearrangement of the plasma membrane and cytoskeleton, and it requires numerous factors, many of which have been identified. The underlying mechanism remains obscure, however. In this paper, we show that Tks5, a master regulator of invadopodia in cancer cells, is crucial for osteoclast fusion downstream of phosphoinositide 3-kinase and Src. Expression of Tks5 was induced during osteoclastogenesis, and prevention of this induction impaired both the formation of circumferential podosomes and osteoclast fusion without affecting cell differentiation. Tyrosine phosphorylation of Tks5 was attenuated in Src-/- osteoclasts, likely accounting for defects in podosome organization and multinucleation in these cells. Circumferential invadopodia formation in B16F0 melanoma cells was also accompanied by Tks5 phosphorylation. Co-culture of B16F0 cells with osteoclasts in an inflammatory milieu promoted the formation of melanoma-osteoclast hybrid cells. Our results thus reveal an unexpected link between circumferential podosome/invadopodium formation and cell-cell fusion in and beyond osteoclasts.

  13. Tks5-dependent formation of circumferential podosomes/invadopodia mediates cell–cell fusion

    PubMed Central

    Oyama, Masaaki; Kozuka-Hata, Hiroko; Uehara, Shunsuke; Udagawa, Nobuyuki; Saya, Hideyuki; Matsuo, Koichi

    2012-01-01

    Osteoclasts fuse to form multinucleated cells during osteoclastogenesis. This process is mediated by dynamic rearrangement of the plasma membrane and cytoskeleton, and it requires numerous factors, many of which have been identified. The underlying mechanism remains obscure, however. In this paper, we show that Tks5, a master regulator of invadopodia in cancer cells, is crucial for osteoclast fusion downstream of phosphoinositide 3-kinase and Src. Expression of Tks5 was induced during osteoclastogenesis, and prevention of this induction impaired both the formation of circumferential podosomes and osteoclast fusion without affecting cell differentiation. Tyrosine phosphorylation of Tks5 was attenuated in Src−/− osteoclasts, likely accounting for defects in podosome organization and multinucleation in these cells. Circumferential invadopodia formation in B16F0 melanoma cells was also accompanied by Tks5 phosphorylation. Co-culture of B16F0 cells with osteoclasts in an inflammatory milieu promoted the formation of melanoma–osteoclast hybrid cells. Our results thus reveal an unexpected link between circumferential podosome/invadopodium formation and cell–cell fusion in and beyond osteoclasts. PMID:22584907

  14. On star formation in stellar systems. I - Photoionization effects in protoglobular clusters

    NASA Technical Reports Server (NTRS)

    Tenorio-Tagle, G.; Bodenheimer, P.; Lin, D. N. C.; Noriega-Crespo, A.

    1986-01-01

    The progressive ionization and subsequent dynamical evolution of nonhomogeneously distributed low-metal-abundance diffuse gas after star formation in globular clusters are investigated analytically, taking the gravitational acceleration due to the stars into account. The basic equations are derived; the underlying assumptions, input parameters, and solution methods are explained; and numerical results for three standard cases (ionization during star formation, ionization during expansion, and evolution resulting in a stable H II region at its equilibrium Stromgren radius) are presented in graphs and characterized in detail. The time scale of residual-gas loss in typical clusters is found to be about the same as the lifetime of a massive star on the main sequence.

  15. An easy and effective approach to manage radiologic portable document format (PDF) files using iTunes.

    PubMed

    Qian, Li Jun; Zhou, Mi; Xu, Jian Rong

    2008-07-01

    The objective of this article is to explain an easy and effective approach for managing radiologic files in portable document format (PDF) using iTunes. PDF files are widely used as a standard file format for electronic publications as well as for medical online documents. Unfortunately, there is a lack of powerful software to manage numerous PDF documents. In this article, we explain how to use the hidden function of iTunes (Apple Computer) to manage PDF documents as easily as managing music files.

  16. The CFS-PML in numerical simulation of ATEM

    NASA Astrophysics Data System (ADS)

    Zhao, Xuejiao; Ji, Yanju; Qiu, Shuo; Guan, Shanshan; Wu, Yanqi

    2017-01-01

    In the simulation of airborne transient electromagnetic method (ATEM) in time-domain, the truncated boundary reflection can bring a big error to the results. The complex frequency shifted perfectly matched layer (CFS-PML) absorbing boundary condition has been proved to have a better absorption of low frequency incident wave and can reduce the late reflection greatly. In this paper, we apply the CFS-PML to three-dimensional numerical simulation of ATEM in time-domain to achieve a high precision .The expression of divergence equation in CFS-PML is confirmed and its explicit iteration format based on the finite difference method and the recursive convolution technique is deduced. Finally, we use the uniformity half space model and the anomalous model to test the validity of this method. Results show that the CFS-PML can reduce the average relative error to 2.87% and increase the accuracy of the anomaly recognition.

  17. Simulating the formation of Hurricane Isabel (2003) with AIRS data

    NASA Astrophysics Data System (ADS)

    Wu, Liguang; Braun, Scott A.; Qu, John J.; Hao, Xianjun

    2006-02-01

    Using the AIRS retrieved temperature and humidity profiles, the Saharan Air Layer (SAL) influence on the formation of Hurricane Isabel (2003) is simulated numerically with the MM5 model. The warmth and dryness of the SAL (the thermodynamic effect) is assimilated by use of the nudging technique, which enables the model thermodynamic state to be relaxed to the profiles of the AIRS retrieved data for the regions without cloud contamination. By incorporating the AIRS data, MM5 better simulates the large-scale flow patterns and the timing and location of the formation of Hurricane Isabel and its subsequent track. By comparing with an experiment without nudging of the AIRS data, it is shown that the SAL may have delayed the formation of Hurricane Isabel and inhibited the development of another tropical disturbance to the east. This case study confirms the argument by Dunion and Velden (2004) that the SAL can suppress Atlantic tropical cyclone activity by increasing the vertical wind shear, reducing the mean relative humidity, and stabilizing the environment at lower levels.

  18. The Freter model: a simple model of biofilm formation.

    PubMed

    Jones, Don; Kojouharov, Hristo V; Le, Dung; Smith, Hal

    2003-08-01

    A simple, conceptual model of biofilm formation, due to R. Freter et al. (1983), is studied analytically and numerically in both CSTR and PFR. Two steady state regimes are identified, namely, the complete washout of the microbes from the reactor and the successful colonization of both the wall and bulk fluid. One of these is stable for any particular set of parameter values and sharp and explicit conditions are given for the stability of each. The effects of adding an anti-microbial agent to the CSTR are examined.

  19. Limit regimes of ice formation in turbulent supercooled water.

    PubMed

    De Santi, Francesca; Olla, Piero

    2017-10-01

    A study of ice formation in stationary turbulent conditions is carried out in various limit regimes of crystal growth, supercooling, and ice entrainment at the water surface. Analytical expressions for the temperature, salinity, and ice concentration mean profiles are provided, and the role of fluctuations in ice production is numerically quantified. Lower bounds on the ratio of sensible heat flux to latent heat flux to the atmosphere are derived and their dependence on key parameters such as salt rejection in freezing and ice entrainment in the water column is elucidated.

  20. Cytokine Regulation by MAPK Activated Kinase 2 in Keratinocytes Exposed to Sulfur Mustard

    DTIC Science & Technology

    2013-07-10

    studies on different acute contact dermatitis models which indicate that the protective effect of MK2 is stimulus specific (Funding et al., 2009... contact derma- titis (Johansen et al., 2006; Funding et al., 2009). For these reasons, we examined the role of MK2 during SM-induced keratinocyte

  1. Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion

    NASA Technical Reports Server (NTRS)

    Lane, Christopher; Axelrad, Penina

    2004-01-01

    Geometrical methods for formation flying design based on the analytical solution to Hill's equations have been previously developed and used to specify desired relative motions in near circular orbits. By generating relationships between the vehicles that are intuitive, these approaches offer valuable insight into the relative motion and allow for the rapid design of satellite configurations to achieve mission specific requirements, such as vehicle separation at perigee or apogee, minimum separation, or a specific geometrical shape. Furthermore, the results obtained using geometrical approaches can be used to better constrain numerical optimization methods; allowing those methods to converge to optimal satellite configurations faster. This paper presents a set of geometrical relationships for formations in eccentric orbits, where Hill.s equations are not valid, and shows how these relationships can be used to investigate formation designs and how they evolve with time.

  2. Hydrodynamical Aspects of the Formation of Spiral-Vortical Structures in Rotating Gaseous Disks

    NASA Astrophysics Data System (ADS)

    Elizarova, T. G.; Zlotnik, A. A.; Istomina, M. A.

    2018-01-01

    This paper is dedicated to numerical simulations of spiral-vortical structures in rotating gaseous disks using a simple model based on two-dimensional, non-stationary, barotropic Euler equations with a body force. The results suggest the possibility of a purely hydrodynamical basis for the formation and evolution of such structures. New, axially symmetric, stationary solutions of these equations are derived that modify known approximate solutions. These solutions with added small perturbations are used as initial data in the non-stationary problem, whose solution demonstrates the formation of density arms with bifurcation. The associated redistribution of angular momentum is analyzed. The correctness of laboratory experiments using shallow water to describe the formation of large-scale vortical structures in thin gaseous disks is confirmed. The computations are based on a special quasi-gas-dynamical regularization of the Euler equations in polar coordinates.

  3. Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Ouraga, Zady; Guy, Nicolas; Pouya, Amade

    2018-05-01

    In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.

  4. Comparing models of star formation simulating observed interacting galaxies

    NASA Astrophysics Data System (ADS)

    Quiroga, L. F.; Muñoz-Cuartas, J. C.; Rodrigues, I.

    2017-07-01

    In this work, we make a comparison between different models of star formation to reproduce observed interacting galaxies. We use observational data to model the evolution of a pair of galaxies undergoing a minor merger. Minor mergers represent situations weakly deviated from the equilibrium configuration but significant changes in star fomation (SF) efficiency can take place, then, minor mergers provide an unique scene to study SF in galaxies in a realistic but yet simple way. Reproducing observed systems also give us the opportunity to compare the results of the simulations with observations, which at the end can be used as probes to characterize the models of SF implemented in the comparison. In this work we compare two different star formation recipes implemented in Gadget3 and GIZMO codes. Both codes share the same numerical background, and differences arise mainly in the star formation recipe they use. We use observations from Pico dos Días and GEMINI telescopes and show how we use observational data of the interacting pair in AM2229-735 to characterize the interacting pair. Later we use this information to simulate the evolution of the system to finally reproduce the observations: Mass distribution, morphology and main features of the merger-induced star formation burst. We show that both methods manage to reproduce roughly the star formation activity. We show, through a careful study, that resolution plays a major role in the reproducibility of the system. In that sense, star formation recipe implemented in GIZMO code has shown a more robust performance. Acknowledgements: This work is supported by Colciencias, Doctorado Nacional - 617 program.

  5. Modeling of antihydrogen beam formation for interferometric gravity measurements

    NASA Astrophysics Data System (ADS)

    Gerber, Sebastian

    2018-02-01

    In this paper a detailed computational study is performed on the formation of antihydrogen via three-body-recombination of positrons and antiprotons in a Penning trap with a specific focus on formation of a beam of antihydrogen. First, an analytical model is presented to calculate the formation process of the anti-atoms, the yield of the fraction leaving the recombination plasma volume and their angular velocity distribution. This model is then benchmarked against data from different antihydrogen experiments. Subsequently, the flux of antihydrogen towards the axial opening angle of a Penning trap is evaluated for its suitability as input beam into a Talbot-Lau matter interferometer. The layout and optimization of the interferometer to measure the acceleration of antihydrogen in the Earth’s gravitational field is numerically calculated. The simulated results can assist experiments aiming to measure the weak equivalence principle of antimatter as proposed by the AEgIS experiment (Testera et al 2015 Hyperfine Interact. 233 13-20). The presented model can further help in the optimization of beam-like antihydrogen sources for CPT invariance tests of antimatter (Kuroda et al 2014 Nat. Commun. 5 3089).

  6. Numerical simulation on zonal disintegration in deep surrounding rock mass.

    PubMed

    Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin

    2014-01-01

    Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.

  7. Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass

    PubMed Central

    Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin

    2014-01-01

    Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks. PMID:24592166

  8. Unsteady numerical simulations of the stability and dynamics of flames

    NASA Technical Reports Server (NTRS)

    Kailasanath, K.; Patnaik, G.; Oran, E. S.

    1995-01-01

    In this report we describe the research performed at the Naval Research Laboratory in support of the NASA Microgravity Science and Applications Program over the past three years (from Feb. 1992) with emphasis on the work performed since the last microgravity combustion workshop. The primary objective of our research is to develop an understanding of the differences in the structure, stability, dynamics and extinction of flames in earth gravity and in microgravity environments. Numerical simulations, in which the various physical and chemical processes can be independently controlled, can significantly advance our understanding of these differences. Therefore, our approach is to use detailed time-dependent, multi-dimensional, multispecies numerical models to perform carefully designed computational experiments. The basic issues we have addressed, a general description of the numerical approach, and a summary of the results are described in this report. More detailed discussions are available in the papers published which are referenced herein. Some of the basic issues we have addressed recently are (1) the relative importance of wall losses and gravity on the extinguishment of downward-propagating flames; (2) the role of hydrodynamic instabilities in the formation of cellular flames; (3) effects of gravity on burner-stabilized flames, and (4) effects of radiative losses and chemical-kinetics on flames near flammability limits. We have also expanded our efforts to include hydrocarbon flames in addition to hydrogen flames and to perform simulations in support of other on-going efforts in the microgravity combustion sciences program. Modeling hydrocarbon flames typically involves a larger number of species and a much larger number of reactions when compared to hydrogen. In addition, more complex radiation models may also be needed. In order to efficiently compute such complex flames recent developments in parallel computing have been utilized to develop a state

  9. Numerical studies from quantum to macroscopic scales of carbon nanoparticules in hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Lombardi, Guillaume; Ngandjong, Alain; Mezei, Zsolt; Mougenot, Jonathan; Michau, Armelle; Hassouni, Khaled; Seydou, Mahamadou; Maurel, François

    2016-09-01

    Dusty plasmas take part in large scientific domains from Universe Science to nanomaterial synthesis processes. They are often generated by growth from molecular precursor. This growth leads to the formation of larger clusters which induce solid germs nucleation. Particle formed are described by an aerosol dynamic taking into account coagulation, molecular deposition and transport processes. These processes are controlled by the elementary particle. So there is a strong coupling between particle dynamics and plasma discharge equilibrium. This study is focused on the development of a multiscale physic and numeric model of hydrogen plasmas and carbon particles around three essential coupled axes to describe the various physical phenomena: (i) Macro/mesoscopic fluid modeling describing in an auto-coherent way, characteristics of the plasma, molecular clusters and aerosol behavior; (ii) the classic molecular dynamics offering a description to the scale molecular of the chains of chemical reactions and the phenomena of aggregation; (iii) the quantum chemistry to establish the activation barriers of the different processes driving the nanopoarticule formation.

  10. The Hall effect in star formation

    NASA Astrophysics Data System (ADS)

    Braiding, C. R.; Wardle, M.

    2012-05-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well studied. We present a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, and similarity solutions that demonstrate the profound influence of the Hall effect on the dynamics of collapse. The solutions show that the size and sign of the Hall parameter can change the size of the protostellar disc by up to an order of magnitude and the protostellar accretion rate by 50 per cent when the ratio of the Hall to ambipolar diffusivities is varied between -0.5 ≤ηH/ηA≤ 0.2. These changes depend upon the orientation of the magnetic field with respect to the axis of rotation and create a preferred handedness to the solutions that could be observed in protostellar cores using next-generation instruments such as ALMA. Hall diffusion also determines the strength and position of the shocks that bound the pseudo and rotationally supported discs, and can introduce subshocks that further slow accretion on to the protostar. In cores that are not initially rotating (not examined here), Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field merits further exploration in numerical simulations of star formation.

  11. Jammed Limit of Bijel Structure Formation

    DOE PAGES

    Welch, P. M.; Lee, M. N.; Parra-Vasquez, A. N. G.; ...

    2017-11-02

    Over the past decade, methods to control microstructure in heterogeneous mixtures by arresting spinodal decomposition via the addition of colloidal particles have led to an entirely new class of bicontinuous materials known as bijels. We present a new model for the development of these materials that yields to both numerical and analytical evaluation. This model reveals that a single dimensionless parameter that captures both chemical and environmental variables dictates the dynamics and ultimate structure formed in bijels. We also demonstrate that this parameter must fall within a fixed range in order for jamming to occur during spinodal decomposition, as wellmore » as show that known experimental trends for the characteristic domain sizes and time scales for formation are recovered by this model.« less

  12. Opinion Formation Models on a Gradient

    PubMed Central

    Gastner, Michael T.; Markou, Nikolitsa; Pruessner, Gunnar; Draief, Moez

    2014-01-01

    Statistical physicists have become interested in models of collective social behavior such as opinion formation, where individuals change their inherently preferred opinion if their friends disagree. Real preferences often depend on regional cultural differences, which we model here as a spatial gradient g in the initial opinion. The gradient does not only add reality to the model. It can also reveal that opinion clusters in two dimensions are typically in the standard (i.e., independent) percolation universality class, thus settling a recent controversy about a non-consensus model. However, using analytical and numerical tools, we also present a model where the width of the transition between opinions scales , not as in independent percolation, and the cluster size distribution is consistent with first-order percolation. PMID:25474528

  13. The Ubiquitin-Specific Protease 14 (USP14) Is a Critical Regulator of Long-Term Memory Formation

    ERIC Educational Resources Information Center

    Jarome, Timothy J.; Kwapis, Janine L.; Hallengren, Jada J.; Wilson, Scott M.; Helmstetter, Fred J.

    2014-01-01

    Numerous studies have suggested a role for ubiquitin-proteasome-mediated protein degradation in learning-dependent synaptic plasticity; however, very little is known about how protein degradation is regulated at the level of the proteasome during memory formation. The ubiquitin-specific protease 14 (USP14) is a proteasomal deubiquitinating enzyme…

  14. Numerical simulation of the effect of groundwater salinity on artificial freezing wall in coastal area

    NASA Astrophysics Data System (ADS)

    Hu, Rui; Liu, Quan

    2017-04-01

    During the engineering projects with artificial ground freezing (AFG) techniques in coastal area, the freezing effect is affected by groundwater salinity. Based on the theories of artificially frozen soil and heat transfer in porous material, and with the assumption that only the variations of total dissolved solids (TDS) impact on freezing point and thermal conductivity, a numerical model of an AFG project in a saline aquifer was established and validated by comparing the simulated temperature field with the calculated temperature based on the analytic solution of rupak (reference) for single-pipe freezing temperature field T. The formation and development of freezing wall were simulated with various TDS. The results showed that the variety of TDS caused the larger temperature difference near the frozen front. With increasing TDS in the saline aquifer (1 35g/L), the average thickness of freezing wall decreased linearly and the total formation time of the freezing wall increased linearly. Compared with of the scenario of fresh-water (<1g/L), the average thickness of frozen wall decreased by 6% and the total formation time of the freezing wall increased by 8% with each increasing TDS of 7g/L. Key words: total dissolved solids, freezing point, thermal conductivity, freezing wall, numerical simulation Reference D.J.Pringel, H.Eicken, H.J.Trodahl, etc. Thermal conductivity of landfast Antarctic and Arctic sea ice[J]. Journal of Geophysical Research, 2007, 112: 1-13. Lukas U.Arenson, Dave C.Sego. The effect of salinity on the freezing of coarse- grained sand[J]. Canadian Geotechnical Journal, 2006, 43: 325-337. Hui Bing, Wei Ma. Laboratory investigation of the freezing point of saline soil[J]. Cold Regions Science and Technology, 2011, 67: 79-88.

  15. Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field.

    PubMed

    Lang, Susan Q; Früh-Green, Gretchen L; Bernasconi, Stefano M; Brazelton, William J; Schrenk, Matthew O; McGonigle, Julia M

    2018-01-15

    Hydrogen produced during water-rock serpentinization reactions can drive the synthesis of organic compounds both biotically and abiotically. We investigated abiotic carbon production and microbial metabolic pathways at the high energy but low diversity serpentinite-hosted Lost City hydrothermal field. Compound-specific 14 C data demonstrates that formate is mantle-derived and abiotic in some locations and has an additional, seawater-derived component in others. Lipids produced by the dominant member of the archaeal community, the Lost City Methanosarcinales, largely lack 14 C, but metagenomic evidence suggests they cannot use formate for methanogenesis. Instead, sulfate-reducing bacteria may be the primary consumers of formate in Lost City chimneys. Paradoxically, the archaeal phylotype that numerically dominates the chimney microbial communities appears ill suited to live in pure hydrothermal fluids without the co-occurrence of organisms that can liberate CO 2 . Considering the lack of dissolved inorganic carbon in such systems, the ability to utilize formate may be a key trait for survival in pristine serpentinite-hosted environments.

  16. Numerical Simulations of Mass Loading in the Solar Wind Interaction with Venus

    NASA Technical Reports Server (NTRS)

    Murawski, K.; Steinolfson, R. S.

    1996-01-01

    Numerical simulations are performed in the framework of nonlinear two-dimensional magnetohydrodynamics to investigate the influence of mass loading on the solar wind interaction with Venus. The principal physical features of the interaction of the solar wind with the atmosphere of Venus are presented. The formation of the bow shock, the magnetic barrier, and the magnetotail are some typical features of the interaction. The deceleration of the solar wind due to the mass loading near Venus is an additional feature. The effect of the mass loading is to push the shock farther outward from the planet. The influence of different values of the magnetic field strength on plasma evolution is considered.

  17. Constraints on the formation and properties of a Martian lobate debris apron: Insights from high-resolution topography, SHARAD radar data, and a numerical ice flow model

    NASA Astrophysics Data System (ADS)

    Parsons, Reid; Holt, John

    2016-03-01

    Lobate debris aprons (LDAs) are midlatitude deposits of debris-covered ice formed during one or more periods of glaciation during the Amazonian period. However, little is known about the climate conditions that led to LDA formation. We explore a hypothesis in which a single, extended period of precipitation of ice on the steep slopes of Euripus Mons (45°S, 105°E—east of the Hellas Basin) produced a flowing ice deposit which was protected from subsequent ablation to produce the LDA found at this location. We test this hypothesis with a numerical ice flow model using an ice rheology based on low-temperature ice deformation experiments. The model simulates ice accumulation and flow for the northern and southern lobes of the Euripus Mons LDA using basal topography constrained by data from the Shallow Radar (SHARAD) and a range of ice viscosities (determined by ice temperature and ice grain size). Simulations for the northern lobe of the Euripus LDA produce good fits to the surface topography. Assuming an LDA age of ˜60 Myr and an expected temperature range of 200 to 204 K (for various obliquities) gives an ice grain size of ≈2 mm. Simulations of the southern section produce poor fits to surface topography and result in much faster flow timescales unless multiple ice deposition events or higher ice viscosities are considered.

  18. Formation of temperature front in stably stratified turbulence

    NASA Astrophysics Data System (ADS)

    Kimura, Yoshifumi; Sullivan, Peter; Herring, Jackson

    2016-11-01

    An important feature of stably stratified turbulence is the significant influence of internal gravity waves which makes stably stratified turbulence unique compared to homogeneous isotropic turbulence. In this paper, we investigate the genesis of temperature fronts-a crucial subject both practically and fundamentally-in stably stratified turbulence using Direct Numerical Simulations (DNS) of the Navier-Stokes equation under the Boussinesq approximation with 10243 grid points. Vertical profiles of temperature fluctuations show almost vertically periodic sawtooth wavy structures with negative and positive layers stacked together with clear boundaries implying a sharp temperature fronts. The sawtooth waves consist of gradual decreasing temperature fluctuations with rapid recovery to a positive value as the frontal boundary is crossed vertically. This asymmetry of gradients comes from the structure that warm temperature region lies on top of cool temperature region, and can be verified in the skewed probability density function (PDF) of vertical temperature gradient. We try to extract the flow structures and mechanism for the formation and maintenance of the strong temperature front numerically.

  19. A local PDE model of aggregation formation in bacterial colonies

    NASA Astrophysics Data System (ADS)

    Chavy-Waddy, Paul-Christopher; Kolokolnikov, Theodore

    2016-10-01

    We study pattern formation in a model of cyanobacteria motion recently proposed by Galante, Wisen, Bhaya and Levy. By taking a continuum limit of their model, we derive a novel fourth-order nonlinear parabolic PDE equation that governs the behaviour of the model. This PDE is {{u}t}=-{{u}xx}-{{u}xxxx}+α {{≤ft(\\frac{{{u}x}{{u}xx}}{u}\\right)}x} . We then derive the instability thresholds for the onset of pattern formation. We also compute analytically the spatial profiles of the steady state aggregation density. These profiles are shown to be of the form \\text{sec}{{\\text{h}}p} where the exponent p is related to the parameters of the model. Full numerical simulations give a favorable comparison between the continuum and the underlying discrete system, and show that the aggregation profiles are stable above the critical threshold.

  20. Bridging the condensation-collision size gap: a direct numerical simulation of continuous droplet growth in turbulent clouds

    NASA Astrophysics Data System (ADS)

    Chen, Sisi; Yau, Man-Kong; Bartello, Peter; Xue, Lulin

    2018-05-01

    In most previous direct numerical simulation (DNS) studies on droplet growth in turbulence, condensational growth and collisional growth were treated separately. Studies in recent decades have postulated that small-scale turbulence may accelerate droplet collisions when droplets are still small when condensational growth is effective. This implies that both processes should be considered simultaneously to unveil the full history of droplet growth and rain formation. This paper introduces the first direct numerical simulation approach to explicitly study the continuous droplet growth by condensation and collisions inside an adiabatic ascending cloud parcel. Results from the condensation-only, collision-only, and condensation-collision experiments are compared to examine the contribution to the broadening of droplet size distribution (DSD) by the individual process and by the combined processes. Simulations of different turbulent intensities are conducted to investigate the impact of turbulence on each process and on the condensation-induced collisions. The results show that the condensational process promotes the collisions in a turbulent environment and reduces the collisions when in still air, indicating a positive impact of condensation on turbulent collisions. This work suggests the necessity of including both processes simultaneously when studying droplet-turbulence interaction to quantify the turbulence effect on the evolution of cloud droplet spectrum and rain formation.