Sample records for join pattern instances

  1. Multi-instance learning based on instance consistency for image retrieval

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Wu, Zhize; Wan, Shouhong; Yue, Lihua; Yin, Bangjie

    2017-07-01

    Multiple-instance learning (MIL) has been successfully utilized in image retrieval. Existing approaches cannot select positive instances correctly from positive bags which may result in a low accuracy. In this paper, we propose a new image retrieval approach called multiple instance learning based on instance-consistency (MILIC) to mitigate such issue. First, we select potential positive instances effectively in each positive bag by ranking instance-consistency (IC) values of instances. Then, we design a feature representation scheme, which can represent the relationship among bags and instances, based on potential positive instances to convert a bag into a single instance. Finally, we can use a standard single-instance learning strategy, such as the support vector machine, for performing object-based image retrieval. Experimental results on two challenging data sets show the effectiveness of our proposal in terms of accuracy and run time.

  2. Multicolor printing plate joining

    NASA Technical Reports Server (NTRS)

    Waters, W. J. (Inventor)

    1984-01-01

    An upper plate having ink flow channels and a lower plate having a multicolored pattern are joined. The joining is accomplished without clogging any ink flow paths. A pattern having different colored parts and apertures is formed in a lower plate. Ink flow channels each having respective ink input ports are formed in an upper plate. The ink flow channels are coated with solder mask and the bottom of the upper plate is then coated with solder. The upper and lower plates are pressed together at from 2 to 5 psi and heated to a temperature of from 295 F to 750 F or enough to melt the solder. After the plates have cooled and the pressure is released, the solder mask is removed from the interior passageways by means of a liquid solvent.

  3. Robust Joining and Assembly Technologies for Ceramic Matrix Composites: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Mrityunjay, Singh; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Fiber reinforced ceramic matrix composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, energy, process, and nuclear industries. The engineering designs require fabrication and manufacturing of complex shaped parts. In many instances, it is more economical to build up complex shapes by Joining simple geometrical shapes. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in ceramic matrix composites will be presented. Various joint design philosophies and design issues in joining of composites will be discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of ceramic composites, in different shapes and sizes, have been joined using this technology. Microstructure and mechanical properties of joints will be reported. Current status of various ceramic joining technologies and future prospects for their applications will also be discussed.

  4. Instance annotation for multi-instance multi-label learning

    Treesearch

    F. Briggs; X.Z. Fern; R. Raich; Q. Lou

    2013-01-01

    Multi-instance multi-label learning (MIML) is a framework for supervised classification where the objects to be classified are bags of instances associated with multiple labels. For example, an image can be represented as a bag of segments and associated with a list of objects it contains. Prior work on MIML has focused on predicting label sets for previously unseen...

  5. Robust Joining and Integration of Advanced Ceramics and Composites: Challenges, Opportunities, and Realities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2006-01-01

    Advanced ceramics and fiber reinforced composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition, these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in advanced ceramics and ceramic matrix composites will be presented. Silicon carbide based advanced ceramics and fiber reinforced composites in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology. In addition, some examples of metal-ceramic brazing will also be presented. Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and composites will be reported. Various joint design philosophies and design issues in joining of ceramics and composites will be discussed.

  6. Improved Joining of Metal Components to Composite Structures

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund

    2009-01-01

    Systems requirements for complex spacecraft drive design requirements that lead to structures, components, and/or enclosures of a multi-material and multifunctional design. The varying physical properties of aluminum, tungsten, Invar, or other high-grade aerospace metals when utilized in conjunction with lightweight composites multiply system level solutions. These multi-material designs are largely dependent upon effective joining techAn improved method of joining metal components to matrix/fiber composite material structures has been invented. The method is particularly applicable to equipping such thin-wall polymer-matrix composite (PMC) structures as tanks with flanges, ceramic matrix composite (CMC) liners for high heat engine nozzles, and other metallic-to-composite attachments. The method is oriented toward new architectures and distributing mechanical loads as widely as possible in the vicinities of attachment locations to prevent excessive concentrations of stresses that could give rise to delaminations, debonds, leaks, and other failures. The method in its most basic form can be summarized as follows: A metal component is to be joined to a designated attachment area on a composite-material structure. In preparation for joining, the metal component is fabricated to include multiple studs projecting from the aforementioned face. Also in preparation for joining, holes just wide enough to accept the studs are molded into, drilled, or otherwise formed in the corresponding locations in the designated attachment area of the uncured ("wet') composite structure. The metal component is brought together with the uncured composite structure so that the studs become firmly seated in the holes, thereby causing the composite material to become intertwined with the metal component in the joining area. Alternately, it is proposed to utilize other mechanical attachment schemes whereby the uncured composite and metallic parts are joined with "z-direction" fasteners. The

  7. Maximum margin multiple instance clustering with applications to image and text clustering.

    PubMed

    Zhang, Dan; Wang, Fei; Si, Luo; Li, Tao

    2011-05-01

    In multiple instance learning problems, patterns are often given as bags and each bag consists of some instances. Most of existing research in the area focuses on multiple instance classification and multiple instance regression, while very limited work has been conducted for multiple instance clustering (MIC). This paper formulates a novel framework, maximum margin multiple instance clustering (M(3)IC), for MIC. However, it is impractical to directly solve the optimization problem of M(3)IC. Therefore, M(3)IC is relaxed in this paper to enable an efficient optimization solution with a combination of the constrained concave-convex procedure and the cutting plane method. Furthermore, this paper presents some important properties of the proposed method and discusses the relationship between the proposed method and some other related ones. An extensive set of empirical results are shown to demonstrate the advantages of the proposed method against existing research for both effectiveness and efficiency.

  8. Object instance recognition using motion cues and instance specific appearance models

    NASA Astrophysics Data System (ADS)

    Schumann, Arne

    2014-03-01

    In this paper we present an object instance retrieval approach. The baseline approach consists of a pool of image features which are computed on the bounding boxes of a query object track and compared to a database of tracks in order to find additional appearances of the same object instance. We improve over this simple baseline approach in multiple ways: 1) we include motion cues to achieve improved robustness to viewpoint and rotation changes, 2) we include operator feedback to iteratively re-rank the resulting retrieval lists and 3) we use operator feedback and location constraints to train classifiers and learn an instance specific appearance model. We use these classifiers to further improve the retrieval results. The approach is evaluated on two popular public datasets for two different applications. We evaluate person re-identification on the CAVIAR shopping mall surveillance dataset and vehicle instance recognition on the VIVID aerial dataset and achieve significant improvements over our baseline results.

  9. Joining and Assembly of Silicon Carbide-based Advanced Ceramics and Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2004-01-01

    Silicon carbide based advanced ceramics and fiber reinforced composites are under active consideration for use in wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite component require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing o high temperature joints in ceramic matrix composites will be presented. Silicon carbide based advanced ceramics (CVD and hot pressed), and C/SiC and SiC/SiC composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and CVI and melt infiltrated SiC matrix composites will,be reported. Various joint design philosophies and design issues in joining of ceramics and composites well be discussed.

  10. Precision Joining Center

    NASA Astrophysics Data System (ADS)

    Powell, J. W.; Westphal, D. A.

    1991-08-01

    A workshop to obtain input from industry on the establishment of the Precision Joining Center (PJC) was held on July 10-12, 1991. The PJC is a center for training Joining Technologists in advanced joining techniques and concepts in order to promote the competitiveness of U.S. industry. The center will be established as part of the DOE Defense Programs Technology Commercialization Initiative, and operated by EG&G Rocky Flats in cooperation with the American Welding Society and the Colorado School of Mines Center for Welding and Joining Research. The overall objectives of the workshop were to validate the need for a Joining Technologists to fill the gap between the welding operator and the welding engineer, and to assure that the PJC will train individuals to satisfy that need. The consensus of the workshop participants was that the Joining Technologist is a necessary position in industry, and is currently used, with some variation, by many companies. It was agreed that the PJC core curriculum, as presented, would produce a Joining Technologist of value to industries that use precision joining techniques. The advantage of the PJC would be to train the Joining Technologist much more quickly and more completely. The proposed emphasis of the PJC curriculum on equipment intensive and hands-on training was judged to be essential.

  11. Strategies for generating multiple instances of common and ad hoc categories.

    PubMed

    Vallée-Tourangeau, F; Anthony, S H; Austin, N G

    1998-09-01

    In a free-emission procedure participants were asked to generate instances of a given category and to report, retrospectively, the strategies that they were aware of using in retrieving instances. In two studies reported here, participants generated instances for common categories (e.g. fruit) and for ad hoc categories (e.g., things people keep in their pockets) for 90 seconds and for each category described how they had proceeded in doing so. Analysis of the protocols identified three broad classes of strategy: (1) experiential, where memories of specific or generic personal experiences involving interactions with the category instances acted as cues; (2) semantic, where a consideration of abstract conceptual characteristics of a category were employed to retrieve category exemplars; (3) unmediated, where instances were effortlessly retrieved without mediating cognitions of which subjects were aware. Experiential strategies outnumbered semantic strategies (on average 4 to 1) not only for ad hoc categories but also for common categories. This pattern was noticeably reversed for ad hoc categories that subjects were unlikely to have experienced personally (e.g. things sold on the black market in Russia). Whereas more traditional accounts of semantic memory have favoured decontextualised abstract representations of category knowledge, to the extent that mode of access informs us of knowledge structures, our data suggest that category knowledge is significantly grounded in terms of everyday contexts where category instances are encountered.

  12. Learning Instance-Specific Predictive Models

    PubMed Central

    Visweswaran, Shyam; Cooper, Gregory F.

    2013-01-01

    This paper introduces a Bayesian algorithm for constructing predictive models from data that are optimized to predict a target variable well for a particular instance. This algorithm learns Markov blanket models, carries out Bayesian model averaging over a set of models to predict a target variable of the instance at hand, and employs an instance-specific heuristic to locate a set of suitable models to average over. We call this method the instance-specific Markov blanket (ISMB) algorithm. The ISMB algorithm was evaluated on 21 UCI data sets using five different performance measures and its performance was compared to that of several commonly used predictive algorithms, including nave Bayes, C4.5 decision tree, logistic regression, neural networks, k-Nearest Neighbor, Lazy Bayesian Rules, and AdaBoost. Over all the data sets, the ISMB algorithm performed better on average on all performance measures against all the comparison algorithms. PMID:25045325

  13. Live neighbor-joining.

    PubMed

    Telles, Guilherme P; Araújo, Graziela S; Walter, Maria E M T; Brigido, Marcelo M; Almeida, Nalvo F

    2018-05-16

    In phylogenetic reconstruction the result is a tree where all taxa are leaves and internal nodes are hypothetical ancestors. In a live phylogeny, both ancestral and living taxa may coexist, leading to a tree where internal nodes may be living taxa. The well-known Neighbor-Joining heuristic is largely used for phylogenetic reconstruction. We present Live Neighbor-Joining, a heuristic for building a live phylogeny. We have investigated Live Neighbor-Joining on datasets of viral genomes, a plausible scenario for its application, which allowed the construction of alternative hypothesis for the relationships among virus that embrace both ancestral and descending taxa. We also applied Live Neighbor-Joining on a set of bacterial genomes and to sets of images and texts. Non-biological data may be better explored visually when their relationship in terms of content similarity is represented by means of a phylogeny. Our experiments have shown interesting alternative phylogenetic hypothesis for RNA virus genomes, bacterial genomes and alternative relationships among images and texts, illustrating a wide range of scenarios where Live Neighbor-Joining may be used.

  14. Personal Influence on the Decision to Join Voluntary Associations.

    ERIC Educational Resources Information Center

    Booth, Alan James

    A longitudinal study (1961-1965) was planned to obtain information on the pervasiveness of personal influence with respect to decisions to join formal voluntary associations; examine the characteristics of opinion leaders and the individuals they influence; discover the differential patterns of joiners' exposure to mass communicated messages about…

  15. Pulse joining cartridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis

    A pulsed joining tool includes a tool body that defines a cavity that receives an inner tubular member and an outer tubular member and a pulse joining cartridge. The tubular members are nested together with the cartridge being disposed around the outer tubular member. The cartridge includes a conductor, such as a wire or foil, that extends around the outer tubular member and is insulated to separate a supply segment from a return segment. A source of stored electrical energy is discharged through the conductor to join the tubular members with an electromagnetic force pulse.

  16. Pulse joining cartridges

    DOEpatents

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis

    2016-08-23

    A pulsed joining tool includes a tool body that defines a cavity that receives an inner tubular member and an outer tubular member and a pulse joining cartridge. The tubular members are nested together with the cartridge being disposed around the outer tubular member. The cartridge includes a conductor, such as a wire or foil, that extends around the outer tubular member and is insulated to separate a supply segment from a return segment. A source of stored electrical energy is discharged through the conductor to join the tubular members with an electromagnetic force pulse.

  17. Some insights on hard quadratic assignment problem instances

    NASA Astrophysics Data System (ADS)

    Hussin, Mohamed Saifullah

    2017-11-01

    Since the formal introduction of metaheuristics, a huge number Quadratic Assignment Problem (QAP) instances have been introduced. Those instances however are loosely-structured, and therefore made it difficult to perform any systematic analysis. The QAPLIB for example, is a library that contains a huge number of QAP benchmark instances that consists of instances with different size and structure, but with a very limited availability for every instance type. This prevents researchers from performing organized study on those instances, such as parameter tuning and testing. In this paper, we will discuss several hard instances that have been introduced over the years, and algorithms that have been used for solving them.

  18. Joining of dissimilar materials

    DOEpatents

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  19. Chrysler Upset Protrusion Joining Techniques for Joining Dissimilar Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Stephen

    The project goal was to develop and demonstrate a robust, cost effective, and versatile joining technique, known as Upset Protrusion Joining (UPJ), for joining challenging dissimilar metal com-binations, especially those where one of the metals is a die cast magnesium (Mg) component. Since two of the key obstacles preventing more widespread use of light metals (especially in high volume automotive applications) are 1) a lack of robust joining techniques and 2) susceptibility to galvanic corrosion, and since the majority of the joint combinations evaluated in this project include die cast Mg (the lightest structural metal) as one of the twomore » materials being joined, and since die casting is the most common and cost effective process for producing Mg components, then successful project completion provides a key enabler to high volume application of lightweight materials, thus potentially leading to reduced costs, and encouraging implementation of lightweight multi-material vehicles for significant reductions in energy consumption and reduced greenhouse gas emissions. Eco-nomic benefits to end-use consumers are achieved primarily via the reduction in fuel consumption. Unlike currently available commercial processes, the UPJ process relies on a very robust mechanical joint rather than intermetallic bonding, so the more cathodic material can be coated prior to joining, thus creating a robust isolation against galvanic attack on the more anodic material. Additionally, since the UPJ protrusion is going through a hole that can be pre-drilled or pre-punched prior to coating, the UPJ process is less likely to damage the coating when the joint is being made. Further-more, since there is no additional cathodic material (such as a steel fastener) used to create the joint, there is no joining induced galvanic activity beyond that of the two parent materials. In accordance with its originally proposed plan, this project has successfully developed process variants of UPJ to

  20. CFRTP and stainless steel laser joining: Thermal defects analysis and joining parameters optimization

    NASA Astrophysics Data System (ADS)

    Jiao, Junke; Xu, Zifa; Wang, Qiang; Sheng, Liyuan; Zhang, Wenwu

    2018-07-01

    Experiments with different joining parameters were carried out on fiber laser welding system to explore the mechanism of CFRTP/stainless steel joining and the influence of the parameters on the joining quality. The thermal defect and the microstructure of the joint was tested by SEM, EDS. The joint strength and the thermal defect zone width was measured by the tensile tester and the laser confocal microscope, respectively. The influence of parameters such as the laser power, the joining speed and the clamper pressure on the stainless steel surface thermal defect and the joint strength was analyzed. The result showed that the thermal defect on the stainless steel surface would change metal's mechanical properties and reduce its service life. A chemical bonding was found between the CFRTP and the stainless steel besides the physical bonding and the mechanical bonding. The highest shear stress was obtained as the laser power, the joining speed and the clamper pressure is 280 W, 4 mm/s and 0.15 MPa, respectively.

  1. Instances selection algorithm by ensemble margin

    NASA Astrophysics Data System (ADS)

    Saidi, Meryem; Bechar, Mohammed El Amine; Settouti, Nesma; Chikh, Mohamed Amine

    2018-05-01

    The main limit of data mining algorithms is their inability to deal with the huge amount of available data in a reasonable processing time. A solution of producing fast and accurate results is instances and features selection. This process eliminates noisy or redundant data in order to reduce the storage and computational cost without performances degradation. In this paper, a new instance selection approach called Ensemble Margin Instance Selection (EMIS) algorithm is proposed. This approach is based on the ensemble margin. To evaluate our approach, we have conducted several experiments on different real-world classification problems from UCI Machine learning repository. The pixel-based image segmentation is a field where the storage requirement and computational cost of applied model become higher. To solve these limitations we conduct a study based on the application of EMIS and other instance selection techniques for the segmentation and automatic recognition of white blood cells WBC (nucleus and cytoplasm) in cytological images.

  2. Parallel multi-join query optimization algorithm for distributed sensor network in the internet of things

    NASA Astrophysics Data System (ADS)

    Zheng, Yan

    2015-03-01

    Internet of things (IoT), focusing on providing users with information exchange and intelligent control, attracts a lot of attention of researchers from all over the world since the beginning of this century. IoT is consisted of large scale of sensor nodes and data processing units, and the most important features of IoT can be illustrated as energy confinement, efficient communication and high redundancy. With the sensor nodes increment, the communication efficiency and the available communication band width become bottle necks. Many research work is based on the instance which the number of joins is less. However, it is not proper to the increasing multi-join query in whole internet of things. To improve the communication efficiency between parallel units in the distributed sensor network, this paper proposed parallel query optimization algorithm based on distribution attributes cost graph. The storage information relations and the network communication cost are considered in this algorithm, and an optimized information changing rule is established. The experimental result shows that the algorithm has good performance, and it would effectively use the resource of each node in the distributed sensor network. Therefore, executive efficiency of multi-join query between different nodes could be improved.

  3. Joined concentric tubes

    DOEpatents

    DeJonghe, Lutgard; Jacobson, Craig; Tucker, Michael; Visco, Steven

    2013-01-01

    Tubular objects having two or more concentric layers that have different properties are joined to one another during their manufacture primarily by compressive and friction forces generated by shrinkage during sintering and possibly mechanical interlocking. It is not necessary for the concentric tubes to display adhesive-, chemical- or sinter-bonding to each other in order to achieve a strong bond. This facilitates joining of dissimilar materials, such as ceramics and metals.

  4. Duct Joining System

    DOEpatents

    Proctor, John P.

    2001-02-27

    A duct joining system for providing an air-tight seal and mechanical connection for ducts and fittings is disclosed. The duct joining system includes a flexible gasket affixed to a male end of a duct or fitting. The flexible gasket is affixed at an angle relative to normal of the male end of the duct. The female end of the other duct includes a raised bead in which the flexible gasket is seated when the ducts are properly joined. The angled flexible gasket seated in the raised bead forms an air-tight seal as well as fastens or locks the male end to the female end. Alternatively, when a flexible duct is used, a band clamp with a raised bead is clamped over the female end of the flexible duct and over the male end of a fitting to provide an air tight seal and fastened connection.

  5. Duct joining system

    DOEpatents

    Proctor, John P.; deKieffer, Robert C.

    2001-01-01

    A duct joining system for providing an air-tight seal and mechanical connection for ducts and fittings is disclosed. The duct joining system includes a flexible gasket affixed to a male end of a duct or fitting. The flexible gasket is affixed at an angle relative to normal of the male end of the duct. The female end of the other duct includes a raised bead in which the flexible gasket is seated when the ducts are properly joined. The angled flexible gasket seated in the raised bead forms an air-tight seal as well as fastens or locks the male end to the female end. Alternatively, when a flexible duct is used, a band clamp with a raised bead is clamped over the female end of the flexible duct and over the male end of a fitting to provide an air tight seal and fastened connection.

  6. Welding and joining: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation is presented of NASA-developed technology in welding and joining. Topics discussed include welding equipment, techniques in welding, general bonding, joining techniques, and clamps and holding fixtures.

  7. Joining engineering ceramics

    NASA Astrophysics Data System (ADS)

    Loehman, Ronald E.

    Methods for joining ceramics are outlined with attention given to their fundamental properties, and some examples of ceramic bonding in engineering ceramic systems are presented. Ceramic-ceramic bonds using no filler material include diffusion and electric-field bonding and ceramic welding, and bonds with filler materials can be provided by Mo-Mn brazing, microwave joining, and reactive nonmetallic liquid bonding. Ceramic-metal joints can be effected with filler material by means of the same ceramic-ceramic processes and without filler material by means of use of molten glass or diffusion bonding. Key properties of the bonding processes include: bonds with discontinuous material properties, energies that are positive relative to the bulk material, and unique chemical and mechanical properties. The processes and properties are outlined for ceramic-metal joints and for joining silicon nitride, and the factors that control wetting, adhesion, and reaction on the atomic scale are critical for establishing successful joints.

  8. Connecting Instances to Promote Children's Relational Reasoning

    ERIC Educational Resources Information Center

    Son, Ji Y.; Smith, Linda B.; Goldstone, Robert L.

    2011-01-01

    The practice of learning from multiple instances seems to allow children to learn about relational structure. The experiments reported here focused on two issues regarding relational learning from multiple instances: (a) what kind of perceptual situations foster such learning and (b) how particular object properties, such as complexity and…

  9. Hybrid foraging search: Searching for multiple instances of multiple types of target.

    PubMed

    Wolfe, Jeremy M; Aizenman, Avigael M; Boettcher, Sage E P; Cain, Matthew S

    2016-02-01

    This paper introduces the "hybrid foraging" paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8-64 target objects in memory. They viewed displays of 60-105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25-33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Hybrid foraging search: Searching for multiple instances of multiple types of target

    PubMed Central

    Wolfe, Jeremy M.; Aizenman, Avigael M.; Boettcher, Sage E.P.; Cain, Matthew S.

    2016-01-01

    This paper introduces the “hybrid foraging” paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8–64 targets objects in memory. They viewed displays of 60–105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25–33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search. PMID:26731644

  11. Welding and Joining of Titanium Aluminides

    PubMed Central

    Cao, Jian; Qi, Junlei; Song, Xiaoguo; Feng, Jicai

    2014-01-01

    Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials. PMID:28788113

  12. Joining of Silicon Carbide: Diffusion Bond Optimization and Characterization

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2008-01-01

    Joining and integration methods are critically needed as enabling technologies for the full utilization of advanced ceramic components in aerospace and aeronautics applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. In the application, several SiC substrates with different hole patterns to form fuel and combustion air channels are bonded to form the injector. Diffusion bonding is a joining approach that offers uniform bonds with high temperature capability, chemical stability, and high strength. Diffusion bonding was investigated with the aid of titanium foils and coatings as the interlayer between SiC substrates to aid bonding. The influence of such variables as interlayer type, interlayer thickness, substrate finish, and processing time were investigated. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.

  13. Affordable, Robust Ceramic Joining Technology (ARCJoint) Developed

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    2001-01-01

    Affordable, Robust Ceramic Joining Technology (ARCJoint) is a method for joining high temperature- resistant ceramic pieces together, establishing joints that are strong, and allowing joining to be done in the field. This new way of joining allows complex shapes to be formed by joining together geometrically simple shapes. The joining technology at NASA is one of the enabling technologies for the application of silicon-carbide-based ceramic and composite components in demanding and high-temperature applications. The technology is being developed and tested for high-temperature propulsion parts for aerospace use. Commercially, it can be used for joining ceramic pieces used for high temperature applications in the power-generating and chemical industries, as well as in the microelectronics industry. This innovation could yield big payoffs for not only the power-generating industry but also the Silicon Valley chipmakers. This technology, which was developed at the NASA Glenn Research Center by Dr. Mrityunjay Singh, is a two-step process involving first using a paste to join together ceramic pieces and bonding them by heating the joint to 110 to 120 C for between 10 and 20 min. This makes the joint strong enough to be handled for the final joining. Then, a silicon-based substance is applied to the joint and heated to 1400 C for 10 to 15 min. The resulting joint is as strong as the original ceramic material and can withstand the same high temperatures.

  14. The Join-Up Meeting

    NASA Technical Reports Server (NTRS)

    Cameron, W. Scott

    2002-01-01

    I recently took on a new assignment and, as is my norm, I scheduled a series of one-hour, 1:1 join-up meetings with the various lead personnel on the team and their hierarchy. During one of these meetings, the person I was meeting with informed me how pleasantly surprised she was that I had scheduled this meeting as very few individuals took the time anymore to have them. I was shocked. I was taught that establishing a 1:1 relationship with the people on your team is critical to the project's success. This was the first time I'd heard anything like this about join-up meetings. I filed this feedback away. Later I was talking to my project manager-mentor, and he indicated he had finished his join-up meetings with every person in his new organization. He also indicated his predecessor had conducted few, if any, join-up meetings. Again, I was shocked. When I reflected on these two experiences, I realized a very negative trend might be emerging in our fast-paced, schedule-driven, 500-e-mail-per-day, cell-phone -ringing, 24/7 -communication, multi-tasking work lives: NO FACE TIME! Face time is what you spend with people to talk about the project you are working on, their expectations of you, your expectations of them, your hierarchy's expectations about each of you, and/or-last but certainly not least-what each of you plans on achieving during the project. A 1:1, face-to-face, join-up meeting is the only way I know to build solid trust between the project manager and the team members and their hierarchy.

  15. Multiple-Instance Regression with Structured Data

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Lane, Terran; Roper, Alex

    2008-01-01

    We present a multiple-instance regression algorithm that models internal bag structure to identify the items most relevant to the bag labels. Multiple-instance regression (MIR) operates on a set of bags with real-valued labels, each containing a set of unlabeled items, in which the relevance of each item to its bag label is unknown. The goal is to predict the labels of new bags from their contents. Unlike previous MIR methods, MI-ClusterRegress can operate on bags that are structured in that they contain items drawn from a number of distinct (but unknown) distributions. MI-ClusterRegress simultaneously learns a model of the bag's internal structure, the relevance of each item, and a regression model that accurately predicts labels for new bags. We evaluated this approach on the challenging MIR problem of crop yield prediction from remote sensing data. MI-ClusterRegress provided predictions that were more accurate than those obtained with non-multiple-instance approaches or MIR methods that do not model the bag structure.

  16. Experimental Matching of Instances to Heuristics for Constraint Satisfaction Problems.

    PubMed

    Moreno-Scott, Jorge Humberto; Ortiz-Bayliss, José Carlos; Terashima-Marín, Hugo; Conant-Pablos, Santiago Enrique

    2016-01-01

    Constraint satisfaction problems are of special interest for the artificial intelligence and operations research community due to their many applications. Although heuristics involved in solving these problems have largely been studied in the past, little is known about the relation between instances and the respective performance of the heuristics used to solve them. This paper focuses on both the exploration of the instance space to identify relations between instances and good performing heuristics and how to use such relations to improve the search. Firstly, the document describes a methodology to explore the instance space of constraint satisfaction problems and evaluate the corresponding performance of six variable ordering heuristics for such instances in order to find regions on the instance space where some heuristics outperform the others. Analyzing such regions favors the understanding of how these heuristics work and contribute to their improvement. Secondly, we use the information gathered from the first stage to predict the most suitable heuristic to use according to the features of the instance currently being solved. This approach proved to be competitive when compared against the heuristics applied in isolation on both randomly generated and structured instances of constraint satisfaction problems.

  17. Experimental Matching of Instances to Heuristics for Constraint Satisfaction Problems

    PubMed Central

    Moreno-Scott, Jorge Humberto; Ortiz-Bayliss, José Carlos; Terashima-Marín, Hugo; Conant-Pablos, Santiago Enrique

    2016-01-01

    Constraint satisfaction problems are of special interest for the artificial intelligence and operations research community due to their many applications. Although heuristics involved in solving these problems have largely been studied in the past, little is known about the relation between instances and the respective performance of the heuristics used to solve them. This paper focuses on both the exploration of the instance space to identify relations between instances and good performing heuristics and how to use such relations to improve the search. Firstly, the document describes a methodology to explore the instance space of constraint satisfaction problems and evaluate the corresponding performance of six variable ordering heuristics for such instances in order to find regions on the instance space where some heuristics outperform the others. Analyzing such regions favors the understanding of how these heuristics work and contribute to their improvement. Secondly, we use the information gathered from the first stage to predict the most suitable heuristic to use according to the features of the instance currently being solved. This approach proved to be competitive when compared against the heuristics applied in isolation on both randomly generated and structured instances of constraint satisfaction problems. PMID:26949383

  18. Evaluating the Upset Protrusion Joining (UPJ) Method to Join magnesium Castings to Dissimilar Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Stephen D.

    2015-08-19

    This presentation discusses advantages and best practices for incorporating magnesium in automotive component applications to achieve substantial mass reduction, as well as some of the key challenges with respect to joining, coating, and galvanic corrosion, before providing an introduction and status update of the U.S. Department of Energy and Department of Defense jointly sponsored Upset Protrusion Joining (UPJ) process development and evaluation project. This update includes sharing performance results of a benchmark evaluation of the self-pierce riveting (SPR) process for joining dissimilar magnesium (Mg) to aluminum (Al) materials in four unique coating configurations before introducing the UPJ concept and comparingmore » performance results of the joints made with the UPJ process to those made with the SPR process.« less

  19. Willmore energy for joining of carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Sripaturad, P.; Alshammari, N. A.; Thamwattana, N.; McCoy, J. A.; Baowan, D.

    2018-06-01

    Numerous types of carbon nanostructure have been found experimentally, including nanotubes, fullerenes and nanocones. These structures have applications in various nanoscale devices and the joining of these structures may lead to further new configurations with more remarkable properties and applications. The join profile between different carbon nanostructures in a symmetric configuration may be modelled using the calculus of variations. In previous studies, carbon nanostructures were assumed to deform according to perfect elasticity, thus the elastic energy, depending only on the axial curvature, was used to determine the join profile consisting of a finite number of discrete bonds. However, one could argue that the relevant energy should also involve the rotational curvature, especially when its size is comparable to the axial curvature. In this paper, we use the Willmore energy, a natural generalisation of the elastic energy that depends on both the axial and rotational curvatures. Catenoids are absolute minimisers of this energy and pieces of these may be used to join various nanostructures. We focus on the cases of joining a fullerene to a nanotube and joining two fullerenes along a common axis. By comparing our results with the earlier work, we find that both energies give similar joining profiles. Further work on other configurations may reveal which energy provides a better model.

  20. Torsional Shear Strength Tests for Glass-Ceramic Joined Silicon Carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraris, Monica; Ventrella, Andrea; Salvo, Milena

    2014-03-17

    A torsion test on hour-glass-shaped samples with a full joined or a ring-shaped joined area was chosen in this study to measure shear strength of glass-ceramic joined silicon carbide. Shear strength of about 100 MPa was measured for full joined SiC with fracture completely inside their joined area. Attempts to obtain this shear strength with a ring-shaped joined area failed due to mixed mode fractures. However, full joined and ring-shaped steel hour-glasses joined by a glass-ceramic gave the same shear strength, thus suggesting that this test measures shear strength of joined components only when their fracture is completely inside theirmore » joined area.« less

  1. Conjoint Forming - Technologies for Simultaneous Forming and Joining

    NASA Astrophysics Data System (ADS)

    Groche, P.; Wohletz, S.; Mann, A.; Krech, M.; Monnerjahn, V.

    2016-03-01

    The market demand for new products optimized for e. g. lightweight applications or smart components leads to new challenges in production engineering. Hybrid structures represent one promising approach. They aim at higher product performance by using a suitable combination of different materials. The developments of hybrid structures stimulate the research on joining of dissimilar materials. Since they allow for joining dissimilar materials without external heating technologies based on joining by plastic deformation seem to be of special attractiveness. The paper at hand discusses the conjoint forming approach. This approach combines forming and joining in one process. Two or more workpieces are joined while at least one workpiece is plastically deformed. After presenting the fundamental joining mechanisms, the conjoint forming approach is discussed comprehensively. Examples of conjoint processes demonstrate the effectiveness and reveal the underlying phenomena.

  2. Prospects of joining multi-material structures

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, R.; Hynes, N. Rajesh Jesudoss

    2018-05-01

    Spring up trends and necessities make the pipelines for the brand new Technologies. The same way, Multimaterial structures emerging as fruitful alternatives for the conventional structures in the manufacturing sector. Especially manufacturing of transport vehicles is placing a perfect platform for these new structures. Bonding or joining technology plays a crucial role in the field of manufacturing for sustainability. These latest structures are purely depending on such joining technologies so that multi-material structuring can be possible practically. The real challenge lies on joining dissimilar materials of different properties and nature. Escalation of thermoplastic usage in large structural components also faces similar ambiguity for joining multi-material structures. Adhesive bonding, mechanical fastening and are the answering technologies for multi-material structures. This current paper analysis the prospects of these bonding technologies to meet the challenges of tomorrow.

  3. Self-healing of cracks in Ag joining layer for die-attachment in power devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chuantong, E-mail: chenchuantong@sanken.osaka-u.ac.jp; Nagao, Shijo; Suganuma, Katsuaki

    Sintered silver (Ag) joining has attracted significant interest in power devices modules for its ability to form stable joints with a porous interconnection layer. A function for the self-healing of cracks in sintered porous Ag interlayers at high temperatures is discovered and reported here. A crack which was prepared on a Ag joining layer was closed after heating at 200 °C in air. The tensile strength of pre-cracked Ag joining layer specimens recovers to the value of non-cracked specimens after heating treatment. Transmission electron microscopy (TEM) was used to probe the self-healing mechanism. TEM images and electron diffraction patterns show thatmore » a large quantity of Ag nanoparticles formed at the gap with the size less than 10 nm, which bridges the crack in the self-healing process. This discovery provides additional motivation for the application of Ag as an interconnection material for power devices at high temperature.« less

  4. Self-healing of cracks in Ag joining layer for die-attachment in power devices

    NASA Astrophysics Data System (ADS)

    Chen, Chuantong; Nagao, Shijo; Suganuma, Katsuaki; Jiu, Jinting; Zhang, Hao; Sugahara, Tohru; Iwashige, Tomohito; Sugiura, Kazuhiko; Tsuruta, Kazuhiro

    2016-08-01

    Sintered silver (Ag) joining has attracted significant interest in power devices modules for its ability to form stable joints with a porous interconnection layer. A function for the self-healing of cracks in sintered porous Ag interlayers at high temperatures is discovered and reported here. A crack which was prepared on a Ag joining layer was closed after heating at 200 °C in air. The tensile strength of pre-cracked Ag joining layer specimens recovers to the value of non-cracked specimens after heating treatment. Transmission electron microscopy (TEM) was used to probe the self-healing mechanism. TEM images and electron diffraction patterns show that a large quantity of Ag nanoparticles formed at the gap with the size less than 10 nm, which bridges the crack in the self-healing process. This discovery provides additional motivation for the application of Ag as an interconnection material for power devices at high temperature.

  5. Integrating instance selection, instance weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms.

    PubMed

    Derrac, Joaquín; Triguero, Isaac; Garcia, Salvador; Herrera, Francisco

    2012-10-01

    Cooperative coevolution is a successful trend of evolutionary computation which allows us to define partitions of the domain of a given problem, or to integrate several related techniques into one, by the use of evolutionary algorithms. It is possible to apply it to the development of advanced classification methods, which integrate several machine learning techniques into a single proposal. A novel approach integrating instance selection, instance weighting, and feature weighting into the framework of a coevolutionary model is presented in this paper. We compare it with a wide range of evolutionary and nonevolutionary related methods, in order to show the benefits of the employment of coevolution to apply the techniques considered simultaneously. The results obtained, contrasted through nonparametric statistical tests, show that our proposal outperforms other methods in the comparison, thus becoming a suitable tool in the task of enhancing the nearest neighbor classifier.

  6. Experimental Observations for Determining the Maximum Torque Values to Apply to Composite Components Mechanically Joined With Fasteners (MSFC Center Director's Discretionary Fund Final Report, Proj. 03-13}

    NASA Technical Reports Server (NTRS)

    Thomas, F. P.

    2006-01-01

    Aerospace structures utilize innovative, lightweight composite materials for exploration activities. These structural components, due to various reasons including size limitations, manufacturing facilities, contractual obligations, or particular design requirements, will have to be joined. The common methodologies for joining composite components are the adhesively bonded and mechanically fastened joints and, in certain instances, both methods are simultaneously incorporated into the design. Guidelines and recommendations exist for engineers to develop design criteria and analyze and test composites. However, there are no guidelines or recommendations based on analysis or test data to specify a torque or torque range to apply to metallic mechanical fasteners used to join composite components. Utilizing the torque tension machine at NASA s Marshall Space Flight Center, an initial series of tests were conducted to determine the maximum torque that could be applied to a composite specimen. Acoustic emissions were used to nondestructively assess the specimens during the tests and thermographic imaging after the tests.

  7. Multiple-instance ensemble learning for hyperspectral images

    NASA Astrophysics Data System (ADS)

    Ergul, Ugur; Bilgin, Gokhan

    2017-10-01

    An ensemble framework for multiple-instance (MI) learning (MIL) is introduced for use in hyperspectral images (HSIs) by inspiring the bagging (bootstrap aggregation) method in ensemble learning. Ensemble-based bagging is performed by a small percentage of training samples, and MI bags are formed by a local windowing process with variable window sizes on selected instances. In addition to bootstrap aggregation, random subspace is another method used to diversify base classifiers. The proposed method is implemented using four MIL classification algorithms. The classifier model learning phase is carried out with MI bags, and the estimation phase is performed over single-test instances. In the experimental part of the study, two different HSIs that have ground-truth information are used, and comparative results are demonstrated with state-of-the-art classification methods. In general, the MI ensemble approach produces more compact results in terms of both diversity and error compared to equipollent non-MIL algorithms.

  8. In-network processing of joins in wireless sensor networks.

    PubMed

    Kang, Hyunchul

    2013-03-11

    The join or correlated filtering of sensor readings is one of the fundamental query operations in wireless sensor networks (WSNs). Although the join in centralized or distributed databases is a well-researched problem, join processing in WSNs has quite different characteristics and is much more difficult to perform due to the lack of statistics on sensor readings and the resource constraints of sensor nodes. Since data transmission is orders of magnitude more costly than processing at a sensor node, in-network processing of joins is essential. In this paper, the state-of-the-art techniques for join implementation in WSNs are surveyed. The requirements and challenges, join types, and components of join implementation are described. The open issues for further research are identified.

  9. In-Network Processing of Joins in Wireless Sensor Networks

    PubMed Central

    Kang, Hyunchul

    2013-01-01

    The join or correlated filtering of sensor readings is one of the fundamental query operations in wireless sensor networks (WSNs). Although the join in centralized or distributed databases is a well-researched problem, join processing in WSNs has quite different characteristics and is much more difficult to perform due to the lack of statistics on sensor readings and the resource constraints of sensor nodes. Since data transmission is orders of magnitude more costly than processing at a sensor node, in-network processing of joins is essential. In this paper, the state-of-the-art techniques for join implementation in WSNs are surveyed. The requirements and challenges, join types, and components of join implementation are described. The open issues for further research are identified. PMID:23478603

  10. Using Negotiated Joining to Construct and Fill Open-ended Roles in Elite Culinary Groups.

    PubMed

    Tan, Vaughn

    2015-03-01

    This qualitative study examines membership processes in groups operating in an uncertain environment that prevents them from fully predefining new members' roles. I describe how nine elite high-end, cutting-edge culinary groups in the U.S. and Europe, ranging from innovative restaurants to culinary R&D groups, use negotiated joining-a previously undocumented process-to systematically construct and fill these emergent, open-ended roles. I show that negotiated joining is a consistently patterned, iterative process that begins with a role that both aspirant and target group explicitly understand to be provisional. This provisional role is then jointly modified and constructed by the aspirant and target group through repeated iterations of proposition, validation through trial and evaluation, and selective integration of validated role components. The initially provisional role stabilizes and the aspirant achieves membership if enough role components are validated; otherwise the negotiated joining process is abandoned. Negotiated joining allows the aspirant and target group to learn if a mutually desirable role is likely and, if so, to construct such a role. In addition, the provisional roles in negotiated joining can support absorptive capacity by allowing novel role components to enter target groups through aspirants' efforts to construct stable roles for themselves, while the internal adjustment involved in integrating newly validated role components can have the unintended side effect of supporting adaptation by providing opportunities for the groups to use these novel role components to modify their role structure and goals to suit a changing and uncertain environment. Negotiated joining thus reveals role ambiguity's hitherto unexamined beneficial consequences and provides a foundation for a contingency theory of new-member acquisition.

  11. Affordable, Robust Ceramic Joining Technology (ARCJoinT) Given 1999 R and D 100 Award

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2000-01-01

    Advanced ceramics and fiber-reinforced ceramic matrix composites with high strength and toughness, good thermal conductivity, thermal shock resistance, and oxidation resistance are needed for high-temperature structural applications in advanced high-efficiency and high-performance engines, space propulsion components, and land-based systems. The engineering designs of these systems require the manufacturing of large parts with complex shapes, which are either quite expensive or impossible to fabricate. In many instances, it is more economical to build complex shapes by joining together simple geometrical shapes. Thus, joining has been recognized as an enabling technology for the successful utilization of advanced ceramics and fiber-reinforced composite components in high-temperature applications. However, such joints must retain their structural integrity at high temperatures and must have mechanical strength and environmental stability comparable to those of the bulk materials. In addition, the joining technique should be robust, practical, and reliable. ARCJoinT, which is based on the reaction-forming approach, is unique in terms of producing joints with tailorable microstructures. The formation of joints by this approach is attractive since the thermomechanical properties of the joint interlayer can be tailored to be very close to those of the base materials. In addition, high-temperature fixturing is not needed to hold the parts at the infiltration temperature. The joining process begins with the application of a carbonaceous mixture in the joint area, holding the items to be joined in a fixture, and curing at 110 to 120 C for 10 to 20 min. This step fastens the pieces together. Then, silicon or a silicon alloy in tape, paste, or slurry form is applied around the joint region and heated to 1250 to 1425 C (depending on the type of infiltrant) for 10 to 15 min. The molten silicon or silicon-refractory metal alloy reacts with carbon to form silicon carbide with

  12. Joining of Gamma Titanium Aluminides

    DTIC Science & Technology

    2002-09-01

    AFRL-ML-WP-TR-2003-4036 JOINING OF GAMMA TITANIUM ALUMINIDES LTC William A. Baeslack, III Metals Branch (AFRL/MLLM) Metals, Ceramics, and...GAMMA TITANIUM ALUMINIDES 5c. PROGRAM ELEMENT NUMBER 62102F 5d. PROJECT NUMBER MO2R 5e. TASK NUMBER 10 6. AUTHOR(S) LTC William A...comparatively discusses the results of research and development performed on the joining of gamma titanium aluminides during the past two decades. Although

  13. An instance theory of associative learning.

    PubMed

    Jamieson, Randall K; Crump, Matthew J C; Hannah, Samuel D

    2012-03-01

    We present and test an instance model of associative learning. The model, Minerva-AL, treats associative learning as cued recall. Memory preserves the events of individual trials in separate traces. A probe presented to memory contacts all traces in parallel and retrieves a weighted sum of the traces, a structure called the echo. Learning of a cue-outcome relationship is measured by the cue's ability to retrieve a target outcome. The theory predicts a number of associative learning phenomena, including acquisition, extinction, reacquisition, conditioned inhibition, external inhibition, latent inhibition, discrimination, generalization, blocking, overshadowing, overexpectation, superconditioning, recovery from blocking, recovery from overshadowing, recovery from overexpectation, backward blocking, backward conditioned inhibition, and second-order retrospective revaluation. We argue that associative learning is consistent with an instance-based approach to learning and memory.

  14. Joining a Gym

    MedlinePlus

    ... Trade Commission Consumer Information consumer.ftc.gov español Search form Search Vea esta página en español Joining ... rate ends.  Find Out What Other People Think Search for reviews online Do a search online to ...

  15. Join or be excluded from biomedicine? JOINS and Post-colonial Korea.

    PubMed

    Ma, Eunjeong

    2015-04-01

    This paper discusses re-emergence of Korean medicine(s) in the global context with a focus on a natural drug JOINS, a highly contentious drug regarding its legal status. By following through its life world, the paper contends that the drug is the embodiment of the postcolonial anxiety that crosses the intersections between the aspiring nation and globalizing strategies of the bio-pharmaceutical industry. JOINS is a natural drug prescribed to alleviate the symptoms of degenerative arthritis. SK Chemicals, Ltd., a giant domestic pharmaceutical company developed the drug by utilizing the knowledge of traditional pharmacopeia and put it on the market in 2001. In the domestic market, the drug is treated as a prescription drug, implying that Western medicine-trained doctors (as opposed to Korean medicine doctors) are entitled to prescribe drugs. It also indicates that the drug has undergone a series of lab tests such as toxicity, efficacy, and clinical trials in compliance with regulatory guidelines. However, the domestic standards are not rigorous enough to satisfy international standards, so that it is exported as a nutritional supplement abroad. The government, the pharmaceutical industry, and the Western medicine profession are happy with how the drug stands domestically and internationally. Rather, it is Korean doctors who try to disrupt the status quo and reclaim their rights to traditional knowledge, who have been alienated from the pharmaceuticalization of traditional knowledge. Thus, the JOINS tablet embodies the complex web of modern Korean society, professional interests, the pharmaceutical industry, and globalization.

  16. Advanced concepts in joining by conventional processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, G.R.; Fasching-James, A.A.; Onsoien, M.I.

    1994-12-31

    Innovations which can be made to conventional arc welding processes so that advanced materials can be more efficiently joined are considered. Three examples are discussed: (1) GTA welding of iron aluminides, (2) GMA welding of advanced steels, and (3) SMA welding of structural steels. Advanced materials present new challenges for the materials joining specialist. The three examples discussed in this paper demonstrate, however, that modest but creative alterations of conventional GTAW, GMAW, or SMAW processes can provide new and better controls for solving advanced materials joining problems.

  17. Explosive Spot Joining of Metals

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Perry, Ronnie B. (Inventor)

    1997-01-01

    The invention is an apparatus and method for wire splicing using an explosive joining process. The apparatus consists of a prebend, U-shaped strap of metal that slides over prepositioned wires. A standoff means separates the wires from the strap before joining. An adhesive means holds two ribbon explosives in position centered over the U-shaped strap. A detonating means connects to the ribbon explosives. The process involves spreading strands of each wire to be joined into a flat plane. The process then requires alternating each strand in alignment to form a mesh-like arrangement with an overlapped area. The strap slides over the strands of the wires. and the standoff means is positioned between the two surfaces. The detonating means then initiates the ribbon explosives that drive the strap to accomplish a high velocity. angular collision between the mating surfaces. This collision creates surface melts and collision bonding resulting in electron-sharing linkups.

  18. Resource Planning for Massive Number of Process Instances

    NASA Astrophysics Data System (ADS)

    Xu, Jiajie; Liu, Chengfei; Zhao, Xiaohui

    Resource allocation has been recognised as an important topic for business process execution. In this paper, we focus on planning resources for a massive number of process instances to meet the process requirements and cater for rational utilisation of resources before execution. After a motivating example, we present a model for planning resources for process instances. Then we design a set of heuristic rules that take both optimised planning at build time and instance dependencies at run time into account. Based on these rules we propose two strategies, one is called holistic and the other is called batched, for resource planning. Both strategies target a lower cost, however, the holistic strategy can achieve an earlier deadline while the batched strategy aims at rational use of resources. We discuss how to find balance between them in the paper with a comprehensive experimental study on these two approaches.

  19. JOINING DISSIMILAR MATERIALS USING FRICTION STIR SCRIBE TECHNIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep

    2016-09-01

    Development of robust and cost effective method of joining dissimilar materials can provide a critical pathway to enable widespread use of multi-material design and components in mainstream industrial applications. The use of multi-material components such as Steel-Aluminum, Aluminum-Polymer allows design engineers to optimize material utilization based on service requirements and often lead weight and cost reductions. However producing an effective joint between materials with vastly different thermal, microstructural and deformation response is highly problematic using conventional joining and /or fastening methods. This is especially challenging in cost sensitive high volume markets that largely rely on low–cost joining solutions. Friction Stirmore » Scribe technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like Magnesium and Aluminum to high temperature materials like Steels and Titanium. Additionally viable joints between polymer composites and metal can also be made using this method. This paper will present state of the art, progress made and challenges associated with this innovative derivative of Friction Stir welding in reference to joining dissimilar metals and polymer/metal combinations.« less

  20. Joining Dissimilar Materials Using Friction Stir Scribe Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep

    2016-10-03

    Development of a robust and cost-effective method of joining dissimilar materials could provide a critical pathway to enable widespread use of multi-material designs and components in mainstream industrial applications. The use of multi-material components such as steel-aluminum and aluminum-polymer would allow design engineers to optimize material utilization based on service requirements and could often lead to weight and cost reductions. However, producing an effective joint between materials with vastly different thermal, microstructural, and deformation responses is highly problematic using conventional joining and/or fastening methods. This is especially challenging in cost sensitive, high volume markets that largely rely on low costmore » joining solutions. Friction stir scribe technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like magnesium and aluminum to high temperature materials like steel and titanium. Viable joints between polymer composites and metal can also be made using this method. This paper will present the state of the art, progress made, and challenges associated with this innovative derivative of friction stir welding in reference to joining dissimilar metals and polymer/metal combinations.« less

  1. Design synthesis and optimization of joined-wing transports

    NASA Technical Reports Server (NTRS)

    Gallman, John W.; Smith, Stephen C.; Kroo, Ilan M.

    1990-01-01

    A computer program for aircraft synthesis using a numerical optimizer was developed to study the application of the joined-wing configuration to transport aircraft. The structural design algorithm included the effects of secondary bending moments to investigate the possibility of tail buckling and to design joined wings resistant to buckling. The structural weight computed using this method was combined with a statistically-based method to obtain realistic estimates of total lifting surface weight and aircraft empty weight. A variety of 'optimum' joined-wing and conventional aircraft designs were compared on the basis of direct operating cost, gross weight, and cruise drag. The most promising joined-wing designs were found to have a joint location at about 70 percent of the wing semispan. The optimum joined-wing transport is shown to save 1.7 percent in direct operating cost and 11 percent in drag for a 2000 nautical mile transport mission.

  2. Aerodynamic and structural studies of joined-wing aircraft

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Smith, Stephen; Gallman, John

    1991-01-01

    A method for rapidly evaluating the structural and aerodynamic characteristics of joined-wing aircraft was developed and used to study the fundamental advantages attributed to this concept. The technique involves a rapid turnaround aerodynamic analysis method for computing minimum trimmed drag combined with a simple structural optimization. A variety of joined-wing designs are compared on the basis of trimmed drag, structural weight, and, finally, trimmed drag with fixed structural weight. The range of joined-wing design parameters resulting in best cruise performance is identified. Structural weight savings and net drag reductions are predicted for certain joined-wing configurations compared with conventional cantilever-wing configurations.

  3. Joining of porous silicon carbide bodies

    DOEpatents

    Bates, Carl H.; Couhig, John T.; Pelletier, Paul J.

    1990-05-01

    A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.

  4. Joined-wing research airplane feasibility study

    NASA Technical Reports Server (NTRS)

    Wolkovitch, J.

    1984-01-01

    The joined wing is a new type of aircraft configuration which employs tandem wings arranged to form diamond shapes in plan view and front view. Wind-tunnel tests and finite-element structural analyses have shown that the joined wing provides the following advantages over a comparable wing-plus-tail system; lighter weight and higher stiffness, higher span-efficiency factor, higher trimmed maximum lift coefficient, lower wave drag, plus built-in direct lift and direct sideforce control capability. To verify these advantages at full scale a manned research airplane is required. A study has therefore been performed of the feasibility of constructing such an airplane, using the fuselage and engines of the existing NAA AD-1 oblique-wing airplane. Cost and schedule constraints favored converting the AD-1 rather than constructing a totally new airframe. By removing the outboard wing panels the configuration can simulate wings joined at 60, 80, or 100 percent of span. For maximum versatility the aircraft has alternative control surfaces (such as ailerons and elevators on the front and/or rear wings), and a removeable canard to explore canard/joined-wing interactions at high-lift conditions. Design, performance, and flying qualities are discussed.

  5. Boosting instance prototypes to detect local dermoscopic features.

    PubMed

    Situ, Ning; Yuan, Xiaojing; Zouridakis, George

    2010-01-01

    Local dermoscopic features are useful in many dermoscopic criteria for skin cancer detection. We address the problem of detecting local dermoscopic features from epiluminescence (ELM) microscopy skin lesion images. We formulate the recognition of local dermoscopic features as a multi-instance learning (MIL) problem. We employ the method of diverse density (DD) and evidence confidence (EC) function to convert MIL to a single-instance learning (SIL) problem. We apply Adaboost to improve the classification performance with support vector machines (SVMs) as the base classifier. We also propose to boost the selection of instance prototypes through changing the data weights in the DD function. We validate the methods on detecting ten local dermoscopic features from a dataset with 360 images. We compare the performance of the MIL approach, its boosting version, and a baseline method without using MIL. Our results show that boosting can provide performance improvement compared to the other two methods.

  6. Preliminary design optimization of joined-wing aircraft

    NASA Technical Reports Server (NTRS)

    Gallman, John W.; Kroo, Ilan M.; Smith, Stephen C.

    1990-01-01

    The joined wing is an innovative aircraft configuration that has a its tail connected to the wing forming a diamond shape in both top and plan view. This geometric arrangement utilizes the tail for both pitch control and as a structural support for the wing. Several researchers have studied this configuration and predicted significant reductions in trimmed drag or structural weight when compared with a conventional T-tail configuration. Kroo et al. compared the cruise drag of joined wings with conventional designs of the same lifting-surface area and structural weight. This study showed an 11 percent reduction in cruise drag for the lifting system of a joined wing. Although this reduction in cruise drag is significant, a complete design study is needed before any economic savings can be claimed for a joined-wing transport. Mission constraints, such as runway length, could increase the wing area and eliminate potential drag savings. Since other design codes do not accurately represent the interaction between structures and aerodynamics for joined wings, we developed a new design code for this study. The aerodynamic and structural analyses in this study are significantly more sophisticated than those used in most conventional design codes. This sophistication was needed to predict the aerodynamic interference between the wing and tail and the stresses in the truss-like structure. This paper describes these analysis methods, discusses some problems encountered when applying the numerical optimizer NPSOL, and compares optimum joined wings with conventional aircraft on the basis of cruise drag, lifting surface weight, and direct operating cost (DOC).

  7. A Modeling Approach for Plastic-Metal Laser Direct Joining

    NASA Astrophysics Data System (ADS)

    Lutey, Adrian H. A.; Fortunato, Alessandro; Ascari, Alessandro; Romoli, Luca

    2017-09-01

    Laser processing has been identified as a feasible approach to direct joining of metal and plastic components without the need for adhesives or mechanical fasteners. The present work sees development of a modeling approach for conduction and transmission laser direct joining of these materials based on multi-layer optical propagation theory and numerical heat flow simulation. The scope of this methodology is to predict process outcomes based on the calculated joint interface and upper surface temperatures. Three representative cases are considered for model verification, including conduction joining of PBT and aluminum alloy, transmission joining of optically transparent PET and stainless steel, and transmission joining of semi-transparent PA 66 and stainless steel. Conduction direct laser joining experiments are performed on black PBT and 6082 anticorodal aluminum alloy, achieving shear loads of over 2000 N with specimens of 2 mm thickness and 25 mm width. Comparison with simulation results shows that consistently high strength is achieved where the peak interface temperature is above the plastic degradation temperature. Comparison of transmission joining simulations and published experimental results confirms these findings and highlights the influence of plastic layer optical absorption on process feasibility.

  8. Using Negotiated Joining to Construct and Fill Open-ended Roles in Elite Culinary Groups

    PubMed Central

    Tan, Vaughn

    2015-01-01

    This qualitative study examines membership processes in groups operating in an uncertain environment that prevents them from fully predefining new members’ roles. I describe how nine elite high-end, cutting-edge culinary groups in the U.S. and Europe, ranging from innovative restaurants to culinary R&D groups, use negotiated joining—a previously undocumented process—to systematically construct and fill these emergent, open-ended roles. I show that negotiated joining is a consistently patterned, iterative process that begins with a role that both aspirant and target group explicitly understand to be provisional. This provisional role is then jointly modified and constructed by the aspirant and target group through repeated iterations of proposition, validation through trial and evaluation, and selective integration of validated role components. The initially provisional role stabilizes and the aspirant achieves membership if enough role components are validated; otherwise the negotiated joining process is abandoned. Negotiated joining allows the aspirant and target group to learn if a mutually desirable role is likely and, if so, to construct such a role. In addition, the provisional roles in negotiated joining can support absorptive capacity by allowing novel role components to enter target groups through aspirants’ efforts to construct stable roles for themselves, while the internal adjustment involved in integrating newly validated role components can have the unintended side effect of supporting adaptation by providing opportunities for the groups to use these novel role components to modify their role structure and goals to suit a changing and uncertain environment. Negotiated joining thus reveals role ambiguity’s hitherto unexamined beneficial consequences and provides a foundation for a contingency theory of new-member acquisition. PMID:26273105

  9. Toroid Joining Gun. [thermoplastic welding system using induction heating

    NASA Technical Reports Server (NTRS)

    Buckley, J. D.; Fox, R. L.; Swaim, R J.

    1985-01-01

    The Toroid Joining Gun is a low cost, self-contained, portable low powered (100-400 watts) thermoplastic welding system developed at Langley Research Center for joining plastic and composite parts using an induction heating technique. The device developed for use in the fabrication of large space sructures (LSST Program) can be used in any atmosphere or in a vacuum. Components can be joined in situ, whether on earth or on a space platform. The expanded application of this welding gun is in the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials. Its low-power requirements, light weight, rapid response, low cost, portability, and effective joining make it a candidate for solving many varied and unique bonding tasks.

  10. Multiple Instance Fuzzy Inference

    DTIC Science & Technology

    2015-12-02

    very small probabilities. To compute Pr(t | Bi) for a given bag Bi, a conjunction measure of all its instances Bij , j = 1, . . . ,M is computed using...the noisy-or operator Pr(t | Bi) = 1− ∏ 1≤ j ≤M (1− Pr(Bij ∈ t)), (2.5) where Pr(Bij ∈ t) is computed from a Gaussian distribution centred at the concept...Xnk to target concept Ci, and its computed using Pr(Xnk ∈ Ci) = e−( ∑D j =1 sij(xnkj−cij)2) (2.9) In (4.5), sij is a scaling parameter that weights the

  11. Method of joining metallic and composite components

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund B. (Inventor)

    2010-01-01

    A method is provided for joining a metallic member to a structure made of a composite matrix material. One or more surfaces of a portion of the metallic member that is to be joined to the composite matrix structure is provided with a plurality of outwardly projecting studs. The surface including the studs is brought into engagement with a portion of an uncured composite matrix material so that fibers of the composite matrix material intertwine with the studs, and the metallic member and composite structure form an assembly. The assembly is then companion cured so as to join the metallic member to the composite matrix material structure.

  12. Fermilab Friends for Science Education | Join Us

    Science.gov Websites

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Join Us photo Fermilab Friends for Science Education (FFSE) needs you now! More than ever our society and improving science (science, technology, engineering and mathematics) education. Your donation allows us to

  13. Joining of advanced materials by superplastic deformation

    DOEpatents

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2008-08-19

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  14. Joining of advanced materials by superplastic deformation

    DOEpatents

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2005-12-13

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  15. Enabling Dissimilar Material Joining Using Friction Stir Scribe Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovanski, Yuri; Upadyay, Piyush; Kleinbaum, Sarah

    2017-04-05

    One challenge in adapting welding processes to dissimilar material joining is the diversity of melting temperatures of the different materials. Although the use of mechanical fasteners and adhesives have mostly paved the way for near-term implementation of dissimilar material systems, these processes only accentuate the need for low-cost welding processes capable of joining dissimilar material components regardless of alloy, properties, or melting temperature. Friction stir scribe technology was developed to overcome the challenges of joining dissimilar material components where melting temperatures vary greatly, and properties and/or chemistry are not compatible with more traditional welding processes. Although the friction stir scribemore » process is capable of joining dissimilar metals and metal/polymer systems, a more detailed evaluation of several aluminum/steel joints is presented herein to demonstrate the ability to both chemically and mechanically join dissimilar materials.« less

  16. Enhancing project-oriented learning by joining communities of practice and opening spaces for relatedness

    NASA Astrophysics Data System (ADS)

    Pascual, R.

    2010-03-01

    This article describes an extension to project-oriented learning to increase social construction of knowledge and learning. The focus is on: (a) maximising opportunities for students to share their knowledge with practitioners by joining communities of practice, and (b) increasing their intrinsic motivation by creating conditions for student's relatedness. The case study considers a last year capstone course in Mechanical Engineering. The work addresses innovative practices of active learning and beyond project-oriented learning through: (a) the development of a web-based decision support system, (b) meetings between the communities of students, maintenance engineers and academics, and (c) new off-campus group instances. The author hypothesises that this multi-modal approach increases deep learning and social impact of the educational process. Surveys to the actors support a successful achievement of the educational goals. The methodology can easily be extended to further improve the learning process.

  17. Evaluating the Upset Protrusion Joining (UPJ) Method to Join Magnesium Castings to Dissimilar Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Stephen

    2016-02-24

    This presentation discusses advantages and best practices for incorporating magnesium in automotive component applications to achieve substantial mass reduction, as well as some of the key challenges with respect to joining, coating, and galvanic corrosion, before providing an introduction and status update of the U.S. Department of Energy and Department of Defense jointly sponsored Upset Protrusion Joining (UPJ) process development and evaluation project. This update includes sharing performance results of a benchmark evaluation of the self-pierce riveting (SPR) process for joining dissimilar magnesium (Mg) to aluminum (Al) materials in four unique coating configurations before introducing the UPJ concept and comparingmore » performance results of the joints made with the UPJ process to those made with the SPR process. Key results presented include: The benchmark SPR process can produce good joints in the MgAM60B-Al 6013 joint configuration with minimal cracking in the Mg coupons if the rivet is inserted from the Mg side into the Al side; Numerous bare Mg to bare Al joints made with the SPR process separated after only 6-wks of accelerated corrosion testing due to fracture of the rivet as a result of hydrogen embrittlement; For the same joint configurations, UPJ demonstrated substantially higher pre-corrosion joint strengths and post-corrosion joint strengths, primarily because of the larger diameter protrusion compared to smaller SPR rivet diameter and reduced degradation due to accelerated corrosion exposure; As with the SPR process, numerous bare Mg to bare Al joints made with the UPJ process also separated after 6-wks of accelerated corrosion testing, but unlike the SPR experience, the UPJ joints experienced degradation of the boss and head because of galvanic corrosion of the Mg casting, not hydrogen embrittlement of the steel rivet; In the configuration where both the Mg and Al were pretreated with Alodine 5200 prior to joining and the complete assembly

  18. Enabling Dissimilar Material Joining Using Friction Stir Scribe Technology

    DOE PAGES

    Hovanski, Yuri; Upadyay, Piyush; Kleinbaum, Sarah; ...

    2017-04-05

    One challenge in adapting welding processes to dissimilar material joining is the diversity of melting temperatures of the different materials. Although the use of mechanical fasteners and adhesives have mostly paved the way for near-term implementation of dissimilar material systems, these processes only accentuate the need for low-cost welding processes capable of impartially joining dissimilar material components regardless of alloy, properties, or melting temperature. Friction stir scribe technology was developed to overcome the challenges of joining dissimilar material components where melting temperatures vary greatly, and properties and/or chemistry are not compatible with more traditional welding processes. Finally, although the frictionmore » stir scribe process is capable of joining dissimilar metals and metal/polymer systems, a more detailed evaluation of several aluminum/steel joints is presented herein to demonstrate the ability to both chemically and mechanically join dissimilar materials.« less

  19. Modeling Non-homologous End Joining

    NASA Technical Reports Server (NTRS)

    Li, Yongfeng

    2013-01-01

    Non-homologous end joining (NHEJ) is the dominant DNA double strand break (DSB) repair pathway and involves several NHEJ proteins such as Ku, DNA-PKcs, XRCC4, Ligase IV and so on. Once DSBs are generated, Ku is first recruited to the DNA end, followed by other NHEJ proteins for DNA end processing and ligation. Because of the direct ligation of break ends without the need for a homologous template, NHEJ turns out to be an error-prone but efficient repair pathway. Some mechanisms have been proposed of how the efficiency of NHEJ repair is affected. The type of DNA damage is an important factor of NHEJ repair. For instance, the length of DNA fragment may determine the recruitment efficiency of NHEJ protein such as Ku [1], or the complexity of the DNA breaks [2] is accounted for the choice of NHEJ proteins and subpathway of NHEJ repair. On the other hand, the chromatin structure also plays a role of the accessibility of NHEJ protein to the DNA damage site. In this talk, some mathematical models of NHEJ, that consist of series of biochemical reactions complying with the laws of chemical reaction (e.g. mass action, etc.), will be introduced. By mathematical and numerical analysis and parameter estimation, the models are able to capture the qualitative biological features and show good agreement with experimental data. As conclusions, from the viewpoint of modeling, how the NHEJ proteins are recruited will be first discussed for connection between the classical sequential model [4] and recently proposed two-phase model [5]. Then how the NHEJ repair pathway is affected, by the length of DNA fragment [6], the complexity of DNA damage [7] and the chromatin structure [8], will be addressed

  20. Low temperature joining of ceramic composites

    DOEpatents

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    1999-01-12

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  1. Low temperature joining of ceramic composites

    DOEpatents

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    1999-07-13

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  2. Low temperature joining of ceramic composites

    DOEpatents

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    2001-04-10

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  3. Low temperature joining of ceramic composites

    DOEpatents

    Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.

    1999-07-13

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 C to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.

  4. Low temperature joining of ceramic composites

    DOEpatents

    Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.

    1999-01-12

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.

  5. Instance Search Retrospective with Focus on TRECVID

    PubMed Central

    Awad, George; Kraaij, Wessel; Over, Paul; Satoh, Shin’ichi

    2017-01-01

    This paper presents an overview of the Video Instance Search benchmark which was run over a period of 6 years (2010–2015) as part of the TREC Video Retrieval (TRECVID) workshop series. The main contributions of the paper include i) an examination of the evolving design of the evaluation framework and its components (system tasks, data, measures); ii) an analysis of the influence of topic characteristics (such as rigid/non rigid, planar/non-planar, stationary/mobile on performance; iii) a high-level overview of results and best-performing approaches. The Instance Search (INS) benchmark worked with a variety of large collections of data including Sound & Vision, Flickr, BBC (British Broadcasting Corporation) Rushes for the first 3 pilot years and with the small world of the BBC Eastenders series for the last 3 years. PMID:28758054

  6. Holographic optical assembly and photopolymerized joining of planar microspheres

    DOE PAGES

    Shaw, L. A.; Chizari, S.; Panas, R. M.; ...

    2016-07-27

    The aim of this research is to demonstrate a holographically driven photopolymerization process for joining colloidal particles to create planar microstructures fixed to a substrate, which can be monitored with real-time measurement. Holographic optical tweezers (HOT) have been used to arrange arrays of microparticles prior to this work; here we introduce a new photopolymerization process for rapidly joining simultaneously handled microspheres in a plane. Additionally, we demonstrate a new process control technique for efficiently identifying when particles have been successfully joined by measuring a sufficient reduction in the particles’ Brownian motion. Furthermore, this technique and our demonstrated joining approach enablemore » HOT technology to take critical steps toward automated additive fabrication of microstructures.« less

  7. Front-line perspectives on 'joined-up' working relationships: a qualitative study of social prescribing in the west of Scotland.

    PubMed

    White, Jane M; Cornish, Flora; Kerr, Susan

    2017-01-01

    Cross-sector collaboration has been promoted by government policies in the United Kingdom and many western welfare states for decades. Literature on joint working has focused predominantly on the strategic level, neglecting the role of individual practitioners in putting 'joined-up working' into practice. This paper takes the case of 'social prescribing' in the west of Scotland as an instance of joined-up working, in which primary healthcare professionals are encouraged to refer patients to non-medical sources of support in the third sector. This study draws on social capital theory to analyse the quality of the relationships between primary healthcare professionals and third sector practitioners. Eighteen health professionals and 15 representatives of third sector organisations participated in a qualitative interview study. Significant barriers to collaborative working were evident. The two stakeholder groups expressed different understandings of health, with few primary healthcare professionals considering non-medical sources of support to be useful or relevant. Health professionals were mistrustful of unknown third sector organisations, and concerned about their accountability for referrals that were not successful or positive for the patient. Third sector practitioners sought to build trust through face-to-face interactions with health professionals. However, primary healthcare professionals and third sector practitioners were not connected in effective networks. We highlight the ongoing imbalance of power between primary healthcare professionals and third sector organisations. Strategic collaborations should be complemented by efforts to build shared understandings, trust and connections between the diverse front-line workers whose mutual co-operation is necessary to achieve effective joined-up working. © 2015 John Wiley & Sons Ltd.

  8. Binary Image Classification: A Genetic Programming Approach to the Problem of Limited Training Instances.

    PubMed

    Al-Sahaf, Harith; Zhang, Mengjie; Johnston, Mark

    2016-01-01

    In the computer vision and pattern recognition fields, image classification represents an important yet difficult task. It is a challenge to build effective computer models to replicate the remarkable ability of the human visual system, which relies on only one or a few instances to learn a completely new class or an object of a class. Recently we proposed two genetic programming (GP) methods, one-shot GP and compound-GP, that aim to evolve a program for the task of binary classification in images. The two methods are designed to use only one or a few instances per class to evolve the model. In this study, we investigate these two methods in terms of performance, robustness, and complexity of the evolved programs. We use ten data sets that vary in difficulty to evaluate these two methods. We also compare them with two other GP and six non-GP methods. The results show that one-shot GP and compound-GP outperform or achieve results comparable to competitor methods. Moreover, the features extracted by these two methods improve the performance of other classifiers with handcrafted features and those extracted by a recently developed GP-based method in most cases.

  9. [Early prenatal diagnosis of diprosopic syncephalic joined twins].

    PubMed

    Picaud, A; Nlome-Nze, A R; Engongha-Beka, T; Ogowet-Igumu, N

    1990-06-01

    The authors summarize the case of diprosopic syncephalic joined twins diagnosed at 22 weeks of pregnancy by ultrasonography performed because of hydramnios. The rate of separation anomalies of monozygotic twins is assessed by a review of the literature: from 1 to twenty to fifty thousands for joined twins to 1 per cent fifty thousand to fifteen millions for diprosopus. The etiology is the result of a late division of the egg between D12 and D16. Often an encephalic diprosopic joined twins cause elevated levels of maternal serum alpha protein. Early ultrasonography permits to consider a vaginal therapeutic abortion.

  10. Segregation as Splitting, Segregation as Joining: Schools, Housing, and the Many Modes of Jim Crow

    ERIC Educational Resources Information Center

    Highsmith, Andrew R.; Erickson, Ansley T.

    2015-01-01

    Popular understandings of segregation often emphasize the Jim Crow South before the 1954 "Brown" decision and, in many instances, explain continued segregation in schooling as the result of segregated housing patterns. The case of Flint, Michigan, complicates these views, at once illustrating the depth of governmental commitment to…

  11. Explosive Joining for the Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Sanok, Joseph T.

    2000-01-01

    A unique, small-scale, ribbon explosive joining process is being developed as an option for closing and sealing a metal canister to allow the return of a pristine sample of the Martian surface and atmosphere to Earth. This joining process is accomplished by an explosively driven, high-velocity, angular collision of the metal, which melts and effaces the oxide films from the surfaces to allow valence electron sharing to bond the interface. Significant progress has been made through more than 100 experimental tests to meet the goals of this ongoing developmental effort. The metal of choice, aluminum alloy 6061, has been joined in multiple interface configurations and in complete cylinders. This process can accommodate dust and debris on the surfaces to be joined. It can both create and sever a joint at its midpoint with one explosive input. Finally, an approach has been demonstrated that can capture the back blast from the explosive.

  12. Joining of graphene flakes by low energy N ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Xin; Zhao, Haiyan; Pei, Jiayun; Yan, Dong

    2017-03-01

    An approach utilizing low energy N ion beam irradiation is applied in joining two monolayer graphene flakes. Raman spectrometry and atomic force microscopy show the joining signal under 40 eV and 1 × 1014 cm-2 N ion irradiation. Molecular dynamics simulations demonstrate that the joining phenomenon is attributed to the punch-down effect and the subsequent chemical bond generation between the two sheets. The generated chemical bonds are made up of inserted ions (embedded joining) and knocked-out carbon atoms (saturation joining). The electronic transport properties of the joint are also calculated for its applications.

  13. A Review of Similar and Dissimilar Micro-joining of Nitinol

    NASA Astrophysics Data System (ADS)

    Deepan Bharathi Kannan, T.; Ramesh, T.; Sathiya, P.

    2016-04-01

    NiTinol belongs to a class of smart materials which has a wide range of applications in the field of automotive, aerospace, biomedical, robotics, etc., owing to the growing trend in miniaturization of components. Micro-joining is becoming one of the important and familiar processes in the fabrication of miniaturized components. Recently, effective micro-joining of thin sheets has been gaining a lot of interest among researchers. In this article, the research and progress in micro-joining of NiTinol to itself and other metals are reviewed at different aspects. To date, laser welding, tungsten inert gas welding, and resistance welding have been used to a large extent in investigating the weldability of NiTinol alloys. Some important welding parameters used in micro joining by various researchers and their effects on weld qualities are detailed in this review. Metallurgical aspects, mechanical properties and corrosion aspects of micro-joined NiTinol sheets/wires are discussed. The aim of this report is to review the recent progress in micro-joining of NiTinol and to provide a basis for follow-on research.

  14. Newly Branded Energy Systems Integration Group Joins International

    Science.gov Websites

    research fellow at NREL. Likewise, UVIG sees opportunity in partnering with iiESI. The international Group Joins International Institute for Energy Systems Integration Newly Branded Energy Systems Integration Group Joins International Institute for Energy Systems Integration March 22, 2018 The world of

  15. The joined wing - An overview. [aircraft tandem wings in diamond configurations

    NASA Technical Reports Server (NTRS)

    Wolkovitch, J.

    1985-01-01

    The joined wing is a new type of aircraft configuration which employs tandem wings arranged to form diamond shapes in plan view and front view. Wind-tunnel tests and finite-element structural analyses have shown that the joined wing provides the following advantages over a comparable wing-plus-tail system; lighter weight and higher stiffness, higher span-efficiency factor, higher trimmed maximum lift coefficient, lower wave drag, plus built-in direct lift and direct sideforce control capability. A summary is given of research performed on the joined wing. Calculated joined wing weights are correlated with geometric parameters to provide simple weight estimation methods. The results of low-speed and transonic wind-tunnel tests are summarized, and guidelines for design of joined-wing aircraft are given. Some example joined-wing designs are presented and related configurations having connected wings are reviewed.

  16. Fluxing agent for metal cast joining

    DOEpatents

    Gunkel, Ronald W.; Podey, Larry L.; Meyer, Thomas N.

    2002-11-05

    A method of joining an aluminum cast member to an aluminum component. The method includes the steps of coating a surface of an aluminum component with flux comprising cesium fluoride, placing the flux coated component in a mold, filling the mold with molten aluminum alloy, and allowing the molten aluminum alloy to solidify thereby joining a cast member to the aluminum component. The flux preferably includes aluminum fluoride and alumina. A particularly preferred flux includes about 60 wt. % CsF, about 30 wt. % AlF.sub.3, and about 10 wt. % Al.sub.2 O.sub.3.

  17. Universal connectors for joining stringers

    NASA Technical Reports Server (NTRS)

    Harrison, Jr., Ernest (Inventor)

    1987-01-01

    This invention is a lightweight, universal connector that joins stringers at various angles. The connectors 10 are fabricated from fiber-epoxy resin strips that wrap around stringers 30 and have ends, tabs 16 and 18, which extend in one general direction. The inside surface of the first tab 16 lies on a plane defined by the stringers being joined, and the second tab 18 is separated from the first tab 16 by a distance equal to their thickness. Stringers 30 of different shapes and sizes are joined by alternately bonding the first tab 16 of one connector between the first 16 and second 18 tabs of another connector. Tee-joints are formed by using web elements 41 and 42 which each partially wrap around a stringer 3010 and have tabs 411 and 421 which are offset, and are bonded between tabs 16 and 18 of universal connectors 109 and 1010 bonded to another stringer 309. Sharp corners are trimmed from the tabs so that a gusset area remains between the stringers for support. Acute angle through obtuse angle joints are formed by trimming those edges of the tabs which lie against the stringers. A specific application of the invention is a Walker 60, utilized by handicapped individuals, fabricated from composite materials that is 40% lighter than similar metallic structures.

  18. Aeroelastic tailoring and structural optimization of joined-wing configurations

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hwan

    2002-08-01

    Methodology for integrated aero-structural design was developed using formal optimization. ASTROS (Automated STRuctural Optimization System) was used as an analyzer and an optimizer for performing joined-wing weight optimization with stress, displacement, cantilever or body-freedom flutter constraints. As a pre/post processor, MATLAB was used for generating input file of ASTROS and for displaying the results of the ASTROS. The effects of the aeroelastic constraints on the isotropic and composite joined-wing weight were examined using this developed methodology. The aeroelastic features of a joined-wing aircraft were examined using both the Rayleigh-Ritz method and a finite element based aeroelastic stability and weight optimization procedure. Aircraft rigid-body modes are included to analyze of body-freedom flutter of the joined-wing aircraft. Several parametric studies were performed to determine the most important parameters that affect the aeroelastic behavior of a joined-wing aircraft. The special feature of a joined-wing aircraft is body-freedom flutter involving frequency interaction of the first elastic mode and the aircraft short period mode. In most parametric study cases, the body-freedom flutter speed was less than the cantilever flutter speed that is independent of fuselage inertia. As fuselage pitching moment of inertia was increased, the body-freedom flutter speed increased. When the pitching moment of inertia reaches a critical value, transition from body-freedom flutter to cantilever flutter occurred. The effects of composite laminate orientation on the front and rear wings of a joined-wing configuration were studied. An aircraft pitch divergence mode, which occurred because of forward movement of center of pressure due to wing deformation, was found. Body-freedom flutter and cantilever-like flutter were also found depending on combination of front and rear wing ply orientations. Optimized wing weight behaviors of the planar and non

  19. Laser beam joining of material combinations for automotive applications

    NASA Astrophysics Data System (ADS)

    Schubert, Emil; Zerner, Ingo; Sepold, Gerd

    1997-08-01

    An ideal material for automotive applications would combine the following properties: high corrosion resistance, high strength, high stiffness and not at least a low material price. Today a single material is not able to meet all these requirements. Therefore, in the future different materials will be placed where they meet the requirements best. The result of this consideration is a car body with many different alloys and metals, which have to be joined to one another. BIAS is working on the development of laser based joining technologies for different material combinations, especially for thin sheets used in automotive applications. One result of the research is a joining technology for an aluminum-steel-joint. Using a Nd:YAG laser the problem of brittle intermetallic phases between these materials was overcome. Using suitable temperature-time cycles, elected by a FEM-simulation, the thickness of intermetallic phases was kept below 10 micrometers . This technology was also applied to coated steels, which were joined with different aluminum alloys. Further it is demonstrated that titanium alloys, e.g. used for racing cars, can also be joined with aluminum alloys.

  20. Contribution of canonical nonhomologous end joining to chromosomal rearrangements is enhanced by ATM kinase deficiency.

    PubMed

    Bhargava, Ragini; Carson, Caree R; Lee, Gabriella; Stark, Jeremy M

    2017-01-24

    A likely mechanism of chromosomal rearrangement formation involves joining the ends from two different chromosomal double-strand breaks (DSBs). These events could potentially be mediated by either of two end-joining (EJ) repair pathways [canonical nonhomologous end joining (C-NHEJ) or alternative end joining (ALT-EJ)], which cause distinct rearrangement junction patterns. The relative role of these EJ pathways during rearrangement formation has remained controversial. Along these lines, we have tested whether the DNA damage response mediated by the Ataxia Telangiectasia Mutated (ATM) kinase may affect the relative influence of C-NHEJ vs. ALT-EJ on rearrangement formation. We developed a reporter in mouse cells for a 0.4-Mbp deletion rearrangement that is formed by EJ between two DSBs induced by the Cas9 endonuclease. We found that disruption of the ATM kinase causes an increase in the frequency of the rearrangement as well as a shift toward rearrangement junctions that show hallmarks of C-NHEJ. Furthermore, ATM suppresses rearrangement formation in an experimental condition, in which C-NHEJ is the predominant EJ repair event (i.e., expression of the 3' exonuclease Trex2). Finally, several C-NHEJ factors are required for the increase in rearrangement frequency caused by inhibition of the ATM kinase. We also examined ATM effectors and found that H2AX shows a similar influence as ATM, whereas the influence of ATM on this rearrangement seems independent of 53BP1. We suggest that the contribution of the C-NHEJ pathway to the formation of a 0.4-Mbp deletion rearrangement is enhanced in ATM-deficient cells.

  1. Multi-Instance Metric Transfer Learning for Genome-Wide Protein Function Prediction.

    PubMed

    Xu, Yonghui; Min, Huaqing; Wu, Qingyao; Song, Hengjie; Ye, Bicui

    2017-02-06

    Multi-Instance (MI) learning has been proven to be effective for the genome-wide protein function prediction problems where each training example is associated with multiple instances. Many studies in this literature attempted to find an appropriate Multi-Instance Learning (MIL) method for genome-wide protein function prediction under a usual assumption, the underlying distribution from testing data (target domain, i.e., TD) is the same as that from training data (source domain, i.e., SD). However, this assumption may be violated in real practice. To tackle this problem, in this paper, we propose a Multi-Instance Metric Transfer Learning (MIMTL) approach for genome-wide protein function prediction. In MIMTL, we first transfer the source domain distribution to the target domain distribution by utilizing the bag weights. Then, we construct a distance metric learning method with the reweighted bags. At last, we develop an alternative optimization scheme for MIMTL. Comprehensive experimental evidence on seven real-world organisms verifies the effectiveness and efficiency of the proposed MIMTL approach over several state-of-the-art methods.

  2. Joining Tubes With Adhesive

    NASA Technical Reports Server (NTRS)

    Bateman, W. A.

    1984-01-01

    Cylindrical tubes joined together, end to end, by method employing adhesive, tapered ends, and spacing wires. Tapered joint between tubular structural elements provides pressure between bonding surfaces during adhesive curing. Spacing wires prevent adhesive from being scraped away when one element inserted in other. Method developed for assembling structural elements made of composite materials.

  3. Predicting MHC-II binding affinity using multiple instance regression

    PubMed Central

    EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2011-01-01

    Reliably predicting the ability of antigen peptides to bind to major histocompatibility complex class II (MHC-II) molecules is an essential step in developing new vaccines. Uncovering the amino acid sequence correlates of the binding affinity of MHC-II binding peptides is important for understanding pathogenesis and immune response. The task of predicting MHC-II binding peptides is complicated by the significant variability in their length. Most existing computational methods for predicting MHC-II binding peptides focus on identifying a nine amino acids core region in each binding peptide. We formulate the problems of qualitatively and quantitatively predicting flexible length MHC-II peptides as multiple instance learning and multiple instance regression problems, respectively. Based on this formulation, we introduce MHCMIR, a novel method for predicting MHC-II binding affinity using multiple instance regression. We present results of experiments using several benchmark datasets that show that MHCMIR is competitive with the state-of-the-art methods for predicting MHC-II binding peptides. An online web server that implements the MHCMIR method for MHC-II binding affinity prediction is freely accessible at http://ailab.cs.iastate.edu/mhcmir. PMID:20855923

  4. Joined ceramic product

    DOEpatents

    Henager, Jr., Charles W [Kennewick, WA; Brimhall, John L [West Richland, WA

    2001-08-21

    According to the present invention, a joined product is at least two ceramic parts, specifically bi-element carbide parts with a bond joint therebetween, wherein the bond joint has a metal silicon phase. The bi-element carbide refers to compounds of MC, M.sub.2 C, M.sub.4 C and combinations thereof, where M is a first element and C is carbon. The metal silicon phase may be a metal silicon carbide ternary phase, or a metal silicide.

  5. Come Join the Band

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    A growing number of students in Blue Springs, Missouri, are joining the band, drawn by a band director who emphasizes caring and inclusiveness. In the four years since Melissia Goff arrived at Blue Springs High School, the school's extensive band program has swelled. The marching band alone has gone from 100 to 185 participants. Also under Goff's…

  6. Application of the joined wing to tiltrotor aircraft

    NASA Technical Reports Server (NTRS)

    Wolkovitch, Julian; Wainfan, Barnaby; Ben-Harush, Yitzhak; Johnson, Wayne

    1989-01-01

    A study was made to determine the potential speed improvements and other benefits resulting from the application of the joined wing concept to tiltrotor aircraft. Using the XV-15 as a baseline, the effect of replacing the cantilever wing by a joined-wing pair was studied. The baseline XV-15 cantilever wing has a thickness/chord ratio of 23 percent. It was found that this wing could be replaced by a joined-wing pair of the same span and total area employing airfoils of 12 percent thickness/chord ratio. The joined wing meets the same static strength requirements as the cantilever wing, but increases the limiting Mach Number of the aircraft from M=0.575 to M=0.75, equivalent to an increase of over 100 knots in maximum speed. The joined wing configuration studied is lighter than the cantilever and has approximately 11 percent less wing drag in cruise. Its flutter speed of 245 knots EAS is not high enough to allow the potential Mach number improvement to be attained at low altitude. The flutter speed can be raised either by employing rotors which can be stopped and folded in flight at speeds below 245 knots EAS, or by modifying the airframe to reduce adverse coupling with the rotor dynamics. Several modifications of wing geometry and nacelle mass distribution were investigated, but none produced a flutter speed above 260 knots EAS. It was concluded that additional research is required to achieve a more complete understanding of the mechanism of rotor/wing coupling.

  7. Efficient and Scalable Graph Similarity Joins in MapReduce

    PubMed Central

    Chen, Yifan; Zhang, Weiming; Tang, Jiuyang

    2014-01-01

    Along with the emergence of massive graph-modeled data, it is of great importance to investigate graph similarity joins due to their wide applications for multiple purposes, including data cleaning, and near duplicate detection. This paper considers graph similarity joins with edit distance constraints, which return pairs of graphs such that their edit distances are no larger than a given threshold. Leveraging the MapReduce programming model, we propose MGSJoin, a scalable algorithm following the filtering-verification framework for efficient graph similarity joins. It relies on counting overlapping graph signatures for filtering out nonpromising candidates. With the potential issue of too many key-value pairs in the filtering phase, spectral Bloom filters are introduced to reduce the number of key-value pairs. Furthermore, we integrate the multiway join strategy to boost the verification, where a MapReduce-based method is proposed for GED calculation. The superior efficiency and scalability of the proposed algorithms are demonstrated by extensive experimental results. PMID:25121135

  8. Efficient and scalable graph similarity joins in MapReduce.

    PubMed

    Chen, Yifan; Zhao, Xiang; Xiao, Chuan; Zhang, Weiming; Tang, Jiuyang

    2014-01-01

    Along with the emergence of massive graph-modeled data, it is of great importance to investigate graph similarity joins due to their wide applications for multiple purposes, including data cleaning, and near duplicate detection. This paper considers graph similarity joins with edit distance constraints, which return pairs of graphs such that their edit distances are no larger than a given threshold. Leveraging the MapReduce programming model, we propose MGSJoin, a scalable algorithm following the filtering-verification framework for efficient graph similarity joins. It relies on counting overlapping graph signatures for filtering out nonpromising candidates. With the potential issue of too many key-value pairs in the filtering phase, spectral Bloom filters are introduced to reduce the number of key-value pairs. Furthermore, we integrate the multiway join strategy to boost the verification, where a MapReduce-based method is proposed for GED calculation. The superior efficiency and scalability of the proposed algorithms are demonstrated by extensive experimental results.

  9. Ceramic-to-Metal Joining for High Temperature, High Pressure Heat Exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mako, Frederick; Mako III, Frederick

    2016-12-05

    Designed and tested silicon carbide to metal joining and silicon carbide joining technology under high temperature and high pressure conditions. Determined that the joints maintained integrity and remained helium gas tight. These joined parts have been tested for mechanical strength, fracture toughness and hermeticity. A component testing chamber was designed and built and used for testing the joint integrity.

  10. Joining Forces. A Team Approach to Secondary School Development.

    ERIC Educational Resources Information Center

    Miller, Rima; Corcoran, Thomas B.

    This manual is designed to guide the implementation of the Joining Forces Program, a comprehensive improvement process for secondary schools. Implementation of the program requires the cooperative effort of the local school district, state and local education associations, and the administration and staff of participating schools. Joining Forces…

  11. Liquid-solid joining of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K.

    2016-07-01

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.

  12. Liquid-solid joining of bulk metallic glasses

    PubMed Central

    Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K.

    2016-01-01

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components. PMID:27471073

  13. Liquid-solid joining of bulk metallic glasses.

    PubMed

    Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K

    2016-07-29

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.

  14. Liquid-solid joining of bulk metallic glasses

    DOE PAGES

    Huang, Yongjiang; Xue, Peng; Guo, Shu; ...

    2016-07-29

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr 51Ti 5Ni 10Cu 25Al 9 and Zr 50.7Cu 28Ni 9Al 12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. In conclusion, the liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.

  15. Development of a procedure for forming assisted thermal joining of tubes

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Löbbe, Christian; Staupendahl, Daniel; Tekkaya, A. Erman

    2018-05-01

    With the demand of lightweight design in the automotive industry, not only the wall-thicknesses of tubular components of the chassis or spaceframe are continuously decreased. Also the thicknesses of exhaust system parts are reduced to save material and mass. However, thinner tubular parts bring about additional challenges in joining. Welding or brazing methods, which are utilized in joining tubes with specific requirements concerning leak tightness, are sensitive to the gap between the joining partners. Furthermore, a large joining area is required to ensure the durability of the joint. The introduction of a forming step in the assembled state prior to thermal joining can define and control the gap for subsequent brazing or welding. The mechanical pre-joint resulting from the previously described calibration step also results in easier handling of the tubes prior to thermal joining. In the presented investigation, a spinning process is utilized to produce force-fit joints of varying lengths and diameter reduction and form-fit joints with varying geometrical attributes. The spinning process facilitates a high formability and geometrical flexibility, while at the achievable precision is high and the process forces are low. The strength of the joints is used to evaluate the joint quality. Finally, a comparison between joints produced by forming with subsequent brazing and original tube is conducted, which presents the high performance of the developed procedure for forming assisted thermal joining.

  16. Finite element thermal analysis for PMMA/st.st.304 laser direct joining

    NASA Astrophysics Data System (ADS)

    Hussein, Furat I.; Salloomi, Kareem N.; Akman, E.; Hajim, K. I.; Demir, A.

    2017-01-01

    This work is concerned with building a three-dimensional (3D) ab-initio models that is capable of predicting the thermal distribution of laser direct joining processes between Polymethylmethacrylate (PMMA) and stainless steel 304(st.st.304). ANSYS® simulation based on finite element analysis (FEA) was implemented for materials joining in two modes; laser transmission joining (LTJ) and conduction joining (CJ). ANSYS® simulator was used to explore the thermal environment of the joints during joining (heating time) and after joining (cooling time). For both modes, the investigation is carried out when the laser spot is at the middle of the joint width, at 15 mm from the commencement point (joint edge) at traveling time of 3.75 s. Process parameters involving peak power (Pp=3 kW), pulse duration (τ=5 ms), pulse repetition rate (PRR=20 Hz) and scanning speed (v=4 mm/s) are applied for both modes.

  17. SIFT Meets CNN: A Decade Survey of Instance Retrieval.

    PubMed

    Zheng, Liang; Yang, Yi; Tian, Qi

    2018-05-01

    In the early days, content-based image retrieval (CBIR) was studied with global features. Since 2003, image retrieval based on local descriptors (de facto SIFT) has been extensively studied for over a decade due to the advantage of SIFT in dealing with image transformations. Recently, image representations based on the convolutional neural network (CNN) have attracted increasing interest in the community and demonstrated impressive performance. Given this time of rapid evolution, this article provides a comprehensive survey of instance retrieval over the last decade. Two broad categories, SIFT-based and CNN-based methods, are presented. For the former, according to the codebook size, we organize the literature into using large/medium-sized/small codebooks. For the latter, we discuss three lines of methods, i.e., using pre-trained or fine-tuned CNN models, and hybrid methods. The first two perform a single-pass of an image to the network, while the last category employs a patch-based feature extraction scheme. This survey presents milestones in modern instance retrieval, reviews a broad selection of previous works in different categories, and provides insights on the connection between SIFT and CNN-based methods. After analyzing and comparing retrieval performance of different categories on several datasets, we discuss promising directions towards generic and specialized instance retrieval.

  18. Embedded Heaters for Joining or Separating Plastic Parts

    NASA Technical Reports Server (NTRS)

    Bryant, Melvin A., III

    2004-01-01

    A proposed thermal-bonding technique would make it possible to join or separate thermoplastic parts quickly and efficiently. The technique would eliminate the need for conventional welding or for such conventional fastening components as bolted flanges or interlocking hooks. The technique could be particularly useful in the sign industry (in which large quantities of thermoplastics are used) or could be used to join plastic pipes. A thin sheet of a suitable electrically conductive material would be formed to fit between two thermoplastic parts to be joined (see figure). The electrically conductive sheet and the two parts would be put together tightly, then an electrical current would be sent through the conductor to heat the thermoplastic locally. The magnitude of the current and the heating time would be chosen to generate just enough heat to cause the thermoplastic to adhere to both sides of the electrically conductive sheet. Optionally, the electrically conductive sheet could contain many small holes to provide purchase or to increase electrical resistance to facilitate the generation of heat. After thermal bonding, the electrically conductive sheet remains as an integral part of the structure. If necessary, the electrically conductive sheet can be reheated later to separate the joined thermoplastic parts.

  19. Laser hybrid joining of plastic and metal components for lightweight components

    NASA Astrophysics Data System (ADS)

    Rauschenberger, J.; Cenigaonaindia, A.; Keseberg, J.; Vogler, D.; Gubler, U.; Liébana, F.

    2015-03-01

    Plastic-metal hybrids are replacing all-metal structures in the automotive, aerospace and other industries at an accelerated rate. The trend towards lightweight construction increasingly demands the usage of polymer components in drive trains, car bodies, gaskets and other applications. However, laser joining of polymers to metals presents significantly greater challenges compared with standard welding processes. We present recent advances in laser hybrid joining processes. Firstly, several metal pre-structuring methods, including selective laser melting (SLM) are characterized and their ability to provide undercut structures in the metal assessed. Secondly, process parameter ranges for hybrid joining of a number of metals (steel, stainless steel, etc.) and polymers (MABS, PA6.6-GF35, PC, PP) are given. Both transmission and direct laser joining processes are presented. Optical heads and clamping devices specifically tailored to the hybrid joining process are introduced. Extensive lap-shear test results are shown that demonstrate that joint strengths exceeding the base material strength (cohesive failure) can be reached with metal-polymer joining. Weathering test series prove that such joints are able to withstand environmental influences typical in targeted fields of application. The obtained results pave the way toward implementing metalpolymer joints in manufacturing processes.

  20. High-energy electron beams for ceramic joining

    NASA Astrophysics Data System (ADS)

    Turman, Bob N.; Glass, S. J.; Halbleib, J. A.; Helmich, D. R.; Loehman, Ron E.; Clifford, Jerome R.

    1995-03-01

    Joining of structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for high temperature joining. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the ceramic. We have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 MPa have been measured. This strength is comparable to that reported in the literature for bonding silicon nitride (Si3N4) to molybdenum with copper-silver-titanium braze, but weaker than that reported for Si3N4 - Si3N4 with gold-nickel braze. The bonding mechanism appears to be formation of a thin silicide layer. Beam damage to the Si3N4 was also assessed.

  1. Detecting overlapping instances in microscopy images using extremal region trees.

    PubMed

    Arteta, Carlos; Lempitsky, Victor; Noble, J Alison; Zisserman, Andrew

    2016-01-01

    In many microscopy applications the images may contain both regions of low and high cell densities corresponding to different tissues or colonies at different stages of growth. This poses a challenge to most previously developed automated cell detection and counting methods, which are designed to handle either the low-density scenario (through cell detection) or the high-density scenario (through density estimation or texture analysis). The objective of this work is to detect all the instances of an object of interest in microscopy images. The instances may be partially overlapping and clustered. To this end we introduce a tree-structured discrete graphical model that is used to select and label a set of non-overlapping regions in the image by a global optimization of a classification score. Each region is labeled with the number of instances it contains - for example regions can be selected that contain two or three object instances, by defining separate classes for tuples of objects in the detection process. We show that this formulation can be learned within the structured output SVM framework and that the inference in such a model can be accomplished using dynamic programming on a tree structured region graph. Furthermore, the learning only requires weak annotations - a dot on each instance. The candidate regions for the selection are obtained as extremal region of a surface computed from the microscopy image, and we show that the performance of the model can be improved by considering a proxy problem for learning the surface that allows better selection of the extremal regions. Furthermore, we consider a number of variations for the loss function used in the structured output learning. The model is applied and evaluated over six quite disparate data sets of images covering: fluorescence microscopy, weak-fluorescence molecular images, phase contrast microscopy and histopathology images, and is shown to exceed the state of the art in performance. Copyright

  2. Top scientists join Stephen Hawking at Perimeter Institute

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2009-03-01

    Nine leading researchers are to join Stephen Hawking as visiting fellows at the Perimeter Institute for Theoretical Physics in Ontario, Canada. The researchers, who include string theorists Leonard Susskind from Stanford University and Asoka Sen from the Harisch-Chandra Research Institute in India, will each spend a few months of the year at the institute as "distinguished research chairs". They will be joined by another 30 scientists to be announced at a later date.

  3. Laser beam joining of optical fibers in silicon V-grooves

    NASA Astrophysics Data System (ADS)

    Kaufmann, Stefan; Otto, Andreas; Luz, Gerhard

    2000-06-01

    The increasing use of optical data transmission systems and the development of new optical components require adjustment-insensitive and reliable joining and assembling techniques. The state of the art includes the utilization of silicon submounts with anisotropically etched V-grooves. Several glass fibers are fixed in these V-grooves with adhesive. Adhesive bonds tend towards degradation under the influence of temperature and moisture. For this reason, the alternative joining processes laser beam welding and laser beam soldering are relevant. The goal is a reliable joining of optical fibers in V-grooves without damage to the fibers or the silicon submount. Because of the anomaly of silicon during phase transformation, a positive joining can be realized by laser beam welding. A melt pool is created through the energy of a Nd:YAG-laser pulse. During solidification, the volume of silicon increases and a bump is formed in the center. Experiments have shown that this phenomenon can be used for joining optical fibers in silicon-V-grooves. With suitable parameters the silicon flows half around the fiber during solidification. For each fiber, several welding points are necessary. Another promising joining method is laser bema soldering. In this case, a second silicon sheet with a solder deposit is placed on the fibers which lie in the V-grooves of the metallized silicon submount. The laser heats the upper silicon until the solder metals by heat conduction.

  4. Joining of polymer composite materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magness, F.H.

    1990-11-01

    Under ideal conditions load bearing structures would be designed without joints, thus eliminating a source of added weight, complexity and weakness. In reality the need for accessibility, repair, and inspectability, added to the size limitations imposed by the manufacturing process and transportation/assembly requirements mean that some minimum number of joints will be required in most structures. The designer generally has two methods for joining fiber composite materials, adhesive bonding and mechanical fastening. As the use of thermoplastic materials increases, a third joining technique -- welding -- will become more common. It is the purpose of this document to provide amore » review of the available sources pertinent to the design of joints in fiber composites. The primary emphasis is given to adhesive bonding and mechanical fastening with information coming from documentary sources as old as 1961 and as recent as 1989. A third, shorter section on composite welding is included in order to provide a relatively comprehensive treatment of the subject.« less

  5. Instance-based categorization: automatic versus intentional forms of retrieval.

    PubMed

    Neal, A; Hesketh, B; Andrews, S

    1995-03-01

    Two experiments are reported which attempt to disentangle the relative contribution of intentional and automatic forms of retrieval to instance-based categorization. A financial decision-making task was used in which subjects had to decide whether a bank would approve loans for a series of applicants. Experiment 1 found that categorization was sensitive to instance-specific knowledge, even when subjects had practiced using a simple rule. L. L. Jacoby's (1991) process-dissociation procedure was adapted for use in Experiment 2 to infer the relative contribution of intentional and automatic retrieval processes to categorization decisions. The results provided (1) strong evidence that intentional retrieval processes influence categorization, and (2) some preliminary evidence suggesting that automatic retrieval processes may also contribute to categorization decisions.

  6. Silicon Nitride Joining.

    DTIC Science & Technology

    1984-05-01

    and alkaline earth species present in Si3 N or In the glass were found to be deleterious to joint integrity. The results of all ttanamission electron...of Si3 94 ,’ Bulietin, of The American Ceramic Society 58 58-486 (1979). 2 ~ ~ %$ - ~ ~ ’WIN TECHNICAL PROGRESS ’Progress during the third year of the...at temperatures up to 1300*C on Si3 N4 joined with a IaO-Al 2 O3 -Si0 2 glass, -5-9M, and with an yttrium oxynLtrLde glass, SG-14. However, the

  7. Joining of aluminum sheet and glass fiber reinforced polymer using extruded pins

    NASA Astrophysics Data System (ADS)

    Conte, Romina; Buhl, Johannes; Ambrogio, Giuseppina; Bambach, Markus

    2018-05-01

    The present contribution proposes a new approach for joining sheet metal and fiber reinforced composites. The joining process draws upon a Friction Stir Forming (FSF) process, which is performed on the metal sheet to produce slender pins. These pins are used to pierce through the composite. Joining is complete by forming a locking head out of the part if the pin sticks out of the composite. Pins of different diameters and lengths were produced from EN AW-1050 material, which were joined to glass fiber reinforced polyamide-6. The strength of the joint has been experimentally tested in order to understand the effect of the process temperature on the pins strength and therefore on the joining. The results demonstrate the feasibility of this new technique, which uses no excess material.

  8. Thermoplastic Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge

    NASA Technical Reports Server (NTRS)

    Roberts, Scott N. (Inventor); Schramm, Joseph P. (Inventor); Hofmann, Douglas C. (Inventor); Johnson, William L. (Inventor); Kozachkov, Henry (Inventor); Demetriou, Marios D. (Inventor)

    2015-01-01

    Systems and methods for joining BMG Composites are disclosed. Specifically, the joining of BMG Composites is implemented so as to preserve the amorphicity of their matrix phase and the microstructure of their particulate phase. Implementation of the joining method with respect to the construction of modular cellular structures that comprise BMG Composites is also discussed.

  9. Technological Advances in Joining

    DTIC Science & Technology

    1981-08-01

    automotive industry, and similar robots are being equipped to perform many arc welding functions in areas where high production rates must be...nonvacuum electron-beam welding favor the use of this process by the automotive industry. For example, this process has been used to join the component...metal additions were not needed. This process has been also used to weld various assemblies for automotive transmissions (e.g., annulus gear assemblies

  10. Joining of parts via magnetic heating of metal aluminum powders

    DOEpatents

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  11. Astronaut Sullivan prepares to join crew in training

    NASA Image and Video Library

    1984-09-04

    41D-3188 (2 September 1984) --- Astronaut Kathryn D. Sullivan, 41-G mission specialist, joins with other members of the seven-person crew prior to a training session in the Shuttle mockup and integration laboratory at the Johnson Space Center. Dr. Sullivan will be the first American woman to perform an extravehicular activity (EVA) in space when she joins Astronaut David C. Leestma for some outside-the-Challenger duty on October 9. The mission is scheduled for an October 5, 1984 launch.

  12. Structural optimization for joined-wing synthesis

    NASA Technical Reports Server (NTRS)

    Gallman, John W.; Kroo, Ilan M.

    1992-01-01

    The differences between fully stressed and minimum-weight joined-wing structures are identified, and these differences are quantified in terms of weight, stress, and direct operating cost. A numerical optimization method and a fully stressed design method are used to design joined-wing structures. Both methods determine the sizes of 204 structural members, satisfying 1020 stress constraints and five buckling constraints. Monotonic splines are shown to be a very effective way of linking spanwise distributions of material to a few design variables. Both linear and nonlinear analyses are employed to formulate the buckling constraints. With a constraint on buckling, the fully stressed design is shown to be very similar to the minimum-weight structure. It is suggested that a fully stressed design method based on nonlinear analysis is adequate for an aircraft optimization study.

  13. Permanent wire splicing by an explosive joining process

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Kushnick, Anne C. (Inventor)

    1991-01-01

    The invention is an apparatus and method for wire splicing using an explosive joining process. The apparatus consists of a prebent, U-shaped strap of metal that slides over prepositioned wires. A standoff means separates the wires from the strap before joining. An adhesive means holds two ribbon explosives in position centered over the U-shaped strap. A detonating means connects to the ribbon explosives. The process involves spreading strands of each wire to be joined into a flat plane. The process then requires alternating each strand in alignment to form a mesh-like arrangement with an overlapped area. The strap slides over the strands of the wires, and the standoff means is positioned between the two surfaces. The detonating means then initiates the ribbon explosives that drive the strap to accomplish a high velocity, angular collision between the mating surfaces. This collision creates surface melts and collision bonding results in electron sharing linkups.

  14. Toroid Joining Gun For Fittings And Couplings

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Swaim, Robert J.; Johnson, Samuel D.; Buckley, John D.; Copeland, Carl E.; Coultrip, Robert H.; Johnston, David F.; Phillips, William M.

    1992-01-01

    Hand-held gun used to join metal heat-to-shrink couplings. Uses magnetic induction (eddy currents) to produce heat in metal coupling, and thermocouple to measure temperature and signals end of process. Gun, called "toroid joining gun" concentrates high levels of heat in localized areas. Reconfigured for use on metal heat-to-shrink fitting and coupling applications. Provides rapid heating, operates on low power, lightweight and portable. Safe for use around aircraft fuel and has no detrimental effects on surrounding surfaces or objects. Reliable in any environment and under all weather conditions. Gun logical device for taking full advantage of capabilities of new metal heat-to-shrink couplings and fittings.

  15. The Flying Diamond: A joined aircraft configuration design project, volume 1

    NASA Technical Reports Server (NTRS)

    Ball, Chris; Czech, Joe; Lentz, Bryan; Kobashigawa, Daryl; Oishi, Curtis; Poladian, David

    1988-01-01

    The results of the analysis conducted on the Joined Wing Configuration study are presented. The joined wing configuration employs a conventional fuselage and incorporates two wings joined together near their tips to form a diamond shape in both plan view and front view. The arrangement of the lifting surfaces uses the rear wing as a horizontal tail and as a forward wing strut. The rear wing has its root at the tip of the vertical stabilizer and is structurally attached to the trailing edge of the forward wing. This arrangement of the two wings forms a truss structure which is inherently resistant to the aerodynamic bending loads generated during flight. This allows for a considerable reduction in the weight of the lifting surfaces. With smaller internal wing structures needed, the Joined Wing may employ thinner wings which are more suitable for supersonic and hypersonic flight, having less induced drag than conventional cantilever winged aircraft. Inherent in the Joined Wing is the capability of the generation of direct lift and side force which enhance the performance parameters.

  16. Steps to Join Green Power Partnership

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership is a voluntary partnership program designed to reduce the environmental impact of electricity generation by promoting renewable energy. This page details steps organizations should take to join the Partnership.

  17. Joining of SiC parts by polishing and hipping

    DOEpatents

    Rossi, Guilio A.; Pelletier, Paul J.

    1990-05-15

    A method of joining two pre-sintered pieces of silicon carbide is disclosed. It entails polishing the surfaces to be joined to a mirror-finish, fitting the polished surfaces together to form a composite structure, and then subjecting the composite structure to hot isostatic pressing under conditions which are sufficient to form a joint which is essentially indistinguishable from the original silicon carbide pieces.

  18. The Joining-Up Process: Issues in Effective Human Resource Development

    ERIC Educational Resources Information Center

    Frohman, Alan L.; Kotter, John P.

    1975-01-01

    Four specific problems associated with ineffective and expensive joining-up which are examined in the article are: (1) mismatched expectations; (2) stifling creativity and challenge; (3) lack of managerial awareness and sensitivity to joining-up issues; and (4) using inappropriate or incomplete screening criteria. Solutions are suggested; a table…

  19. First observed instance of polygyny in Flammulated Owls

    Treesearch

    Brian D. Linkhart; Erin M. Evers; Julie D. Megler; Eric C. Palm; Catherine M. Salipante; Scott W. Yanco

    2008-01-01

    We document the first observed instance of polygyny in Flammulated Owls (Otus flammeolus) and the first among insectivorous raptors. Chronologies of the male's two nests, which were 510 m apart, were separated by nearly 2 weeks. Each brood initially consisted of three owlets, similar to the mean brood size in monogamous pairs. The male delivered...

  20. Flexible Friction Stir Joining Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Lim, Yong Chae; Mahoney, Murray

    2015-07-23

    Reported herein is the final report on a U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) project with industry cost-share that was jointly carried out by Oak Ridge National Laboratory (ORNL), ExxonMobil Upstream Research Company (ExxonMobil), and MegaStir Technologies (MegaStir). The project was aimed to advance the state of the art of friction stir welding (FSW) technology, a highly energy-efficient solid-state joining process, for field deployable, on-site fabrications of large, complex and thick-sectioned structures of high-performance and high-temperature materials. The technology innovations developed herein attempted to address two fundamental shortcomings of FSW: 1) the inability for on-site welding andmore » 2) the inability to weld thick section steels, both of which have impeded widespread use of FSW in manufacturing. Through this work, major advance has been made toward transforming FSW technology from a “specialty” process to a mainstream materials joining technology to realize its pervasive energy, environmental, and economic benefits across industry.« less

  1. Kernel Methods for Mining Instance Data in Ontologies

    NASA Astrophysics Data System (ADS)

    Bloehdorn, Stephan; Sure, York

    The amount of ontologies and meta data available on the Web is constantly growing. The successful application of machine learning techniques for learning of ontologies from textual data, i.e. mining for the Semantic Web, contributes to this trend. However, no principal approaches exist so far for mining from the Semantic Web. We investigate how machine learning algorithms can be made amenable for directly taking advantage of the rich knowledge expressed in ontologies and associated instance data. Kernel methods have been successfully employed in various learning tasks and provide a clean framework for interfacing between non-vectorial data and machine learning algorithms. In this spirit, we express the problem of mining instances in ontologies as the problem of defining valid corresponding kernels. We present a principled framework for designing such kernels by means of decomposing the kernel computation into specialized kernels for selected characteristics of an ontology which can be flexibly assembled and tuned. Initial experiments on real world Semantic Web data enjoy promising results and show the usefulness of our approach.

  2. Individual Factors Motivating People to Join Organized Violent Movements

    DTIC Science & Technology

    2017-06-09

    INDIVIDUAL FACTORS MOTIVATING PEOPLE TO JOIN ORGANIZED VIOLENT MOVEMENTS A thesis presented to the Faculty of the U.S...2016 – JUN 2017 4. TITLE AND SUBTITLE Individual Factors Motivating People to Join Organized Violent Movements 5a. CONTRACT NUMBER 5b. GRANT...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Command and General Staff College ATTN: ATZL-SWD-GD Fort Leavenworth, KS 66027

  3. Nonlinear Aeroelastic Analysis of Joined-Wing Configurations

    NASA Astrophysics Data System (ADS)

    Cavallaro, Rauno

    Aeroelastic design of joined-wing configurations is yet a relatively unexplored topic which poses several difficulties. Due to the overconstrained nature of the system combined with structural geometric nonlinearities, the behavior of Joined Wings is often counterintuitive and presents challenges not seen in standard layouts. In particular, instability observed on detailed aircraft models but never thoroughly investigated, is here studied with the aid of a theoretical/computational framework. Snap-type of instabilities are shown for both pure structural and aeroelastic cases. The concept of snap-divergence is introduced to clearly identify the true aeroelastic instability, as opposed to the usual aeroelastic divergence evaluated through eigenvalue approach. Multi-stable regions and isola-type of bifurcations are possible characterizations of the nonlinear response of Joined Wings, and may lead to branch-jumping phenomena well below nominal critical load condition. Within this picture, sensitivity to (unavoidable) manufacturing defects could have potential catastrophic effects. The phenomena studied in this work suggest that the design process for Joined Wings needs to be revisited and should focus, when instability is concerned, on nonlinear post-critical analysis since linear methods may provide wrong trend indications and also hide potentially catastrophical situations. Dynamic aeroelastic analyses are also performed. Flutter occurrence is critically analyzed with frequency and time-domain capabilities. Sensitivity to different-fidelity aeroelastic modeling (fluid-structure interface algorithm, aerodynamic solvers) is assessed showing that, for some configurations, wake modeling (rigid versus free) has a strong impact on the results. Post-flutter regimes are also explored. Limit cycle oscillations are observed, followed, in some cases, by flip bifurcations (period doubling) and loss of periodicity of the solution. Aeroelastic analyses are then carried out on a

  4. High Temperature Joining and Characterization of Joint Properties in Silicon Carbide-Based Composite Materials

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    Advanced silicon carbide-based ceramics and composites are being developed for a wide variety of high temperature extreme environment applications. Robust high temperature joining and integration technologies are enabling for the fabrication and manufacturing of large and complex shaped components. The development of a new joining approach called SET (Single-step Elevated Temperature) joining will be described along with the overview of previously developed joining approaches including high temperature brazing, ARCJoinT (Affordable, Robust Ceramic Joining Technology), diffusion bonding, and REABOND (Refractory Eutectic Assisted Bonding). Unlike other approaches, SET joining does not have any lower temperature phases and will therefore have a use temperature above 1315C. Optimization of the composition for full conversion to silicon carbide will be discussed. The goal is to find a composition with no remaining carbon or free silicon. Green tape interlayers were developed for joining. Microstructural analysis and preliminary mechanical tests of the joints will be presented.

  5. Bottom-Up Evaluation of Twig Join Pattern Queries in XML Document Databases

    NASA Astrophysics Data System (ADS)

    Chen, Yangjun

    Since the extensible markup language XML emerged as a new standard for information representation and exchange on the Internet, the problem of storing, indexing, and querying XML documents has been among the major issues of database research. In this paper, we study the twig pattern matching and discuss a new algorithm for processing ordered twig pattern queries. The time complexity of the algorithmis bounded by O(|D|·|Q| + |T|·leaf Q ) and its space overhead is by O(leaf T ·leaf Q ), where T stands for a document tree, Q for a twig pattern and D is a largest data stream associated with a node q of Q, which contains the database nodes that match the node predicate at q. leaf T (leaf Q ) represents the number of the leaf nodes of T (resp. Q). In addition, the algorithm can be adapted to an indexing environment with XB-trees being used.

  6. Affordable, Robust Ceramic Joining Technology (ARCJoinT) for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1998-01-01

    Ceramic joining is recognized as one of the enabling technologies for the successful utilization of silicon carbide-based monolithic ceramic and fiber reinforced composite components in a number of demanding and high temperature applications in aerospace and ground-based systems. An affordable, robust ceramic joining technology (ARCJoinT) for joining of silicon carbide-based ceramics and fiber reinforced composites has been developed. This technique is capable of producing joints with tailorable thickness and composition. A wide variety of silicon carbide-based ceramics and composites, in different shapes and sizes, have been joined using this technique. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. In monolithic silicon carbide ceramics, these joints maintain their mechanical strength up to 1350 C in air. There is no change in the mechanical strength of joints in silicon carbide matrix composites up to 1200 C in air. In composites, simple butt joints yield only about 20% of the ultimate strength of the parent materials. This technology is suitable for the joining of large and complex shaped ceramic and composite components, and with certain modifications, can be applied to repair of ceramic components damaged in service.

  7. Process optimization of joining by upset bulging with local heating

    NASA Astrophysics Data System (ADS)

    Rusch, Michael; Almohallami, Amer; Sviridov, Alexander; Bonk, Christian; Behrens, Bernd-Arno; Bambach, Markus

    2017-10-01

    Joining by upset bulging is a mechanical joining method where axial load is applied to a tube to form two revolving bulges, which clamp the parts to be joined and create a force and form fit. It can be used to join tubes with other structures such as sheets, plates, tubes or profiles of the same or different materials. Other processes such as welding are often limited in joining multi-material assemblies or high-strength materials. With joining by upset bulging at room temperature, the main drawback is the possible initiation of damage (cracks) in the inner buckling zone because of high local stresses and strains. In this paper, a method to avoid the formation of cracks is introduced. Before forming the bulge the tube is locally heated by an induction coil. For the construction steel (E235+N) a maximum temperature of 700 °C was used to avoid phase transformation. For the numerical study of the process the mechanical properties of the tube material were examined at different temperatures and strain rates to determine its flow curves. A parametrical FE model was developed to simulate the bulging process with local heating. Experiments with local heating were executed and metallographic studies of the bulging area were conducted. While specimens heated to 500 °C showed small cracks left, damage-free flanges could be created at 600 and 700 °C. Static testing of damage-free bulges showed improvements in tensile strength and torsion strength compared to bulges formed at room-temperature, while bending and compression behavior remained nearly unchanged. In cyclic testing the locally heated specimens underwent about 3.7 times as many cycles before failure as the specimens formed at room temperature.

  8. Parametric weight evaluation of joined wings by structural optimization

    NASA Technical Reports Server (NTRS)

    Miura, Hirokazu; Shyu, Albert T.; Wolkovitch, Julian

    1988-01-01

    Joined-wing aircraft employ tandem wings having positive and negative sweep and dihedral, arranged to form diamond shapes in both plan and front views. An optimization method was applied to study the effects of joined-wing geometry parameters on structural weight. The lightest wings were obtained by increasing dihedral and taper ratio, decreasing sweep and span, increasing fraction of airfoil chord occupied by structural box, and locating the joint inboard of the front wing tip.

  9. Rhenium Mechanical Properties and Joining Technology

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Biaglow, James A.

    1996-01-01

    Iridium-coated rhenium (Ir/Re) provides thermal margin for high performance and long life radiation cooled rockets. Two issues that have arisen in the development of flight Ir/Re engines are the sparsity of rhenium (Re) mechanical property data (particularly at high temperatures) required for engineering design, and the inability to directly electron beam weld Re chambers to C103 nozzle skirts. To address these issues, a Re mechanical property database is being established and techniques for creating Re/C103 transition joints are being investigated. This paper discusses the tensile testing results of powder metallurgy Re samples at temperatures from 1370 to 2090 C. Also discussed is the evaluation of Re/C103 transition pieces joined by both, explosive and diffusion bonding. Finally, the evaluation of full size Re transition pieces, joined by inertia welding, as well as explosive and diffusion bonding, is detailed.

  10. Communication Patterns, Contradictions, and Family Functions.

    ERIC Educational Resources Information Center

    Yerby, Janet; Buerkel-Rothfuss, Nancy L.

    Families are rule-governed systems of interdependent individuals whose interaction follows an intricate pattern of behavior. Communication patterns in a family reflect and emerge from contradictions in rules. A function may be defined as something that a system does and must do if it is not to break down. For instance identity and stability…

  11. Friction stir lap joining of automotive aluminium alloy and carbon-fiber-reinforced plastic

    NASA Astrophysics Data System (ADS)

    Bang, H. S.; Das, A.; Lee, S.; Bang, H. S.

    2018-05-01

    Multi-material combination such as aluminium alloys and carbon-fiber-reinforced plastics (CFRP) are increasingly used in the aircraft and automobile industries to enhance strength-to-weight ratio of the respective parts and components. Various processes such as adhesive bonding, mechanical fasteners and laser beam joining were employed to join metal alloy and CFRP sheets. However, long processing time of adhesive bonding, extra weight induced by mechanical fasteners and high operating cost of the laser is major limitations of these processes. Therefore, friction stir welding is an alternative choice to overcome those limitations in joining of CFRP and aluminium alloys. In the present work, an attempt is undertaken to join AA5052 alloy and polyamide 66 CFRP sheets by friction stir lap joining technique using pinned and pin-less tools. The joint qualities are investigated extensively at different joining conditions using two different types of tools and surface ground aluminium sheets. The results show that pin-less tool and surface ground aluminium alloy can provide the suitable joint with maximum joint strength around 8 MPa.

  12. All-round joining method with carbon fiber reinforced interface

    NASA Astrophysics Data System (ADS)

    Miwa, Noriyoshi; Tanaka, Kazunori; Kamiya, Yoshiko; Nishi, Yoshitake

    2008-08-01

    Carbon fiber reinforced polymer (CFRP) has been recently applied to not only wing, but also fan blades of turbo fan engines. To prevent impact force, leading edge of titanium was often mounted on the CFRP fan blades with adhesive force. In order to enhance the joining strength, a joining method with carbon fiber reinforced interface has been developed. By using nickel-coated carbon fibers, a joining sample with carbon fiber-reinforced interface between CFRP and CFRM has been successfully developed. The joining sample with nickel-coated carbon fiber interface exhibits the high tensile strength, which was about 10 times higher than that with conventional adhesion. On the other hand, Al-welding methods to steel, Cu and Ti with carbon fiber reinforced interface have been successfully developed to lighten the parts of machines of racing car and airplane. Carbon fibers in felt are covered with metals to protect the interfacial reaction. The first step of the welding method is that the Al coated felt is contacted and wrapped with molten aluminum solidified under gravity pressure, whereas the second step is that the felt with double layer of Ni and Al is contacted and wrapped with molten steel (Cu or Ti) solidified under gravity pressure. Tensile strength of Al-Fe (Cu or Ti) welded sample with carbon fiber reinforced interface is higher than those of Al-Fe (Cu or Ti) welded sample.

  13. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    NASA Astrophysics Data System (ADS)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  14. Laser-induced Self-organizing Microstructures on Steel for Joining with Polymers

    NASA Astrophysics Data System (ADS)

    van der Straeten, Kira; Burkhardt, Irmela; Olowinsky, Alexander; Gillner, Arnold

    The combination of different materials such as thermoplastic composites and metals is an important way to improve lightweight construction. As direct connections between these materials fail due to their physical and chemical properties, other joining techniques are required. A new joining approach besides fastening and adhesive joining is a laser-based two-step process. Within the first step the metal surface is modified by laser-microstructuring. In order to enlarge the boundary surface and create undercuts, random self-organizing microstructures are generated on stainless steel substrates. In a second process step both joining partners, metal and composite, are clamped together, the steel surface is heated up with laser radiation and through heat conduction the thermoplastic matrix is melted and flows into the structures. After cooling-down a firm joint between both materials is created. The presented work shows the influence of different laser parameters on the generation of the microstructures. The joint strength is investigated through tensile shear strength tests.

  15. Infrared transient-liquid-phase joining of SCS-6/ β21S titanium matrix composite

    NASA Astrophysics Data System (ADS)

    Blue, Craig A.; Sikka, Vinod K.; Blue, Randall A.; Lin, Ray Y.

    1996-12-01

    Fiber-reinforced titanium matrix composites (TMCs) are among the advanced materials being considered for use in the aerospace industry due to their light weight, high strength, and high modulus. A rapid infrared joining process has been developed for the joining of composites and advanced materials. Rapid infrared joining has been shown not to have many of the problems associated with conventional joining methods. Two models were utilized to predict the joint evolution and fiber reaction zone growth. Titanium matrix composite, 16-ply SCS-6/ β21S, has been successfully joined with total processing times of approximately 2 minutes, utilizing the rapid infrared joining technique. The process utilizes a 50 °C/s ramping rate, 17- µm Ti-15Cu-15Ni wt pct filler material between the faying surfaces; a joining temperature of 1100 °C; and 120 seconds of time to join the composite material. Joint shear-strength testing of the rapid infrared joints at temperatures as high as 800 °C has revealed no joint failures. Also, due to the rapid cooling of the process, no poststabilization of the matrix material is necessary to prevent the formation of a brittle omega phase during subsequent use of the TMC at intermediate temperatures, 270 °C to 430 °C, for up to 20 hours.

  16. OligoIS: Scalable Instance Selection for Class-Imbalanced Data Sets.

    PubMed

    García-Pedrajas, Nicolás; Perez-Rodríguez, Javier; de Haro-García, Aida

    2013-02-01

    In current research, an enormous amount of information is constantly being produced, which poses a challenge for data mining algorithms. Many of the problems in extremely active research areas, such as bioinformatics, security and intrusion detection, or text mining, share the following two features: large data sets and class-imbalanced distribution of samples. Although many methods have been proposed for dealing with class-imbalanced data sets, most of these methods are not scalable to the very large data sets common to those research fields. In this paper, we propose a new approach to dealing with the class-imbalance problem that is scalable to data sets with many millions of instances and hundreds of features. This proposal is based on the divide-and-conquer principle combined with application of the selection process to balanced subsets of the whole data set. This divide-and-conquer principle allows the execution of the algorithm in linear time. Furthermore, the proposed method is easy to implement using a parallel environment and can work without loading the whole data set into memory. Using 40 class-imbalanced medium-sized data sets, we will demonstrate our method's ability to improve the results of state-of-the-art instance selection methods for class-imbalanced data sets. Using three very large data sets, we will show the scalability of our proposal to millions of instances and hundreds of features.

  17. Advances in Solid State Joining of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Ding, Jeff; Schneider, Judy

    2011-01-01

    Many of the metals used in the oil and gas industry are difficult to fusion weld including Titanium and its alloys. Solid state joining processes are being pursued as an alternative process to produce robust structures more amenable to high pressure applications. Various solid state joining processes include friction stir welding (FSW) and a patented modification termed thermal stir welding (TSW). The configuration of TSWing utilizes an induction coil to preheat the material minimizing the burden on the weld tool extending its life. This provides the ability to precisely select and control the temperature to avoid detrimental changes to the microstructure. The work presented in this presentation investigates the feasibility of joining various titanium alloys using the solid state welding processes of FSW and TSW. Process descriptions and attributes of each weld process will be presented. Weld process set ]up and welding techniques will be discussed leading to the challenges experienced. Mechanical property data will also be presented.

  18. Explosive Joining for Nuclear-Reactor Repair

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Bailey, J. W.

    1983-01-01

    In explosive joining technique, adapter flange from fuel channel machined to incorporate a V-notch interface. Ribbon explosive, 1/2 inch (1.3 cm) in width, drives V-notched wall of adapter into bellows assembly, producing atomic-level metallurgical bond. Ribbon charge yields joint with double parent metal strength.

  19. Automatic provisioning, deployment and orchestration for load-balancing THREDDS instances

    NASA Astrophysics Data System (ADS)

    Cofino, A. S.; Fernández-Tejería, S.; Kershaw, P.; Cimadevilla, E.; Petri, R.; Pryor, M.; Stephens, A.; Herrera, S.

    2017-12-01

    THREDDS is a widely used web server to provide to different scientific communities with data access and discovery. Due to THREDDS's lack of horizontal scalability and automatic configuration management and deployment, this service usually deals with service downtimes and time consuming configuration tasks, mainly when an intensive use is done as is usual within the scientific community (e.g. climate). Instead of the typical installation and configuration of a single or multiple independent THREDDS servers, manually configured, this work presents an automatic provisioning, deployment and orchestration cluster of THREDDS servers. This solution it's based on Ansible playbooks, used to control automatically the deployment and configuration setup on a infrastructure and to manage the datasets available in THREDDS instances. The playbooks are based on modules (or roles) of different backends and frontends load-balancing setups and solutions. The frontend load-balancing system enables horizontal scalability by delegating requests to backend workers, consisting in a variable number of instances for the THREDDS server. This implementation allows to configure different infrastructure and deployment scenario setups, as more workers are easily added to the cluster by simply declaring them as Ansible variables and executing the playbooks, and also provides fault-tolerance and better reliability since if any of the workers fail another instance of the cluster can take over it. In order to test the solution proposed, two real scenarios are analyzed in this contribution: The JASMIN Group Workspaces at CEDA and the User Data Gateway (UDG) at the Data Climate Service from the University of Cantabria. On the one hand, the proposed configuration has provided CEDA with a higher level and more scalable Group Workspaces (GWS) service than the previous one based on Unix permissions, improving also the data discovery and data access experience. On the other hand, the UDG has improved its

  20. Joining of Silicon Carbide-Based Ceramics by Reaction Forming Method

    NASA Technical Reports Server (NTRS)

    Singh, M.; Kiser, J. D.

    1997-01-01

    Recently, there has been a surge of interest in the development and testing of silicon-based ceramics and composite components for a number of aerospace and ground based systems. The designs often require fabrication of complex shaped parts which can be quite expensive. One attractive way of achieving this goal is to build up complex shapes by joining together geometrically simple shapes. However, the joints should have good mechanical strength and environmental stability comparable to the bulk materials. These joints should also be able to maintain their structural integrity at high temperatures. In addition, the joining technique should be practical, reliable, and affordable. Thus, joining has been recognized as one of the enabling technologies for the successful utilization of silicon carbide based ceramic components in high temperature applications. Overviews of various joining techniques, i.e., mechanical fastening, adhesive bonding, welding, brazing, and soldering have been provided in recent publications. The majority of the techniques used today are based on the joining of monolithic ceramics with metals either by diffusion bonding, metal brazing, brazing with oxides and oxynitrides, or diffusion welding. These techniques need either very high temperatures for processing or hot pressing (high pressures). The joints produced by these techniques have different thermal expansion coefficients than the ceramic materials, which creates a stress concentration in the joint area. The use temperatures for these joints are around 700 C. Ceramic joint interlayers have been developed as a means of obtaining high temperature joints. These joint interlayers have been produced via pre-ceramic polymers, in-situ displacement reactions, and reaction bonding techniques. Joints produced by the pre-ceramic polymer approach exhibit a large amounts of porosity and poor mechanical properties. On the other hand, hot pressing or high pressures are needed for in-situ displacement

  1. Aluminum and stainless steel tubes joined by simple ring and welding process

    NASA Technical Reports Server (NTRS)

    Townhill, A.

    1967-01-01

    Duranel ring is used to join aluminum and stainless steel tubing. Duranel is a bimetal made up of roll-bonded aluminum and stainless steel. This method of joining the tubing requires only two welding operations.

  2. Deformation and Forming of Joined Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carsley, John; Hovanski, Yuri; Clarke, Kester D.

    2014-09-23

    Introductory article to a set of invited papers from the TMS committee on shaping and forming. This paper introduces a set of papers that were prepared to discussing the deformation and forming of joined materials, and to announce an upcoming symposium at the 2015 MS&T meeting in Columbus Ohio.

  3. Method of joining ceramics

    DOEpatents

    Henager, Jr., Charles H.; Brimhall, John L.

    2000-01-01

    According to the method of the present invention, joining a first bi-element carbide to a second bi-element carbide, has the steps of: (a) forming a bond agent containing a metal carbide and silicon; (b) placing the bond agent between the first and second bi-element carbides to form a pre-assembly; and (c) pressing and heating the pre-assembly in a non-oxidizing atmosphere to a temperature effective to induce a displacement reaction creating a metal silicon phase bonding the first and second bi-element carbides.

  4. Horizontal and vertical combination of multi-tenancy patterns in service-oriented applications

    NASA Astrophysics Data System (ADS)

    Mietzner, Ralph; Leymann, Frank; Unger, Tobias

    2011-02-01

    Software as a service (SaaS) providers exploit economies of scale by offering the same instance of an application to multiple customers typically in a single-instance multi-tenant architecture model. Therefore the applications must be scalable, multi-tenant aware and configurable. In this article, we show how the services in a service-oriented SaaS application can be deployed using different multi-tenancy patterns. We describe how services in different multi-tenancy patterns can be composed on the application level. In addition to that, we also describe how these multi-tenancy patterns can be applied to middleware and hardware components. We then show with some real world examples how the different multi-tenancy patterns can be combined.

  5. Robust Joining and Integration Technologies for Advanced Metallic, Ceramic, and Composite Systems

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Morscher, Gregory N.; Halbig, Michael H.; Asthana, Rajiv

    2006-01-01

    Robust integration and assembly technologies are critical for the successful implementation of advanced metallic, ceramic, carbon-carbon, and ceramic matrix composite components in a wide variety of aerospace, space exploration, and ground based systems. Typically, the operating temperature of these components varies from few hundred to few thousand Kelvin with different working times (few minutes to years). The wide ranging system performance requirements necessitate the use of different integration technologies which includes adhesive bonding, low temperature soldering, active metal brazing, diffusion bonding, ARCJoinT, and ultra high temperature joining technologies. In this presentation, a number of joining examples and test results will be provided related to the adhesive bonding and active metal brazing of titanium to C/C composites, diffusion bonding of silicon carbide to silicon carbide using titanium interlayer, titanium and hastelloy brazing to silicon carbide matrix composites, and ARCJoinT joining of SiC ceramics and SiC matrix composites. Various issues in the joining of metal-ceramic systems including thermal expansion mismatch and resulting residual stresses generated during joining will be discussed. In addition, joint design and testing issues for a wide variety of joints will be presented.

  6. Instance, Cue, and Dimension Learning in Concept Shift Task.

    ERIC Educational Resources Information Center

    Prentice, Joan L.; Panda, Kailas C.

    Experiment I was designed to demonstrate that young children fail to abstract the positive cue as the relevant stimulus event in a restricted concept-learning task. Sixteen kindergarten and 16 fourth grade subjects were trained to criterion on a Kendler-type task, whereupon each subject was presented a pair of new instances which contrasted only…

  7. Dual Roles for DNA Polymerase Theta in Alternative End-Joining Repair of Double-Strand Breaks in Drosophila

    PubMed Central

    McVey, Mitch

    2010-01-01

    DNA double-strand breaks are repaired by multiple mechanisms that are roughly grouped into the categories of homology-directed repair and non-homologous end joining. End-joining repair can be further classified as either classical non-homologous end joining, which requires DNA ligase 4, or “alternative” end joining, which does not. Alternative end joining has been associated with genomic deletions and translocations, but its molecular mechanism(s) are largely uncharacterized. Here, we report that Drosophila melanogaster DNA polymerase theta (pol theta), encoded by the mus308 gene and previously implicated in DNA interstrand crosslink repair, plays a crucial role in DNA ligase 4-independent alternative end joining. In the absence of pol theta, end joining is impaired and residual repair often creates large deletions flanking the break site. Analysis of break repair junctions from flies with mus308 separation-of-function alleles suggests that pol theta promotes the use of long microhomologies during alternative end joining and increases the likelihood of complex insertion events. Our results establish pol theta as a key protein in alternative end joining in Drosophila and suggest a potential mechanistic link between alternative end joining and interstrand crosslink repair. PMID:20617203

  8. Multi-instance multi-label distance metric learning for genome-wide protein function prediction.

    PubMed

    Xu, Yonghui; Min, Huaqing; Song, Hengjie; Wu, Qingyao

    2016-08-01

    Multi-instance multi-label (MIML) learning has been proven to be effective for the genome-wide protein function prediction problems where each training example is associated with not only multiple instances but also multiple class labels. To find an appropriate MIML learning method for genome-wide protein function prediction, many studies in the literature attempted to optimize objective functions in which dissimilarity between instances is measured using the Euclidean distance. But in many real applications, Euclidean distance may be unable to capture the intrinsic similarity/dissimilarity in feature space and label space. Unlike other previous approaches, in this paper, we propose to learn a multi-instance multi-label distance metric learning framework (MIMLDML) for genome-wide protein function prediction. Specifically, we learn a Mahalanobis distance to preserve and utilize the intrinsic geometric information of both feature space and label space for MIML learning. In addition, we try to deal with the sparsely labeled data by giving weight to the labeled data. Extensive experiments on seven real-world organisms covering the biological three-domain system (i.e., archaea, bacteria, and eukaryote; Woese et al., 1990) show that the MIMLDML algorithm is superior to most state-of-the-art MIML learning algorithms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Joining of thermoplastic substrates by microwaves

    DOEpatents

    Paulauskas, Felix L.; Meek, Thomas T.

    1997-01-01

    A method for joining two or more items having surfaces of thermoplastic material includes the steps of depositing an electrically-conductive material upon the thermoplastic surface of at least one of the items, and then placing the other of the two items adjacent the one item so that the deposited material is in intimate contact with the surfaces of both the one and the other items. The deposited material and the thermoplastic surfaces contacted thereby are then exposed to microwave radiation so that the thermoplastic surfaces in contact with the deposited material melt, and then pressure is applied to the two items so that the melted thermoplastic surfaces fuse to one another. Upon discontinuance of the exposure to the microwave energy, and after permitting the thermoplastic surfaces to cool from the melted condition, the two items are joined together by the fused thermoplastic surfaces. The deposited material has a thickness which is preferably no greater than a skin depth, .delta..sub.s, which is related to the frequency of the microwave radiation and characteristics of the deposited material in accordance with an equation.

  10. Alternative end-joining pathway(s): bricolage at DNA breaks.

    PubMed

    Frit, Philippe; Barboule, Nadia; Yuan, Ying; Gomez, Dennis; Calsou, Patrick

    2014-05-01

    To cope with DNA double strand break (DSB) genotoxicity, cells have evolved two main repair pathways: homologous recombination which uses homologous DNA sequences as repair templates, and non-homologous Ku-dependent end-joining involving direct sealing of DSB ends by DNA ligase IV (Lig4). During the last two decades a third player most commonly named alternative end-joining (A-EJ) has emerged, which is defined as any Ku- or Lig4-independent end-joining process. A-EJ increasingly appears as a highly error-prone bricolage on DSBs and despite expanding exploration, it still escapes full characterization. In the present review, we discuss the mechanism and regulation of A-EJ as well as its biological relevance under physiological and pathological situations, with a particular emphasis on chromosomal instability and cancer. Whether or not it is a genuine DSB repair pathway, A-EJ is emerging as an important cellular process and understanding A-EJ will certainly be a major challenge for the coming years. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  11. State-of-technology for joining TD-NiCr sheet.

    NASA Technical Reports Server (NTRS)

    Holko, K. H.; Moore, T. J.; Gyorgak, C. A.

    1972-01-01

    At the current state-of-technology there are many joining processes that can be used to make sound welds in TD-NiCr sheet. Some of these that are described in this report are electron beam welding (EBW), gas-tungsten arc welding (GTAW), diffusion welding (DFW), resistance spot welding (RSW), resistance seam welding (RSEW), and brazing. Roll welding (RW) and explosion welding (EXW) have not been developed to the point where they can be used to make sound welds in TD-NiCr. Joining work that has previously been done on TD-NiCr by various organizations, both privately supported and under Air Force and NASA contracts, is described in this summary. Current work is also described that is being done at General Dynamics/Convair (under NASA contract) and at NASA/Lewis to develop and evaluate DFW, RSW, RSEW, and brazing. Preliminary comparisons of joining processes are made for typical applications. A brief description of the manufacture of TD-NiCr sheet by a recently standardized process (under NASA contract) also is given.

  12. New local joining technique for metal materials using exothermic heat of Al/Ni multilayer powder

    NASA Astrophysics Data System (ADS)

    Izumi, Taisei; Kametani, Nagamasa; Miyake, Shugo; Kanetsuki, Shunsuke; Namazu, Takahiro

    2018-06-01

    The use of Al/Ni multilayer powders as a new heat source has been expected for metal joining technique owing to their instantaneous reaction and enormous amount of exothermic heat. In this study, the effects of the amount of Al/Ni multilayer powders on the electrical and mechanical properties of the joining part of Al strip specimens were examined. These electrical and mechanical properties were estimated by electric resistivity measurement using the four-terminal method and shear test, respectively. Experimental results show that Al specimens are successful joined under a limited condition and exhibit low electrical resistance and sufficiently high strength to maintain the joined state. However, overheating increases the amount of Al/Ni multilayer powder in the joined part, which causes considerable damage such as voids and dissolved loss. It is found that optimization of the amount of Al/Ni multilayer powder enables us to realize reliable joining of Al foils in electronics fields in the future.

  13. 46 CFR 56.15-1 - Pipe joining fittings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... subpart 50.25 of this subchapter are acceptable for use in piping systems. (b) Threaded, flanged, socket-welding, buttwelding, and socket-brazing pipe joining fittings, made in accordance with the applicable...

  14. 46 CFR 56.15-1 - Pipe joining fittings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... subpart 50.25 of this subchapter are acceptable for use in piping systems. (b) Threaded, flanged, socket-welding, buttwelding, and socket-brazing pipe joining fittings, made in accordance with the applicable...

  15. 46 CFR 56.15-1 - Pipe joining fittings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... subpart 50.25 of this subchapter are acceptable for use in piping systems. (b) Threaded, flanged, socket-welding, buttwelding, and socket-brazing pipe joining fittings, made in accordance with the applicable...

  16. 46 CFR 56.15-1 - Pipe joining fittings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... subpart 50.25 of this subchapter are acceptable for use in piping systems. (b) Threaded, flanged, socket-welding, buttwelding, and socket-brazing pipe joining fittings, made in accordance with the applicable...

  17. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOEpatents

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  18. Numerical modelling in friction lap joining of aluminium alloy and carbon-fiber-reinforced-plastic sheets

    NASA Astrophysics Data System (ADS)

    Das, A.; Bang, H. S.; Bang, H. S.

    2018-05-01

    Multi-material combinations of aluminium alloy and carbon-fiber-reinforced-plastics (CFRP) have gained attention in automotive and aerospace industries to enhance fuel efficiency and strength-to-weight ratio of components. Various limitations of laser beam welding, adhesive bonding and mechanical fasteners make these processes inefficient to join metal and CFRP sheets. Friction lap joining is an alternative choice for the same. Comprehensive studies in friction lap joining of aluminium to CFRP sheets are essential and scare in the literature. The present work reports a combined theoretical and experimental study in joining of AA5052 and CFRP sheets using friction lap joining process. A three-dimensional finite element based heat transfer model is developed to compute the temperature fields and thermal cycles. The computed results are validated extensively with the corresponding experimentally measured results.

  19. News Release: USDA Joins Fair Food Network, State and Local Partners to

    Science.gov Websites

    Promote Nutrition Resources for Lead-Affected Flint Residents - PHE You may be trying to access Joins Fair Food Network, State and Local Partners to Promote Nutrition Resources for Lead-Affected Flint Residents News Release: USDA Joins Fair Food Network, State and Local Partners to Promote Nutrition

  20. Glass-ceramic joint and method of joining

    DOEpatents

    Meinhardt, Kerry D [Richland, WA; Vienna, John D [West Richland, WA; Armstrong, Timothy R [Clinton, TN; Pederson, Larry R [Kennewick, WA

    2003-03-18

    The present invention is a glass-ceramic material and method of making useful for joining a solid ceramic component and at least one other solid component. The material is a blend of M1-M2-M3, wherein M1 is BaO, SrO, CaO, MgO, or combinations thereof, M2 is Al.sub.2 O.sub.3, present in the blend in an amount from 2 to 15 mol %, M3 is SiO.sub.2 with up to 50 mol % B.sub.2 O.sub.3 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the M1-Al.sub.2 O.sub.3 -M3 system can be used to join or seal both tubular and planar solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.

  1. Explosive Tube-to-fitting Joining of Small-diameter Tubes

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1985-01-01

    An effort is currently under way by NASA Marshall Space Flight Center to upgrade the space shuttle main engine through the use of improved materials and processes. Under consideration is the use of the Langley Research Center explosive seam welding process. The objective is to demonstrate the feasibility of joining space shuttle main engine tube to fitting components in an oxygen heat exchanger, using the NASA LaRC explosive seam welding process. It was concluded that LaRC explosive joining is viable for this application; that there is no incompatability of materials; that ultrasonic inspection is the best nondestructive testing method; and that the .500 DIA joint experiences interface problems.

  2. Tool and process for miniature explosive joining of tubes

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Bailey, James W. (Inventor)

    1987-01-01

    A tool and process to be used in the explosive joining of tubes is disclosed. The tool consists of an initiator, a tool form, and a ribbon explosive. The assembled tool is a compact, storable, and safe device suitable for explosive joining of small, lightweight tubes down to 0.20 inch in diameter. The invention is inserted into either another tube or a tube plate. A shim or standoff between the two surfaces to be welded is necessary. Initiation of the explosive inside the tube results in a high velocity, angular collision between the mating surfaces. This collision creates surface melts and collision bonding wherein electron-sharing linkups are formed.

  3. Risky business: Microhomology-mediated end joining.

    PubMed

    Sinha, Supriya; Villarreal, Diana; Shim, Eun Yong; Lee, Sang Eun

    2016-06-01

    Prevalence of microhomology (MH) at the breakpoint junctions in somatic and germ-line chromosomal rearrangements and in the programmed immune receptor rearrangements from cells deficient in classical end joining reveals an enigmatic process called MH-mediated end joining (MMEJ). MMEJ repairs DNA double strand breaks (DSBs) by annealing flanking MH and deleting genetic information at the repair junctions from yeast to humans. Being genetically distinct from canonical DNA DSB pathways, MMEJ is involved with the fusions of eroded/uncapped telomeres as well as with the assembly of chromosome fragments in chromothripsis. In this review article, we will discuss an up-to-date model representing the MMEJ process and the mechanism by which cells regulate MMEJ to limit repair-associated mutagenesis. We will also describe the possible therapeutic gains resulting from the inhibition of MMEJ in recombination deficient cancers. Lastly, we will embark on two contentious issues associated with MMEJ such as the significance of MH at the repair junction to be the hallmark of MMEJ and the relationship of MMEJ to other mechanistically related DSB repair pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Joining Dental Ceramic Layers With Glass

    PubMed Central

    Saied, MA; Lloyd, IK; Haller, WK; Lawn, BR

    2011-01-01

    Objective Test the hypothesis that glass-bonding of free-form veneer and core ceramic layers can produce robust interfaces, chemically durable and aesthetic in appearance and, above all, resistant to delamination. Methods Layers of independently produced porcelains (NobelRondo™ Press porcelain, Nobel BioCare AB and Sagkura Interaction porcelain, Elephant Dental) and matching alumina or zirconia core ceramics (Procera alumina, Nobel BioCare AB, BioZyram yttria stabilized tetragonal zirconia polycrystal, Cyrtina Dental) were joined with designed glasses, tailored to match thermal expansion coefficients of the components and free of toxic elements. Scanning electron microprobe analysis was used to characterize the chemistry of the joined interfaces, specifically to confirm interdiffusion of ions. Vickers indentations were used to drive controlled corner cracks into the glass interlayers to evaluate the toughness of the interfaces. Results The glass-bonded interfaces were found to have robust integrity relative to interfaces fused without glass, or those fused with a resin-based adhesive. Significance The structural integrity of the interfaces between porcelain veneers and alumina or zirconia cores is a critical factor in the longevity of all-ceramic dental crowns and fixed dental prostheses. PMID:21802131

  5. 49 CFR 33.44 - Instances where assistance may not be provided.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND ALLOCATION SYSTEM Special Priorities Assistance § 33.44 Instances where assistance may not be... attempting to: (a) Secure a price advantage; (b) Obtain delivery prior to the time required to fill a rated...

  6. 49 CFR 33.44 - Instances where assistance may not be provided.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AND ALLOCATION SYSTEM Special Priorities Assistance § 33.44 Instances where assistance may not be... attempting to: (a) Secure a price advantage; (b) Obtain delivery prior to the time required to fill a rated...

  7. 49 CFR 33.44 - Instances where assistance may not be provided.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AND ALLOCATION SYSTEM Special Priorities Assistance § 33.44 Instances where assistance may not be... attempting to: (a) Secure a price advantage; (b) Obtain delivery prior to the time required to fill a rated...

  8. Who Should Join the Environmental Response Laboratory Network

    EPA Pesticide Factsheets

    Laboratories that analyze biological samples, chemical warfare agents, radiological, or toxic industrial chemical samples can join the ERLN. Members make up a critical infrastructure that delivers data necessary for responses to large scale emergencies.

  9. Group-living herbivores weigh up food availability and dominance status when making patch-joining decisions.

    PubMed

    Stears, Keenan; Kerley, Graham I H; Shrader, Adrian M

    2014-01-01

    Two key factors that influence the foraging behaviour of group-living herbivores are food availability and individual dominance status. Yet, how the combination of these factors influences the patch-joining decisions of individuals foraging within groups has scarcely been explored. To address this, we focused on the patch-joining decisions of group-living domestic goats (Capra hircus). When individuals were tested against the top four ranked goats of the herd, we found that at patches with low food availability they avoided these dominant patch-holders and only joined subordinates (i.e. costs outweighed benefits). However, as the amount of food increased, the avoidance of the top ranked individuals declined. Specifically, goats shifted and joined the patch of an individual one dominance rank higher than the previous dominant patch holder when the initial quantity of food in the new patch was twice that of the lower ranking individual's patch (i.e. benefits outweighed costs). In contrast, when individuals chose between patches held by dominant goats, other than the top four ranked goats, and subordinate individuals, we found that they equally joined the dominant and subordinate patch-holders. This joining was irrespective of the dominance gap, absolute rank of the dominant patch-holder, sex or food availability (i.e. benefits outweighed costs). Ultimately, our results highlight that herbivores weigh up the costs and benefits of both food availability and patch-holder dominance status when making patch-joining decisions. Furthermore, as the initial quantity of food increases, food availability becomes more important than dominance with regard to influencing patch-joining decisions.

  10. Joining and Integration of Silicon Carbide-Based Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2016-01-01

    Advanced joining and integration technologies of silicon carbide-based ceramics and ceramic matrix composites are enabling for their implementation into wide scale aerospace and ground-based applications. The robust joining and integration technologies allow for large and complex shapes to be fabricated and integrated with the larger system. Potential aerospace applications include lean-direct fuel injectors, thermal actuators, turbine vanes, blades, shrouds, combustor liners and other hot section components. Ground based applications include components for energy and environmental systems. Performance requirements and processing challenges are identified for the successful implementation different joining technologies. An overview will be provided of several joining approaches which have been developed for high temperature applications. In addition, various characterization approaches were pursued to provide an understanding of the processing-microstructure-property relationships. Microstructural analysis of the joint interfaces was conducted using optical, scanning electron, and transmission electron microscopy to identify phases and evaluate the bond quality. Mechanical testing results will be presented along with the need for new standardized test methods. The critical need for tailoring interlayer compositions for optimum joint properties will also be highlighted.

  11. TRANSFORMER FOR JOINING UNBALANCED TO BALANCED TRANSMISSION MEANS

    DOEpatents

    Bittner, B.J.; Opperman, R.H.

    1960-06-28

    An improved transformer is invented for joining an unbalanced transmission means to a balanced transmission means and is useful, for example, in transmitting an electromagnetic signal from a coaxial cable to a balanced dipole antenna.

  12. Finland to Join ESO

    NASA Astrophysics Data System (ADS)

    2004-02-01

    Finland will become the eleventh member state of the European Southern Observatory (ESO) [1]. Today, during a ceremony at the ESO Headquarters in Garching (Germany), a corresponding Agreement was signed by the Finnish Minister of Education and Science, Ms. Tuula Haatainen and the ESO Director General, Dr. Catherine Cesarsky, in the presence of other high officials from Finland and the ESO member states (see Video Clip 02/04 below). Following subsequent ratification by the Finnish Parliament of the ESO Convention and the associated protocols [2], it is foreseen that Finland will formally join ESO on July 1, 2004. Uniting European Astronomy ESO PR Photo 03/04 ESO PR Photo 03/04 Caption : Signing of the Finland-ESO Agreement on February 9, 2004, at the ESO Headquarters in Garching (Germany). At the table, the ESO Director General, Dr. Catherine Cesarsky, and the Finnish Minister of Education and Science, Ms. Tuula Haatainen . [Preview - JPEG: 400 x 499 pix - 52k] [Normal - JPEG: 800 x 997 pix - 720k] [Full Res - JPEG: 2126 x 2649 pix - 2.9M] The Finnish Minister of Education and Science, Ms. Tuula Haatainen, began her speech with these words: "On behalf of Finland, I am happy and proud that we are now joining the European Southern Observatory, one of the most successful megaprojects of European science. ESO is an excellent example of the potential of European cooperation in science, and along with the ALMA project, more and more of global cooperation as well." She also mentioned that besides science ESO offers many technological challenges and opportunities. And she added: "In Finland we will try to promote also technological and industrial cooperation with ESO, and we hope that the ESO side will help us to create good working relations. I am confident that Finland's membership in ESO will be beneficial to both sides." Dr. Catherine Cesarsky, ESO Director General, warmly welcomed the Finnish intention to join ESO. "With the accession of their country to ESO, Finnish

  13. Combustion Joining for Composite Fabrication

    DTIC Science & Technology

    2009-10-25

    Inert preheating Process beginning T e m p e r a t u r e , o C Time, s I = 600 Amps D = 10 mm Joule preheating only up to Tig UNCLASSIFIED • C...Honeywell Corp (South Bend, IN) • Currently build aircraft brake disks from carbon fibers • use a long (~ 100 day) CVD process to densify • Brake wear...oxidation with every landing A380 -rejected take off test C-C brakes UNCLASSIFIED Joining C-Based Materials • Difficult task – Carbon cannot be welded

  14. What Children Recall about a Repeated Event When One Instance Is Different from the Others

    ERIC Educational Resources Information Center

    Connolly, Deborah A.; Gordon, Heidi M.; Woiwod, Dayna M.; Price, Heather L.

    2016-01-01

    This research examined whether a memorable and unexpected change (deviation details) presented during 1 instance of a repeated event facilitated children's memory for that instance and whether a repeated event facilitated children's memory for deviation details. In Experiments 1 and 2, 8-year-olds (N = 167) watched 1 or 4 live magic shows.…

  15. Desert Patterns

    NASA Image and Video Library

    2017-12-08

    Desert Patterns - April 13th, 2003 Description: Seen through the "eyes" of a satellite sensor, ribbons of Saharan sand dunes seem to glow in sunset colors. These patterned stripes are part of Erg Chech, a desolate sand sea in southwestern Algeria, Africa, where the prevailing winds create an endlessly shifting collage of large, linear sand dunes. The term "erg" is derived from an Arabic word for a field of sand dunes. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  16. The design of a joined wing flight demonstrator aircraft

    NASA Technical Reports Server (NTRS)

    Smith, S. C.; Cliff, S. E.; Kroo, I. M.

    1987-01-01

    A joined-wing flight demonstrator aircraft has been developed at the NASA Ames Research Center in collaboration with ACA Industries. The aircraft is designed to utilize the fuselage, engines, and undercarriage of the existing NASA AD-1 flight demonstrator aircraft. The design objectives, methods, constraints, and the resulting aircraft design, called the JW-1, are presented. A wind-tunnel model of the JW-1 was tested in the NASA Ames 12-foot wind tunnel. The test results indicate that the JW-1 has satisfactory flying qualities for a flight demonstrator aircraft. Good agreement of test results with design predictions confirmed the validity of the design methods used for application to joined-wing configurations.

  17. In-Network Processing of an Iceberg Join Query in Wireless Sensor Networks Based on 2-Way Fragment Semijoins

    PubMed Central

    Kang, Hyunchul

    2015-01-01

    We investigate the in-network processing of an iceberg join query in wireless sensor networks (WSNs). An iceberg join is a special type of join where only those joined tuples whose cardinality exceeds a certain threshold (called iceberg threshold) are qualified for the result. Processing such a join involves the value matching for the join predicate as well as the checking of the cardinality constraint for the iceberg threshold. In the previous scheme, the value matching is carried out as the main task for filtering non-joinable tuples while the iceberg threshold is treated as an additional constraint. We take an alternative approach, meeting the cardinality constraint first and matching values next. In this approach, with a logical fragmentation of the join operand relations on the aggregate counts of the joining attribute values, the optimal sequence of 2-way fragment semijoins is generated, where each fragment semijoin employs a Bloom filter as a synopsis of the joining attribute values. This sequence filters non-joinable tuples in an energy-efficient way in WSNs. Through implementation and a set of detailed experiments, we show that our alternative approach considerably outperforms the previous one. PMID:25774710

  18. Joining dissimilar materials using Friction Stir scribe technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep

    2016-10-03

    The ability to effectively join materials with vastly different melting points like Aluminum-Steel, Polymer composites - metals has been one of the road blocks in realizing multi-material components for light weighting efforts. Friction stir scribe (FSS) technique is a promising method that produces continuous overlap joint between materials with vastly different melting regimes and high temperature flow characteristics. FSS uses an offset cutting tool at the tip of the FSW pin to create an insitu mechanical interlock between material interfaces. With investments from Vehicle Technology office, US DOE and several automotive manufacturers and suppliers PNNL is developing the FSS processmore » and has demonstrated viability of joining several material combinations. Details of welding trails, unique challenges and mitigation strategies in different material combinations will be discussed. Joint characterization including mechanical tests and joint performances will also be presented.« less

  19. Repair of Double-Strand Breaks by End Joining

    PubMed Central

    Chiruvella, Kishore K.; Liang, Zhuobin; Wilson, Thomas E.

    2013-01-01

    Nonhomologous end joining (NHEJ) refers to a set of genome maintenance pathways in which two DNA double-strand break (DSB) ends are (re)joined by apposition, processing, and ligation without the use of extended homology to guide repair. Canonical NHEJ (c-NHEJ) is a well-defined pathway with clear roles in protecting the integrity of chromosomes when DSBs arise. Recent advances have revealed much about the identity, structure, and function of c-NHEJ proteins, but many questions exist regarding their concerted action in the context of chromatin. Alternative NHEJ (alt-NHEJ) refers to more recently described mechanism(s) that repair DSBs in less-efficient backup reactions. There is great interest in defining alt-NHEJ more precisely, including its regulation relative to c-NHEJ, in light of evidence that alt-NHEJ can execute chromosome rearrangements. Progress toward these goals is reviewed. PMID:23637284

  20. Performance Analysis of Continuous Black-Box Optimization Algorithms via Footprints in Instance Space.

    PubMed

    Muñoz, Mario A; Smith-Miles, Kate A

    2017-01-01

    This article presents a method for the objective assessment of an algorithm's strengths and weaknesses. Instead of examining the performance of only one or more algorithms on a benchmark set, or generating custom problems that maximize the performance difference between two algorithms, our method quantifies both the nature of the test instances and the algorithm performance. Our aim is to gather information about possible phase transitions in performance, that is, the points in which a small change in problem structure produces algorithm failure. The method is based on the accurate estimation and characterization of the algorithm footprints, that is, the regions of instance space in which good or exceptional performance is expected from an algorithm. A footprint can be estimated for each algorithm and for the overall portfolio. Therefore, we select a set of features to generate a common instance space, which we validate by constructing a sufficiently accurate prediction model. We characterize the footprints by their area and density. Our method identifies complementary performance between algorithms, quantifies the common features of hard problems, and locates regions where a phase transition may lie.

  1. Women's Heart Disease: Join the Heart Truth Community

    MedlinePlus

    ... this page please turn JavaScript on. Feature: Women's Heart Disease Join The Heart Truth Community Past Issues / Winter 2014 Table of Contents National Symbol The centerpiece of The Heart Truth ® is The Red Dress ® which was introduced ...

  2. Development of the weld-braze joining process

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1973-01-01

    A joining process, designated weld-brazing, was developed which combines resistance spot welding and brazing. Resistance spot welding is used to position and aline the parts, as well as to establish a suitable faying-surface gap for brazing. Fabrication is then completed at elevated temperature by capillary flow of the braze alloy into the joint. The process was used successfully to fabricate Ti-6Al-4V alloy joints by using 3003 aluminum braze alloy and should be applicable to other metal-braze systems. Test results obtained on single-overlap and hat-stiffened panel specimens show that weld-brazed joints were superior in tensile shear, stress rupture, fatigue, and buckling compared with joints fabricated by conventional means. Another attractive feature of the process is that the brazed joint is hermetically sealed by the braze material, which may eliminate many of the sealing problems encountered with riveted or spot welded structures. The relative ease of fabrication associated with the weld-brazing process may make it cost effective over conventional joining techniques.

  3. [Joining WHO of Republic of Korea and the projects in the 1950s].

    PubMed

    Lee, Sun Ho

    2014-04-01

    The Republic of Korea(ROK) and the World Health Organization(WHO) have done many projects successfully from 1949, in which the government of First Republic joined the WHO. However the relation between the ROK and the WHO have not been studied very much so far. The main purpose of this research, which could be done by the support of WHO, is connected with three questions. First research point would be "how could the ROK joined WHO in 1949 and what's the meaning of it? And the what's the difference in the process for the WHO between the ROK of 1949 and the DPRK(Democratic People's Republic of Korea) of 1973?" The first president of the ROK, Rhee Syngman, who had received his Ph. D.(about international politics) from Princeton University in 1910, was strongly interested in joining international institutes like UN, WHO. The ROK that could join WHO on 17 August 1949, with the approval of Assembly on 25 May 1949, was one of the founder members of the Western Pacific Region. By joining WHO, the ROK could get chance to increase the level of public health and its administration in 1950's. But the DPRK manage to became a member of WHO on 19 May 1973 and joined the South-East Asia Region. The joining of DPRK was influenced by the easing of the cold war after the Nixon Doctrine and the joining of the China(People's Republic of China). Second research point would be "What kind of roll did the WHO take in the First Republic?" Yet the public health administration of the First Republic that had been made in the period of US army military government was been strongly influenced by USA, the roll of WHO was also important in the 1950's. Last research point would be "What kind of the projects did the ROK and the WHO take part in during the period of he First Republic? How could evaluate the results?" The ROK and the WHO handled the projects including health services, communicable disease prevention and control, control of noncommunicable diseases, and protection of health. Specially

  4. Convex formulation of multiple instance learning from positive and unlabeled bags.

    PubMed

    Bao, Han; Sakai, Tomoya; Sato, Issei; Sugiyama, Masashi

    2018-05-24

    Multiple instance learning (MIL) is a variation of traditional supervised learning problems where data (referred to as bags) are composed of sub-elements (referred to as instances) and only bag labels are available. MIL has a variety of applications such as content-based image retrieval, text categorization, and medical diagnosis. Most of the previous work for MIL assume that training bags are fully labeled. However, it is often difficult to obtain an enough number of labeled bags in practical situations, while many unlabeled bags are available. A learning framework called PU classification (positive and unlabeled classification) can address this problem. In this paper, we propose a convex PU classification method to solve an MIL problem. We experimentally show that the proposed method achieves better performance with significantly lower computation costs than an existing method for PU-MIL. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A critique of medicalisation: three instances.

    PubMed

    Ryang, Sonia

    2017-12-01

    By briefly exploring three different examples where the existence of mental illness and developmental delay has been presumed, this paper sheds light on the way what Foucault calls the emergence of a regime of truth, i.e. where something that does not exist is made to exist through the construction of a system of truth around it. The first example concerns the direct marketing of pharmaceutical products to consumers in the US, the second the use of psychology in semi-post-Cold War Korea, and the third the persisting authority of psychology in the treatment of the developmentally delayed. While these instances are not innately connected, looking at these as part of the process by which the authoritative knowledge is established will help us understand, albeit partially, the mechanism by which mental illness penetrates our lives as truth, and how this regime of truth is supported by the authority of psychology, psychiatry and psychoanalysis, what Foucault calls the 'psy-function,' reinforcing the medicalisation of our lives.

  6. Motivations and usage patterns of Weibo.

    PubMed

    Zhang, Lixuan; Pentina, Iryna

    2012-06-01

    Referred to as "Weibo," microblogging in China has witnessed an exponential growth. In addition to the Twitter-like functionality, Weibo allows rich media uploads into user feeds, provides threaded comments, and offers applications, games, and Weibo medals. This expanded functionality, as well as the observed differences in trending content, suggests potentially different user motivations to join Weibo and their usage patterns compared to Twitter. This pioneering study identifies dominant Weibo user motivations and their effects on usage patterns. We discuss the findings of an online survey of 234 Weibo users and suggest managerial implications and future research directions.

  7. Advances in Solid State Joining of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeff; Schneider, Judy; Walker, Bryant

    2011-01-01

    Many of the metals used in the oil and gas industry are difficult to fusion weld including titanium and its alloys. Thus solid state joining processes, such as friction stir welding (FSWing) and a patented modification termed thermal stir welding (TSWing), are being pursued as alternatives to produce robust structures more amenable to high pressure applications. Unlike the FSWing process where the tool is used to heat the workpiece, TSWing utilizes an induction coil to preheat the material prior to stirring thus minimizing the burden on the weld tool and thereby extending its life. This study reports on the initial results of using a hybrid (H)-TSW process to join commercially pure, 1.3cm thick panels of titanium (CP Ti) Grade 2.

  8. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Materials Other Than by Welding § 192.283 Plastic pipe: Qualifying joining procedures. (a) Heat fusion... for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the procedure...

  9. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Materials Other Than by Welding § 192.283 Plastic pipe: Qualifying joining procedures. (a) Heat fusion... for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the procedure...

  10. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Materials Other Than by Welding § 192.283 Plastic pipe: Qualifying joining procedures. (a) Heat fusion... for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the procedure...

  11. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Materials Other Than by Welding § 192.283 Plastic pipe: Qualifying joining procedures. (a) Heat fusion... for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the procedure...

  12. Research and Development Opportunities for Joining Technologies in HVAC&R

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Guernsey, Matt; Young, Jim

    The Building Technologies Office (BTO) works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. This opportunity assessment aims to advance BTO’s energy savings, GHG reduction, and other program goals by identifying research and development (R&D) initiatives for joining technologies in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems. Improving joining technologies for HVAC&R equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydroflourocarbon (HFC) refrigerant leakage to support HFC phasedown and GHG reductionmore » goals.« less

  13. Fermilab Friends for Science Education | Join Us

    Science.gov Websites

    Fermilab Prairie photo Saturday, September 17, 2011; 9:30 AM - 12:30 PM Have you ever walked through a native tallgrass forbs and grasses. As a member of FFSE, you are invited to a members-only tour of this rare ecosystem. Join prairie experts on a tour of the Margaret Pearson Interpretive Trail and the

  14. 15 CFR 700.54 - Instances where assistance will not be provided.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Instances where assistance will not be provided. 700.54 Section 700.54 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE NATIONAL SECURITY INDUSTRIAL...

  15. 15 CFR 700.54 - Instances where assistance will not be provided.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Instances where assistance will not be provided. 700.54 Section 700.54 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE NATIONAL SECURITY INDUSTRIAL...

  16. Cross-Modal Multivariate Pattern Analysis

    PubMed Central

    Meyer, Kaspar; Kaplan, Jonas T.

    2011-01-01

    Multivariate pattern analysis (MVPA) is an increasingly popular method of analyzing functional magnetic resonance imaging (fMRI) data1-4. Typically, the method is used to identify a subject's perceptual experience from neural activity in certain regions of the brain. For instance, it has been employed to predict the orientation of visual gratings a subject perceives from activity in early visual cortices5 or, analogously, the content of speech from activity in early auditory cortices6. Here, we present an extension of the classical MVPA paradigm, according to which perceptual stimuli are not predicted within, but across sensory systems. Specifically, the method we describe addresses the question of whether stimuli that evoke memory associations in modalities other than the one through which they are presented induce content-specific activity patterns in the sensory cortices of those other modalities. For instance, seeing a muted video clip of a glass vase shattering on the ground automatically triggers in most observers an auditory image of the associated sound; is the experience of this image in the "mind's ear" correlated with a specific neural activity pattern in early auditory cortices? Furthermore, is this activity pattern distinct from the pattern that could be observed if the subject were, instead, watching a video clip of a howling dog? In two previous studies7,8, we were able to predict sound- and touch-implying video clips based on neural activity in early auditory and somatosensory cortices, respectively. Our results are in line with a neuroarchitectural framework proposed by Damasio9,10, according to which the experience of mental images that are based on memories - such as hearing the shattering sound of a vase in the "mind's ear" upon seeing the corresponding video clip - is supported by the re-construction of content-specific neural activity patterns in early sensory cortices. PMID:22105246

  17. Advanced fusion welding processes, solid state joining and a successful marriage. [production of aerospace structures

    NASA Technical Reports Server (NTRS)

    Miller, F. R.

    1972-01-01

    Joining processes for aerospace systems combine fusion welding and solid state joining during production of metal structures. Detailed characteristics of electron beam welding, plasma arc welding, diffusion welding, inertia welding and weldbond processes are discussed.

  18. Joining Forces: The Case of Alliant International University

    ERIC Educational Resources Information Center

    Leslie, Heather

    2013-01-01

    Mergers and acquisitions are a prevalent force in higher education as more colleges and universities are joining forces to expand resources, enhance missions, or prevent closures. This study examines the merger of Alliant University (formerly California School of Professional Psychology) with United States International University to create what…

  19. Joining of materials using laser heating

    DOEpatents

    Cockeram, Brian V.; Hicks, Trevor G.; Schmid, Glenn C.

    2003-07-01

    A method for diffusion bonding ceramic layers such as boron carbide, zirconium carbide, or silicon carbide uses a defocused laser beam to heat and to join ceramics with the use of a thin metal foil insert. The metal foil preferably is rhenium, molybdenum or titanium. The rapid, intense heating of the ceramic/metal/ceramic sandwiches using the defocused laser beam results in diffusive conversion of the refractory metal foil into the ceramic and in turn creates a strong bond therein.

  20. Two-sided friction stir riveting by extrusion: A process for joining dissimilar materials

    DOE PAGES

    Evans, William T.; Cox, Chase D.; Strauss, Alvin M.; ...

    2016-06-25

    Two-sided friction stir riveting (FSR) by extrusion is an innovative process developed to rapidly, efficiently, and securely join dissimilar materials. This process extends a previously developed one sided friction stir extrusion process to create a strong and robust joint by producing a continuous, rivet-like structure through a preformed hole in one of the materials with a simultaneous, two-sided friction stir spot weld. The two-sided FSR by extrusion process securely joins the dissimilar materials together and effectively locks them in place without the use of any separate materials or fasteners. Lastly, in this paper we demonstrate the process by joining aluminummore » to steel and illustrate its potential application to automotive and aerospace manufacturing processes.« less

  1. 10 CFR 217.44 - Instances where assistance may not be provided.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Instances where assistance may not be provided. 217.44 Section 217.44 Energy DEPARTMENT OF ENERGY OIL ENERGY PRIORITIES AND ALLOCATIONS SYSTEM Special Priorities... where assistance may not be provided include situations when a person is attempting to: (a) Secure a...

  2. 10 CFR 217.44 - Instances where assistance may not be provided.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Instances where assistance may not be provided. 217.44 Section 217.44 Energy DEPARTMENT OF ENERGY OIL ENERGY PRIORITIES AND ALLOCATIONS SYSTEM Special Priorities... where assistance may not be provided include situations when a person is attempting to: (a) Secure a...

  3. 10 CFR 217.44 - Instances where assistance may not be provided.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Instances where assistance may not be provided. 217.44 Section 217.44 Energy DEPARTMENT OF ENERGY OIL ENERGY PRIORITIES AND ALLOCATIONS SYSTEM Special Priorities... where assistance may not be provided include situations when a person is attempting to: (a) Secure a...

  4. International Symposium on Interfacial Joining and Surface Technology (IJST2013)

    NASA Astrophysics Data System (ADS)

    Takahashi, Yasuo

    2014-08-01

    Interfacial joining (bonding) is a widely accepted welding process and one of the environmentally benign technologies used in industrial production. As the bonding temperature is lower than the melting point of the parent materials, melting of the latter is kept to a minimum. The process can be based on diffusion bonding, pressure welding, friction welding, ultrasonic bonding, or brazing-soldering, all of which offer many advantages over fusion welding. In addition, surface technologies such as surface modification, spraying, coating, plating, and thin-film formation are necessary for advanced manufacturing, fabrication, and electronics packaging. Together, interfacial joining and surface technology (IJST) will continue to be used in various industrial fields because IJST is a very significant form of environmentally conscious materials processing. The international symposium of IJST 2013 was held at Icho Kaikan, Osaka University, Japan from 27-29 November, 2013. A total of 138 participants came from around the world to attend 56 oral presentations and 36 posters presented at the symposium, and to discuss the latest research and developments on interfacial joining and surface technologies. This symposium was also held to commemorate the 30th anniversary of the Technical Commission on Interfacial Joining of the Japan Welding Society. On behalf of the chair of the symposium, it is my great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering (MSE). Among the presentations, 43 papers are published here, and I believe all of the papers have provided the welding community with much useful information. I would like to thank the authors for their enthusiastic and excellent contributions. Finally, I would like to thank all members of the committees, secretariats, participants, and everyone who contributed to this symposium through their support and invaluable effort for the success of IJST 2013. Yasuo Takahashi Chair of IJST 2013

  5. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....283 Section 192.283 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Joining of...

  6. Detecting Parkinsons' symptoms in uncontrolled home environments: a multiple instance learning approach.

    PubMed

    Das, Samarjit; Amoedo, Breogan; De la Torre, Fernando; Hodgins, Jessica

    2012-01-01

    In this paper, we propose to use a weakly supervised machine learning framework for automatic detection of Parkinson's Disease motor symptoms in daily living environments. Our primary goal is to develop a monitoring system capable of being used outside of controlled laboratory settings. Such a system would enable us to track medication cycles at home and provide valuable clinical feedback. Most of the relevant prior works involve supervised learning frameworks (e.g., Support Vector Machines). However, in-home monitoring provides only coarse ground truth information about symptom occurrences, making it very hard to adapt and train supervised learning classifiers for symptom detection. We address this challenge by formulating symptom detection under incomplete ground truth information as a multiple instance learning (MIL) problem. MIL is a weakly supervised learning framework that does not require exact instances of symptom occurrences for training; rather, it learns from approximate time intervals within which a symptom might or might not have occurred on a given day. Once trained, the MIL detector was able to spot symptom-prone time windows on other days and approximately localize the symptom instances. We monitored two Parkinson's disease (PD) patients, each for four days with a set of five triaxial accelerometers and utilized a MIL algorithm based on axis parallel rectangle (APR) fitting in the feature space. We were able to detect subject specific symptoms (e.g. dyskinesia) that conformed with a daily log maintained by the patients.

  7. Development of a double beam process for joining aluminum and steel

    NASA Astrophysics Data System (ADS)

    Frank, Sascha

    2014-02-01

    Multi-material structures pose an attractive option for overcoming some of the central challenges in lightweight design. An exceptionally high potential for creating cost-effective lightweight solutions is attributed to the combination of steel and aluminum. However, these materials are also particularly difficult to join due to their tendency to form intermetallic compounds (IMCs). The growth of these compounds is facilitated by high temperatures and long process times. Due to their high brittleness, IMCs can severely weaken a joint. Thus, it is only possible to create durable steel-aluminum joints when the formation of IMCs can be limited to a non-critical level. To meet this goal, a new joining method has been designed. The method is based on the combination of a continuous wave (pw) and a pulsed laser (pw) source. Laser beams from both sources are superimposed in a common process zone. This makes it possible to apply the advantages of laser brazing to mixed-metal joints without requiring the use of chemical fluxes. The double beam technology was first tested in bead-on-plate experiments using different filler wire materials. Based on the results of these tests, a process for joining steel and aluminum in a double-flanged configuration is now being developed. The double flanged seams are joined using zinc- or aluminum-based filler wires. Microsections of selected seams show that it is possible to achieve good base material wetting while limiting the growth of IMCs to acceptable measures. In addition, the results of tensile tests show that high joint strengths can be achieved.

  8. Chord Splicing & Joining Detail; Chord & CrossBracing Joint Details; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Chord Splicing & Joining Detail; Chord & Cross-Bracing Joint Details; Cross Bracing Center Joint Detail; Chord & Diagonal Joint Detail - Vermont Covered Bridge, Highland Park, spanning Kokomo Creek at West end of Deffenbaugh Street (moved to), Kokomo, Howard County, IN

  9. Joining of thin glass with semiconductors by ultra-fast high-repetition laser welding

    NASA Astrophysics Data System (ADS)

    Horn, Alexander; Mingaeev, Ilja; Werth, Alexander; Kachel, Martin

    2008-02-01

    Lighting applications like OLED or on silicon for electro-optical applications need a reproducible sealing process. The joining has to be strong, the permeability for gasses and humidity very low and the process itself has to be very localized not affecting any organic or electronic parts inside the sealed region. The actual sealing process using glue does not fulfil these industrial needs. A new joining process using ultra-fast laser radiation offers a very precise joining with geometry dimensions smaller than 50 μm. Ultra-fast laser radiation is absorbed by multi-photon absorption in the glass. Due to the very definite threshold for melting and ablation the process of localized heating can be controlled without cracking. Repeating the irradiation at times smaller than the heat diffusion time the temperature in the focus is increased by heat accumulation reaching melting of the glass. Mowing the substrate relatively to the laser beam generates a seal of re-solidified glass. Joining of glass is achieved by positioning the laser focus at the interface. A similar approach is used for glass-silicon joining. The investigations presented will demonstrate the joining geometry by microscopy of cross-sections achieved by welding two glass plates (Schott D263 and AF45) with focused IR femtosecond laser radiation (wavelength λ = 1045nm, repetition rate f = 1 MHz, pulse duration t p = 500 fs, focus diameter w 0 = 4 μm, feeding velocity v= 1-10 mm/s). The strength of the welding seam is measured by tensile stress measurements and the gas and humidity is detected. A new diagnostic method for the on-line detection of the welding seam properties will be presented. Using a non-interferometric technique by quantitative phase microscopy the refractive index is measured during welding of glass in the time regime 0-2 μs. By calibration of the measured refractive index with a relation between refractive index and temperature a online-temperature detection can be achieved.

  10. 46 CFR 56.75-30 - Pipe joining details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... be either of the socket or butt type. When butt joints are employed the edges to be joined shall be.... Circumferential joints may be either of the butt or socket type. Where butt joints are employed, the included... annular clearance of socket joints shall be held to small clearances which experience indicates is...

  11. 46 CFR 56.75-30 - Pipe joining details.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... be either of the socket or butt type. When butt joints are employed the edges to be joined shall be.... Circumferential joints may be either of the butt or socket type. Where butt joints are employed, the included... annular clearance of socket joints shall be held to small clearances which experience indicates is...

  12. 46 CFR 56.75-30 - Pipe joining details.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... be either of the socket or butt type. When butt joints are employed the edges to be joined shall be.... Circumferential joints may be either of the butt or socket type. Where butt joints are employed, the included... annular clearance of socket joints shall be held to small clearances which experience indicates is...

  13. 46 CFR 56.75-30 - Pipe joining details.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... be either of the socket or butt type. When butt joints are employed the edges to be joined shall be.... Circumferential joints may be either of the butt or socket type. Where butt joints are employed, the included... annular clearance of socket joints shall be held to small clearances which experience indicates is...

  14. 46 CFR 56.75-30 - Pipe joining details.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... be either of the socket or butt type. When butt joints are employed the edges to be joined shall be.... Circumferential joints may be either of the butt or socket type. Where butt joints are employed, the included... annular clearance of socket joints shall be held to small clearances which experience indicates is...

  15. Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning.

    PubMed

    Yousefi, Mina; Krzyżak, Adam; Suen, Ching Y

    2018-05-01

    Digital breast tomosynthesis (DBT) was developed in the field of breast cancer screening as a new tomographic technique to minimize the limitations of conventional digital mammography breast screening methods. A computer-aided detection (CAD) framework for mass detection in DBT has been developed and is described in this paper. The proposed framework operates on a set of two-dimensional (2D) slices. With plane-to-plane analysis on corresponding 2D slices from each DBT, it automatically learns complex patterns of 2D slices through a deep convolutional neural network (DCNN). It then applies multiple instance learning (MIL) with a randomized trees approach to classify DBT images based on extracted information from 2D slices. This CAD framework was developed and evaluated using 5040 2D image slices derived from 87 DBT volumes. The empirical results demonstrate that this proposed CAD framework achieves much better performance than CAD systems that use hand-crafted features and deep cardinality-restricted Bolzmann machines to detect masses in DBTs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Mechanism of Microhomology-Mediated End-Joining Promoted by Human DNA Polymerase Theta

    PubMed Central

    Kent, Tatiana; Chandramouly, Gurushankar; McDevitt, Shane Michael; Ozdemir, Ahmet Y.; Pomerantz, Richard T.

    2014-01-01

    Microhomology-mediated end-joining (MMEJ) is an error-prone alternative double-strand break repair pathway that utilizes sequence microhomology to recombine broken DNA. Although MMEJ is implicated in cancer development, the mechanism of this pathway is unknown. We demonstrate that purified human DNA polymerase θ (Polθ) performs MMEJ of DNA containing 3’ single-strand DNA overhangs with two or more base-pairs of homology, including DNA modeled after telomeres, and show that MMEJ is dependent on Polθ in human cells. Our data support a mechanism whereby Polθ facilitates end-joining and microhomology annealing then utilizes the opposing overhang as a template in trans which stabilizes the DNA synapse. Polθ exhibits a preference for DNA containing a 5’-terminal phosphate, similar to polymerases involved in non-homologous end-joining. Lastly, we identify a conserved loop domain that is essential for MMEJ and higher-order structures of Polθ which likely promote DNA synapse formation. PMID:25643323

  17. Experimental Investigation on Thermal Effects in Ultrasonic Joining of Thin Poly(ethylene terephthalate) Films Using Torsional Vibrations

    NASA Astrophysics Data System (ADS)

    Adachi, Kazunari; Uchiyama, Kenta; Kuriyama, Takashi; Miyata, Ken; Hisamatsu, Tokuro

    2009-11-01

    The authors previously determined that thermal effects are not a dominant factor in the ultrasonic joining of very low density polyethylene (VLDPE) films using torsional vibration. Now, to confirm that the plastic materials are not “melted” by mechanically generated heat in the joining, they have conducted joining experiments for thin poly(ethylene terephthalate) (PET) films. The temperature at the interface of two PET films of 0.1 mm thickness only increased to approximately 100 °C, and no trace of liquidation of the material was observed at the interface under a polarizing microscope. Investigation using a differential scanning calorimeter (DSC) revealed that the “melting point” of PET is about 260 °C, and an ultrasonically joined specimen showed no significant difference in thermal characteristics compared with an intact PET film. It was also determined that the PET films cannot be joined even after being pressed together for a period of 30 min or longer at approximately 150 °C. From the results obtained using the microscope and the DSC, the authors conclude that melting of the materials plays essentially no role in ultrasonic plastic joining.

  18. Multi-View Multi-Instance Learning Based on Joint Sparse Representation and Multi-View Dictionary Learning.

    PubMed

    Li, Bing; Yuan, Chunfeng; Xiong, Weihua; Hu, Weiming; Peng, Houwen; Ding, Xinmiao; Maybank, Steve

    2017-12-01

    In multi-instance learning (MIL), the relations among instances in a bag convey important contextual information in many applications. Previous studies on MIL either ignore such relations or simply model them with a fixed graph structure so that the overall performance inevitably degrades in complex environments. To address this problem, this paper proposes a novel multi-view multi-instance learning algorithm (MIL) that combines multiple context structures in a bag into a unified framework. The novel aspects are: (i) we propose a sparse -graph model that can generate different graphs with different parameters to represent various context relations in a bag, (ii) we propose a multi-view joint sparse representation that integrates these graphs into a unified framework for bag classification, and (iii) we propose a multi-view dictionary learning algorithm to obtain a multi-view graph dictionary that considers cues from all views simultaneously to improve the discrimination of the MIL. Experiments and analyses in many practical applications prove the effectiveness of the M IL.

  19. Positioning and joining of organic single-crystalline wires

    PubMed Central

    Wu, Yuchen; Feng, Jiangang; Jiang, Xiangyu; Zhang, Zhen; Wang, Xuedong; Su, Bin; Jiang, Lei

    2015-01-01

    Organic single-crystal, one-dimensional materials can effectively carry charges and/or excitons due to their highly ordered molecule packing, minimized defects and eliminated grain boundaries. Controlling the alignment/position of organic single-crystal one-dimensional architectures would allow on-demand photon/electron transport, which is a prerequisite in waveguides and other optoelectronic applications. Here we report a guided physical vapour transport technique to control the growth, alignment and positioning of organic single-crystal wires with the guidance of pillar-structured substrates. Submicrometre-wide, hundreds of micrometres long, highly aligned, organic single-crystal wire arrays are generated. Furthermore, these organic single-crystal wires can be joined within controlled angles by varying the pillar geometries. Owing to the controllable growth of organic single-crystal one-dimensional architectures, we can present proof-of-principle demonstrations utilizing joined wires to allow optical waveguide through small radii of curvature (internal angles of ~90–120°). Our methodology may open a route to control the growth of organic single-crystal one-dimensional materials with potential applications in optoelectronics. PMID:25814032

  20. Advances in Solid State Joining of Haynes 230 High Temperature Alloy

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Schneider, Judy; Walker, Bryant

    2010-01-01

    The J-2X engine is being designed for NASA s new class of crew and launch vehicles, the Ares I and Ares V. The J-2X is a LOX/Hydrogen upper stage engine with 294,000 lbs of thrust and a minimum Isp of 448 seconds. As part of the design criteria to meet the performance requirements a large film-cooled nozzle extension is being designed to further expand the hot gases and increases the specific impulse. The nozzle extension is designed using Haynes 230, a nickel-chromium-tungsten-molybdenum superalloy. The alloy was selected for its high strength at elevated temperatures and resistance to hydrogen embrittlement. The nozzle extension is manufactured from Haynes 230 plate spun-forged to form the contour and chemically-milled pockets for weight reduction. Currently fusion welding is being evaluated for joining the panels which are then mechanically etched and thinned to required dimensions for the nozzle extension blank. This blank is then spun formed into the parabolic geometry required for the nozzle. After forming the nozzle extension, weight reduction pockets are chemically milled into the nozzle. Fusion welding of Haynes results in columnar grains which are prone to hot cracking during forming processes. This restricts the ability to use spin forging to produce the nozzle contour. Solid state joining processes are being pursued as an alternative process to produce a structure more amenable to spin forming. Solid state processes have been shown to produce a refined grain structure within the joint regions as illustrated in Figure 1. Solid state joining processes include friction stir welding (FSW) and a patented modification termed thermal stir welding (TSW). The configuration of TSWing utilizes an induction coil to preheat the material minimizing the burden on the weld tool extending its life. This provides the ability to precisely select and control the temperature. The work presented in this presentation investigates the feasibility of joining the Haynes 230

  1. Mutational signatures of non-homologous and polymerase theta-mediated end-joining in embryonic stem cells.

    PubMed

    Schimmel, Joost; Kool, Hanneke; van Schendel, Robin; Tijsterman, Marcel

    2017-12-15

    Cells employ potentially mutagenic DNA repair mechanisms to avoid the detrimental effects of chromosome breaks on cell survival. While classical non-homologous end-joining (cNHEJ) is largely error-free, alternative end-joining pathways have been described that are intrinsically mutagenic. Which end-joining mechanisms operate in germ and embryonic cells and thus contribute to heritable mutations found in congenital diseases is, however, still largely elusive. Here, we determined the genetic requirements for the repair of CRISPR/Cas9-induced chromosomal breaks of different configurations, and establish the mutational consequences. We find that cNHEJ and polymerase theta-mediated end-joining (TMEJ) act both parallel and redundant in mouse embryonic stem cells and account for virtually all end-joining activity. Surprisingly, mutagenic repair by polymerase theta (Pol θ, encoded by the Polq gene) is most prevalent for blunt double-strand breaks (DSBs), while cNHEJ dictates mutagenic repair of DSBs with protruding ends, in which the cNHEJ polymerases lambda and mu play minor roles. We conclude that cNHEJ-dependent repair of DSBs with protruding ends can explain de novo formation of tandem duplications in mammalian genomes. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  2. Development of forming and joining technology for TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Torgerson, R. T.

    1973-01-01

    Forming joining techniques and properties data were developed for thin-gage TD-NiCr sheet in the recrystallized and unrecrystallized conditions. Theoretical and actual forming limit data are presented for several gages of each type of material for five forming processes: brake forming, corrugation forming, joggling, dimpling and beading. Recrystallized sheet can be best formed at room temperature, but unrecrystallized sheet requires forming at elevated temperature. Formability is satisfactory with most processes for the longitudinal orientation but poor for the transverse orientation. Dimpling techniques require further development for both material conditions. Data on joining techniques and joint properties are presented for four joining processes: resistance seam welding (solid-state), resistance spot welding (solid-state), resistance spot welding (fusion) and brazing. Resistance seam welded (solid-state) joints with 5t overlap were stronger than parent material for both material conditions when tested in tensile-shear and stress-rupture. Brazing studies resulted in development of NASA 18 braze alloy (Ni-16Cr-15Mo-8Al-4Si) with several properties superior to baseline TD-6 braze alloy, including lower brazing temperture, reduced reaction with Td-Ni-Cr, and higher stress-rupture properties.

  3. 5 CFR 1201.36 - Consolidating and joining appeals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... subsequent dismissal if the same appellant filed both appeals. (b) Action by judge. A judge may consolidate or join cases on his or her own motion or on the motion of a party if doing so would: (1) Expedite... motion for consolidation or joinder must be filed within 10 days of the date of service of the motion. ...

  4. 5 CFR 1201.36 - Consolidating and joining appeals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... subsequent dismissal if the same appellant filed both appeals. (b) Action by judge. A judge may consolidate or join cases on his or her own motion or on the motion of a party if doing so would: (1) Expedite... motion for consolidation or joinder must be filed within 10 days of the date of service of the motion. ...

  5. Comparative analysis of different joining techniques to improve the passive fit of cobalt-chromium superstructures.

    PubMed

    Barbi, Francisco C L; Camarini, Edevaldo T; Silva, Rafael S; Endo, Eliana H; Pereira, Jefferson R

    2012-12-01

    The influence of different joining techniques on passive fit at the interface structure/abutment of cobalt-chromium (Co-Cr) superstructures has not yet been clearly established. The purpose of this study was to compare 3 different techniques of joining Co-Cr superstructures by measuring the resulting marginal misfit in a simulated prosthetic assembly. A specially designed metal model was used for casting, sectioning, joining, and measuring marginal misfit. Forty-five cast bar-type superstructures were fabricated in a Co-Cr alloy and randomly assigned by drawing lots to 3 groups (n=15) according to the joining method used: conventional gas-torch brazing (G-TB), laser welding (LW), and tungsten inert gas welding (TIG). Joined specimens were assembled onto abutment analogs in the metal model with the 1-screw method. The resulting marginal misfit was measured with scanning electron microscopy (SEM) at 3 different points: distal (D), central (C), and mesial (M) along the buccal aspect of both abutments: A (tightened) and B (without screw). The Levene test was used to evaluate variance homogeneity and then the Welsch ANOVA for heteroscedastic data (α=.05). Significant differences were found on abutment A between groups G-TB and LW (P=.013) measured mesially and between groups G-TB and TIG (P=.037) measured centrally. On abutment B, significant differences were found between groups G-TB and LW (P<.001) and groups LW and TIG (P<.001) measured mesially; groups G-TB and TIG (P=.007) measured distally; and groups G-TB and TIG (P=.001) and LW and TIG (P=.007) measured centrally. The method used for joining Co-Cr prosthetic structures had an influence on the level of resulting passive fit. Structures joined by the tungsten inert gas method produced better mean results than did the brazing or laser method. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  6. Joining of ceramics of different biofunction by hot isostatic pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianguo; Harmansson, L.; Soeremark, R.

    1993-10-01

    Monolithic zirconia (Z) and zirconia-hydroxyapatite (Z/HA) composites were joined by cold isostatic pressing (CIP at 300 MPa) and subsequently by glass-encapsulated hot isostatic pressing (HIP at 1225 C, 1 h and 200 MPa). The physical and mechanical properties of the materials were measured. The fracture surface was studied using a light microscope. The results indicate a strength level of the joint similar to that of the corresponding composite material (Z/HA), 845 and 860 MPa, respectively. Similar experiments with monolithic alumina (A) and alumina-hydroxyapatite (A/HA) were carried out without success. Cracking occurred in the joint area during the cold isostatic pressingmore » process. It seems that ceramics with high green strength and similar green density are essential when joining ceramics by combined CIP and HIP processes.« less

  7. DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining

    PubMed Central

    Bentley, Johanne; Diggle, Christine P.; Harnden, Patricia; Knowles, Margaret A.; Kiltie, Anne E.

    2004-01-01

    In human cells DNA double strand breaks (DSBs) can be repaired by the non-homologous end-joining (NHEJ) pathway. In a background of NHEJ deficiency, DSBs with mismatched ends can be joined by an error-prone mechanism involving joining between regions of nucleotide microhomology. The majority of joins formed from a DSB with partially incompatible 3′ overhangs by cell-free extracts from human glioblastoma (MO59K) and urothelial (NHU) cell lines were accurate and produced by the overlap/fill-in of mismatched termini by NHEJ. However, repair of DSBs by extracts using tissue from four high-grade bladder carcinomas resulted in no accurate join formation. Junctions were formed by the non-random deletion of terminal nucleotides and showed a preference for annealing at a microhomology of 8 nt buried within the DNA substrate; this process was not dependent on functional Ku70, DNA-PK or XRCC4. Junctions were repaired in the same manner in MO59K extracts in which accurate NHEJ was inactivated by inhibition of Ku70 or DNA-PKcs. These data indicate that bladder tumour extracts are unable to perform accurate NHEJ such that error-prone joining predominates. Therefore, in high-grade tumours mismatched DSBs are repaired by a highly mutagenic, microhomology-mediated, alternative end-joining pathway, a process that may contribute to genomic instability observed in bladder cancer. PMID:15466592

  8. Synergistic Instance-Level Subspace Alignment for Fine-Grained Sketch-Based Image Retrieval.

    PubMed

    Li, Ke; Pang, Kaiyue; Song, Yi-Zhe; Hospedales, Timothy M; Xiang, Tao; Zhang, Honggang

    2017-08-25

    We study the problem of fine-grained sketch-based image retrieval. By performing instance-level (rather than category-level) retrieval, it embodies a timely and practical application, particularly with the ubiquitous availability of touchscreens. Three factors contribute to the challenging nature of the problem: (i) free-hand sketches are inherently abstract and iconic, making visual comparisons with photos difficult, (ii) sketches and photos are in two different visual domains, i.e. black and white lines vs. color pixels, and (iii) fine-grained distinctions are especially challenging when executed across domain and abstraction-level. To address these challenges, we propose to bridge the image-sketch gap both at the high-level via parts and attributes, as well as at the low-level, via introducing a new domain alignment method. More specifically, (i) we contribute a dataset with 304 photos and 912 sketches, where each sketch and image is annotated with its semantic parts and associated part-level attributes. With the help of this dataset, we investigate (ii) how strongly-supervised deformable part-based models can be learned that subsequently enable automatic detection of part-level attributes, and provide pose-aligned sketch-image comparisons. To reduce the sketch-image gap when comparing low-level features, we also (iii) propose a novel method for instance-level domain-alignment, that exploits both subspace and instance-level cues to better align the domains. Finally (iv) these are combined in a matching framework integrating aligned low-level features, mid-level geometric structure and high-level semantic attributes. Extensive experiments conducted on our new dataset demonstrate effectiveness of the proposed method.

  9. In vitro non-homologous DNA end joining assays—The 20th anniversary

    PubMed Central

    Pastwa, Elzbieta; Somiari, Richard I.; Malinowski, Mariusz; Somiari, Stella B.; Winters, Thomas A.

    2010-01-01

    DNA double-strand breaks (DSBs) are the most serious forms of DNA damage in cells. Unrepaired or misrepaired DSBs account for some of the genetic instabilities that lead to mutations or cell death, and consequently, to cancer predisposition. In human cells non-homologous DNA end joining (NHEJ) is the main repair mechanism of these breaks. Systems for DNA end joining study have been developing during the last 20 years. New assays have some advantages over earlier in vitro DSBs repair assays because they are less time-consuming, allow the use of clinical material and examination of the joining DNA ends produced physiologically in mammalian cells. Proteins involved in NHEJ repair pathway can serve as biomarkers or molecular targets for anticancer drugs. Results of studies on NHEJ in cancer could help to select potent repair inhibitors that may selectively sensitize tumor cells to ionizing radiation (IR) and chemotherapy. Here, we review the principles and practice of in vitro NHEJ assays and provide some insights into the future prospects of this assay in cancer diagnosis and treatment. PMID:19110069

  10. Summary of Prior Work on Joining of Oxide Dispersion-Strengthened Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Ian G; Tatlock, Gordon J; Badairy, H.

    2009-08-01

    There is a range of joining techniques available for use with ODS alloys, but care should be exercised in matching the technique to the final duty requirements of the joint. The goal for joining ODS alloys is a joint with no local disruption of the distribution of the oxide dispersion, and no significant change in the size and orientation of the alloy microstructure. Not surprisingly, the fusion welding processes typically employed with wrought alloys produce the least satisfactory results with ODS alloys, but some versions, such as fusion spot welding, and the laser and electron-beam welding technologies, have demonstrated potentialmore » for producing sound joints. Welds made using solid-state spot welding reportedly have exhibited parent metal properties. Thus, it is possible to employ processes that result in significant disruption of the alloy microstructure, as long as the processing parameters are adjustment to minimize the extent of or influence of the changes in the alloy microstructure. Selection among these joining approaches largely depends on the particular application and component configuration, and an understanding of the relationships among processing, alloy microstructure, and final properties is key. Recent developments have resulted in friction welding evolving to be a prime method for joining ODS sheet products, and variants of brazing/diffusion bonding have shown excellent promise for use with tubes and pipes. The techniques that come closest to the goal defined above involve solid-state diffusion bonding and, in particular, it has been found that secondary recrystallization of joints made by pulsed plasma-assisted diffusion can produce the desired, continuous, large alloy grain structure through the joint. Such joints have exhibited creep rupture failure at >82% of the load needed to fail the monolithic parent alloy at 1000 C.« less

  11. Computer Program Recognizes Patterns in Time-Series Data

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2003-01-01

    A computer program recognizes selected patterns in time-series data like digitized samples of seismic or electrophysiological signals. The program implements an artificial neural network (ANN) and a set of N clocks for the purpose of determining whether N or more instances of a certain waveform, W, occur within a given time interval, T. The ANN must be trained to recognize W in the incoming stream of data. The first time the ANN recognizes W, it sets clock 1 to count down from T to zero; the second time it recognizes W, it sets clock 2 to count down from T to zero, and so forth through the Nth instance. On the N + 1st instance, the cycle is repeated, starting with clock 1. If any clock has not reached zero when it is reset, then N instances of W have been detected within time T, and the program so indicates. The program can readily be encoded in a field-programmable gate array or an application-specific integrated circuit that could be used, for example, to detect electroencephalographic or electrocardiographic waveforms indicative of epileptic seizures or heart attacks, respectively.

  12. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process

    PubMed Central

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-01-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures. PMID:28763027

  13. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process.

    PubMed

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-08-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures.

  14. Joining the Circle: Circle Banking on the Rosebud Reservation.

    ERIC Educational Resources Information Center

    Haase, Eric

    1992-01-01

    Describes the Sicangu Enterprise Center which provides training in business management and small loans to help Rosebud Sioux tribal members join with peers to start small businesses within their communities. Explains the center's innovative revolving loan fund. Highlights the businesses of an automechanic, a seamstress, and a sculptor. (DMM)

  15. Conventional and Microwave Joining of Silicon Carbide Using Displacement Reactions

    NASA Technical Reports Server (NTRS)

    Kingsley, J.; Yiin, T.; Barmatz, M.

    1995-01-01

    Microwave heating was used to join Silicon Carbide rods using a thin TiC /Si tape interlayer . Microwaves quickly heated the rods and tape to temperatures where solid-state displacement reactions between TiC and Si occurred.

  16. Georneys joins AGU's blog network

    NASA Astrophysics Data System (ADS)

    Viñas, Maria-José

    2011-07-01

    A blog on geological musings, wanderings, and adventures, called Georneys, has joined AGU's network of Earth and space science blogs. With the addition of Georneys, on 11 July, the AGU Blogosphere (http://blogs.agu.org), as the network is known, has grown to showcase eight independent blogs since its launch last fall. “One reason I write this blog is to maintain my sanity as I finish up my Ph.D. In the midst of much stress, long days in lab, and long nights writing thesis chapters, I write to remind myself of why I love geology,” says Georneys blogger Evelyn Mervine. “I also write to document some of my geological adventures and to share my love of geology with others.”

  17. A Pareto-based Ensemble with Feature and Instance Selection for Learning from Multi-Class Imbalanced Datasets.

    PubMed

    Fernández, Alberto; Carmona, Cristobal José; José Del Jesus, María; Herrera, Francisco

    2017-09-01

    Imbalanced classification is related to those problems that have an uneven distribution among classes. In addition to the former, when instances are located into the overlapped areas, the correct modeling of the problem becomes harder. Current solutions for both issues are often focused on the binary case study, as multi-class datasets require an additional effort to be addressed. In this research, we overcome these problems by carrying out a combination between feature and instance selections. Feature selection will allow simplifying the overlapping areas easing the generation of rules to distinguish among the classes. Selection of instances from all classes will address the imbalance itself by finding the most appropriate class distribution for the learning task, as well as possibly removing noise and difficult borderline examples. For the sake of obtaining an optimal joint set of features and instances, we embedded the searching for both parameters in a Multi-Objective Evolutionary Algorithm, using the C4.5 decision tree as baseline classifier in this wrapper approach. The multi-objective scheme allows taking a double advantage: the search space becomes broader, and we may provide a set of different solutions in order to build an ensemble of classifiers. This proposal has been contrasted versus several state-of-the-art solutions on imbalanced classification showing excellent results in both binary and multi-class problems.

  18. Using and joining a franchised private sector provider network in Myanmar.

    PubMed

    O'Connell, Kathryn; Hom, Mo; Aung, Tin; Theuss, Marc; Huntington, Dale

    2011-01-01

    Quality is central to understanding provider motivations to join and remain within a social franchising network. Quality also appears as a key issue from the client's perspective, and may influence why a client chooses to use a franchised provider over another type of provider. The dynamic relationships between providers of social franchising clinics and clients who use these services have not been thoroughly investigated in the context of Myanmar, which has an established social franchising network. This study examines client motivations to use a Sun Quality Health network provider and provider motivations to join and remain in the Sun Quality Health network. Taken together, these two aims provide an opportunity to explore the symbiotic relationship between client satisfaction and provider incentives to increase the utilization of reproductive health care services. Results from a series of focus group discussions with clients of reproductive health services and franchised providers shows that women chose health services provided by franchised private sector general practitioners because of its perceived higher quality, associated with the availability of effective, affordable, drugs. A key finding of the study is associated with providers. Provider focus group discussions indicate that a principle determinate for joining and remaining in the Sun Quality Health Network was serving the poor.

  19. Using and Joining a Franchised Private Sector Provider Network in Myanmar

    PubMed Central

    O'Connell, Kathryn; Hom, Mo; Aung, Tin; Theuss, Marc; Huntington, Dale

    2011-01-01

    Background Quality is central to understanding provider motivations to join and remain within a social franchising network. Quality also appears as a key issue from the client's perspective, and may influence why a client chooses to use a franchised provider over another type of provider. The dynamic relationships between providers of social franchising clinics and clients who use these services have not been thoroughly investigated in the context of Myanmar, which has an established social franchising network. This study examines client motivations to use a Sun Quality Health network provider and provider motivations to join and remain in the Sun Quality Health network. Taken together, these two aims provide an opportunity to explore the symbiotic relationship between client satisfaction and provider incentives to increase the utilization of reproductive health care services. Methods and Findings Results from a series of focus group discussions with clients of reproductive health services and franchised providers shows that women chose health services provided by franchised private sector general practitioners because of its perceived higher quality, associated with the availability of effective, affordable, drugs. A key finding of the study is associated with providers. Provider focus group discussions indicate that a principle determinate for joining and remaining in the Sun Quality Health Network was serving the poor. PMID:22180781

  20. Image annotation based on positive-negative instances learning

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Hu, Jiwei; Liu, Quan; Lou, Ping

    2017-07-01

    Automatic image annotation is now a tough task in computer vision, the main sense of this tech is to deal with managing the massive image on the Internet and assisting intelligent retrieval. This paper designs a new image annotation model based on visual bag of words, using the low level features like color and texture information as well as mid-level feature as SIFT, and mixture the pic2pic, label2pic and label2label correlation to measure the correlation degree of labels and images. We aim to prune the specific features for each single label and formalize the annotation task as a learning process base on Positive-Negative Instances Learning. Experiments are performed using the Corel5K Dataset, and provide a quite promising result when comparing with other existing methods.

  1. Helicity patterns on the Sun

    NASA Astrophysics Data System (ADS)

    Pevtsov, A.

    Solar magnetic fields exhibit hemispheric preference for negative (pos- itive) helicity in northern (southern) hemisphere. The hemispheric he- licity rule, however, is not very strong, - the patterns of opposite sign helicity were observed on different spatial scales in each hemisphere. For instance, many individual sunspots exhibit patches of opposite he- licity inside the single polarity field. There are also helicity patterns on scales larger than the size of typical active region. Such patterns were observed in distribution of active regions with abnormal (for a give hemisphere) helicity, in large-scale photospheric magnetic fields and coronal flux systems. We will review the observations of large-scale pat- terns of helicity in solar atmosphere and their possible relationship with (sub-)photospheric processes. The emphasis will be on large-scale pho- tospheric magnetic field and solar corona.

  2. Smells familiar: group-joining decisions of predatory mites are mediated by olfactory cues of social familiarity.

    PubMed

    Muleta, Muluken G; Schausberger, Peter

    2013-09-01

    Group-living animals frequently have to trade off the costs and benefits of leaving an established group and joining another group. Owing to their high fitness relevance, group-joining decisions are commonly nonrandom and may be based on traits of both individual members and the group such as life stage, body size, social status and group density or size, respectively. Many group-living animals are able to recognize and to associate preferentially with familiar individuals, i.e. those encountered before. Hence, after dispersing from established groups, animals commonly have to decide whether to join a new familiar or unfamiliar group. Using binary choice situations we assessed the effects of social familiarity on group-joining behaviour of the plant-inhabiting predatory mite Phytoseiulus persimilis . Group living in P. persimilis is brought about by the patchy distribution of its spider mite prey and mutual conspecific attraction. In the first experiment, gravid predator females given a choice between spider mite patches occupied by unfamiliar and familiar groups of females strongly preferred to join familiar groups and to deposit their eggs in these patches. Preference for socially familiar groups was robust across biases of spider mite prey densities between choice options. The second experiment revealed that the predatory mite females can smell social familiarity from a distance. Females subjected to odour choice situations in artificial cages were more strongly attracted to the odour of familiar than unfamiliar groups. We argue that P. persimilis females preferentially join socially familiar groups because a familiar social environment relaxes competition and optimizes foraging and reproduction.

  3. Smells familiar: group-joining decisions of predatory mites are mediated by olfactory cues of social familiarity☆

    PubMed Central

    Muleta, Muluken G.; Schausberger, Peter

    2013-01-01

    Group-living animals frequently have to trade off the costs and benefits of leaving an established group and joining another group. Owing to their high fitness relevance, group-joining decisions are commonly nonrandom and may be based on traits of both individual members and the group such as life stage, body size, social status and group density or size, respectively. Many group-living animals are able to recognize and to associate preferentially with familiar individuals, i.e. those encountered before. Hence, after dispersing from established groups, animals commonly have to decide whether to join a new familiar or unfamiliar group. Using binary choice situations we assessed the effects of social familiarity on group-joining behaviour of the plant-inhabiting predatory mite Phytoseiulus persimilis. Group living in P. persimilis is brought about by the patchy distribution of its spider mite prey and mutual conspecific attraction. In the first experiment, gravid predator females given a choice between spider mite patches occupied by unfamiliar and familiar groups of females strongly preferred to join familiar groups and to deposit their eggs in these patches. Preference for socially familiar groups was robust across biases of spider mite prey densities between choice options. The second experiment revealed that the predatory mite females can smell social familiarity from a distance. Females subjected to odour choice situations in artificial cages were more strongly attracted to the odour of familiar than unfamiliar groups. We argue that P. persimilis females preferentially join socially familiar groups because a familiar social environment relaxes competition and optimizes foraging and reproduction. PMID:24027341

  4. Participation Patterns in a Massive Open Online Course (MOOC) about Statistics

    ERIC Educational Resources Information Center

    Rieber, Lloyd P.

    2017-01-01

    A massive open online course (MOOC) was designed to provide an introduction to statistics used in educational research and evaluation. The purpose of this research was to explore people's motivations for joining and participating in a MOOC and their behaviors and patterns of participation within the MOOC. Also studied were factors that the…

  5. Influence of friction stir welding parameters on titanium-aluminum heterogeneous lap joining configuration

    NASA Astrophysics Data System (ADS)

    Picot, Florent; Gueydan, Antoine; Hug, Éric

    2017-10-01

    Lap joining configuration for Friction Stir Welding process is a methodology mostly dedicated to heterogeneous bonding. This welding technology was applied to join pure titanium with pure aluminum by varying the rotation speed and the movement speed of the tool. Regardless of the process parameters, it was found that the maximum strength of the junction remains almost constant. Microstructural observations by means of Scanning Electron Microscopy and Energy Dispersive Spectrometry analysis enable to describe the interfacial join and reveal asymmetric Cold Lap Defects on the sides of the junction. Chemical analysis shows the presence of one exclusive intermetallic compound through the interface identified as TiAl3. This compound is responsible of the crack spreading of the junction during the mechanical loading. The original version of this article supplied to AIP Publishing contained an accidental inversion of the authors, names. An updated version of this article, with the authors names formatted correctly was published on 20 October 2017.

  6. Innovative and Highly Productive Joining Technologies for Multi-Material Lightweight Car Body Structures

    NASA Astrophysics Data System (ADS)

    Meschut, G.; Janzen, V.; Olfermann, T.

    2014-05-01

    Driven by increasing costs for energy and raw material and especially by the European CO2-emission laws, automotive industry faces the challenge to develop more lightweight and at the same time still rigid and crash-stable car bodies, that are affordable for large-scale production. The implementation of weight-reduced constructions depends not only on the availability of lightweight materials and related forming technologies, but also on cost-efficient and reliable joining technologies suitable for multi-material design. This article discusses the challenges and requirements for these technologies, based on the example of joining aluminium with press-hardened boron steels, what is considered as a very important material combination for affordable future lightweight mobility. Besides a presentation of recent developments for extending the process limits of conventional mechanical joining methods, new promising technologies such as resistance element welding are introduced. In addition, the performance, advantages, and disadvantages of the presented technologies are compared and discussed.

  7. Joining Pipe with the Hybrid Laser-GMAW Process: Weld Test Results and Cost Analysis

    DTIC Science & Technology

    2006-06-01

    Recent work investigating the poten- tial benefit of applying this technology to a shipyard pipe shop suggests that signifi- cant cost savings may be...arc-based joining processes. With recent advances in com- mercial laser technology , laser suppliers can now deliver dramatically higher power systems...reasons, shipyards in the U.S. are showing growing interest in hybrid laser-GMA welding technology . Hybrid Laser-GMA for Joining Pipe Welding of pipe

  8. Astronaut Crippen prepares to join crew in training

    NASA Image and Video Library

    1984-09-04

    41D-3186 (4 Sept 1984) --- Astronaut Robert L. Crippen, 41-G crew commander, prepares to join his six fellow crewmembers for some training in the mockup and integration laboratory at the Johnson Space Center. Astronaut David C. Leestma, 41-G mission specialist, left, will participate in a scheduled extravehicular activity (EVA) on the Challenger's next mission. Today's training is for launch phase procedures.

  9. 4. Close view of the logs joining of the north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Close view of the logs joining of the north and south rooms, with scale (Note: hole with remains of peg SITU as seen in the east cabin) - The Hermitage, Alfred's Cabin, 4580 Rachel's Lane, Hermitage, Davidson County, TN

  10. Instances of Use of United States Armed Forces Abroad, 1798-2014

    DTIC Science & Technology

    2014-09-15

    Garcia, and Thomas J. Nicola . Instances of Use of United States Armed Forces Abroad, 1798-2014 Congressional Research Service Contents...landing zones near the U.S. Embassy in Saigon and the Tan Son Nhut Airfield. Mayaguez incident. On May 15, 1975, President Ford reported he had ordered...Report R41989, Congressional Authority to Limit Military Operations, by Jennifer K. Elsea, Michael John Garcia and Thomas J. Nicola . CRS Report R43344

  11. 91. VIEW OF THE SOUTHWEST CORNER WHERE THE TOWER JOINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    91. VIEW OF THE SOUTHWEST CORNER WHERE THE TOWER JOINS THE WEST GABLE & THE BRICK STEPS LEAD UP TO A SMALL VERANDAH (DUPLICATE OF HABS No. AL-765-34) - Kenworthy Hall, State Highway 14 (Greensboro Road), Marion, Perry County, AL

  12. Joining precipitation-hardened nickel-base alloys by friction welding

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1972-01-01

    Solid state deformation welding process, friction welding, has been developed for joining precipitation hardened nickel-base alloys and other gamma prime-strengthened materials which heretofore have been virtually unweldable. Method requires rotation of one of the parts to be welded, but where applicable, it is an ideal process for high volume production jobs.

  13. Corrosion behaviour of friction-bit-joined and weld-bonded AA7075-T6/galvannealed DP980

    DOE PAGES

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; ...

    2016-12-22

    Joining of aluminium alloys 7075-T6 and galvannealed dual phase 980 steel was achieved by friction bit joining (FBJ) and weld-bonding (FBJ + adhesive) processes. Accelerated laboratory-scale corrosion tests were performed on both FBJ only and weld-bonded specimens to study joint strength under a corrosive environment. Static lap shear tests showed that both FBJ only and weld-bonded cases generally retained more than 80% of the joint strength of non-corroded specimens at the end of corrosion testing. The presence of Zn/Fe coating on the steel substrate resulted in improved corrosion resistance for FBJ specimens, compared to joints produced with bare steel. Finally,more » an optical microscopy was used for cross-sectional analysis of corroded specimens. Some corrosion on the joining bit was observed near the bit head. However, the joining bit was still intact on the steel substrate, indicating that the primary bond was sound.« less

  14. Corrosion behaviour of friction-bit-joined and weld-bonded AA7075-T6/galvannealed DP980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu

    Joining of aluminium alloys 7075-T6 and galvannealed dual phase 980 steel was achieved by friction bit joining (FBJ) and weld-bonding (FBJ + adhesive) processes. Accelerated laboratory-scale corrosion tests were performed on both FBJ only and weld-bonded specimens to study joint strength under a corrosive environment. Static lap shear tests showed that both FBJ only and weld-bonded cases generally retained more than 80% of the joint strength of non-corroded specimens at the end of corrosion testing. The presence of Zn/Fe coating on the steel substrate resulted in improved corrosion resistance for FBJ specimens, compared to joints produced with bare steel. Finally,more » an optical microscopy was used for cross-sectional analysis of corroded specimens. Some corrosion on the joining bit was observed near the bit head. However, the joining bit was still intact on the steel substrate, indicating that the primary bond was sound.« less

  15. Who joins the network? Physicians' resistance to take budgetary co-responsibility.

    PubMed

    Rischatsch, Maurus

    2015-03-01

    Managed Care (MC) is expected to provide health care at a lower cost than conventional provision. Therefore, Switzerland intends to promote MC by forcing health insurers to write MC contracts and introducing budgetary co-responsibility for ambulatory care physicians. A discrete choice experiment conducted in 2011 including 872 physicians reveals a strong preference heterogeneity with respect to network participation and alternative remuneration schemes. The number of physicians working in networks is unlikely to rise on a voluntary basis, while general practitioners are more likely to join networks than specialists with surgical activities. For physicians considering joining networks, cost savings are predicted to be higher than the estimated willingness-to-accept payments. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Reversing Kristeva's first instance of abjection: the formation of self reconsidered.

    PubMed

    McCabe, Janet L; Holmes, Dave

    2011-03-01

    Psychoanalyst Julia Kristeva defines the theoretical concept of abjection as an unconscious defence mechanism used to protect the self against threats to one's subjectivity. Kristeva suggests that the first instance of abjection in an individual's life occurs when the child abjects the mother. However, the instance of abjection addressed within this paper is the reverse of this: the abjection of the child, with a disability, by the parent, and more broadly society. Using the contemporary example of prenatal testing, the authors explore how parents of children with disabilities may be influenced in abjecting the child. The implications of abjection of the child are then used to explore normalization, routinization of care and the development of standardized care practices within health-care. Prenatal screening practices and standardized care permeate medical obstetric care and social discourses regarding pregnancy and childbirth, thereby affecting not only healthcare professionals but also parents in their position as consumers of health-care. In a time when the focus of health-care is increasingly placed on disease prevention and broader medical and social discourses glorify normalcy and consistency, the unconscious abjection of those that do not fit within these standards must be identified and addressed. © 2011 Blackwell Publishing Ltd.

  17. Viet Cong Recruitment: Why and How Men Join

    DTIC Science & Technology

    1967-12-01

    have been subordinated to the demands of intensified warfare. Today, more and more youths in their early teens are performing nonmilitary, paramilitary...women, influenced by their noble example, or moved to join the movement to impress the girls of their village.) Though forcible recruitment, including...sisters who died heroically while leading Vietnamese forces in battle against the Chinese. The Viet Cong is skillful in exploiting the appeal of girls

  18. First observed instance of polygyny in Flammulated Owls

    USGS Publications Warehouse

    Linkhart, B.D.; Evers, E.M.; Megler, J.D.; Palm, E.C.; Salipante, C.M.; Yanco, S.W.

    2008-01-01

    We document the first observed instance of polygyny in Flammulated Owls (Otus flammeolus) and the first among insectivorous raptors. Chronologies of the male's two nests, which were 510 m apart, were separated by nearly 2 weeks. Each brood initially consisted of three owlets, similar to the mean brood size in monogamous pairs. The male delivered considerably fewer prey to the secondary nest, compared with prey-delivery rates at nests of monogamous males during the nestling period. Evidence suggested that all owlets fledged from the primary brood, but only one fledged from the secondary brood. We were uncertain of the cause of polygyny, but a possible explanation is the Hayman Fire shifted the operational sex ratio of the owls in favor of females. The extent of polygyny in Flammulated Owls may be limited by costs to the reproductive success of secondary females.

  19. Challenges, Ideas, and Innovations of Joined-Wing Configurations: A Concept from the Past, an Opportunity for the Future

    NASA Astrophysics Data System (ADS)

    Cavallaro, Rauno; Demasi, Luciano

    2016-11-01

    Diamond Wings, Strut- and Truss-Braced Wings, Box Wings, and PrandtlPlane, the so-called "JoinedWings", represent a dramatic departure from traditional configurations. Joined Wings are characterized by a structurally overconstrained layout which significantly increases the design space with multiple load paths and numerous solutions not available in classical wing systems. A tight link between the different disciplines (aerodynamics, flight mechanics, aeroelasticity, etc.) makes a Multidisciplinary Design and Optimization approach a necessity from the early design stages. Researchers showed potential in terms of aerodynamic efficiency, reduction of emissions and superior performances, strongly supporting the technical advantages of Joined Wings. This review will present these studies, with particular focus on the United States joined-wing SensorCraft, Strut- and Truss- Braced Wings, Box Wings and PrandtlPlane.

  20. Solid State Joining of Magnesium to Steel

    NASA Astrophysics Data System (ADS)

    Jana, Saumyadeep; Hovanski, Yuri; Pilli, Siva P.; Field, David P.; Yu, Hao; Pan, Tsung-Yu; Santella, M. L.

    Friction stir welding and ultrasonic welding techniques were applied to join automotive magnesium alloys to steel sheet. The effect of tooling and process parameters on the post-weld microstructure, texture and mechanical properties was investigated. Static and dynamic loading were utilized to investigate the joint strength of both cast and wrought magnesium alloys including their susceptibility and degradation under corrosive media. The conditions required to produce joint strengths in excess of 75% of the base metal strength were determined, and the effects of surface coatings, tooling and weld parameters on weld properties are presented.

  1. METHOD OF JOINING CARBIDES TO BASE METALS

    DOEpatents

    Krikorian, N.H.; Farr, J.D.; Witteman, W.G.

    1962-02-13

    A method is described for joining a refractory metal carbide such as UC or ZrC to a refractory metal base such as Ta or Nb. The method comprises carburizing the surface of the metal base and then sintering the base and carbide at temperatures of about 2000 deg C in a non-oxidizing atmosphere, the base and carbide being held in contact during the sintering step. To reduce the sintering temperature and time, a sintering aid such as iron, nickel, or cobait is added to the carbide, not to exceed 5 wt%. (AEC)

  2. A practical approximation algorithm for solving massive instances of hybridization number for binary and nonbinary trees.

    PubMed

    van Iersel, Leo; Kelk, Steven; Lekić, Nela; Scornavacca, Celine

    2014-05-05

    Reticulate events play an important role in determining evolutionary relationships. The problem of computing the minimum number of such events to explain discordance between two phylogenetic trees is a hard computational problem. Even for binary trees, exact solvers struggle to solve instances with reticulation number larger than 40-50. Here we present CycleKiller and NonbinaryCycleKiller, the first methods to produce solutions verifiably close to optimality for instances with hundreds or even thousands of reticulations. Using simulations, we demonstrate that these algorithms run quickly for large and difficult instances, producing solutions that are very close to optimality. As a spin-off from our simulations we also present TerminusEst, which is the fastest exact method currently available that can handle nonbinary trees: this is used to measure the accuracy of the NonbinaryCycleKiller algorithm. All three methods are based on extensions of previous theoretical work (SIDMA 26(4):1635-1656, TCBB 10(1):18-25, SIDMA 28(1):49-66) and are publicly available. We also apply our methods to real data.

  3. A framework for periodic outlier pattern detection in time-series sequences.

    PubMed

    Rasheed, Faraz; Alhajj, Reda

    2014-05-01

    Periodic pattern detection in time-ordered sequences is an important data mining task, which discovers in the time series all patterns that exhibit temporal regularities. Periodic pattern mining has a large number of applications in real life; it helps understanding the regular trend of the data along time, and enables the forecast and prediction of future events. An interesting related and vital problem that has not received enough attention is to discover outlier periodic patterns in a time series. Outlier patterns are defined as those which are different from the rest of the patterns; outliers are not noise. While noise does not belong to the data and it is mostly eliminated by preprocessing, outliers are actual instances in the data but have exceptional characteristics compared with the majority of the other instances. Outliers are unusual patterns that rarely occur, and, thus, have lesser support (frequency of appearance) in the data. Outlier patterns may hint toward discrepancy in the data such as fraudulent transactions, network intrusion, change in customer behavior, recession in the economy, epidemic and disease biomarkers, severe weather conditions like tornados, etc. We argue that detecting the periodicity of outlier patterns might be more important in many sequences than the periodicity of regular, more frequent patterns. In this paper, we present a robust and time efficient suffix tree-based algorithm capable of detecting the periodicity of outlier patterns in a time series by giving more significance to less frequent yet periodic patterns. Several experiments have been conducted using both real and synthetic data; all aspects of the proposed approach are compared with the existing algorithm InfoMiner; the reported results demonstrate the effectiveness and applicability of the proposed approach.

  4. Increasing FSW join strength by optimizing feed rate, rotating speed and pin angle

    NASA Astrophysics Data System (ADS)

    Darmadi, Djarot B.; Purnowidodo, Anindito; Siswanto, Eko

    2017-10-01

    Principally the join in Friction Stir Welding (FSW) is formed due to mechanical bonding. At least there are two factors determines the quality of this join, first is the temperature in the area around the interface and secondly the intense of mixing forces in nugget zone to create the mechanical bonding. The adequate temperature creates good flowability of the nugget zone and an intensive mixing force produces homogeneous strong bonding. Based on those two factors in this research the effects of feed rate, rotating speed and pin angle of the FSW process to the tensile strength of resulted join are studied. The true experimental method was used. Feed rate was varied at 24, 42, 55 and 74 mm/minutes and from the experimental results, it can be concluded that the higher feed rate decreases the tensile strength of weld join and it is believed due to the lower heat embedded in the material. Inversely, the higher rotating speed increases the join’s tensile strength as a result of higher heat embedded in base metal and higher mixing force in the nugget zone. The rotating speed were 1842, 2257 and 2904 RPMs. The pin angle determines the direction of mixing force. With variation of pin angle: 0°, 4°, 8° and 12° the higher pin angle generally increases the tensile strength because of more intensive mixing force. For 12° pin angle the lower tensile strength is found since the force tends to push out the nugget area from the joint gap.

  5. Joining and Integration of Silicon Carbide for Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Coddington, Bryan; Asthana, Rajiv

    2010-01-01

    The critical need for ceramic joining and integration technologies is becoming better appreciated as the maturity level increases for turbine engine components fabricated from ceramic and ceramic matrix composite materials. Ceramic components offer higher operating temperatures and reduced cooling requirements. This translates into higher efficiencies and lower emissions. For fabricating complex shapes, diffusion bonding of silicon carbide (SiC) to SiC is being developed. For the integration of ceramic parts to the surrounding metallic engine system, brazing of SiC to metals is being developed. Overcoming the chemical, thermal, and mechanical incompatibilities between dissimilar materials is very challenging. This presentation will discuss the types of ceramic components being developed by researchers and industry and the benefits of using ceramic components. Also, the development of strong, crack-free, stable bonds will be discussed. The challenges and progress in developing joining and integration approaches for a specific application, i.e. a SiC injector, will be presented.

  6. CuPb rheocast alloy as joining material for CFC composites

    NASA Astrophysics Data System (ADS)

    Salvo, M.; Lemoine, P.; Ferraris, M.; Appendino Montorsi, M.; Matera, R.

    1995-10-01

    High heat flux components for future use in thermonuclear fusion reactors are designed as layered structures. The assembling of the different parts (armour, heat sink and external structure) requires a joint which could withstand large heat loads and thermal stresses. In this paper we examined a 50 wt% PbCu rheocast alloy (RCA) as joining material for the armour/heat sink joint. The alloy was prepared in vacuum in a rotational furnace and was characterized by SEM-EDS analysis and heating microscopy. The obtained microstructure was globular as foreseen and it remained after prolonged heating at 650°C. The alloy showed very good ductility: sheets of about 200 μm were rolled starting from about 1 × 1 × 1 cm 3 cubes. The alloy was successful in joining both the armour and the heat sink materials, respectively, carbon fibre reinforced composites and copper. Initial mechanical testing shows that the technique is viable for the foreseen applications in the field of thermonuclear fusion reactors.

  7. Applications of Materials Selection For Joining Composite/Alloy Piping Systems

    NASA Technical Reports Server (NTRS)

    Crosby, Karen E.; Smith, Brett H.; Mensah, Patrick F.; Stubblefield, Michael A.

    2001-01-01

    A study in collaboration between investigators at Southern University and Louisiana State University in Baton Rouge, Louisiana and NASA/MSFC is examining materials for modeling and analysis of heat-activated thermal coupling for joining composite to composite/alloy structures. The short-term objectives of this research are to develop a method for joining composite or alloy structures, as well as to study the effects of thermal stress on composite-to-alloy joints. This investigation will result in the selection of a suitable metallic alloy. Al-Li alloys have potential for this purpose in aerospace applications due to their excellent strength-to-weight ratio. The study of Al-Li and other alloys is of significant importance to this and other aerospace as well as offshore related interests. Further research will incorporate the use of computer aided design and rapid prototype hardware for conceptual design and verification of a potential composite piping delivery system.

  8. University Students Join NASA on Trip to Hawaiian Volcano

    NASA Image and Video Library

    2017-12-08

    Lava formations The science and journalism teams make their way across the ropey, twisted, broken crust of the 1978 lava flow. These patterns formed as flowing lava exposed at the surface cooled and solidified, while hot lava continued to flow beneath. The dark cloud in the distance is the active volcanic plume. Credit: NASA/GSFC/Andrea Jones In June, five student journalists from Stony Brook University packed their hiking boots and hydration packs and joined a NASA-funded science team for 10 days on the lava fields of Kilauea, an active Hawaiian volcano. Kilauea’s lava fields are an ideal place to test equipment designed for use on Earth’s moon or Mars, because volcanic activity shaped so much of those terrains. The trip was part of an interdisciplinary program called RIS4E – short for Remote, In Situ, and Synchrotron Studies for Science and Exploration – which is designed to prepare for future exploration of the moon, near-Earth asteroids and the moons of Mars. To read reports from the RIS4E journalism students about their experiences in Hawaii, visit ReportingRIS4E.com NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Joining and Integration of Silicon Nitride Ceramics for Aerospace and Energy Systems

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2009-01-01

    Light-weight, creep-resistant silicon nitride ceramics possess excellent high-temperature strength and are projected to significantly raise engine efficiency and performance when used as turbine components in the next-generation turbo-shaft engines without the extensive cooling that is needed for metallic parts. One key aspect of Si3N4 utilization in such applications is its joining response to diverse materials. In an ongoing research program, the joining and integration of Si3N4 ceramics with metallic, ceramic, and composite materials using braze interlayers with the liquidus temperature in the range 750-1240C is being explored. In this paper, the self-joining behavior of Kyocera Si3N4 and St. Gobain Si3N4 using a ductile Cu-based active braze (Cu-ABA) containing Ti will be presented. Joint microstructure, composition, hardness, and strength as revealed by optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Knoop microhardness test, and offset compression shear test will be presented. Additionally, microstructure, composition, and joint strength of Si3N4/Inconel 625 joints made using Cu-ABA, will be presented. The results will be discussed with reference to the role of chemical reactions, wetting behavior, and residual stresses in joints.

  10. 9 CFR 310.3 - Carcasses and parts in certain instances to be retained.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Carcasses and parts in certain instances to be retained. 310.3 Section 310.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... AND VOLUNTARY INSPECTION AND CERTIFICATION POST-MORTEM INSPECTION § 310.3 Carcasses and parts in...

  11. Why Universities Join Cross-Sector Social Partnerships: Theory and Evidence

    ERIC Educational Resources Information Center

    Siegel, David J.

    2010-01-01

    Cross-sector partnerships are an increasingly popular mode of organizing to address intractable social problems, yet theory and research have virtually ignored university involvement in such activity. This article attempts to ascertain the reasons universities join networks of other social actors to support a common cause. Theories on the…

  12. Characteristics of joining and hybrid composite forging of aluminum solid parts and galvanized steel sheets

    NASA Astrophysics Data System (ADS)

    Wesling, V.; Treutler, K.; Bick, T.; Stonis, M.; Langner, J.; Kriwall, M.

    2018-06-01

    In lightweight construction, light metals like aluminum are used in addition to high-strength steels. However, a welded joint of aluminum and steel leads to the precipitation of brittle, intermetallic phases and contact corrosion. Nevertheless, to use the advantages of this combination in terms of weight saving composite hybrid forging has been developed. In this process, an aluminum solid part and a steel sheet were formed in a single step and joined at the same time with zinc as brazing material. For this purpose, the zinc was applied by hot dipping on the aluminum in order to produce a connection via this layer in a forming process, under pressure and heat. Due to the formed intermediate layer of zinc, the formation of the Fe-Al intermetallic phases and the contact corrosion are excluded. By determining the mathematical relationships between joining parameters and the connection properties the strength of a specific joint geometry could be adjusted to reach the level of conventional joining techniques. In addition to the presentation of the joint properties, the influence of the joining process on the structure of the involved materials is also shown. Furthermore, the failure behavior under static tensile and shear stress will be shown.

  13. Desperately seeking fusion: on 'joined-up thinking', 'holistic practice' and the new economy of welfare professional power.

    PubMed

    Allen, Chris

    2003-06-01

    This paper argues that social welfare research on joined-up thinking is underpinned by two theses. The 'systemic move' thesis suggests that joined-up thinking is needed to fill gaps in welfare service provision arising from a lack of interorganizational co-ordination. The 'epistemological move' thesis advises that joined-up thinking is needed to overcome deficiencies in the institutional division and distribution of welfare knowledge. Both theses macro-systematize blame for previous social welfare failures, and both are teleological because they present joined-up thinking as a progressive solution that results in a more effective (and thus less fallible) welfare system. In this paper, I argue thatjoined-up thinking can also create a new economy of welfare professional power. First, I show how some versions of 'joined-up' thinking manifest themselves in holistic practices that can 'see everything', 'know everything' and 'do anything', and thus a 'holistic power' to discipline and control every aspect of welfare recipients lives. Since holistic power is seen as infallible, its failure to produce 'active bodies' necessitates the creation of secondary 'joined-up powers' that individualize blame and exclude those to blame from welfare resources. These 'secondary powers' match the social disciplines enforced by one welfare agency (e.g. the responsibility to work enforced by the employment service) with legal rights under another agency (e.g. the right to housing from social landlords), so that breach of the former leads to exclusion from the latter. I conclude that this power strategy is primitive and punitive because it simply excludes welfare recipients. Exclusion is also uneconomic because it pushes welfare recipients into the shade of welfare institutional power.

  14. Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach

    Treesearch

    F. Briggs; B. Lakshminarayanan; L. Neal; X.Z. Fern; R. Raich; S.F. Hadley; A.S. Hadley; M.G. Betts

    2012-01-01

    Although field-collected recordings typically contain multiple simultaneously vocalizing birds of different species, acoustic species classification in this setting has received little study so far. This work formulates the problem of classifying the set of species present in an audio recording using the multi-instance multi-label (MIML) framework for machine learning...

  15. Specifying structural constraints of architectural patterns in the ARCHERY language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Alejandro; HASLab INESC TEC and Universidade do Minho, Campus de Gualtar, 4710-057 Braga; Barbosa, Luis S.

    ARCHERY is an architectural description language for modelling and reasoning about distributed, heterogeneous and dynamically reconfigurable systems in terms of architectural patterns. The language supports the specification of architectures and their reconfiguration. This paper introduces a language extension for precisely describing the structural design decisions that pattern instances must respect in their (re)configurations. The extension is a propositional modal logic with recursion and nominals referencing components, i.e., a hybrid µ-calculus. Its expressiveness allows specifying safety and liveness constraints, as well as paths and cycles over structures. Refinements of classic architectural patterns are specified.

  16. Joining by plating: optimization of occluded angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dini, J.W.; Johnson, H.R.; Kan, Y.R.

    1978-11-01

    An empirical method has been developed for predicting the minimum angle required for maximum joint strength for materials joined by plating. This is done through a proposed power law failure function, whose coefficients are taken from ring shear and conical head tensile data for plating/substrate combinations and whose exponent is determined from one set of plated-joint data. Experimental results are presented for Al-Ni-Al (7075-T6) and AM363-Ni-AM363 joints, and the failure function is used to predict joint strengths for Al-Ni-Al (2024-T6), UTi-Ni-UTi, and Be-Ti-Be.

  17. Characterisation of the joining zone of serially arranged hybrid semi-finished components

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Chugreev, A.; Matthias, T.

    2018-05-01

    Forming of already joined semi-finished products is an innovative approach to manufacture components which are well-adapted to external loads. This approach results in an economically and ecologically improved production by the targeted use of high-quality materials in component areas, which undergo high stresses. One possible production method for hybrid semi-finished products is friction welding. This welding method allows for the production of hybrid semi-finished products made of aluminium and steel as well as steel and steel. In this paper, the thermomechanical tensile and shear stresses causing a failure of the joined zone are experimentally determined through tension tests. These tests are performed with specimens whose joint zones are aligned with different angles to the load direction.

  18. Variety Preserved Instance Weighting and Prototype Selection for Probabilistic Multiple Scope Simulations

    DTIC Science & Technology

    2017-05-30

    including analysis, control and management of the systems across their multiple scopes . These difficulties will become more significant in near future...behaviors of the systems , it tends to cover their many scopes . Accordingly, we may obtain better models for the simulations in a data-driven manner...to capture variety of the instance distribution in a given data set for covering multiple scopes of our objective system in a seamless manner. (2

  19. Fabrication and characterization of joined silicon carbide cylindrical components for nuclear applications

    NASA Astrophysics Data System (ADS)

    Khalifa, H. E.; Deck, C. P.; Gutierrez, O.; Jacobsen, G. M.; Back, C. A.

    2015-02-01

    The use of silicon carbide (SiC) composites as structural materials in nuclear applications necessitates the development of a viable joining method. One critical application for nuclear-grade joining is the sealing of fuel within a cylindrical cladding. This paper demonstrates cylindrical joint feasibility using a low activation nuclear-grade joint material comprised entirely of β-SiC. While many papers have considered joining material, this paper takes into consideration the joint geometry and component form factor, as well as the material performance. Work focused specifically on characterizing the strength and permeability performance of joints between cylindrical SiC-SiC composites and monolithic SiC endplugs. The effects of environment and neutron irradiation were not evaluated in this study. Joint test specimens of different geometries were evaluated in their as-fabricated state, as well as after being subjected to thermal cycling and partial mechanical loading. A butted scarf geometry supplied the best combination of high strength and low permeability. A leak rate performance of 2 × 10-9 mbar l s-1 was maintained after thermal cycling and partial mechanical loading and sustained applied force of 3.4 kN, or an apparent strength of 77 MPa. This work shows that a cylindrical SiC-SiC composite tube sealed with a butted scarf endplug provides out-of-pile strength and permeability performance that meets light water reactor design requirements.

  20. UK Announces Intention to Join ESO

    NASA Astrophysics Data System (ADS)

    2000-11-01

    Summary The Particle Physics and Astronomy Research Council (PPARC) , the UK's strategic science investment agency, today announced that the government of the United Kingdom is making funds available that provide a baseline for this country to join the European Southern Observatory (ESO) . The ESO Director General, Dr. Catherine Cesarsky , and the ESO Community warmly welcome this move towards fuller integration in European astronomy. "With the UK as a potential member country of ESO, our joint opportunities for front-line research and technology will grow significantly", she said. "This announcement is a clear sign of confidence in ESO's abilities, most recently demonstrated with the construction and operation of the unique Very Large Telescope (VLT) on Paranal. Together we will look forward with confidence towards new, exciting projects in ground-based astronomy." It was decided earlier this year to place the 4-m UK Visible and Infrared Survey Telescope (VISTA) at Paranal, cf. ESO Press Release 03/00. Following negotiations between ESO and PPARC, a detailed proposal for the associated UK/ESO Agreement with the various entry modalities will now be presented to the ESO Council for approval. Before this Agreement can enter into force, the ESO Convention and associated protocols must also be ratified by the UK Parliament. Research and key technologies According to the PPARC press release, increased funding for science, announced by the UK government today, will enable UK astronomers to prepare for the next generation of telescopes and expand their current telescope portfolio through membership of the European Southern Observatory (ESO). The uplift to its baseline budget will enable PPARC to enter into final negotiations for UK membership of the ESO. This will ensure that UK astronomers, together with their colleagues in the ESO member states, are actively involved in global scale preparations for the next generation of astronomy facilities. among these are ALMA

  1. Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis.

    PubMed

    Ma, W-J; Schwander, T

    2017-05-01

    Female-producing parthenogenesis can be induced by endosymbionts that increase their transmission by manipulating host reproduction. Our literature survey indicates that such endosymbiont-induced parthenogenesis is known or suspected in 124 host species from seven different arthropod taxa, with Wolbachia as the most frequent endosymbiont (in 56-75% of host species). Most host species (81%, 100 out of 124) are characterized by haplo-diploid sex determination, but a strong ascertainment bias likely underestimates the frequency of endosymbiont-induced parthenogenesis in hosts with other sex determination systems. In at least one taxon, hymenopterans, endosymbionts are a significant driver of transitions from sexual to parthenogenetic reproduction, with one-third of lineages being parthenogenetic as a consequence of endosymbiont infection. Endosymbiont-induced parthenogenesis appears to facilitate the maintenance of reproductive polymorphism: at least 50% of species comprise both sexual (uninfected) and parthenogenetic (infected) strains. These strains feature distribution differences similar to the ones documented for lineages with genetically determined parthenogenesis, with endosymbiont-induced parthenogens occurring at higher latitudes than their sexual relatives. Finally, although gamete duplication is often considered as the main mechanism for endosymbiont-induced parthenogenesis, it underlies parthenogenesis in only half of the host species studied thus far. We point out caveats in the methods used to test for endosymbiont-induced parthenogenesis and suggest specific approaches that allow for firm conclusions about the involvement of endosymbionts in the origin of parthenogenesis. © 2017 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  2. A new active solder for joining electronic components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SMITH,RONALD W.; VIANCO,PAUL T.; HERNANDEZ,CYNTHIA L.

    Electronic components and micro-sensors utilize ceramic substrates, copper and aluminum interconnect and silicon. The joining of these combinations require pre-metallization such that solders with fluxes can wet such combinations of metals and ceramics. The paper will present a new solder alloy that can bond metals, ceramics and composites. The alloy directly wets and bonds in air without the use flux or premetallized layers. The paper will present typical processing steps and joint microstructures in copper, aluminum, aluminum oxide, aluminum nitride, and silicon joints.

  3. Mobile Real-time Tracking of Acute Stroke Patients and Instant, Secure Inter-team Communication - the Join App.

    PubMed

    Munich, Stephan A; Tan, Lee A; Nogueira, Danilo M; Keigher, Kiffon M; Chen, Michael; Crowley, R Webster; Conners, James J; Lopes, Demetrius K

    2017-09-01

    The primary correlate to survival and preservation of neurologic function in patients suffering from an acute ischemic stroke is time from symptom onset to initiation of therapy and reperfusion. Communication and coordination among members of the stroke team are essential to maximizing efficiency and subsequently early reperfusion. In this work, we aim to describe our preliminary experience using the Join mobile application as a means to improve interdisciplinary team communication and efficiency. We describe our pilot experience with the initiation of the Join mobile application between July 2015 and July 2016. With this application, a mobile beacon is transported with the patient on the ambulance. Transportation milestone timestamps and geographic coordinates are transmitted to the treating facility and instantly communicated to all treatment team members. The transport team / patient can be tracked en route to the treating facility. During our pilot study, 62 patients were triaged and managed using the Join application. Automated time-stamping of critical events, geographic tracking of patient transport and summary documents were obtained for all patients. Treatment team members had an overall favorable impression of the Join application and recommended its continued use. The Join application is one of several components of a multi-institutional, interdisciplinary effort to improve the treatment of patients with acute ischemic stroke. The ability of the treatment team to track patient transport and communicate with the transporting team may improve reperfusion time and, therefore, improve neurologic outcomes.

  4. DNA double-strand break response factors influence end-joining features of IgH class switch and general translocation junctions.

    PubMed

    Panchakshari, Rohit A; Zhang, Xuefei; Kumar, Vipul; Du, Zhou; Wei, Pei-Chi; Kao, Jennifer; Dong, Junchao; Alt, Frederick W

    2018-01-23

    Ig heavy chain (IgH) class switch recombination (CSR) in B lymphocytes switches IgH constant regions to change antibody functions. CSR is initiated by DNA double-strand breaks (DSBs) within a donor IgH switch (S) region and a downstream acceptor S region. CSR is completed by fusing donor and acceptor S region DSB ends by classical nonhomologous end-joining (C-NHEJ) and, in its absence, by alternative end-joining that is more biased to use longer junctional microhomologies (MHs). Deficiency for DSB response (DSBR) factors, including ataxia telangiectasia-mutated (ATM) and 53BP1, variably impair CSR end-joining, with 53BP1 deficiency having the greatest impact. However, studies of potential impact of DSBR factor deficiencies on MH-mediated CSR end-joining have been technically limited. We now use a robust DSB joining assay to elucidate impacts of deficiencies for DSBR factors on CSR and chromosomal translocation junctions in primary mouse B cells and CH12F3 B-lymphoma cells. Compared with wild-type, CSR and c-myc to S region translocation junctions in the absence of 53BP1, and, to a lesser extent, other DSBR factors, have increased MH utilization; indeed, 53BP1-deficient MH profiles resemble those associated with C-NHEJ deficiency. However, translocation junctions between c-myc DSB and general DSBs genome-wide are not MH-biased in ATM-deficient versus wild-type CH12F3 cells and are less biased in 53BP1- and C-NHEJ-deficient cells than CSR junctions or c-myc to S region translocation junctions. We discuss potential roles of DSBR factors in suppressing increased MH-mediated DSB end-joining and features of S regions that may render their DSBs prone to MH-biased end-joining in the absence of DSBR factors.

  5. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  6. 28 CFR 51.46 - Reconsideration of objection at the instance of the Attorney General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Reconsideration of objection at the instance of the Attorney General. 51.46 Section 51.46 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED...

  7. 28 CFR 51.46 - Reconsideration of objection at the instance of the Attorney General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Reconsideration of objection at the instance of the Attorney General. 51.46 Section 51.46 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED...

  8. Cut and join operator ring in tensor models

    NASA Astrophysics Data System (ADS)

    Itoyama, H.; Mironov, A.; Morozov, A.

    2018-07-01

    Recent advancement of rainbow tensor models based on their superintegrability (manifesting itself as the existence of an explicit expression for a generic Gaussian correlator) has allowed us to bypass the long-standing problem seen as the lack of eigenvalue/determinant representation needed to establish the KP/Toda integrability. As the mandatory next step, we discuss in this paper how to provide an adequate designation to each of the connected gauge-invariant operators that form a double coset, which is required to cleverly formulate a tree-algebra generalization of the Virasoro constraints. This problem goes beyond the enumeration problem per se tied to the permutation group, forcing us to introduce a few gauge fixing procedures to the coset. We point out that the permutation-based labeling, which has proven to be relevant for the Gaussian averages is, via interesting complexity, related to the one based on the keystone trees, whose algebra will provide the tensor counterpart of the Virasoro algebra for matrix models. Moreover, our simple analysis reveals the existence of nontrivial kernels and co-kernels for the cut operation and for the join operation respectively that prevent a straightforward construction of the non-perturbative RG-complete partition function and the identification of truly independent time variables. We demonstrate these problems by the simplest non-trivial Aristotelian RGB model with one complex rank-3 tensor, studying its ring of gauge-invariant operators, generated by the keystone triple with the help of four operations: addition, multiplication, cut and join.

  9. Joining Forces: A Response to Kathy Rentz from the European Perspective

    ERIC Educational Resources Information Center

    Louhiala-Salminen, Leena

    2010-01-01

    In this article, the author responds to Kathy Rentz. She happily joins forces for pedagogically defensible teaching conditions and gives a brief "activist" account from the European perspective. However, rather than "European," she emphasizes that for the most part, this response looks at business communication teachers'…

  10. Supercomputers Join the Fight against Cancer – U.S. Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Department of Energy has some of the best supercomputers in the world. Now, they’re joining the fight against cancer. Learn about our new partnership with the National Cancer Institute and GlaxoSmithKline Pharmaceuticals.

  11. One ring to bring them all--the role of Ku in mammalian non-homologous end joining.

    PubMed

    Grundy, Gabrielle J; Moulding, Hayley A; Caldecott, Keith W; Rulten, Stuart L

    2014-05-01

    The repair of DNA double strand breaks is essential for cell survival and several conserved pathways have evolved to ensure their rapid and efficient repair. The non-homologous end joining pathway is initiated when Ku binds to the DNA break site. Ku is an abundant nuclear heterodimer of Ku70 and Ku80 with a toroidal structure that allows the protein to slide over the broken DNA end and bind with high affinity. Once locked into placed, Ku acts as a tool-belt to recruit multiple interacting proteins, forming one or more non-homologous end joining complexes that act in a regulated manner to ensure efficient repair of DNA ends. Here we review the structure and functions of Ku and the proteins with which it interacts during non-homologous end joining. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Joining of aluminum and stainless steel using AlSi10 brazing filler: Microstructure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Fedorov, Vasilii; Uhlig, Thomas; Wagner, Guntram

    2017-07-01

    Joining of dissimilar materials like stainless steel and aluminum is of special interest for automotive applications. Due to the different properties of these materials, suitable joining techniques are required. Brazing offers the possibilities to manufacture high performance joints in one step and at low joining temperatures. However, these joints often need to withstand a high number of high cyclic loads during application. Therefore, in addition to the monotonic properties, the fatigue behavior of the produced joints must be considered and evaluated. In the present work, specimens are manufactured by induction brazing using an AlSi10 filler and a non-corrosive flux. The mechanical properties are determined by tensile shear tests as well as in fatigue tests at ambient and elevated temperatures. The microstructure of the brazed joints and the fracture surfaces of the tested samples are investigated by SEM.

  13. Studying the Issues in Laser Joining of Lightweight Materials in a Coach-Peel Joint Configuration

    NASA Astrophysics Data System (ADS)

    Yang, Guang

    In the automotive industry, aluminum alloys have been widely used and partially replaced the conventional steel structures in order to decrease the weight of a car and improve its fuel efficiency. This Thesis focuses on the development of laser joining of light-weight materials, such as aluminum alloys and high-strength galvanized steels. Among different joint types, the coach-peel configuration is of a specific design that requires a heat source capable of heating up a large surface area of the joint. Coach-peel joints applied on the visible exterior of a car require a smooth transition from the weld surface to the panel surface and low surface roughness without any need for post-processing. Although these joints are used as non-load-bearing components, a desirable strength of the weld is also needed. A fusion-brazing process using a dual-beam laser allows the automotive components such as the roof and side member panels to be joined in a coach-peel configuration with a high surface quality as well as an acceptable strength of the weld. To improve the weld surface quality, processing parameters such as laser beam configuration, laser-wire position, and shielding gas parameters were optimized for joining of aluminum alloy to aluminum alloy. Laser power was optimized for dual-beam laser joining of aluminum alloy to galvanized steel at high speed. The feasibility of joining as-received panels with lubricant was also explored. The identification of strain hardening models of aluminum alloys was conducted for the mechanical finite element analysis of the joint. Control of the molten pool solidification through the selection of laser beam configuration is one approach to improve joint quality. Laser joining of aluminum alloy AA 6111-T4 coach peel panels with the addition of AA 4047 filler wire was investigated using three configurations of laser beam: a single beam, dual beams in-line with the weld bead, and dual beams aligned perpendicular to the weld bead (herein

  14. Comparison of joining processes for Haynes 230 nickel based super alloy

    NASA Astrophysics Data System (ADS)

    Williston, David Hugh

    Haynes 230 is a nickel based, solid-solution strengthened alloy that is used for high-temperature applications in the aero-engine and power generation industries. The alloy composition is balanced to avoid precipitation of undesirable topologically closed-packed (TCP) intermetallic phases, such as Sigma, Mu, or Laves-type, that are detrimental to mechanical and corrosion properties. This material is currently being used for the NASA's J2X upper stage rocket nozzle extension. Current fabrication procedures use fusion welding processes to join blanks that are subsequently formed. Cracks have been noted to occur in the fusion welded region during the forming operations. Use of solid state joining processes, such as friction stir welding are being proposed to eliminate the fusion weld cracks. Of interest is a modified friction stir welding process called thermal stir welding. Three welding process: Gas Metal Arc Welding (GMAW), Electron Beam Welding (EBW), and Thermal Stir Welding (TSWing) are compared in this study.

  15. Joining of Aluminium Alloy and Steel by Laser Assisted Reactive Wetting

    NASA Astrophysics Data System (ADS)

    Liedl, Gerhard; Vázquez, Rodrigo Gómez; Murzin, Serguei P.

    2018-03-01

    Compounds of dissimilar materials, like aluminium and steel offer an interesting opportunity for the automotive industry to reduce the weight of a car body. Thermal joining of aluminium and steel leads to the formation of brittle intermetallic compounds, which negatively affects the properties of the welded joint. Amongst others, growth of such intermetallic compounds depends on maximum temperature and on the time at certain temperatures. Laser welding with its narrow well seam and its fast heating and cooling cycles provides an excellent opportunity to obtain an ultrathin diffusion zone. Joining of sheet metal DC01 with aluminium alloy AW6016 has been chosen for research. The performed experimental studies showed that by a variation of the beam power and scanning speed it is possible to obtain an ultrathin diffusion zone with narrow intermetallic interlayers. With the aim of supporting further investigation of laser welding of the respective and other dissimilar pairings a multi-physical simulation model has been developed.

  16. Advances in joining newer structural materials; Proceedings of the International Conference, Montreal, Canada, July 23-25, 1990

    NASA Astrophysics Data System (ADS)

    The present conference on advances in joining novel structural materials encompasses such material types as ceramics, plastics and composites, and new metallic materials. Specific issues addressed include the use of conductor electric explosion to join ceramics, the effects of brazing temperature on joint properties of SiC-fiber-reinforced Al-alloy-matrix composites, the in situ structure control of composite materials, and the weldability of polymeric materials that are heterogeneous as to chemical nature from the standpoint of morphology. Also addressed are the joining of the Al-Li alloy 8090, diffusion bonding of a creep-resistant Fe-ODS alloy, the adhesive bonding of zinc-coated steel sheets, welds in thermoplastic composite materials, and hot-melt joints for carbon-fiber-reinforced composites.

  17. Method for joining carbon-carbon composites to metals

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Moorhead, Arthur J.

    1997-01-01

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to "wick" into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy.

  18. Method for joining carbon-carbon composites to metals

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Moorhead, A.J.

    1997-07-15

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to ``wick`` into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy. 1 fig.

  19. Seeing is believing: video classification for computed tomographic colonography using multiple-instance learning.

    PubMed

    Wang, Shijun; McKenna, Matthew T; Nguyen, Tan B; Burns, Joseph E; Petrick, Nicholas; Sahiner, Berkman; Summers, Ronald M

    2012-05-01

    In this paper, we present development and testing results for a novel colonic polyp classification method for use as part of a computed tomographic colonography (CTC) computer-aided detection (CAD) system. Inspired by the interpretative methodology of radiologists using 3-D fly-through mode in CTC reading, we have developed an algorithm which utilizes sequences of images (referred to here as videos) for classification of CAD marks. For each CAD mark, we created a video composed of a series of intraluminal, volume-rendered images visualizing the detection from multiple viewpoints. We then framed the video classification question as a multiple-instance learning (MIL) problem. Since a positive (negative) bag may contain negative (positive) instances, which in our case depends on the viewing angles and camera distance to the target, we developed a novel MIL paradigm to accommodate this class of problems. We solved the new MIL problem by maximizing a L2-norm soft margin using semidefinite programming, which can optimize relevant parameters automatically. We tested our method by analyzing a CTC data set obtained from 50 patients from three medical centers. Our proposed method showed significantly better performance compared with several traditional MIL methods.

  20. Seeing is Believing: Video Classification for Computed Tomographic Colonography Using Multiple-Instance Learning

    PubMed Central

    Wang, Shijun; McKenna, Matthew T.; Nguyen, Tan B.; Burns, Joseph E.; Petrick, Nicholas; Sahiner, Berkman

    2012-01-01

    In this paper we present development and testing results for a novel colonic polyp classification method for use as part of a computed tomographic colonography (CTC) computer-aided detection (CAD) system. Inspired by the interpretative methodology of radiologists using 3D fly-through mode in CTC reading, we have developed an algorithm which utilizes sequences of images (referred to here as videos) for classification of CAD marks. For each CAD mark, we created a video composed of a series of intraluminal, volume-rendered images visualizing the detection from multiple viewpoints. We then framed the video classification question as a multiple-instance learning (MIL) problem. Since a positive (negative) bag may contain negative (positive) instances, which in our case depends on the viewing angles and camera distance to the target, we developed a novel MIL paradigm to accommodate this class of problems. We solved the new MIL problem by maximizing a L2-norm soft margin using semidefinite programming, which can optimize relevant parameters automatically. We tested our method by analyzing a CTC data set obtained from 50 patients from three medical centers. Our proposed method showed significantly better performance compared with several traditional MIL methods. PMID:22552333

  1. ETR, TRA642. WALL SECTION DETAILS. METAL SIDING JOINS TO ELECTRICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. WALL SECTION DETAILS. METAL SIDING JOINS TO ELECTRICAL BUILDING, OFFICE BUILDING, AND ROOF. KAISER ETR-5528-MTR-A-13, 11/1955. INL INDEX NO. 532-0642-00-486-100920, REV. 4. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. Renew or Join R&W Club Frederick for 2014 | Poster

    Cancer.gov

    By Carolynne Keenan, Contributing Writer If you want to meet new people and participate in new activities in 2014, don’t forget to renew or join the Recreation and Welfare (R&W) Club Frederick. Membership is $9 for the calendar year. An R&W Club Frederick membership offers discounts at local businesses, the opportunity to participate in events and activities (which are often

  3. Technical reference on socket heat fusion joining of polyethylene gas pipes. Volume 2. Topical Report, September 1989-September 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimputkar, S.M.; McCoy, J.K.; Stets, J.A.

    1991-03-01

    The integrity of a pipeline system is determined by its weakest links which may be the joints. Heat fusion is the most common method for joining gas distribution polyethylene (PE) piping. There are procedural, thermal, and mechanical aspects of making fusion joints. Acceptable procedural aspects, such as heater calibration and cleanliness, can be assured by rigorous training and certification of the operators. Thermal and mechanical aspects consist of specifying joining conditions such as the heater temperature, heating time, and joining pressure. In the absence of procedural errors, the strength of a fusion joint should depend on the pipe material, pipemore » dimensions, and the thermal and mechanical joining conditions. Socket heat fusion was studied both experimentally and analytically to determine how the strength of the joint varied with the conditions under which it was made. The standard tensile impact test was modified to test socket fusion joint samples in shear. The developed shear impact energy test data were found to be reliable measures of strength if the setup conditions were meticulously identical. A parameter, termed the socket joining parameter, was found to characterize the joining conditions. It is a strong function of melt volume at the end of the heating phase, and, physically, it is polyethylene transported parallel to the axis during insertion. The results for three resins are presented in the form of three nomographs. The nomographs may be used to select the required heater temperature or the heating time, for a given ambient temperature and a PE resin, to ensure a structurally sound socket heat fusion joint.« less

  4. Requirement for XLF/Cernunnos in alignment-based gap filling by DNA polymerases lambda and mu for nonhomologous end joining in human whole-cell extracts.

    PubMed

    Akopiants, Konstantin; Zhou, Rui-Zhe; Mohapatra, Susovan; Valerie, Kristoffer; Lees-Miller, Susan P; Lee, Kyung-Jong; Chen, David J; Revy, Patrick; de Villartay, Jean-Pierre; Povirk, Lawrence F

    2009-07-01

    XLF/Cernunnos is a core protein of the nonhomologous end-joining pathway of DNA double-strand break repair. To better define the role of Cernunnos in end joining, whole-cell extracts were prepared from Cernunnos-deficient human cells. These extracts effected little joining of DNA ends with cohesive 5' or 3' overhangs, and no joining at all of partially complementary 3' overhangs that required gap filling prior to ligation. Assays in which gap-filled but unligated intermediates were trapped using dideoxynucleotides revealed that there was no gap filling on aligned DSB ends in the Cernunnos-deficient extracts. Recombinant Cernunnos protein restored gap filling and end joining of partially complementary overhangs, and stimulated joining of cohesive ends more than twentyfold. XLF-dependent gap filling was nearly eliminated by immunodepletion of DNA polymerase lambda, but was restored by addition of either polymerase lambda or polymerase mu. Thus, Cernunnos is essential for gap filling by either polymerase during nonhomologous end joining, suggesting that it plays a major role in aligning the two DNA ends in the repair complex.

  5. Electron Beam Welding to Join Gamma Titanium Aluminide Articles

    NASA Technical Reports Server (NTRS)

    Kelly, Thomas Joseph (Inventor)

    2008-01-01

    A method is provided for welding two gamma titanium aluminide articles together. The method includes preheating the two articles to a welding temperature of from about 1700 F to about 2100 F, thereafter electron beam welding the two articles together at the welding temperature and in a welding vacuum to form a welded structure, and thereafter annealing the welded structure at an annealing temperature of from about 1800 F to about 2200 F, to form a joined structure.

  6. Japanese and Korean Nursing Students' Motivation for Joining Disaster Relief Activities as Nurses in the Future.

    PubMed

    Choe, Myoung-Ae; Kuwano, Noriko; Bang, Kyung-Sook; Cho, Mi-Kyoung; Yatsushiro, Rika; Kawata, Yuki

    The purpose of this study was to identify differences in motivation for joining disaster relief activities as a nurse in the future between Japanese and Korean nursing students. A descriptive 2-group comparative study design was used. The participants were 721 first- to fourth-year nursing students (Japanese, n = 324; Korean, n = 397). From June to September 2014, data were collected through a researcher-administered questionnaire and self-reported answers. The collected data were analyzed by descriptive statistics, the χ test, and the t test.No significant difference was found between Japanese and Korean students in motivation to join domestic relief activities should a disaster occur in the area in which they lived. Compared with Korean students, Japanese students strongly agreed that it is necessary to carry out relief work across borders when disasters occur in foreign countries (p = .001). Meanwhile, Japanese students showed less motivation than Korean students to join relief activities in other domestic areas and foreign countries (p = .020).The results of this study suggest that the motivation of Japanese students to join disaster relief activities as nurses in the future should a disaster occur in other domestic areas and foreign countries needs to be increased. The results also suggest that undergraduate students should be well prepared for disasters through disaster nursing education, including practical training, disaster drills, and simulation.

  7. Joining the Conversation: Twitter as a Tool for Student Political Engagement

    ERIC Educational Resources Information Center

    Journell, Wayne; Ayers, Cheryl A.; Beeson, Melissa Walker

    2013-01-01

    This article describes possibilities afforded by using social media, specifically Twitter, as a way to encourage students to join political conversations across the United States and around the world. In this study, we describe a project in which students used Twitter to share commentary about the state of the 2012 presidential election. The…

  8. Users' guide on socket heat fusion joining of polyethylene gas pipes. Volume 1. Topical report, September 1989-September 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimputkar, S.M.; McCoy, J.K.; Stets, J.A.

    1991-03-01

    The integrity of a pipeline system is determined by its weakest links which may be the joints. Heat fusion is the most common method for joining gas distribution polyethylene (PE) piping. There are procedural, thermal, and mechanical aspects of making fusion joints. Acceptable procedural aspects, such as heater calibration and cleanliness, can be assured by rigorous training and certification of the operators. Thermal and mechanical aspects consist of specifying joining conditions such as the heater temperature, heating time, and joining pressure. In the absence of procedural errors, the strength of a fusion joint should depend on the pipe material, pipemore » dimensions, and the thermal and mechanical joining conditions. Socket heat fusion was studied both experimentally and analytically to determine how the strength of the joint varied with the conditions under which it was made. The standard tensile impact test was modified to test socket fusion joint samples in shear. The developed shear impact energy test data were found to be reliable measures of strength if the setups for conditions were meticulously identical. A parameter, termed the socket joining parameter, was found to characterize the joining conditions. It is a strong function of melt volume at the end of the heating phase, and physically, it is polyethylene transported parallel to the axis during insertion. The results for three resins are presented in the form of three nomographs. The nomographs may be used to select the required heater temperature or the heating time, for a given ambient temperature and a PE resin, to ensure a structurally sound socket heat fusion joint.« less

  9. Fracture resistance of inter-joined zirconia abutment of dental implant system with injection molding technique.

    PubMed

    Yang, Jianjun; Wang, Ke; Liu, Guangyuan; Wang, Dashan

    2013-11-01

    Zirconia powder in nanometers can be fabricated into inter-joined abutment of dental implant system with the injection shaping technique. This study was to detect the resistance of inter-joined zirconia abutment with different angle loading for clinical applications. The inter-joined abutments were shaped with the technique of injection of zirconia powder in nanometers. Sixty Osstem GSII 5 × 10 mm implants were used with 30 zirconia abutments and 30 Osstem GSII titanium abutments for fixation using 40 N torque force. The loading applications included 90°, 30°, and 0° formed by the long axis of abutments and pressure head of universal test machine. The fracture resistances of zirconia and titanium abutments were documented and analyzed. The inter-joined zirconia abutments were assembled to the Osstem GSII implants successfully. In the 90° loading mode, the fracture resistance of zirconia abutment group and titanium abutment group were 301.5 ± 15.4 N and 736.4 ± 120.1 N, respectively. And those in the 30° groups were 434.7 ± 36.1 N and 1073.1 ± 74 N, correspondingly. Significant difference in the two groups was found using t-test and Wilcoxon test. No damage on the abutments of the two groups but S-shaped bending on the implants was found when the 0° loading was 1300-2000 N. Through the assembly of Zirconia abutments and implants, all the components presented sufficient resistance acquired for the clinical application under loadings with different angle. © 2012 John Wiley & Sons A/S.

  10. Identifying and changing the normative beliefs about aggression which lead young Muslim adults to join extremist anti-Semitic groups in Pakistan.

    PubMed

    Amjad, Naumana; Wood, Alex M

    2009-01-01

    Two studies investigated the role of beliefs about the acceptability of aggression ("normative beliefs") against Jews in determining who would join an extremist group. In Study 1, students in a university in Pakistan (N=144) completed self-report attitude measures, and were subsequently approached by a confederate who asked whether they wanted to join an extremist anti-Semitic organization. Normative beliefs about aggression against Jews were very strong predictors of whether participants agreed to join. In Study 2, participants (N=92) were experimentally assigned to either a brief educational intervention, designed to improve inter-group relations, or to a control group. They also filled in self-report attitude measures pre and post intervention. Participants in the intervention group were much less likely to agree to join the extremist group, and this effect of the intervention on joining was mediated by changes in normative beliefs about aggression against Jews. The results have implications for theories of inter-group aggression and interventions to prevent people from being recruited into extremist groups.

  11. Modeling non-homologous end joining.

    PubMed

    Li, Yongfeng; Cucinotta, Francis A

    2011-08-21

    Non-homologous end joining (NHEJ) is an important DNA repair pathway for DNA double-strand breaks. Several proteins, including Ku, DNA-PKcs, Artemis, XRCC4/Ligase IV and XLF, are involved in the NHEJ for the DNA damage detection, DNA free end processing and ligation. The classical model of NHEJ is a sequential model in which DNA-PKcs is first recruited by the Ku bound DNA prior to any other repair proteins. Recent experimental study (McElhinny et al., 2000; Costantini et al., 2007; Mari et al., 2006; Yano and Chen, 2008) suggested that the recruitment ordering is not crucial. In this work, by proposing a mathematical model in terms of biochemical reaction network and performing stability and related analysis, we demonstrate theoretically that if DSB repair pathway independent of DNA-PKcs exists, then the classical sequential model and new two-phase model are essentially indistinguishable in the sense that DSB can be repaired thoroughly in both models when the repair proteins are sufficient. Published by Elsevier Ltd.

  12. Interpreting Black-Box Classifiers Using Instance-Level Visual Explanations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamagnini, Paolo; Krause, Josua W.; Dasgupta, Aritra

    2017-05-14

    To realize the full potential of machine learning in diverse real- world domains, it is necessary for model predictions to be readily interpretable and actionable for the human in the loop. Analysts, who are the users but not the developers of machine learning models, often do not trust a model because of the lack of transparency in associating predictions with the underlying data space. To address this problem, we propose Rivelo, a visual analytic interface that enables analysts to understand the causes behind predictions of binary classifiers by interactively exploring a set of instance-level explanations. These explanations are model-agnostic, treatingmore » a model as a black box, and they help analysts in interactively probing the high-dimensional binary data space for detecting features relevant to predictions. We demonstrate the utility of the interface with a case study analyzing a random forest model on the sentiment of Yelp reviews about doctors.« less

  13. Building a biomedical tokenizer using the token lattice design pattern and the adapted Viterbi algorithm

    PubMed Central

    2011-01-01

    Background Tokenization is an important component of language processing yet there is no widely accepted tokenization method for English texts, including biomedical texts. Other than rule based techniques, tokenization in the biomedical domain has been regarded as a classification task. Biomedical classifier-based tokenizers either split or join textual objects through classification to form tokens. The idiosyncratic nature of each biomedical tokenizer’s output complicates adoption and reuse. Furthermore, biomedical tokenizers generally lack guidance on how to apply an existing tokenizer to a new domain (subdomain). We identify and complete a novel tokenizer design pattern and suggest a systematic approach to tokenizer creation. We implement a tokenizer based on our design pattern that combines regular expressions and machine learning. Our machine learning approach differs from the previous split-join classification approaches. We evaluate our approach against three other tokenizers on the task of tokenizing biomedical text. Results Medpost and our adapted Viterbi tokenizer performed best with a 92.9% and 92.4% accuracy respectively. Conclusions Our evaluation of our design pattern and guidelines supports our claim that the design pattern and guidelines are a viable approach to tokenizer construction (producing tokenizers matching leading custom-built tokenizers in a particular domain). Our evaluation also demonstrates that ambiguous tokenizations can be disambiguated through POS tagging. In doing so, POS tag sequences and training data have a significant impact on proper text tokenization. PMID:21658288

  14. Mining Co-Location Patterns with Clustering Items from Spatial Data Sets

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Li, Q.; Deng, G.; Yue, T.; Zhou, X.

    2018-05-01

    The explosive growth of spatial data and widespread use of spatial databases emphasize the need for the spatial data mining. Co-location patterns discovery is an important branch in spatial data mining. Spatial co-locations represent the subsets of features which are frequently located together in geographic space. However, the appearance of a spatial feature C is often not determined by a single spatial feature A or B but by the two spatial features A and B, that is to say where A and B appear together, C often appears. We note that this co-location pattern is different from the traditional co-location pattern. Thus, this paper presents a new concept called clustering terms, and this co-location pattern is called co-location patterns with clustering items. And the traditional algorithm cannot mine this co-location pattern, so we introduce the related concept in detail and propose a novel algorithm. This algorithm is extended by join-based approach proposed by Huang. Finally, we evaluate the performance of this algorithm.

  15. Joining of polymer-metal lightweight structures using self-piercing riveting (SPR) technique: Numerical approach and simulation results

    NASA Astrophysics Data System (ADS)

    Amro, Elias; Kouadri-Henni, Afia

    2018-05-01

    Restrictions in pollutant emissions dictated at the European Commission level in the past few years have urged mass production car manufacturers to engage rapidly several strategies in order to reduce significantly the energy consumption of their vehicles. One of the most relevant taken action is light-weighting of body in white (BIW) structures, concretely visible with the increased introduction of polymer-based composite materials reinforced by carbon/glass fibers. However, the design and manufacturing of such "hybrid" structures is limiting the use of conventional assembly techniques like resistance spot welding (RSW) which are not transferable as they are for polymer-metal joining. This research aims at developing a joining technique that would eventually enable the assembly of a sheet molding compound (SMC) polyester thermoset-made component on a structure composed of several high strength steel grades. The state of the art of polymer-metal joining techniques highlighted the few ones potentially able to respond to the industrial challenge, which are: structural bonding, self-piercing riveting (SPR), direct laser joining and friction spot welding (FSpW). In this study, the promising SPR technique is investigated. Modelling of SPR process in the case of polymer-metal joining was performed through the building of a 2D axisymmetric FE model using the commercial code Abaqus CAE 6.10-1. Details of the numerical approach are presented with a particular attention to the composite sheet for which Mori-Tanaka's homogenization method is used in order to estimate overall mechanical properties. Large deformations induced by the riveting process are enabled with the use of a mixed finite element formulation ALE (arbitrary Lagrangian-Eulerian). FE model predictions are compared with experimental data followed by a discussion.

  16. Combustion Joining of Regolith Tiles for In-Situ Fabrication of Launch/Landing Pads on the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Ferguson, Robert E.; Shafirovich, Evgeny; Mantovani, James G.

    2017-01-01

    To mitigate dust problems during launch/landing operations in lunar and Mars missions, it is desired to build solid pads on the surface. Recently, strong tiles have been fabricated from lunar regolith simulants using high-temperature sintering. The present work investigates combustion joining of these tiles through the use of exothermic intermetallic reactions. Specifically, nickel/aluminum (1:1 mole ratio) mixture was placed in a gap between the tiles sintered from JSC-1A lunar regolith simulant. Upon ignition by a laser, a self-sustained propagation of the combustion front over the mixture occurred. Joining was improved with increasing the tile thickness from 6.3 mm to 12.7 mm. The temperatures sufficient for melting the glass phase of JSC-1A were recorded for 12.7-mm tiles, which explains the observed better joining.

  17. Combustion Joining of Regolith Tiles for In-Situ Fabrication of Launch/Landing Pads on the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Ferguson, Robert E.; Mantovani, James G.; Shafirovich, Evgeny

    2017-01-01

    To mitigate dust problems during launch-landing operations in lunar and Mars missions, it is desired to build solid pads on the surface. Recently, strong tiles have been fabricated from lunar regolith simulants using high-temperature sintering. The present work investigates combustion joining of these tiles through the use of exothermic intermetallic reactions. Specifically, nickel aluminum (1:1 mole ratio) mixture was placed in a gap between the tiles sintered from JSC-1A lunar regolith simulant. Upon ignition by a laser, a self-sustained propagation of the combustion front over the mixture occurred. Joining was improved with increasing the tile thickness from 6.3 mm to 12.7 mm. The temperatures sufficient for melting the glass phase of JSC-1A were recorded for 12.7-mm tiles, which explains the observed better joining.

  18. The Use of Explosive Forming for Fastening and Joining Structural and Pressure Components

    NASA Technical Reports Server (NTRS)

    Schroeder, J. W.

    1985-01-01

    Explosive expansion of tubes into tubesheets has been used for over 20 years in the fabrication and repair of shell and tube heat exchangers. The use of explosives to perform these expansions has offered several distinct advantages over other methods. First, the process is fast and economical and can be performed with minimal training of personnel. Secondly, explosive forming does not cause the deleterious metallurgical effects which often result from other forming operations. In addition, the process can be performed remotely without the need for sophisticated handling equipment. The expansion of tubes into tubesheets is only one of many possible fastening and joining applications for which explosive forming can be used to achieve highly successful results. The explosive forming process and where it has been used are described. In addition, some possible adaptations to other joining applications are identified and discussed.

  19. Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire)

    NASA Astrophysics Data System (ADS)

    Mathieu, Alexandre; Shabadi, Rajashekar; Deschamps, Alexis; Suery, Michel; Matteï, Simone; Grevey, Dominique; Cicala, Eugen

    2007-04-01

    Joining steel with aluminum involving the fusion of one or both materials is possible by laser beam welding technique. This paper describes a method, called laser braze welding, which is a suitable process to realize this structure. The main problem with thermal joining of steel/aluminum assembly with processes such as TIG or MIG is the formation of fragile intermetallic phases, which are detrimental to the mechanical performances of such joints. Braze welding permits a localized fusion of the materials resulting in a limitation on the growth of fragile phases. This article presents the results of a statistical approach for an overlap assembly configuration using a filler wire composed of 85% Zn and 15% Al. Tensile tests carried on these assemblies demonstrate a good performance of the joints. The fracture mechanisms of the joints are analyzed by a detailed characterization of the seams.

  20. Method for joining metal by solid-state bonding

    DOEpatents

    Burkhart, L. Elkin; Fultz, Chester R.; Maulden, Kerry A.

    1979-01-01

    The present development is directed to a method for joining metal at relatively low temperatures by solid-state bonding. Planar surfaces of the metal workpieces are placed in a parallel abutting relationship with one another. A load is applied to at least one of the workpieces for forcing the workpieces together while one of the workpieces is relatively slowly oscillated in a rotary motion over a distance of about 1.degree.. After a preselected number of oscillations, the rotary motion is terminated and the bond between the abutting surfaces is effected. An additional load may be applied to facilitate the bond after terminating the rotary motion.

  1. Coupling for joining a ball nut to a machine tool carriage

    DOEpatents

    Gerth, Howard L.

    1979-01-01

    The present invention relates to an improved coupling for joining a lead screw ball nut to a machine tool carriage. The ball nut is coupled to the machine tool carriage by a plurality of laterally flexible bolts which function as hinges during the rotation of the lead screw for substantially reducing lateral carriage movement due to wobble in the lead screw.

  2. Pattern-set generation algorithm for the one-dimensional multiple stock sizes cutting stock problem

    NASA Astrophysics Data System (ADS)

    Cui, Yaodong; Cui, Yi-Ping; Zhao, Zhigang

    2015-09-01

    A pattern-set generation algorithm (PSG) for the one-dimensional multiple stock sizes cutting stock problem (1DMSSCSP) is presented. The solution process contains two stages. In the first stage, the PSG solves the residual problems repeatedly to generate the patterns in the pattern set, where each residual problem is solved by the column-generation approach, and each pattern is generated by solving a single large object placement problem. In the second stage, the integer linear programming model of the 1DMSSCSP is solved using a commercial solver, where only the patterns in the pattern set are considered. The computational results of benchmark instances indicate that the PSG outperforms existing heuristic algorithms and rivals the exact algorithm in solution quality.

  3. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Miniature Torsion Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.

    2014-06-30

    The use of SiC and SiC-composites in fission or fusion environments appears to require joining methods for assembling systems. The international fusion community has designed miniature torsion specimens for joint testing and for irradiation in HFIR. Therefore, miniature torsion joints were fabricated using displacement reactions between Si and TiC to produce Ti3SiC2 + SiC joints with CVD-SiC that were tested in shear prior to and after HFIR irradiation. However, these torsion specimens fail out-of-plane, which causes difficulties in determining a shear strength for the joints or for comparing unirradiated and irradiated joints. A finite element damage model has been developedmore » that indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The implications for torsion shear joint data based on this sample design are discussed.« less

  4. Ultrapulse welding: A new joining technique. [for automotive industry

    NASA Technical Reports Server (NTRS)

    Anderson, D. G.

    1972-01-01

    The ultrapulse process is a resistance welding process that utilizes unidirectional current of high magnitude for a very short time with a precisely controlled dynamic force pulse. Peak currents of up to 220,000 amperes for two to ten milliseconds are used with synchronized force pulses of up to nine thousand pounds. The welding current passing through the relatively high resistance of the interface between the parts that are being joined results in highly localized heating. Described is the UPW process as it applies to the automotive industry.

  5. Joining the On-Line Community. An Introduction for Adult Literacy. Practice Guide.

    ERIC Educational Resources Information Center

    Rethemeyer, R. Karl

    This technology guide is intended to introduce adult literacy providers to the concepts,hardware, and procedures of online communication. The six-part guide explains the following: (1) what electronic networks are; (2) why adult literacy practitioners may want to join the Internet; (3) how adult literacy practitioners are already using the…

  6. Pattern Transitions in Bacterial Oscillating System under Nanofluidic Confinement

    NASA Astrophysics Data System (ADS)

    Shen, Jie-Pan; Chou, Chia-Fu

    2011-03-01

    Successful binary fission in E. coli relies on remarkable oscillatory behavior of the MinCDE protein system to determine the exact division site. The most favorable models to explain this fascinating spatiotemporal regulation on dynamic MinDE pattern formation in cells are based on reaction-diffusion scenario. Although not fully understood, geometric factors caused by bacterial morphology play a crucial role in MinDE dynamics. In the present study, bacteria were cultured, confined and reshaped in various micro/nanofluidic devices, to mimic either curvature changes of cell peripherals. Fluorescence imaging was utilized to detail the mode transitions in multiple MinDE patterns. The understanding of the physics in multiple pattern formations is further complemented via in silico modeling. The study synergizes the join merits of in vivo, in vitro and in silico approaches, to grasp the insight of stochastic dynamics inherited from the noisy mesoscopic biophysics. We acknowledge support from the Foresight Project, Academia Sinica.

  7. Russia joins Kazakh/Omani pipeline venture group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-08-03

    Russia has agreed to become a founding partner in a joint venture pipeline project formed by Kazakhstan and Oman. The agreement, signed in Bermuda July 24, is related to Chevron Corp.'s further development of supergiant Tengiz and Korolev fields along the Caspian Sea coast in Kazakhstan. Azerbaijan last month signed an agreement to become a founding member of the group, accepting terms agreed to by original joint venturers Kazakhstan and Oman. Azerbaijan's new government still must formally ratify its agreement. In addition, Chevron in June signed a memorandum of understanding to join the group at a future date. This papermore » reports that each of the founding members holds an equal interest in Caspian Pipeline Consortium Ltd., which will operate as a limited liability company incorporated in Bermuda.« less

  8. Joining of polypropylene/polypropylene and glass fiber reinforced polypropylene composites

    NASA Astrophysics Data System (ADS)

    Zhang, Jianguang

    Joining behavior of polypropylene (PP) to PP and long glass fiber reinforced polypropylene (LFT) to LFT were investigated. Adhesive bonding was used to join PP/PP. Both adhesive bonding and ultrasonic welding were used to join LFT/LFT. Single-lap shear testing and low velocity impact (LVI) testing were used to evaluate the performance of bonded structures. The two-part acrylic adhesive DP8005 was determined to be the best among the three adhesive candidates, which was attributed to its low surface energy. The impact resistance of LFT/LFT joints, normalized with respect to thickness, was higher than that of PP/PP joints because of higher stiffness of LFT/LFT joints. The stress states in the adhesive layer of adhesively bonded structures were analyzed using ANSYS and LS-DYNA to simulate the single-lap shear testing and LVI testing, respectively. The shear and peel stresses peaked at the edges of the adhesive layer. Compared to LFT/LFT joints, higher peel stress occurred in the adhesive layer in the PP/PP joints in tension. Impact response of adhesively bonded structures as evaluated by LS-DYNA showed good agreement with the experimental results. The effect of weld time and weld pressure on the shear strength of ultrasonically welded LFT/LFT was evaluated. With higher weld pressure, less time was required to obtain a complete weld. At longer weld times, lower weld pressure was required. From the 15 weld conditions studied, a weld map was obtained that provides conditions to achieve a complete weld. Nanoindentation was used to evaluate the effect of ultrasonic weld on the modulus and hardness of the PP matrix. Modulus and hardness of the PP matrix were slightly decreased by ultrasonic welding possibly due to the decrease in the molecular weight. The temperature profile in LFT/LFT in the transverse direction during ultrasonic welding was analyzed by two ANSYS-based thermal models: (a) one in which heat generated by interfacial friction was treated as a heat flux and (b

  9. 12 CFR Appendix G to Part 360 - Deposit-Customer Join File Structure

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Deposit-Customer Join File Structure G Appendix G to Part 360 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY RESOLUTION AND RECEIVERSHIP RULES Pt. 360, App. G Appendix G to Part 360—Deposit-Customer...

  10. 12 CFR Appendix G to Part 360 - Deposit-Customer Join File Structure

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Deposit-Customer Join File Structure G Appendix G to Part 360 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY RESOLUTION AND RECEIVERSHIP RULES Pt. 360, App. G Appendix G to Part 360—Deposit-Customer...

  11. 12 CFR Appendix G to Part 360 - Deposit-Customer Join File Structure

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Deposit-Customer Join File Structure G Appendix G to Part 360 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY RESOLUTION AND RECEIVERSHIP RULES Pt. 360, App. G Appendix G to Part 360—Deposit-Customer...

  12. 12 CFR Appendix G to Part 360 - Deposit-Customer Join File Structure

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Deposit-Customer Join File Structure G Appendix G to Part 360 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY RESOLUTION AND RECEIVERSHIP RULES Pt. 360, App. G Appendix G to Part 360—Deposit-Customer...

  13. 12 CFR Appendix G to Part 360 - Deposit-Customer Join File Structure

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..._Code Relationship CodeThe code indicating how the customer is related to the account. Possible values... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Deposit-Customer Join File Structure G Appendix... GENERAL POLICY RESOLUTION AND RECEIVERSHIP RULES Pt. 360, App. G Appendix G to Part 360—Deposit-Customer...

  14. Cosmonaut Aleksey Leonov joins belly dancer on stage at Folklife Festival

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Cosmonaut Aleksey A. Leonov, in one of the lighter moments of activity involving Soviet Cosmonauts and American Astronauts, joins a belly dancer on stage as several visitors to weekend activity at the site of San Antonio's HemisFair look on. Leonov is commander of the Soviet Apollo Soyuz Test Project (ASTP) crew. The Lebanese dancing was just one feature among many during the Texas Folklife Festival.

  15. Flexible ordering of antibody class switch and V(D)J joining during B-cell ontogeny

    PubMed Central

    Kumar, Satyendra; Wuerffel, Robert; Achour, Ikbel; Lajoie, Bryan; Sen, Ranjan; Dekker, Job; Feeney, Ann J.; Kenter, Amy L.

    2013-01-01

    V(D)J joining is mediated by RAG recombinase during early B-lymphocyte development in the bone marrow (BM). Activation-induced deaminase initiates isotype switching in mature B cells of secondary lymphoid structures. Previous studies questioned the strict ontological partitioning of these processes. We show that pro-B cells undergo robust switching to a subset of immunoglobulin H (IgH) isotypes. Chromatin studies reveal that in pro-B cells, the spatial organization of the Igh locus may restrict switching to this subset of isotypes. We demonstrate that in the BM, V(D)J joining and switching are interchangeably inducible, providing an explanation for the hyper-IgE phenotype of Omenn syndrome. PMID:24240234

  16. Austria Declares Intent To Join ESO

    NASA Astrophysics Data System (ADS)

    2008-04-01

    At a press conference today at the University of Vienna's Observatory, the Austrian Science Minister Johannes Hahn announced the decision by the Austrian Government to seek membership of ESO from 1 July this year. ESO PR Photo 11/08 ESO PR Photo 11/08 Announcing Austria's Intent to Join ESO Said Minister Hahn: "With membership of ESO, Austria's scientists will receive direct access to the world's leading infrastructure in astronomy. This strengthens Austria as a place for research and provides an opportunity for young researchers to continue their work from here. With this move, Austria takes an important step in the reinforcement of Europe's science and research infrastructure." The decision constitutes a major breakthrough for Austrian scientists who have argued for membership of ESO for many years. Seeking membership in ESO also marks a step towards the further development of the European Research and Innovation Area, an important element of Europe's so-called Lisbon Strategy. "ESO welcomes the Austrian bid to join our organisation. I salute the Austrian Government for taking this important step and look forward to working closely with our Austrian friends and colleagues in the years to come," commented the ESO Director General, Tim de Zeeuw. For Austrian astronomers, ESO membership means not only unrestricted access to ESO's world-leading observational facilities including the world's most advanced optical telescope, the Very Large Telescope, and full participation in the quasi-global ALMA project, but also the possibility to participate on a par with their European colleagues in the future projects of ESO, including the realisation of ESO's Extremely Large Telescope project (E-ELT), which is currently in the design phase. All these projects require some of the most advanced technologies in key areas such as optics, detectors, lightweight structures, etc. Austrian participation in ESO opens the door for Austrian industry and major research institutes of the

  17. Attributes of Instances of Student Mathematical Thinking That Are Worth Building on in Whole-Class Discussion

    ERIC Educational Resources Information Center

    Van Zoest, Laura R.; Stockero, Shari L.; Leatham, Keith R.; Peterson, Blake E.; Atanga, Napthalin A.; Ochieng, Mary A.

    2017-01-01

    This study investigated attributes of 278 instances of student mathematical thinking during whole-class interactions that were identified as having high potential, if made the object of discussion, to foster learners' understanding of important mathematical ideas. Attributes included the form of the thinking (e.g., question vs. declarative…

  18. Towards a new procreation ethic: the exemplary instance of cleft lip and palate.

    PubMed

    Le Dref, Gaëlle; Grollemund, Bruno; Danion-Grilliat, Anne; Weber, Jean-Christophe

    2013-08-01

    The improvement of ultrasound scan techniques is enabling ever earlier prenatal diagnosis of developmental anomalies. In France, apart from cases where the mother's life is endangered, the detection of "particularly serious" conditions, and conditions that are "incurable at the time of diagnosis" are the only instances in which a therapeutic abortion can be performed, this applying up to the 9th month of pregnancy. Thus numerous conditions, despite the fact that they cause distress or pain or are socially disabling, do not qualify for therapeutic abortion, despite sometimes pressing demands from parents aware of the difficulties in store for their child and themselves, in a society that is not very favourable towards the integration and self-fulfilment of people with a disability. Cleft lip and palate (CLP), although it can be completely treated, is one of the conditions that considerably complicates the lives of child and parents. Nevertheless, the recent scope for making very early diagnosis of CLP, before the deadline for legal voluntary abortion, has not led to any wave of abortions. CLP in France has the benefit of a exceptional care plan, targeting both the health and the integration of the individuals affected. This article sets out, via the emblematic instance of CLP, to show how present fears of an emerging "domestic" or liberal eugenic trend could become redundant if disability is addressed politically and medically, so that individuals with a disability have the same social rights as any other citizen.

  19. Electroplating of aluminium microparticles with nickel to synthesise reactive core-shell structures for thermal joining applications

    NASA Astrophysics Data System (ADS)

    Schreiber, S.; Zaeh, M. F.

    2018-06-01

    Reactive particles represent a promising alternative for effectively joining components with freeform surfaces and different material properties. While the primary application of reactive systems is combustion synthesis for the production of high-performance alloys, the highly exothermic reaction can also be used to firmly bond thermosensitive joining partners. Core-shell structures are of special interest, since they function as separate microreactors. In this paper, a method to synthesise reactive nickel-aluminium core-shell structures via a two-step plating process is described. Based on an electroless process, the natural oxide layer of the aluminium particles is removed and substituted with a thin layer of nickel. Subsequently, the pre-treated particles are electroplated with nickel. The high reactivity of aluminium and the oxide layer play a significant role in adjusting the process parameters of the Watts bath. Additionally, the developed experimental set-up is introduced and the importance of process control is shown. In order to achieve reproducible results, the electroplating process was automated. Ignition tests with electromagnetic waves demonstrated that the particles undergo an exothermic reaction. Therefore, they can be used as a heat source in thermal joining applications.

  20. Gaussian Random Fields Methods for Fork-Join Network with Synchronization Constraints

    DTIC Science & Technology

    2014-12-22

    substantial efforts were dedicated to the study of the max-plus recursions [21, 3, 12]. More recently, Atar et al. [2] have studied a fork-join...feedback and NES, Atar et al. [2] show that a dynamic priority discipline achieves throughput optimal- ity asymptotically in the conventional heavy...2011) Patient flow in hospitals: a data-based queueing-science perspective. Submitted to Stochastic Systems, 20. [2] R. Atar , A. Mandelbaum and A

  1. Base Stock Policy in a Join-Type Production Line with Advanced Demand Information

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Mikihiko; Tsubouchi, Satoshi; Nakade, Koichi

    Production control such as the base stock policy, the kanban policy and the constant work-in-process policy in a serial production line has been studied by many researchers. Production lines, however, usually have fork-type, join-type or network-type figures. In addition, in most previous studies on production control, a finished product is required at the same time as arrival of demand at the system. Demand information is, however, informed before due date in practice. In this paper a join-type (assembly) production line under base stock control with advanced demand information in discrete time is analyzed. The recursive equations for the work-in-process are derived. The heuristic algorithm for finding appropriate base stock levels of all machines at short time is proposed and the effect of advanced demand information is examined by simulation with the proposed algorithm. It is shown that the inventory cost can decreases with little backlogs by using the appropriate amount of demand information and setting appropriate base stock levels.

  2. Spatial and spatiotemporal pattern analysis of coconut lethal yellowing in Mozambique.

    PubMed

    Bonnot, F; de Franqueville, H; Lourenço, E

    2010-04-01

    Coconut lethal yellowing (LY) is caused by a phytoplasma and is a major threat for coconut production throughout its growing area. Incidence of LY was monitored visually on every coconut tree in six fields in Mozambique for 34 months. Disease progress curves were plotted and average monthly disease incidence was estimated. Spatial patterns of disease incidence were analyzed at six assessment times. Aggregation was tested by the coefficient of spatial autocorrelation of the beta-binomial distribution of diseased trees in quadrats. The binary power law was used as an assessment of overdispersion across the six fields. Spatial autocorrelation between symptomatic trees was measured by the BB join count statistic based on the number of pairs of diseased trees separated by a specific distance and orientation, and tested using permutation methods. Aggregation of symptomatic trees was detected in every field in both cumulative and new cases. Spatiotemporal patterns were analyzed with two methods. The proximity of symptomatic trees at two assessment times was investigated using the spatiotemporal BB join count statistic based on the number of pairs of trees separated by a specific distance and orientation and exhibiting the first symptoms of LY at the two times. The semivariogram of times of appearance of LY was calculated to characterize how the lag between times of appearance of LY was related to the distance between symptomatic trees. Both statistics were tested using permutation methods. A tendency for new cases to appear in the proximity of previously diseased trees and a spatially structured pattern of times of appearance of LY within clusters of diseased trees were detected, suggesting secondary spread of the disease.

  3. Joining thick section aluminum to steel with suppressed FeAl intermetallic formation via friction stir dovetailing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reza-E-Rabby, Md.; Ross, Kenneth; Overman, Nicole R.

    A new solid-phase technique called friction stir dovetailing (FSD) has been developed for joining thick section aluminum to steel. In FSD, mechanical interlocks are formed at the aluminum-steel interface and are reinforced by metallurgical bonds where intermetallic growth has been uniquely suppressed. Lap shear testing shows superior strength and extension at failure compared to popular friction stir approaches where metallurgical bonding is the only joining mechanism. High resolution microscopy revealed the presence of a 40-70 nm interlayer having a composition of 76.4 at% Al, 18.4 at% Fe, and 5.2 at% Si, suggestive of limited FeAl3 intermetallic formation.

  4. Modeling and testing miniature torsion specimens for SiC joining development studies for fusion

    DOE PAGES

    Henager, Jr., C. H.; Nguyen, Ba N.; Kurtz, Richard J.; ...

    2015-08-05

    The international fusion community has designed a miniature torsion specimen for neutron irradiation studies of joined SiC and SiC/SiC composite materials. For this research, miniature torsion joints based on this specimen design were fabricated using displacement reactions between Si and TiC to produce Ti 3SiC 2 + SiC joints with SiC and tested in torsion-shear prior to and after neutron irradiation. However, many miniature torsion specimens fail out-of-plane within the SiC specimen body, which makes it problematic to assign a shear strength value to the joints and makes it difficult to compare unirradiated and irradiated strengths to determine irradiation effects.more » Finite element elastic damage and elastic–plastic damage models of miniature torsion joints are developed that indicate shear fracture is more likely to occur within the body of the joined sample and cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model results are compared and discussed with regard to unirradiated and irradiated test data for a variety of joint materials. The unirradiated data includes Ti 3SiC 2 + SiC/CVD-SiC joints with tailored joint moduli, and includes steel/epoxy and CVD-SiC/epoxy joints. Finally, the implications for joint data based on this sample design are discussed.« less

  5. Temporal patterns in marine mammal sounds from long-term broadband recordings

    NASA Astrophysics Data System (ADS)

    Hildebrand, John A.; Wiggins, Sean; Oleson, Erin; Sirovic, Ana; Munger, Lisa; Soldevilla, Melissa; Burtenshaw, Jessica

    2005-09-01

    Recent advances in the technology for long-term underwater acoustic recording provide new data on the temporal patterns of marine mammal sounds. Autonomous acoustic recordings are now being made with broad frequency bandwidth up to 200-kHz sampling rates. These data allow sound recording from most marine mammal species, including, for instance, the echolocation clicks of odontocetes. Large data storage capacity up to 1280 Gbytes allow these recordings to be conducted over long time periods for study of diel and seasonal calling patterns. Examples will be presented of temporal patterns from long-term recordings collected in four regions: the Bering Sea, offshore southern California, the Gulf of California, and the Southern Ocean. These data provide new insight on marine mammal distribution, seasonality, and behavior.

  6. Optimum structural sizing of conventional cantilever and joined wing configurations using equivalent beam models

    NASA Technical Reports Server (NTRS)

    Hajela, P.; Chen, J. L.

    1986-01-01

    The present paper describes an approach for the optimum sizing of single and joined wing structures that is based on representing the built-up finite element model of the structure by an equivalent beam model. The low order beam model is computationally more efficient in an environment that requires repetitive analysis of several trial designs. The design procedure is implemented in a computer program that requires geometry and loading data typically available from an aerodynamic synthesis program, to create the finite element model of the lifting surface and an equivalent beam model. A fully stressed design procedure is used to obtain rapid estimates of the optimum structural weight for the beam model for a given geometry, and a qualitative description of the material distribution over the wing structure. The synthesis procedure is demonstrated for representative single wing and joined wing structures.

  7. Adding Temporal Characteristics to Geographical Schemata and Instances: A General Framework

    NASA Astrophysics Data System (ADS)

    Ota, Morishige

    2018-05-01

    This paper proposes the temporal general feature model (TGFM) as a meta-model for application schemata representing changes of real-world phenomena. It is not very easy to determine history directly from the current application schemata, even if the revision notes are attached to the specification. To solve this problem, the rules for description of the succession between previous and posterior components are added to the general feature model, thus resulting in TGFM. After discussing the concepts associated with the new model, simple examples of application schemata are presented as instances of TGFM. Descriptors for changing properties, the succession of changing properties in moving features, and the succession of features and associations are introduced. The modeling methods proposed in this paper will contribute to the acquisition of consistent and reliable temporal geospatial data.

  8. From antisocial behavior to violence: a model for the amplifying role of coercive joining in adolescent friendships.

    PubMed

    Van Ryzin, Mark J; Dishion, Thomas J

    2013-06-01

    Aggression is one of the more stable characteristics of child and adolescent development, and violent behavior in early adulthood is often foreshadowed by aggressive behavior in childhood and early adolescence. Considerable evidence has linked coercive family interactions to aggressive behavior in childhood, but less research has been conducted on the joint role of family and peer interaction in the escalation of aggression to violence in adulthood. We coded family interactions at age 12-13 and friendship interaction at age 16-17 in a multiethnic sample of youth and families. Violence in young adulthood (age 22-23) was measured using self-report, criminal records, and parent report. We tested the hypothesis that a process of 'coercive joining' in friendship interactions mediated the relationship between coercive family interactions and serious violence. We found that observed coercive joining in friendships at age 16-17 predicted early-adulthood violent behavior over and above an established tendency toward antisocial behavior. We also found that observed coercive family interactions at age 12 predicted early-adulthood violence, and that coercive joining with friends fully mediated this link. These results significantly extend coercion theory by suggesting that coercive joining in the context of peer groups is an additional mechanism by which coercive processes in the family are extended and amplified to violent behavior in early adulthood. Our findings suggest the importance of addressing both individual interpersonal skills and self-organizing peer groups when intervening to prevent violent behavior. © 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.

  9. Quantifying phase synchronization using instances of Hilbert phase slips

    NASA Astrophysics Data System (ADS)

    Govindan, R. B.

    2018-07-01

    We propose to quantify phase synchronization between two signals, x(t) and y(t), by calculating variance in the Hilbert phase of y(t) at instances of phase slips exhibited by x(t). The proposed approach is tested on numerically simulated coupled chaotic Roessler systems and second order autoregressive processes. Furthermore we compare the performance of the proposed and original approaches using uterine electromyogram signals and show that both approaches yield consistent results A standard phase synchronization approach, which involves unwrapping the Hilbert phases (ϕ1(t) and ϕ2(t)) of the two signals and analyzing the variance in the | n ṡϕ1(t) - m ṡϕ2(t) | , mod 2 π, (n and m are integers), was used for comparison. The synchronization indexes obtained from the proposed approach and the standard approach agree reasonably well in all of the systems studied in this work. Our results indicate that the proposed approach, unlike the traditional approach, does not require the non-invertible transformations - unwrapping of the phases and calculation of mod 2 π and it can be used to reliably to quantify phase synchrony between two signals.

  10. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70.

    PubMed

    Boboila, Cristian; Jankovic, Mila; Yan, Catherine T; Wang, Jing H; Wesemann, Duane R; Zhang, Tingting; Fazeli, Alex; Feldman, Lauren; Nussenzweig, Andre; Nussenzweig, Michel; Alt, Frederick W

    2010-02-16

    Class switch recombination (CSR) in B lymphocytes is initiated by introduction of multiple DNA double-strand breaks (DSBs) into switch (S) regions that flank immunoglobulin heavy chain (IgH) constant region exons. CSR is completed by joining a DSB in the donor S mu to a DSB in a downstream acceptor S region (e.g., S gamma1) by end-joining. In normal cells, many CSR junctions are mediated by classical nonhomologous end-joining (C-NHEJ), which employs the Ku70/80 complex for DSB recognition and XRCC4/DNA ligase 4 for ligation. Alternative end-joining (A-EJ) mediates CSR, at reduced levels, in the absence of C-NHEJ, even in combined absence of Ku70 and ligase 4, demonstrating an A-EJ pathway totally distinct from C-NHEJ. Multiple DSBs are introduced into S mu during CSR, with some being rejoined or joined to each other to generate internal switch deletions (ISDs). In addition, S-region DSBs can be joined to other chromosomes to generate translocations, the level of which is increased by absence of a single C-NHEJ component (e.g., XRCC4). We asked whether ISD and S-region translocations occur in the complete absence of C-NHEJ (e.g., in Ku70/ligase 4 double-deficient B cells). We found, unexpectedly, that B-cell activation for CSR generates substantial ISD in both S mu and S gamma1 and that ISD in both is greatly increased by the absence of C-NHEJ. IgH chromosomal translocations to the c-myc oncogene also are augmented in the combined absence of Ku70 and ligase 4. We discuss the implications of these findings for A-EJ in normal and abnormal DSB repair.

  11. Sorting by Cuts, Joins, and Whole Chromosome Duplications.

    PubMed

    Zeira, Ron; Shamir, Ron

    2017-02-01

    Genome rearrangement problems have been extensively studied due to their importance in biology. Most studied models assumed a single copy per gene. However, in reality, duplicated genes are common, most notably in cancer. In this study, we make a step toward handling duplicated genes by considering a model that allows the atomic operations of cut, join, and whole chromosome duplication. Given two linear genomes, [Formula: see text] with one copy per gene and [Formula: see text] with two copies per gene, we give a linear time algorithm for computing a shortest sequence of operations transforming [Formula: see text] into [Formula: see text] such that all intermediate genomes are linear. We also show that computing an optimal sequence with fewest duplications is NP-hard.

  12. Complete Status Report Documenting Development of Friction Stir Welding for Joining Thin Wall Tubing of ODS Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoelzer, David T.; Bunn, Jeffrey R.; Gussev, Maxim N.

    The development of friction stir welding (FSW) for joining thin sections of the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy was initiated in Fuel Cycle Research and Development (FCRD), now the Nuclear Technology Research and Development (NTRD), in 2015. The first FSW experiment was conducted in late FY15 and successfully produced a bead-on-plate stir zone (SZ) on a 1 mm thick plate of 14YWT (SM13 heat). The goal of this research task is to ultimately demonstrate that FSW is a feasible method for joining thin wall (0.5 mm thick) tubing of 14YWT.

  13. Alleviation of whirl-flutter on a joined-wing tilt-rotor aircraft configuration using active controls

    NASA Technical Reports Server (NTRS)

    Vanaken, Johannes M.

    1991-01-01

    The feasibility of using active controls to delay the onset of whirl-flutter on a joined-wing tilt rotor aircraft was investigated. The CAMRAD/JA code was used to obtain a set of linear differential equations which describe the motion of the joined-wing tilt-rotor aircraft. The hub motions due to wing/body motion is a standard input to CAMRAD/JA and were obtained from a structural dynamics model of a representative joined-wing tilt-rotor aircraft. The CAMRAD/JA output, consisting of the open-loop system matrices, and the airframe free vibration motion were input to a separate program which performed the closed-loop, active control calculations. An eigenvalue analysis was performed to determine the flutter stability of both open- and closed-loop systems. Sensor models, based upon the feedback of pure state variables and based upon hub-mounted sensors, providing physically measurable accelerations, were evaluated. It was shown that the onset of tilt-rotor whirl-flutter could be delayed from 240 to above 270 knots by feeding back vertical and span-wise accelerations, measured at the rotor hub, to the longitudinal cyclic pitch. Time response calculations at a 270-knot cruise condition showed an active cyclic pitch control level of 0.009 deg, which equates to a very acceptable 9 pound active-control force applied at the rotor hub.

  14. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    PubMed Central

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  15. Understanding Positive and Negative Communication Instances between Special Educators and Parents of High School Students with EBD

    ERIC Educational Resources Information Center

    Mires, Carolyn B.

    2015-01-01

    Using a multiple case study methodology, interviews were conducted to examine current practices and perceptions of the communication practices of teachers working with high school students with emotional and behavioral disorders (EBD). These interviews involved questions about general communication instances which occurred each week, communication…

  16. Poly(ADP-ribose)polymerases are involved in microhomology mediated back-up non-homologous end joining in Arabidopsis thaliana.

    PubMed

    Jia, Qi; den Dulk-Ras, Amke; Shen, Hexi; Hooykaas, Paul J J; de Pater, Sylvia

    2013-07-01

    Besides the KU-dependent classical non-homologous end-joining (C-NHEJ) pathway, an alternative NHEJ pathway first identified in mammalian systems, which is often called the back-up NHEJ (B-NHEJ) pathway, was also found in plants. In mammalian systems PARP was found to be one of the essential components in B-NHEJ. Here we investigated whether PARP1 and PARP2 were also involved in B-NHEJ in Arabidopsis. To this end Arabidopsis parp1, parp2 and parp1parp2 (p1p2) mutants were isolated and functionally characterized. The p1p2 double mutant was crossed with the C-NHEJ ku80 mutant resulting in the parp1parp2ku80 (p1p2k80) triple mutant. As expected, because of their role in single strand break repair (SSBR) and base excision repair (BER), the p1p2 and p1p2k80 mutants were shown to be sensitive to treatment with the DNA damaging agent MMS. End-joining assays in cell-free leaf protein extracts of the different mutants using linear DNA substrates with different ends reflecting a variety of double strand breaks were performed. The results showed that compatible 5'-overhangs were accurately joined in all mutants, that KU80 protected the ends preventing the formation of large deletions and that PARP proteins were involved in microhomology mediated end joining (MMEJ), one of the characteristics of B-NHEJ.

  17. A template for building global partnerships: The Joining Forces conference goes across the Atlantic from the US to the UK.

    PubMed

    Visovsky, Constance; Beedy, Dianne Morrison-

    2016-12-01

    Joining Forces is a comprehensive national initiative within the United States to mobilize all sectors of society to give service members and their families the opportunities and support they have earned. This national initiative begun in April 2012 was led by First Lady Michelle Obama and Dr. Jill Biden. The Joining Forces initiative is charged with enhancing the well-being and psychological health of the military family by providing mental health care services, integrating community-based services to reduce homelessness, substance abuse for veterans and military families. This manuscript addresses how one university with its global partners joined together to host an innovative conference addressing the research, education, and practice needs of healthcare professionals caring for military, veterans, and their families. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Modelling and formation of spatiotemporal patterns of fractional predation system in subdiffusion and superdiffusion scenarios

    NASA Astrophysics Data System (ADS)

    Owolabi, Kolade M.; Atangana, Abdon

    2018-02-01

    This paper primarily focused on the question of how population diffusion can affect the formation of the spatial patterns in the spatial fraction predator-prey system by Turing mechanisms. Our numerical findings assert that modeling by fractional reaction-diffusion equations should be considered as an appropriate tool for studying the fundamental mechanisms of complex spatiotemporal dynamics. We observe that pure Hopf instability gives rise to the formation of spiral patterns in 2D and pure Turing instability destroys the spiral pattern and results to the formation of chaotic or spatiotemporal spatial patterns. Existence and permanence of the species is also guaranteed with the 3D simulations at some instances of time for subdiffusive and superdiffusive scenarios.

  19. iNJclust: Iterative Neighbor-Joining Tree Clustering Framework for Inferring Population Structure.

    PubMed

    Limpiti, Tulaya; Amornbunchornvej, Chainarong; Intarapanich, Apichart; Assawamakin, Anunchai; Tongsima, Sissades

    2014-01-01

    Understanding genetic differences among populations is one of the most important issues in population genetics. Genetic variations, e.g., single nucleotide polymorphisms, are used to characterize commonality and difference of individuals from various populations. This paper presents an efficient graph-based clustering framework which operates iteratively on the Neighbor-Joining (NJ) tree called the iNJclust algorithm. The framework uses well-known genetic measurements, namely the allele-sharing distance, the neighbor-joining tree, and the fixation index. The behavior of the fixation index is utilized in the algorithm's stopping criterion. The algorithm provides an estimated number of populations, individual assignments, and relationships between populations as outputs. The clustering result is reported in the form of a binary tree, whose terminal nodes represent the final inferred populations and the tree structure preserves the genetic relationships among them. The clustering performance and the robustness of the proposed algorithm are tested extensively using simulated and real data sets from bovine, sheep, and human populations. The result indicates that the number of populations within each data set is reasonably estimated, the individual assignment is robust, and the structure of the inferred population tree corresponds to the intrinsic relationships among populations within the data.

  20. Structural modeling and optimization of a joined-wing configuration of a High-Altitude Long-Endurance (HALE) aircraft

    NASA Astrophysics Data System (ADS)

    Kaloyanova, Valentina B.

    Recent research trends have indicated an interest in High-Altitude, Long-Endurance (HALE) aircraft as a low-cost alternative to certain space missions, such as telecommunication relay, environmental sensing and military reconnaissance. HALE missions require a light vehicle flying at low speed in the stratosphere at altitudes of 60,000-80,000 ft, with a continuous loiter time of up to several days. To provide high lift and low drag at these high altitudes, where the air density is low, the wing area should be increased, i.e., high-aspect-ratio wings are necessary. Due to its large span and lightweight, the wing structure is very flexible. To reduce the structural deformation, and increase the total lift in a long-spanned wing, a sensorcraft model with a joined-wing configuration, proposed by AFRL, is employed. The joined-wing encompasses a forward wing, which is swept back with a positive dihedral angle, and connected with an aft wing, which is swept forward. The joined-wing design combines structural strength, high aerodynamic performance and efficiency. As a first step to study the joined-wing structural behavior an 1-D approximation model is developed. The 1-D approximation is a simple structural model created using ANSYS BEAM4 elements to present a possible approach for the aerodynamics-structure coupling. The pressure loads from the aerodynamic analysis are integrated numerically to obtain the resultant aerodynamic forces and moments (spanwise lift and pitching moment distributions, acting at the aerodynamic center). These are applied on the 1-D structural model. A linear static analysis is performed under this equivalent load, and the deformed shape of the 1-D model is used to obtain the deformed shape of the actual 3-D joined wing, i.e. deformed aerodynamic surface grid. To date in the existing studies, only simplified structural models have been examined. In the present work, in addition to the simple 1-D beam model, a semi-monocoque structural model is

  1. Time and Category Information in Pattern-Based Codes

    PubMed Central

    Eyherabide, Hugo Gabriel; Samengo, Inés

    2010-01-01

    Sensory stimuli are usually composed of different features (the what) appearing at irregular times (the when). Neural responses often use spike patterns to represent sensory information. The what is hypothesized to be encoded in the identity of the elicited patterns (the pattern categories), and the when, in the time positions of patterns (the pattern timing). However, this standard view is oversimplified. In the real world, the what and the when might not be separable concepts, for instance, if they are correlated in the stimulus. In addition, neuronal dynamics can condition the pattern timing to be correlated with the pattern categories. Hence, timing and categories of patterns may not constitute independent channels of information. In this paper, we assess the role of spike patterns in the neural code, irrespective of the nature of the patterns. We first define information-theoretical quantities that allow us to quantify the information encoded by different aspects of the neural response. We also introduce the notion of synergy/redundancy between time positions and categories of patterns. We subsequently establish the relation between the what and the when in the stimulus with the timing and the categories of patterns. To that aim, we quantify the mutual information between different aspects of the stimulus and different aspects of the response. This formal framework allows us to determine the precise conditions under which the standard view holds, as well as the departures from this simple case. Finally, we study the capability of different response aspects to represent the what and the when in the neural response. PMID:21151371

  2. Solid State Joining of Dissimilar Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Morton, Todd W.

    Solid state joining of titanium via friction stir welding and diffusion bonding have emerged as enablers of efficient monolithic structural designs by the eliminations fasteners for the aerospace industry. As design complexity and service demands increase, the need for joints of dissimilar alloys has emerged. Complex thermomechanical conditions in friction stir weld joints and high temperature deformation behavior differences between alloys used in dissimilar joints gives rise to a highly variable flow pattern within a stir zone. Experiments performed welding Ti-6Al-4V to beta21S show that mechanical intermixing of the two alloys is the primary mechanism for the generation of the localized chemistry and microstructure, the magnitude of which can be directly related to pin rotation and travel speed weld parameters. Mechanical mixing of the two alloys is heavily influenced by strain rate softening phenomena, and can be used to manipulate weld nugget structure by switching which alloy is subjected to the advancing side of the pin. Turbulent mixing of a weld nugget and a significant reduction in defects and weld forces are observed when the beta21S is put on the advancing side of the weld where higher strain rates are present. Chemical diffusion driven by the heat of weld parameters is characterized using energy dispersive x-ray spectroscopy (EDS) and is shown to be a secondary process responsible for generating short-range chemical gradients that lead to a gradient of alpha particle structures. Diffusion calculations are inconsistent with an assumption of steady-state diffusion and show that material interfaces in the weld nugget evolve through the break-down of turbulent interface features generated by material flows. A high degree of recrystallization is seen throughout the welds, with unique, hybrid chemistry grains that are generated at material interfaces in the weld nugget that help to unify the crystal structure of dissimilar alloys. The degree of

  3. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining.

    PubMed

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L; Tomkinson, Alan E; Tainer, John A; Ellenberger, Tom

    2015-08-18

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Joining psychiatric care and faith healing in a prayer camp in Ghana: randomised trial.

    PubMed

    Ofori-Atta, A; Attafuah, J; Jack, H; Baning, F; Rosenheck, R

    2018-01-01

    Care of people with serious mental illness in prayer camps in low-income countries generates human rights concerns and ethical challenges for outcome researchers. Aims To ethically evaluate joining traditional faith healing with psychiatric care including medications (Clinical trials.gov identifier NCT02593734). Residents of a Ghana prayer camp were randomly assigned to receive either indicated medication for schizophrenia or mood disorders along with usual prayer camp activities (prayers, chain restraints and fasting) (n = 71); or the prayer camp activities alone (n = 68). Masked psychologists assessed Brief Psychiatric Rating Scale (BPRS) outcomes at 2, 4 and 6 weeks. Researchers discouraged use of chaining, but chaining decisions remained under the control of prayer camp staff. Total BPRS symptoms were significantly lower in the experimental group (P = 0.003, effect size -0.48). There was no significant difference in days in chains. Joining psychiatric and prayer camp care brought symptom benefits but, in the short-run, did not significantly reduce days spent in chains. Declaration of interest None.

  5. Social Change, Competition and Inequality: Macro Societal Patterns Reflected in Curriculum Practices of Turkish Schools

    ERIC Educational Resources Information Center

    Somel, Rahsan Nazli; Nohl, Arnd-Michael

    2015-01-01

    Curriculum reforms provide a unique opportunity to investigate how in times of social change education is not only influenced by, but also itself a driver of, competition and inequality. This article sheds light on a specific instance of how macro-societal patterns in education intermingle in twenty-first century Turkey by inquiring into a major…

  6. Effect of joining the sectioned implant-supported prosthesis on the peri-implant strain generated in simulated mandibular model.

    PubMed

    Singh, Ipsha; Nair, K Chandrasekharan; Shetty, Jayakar

    2017-01-01

    The aim of this study is to evaluate the strain developed in simulated mandibular model before and after the joining of an implant-supported screw-retained prosthesis by different joining techniques, namely, arc welding, laser welding, and soldering. A specimen simulating a mandibular edentulous ridge was fabricated in heat-cured acrylic resin. 4-mm holes were drilled in the following tooth positions; 36, 33, 43, 46. Implant analogs were placed in the holes. University of California, Los Angeles, abutment was attached to the implant fixture. Eight strain gauges were attached to the acrylic resin model. Six similar models were made. Implant-supported screw-retained fixed prosthesis was fabricated in nickel-chromium alloy. A load of 400 N was applied on the prosthesis using universal testing machine. Resultant strain was measured in each strain gauge. All the prostheses were sectioned at the area between 36 and 33, 33 and 43, and 43 and 46 using 35 micrometer carborundum disc, and strain was measured in each strain gauge after applying a load of 400 N on the prosthesis. Specimens were joined by arc welding, soldering, and laser welding. After joining, a load of 400 N was applied on each prosthesis and the resultant strain was measured in each strain gauge. Highest mean strain values were recorded before sectioning of the prostheses (889.9 microstrains). Lowest mean strain values were recorded after sectioning the prosthesis and before reuniting it (225.0 microstrains). Sectioning and reuniting the long-span implant prosthesis was found to be a significant factor in influencing the peri-implant strain.

  7. Suicide attempts before joining the military increase risk for suicide attempts and severity of suicidal ideation among military personnel and veterans.

    PubMed

    Bryan, Craig J; Bryan, AnnaBelle O; Ray-Sannerud, Bobbie N; Etienne, Neysa; Morrow, Chad E

    2014-04-01

    Past self-injurious thoughts and behaviors (SITB) are robust predictors of future suicide risk, but no studies have explored the prevalence of SITB occurring prior to military service among military personnel and veterans, or the association of premilitary SITB with suicidal ideation and suicide attempts during or after military service. The current study explores these issues in two separate samples. Self-report data were collected from 374 college student veterans via anonymous only survey (Study 1) and from 151 military personnel receiving outpatient mental health treatment (Study 2). Across both studies, premilitary suicide attempts were among the most prominent predictor of subsequent suicide attempts that occurred after joining the military, even when controlling for demographics and more recent emotional distress. Among military personnel who made a suicide attempt during or after military service, approximately 50% across both samples experienced suicidal ideation and up to 25% made a suicide attempt prior to joining the military. Military personnel and veterans who made suicide attempts prior to joining the military were over six times more likely to make a later suicide attempt after joining the military. In Study 2, significantly more severe current suicidal ideation was reported by participants with histories of premilitary suicide risk, even when controlling for SITB occurring while in the military. Military personnel and veterans who experienced SITB, especially suicide attempts, prior to joining the military are more likely to attempt suicide while in the military and/or as a veteran, and experience more severe suicidal crises. © 2014.

  8. Experimental study on joining of AA6063 and AISI 1040 steel

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Raja, S.

    2018-05-01

    Feasibility of joining of dissimilar metals with different physical, chemical and thermal properties such as AA6063 alloy and AISI 1040 steel is worthwhile study, since it has tremendous applications in all most of all engineering domains. The mechanism of bonding is studied using scanning electron microscopy. Impact strength of AA2024/AISI joints, axial shortening distance, micro hardness distribution and joint strength are determined. Micro hardness profile shows increased hardness value at the joint interface, due to grain refinement.

  9. How to make the rhetoric of joined-up government really work.

    PubMed

    Hyde, Jim

    2008-11-04

    "Joined-up' government and 'whole-of-government' approaches have evolved over the past two decades from the simple 'one-stop-shop' concept to much more formal organisational structures mandated at the highest levels. In many cases, the participants in these developments were learning on the job, as they responded to community and political demands for better service delivery and more accountability. This paper looks back at some of those developments and proposes a schema to assess and place policies, strategies and programs.

  10. Can Joined-Up Data Lead to Joined-Up Thinking? The Western Australian Developmental Pathways Project

    PubMed Central

    Stanley, Fiona; Glauert, Rebecca; McKenzie, Anne; O'Donnell, Melissa

    2011-01-01

    Modern societies are challenged by “wicked problems” – by definition, those that are difficult to define, multi-causal and hard to treat. Problems such as low birth weight, obesity, mental ill health, teenage pregnancy, educational difficulties and juvenile crime fit this category. Given the complex nature of these problems, they require the best data in order to measure them, guide policy frameworks and evaluate whether the steps taken to address them are actually making a difference. What such problems really require are joined-up approaches to enable effective solutions. In this paper, we describe a unique initiative to encourage a more preventive, whole-of-government approach to these problems – the Developmental Pathways Project, which has enabled the linkage of a large number of de-identified administrative databases in order to explore the pathways into and out of the negative outcomes affecting our children and youth. This project has not only enabled the linkage of agency data, but also of agency personnel, in order to improve and promote cross-agency research, policy and preventive solutions. Through the use of these linkages we are attempting to shift the paradigm to encourage agencies to appreciate that these “wicked problems” demand a preventive approach, as well as the provision of effective services for those already affected. PMID:24933374

  11. 8. Several of the rental rooms are joined by doors, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Several of the rental rooms are joined by doors, and each room is accessed from the corridor. Originally, the transoms were glazed. When a central heating/cooling system was installed, the transoms were modified to accommodate air grilles that are supplied by a duct located in the corridor. The five-panel door and wood wainscot are original features. However, the wainscot does not occur in every room. The lath and plaster partitions and the wood flooring are typical of the original construction. Credit GADA/MRM. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ

  12. The Effect of Temperature and Rotational Speed on Structure and Mechanical Properties of Cast Cu Base Alloy (Cu-Al-Si-Fe) Welded by Semisolid Stir Joining Method

    NASA Astrophysics Data System (ADS)

    Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Shafizadeh, Mahdi; Nikzad, Siamak

    2015-12-01

    Semisolid stir joining has been under deliberation as a possible method for joining of copper alloys. In this study, the effect of temperature and rotational speed of stirrer on macrostructure evaluation and mechanical properties of samples were investigated. Optical microscopy and X-ray diffraction were performed for macro and microstructural analysis. A uniform micro-hardness profile was attained by semisolid stir joining method. The ultimate shear strength and bending strength of welded samples were improved in comparison with the cast sample. There is also lower area porosity in welded samples than the cast metal. The mechanical properties were improved by increasing temperature and rotational speed of the joining process.

  13. Electron beam welding of aircraft structures. [joining of titanium alloy wing structures on F-14 aircraft

    NASA Technical Reports Server (NTRS)

    Witt, R. H.

    1972-01-01

    Requirements for advanced aircraft have led to more extensive use of titanium alloys and the resultant search for joining processes which can produce lightweight, high strength airframe structures efficiently. As a result, electron beam welding has been investigated. The following F-14A components are now being EB welded in production and are mainly annealed Ti-6Al-4V except for the upper wing cover which is annealed Ti-6Al-6V-2Sn: F-14A wing center section box, and F-14A lower and upper wing covers joined to wing pivot fitting assemblies. Criteria for selection of welding processes, the EB welding facility, development work on EB welding titanium alloys, and F-14A production and sliding seal electron beam welding are reported.

  14. A Combined Experimental and Numerical Approach to the Laser Joining of Hybrid Polymer - Metal Parts

    NASA Astrophysics Data System (ADS)

    Rodríguez-Vidal, E.; Lambarri, J.; Soriano, C.; Sanz, C.; Verhaeghe, G.

    A two-step method for the joining of opaque polymer to metal is presented. Firstly, the metal is structured locally on a micro-scale level, to ensure adhesion with the polymeric counterpart. In a second step, the opposite side of the micro-structured metal is irradiated by means of a laser source. The heat thereby created is conducted by the metal and results in the melting of the polymer at the interface. The polymer thereby adheres to the metal and flows into the previously engraved structures, creating an additional mechanical interlock between the two materials. The welding parameters are fine-tuned with the assistance of a finite element model, to ensure the required interface temperature. The method is illustrated using a dual phase steel joined to a fiber-reinforced polyamide. The effect of different microstructures, in particular geometry and cavity aspect ratio, on the joint's tensile-shear mechanical performance is discussed.

  15. A visual tracking method based on improved online multiple instance learning

    NASA Astrophysics Data System (ADS)

    He, Xianhui; Wei, Yuxing

    2016-09-01

    Visual tracking is an active research topic in the field of computer vision and has been well studied in the last decades. The method based on multiple instance learning (MIL) was recently introduced into the tracking task, which can solve the problem that template drift well. However, MIL method has relatively poor performance in running efficiency and accuracy, due to its strong classifiers updating strategy is complicated, and the speed of the classifiers update is not always same with the change of the targets' appearance. In this paper, we present a novel online effective MIL (EMIL) tracker. A new update strategy for strong classifier was proposed to improve the running efficiency of MIL method. In addition, to improve the t racking accuracy and stability of the MIL method, a new dynamic mechanism for learning rate renewal of the classifier and variable search window were proposed. Experimental results show that our method performs good performance under the complex scenes, with strong stability and high efficiency.

  16. Low joining efficiency and non-conservative repair of two distant double-strand breaks in mouse embryonic stem cells.

    PubMed

    Boubakour-Azzouz, Imenne; Ricchetti, Miria

    2008-02-01

    Efficient and faithful repair of DNA double-strand breaks (DSBs) is critical for genome stability. To understand whether cells carrying a functional repair apparatus are able to efficiently heal two distant chromosome ends and whether this DNA lesion might result in genome rearrangements, we induced DSBs in genetically modified mouse embryonic stem cells carrying two I-SceI sites in cis separated by a distance of 9 kbp. We show that in this context non-homologous end-joining (NHEJ) can repair using standard DNA pairing of the broken ends, but it also joins 3' non-complementary overhangs that require unusual joining intermediates. The repair efficiency of this lesion appears to be dramatically low and the extent of genome alterations was high in striking contrast with the spectra of repair events reported for two collinear DSBs in other experimental systems. The dramatic decline in accuracy suggests that significant constraints operate in the repair process of these distant DSBs, which may also control the low efficiency of this process. These findings provide important insights into the mechanism of repair by NHEJ and how this process may protect the genome from large rearrangements.

  17. Aeroelastic Analysis Of Joined Wing Of High Altitude Long Endurance (HALE) Aircraft Based On The Sensor-Craft Configuration

    NASA Astrophysics Data System (ADS)

    Marisarla, Soujanya; Ghia, Urmila; "Karman" Ghia, Kirti

    2002-11-01

    Towards a comprehensive aeroelastic analysis of a joined wing, fluid dynamics and structural analyses are initially performed separately. Steady flow calculations are currently performed using 3-D compressible Navier-Stokes equations. Flow analysis of M6-Onera wing served to validate the software for the fluid dynamics analysis. The complex flow field of the joined wing is analyzed and the prevailing fluid dynamic forces are computed using COBALT software. Currently, these forces are being transferred as fluid loads on the structure. For the structural analysis, several test cases were run considering the wing as a cantilever beam; these served as validation cases. A nonlinear structural analysis of the wing is being performed using ANSYS software to predict the deflections and stresses on the joined wing. Issues related to modeling, and selecting appropriate mesh for the structure were addressed by first performing a linear analysis. The frequencies and mode shapes of the deformed wing are obtained from modal analysis. Both static and dynamic analyses are carried out, and the results obtained are carefully analyzed. Loose coupling between the fluid and structural analyses is currently being examined.

  18. Does sustained participation in an online health community affect sentiment?

    PubMed

    Zhang, Shaodian; Bantum, Erin; Owen, Jason; Elhadad, Noémie

    2014-01-01

    A large number of patients rely on online health communities to exchange information and psychosocial support with their peers. Examining participation in a community and its impact on members' behaviors and attitudes is one of the key open research questions in the field of study of online health communities. In this paper, we focus on a large public breast cancer community and conduct sentiment analysis on all its posts. We investigate the impact of different factors on post sentiment, such as time since joining the community, posting activity, age of members, and cancer stage of members. We find that there is a significant increase in sentiment of posts through time, with different patterns of sentiment trends for initial posts in threads and reply posts. Factors each play a role; for instance stage-IV members form a particular sub-community with patterns of sentiment and usage distinct from others members.

  19. Prediction of Ionizing Radiation Resistance in Bacteria Using a Multiple Instance Learning Model.

    PubMed

    Aridhi, Sabeur; Sghaier, Haïtham; Zoghlami, Manel; Maddouri, Mondher; Nguifo, Engelbert Mephu

    2016-01-01

    Ionizing-radiation-resistant bacteria (IRRB) are important in biotechnology. In this context, in silico methods of phenotypic prediction and genotype-phenotype relationship discovery are limited. In this work, we analyzed basal DNA repair proteins of most known proteome sequences of IRRB and ionizing-radiation-sensitive bacteria (IRSB) in order to learn a classifier that correctly predicts this bacterial phenotype. We formulated the problem of predicting bacterial ionizing radiation resistance (IRR) as a multiple-instance learning (MIL) problem, and we proposed a novel approach for this purpose. We provide a MIL-based prediction system that classifies a bacterium to either IRRB or IRSB. The experimental results of the proposed system are satisfactory with 91.5% of successful predictions.

  20. Enabling lightweight designs by a new laser based approach for joining aluminum to steel

    NASA Astrophysics Data System (ADS)

    Brockmann, Rüdiger; Kaufmann, Sebastian; Kirchhoff, Marc; Candel-Ruiz, Antonio; Müllerschön, Oliver; Havrilla, David

    2015-03-01

    As sustainability is an essential requirement, lightweight design becomes more and more important, especially for mobility. Reduced weight ensures more efficient vehicles and enables better environmental impact. Besides the design, new materials and material combinations are one major trend to achieve the required weight savings. The use of Carbon Fiber Reinforced Plastics (abbr. CFRP) is widely discussed, but so far high volume applications are rarely to be found. This is mainly due to the fact that parts made of CFRP are much more expensive than conventional parts. Furthermore, the proper technologies for high volume production are not yet ready. Another material with a large potential for lightweight design is aluminum. In comparison to CFRP, aluminum alloys are generally more affordable. As aluminum is a metallic material, production technologies for high volume standard cutting or joining applications are already developed. In addition, bending and deep-drawing can be applied. In automotive engineering, hybrid structures such as combining high-strength steels with lightweight aluminum alloys retain significant weight reduction but also have an advantage over monolithic aluminum - enhanced behavior in case of crash. Therefore, since the use of steel for applications requiring high mechanical properties is unavoidable, methods for joining aluminum with steel parts have to be further developed. Former studies showed that the use of a laser beam can be a possibility to join aluminum to steel parts. In this sense, the laser welding process represents a major challenge, since both materials have different thermal expansion coefficients and properties related to the behavior in corrosive media. Additionally, brittle intermetallic phases are formed during welding. A promising approach to welding aluminum to steel is based on the use of Laser Metal Deposition (abbr. LMD) with deposit materials in the form of powders. Within the present work, the advantages of this

  1. In vivo gene correction with targeted sequence substitution through microhomology-mediated end joining.

    PubMed

    Shin, Jeong Hong; Jung, Soobin; Ramakrishna, Suresh; Kim, Hyongbum Henry; Lee, Junwon

    2018-07-07

    Genome editing technology using programmable nucleases has rapidly evolved in recent years. The primary mechanism to achieve precise integration of a transgene is mainly based on homology-directed repair (HDR). However, an HDR-based genome-editing approach is less efficient than non-homologous end-joining (NHEJ). Recently, a microhomology-mediated end-joining (MMEJ)-based transgene integration approach was developed, showing feasibility both in vitro and in vivo. We expanded this method to achieve targeted sequence substitution (TSS) of mutated sequences with normal sequences using double-guide RNAs (gRNAs), and a donor template flanking the microhomologies and target sequence of the gRNAs in vitro and in vivo. Our method could realize more efficient sequence substitution than the HDR-based method in vitro using a reporter cell line, and led to the survival of a hereditary tyrosinemia mouse model in vivo. The proposed MMEJ-based TSS approach could provide a novel therapeutic strategy, in addition to HDR, to achieve gene correction from a mutated sequence to a normal sequence. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Refractory metal joining for first wall applications

    NASA Astrophysics Data System (ADS)

    Cadden, C. H.; Odegard, B. C.

    2000-12-01

    The potential use of high temperature coolant (e.g. 900°C He) in first wall structures would preclude the applicability of copper alloy heat sink materials and refractory metals would be potential replacements. Brazing trials were conducted in order to examine techniques to join tungsten armor to high tungsten (90-95 wt%) or molybdenum TZM heat sink materials. Palladium-, nickel- and zirconium-based filler metals were investigated using brazing temperatures ranging from 1000°C to 1275°C. Palladium-nickel and palladium-cobalt braze alloys were successful in producing generally sound metallurgical joints in tungsten alloy/tungsten couples, although there was an observed tendency for the pure tungsten armor material to exhibit grain boundary cracking after bonding. The zirconium- and nickel-based filler metals produced defect-containing joints, specifically cracking and porosity, respectively. The palladium-nickel braze alloy produced sound joints in the Mo TZM/tungsten couple. Substitution of a lanthanum oxide-containing, fine-grained tungsten material (for the pure tungsten) eliminated the observed tungsten grain boundary cracking.

  3. Localized Fault Recovery for Nested Fork-Join Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kestor, Gokcen; Krishnamoorthy, Sriram; Ma, Wenjing

    Nested fork-join programs scheduled using work stealing can automatically balance load and adapt to changes in the execution environment. In this paper, we design an approach to efficiently recover from faults encountered by these programs. Specifically, we focus on localized recovery of the task space in the presence of fail-stop failures. We present an approach to efficiently track, under work stealing, the relationships between the work executed by various threads. This information is used to identify and schedule the tasks to be re-executed without interfering with normal task execution. The algorithm precisely computes the work lost, incurs minimal re-execution overhead,more » and can recover from an arbitrary number of failures. Experimental evaluation demonstrates low overheads in the absence of failures, recovery overheads on the same order as the lost work, and much lower recovery costs than alternative strategies.« less

  4. Joining and Integration of Advanced Carbon-Carbon Composites to Metallic Systems for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Recent research and development activities in joining and integration of carbon-carbon (C/C) composites to metals such as Ti and Cu-clad-Mo for thermal management applications are presented with focus on advanced brazing techniques. A wide variety of carbon-carbon composites with CVI and resin-derived matrices were joined to Ti and Cu-clad Mo using a number of active braze alloys. The brazed joints revealed good interfacial bonding, preferential precipitation of active elements (e.g., Ti) at the composite/braze interface. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The chemical and thermomechanical compatibility between C/C and metals at elevated temperatures is assessed. The role of residual stresses and thermal conduction in brazed C/C joints is discussed. Theoretical predictions of the effective thermal resistance suggest that composite-to-metal brazed joints may be promising for lightweight thermal management applications.

  5. Multi-Probe SPM using Interference Patterns for a Parallel Nano Imaging

    NASA Astrophysics Data System (ADS)

    Koyama, Hirotaka; Oohira, Fumikazu; Hosogi, Maho; Hashiguchi, Gen

    This paper proposes a new composition of the multi-probe using optical interference patterns for a parallel nano imaging in a large area scanning. We achieved large-scale integration with 50,000 probes fabricated with MEMS technology, and measured the optical interference patterns with CCD, which was difficult in a conventional single scanning probe. In this research, the multi-probes are made of Si3N4 by MEMS process, and, the multi-probes are joined with a Pyrex glass by an anodic bonding. We designed, fabricated, and evaluated the characteristics of the probe. In addition, we changed the probe shape to decrease the warpage of the Si3N4 probe. We used the supercritical drying to avoid stiction of the Si3N4 probe with the glass surface and fabricated 4 types of the probe shapes without stiction. We took some interference patterns by CCD and measured the position of them. We calculate the probe height using the interference displacement and compared the result with the theoretical deflection curve. As a result, these interference patterns matched the theoretical deflection curve. We found that this multi-probe chip using interference patterns is effective in measurement for a parallel nano imaging.

  6. Mechanistic analysis of time-dependent failure of oxynitride glass-joined silicon nitride below 1000 degree C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, M.H.; Coon, D.M.

    Time-dependent failure at elevated temperatures currently governs the service life of oxynitride glass-joined silicon nitride. Creep, devitrification, stress- aided oxidation-controlled slow crack growth, and viscous cabitation-controlled failure are examined as possible controlling mechanisms. Creep deformation failure is observed above 1000{degrees}C. Fractographic evidence indicates cavity formation and growth below 1000{degrees}C. Auger electron spectroscopy verified that the oxidation rate of the joining glass is governed by the oxygen supply rate. Time-to-failure data and those predicted using the Tsai and Raj, and Raj and Dang viscous cavitation models. It is concluded that viscous relaxation and isolated cavity growth control the rate of failuremore » in oxynitride glass-filled silicon nitride joints below 1000{degrees}C. Several possible methods are also proposed for increasing the service lives of these joints.« less

  7. The CD control improvement by using CDSEM 2D measurement of complex OPC patterns

    NASA Astrophysics Data System (ADS)

    Chou, William; Cheng, Jeffrey; Lee, Adder; Cheng, James; Tzeng, Alex C.; Lu, Colbert; Yang, Ray; Lee, Hong Jen; Bandoh, Hideaki; Santo, Izumi; Zhang, Hao; Chen, Chien Kang

    2016-10-01

    As the process node becomes more advanced, the accuracy and precision in OPC pattern CD are required in mask manufacturing. CD SEM is an essential tool to confirm the mask quality such as CD control, CD uniformity and CD mean to target (MTT). Unfortunately, in some cases of arbitrary enclosed patterns or aggressive OPC patterns, for instance, line with tiny jogs and curvilinear SRAF, CD variation depending on region of interest (ROI) is a very serious problem in mask CD control, even it decreases the wafer yield. For overcoming this situation, the 2-dimensional (2D) method by Holon is adopted. In this paper, we summarize the comparisons of error budget between conventional (1D) and 2D data using CD SEM and the CD performance between mask and wafer by complex OPC patterns including ILT features.

  8. Investigation of the conditions affecting the joining of Hungarian hospitals to an accreditation programme: a cross-sectional study

    PubMed Central

    Margitai, Barnabás; Dózsa, Csaba; Bárdos-Csenteri, Orsolya Karola; Sándor, János; Gáll, Tibor; Gődény, Sándor

    2018-01-01

    Objective Quantitative studies have shown the various benefits for having accreditation in hospitals. However, neither of these explored the general conditions before applying for an accreditation. To close this gap, this study aimed to investigate the possible association between joining an accreditation programme with various hospital characteristics. Design A cross-sectional study was implemented using the databases of the 2013 Hungarian hospital survey and of the Hungarian State Treasury. Setting Public general hospitals in Hungary. Participants The analysis involved 44 public general hospitals, 14 of which joined the preparatory project for a newly developed accreditation programme. Main outcome measures The outcomes included the percentage of compliance in quality management, patient information and identification, internal professional regulation, safe surgery, pressure sore prevention, infection control, the opinions of the heads of quality management regarding the usefulness of quality management and clinical audits, and finally, the total debt of the hospital per bed and per discharged patient. Results According to our findings, the general hospitals joining the preparatory project of the accreditation programme performed better in four of the six investigated activities, the head of quality management had a better opinion on the usefulness of quality management, and both the debt per bed number and the debt per discharged patient were lower than those who did not join. However, no statistically significant differences between the two groups were found in any of the examined outcomes. Conclusions The findings suggest that hospitals applying for an accreditation programme do not differ significantly in characteristics from those which did not apply. This means that if in the future the accredited hospitals become better than other hospitals, then the improvement could be solely contributed to the accreditation. PMID:29391381

  9. A single-molecule sequencing assay for the comprehensive profiling of T4 DNA ligase fidelity and bias during DNA end-joining.

    PubMed

    Potapov, Vladimir; Ong, Jennifer L; Langhorst, Bradley W; Bilotti, Katharina; Cahoon, Dan; Canton, Barry; Knight, Thomas F; Evans, Thomas C; Lohman, Gregory Js

    2018-05-08

    DNA ligases are key enzymes in molecular and synthetic biology that catalyze the joining of breaks in duplex DNA and the end-joining of DNA fragments. Ligation fidelity (discrimination against the ligation of substrates containing mismatched base pairs) and bias (preferential ligation of particular sequences over others) have been well-studied in the context of nick ligation. However, almost no data exist for fidelity and bias in end-joining ligation contexts. In this study, we applied Pacific Biosciences Single-Molecule Real-Time sequencing technology to directly sequence the products of a highly multiplexed ligation reaction. This method has been used to profile the ligation of all three-base 5'-overhangs by T4 DNA ligase under typical ligation conditions in a single experiment. We report the relative frequency of all ligation products with or without mismatches, the position-dependent frequency of each mismatch, and the surprising observation that 5'-TNA overhangs ligate extremely inefficiently compared to all other Watson-Crick pairings. The method can easily be extended to profile other ligases, end-types (e.g. blunt ends and overhangs of different lengths), and the effect of adjacent sequence on the ligation results. Further, the method has the potential to provide new insights into the thermodynamics of annealing and the kinetics of end-joining reactions.

  10. Perceptions of house officers working in hospitals of Lahore about joining the field of anaesthesiology as a career.

    PubMed

    Anjum, Sohail; Mahboob, Usman

    2016-10-01

    To determine the perceptions of house officers working in hospitals about joining anaesthesiology as a career. This quantitative, descriptive questionnaire-based study was carried out from September 2014 to February 2015 in 26 teaching hospitals of Lahore, Pakistan, and comprised house officers. Those with at least three months of working experience in anaesthesiology were included. They were approached in their respective departments and a validated self-reporting questionnaire was delivered to them and received back by hand. SPSS 16 was used for data analysis. Of the 73 house officers approached, 53(72.6%) responded; 35(66%) men and 18(33%) women. Overall, 25(47.16%) respondents refused to join anaesthesiology as a career and 27(50.94%) included it in their first three career choices. Moreover, 25(47.16%) cited minimal interaction with patient as a reason for not taking anaesthesia as a career choice; 29(56.6%) of the respondents believed an anaesthetist had no or little role in surgery. Change in attitude about anaesthesiology as a specialty after having an anaesthesia rotation was mentioned by 26(49.05%) respondents. House officers had reservations about joining anaesthesiology as a career. The findings are suggestive of a positive effect of anaesthesiology house job on house officers attitude about the specialty.

  11. Retrieving clinically relevant diabetic retinopathy images using a multi-class multiple-instance framework

    NASA Astrophysics Data System (ADS)

    Chandakkar, Parag S.; Venkatesan, Ragav; Li, Baoxin

    2013-02-01

    Diabetic retinopathy (DR) is a vision-threatening complication from diabetes mellitus, a medical condition that is rising globally. Unfortunately, many patients are unaware of this complication because of absence of symptoms. Regular screening of DR is necessary to detect the condition for timely treatment. Content-based image retrieval, using archived and diagnosed fundus (retinal) camera DR images can improve screening efficiency of DR. This content-based image retrieval study focuses on two DR clinical findings, microaneurysm and neovascularization, which are clinical signs of non-proliferative and proliferative diabetic retinopathy. The authors propose a multi-class multiple-instance image retrieval framework which deploys a modified color correlogram and statistics of steerable Gaussian Filter responses, for retrieving clinically relevant images from a database of DR fundus image database.

  12. A pattern-based analysis of clinical computer-interpretable guideline modeling languages.

    PubMed

    Mulyar, Nataliya; van der Aalst, Wil M P; Peleg, Mor

    2007-01-01

    Languages used to specify computer-interpretable guidelines (CIGs) differ in their approaches to addressing particular modeling challenges. The main goals of this article are: (1) to examine the expressive power of CIG modeling languages, and (2) to define the differences, from the control-flow perspective, between process languages in workflow management systems and modeling languages used to design clinical guidelines. The pattern-based analysis was applied to guideline modeling languages Asbru, EON, GLIF, and PROforma. We focused on control-flow and left other perspectives out of consideration. We evaluated the selected CIG modeling languages and identified their degree of support of 43 control-flow patterns. We used a set of explicitly defined evaluation criteria to determine whether each pattern is supported directly, indirectly, or not at all. PROforma offers direct support for 22 of 43 patterns, Asbru 20, GLIF 17, and EON 11. All four directly support basic control-flow patterns, cancellation patterns, and some advance branching and synchronization patterns. None support multiple instances patterns. They offer varying levels of support for synchronizing merge patterns and state-based patterns. Some support a few scenarios not covered by the 43 control-flow patterns. CIG modeling languages are remarkably close to traditional workflow languages from the control-flow perspective, but cover many fewer workflow patterns. CIG languages offer some flexibility that supports modeling of complex decisions and provide ways for modeling some decisions not covered by workflow management systems. Workflow management systems may be suitable for clinical guideline applications.

  13. Modeling, simulation and control of pulsed DE-GMA welding process for joining of aluminum to steel

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Shi, Yu; Li, Jie; Huang, Jiankang; Fan, Ding

    2014-09-01

    Joining of aluminum to steel has attracted significant attention from the welding research community, automotive and rail transportation industries. Many current welding methods have been developed and applied, however, they can not precisely control the heat input to work-piece, they are high costs, low efficiency and consist lots of complex welding devices, and the generated intermetallic compound layer in weld bead interface is thicker. A novel pulsed double electrode gas metal arc welding(Pulsed DE-GMAW) method is developed. To achieve a stable welding process for joining of aluminum to steel, a mathematical model of coupled arc is established, and a new control scheme that uses the average feedback arc voltage of main loop to adjust the wire feed speed to control coupled arc length is proposed and developed. Then, the impulse control simulation of coupled arc length, wire feed speed and wire extension is conducted to demonstrate the mathematical model and predict the stability of welding process by changing the distance of contact tip to work-piece(CTWD). To prove the proposed PSO based PID control scheme's feasibility, the rapid prototyping experimental system is setup and the bead-on-plate control experiments are conducted to join aluminum to steel. The impulse control simulation shows that the established model can accurately represent the variation of coupled arc length, wire feed speed and the average main arc voltage when the welding process is disturbed, and the developed controller has a faster response and adjustment, only runs about 0.1 s. The captured electric signals show the main arc voltage gradually closes to the supposed arc voltage by adjusting the wire feed speed in 0.8 s. The obtained typical current waveform demonstrates that the main current can be reduced by controlling the bypass current under maintaining a relative large total current. The control experiment proves the accuracy of proposed model and feasibility of new control scheme

  14. Issues in the Classification of Disease Instances with Ontologies

    PubMed Central

    Burgun, Anita; Bodenreider, Olivier; Jacquelinet, Christian

    2006-01-01

    Ontologies define classes of entities and their interrelations. They are used to organize data according to a theory of the domain. Towards that end, ontologies provide class definitions (i.e., the necessary and sufficient conditions for defining class membership). In medical ontologies, it is often difficult to establish such definitions for diseases. We use three examples (anemia, leukemia and schizophrenia) to illustrate the limitations of ontologies as classification resources. We show that eligibility criteria are often more useful than the Aristotelian definitions traditionally used in ontologies. Examples of eligibility criteria for diseases include complex predicates such as ‘ x is an instance of the class C when at least n criteria among m are verified’ and ‘symptoms must last at least one month if not treated, but less than one month, if effectively treated’. References to normality and abnormality are often found in disease definitions, but the operational definition of these references (i.e., the statistical and contextual information necessary to define them) is rarely provided. We conclude that knowledge bases that include probabilistic and statistical knowledge as well as rule-based criteria are more useful than Aristotelian definitions for representing the predicates defined by necessary and sufficient conditions. Rich knowledge bases are needed to clarify the relations between individuals and classes in various studies and applications. However, as ontologies represent relations among classes, they can play a supporting role in disease classification services built primarily on knowledge bases. PMID:16160339

  15. Issues in the classification of disease instances with ontologies.

    PubMed

    Burgun, Anita; Bodenreider, Olivier; Jacquelinet, Christian

    2005-01-01

    Ontologies define classes of entities and their interrelations. They are used to organize data according to a theory of the domain. Towards that end, ontologies provide class definitions (i.e., the necessary and sufficient conditions for defining class membership). In medical ontologies, it is often difficult to establish such definitions for diseases. We use three examples (anemia, leukemia and schizophrenia) to illustrate the limitations of ontologies as classification resources. We show that eligibility criteria are often more useful than the Aristotelian definitions traditionally used in ontologies. Examples of eligibility criteria for diseases include complex predicates such as ' x is an instance of the class C when at least n criteria among m are verified' and 'symptoms must last at least one month if not treated, but less than one month, if effectively treated'. References to normality and abnormality are often found in disease definitions, but the operational definition of these references (i.e., the statistical and contextual information necessary to define them) is rarely provided. We conclude that knowledge bases that include probabilistic and statistical knowledge as well as rule-based criteria are more useful than Aristotelian definitions for representing the predicates defined by necessary and sufficient conditions. Rich knowledge bases are needed to clarify the relations between individuals and classes in various studies and applications. However, as ontologies represent relations among classes, they can play a supporting role in disease classification services built primarily on knowledge bases.

  16. Instance Analysis for the Error of Three-pivot Pressure Transducer Static Balancing Method for Hydraulic Turbine Runner

    NASA Astrophysics Data System (ADS)

    Weng, Hanli; Li, Youping

    2017-04-01

    The working principle, process device and test procedure of runner static balancing test method by weighting with three-pivot pressure transducers are introduced in this paper. Based on an actual instance of a V hydraulic turbine runner, the error and sensitivity of the three-pivot pressure transducer static balancing method are analysed. Suggestions about improving the accuracy and the application of the method are also proposed.

  17. Joining Forces: The Chemical Biology-Medicinal Chemistry Continuum.

    PubMed

    Plowright, Alleyn T; Ottmann, Christian; Arkin, Michelle; Auberson, Yves P; Timmerman, Henk; Waldmann, Herbert

    2017-09-21

    The scientific advances being made across all disciplines are creating ever-increasing opportunities to enhance our knowledge of biological systems and how they relate to human disease. One of the central driving forces in discovering new medicines is medicinal chemistry, where the design and synthesis of novel compounds has led to multiple drugs. Chemical biology, sitting at the interface of many disciplines, has now emerged as a major contributor to the understanding of biological systems and is becoming an integral part of drug discovery. Bringing chemistry and biology much closer and blurring the boundaries between disciplines is creating new opportunities to probe and understand biology; both disciplines play key roles and need to join forces and work together effectively to synergize their impact. The power of chemical biology will then reach its full potential and drive innovation, leading to the discovery of transformative medicines to treat patients. Advances in cancer biology and drug discovery highlight this potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Thermal-stress-free fasteners for joining orthotropic materials

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.

    1987-01-01

    Hot structures fabricated from orthotropic materials are an attractive design option for future high speed vehicles. Joining subassemblies of these materials with standard cylindrical fasteners can lead to loose joints or highly stressed joints due to thermal stress. A method has been developed to eliminate thermal stresses and maintain a tight joint by shaping the fastener and mating hole. This method allows both materials (fastener and structure), with different coefficients of thermal expansion (CTEs) in each of the three material directions, to expand freely with temperature yet remain in contact. For the assumptions made in the analysis, the joint will remain snug, yet free of thermal stress at any temperature. Finite element analysis was used to verify several thermal-stress-free fasteners and to show that conical fasteners, which are thermal-stress-free for isotropic materials, can reduce thermal stresses for transversely isotropic materials compared to a cylindrical fastener. Equations for thermal-stress-free shapes are presented and typical fastener shapes are shown.

  19. Engineering Design Handbook. Joining of Advanced Composites

    DTIC Science & Technology

    1979-03-01

    4.50 " Traversing Mechanisms.. .. . .. .. .. . .. .. .. .. .. .. . .. . .. . .. .. . $ 4.50 Wheeled Amphibians...o < ., ~ tO .... ., ;> < 0 DENOTES 1-IN. SCARF b. DENOTES 1-1/2-IN. SCARF CLOSED SYMBOL DENOTES RUNOUT 2.0 ~-----------L...PATTERN 0 DENOTES 2-IN. LAP, 0/45/-45/0 PATTERN b. DENOTES 2-IN. LAP, 45/0/0/-45 PATTERN CLOSED SYMBOL DENOTES RUNOUT b.----•:. • 0

  20. Joining, Leaving, and Staying in the American Indian/Alaska Native Race Category between 2000 and 2010

    PubMed Central

    Liebler, Carolyn A.; Bhaskar, Renuka; Porter (née Rastogi), Sonya R.

    2017-01-01

    Conceptualizing and operationalizing American Indian populations is challenging. Each census for decades has seen the American Indian population increase substantially more than expected, with indirect and qualitative evidence that this is due to changes in individuals' race responses. We apply uniquely suited (but not nationally representative) linked data from the 2000 and 2010 decennial censuses (N= 3.1 million) and the 2006–2010 American Community Survey (N = 188,131) to address three research questions. First, to what extent do American Indian people have different race responses across data sources? We find considerable race response change, especially among multiple-race and/or Hispanic American Indians. Second, how are people who change responses different from or similar to those who do not? We find three sets of American Indians: those who (1) had the same race and Hispanic responses in 2000 and 2010, (2) moved between single-race and multiple-race American Indian responses, and (3) added or dropped the American Indian response, thus joining or leaving the enumerated American Indian population. People in groups (1) and (2) were relatively likely to report a tribe, live in an American Indian area, report American Indian ancestry, and live in the West. Third, how are people who join a group different from or similar to those who leave it? Multivariate models show general similarity between joiners and leavers in group (1) and in group (2). Population turnover is hidden in cross-sectional comparisons; people joining each subpopulation of American Indians are similar in number and characteristics to those who leave it. PMID:26988712

  1. Joining, Leaving, and Staying in the American Indian/Alaska Native Race Category Between 2000 and 2010.

    PubMed

    Liebler, Carolyn A; Bhaskar, Renuka; Porter, Sonya R

    2016-04-01

    Conceptualizing and operationalizing American Indian populations is challenging. Each census for decades has seen the American Indian population increase substantially more than expected, with indirect and qualitative evidence that this is due to changes in individuals' race responses. We apply uniquely suited (but not nationally representative) linked data from the 2000 and 2010 decennial censuses (N = 3.1 million) and the 2006-2010 American Community Survey (N = 188,131) to address three research questions. First, to what extent do American Indian people have different race responses across data sources? We find considerable race response change, especially among multiple-race and/or Hispanic American Indians. Second, how are people who change responses different from or similar to those who do not? We find three sets of American Indians: those who (1) had the same race and Hispanic responses in 2000 and 2010, (2) moved between single-race and multiple-race American Indian responses, and (3) added or dropped the American Indian response, thus joining or leaving the enumerated American Indian population. People in groups (1) and (2) were relatively likely to report a tribe, live in an American Indian area, report American Indian ancestry, and live in the West. Third, how are people who join a group different from or similar to those who leave it? Multivariate models show general similarity between joiners and leavers in group (1) and in group (2). Population turnover is hidden in cross-sectional comparisons; people joining each subpopulation of American Indians are similar in number and characteristics to those who leave it.

  2. Landmark-based deep multi-instance learning for brain disease diagnosis.

    PubMed

    Liu, Mingxia; Zhang, Jun; Adeli, Ehsan; Shen, Dinggang

    2018-01-01

    In conventional Magnetic Resonance (MR) image based methods, two stages are often involved to capture brain structural information for disease diagnosis, i.e., 1) manually partitioning each MR image into a number of regions-of-interest (ROIs), and 2) extracting pre-defined features from each ROI for diagnosis with a certain classifier. However, these pre-defined features often limit the performance of the diagnosis, due to challenges in 1) defining the ROIs and 2) extracting effective disease-related features. In this paper, we propose a landmark-based deep multi-instance learning (LDMIL) framework for brain disease diagnosis. Specifically, we first adopt a data-driven learning approach to discover disease-related anatomical landmarks in the brain MR images, along with their nearby image patches. Then, our LDMIL framework learns an end-to-end MR image classifier for capturing both the local structural information conveyed by image patches located by landmarks and the global structural information derived from all detected landmarks. We have evaluated our proposed framework on 1526 subjects from three public datasets (i.e., ADNI-1, ADNI-2, and MIRIAD), and the experimental results show that our framework can achieve superior performance over state-of-the-art approaches. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Rad51 and RecA juxtapose dsDNA ends ready for DNA ligase-catalyzed end-joining under recombinase-suppressive conditions

    PubMed Central

    Konomura, Naoto; Arai, Naoto; Shinohara, Takeshi; Kobayashi, Jun; Iwasaki, Wakana; Ikawa, Shukuko; Kusano, Kohji; Shibata, Takehiko

    2017-01-01

    RecA-family recombinase-catalyzed ATP-dependent homologous joint formation is critical for homologous recombination, in which RecA or Rad51 binds first to single-stranded (ss)DNA and then interacts with double-stranded (ds)DNA. However, when RecA or Rad51 interacts with dsDNA before binding to ssDNA, the homologous joint-forming activity of RecA or Rad51 is quickly suppressed. We found that under these and adenosine diphosphate (ADP)-generating suppressive conditions for the recombinase activity, RecA or Rad51 at similar optimal concentrations enhances the DNA ligase-catalyzed dsDNA end-joining (DNA ligation) about 30- to 40-fold. The DNA ligation enhancement by RecA or Rad51 transforms most of the substrate DNA into multimers within 2–5 min, and for this enhancement, ADP is the common and best cofactor. Adenosine triphosphate (ATP) is effective for RecA, but not for Rad51. Rad51/RecA-enhanced DNA ligation depends on dsDNA-binding, as shown by a mutant, and is independent of physical interactions with the DNA ligase. These observations demonstrate the common and unique activities of RecA and Rad51 to juxtapose dsDNA-ends in preparation for covalent joining by a DNA ligase. This new in vitro function of Rad51 provides a simple explanation for our genetic observation that Rad51 plays a role in the fidelity of the end-joining of a reporter plasmid DNA, by yeast canonical non-homologous end-joining (NHEJ) in vivo. PMID:27794044

  4. Motives of Students' Joining Master Program at Princess Alia University College/Al Balqa Applied University

    ERIC Educational Resources Information Center

    Al Habahbeh, Abdullah Eid

    2014-01-01

    This study aimed at knowing the motives of students' joining master program at Princess Alia University College/Al Balqa Applied University by the graduate students and a degree of their importance and succession, and to know whether these motives differed according to the variables of gender, specialization, age, and marital status. To achieve…

  5. Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Roberts, Scott; Kozachkov, Henry; Demetriou, Marios D.; Schramm, Joseph P.; Johnson, William L.

    2012-01-01

    Bulk metallic glasses (BMGs), a class of amorphous metals defined as having a thickness greater than 1 mm, are being broadly investigated by NASA for use in spacecraft hardware. Their unique properties, attained from their non-crystalline structure, motivate several game-changing aerospace applications. BMGs have low melting temperatures so they can be cheaply and repeatedly cast into complex net shapes, such as mirrors or electronic casings. They are extremely strong and wear-resistant, which motivates their use in gears and bearings. Amorphous metal coatings are hard, corrosion-resistant, and have high reflectivity. BMG composites, reinforced with soft second phases, can be fabricated into energy-absorbing cellular panels for orbital debris shielding. One limitation of BMG materials is their inability to be welded, bonded, brazed, or fastened in a convenient method to form larger structures. Cellular structures (which can be classified as trusses, foams, honeycombs, egg boxes, etc.) are useful for many NASA, commercial, and military aerospace applications, including low-density paneling and shields. Although conventional cellular structures exhibit high specific strength, their porous structures make them challenging to fabricate. In particular, metal cellular structures are extremely difficult to fabricate due to their high processing temperatures. Aluminum honeycomb sandwich panels, for example, are used widely as spacecraft shields due to their low density and ease of fabrication, but suffer from low strength. A desirable metal cellular structure is one with high strength, combined with low density and simple fabrication. The thermoplastic joining process described here allows for the fabrication of monolithic BMG truss-like structures that are 90% porous and have no heat-affected zone, weld, bond, or braze. This is accomplished by welding the nodes of stacked BMG composite panels using a localized capacitor discharge, forming a single monolithic structure

  6. XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in Igh genes.

    PubMed

    Saribasak, Huseyin; Maul, Robert W; Cao, Zheng; McClure, Rhonda L; Yang, William; McNeill, Daniel R; Wilson, David M; Gearhart, Patricia J

    2011-10-24

    Activation-induced deaminase (AID) deaminates cytosine to uracil in immunoglobulin genes. Uracils in DNA can be recognized by uracil DNA glycosylase and abasic endonuclease to produce single-strand breaks. The breaks are repaired either faithfully by DNA base excision repair (BER) or mutagenically to produce somatic hypermutation (SHM) and class switch recombination (CSR). To unravel the interplay between repair and mutagenesis, we decreased the level of x-ray cross-complementing 1 (XRCC1), a scaffold protein involved in BER. Mice heterozygous for XRCC1 showed a significant increase in the frequencies of SHM in Igh variable regions in Peyer's patch cells, and of double-strand breaks in the switch regions during CSR. Although the frequency of CSR was normal in Xrcc1(+/-) splenic B cells, the length of microhomology at the switch junctions decreased, suggesting that XRCC1 also participates in alternative nonhomologous end joining. Furthermore, Xrcc1(+/-) B cells had reduced Igh/c-myc translocations during CSR, supporting a role for XRCC1 in microhomology-mediated joining. Our results imply that AID-induced single-strand breaks in Igh variable and switch regions become substrates simultaneously for BER and mutagenesis pathways.

  7. Social Pharmacy and Clinical Pharmacy-Joining Forces.

    PubMed

    Almarsdottir, Anna Birna; Granas, Anne Gerd

    2015-12-22

    This commentary seeks to define the areas of social pharmacy and clinical pharmacy to uncover what they have in common and what still sets them apart. Common threats and challenges of the two areas are reviewed in order to understand the forces in play. Forces that still keep clinical and social pharmacy apart are university structures, research traditions, and the management of pharmacy services. There are key (but shrinking) differences between clinical and social pharmacy which entail the levels of study within pharmaceutical sciences, the location in which the research is carried out, the choice of research designs and methods, and the theoretical foundations. Common strengths and opportunities are important to know in order to join forces. Finding common ground can be developed in two areas: participating together in multi-disciplinary research, and uniting in a dialogue with internal and external key players in putting forth what is needed for the profession of pharmacy. At the end the question is posed, "What's in a name?" and we argue that it is important to emphasize what unifies the families of clinical pharmacy and social pharmacy for the benefit of both fields, pharmacy in general, and society at large.

  8. Hole-pin joining structure with fiber-round-hole distribution of lobster cuticle and biomimetic study.

    PubMed

    Chen, Bin; Fan, Jinghong; Gou, Jihua; Lin, Shiyun

    2014-12-01

    Observations of the cuticle of the Boston Spiny Lobster using scanning electron microscope (SEM) show that it is a natural biocomposite consisting of chitin fibers and sclerotic-protein matrix with hierarchical and helicoidal structure. The SEM images also indicate that there is a hole-pin joining structure in the cuticle. In this joining structure, the chitin fibers in the neighborhood of the joining holes continuously round the holes to form a fiber-round-hole distribution. The maximum pullout force of the fibers in the fiber-round-hole distribution, which is closely related to the fracture toughness of the cuticle, is investigated and compared with that of the fibers in non-fiber-round-hole distribution based on their representative models. It is revealed that the maximum pullout force of the fibers in the fiber-round-hole distribution is significantly larger than that of the fibers in the non-fiber-round-hole distribution, and that a larger diameter of the hole results in a larger difference in the maximum pullout forces of the fibers between the two kinds of the fiber distributions. Inspired by the fiber-round-hole distribution found in the cuticle, composite specimens with the fiber-round-hole distribution were fabricated with a special mold and process to mirror the fiber-round-hole distribution. The fracture toughness of the biomimetic composite specimens is tested and compared with that of the conventional composite specimens with the non-fiber-round-hole distribution. It is demonstrated that the fracture toughness of the biomimetic composite specimens with the fiber-round-hole distribution is significantly larger than that of the conventional composite specimens with the non-fiber-round-hole distribution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End Joining Pathway

    PubMed Central

    Lieber, Michael R.

    2011-01-01

    Double-strand DNA breaks are common events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination and nonhomologous DNA end joining (NHEJ). The diverse causes of DSBs result in a diverse chemistry of DNA ends that must be repaired. Across NHEJ evolution, the enzymes of the NHEJ pathway exhibit a remarkable degree of structural tolerance in the range of DNA end substrate configurations upon which they can act. In vertebrate cells, the nuclease, polymerases and ligase of NHEJ are the most mechanistically flexible and multifunctional enzymes in each of their classes. Unlike repair pathways for more defined lesions, NHEJ repair enzymes act iteratively, act in any order, and can function independently of one another at each of the two DNA ends being joined. NHEJ is critical not only for the repair of pathologic DSBs as in chromosomal translocations, but also for the repair of physiologic DSBs created during V(D)J recombination and class switch recombination. Therefore, patients lacking normal NHEJ are not only sensitive to ionizing radiation, but also severely immunodeficient. PMID:20192759

  10. The Australian scincid lizard Menetia greyii: a new instance of widespread vertebrate parthenogenesis.

    PubMed

    Adams, Mark; Foster, Ralph; Hutchinson, Mark N; Hutchinson, Rhonda G; Donnellan, Steve C

    2003-11-01

    Molecular data derived from allozymes and mitochondrial nucleotide sequences, in combination with karyotypes, sex ratios, and inheritance data, have revealed the widespread Australian lizard Menetia greyii to be a complex of sexual and triploid unisexual taxa. Three sexual species, three presumed parthenogenetic lineages, and one animal of uncertain status were detected amongst 145 animals examined from south-central Australia, an area representing less than one-seventh of the total distribution of the complex. Parthenogenesis appears to have originated via interspecific hybridization, although presumed sexual ancestors could only be identified in two cases. The allozyme and mtDNA data reveal the presence of many distinct clones within the presumed parthenogenetic lineages. This new instance of vertebrate parthenogenesis is a first for the Scincidae and only the second definitive case of unisexuality in an indigenous Australian vertebrate.

  11. Joining of Silicon Carbide Through the Diffusion Bonding Approach

    NASA Technical Reports Server (NTRS)

    Halbig, Michael .; Singh, Mrityunjay

    2009-01-01

    In order for ceramics to be fully utilized as components for high-temperature and structural applications, joining and integration methods are needed. Such methods will allow for the fabrication the complex shapes and also allow for insertion of the ceramic component into a system that may have different adjacent materials. Monolithic silicon carbide (SiC) is a ceramic material of focus due to its high temperature strength and stability. Titanium foils were used as an interlayer to form diffusion bonds between chemical vapor deposited (CVD) SiC ceramics with the aid of hot pressing. The influence of such variables as interlayer thickness and processing time were investigated to see which conditions contributed to bonds that were well adhered and crack free. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.

  12. State-of-technology for joining TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Holko, K. H.; Moore, T. J.; Gyorgak, C. A.

    1972-01-01

    At the current state-of-technology there are many joining processes that can be used to make sound welds in TD-NiCr sheet. Some of these that are described in this report are electron beam welding, gas-tungsten arc welding, diffusion welding, resistance spot welding, resistance seam welding, and brazing. The strengths of the welds made by the various processes show considerable variation, especially at elevated temperatures. Most of the fusion welding processes tend to give weak welds at elevated temperatures (with the exception of fusion-type resistance spotwelds). However, solid-state welds have been made with parent metal properties. The process used for a specific application will be dictated by the specific joint requirements. In highly stressed joints at elevated temperatures, one of the solid-state processes, such as DFW, RSW (solid-state or fusion), and RSEW, offer the most promise.

  13. Feasibility of remotely manipulated welding in space: A step in the development of novel joining technologies

    NASA Technical Reports Server (NTRS)

    Masubuchi, K.; Agapakis, J. E.; Debiccari, A.; Vonalt, C.

    1985-01-01

    A six month research program entitled Feasibility of Remotely Manipulated Welding in Space - A Step in the Development of Novel Joining Technologies is performed at the Massachusetts Institute of Technology for the Office of Space Science and Applications, NASA, under Contract No. NASW-3740. The work is performed as a part of the Innovative Utilization of the Space Station Program. The final report from M.I.T. was issued in September 1983. This paper presents a summary of the work performed under this contract. The objective of this research program is to initiate research for the development of packaged, remotely controlled welding systems for space construction and repair. The research effort includes the following tasks: (1) identification of probable joining tasks in space; (2) identification of required levels of automation in space welding tasks; (3) development of novel space welding concepts; (4) development of recommended future studies; and (5) preparation of the final report.

  14. Altered kinetics of nonhomologous end joining and class switch recombination in ligase IV-deficient B cells.

    PubMed

    Han, Li; Yu, Kefei

    2008-11-24

    Immunoglobulin heavy chain class switch recombination (CSR) is believed to occur through the generation and repair of DNA double-strand breaks (DSBs) in the long and repetitive switch regions. Although implied, the role of the major vertebrate DSB repair pathway, nonhomologous end joining (NHEJ), in CSR has been controversial. By somatic gene targeting of DNA ligase IV (Lig4; a key component of NHEJ) in a B cell line (CH12F3) capable of highly efficient CSR in vitro, we found that NHEJ is required for efficient CSR. Disruption of the Lig4 gene in CH12F3 cells severely inhibits the initial rate of CSR and causes a late cell proliferation defect under cytokine stimulation. However, unlike V(D)J recombination, which absolutely requires NHEJ, CSR accumulates to a substantial level in Lig4-null cells. The data revealed a fast-acting NHEJ and a slow-acting alterative end joining of switch region breaks during CSR.

  15. Assessment of the line transect method: an examination of the spatial patterns of down and standing dead wood

    Treesearch

    Duncan C. Lutes

    2002-01-01

    The line transect method, its underlying assumptions, and the spatial patterning of down and standing pieces of dead wood were examined at the Tenderfoot Creek Experimental Forest in central Montana. The accuracy of the line transect method was not determined due to conflicting results of t-tests and ordinary least squares regression. In most instances down pieces were...

  16. Mechanical joining of materials with limited ductility: Analysis of process-induced defects

    NASA Astrophysics Data System (ADS)

    Jäckel, M.; Coppieters, S.; Hofmann, M.; Vandermeiren, N.; Landgrebe, D.; Debruyne, D.; Wallmersberger, T.; Faes, K.

    2017-10-01

    The paper shows experimental and numerical analyses of the clinching process of 6xxx series aluminum sheets in T6 condition and the self-pierce riveting process of an aluminum die casting. In the experimental investigations the damage behavior of the materials when using different tool parameters is analyzed. The focus of the numerical investigations is the damage prediction by a comparison of different damage criteria. Moreover, strength-and fatigue tests were carried out to investigate the influence of the joining process-induced damages on the strength properties of the joints.

  17. Collaborative mining of graph patterns from multiple sources

    NASA Astrophysics Data System (ADS)

    Levchuk, Georgiy; Colonna-Romanoa, John

    2016-05-01

    Intelligence analysts require automated tools to mine multi-source data, including answering queries, learning patterns of life, and discovering malicious or anomalous activities. Graph mining algorithms have recently attracted significant attention in intelligence community, because the text-derived knowledge can be efficiently represented as graphs of entities and relationships. However, graph mining models are limited to use-cases involving collocated data, and often make restrictive assumptions about the types of patterns that need to be discovered, the relationships between individual sources, and availability of accurate data segmentation. In this paper we present a model to learn the graph patterns from multiple relational data sources, when each source might have only a fragment (or subgraph) of the knowledge that needs to be discovered, and segmentation of data into training or testing instances is not available. Our model is based on distributed collaborative graph learning, and is effective in situations when the data is kept locally and cannot be moved to a centralized location. Our experiments show that proposed collaborative learning achieves learning quality better than aggregated centralized graph learning, and has learning time comparable to traditional distributed learning in which a knowledge of data segmentation is needed.

  18. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

    PubMed

    Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V

    2016-01-01

    Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

  19. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Miniature Torsion Tests with Elastic and Elastic-Plastic Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.

    2015-03-01

    The use of SiC and SiC-composites in fission or fusion environments requires joining methods for assembling systems. The international fusion community designed miniature torsion specimens for joint testing and irradiation in test reactors with limited irradiation volumes. These torsion specimens fail out-of-plane when joints are strong and when elastic moduli are within a certain range compared to SiC, which causes difficulties in determining shear strengths for joints or for comparing unirradiated and irradiated joints. A finite element damage model was developed that indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimensmore » when a certain modulus and strength ratio between the joint material and the joined material exists. The model was extended to treat elastic-plastic joints such as SiC/epoxy and steel/epoxy joints tested as validation of the specimen design.« less

  20. Watershed identification of polygonal patterns in noisy SAR images.

    PubMed

    Moreels, Pierre; Smrekar, Suzanne E

    2003-01-01

    This paper describes a new approach to pattern recognition in synthetic aperture radar (SAR) images. A visual analysis of the images provided by NASA's Magellan mission to Venus has revealed a number of zones showing polygonal-shaped faults on the surface of the planet. The goal of the paper is to provide a method to automate the identification of such zones. The high level of noise in SAR images and its multiplicative nature make automated image analysis difficult and conventional edge detectors, like those based on gradient images, inefficient. We present a scheme based on an improved watershed algorithm and a two-scale analysis. The method extracts potential edges in the SAR image, analyzes the patterns obtained, and decides whether or not the image contains a "polygon area". This scheme can also be applied to other SAR or visual images, for instance in observation of Mars and Jupiter's satellite Europa.

  1. Gen Y Recruitment: Understanding Graduate Intentions to Join an Organisation Using the Theory of Planned Behaviour

    ERIC Educational Resources Information Center

    Warmerdam, Amanda; Lewis, Ioni; Banks, Tamara

    2015-01-01

    Purpose: Using the Theory of Planned Behaviour (TPB) framework, the purpose of this paper is to explore whether the standard TPB constructs explained variance in Generation Y (Gen Y) individuals' intentions to join their ideal organisation. Design/methodology/approach: A mixed methods approach was used featuring qualitative and quantitative…

  2. Mutation Pattern of Paired Immunoglobulin Heavy and Light Variable Domains in Chronic Lymphocytic Leukemia B Cells

    PubMed Central

    Ghiotto, Fabio; Marcatili, Paolo; Tenca, Claudya; Calevo, Maria Grazia; Yan, Xiao-Jie; Albesiano, Emilia; Bagnara, Davide; Colombo, Monica; Cutrona, Giovanna; Chu, Charles C; Morabito, Fortunato; Bruno, Silvia; Ferrarini, Manlio; Tramontano, Anna; Fais, Franco; Chiorazzi, Nicholas

    2011-01-01

    B-cell chronic lymphocytic leukemia (CLL) patients display leukemic clones bearing either germline or somatically mutated immunoglobulin heavy variable (IGHV ) genes. Most information on CLL immunoglobulins (Igs), such as the definition of stereotyped B-cell receptors (BCRs), was derived from germline unmutated Igs. In particular, detailed studies on the distribution and nature of mutations in paired heavy- and light-chain domains of CLL clones bearing mutated Igs are lacking. To address the somatic hyper-mutation dynamics of CLL Igs, we analyzed the mutation pattern of paired IGHV–diversity-joining (IGHV-D-J ) and immunoglobulin kappa/lambda variable-joining (IGK/LV-J ) rearrangements of 193 leukemic clones that displayed ≥2% mutations in at least one of the two immunoglobulin variable (IGV ) genes (IGHV and/or IGK/LV ). The relationship between the mutation frequency in IGHV and IGK/LV complementarity determining regions (CDRs) and framework regions (FRs) was evaluated by correlation analysis. Replacement (R) mutation frequency within IGK/LV chain CDRs correlated significantly with mutation frequency of paired IGHV CDRs in λ but not κ isotype CLL clones. CDRs of IGKV-J rearrangements displayed a lower percentage of R mutations than IGHVs. The frequency/pattern of mutations in kappa CLL Igs differed also from that in κ-expressing normal B cells described in the literature. Instead, the mutation frequency within the FRs of IGHV and either IGKV or IGLV was correlated. Notably, the amount of diversity introduced by replaced amino acids was comparable between IGHVs and IGKVs. The data indicate a different mutation pattern between κ and λ isotype CLL clones and suggest an antigenic selection that, in κ samples, operates against CDR variation. PMID:21785810

  3. Cosmonaut Aleksey Leonov joins belly dancer on stage at Folklife Festival

    NASA Image and Video Library

    1974-09-14

    S74-28666 (14 Sept. 1974) --- Cosmonaut Aleksey A. Leonov, in one of the lighter moments of activity involving Soviet cosmonauts and American astronauts, joins a belly dancer on stage as several visitors to weekend activity at the site of San Antonio?s HemisFair look on. Leonov is commander of the Soviet Apollo-Soyuz Test Project (ASTP) crew. A group of cosmonauts is in this country training with American astronauts for the joint U.S.-USSR ASTP rendezvous and docking mission scheduled for the summer of 1975. The Lebanese dancing was just one feature among many during the Texas Folklife Festival, in which members of 26 ethnic groups participated.

  4. Horror Image Recognition Based on Context-Aware Multi-Instance Learning.

    PubMed

    Li, Bing; Xiong, Weihua; Wu, Ou; Hu, Weiming; Maybank, Stephen; Yan, Shuicheng

    2015-12-01

    Horror content sharing on the Web is a growing phenomenon that can interfere with our daily life and affect the mental health of those involved. As an important form of expression, horror images have their own characteristics that can evoke extreme emotions. In this paper, we present a novel context-aware multi-instance learning (CMIL) algorithm for horror image recognition. The CMIL algorithm identifies horror images and picks out the regions that cause the sensation of horror in these horror images. It obtains contextual cues among adjacent regions in an image using a random walk on a contextual graph. Borrowing the strength of the fuzzy support vector machine (FSVM), we define a heuristic optimization procedure based on the FSVM to search for the optimal classifier for the CMIL. To improve the initialization of the CMIL, we propose a novel visual saliency model based on the tensor analysis. The average saliency value of each segmented region is set as its initial fuzzy membership in the CMIL. The advantage of the tensor-based visual saliency model is that it not only adaptively selects features, but also dynamically determines fusion weights for saliency value combination from different feature subspaces. The effectiveness of the proposed CMIL model is demonstrated by its use in horror image recognition on two large-scale image sets collected from the Internet.

  5. Instance-based learning: integrating sampling and repeated decisions from experience.

    PubMed

    Gonzalez, Cleotilde; Dutt, Varun

    2011-10-01

    In decisions from experience, there are 2 experimental paradigms: sampling and repeated-choice. In the sampling paradigm, participants sample between 2 options as many times as they want (i.e., the stopping point is variable), observe the outcome with no real consequences each time, and finally select 1 of the 2 options that cause them to earn or lose money. In the repeated-choice paradigm, participants select 1 of the 2 options for a fixed number of times and receive immediate outcome feedback that affects their earnings. These 2 experimental paradigms have been studied independently, and different cognitive processes have often been assumed to take place in each, as represented in widely diverse computational models. We demonstrate that behavior in these 2 paradigms relies upon common cognitive processes proposed by the instance-based learning theory (IBLT; Gonzalez, Lerch, & Lebiere, 2003) and that the stopping point is the only difference between the 2 paradigms. A single cognitive model based on IBLT (with an added stopping point rule in the sampling paradigm) captures human choices and predicts the sequence of choice selections across both paradigms. We integrate the paradigms through quantitative model comparison, where IBLT outperforms the best models created for each paradigm separately. We discuss the implications for the psychology of decision making. © 2011 American Psychological Association

  6. Automatic analysis of online image data for law enforcement agencies by concept detection and instance search

    NASA Astrophysics Data System (ADS)

    de Boer, Maaike H. T.; Bouma, Henri; Kruithof, Maarten C.; ter Haar, Frank B.; Fischer, Noëlle M.; Hagendoorn, Laurens K.; Joosten, Bart; Raaijmakers, Stephan

    2017-10-01

    The information available on-line and off-line, from open as well as from private sources, is growing at an exponential rate and places an increasing demand on the limited resources of Law Enforcement Agencies (LEAs). The absence of appropriate tools and techniques to collect, process, and analyze the volumes of complex and heterogeneous data has created a severe information overload. If a solution is not found, the impact on law enforcement will be dramatic, e.g. because important evidence is missed or the investigation time is too long. Furthermore, there is an uneven level of capabilities to deal with the large volumes of complex and heterogeneous data that come from multiple open and private sources at national level across the EU, which hinders cooperation and information sharing. Consequently, there is a pertinent need to develop tools, systems and processes which expedite online investigations. In this paper, we describe a suite of analysis tools to identify and localize generic concepts, instances of objects and logos in images, which constitutes a significant portion of everyday law enforcement data. We describe how incremental learning based on only a few examples and large-scale indexing are addressed in both concept detection and instance search. Our search technology allows querying of the database by visual examples and by keywords. Our tools are packaged in a Docker container to guarantee easy deployment on a system and our tools exploit possibilities provided by open source toolboxes, contributing to the technical autonomy of LEAs.

  7. They answered the call: Nebraska nurses join the ranks in World War II.

    PubMed

    Schmeiding, Verna E; Anderson, Mary L; Bradley, Eileen

    On December 7, 1941, there were fewer than 1,000 nurses in the Army Nurse Corps. That infamous day, 82 of those brave nurses were stationed in Hawaii. Their bravery, leadership and calmness under extreme duress foreshadowed the amazing role nurses would play in World War II. In the months and years that followed Japan's bombing of Pearl Harbor, over 59,000 American nurses would answer the call and join the Army Nurse Corps. Courageous Nebraskan women were among them.

  8. Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells

    PubMed Central

    Truong, Lan N.; Li, Yongjiang; Shi, Linda Z.; Hwang, Patty Yi-Hwa; He, Jing; Wang, Hailong; Razavian, Niema; Berns, Michael W.; Wu, Xiaohua

    2013-01-01

    Microhomology-mediated end joining (MMEJ) is a major pathway for Ku-independent alternative nonhomologous end joining, which contributes to chromosomal translocations and telomere fusions, but the underlying mechanism of MMEJ in mammalian cells is not well understood. In this study, we demonstrated that, distinct from Ku-dependent classical nonhomologous end joining, MMEJ—even with very limited end resection—requires cyclin-dependent kinase activities and increases significantly when cells enter S phase. We also showed that MMEJ shares the initial end resection step with homologous recombination (HR) by requiring meiotic recombination 11 homolog A (Mre11) nuclease activity, which is needed for subsequent recruitment of Bloom syndrome protein (BLM) and exonuclease 1 (Exo1) to DNA double-strand breaks (DSBs) to promote extended end resection and HR. MMEJ does not require S139-phosphorylated histone H2AX (γ-H2AX), suggesting that initial end resection likely occurs at DSB ends. Using a MMEJ and HR competition repair substrate, we demonstrated that MMEJ with short end resection is used in mammalian cells at the level of 10–20% of HR when both HR and nonhomologous end joining are available. Furthermore, MMEJ is used to repair DSBs generated at collapsed replication forks. These studies suggest that MMEJ not only is a backup repair pathway in mammalian cells, but also has important physiological roles in repairing DSBs to maintain cell viability, especially under genomic stress. PMID:23610439

  9. Suppression of Non-Homologous End Joining Repair by Overexpression of HMGA2

    PubMed Central

    Li, Angela Y.J.; Boo, Lee Ming; Wang, Shih-Ya; Lin, H. Helen; Wang, Clay C.C.; Yen, Yun; Chen, Benjamin P.C.; Chen, David J.; Ann, David K.

    2009-01-01

    Understanding the molecular details associated with aberrant high mobility group A2 (HMGA2) gene expression is key to establishing the mechanism(s) underlying its oncogenic potential and impact on the development of therapeutic strategies. Here, we report the involvement of HMGA2 in impairing DNA-dependent protein kinase (DNA-PK) during the non-homologous end joining (NHEJ) process. We demonstrated that HMGA2-expressing cells displayed deficiency in overall and precise DNA end-joining repair and accumulated more endogenous DNA damage. Proper and timely activation of DNA-PK, consisting of Ku70, Ku80 and DNA-PKcs subunits, is essential for the repair of DNA double strand breaks (DSBs) generated endogenously or by exposure to genotoxins. In cells overexpressing HMGA2, accumulation of histone 2A variant X phosphorylation at Ser-139 (γ-H2AX) was associated with hyper-phosphorylation of DNA-PKcs at Thr-2609 and Ser-2056 before and after the induction of DSBs. Also, the steady-state complex of Ku and DNA ends was altered by HMGA2. Microirradiation and real-time imaging in living cells revealed that HMGA2 delayed the release of DNA-PKcs from DSB sites, similar to observations found in DNA-PKcs mutants. Moreover, HMGA2 alone was sufficient to induce chromosomal aberrations, a hallmark of deficiency in NHEJ-mediated DNA repair. In summary, a novel role for HMGA2 to interfere with NHEJ processes was uncovered, implicating HMGA2 in the promotion of genome instability and tumorigenesis. PMID:19549901

  10. Spacecraft materials guide. [including: encapsulants and conformal coatings; optical materials; lubrication; and, bonding and joining processes

    NASA Technical Reports Server (NTRS)

    Staugaitis, C. L. (Editor)

    1975-01-01

    Materials which have demonstrated their suitability for space application are summarized. Common, recurring problems in encapsulants and conformal coatings, optical materials, lubrication, and bonding and joining are noted. The subjects discussed include: low density and syntactic foams, electrical encapsulants; optical glasses, interference filter, mirrors; oils, greases, lamillar lubricants; and, soldering and brazing processes.

  11. Social Pharmacy and Clinical Pharmacy—Joining Forces

    PubMed Central

    Almarsdottir, Anna Birna; Granas, Anne Gerd

    2015-01-01

    This commentary seeks to define the areas of social pharmacy and clinical pharmacy to uncover what they have in common and what still sets them apart. Common threats and challenges of the two areas are reviewed in order to understand the forces in play. Forces that still keep clinical and social pharmacy apart are university structures, research traditions, and the management of pharmacy services. There are key (but shrinking) differences between clinical and social pharmacy which entail the levels of study within pharmaceutical sciences, the location in which the research is carried out, the choice of research designs and methods, and the theoretical foundations. Common strengths and opportunities are important to know in order to join forces. Finding common ground can be developed in two areas: participating together in multi-disciplinary research, and uniting in a dialogue with internal and external key players in putting forth what is needed for the profession of pharmacy. At the end the question is posed, “What’s in a name?” and we argue that it is important to emphasize what unifies the families of clinical pharmacy and social pharmacy for the benefit of both fields, pharmacy in general, and society at large. PMID:28970374

  12. Joining the immunological dots in recurrent miscarriage.

    PubMed

    Bansal, Amolak Singh

    2010-11-01

    While raised cellular immunity mediated by T helper (Th) 1 type cells may be harmful for the developing embryo/foetus, it is likely that Th2 type immunity may be helpful. The role of natural killer (NK) cells is presently underestimated, although they are clearly important in angiogenesis and the coordinated invasion of the decidua by the trophoblast. Deficient T regulatory cell (Treg) function is evident in women with recurrent miscarriage particularly when this occurs in early pregnancy. The role of the pro-inflammatory Th17 cells is presently unclear. However, early evidence suggests that excessive Th17 activity may promote miscarriage and preterm delivery. This may relate to the ability of these cells to produce those cytokines that encourage Th1 and NK cell activity. As such recurrent miscarriage may be caused not only by chromosomal abnormalities, autoimmunity and uterine abnormalities but also by subclinical uterine infection and inflammation which by stimulating interleukin 6 favours Th17 development over Tregs. This review examines the role of these different cells in early pregnancy and suggests a schema that may join the dots of the immunological puzzle called pregnancy. Finally, suggestions are made as to how inappropriate immunity in recurrent miscarriage may be down-regulated using currently available therapies. © 2010 John Wiley & Sons A/S.

  13. Friction riveting as an alternative mechanical fastening to join engineering plastics

    NASA Astrophysics Data System (ADS)

    Gagliardi, Francesco; Conte, Romina; Bentrovato, Renato; Simeoli, Giorgio; Russo, Pietro; Ambrogio, Giuseppina

    2018-05-01

    Friction Rivecting is a quite new joining process to connect multi-material structures. In brief, a metallic rivet is dipped rotating inside matrixes, usually made of plastics, increasing its original diameter. The use of high-performance plastics is more suitable being their higher mechanical and thermal properties important to avoid material degradation and to allow strong part connections. High-speed friction welding system has been usually used to perform the process. In the work here proposed, the joints have been achieved by means of a traditional milling machine and the attention has been focused on a widely used engineering plastic, i.e. polyamide 6 (PA6) with and without glass fiber reinforcement. A specific speed multiplier has been attached into the mandrel of the used machine to increase the reachable rotational speed. Moreover, rivets made of Titanium Grade 2 and of an Aluminum Alloy, the AA-6060, are utilized. The influence that the heating and the forging length can have on the quality of the obtained junctions, considering a fixed joining depth, has been tested and investigated. The performed connections have been judged by tensile tests, which were set to quantify the maximum strength of the joints for a transverse speed of 1,0 mm/min. Barreling effect can be observed close to the tip, which loses the initial shape of a cylinder characterized by straight vertical walls. Finally, the possible degradation of the polymer, due to temperature increment, has been also evaluated close to the working zone. According to that, it has to be highlighted that the process needs a heating balance, which is necessary to get sound joints. The compromise has, on one side, to allow the rivet penetration and deformation, and on the other side, to avoid the degradation of the polymer, which would affect its properties and a proper rivet deformation.

  14. The design and implementation of EPL: An event pattern language for active databases

    NASA Technical Reports Server (NTRS)

    Giuffrida, G.; Zaniolo, C.

    1994-01-01

    The growing demand for intelligent information systems requires closer coupling of rule-based reasoning engines, such as CLIPS, with advanced data base management systems (DBMS). For instance, several commercial DBMS now support the notion of triggers that monitor events and transactions occurring in the database and fire induced actions, which perform a variety of critical functions, including safeguarding the integrity of data, monitoring access, and recording volatile information needed by administrators, analysts, and expert systems to perform assorted tasks; examples of these tasks include security enforcement, market studies, knowledge discovery, and link analysis. At UCLA, we designed and implemented the event pattern language (EPL) which is capable of detecting and acting upon complex patterns of events which are temporally related to each other. For instance, a plant manager should be notified when a certain pattern of overheating repeats itself over time in a chemical process; likewise, proper notification is required when a suspicious sequence of bank transactions is executed within a certain time limit. The EPL prototype is built in CLIPS to operate on top of Sybase, a commercial relational DBMS, where actions can be triggered by events such as simple database updates, insertions, and deletions. The rule-based syntax of EPL allows the sequences of goals in rules to be interpreted as sequences of temporal events; each goal can correspond to either (1) a simple event, or (2) a (possibly negated) event/condition predicate, or (3) a complex event defined as the disjunction and repetition of other events. Various extensions have been added to CLIPS in order to tailor the interface with Sybase and its open client/server architecture.

  15. Characteristics of physicians and patients who join team-based primary care practices: evidence from Quebec's Family Medicine Groups.

    PubMed

    Coyle, Natalie; Strumpf, Erin; Fiset-Laniel, Julie; Tousignant, Pierre; Roy, Yves

    2014-06-01

    New models of delivering primary care are being implemented in various countries. In Quebec, Family Medicine Groups (FMGs) are a team-based approach to enhance access to, and coordination of, care. We examined whether physicians' and patients' characteristics predicted their participation in this new model of primary care. Using provincial administrative data, we created a population cohort of Quebec's vulnerable patients. We collected data before the advent of FMGs on patients' demographic characteristics, chronic illnesses and health service use, and their physicians' demographics, and practice characteristics. Multivariate regression was used to identify key predictors of joining a FMG among both patients and physicians. Patients who eventually enrolled in a FMG were more likely to be female, reside outside of an urban region, have a lower SES status, have diabetes and congestive heart failure, visit the emergency department for ambulatory sensitive conditions and be hospitalized for any cause. They were also less likely to have hypertension, visit an ambulatory clinic and have a usual provider of care. Physicians who joined a FMG were less likely to be located in urban locations, had fewer years in medical practice, saw more patients in hospital, and had patients with lower morbidity. Physicians' practice characteristics and patients' health status and health care service use were important predictors of joining a FMG. To avoid basing policy decisions on tenuous evidence, policymakers and researchers should account for differential selection into team-based primary health care models. Copyright © 2014. Published by Elsevier Ireland Ltd.

  16. Numerate Intends to Join ATOM Consortium to Rapidly Accelerate Preclinical Drug Development | Frederick National Laboratory for Cancer Research

    Cancer.gov

    SAN FRANCISCO – Computational drug design company Numerate has signed a letter of intent to join an open consortium of scientists staffed from two U.S. national laboratories, industry, and academia working to transform drug discovery and developmen

  17. Collision Welding of Dissimilar Materials by Vaporizing Foil Actuator: A Breakthrough Technology for Dissimilar Metal Joining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daehn, Glenn S.; Vivek, Anupam; Liu, Bert C.

    This work demonstrated and further developed Vaporizing Foil Actuator Welding (VFAW) as a viable technique for dissimilar-metal joining for automotive lightweighting applications. VFAW is a novel impact welding technology, which uses the pressure developed from electrically-assisted rapid vaporization of a thin aluminum foil (the consumable) to launch and ultimately collide two of more pieces of metal to create a solid-state bond between them. 18 dissimilar combinations of automotive alloys from the steel, aluminum and magnesium alloy classes were screened for weldability and characterized by metallography of weld cross sections, corrosion testing, and mechanical testing. Most combinations, especially a good numbermore » of Al/Fe pairs, were welded successfully. VFAW was even able to weld combinations of very high strength materials such as 5000 and 6000 series aluminum alloys to boron and dual phase steels, which is difficult to impossible by other joining techniques such as resistance spot welding, friction stir welding, or riveting. When mechanically tested, the samples routinely failed in a base metal rather than along the weld interface, showing that the weld was stronger than either of the base metals. As for corrosion performance, a polymer-based protective coating was used to successfully combat galvanic corrosion of 5 Al/Fe pairs through a month-long exposure to warm salt fog. In addition to the technical capabilities, VFAW also consumes little energy compared to conventional welding techniques and requires relatively light, flexible tooling. Given the technical and economic advantages, VFAW can be a very competitive joining technology for automotive lightweighting. The success of this project and related activities has resulted in substantial interest not only within the research community but also various levels of automotive supply chain, which are collaborating to bring this technology to commercial use.« less

  18. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: Implications for the formation of chromosome translocations.

    PubMed

    Iliakis, George; Murmann, Tamara; Soni, Aashish

    2015-11-01

    DNA double strand breaks (DSB) are the most deleterious lesions for the integrity of the genome, as their misrepair can lead to the formation of chromosome translocations. Cells have evolved two main repair pathways to suppress the formation of these genotoxic lesions: homology-dependent, error-free homologous recombination repair (HRR), and potentially error-prone, classical, DNA-PK-dependent non-homologous end-joining (c-NHEJ). The most salient feature of c-NHEJ, speed, will largely suppress chromosome translocation formation, while sequence alterations at the junction remain possible. It is now widely accepted that when c-NHEJ is inactivated, globally or locally, an alternative form of end-joining (alt-EJ) removes DSBs. Alt-EJ operates with speed and fidelity markedly lower than c-NHEJ, causing thus with higher probability chromosome translocations, and generating more extensive sequence alterations at the junction. Our working hypothesis is that alt-EJ operates as a backup to c-NHEJ. Recent results show that alt-EJ can also backup abrogated HRR in G2 phase cells, again at the cost of elevated formation of chromosome translocations. These observations raise alt-EJ to a global rescuing mechanism operating on ends that have lost their chromatin context in ways that compromise processing by HRR or c-NHEJ. While responsible for eliminating from the genome highly cytotoxic DNA ends, alt-EJ provides this function at the price of increased translocation formation. Here, we analyze recent literature on the mechanisms of chromosome translocation formation and propose a functional hierarchy among DSB processing pathways that makes alt-EJ the global backup pathway. We discuss possible ramifications of this model in cellular DSB management and pathway choice, and analyze its implications in radiation carcinogenesis and the design of novel therapeutic approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Personal characteristics and contextual factors that determine "helping," "joining in," and "doing nothing" when witnessing cyberbullying.

    PubMed

    Van Cleemput, Katrien; Vandebosch, Heidi; Pabian, Sara

    2014-01-01

    In this article, we investigated several determinants of bystanders' reactive behaviors when confronted with cyberbullying using self-reported data from 2,333 Flemish 9-16 year olds. Structural equation modeling showed that adolescents that had joined in on the cyberbullying were older, had lower levels of empathy and were more likely to have been involved in cyberbullying or traditional bullying as perpetrators. Adolescents who had helped the victim were younger, had higher levels of empathy and were more likely to have been a victim of cyberbullying or traditional bullying in the past months. Adolescents that did nothing when they witnessed cyberbullying, were also older, showed lower levels of empathy and were less likely to have been a victim of traditional bullying. Social anxiety was not related to joining in, helping and remaining passive. In the second part of the analysis, we found that bystanders' passive behavior could be explained in more detail by moral disengagement theory and other contextual factors. In the discussion, the implications of the findings for research on cyberbullying are addressed. © 2014 Wiley Periodicals, Inc.

  20. Atom probe tomography of intermetallic phases and interfaces formed in dissimilar joining between Al alloys and steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemmens, B.

    While Si additions to Al are widely used to reduce the thickness of the brittle intermetallic seam formed at the interface during joining of Al alloys to steel, the underlying mechanisms are not clarified yet. The developed approach for the site specific atom probe tomography analysis revealed Si enrichments at grain and phase boundaries between the θ (Fe{sub 4}Al{sub 13}) and η (Fe{sub 2}Al{sub 5}) phase, up to about ten times that of the concentration in Al. The increase in Si concentration could play an important role for the growth kinetics of the intermetallic phases formed for example in hot-dipmore » aluminizing of steel. - Highlights: •Si additions to Al reduce thickness of intermetallic seam in joining with steel. •Approach developed for the site specific APT analysis of the intermetallic seam •Si enrichment at grain and phase boundaries possibly affects growth of intermetallics.« less

  1. Decentralized reinforcement-learning control and emergence of motion patterns

    NASA Astrophysics Data System (ADS)

    Svinin, Mikhail; Yamada, Kazuyaki; Okhura, Kazuhiro; Ueda, Kanji

    1998-10-01

    In this paper we propose a system for studying emergence of motion patterns in autonomous mobile robotic systems. The system implements an instance-based reinforcement learning control. Three spaces are of importance in formulation of the control scheme. They are the work space, the sensor space, and the action space. Important feature of our system is that all these spaces are assumed to be continuous. The core part of the system is a classifier system. Based on the sensory state space analysis, the control is decentralized and is specified at the lowest level of the control system. However, the local controllers are implicitly connected through the perceived environment information. Therefore, they constitute a dynamic environment with respect to each other. The proposed control scheme is tested under simulation for a mobile robot in a navigation task. It is shown that some patterns of global behavior--such as collision avoidance, wall-following, light-seeking--can emerge from the local controllers.

  2. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Miniature Torsion Tests with Elastic and Elastic-Plastic Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.

    2015-06-30

    The international fusion community designed miniature torsion specimens for joint testing and irradiation in test reactors with limited irradiation volumes since SiC and SiC-composites used in fission or fusion environments require joining methods for assembling systems. Torsion specimens fail out-of-plane when joints are strong and when elastic moduli are comparable to SiC, which causes difficulties in determining shear strengths for many joints or for comparing unirradiated and irradiated joints. A finite element damage model was developed to treat elastic joints such as SiC/Ti3SiC2+SiC and elastic-plastic joints such as SiC/epoxy and steel/epoxy. The model uses constitutive shear data and is validatedmore » using epoxy joint data. The elastic model indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. Lower modulus epoxy joints always fail in plane and provide good model validation.« less

  3. Involvement of protein IF2 N domain in ribosomal subunit joining revealed from architecture and function of the full-length initiation factor

    PubMed Central

    Simonetti, Angelita; Marzi, Stefano; Billas, Isabelle M. L.; Tsai, Albert; Fabbretti, Attilio; Myasnikov, Alexander G.; Roblin, Pierre; Vaiana, Andrea C.; Hazemann, Isabelle; Eiler, Daniel; Steitz, Thomas A.; Puglisi, Joseph D.; Gualerzi, Claudio O.; Klaholz, Bruno P.

    2013-01-01

    Translation initiation factor 2 (IF2) promotes 30S initiation complex (IC) formation and 50S subunit joining, which produces the 70S IC. The architecture of full-length IF2, determined by small angle X-ray diffraction and cryo electron microscopy, reveals a more extended conformation of IF2 in solution and on the ribosome than in the crystal. The N-terminal domain is only partially visible in the 30S IC, but in the 70S IC, it stabilizes interactions between IF2 and the L7/L12 stalk of the 50S, and on its deletion, proper N-formyl-methionyl(fMet)-tRNAfMet positioning and efficient transpeptidation are affected. Accordingly, fast kinetics and single-molecule fluorescence data indicate that the N terminus promotes 70S IC formation by stabilizing the productive sampling of the 50S subunit during 30S IC joining. Together, our data highlight the dynamics of IF2-dependent ribosomal subunit joining and the role played by the N terminus of IF2 in this process. PMID:24029017

  4. Multi-Instance Learning Models for Automated Support of Analysts in Simulated Surveillance Environments

    NASA Technical Reports Server (NTRS)

    Birisan, Mihnea; Beling, Peter

    2011-01-01

    New generations of surveillance drones are being outfitted with numerous high definition cameras. The rapid proliferation of fielded sensors and supporting capacity for processing and displaying data will translate into ever more capable platforms, but with increased capability comes increased complexity and scale that may diminish the usefulness of such platforms to human operators. We investigate methods for alleviating strain on analysts by automatically retrieving content specific to their current task using a machine learning technique known as Multi-Instance Learning (MIL). We use MIL to create a real time model of the analysts' task and subsequently use the model to dynamically retrieve relevant content. This paper presents results from a pilot experiment in which a computer agent is assigned analyst tasks such as identifying caravanning vehicles in a simulated vehicle traffic environment. We compare agent performance between MIL aided trials and unaided trials.

  5. Slow Joining of Newly Replicated DNA Chains in DNA Polymerase I-Deficient Escherichia coli Mutants*

    PubMed Central

    Okazaki, Reiji; Arisawa, Mikio; Sugino, Akio

    1971-01-01

    In Escherichia coli mutants deficient in DNA polymerase I, newly replicated short DNA is joined at about 10% of the rate in the wild-type strains. It is postulated that DNA polymerase I normally functions in filling gaps between the nascent short segments synthesized by the replication complex. Possible implications of the finding are discussed in relation to other abnormal properties of these mutants. PMID:4943548

  6. Preliminary Investigations of Joining Technologies for Attaching Refractory Metals to Ni-Based Superalloys

    NASA Technical Reports Server (NTRS)

    Gould, Jerry E.; Ritzert, Frank J.; Loewenthal, William S.

    2006-01-01

    In this study, a range of joining technologies has been investigated for creating attachments between refractory metal and Ni-based superalloys. Refractory materials of interest include Mo-47%Re, T-111, and Ta-10%W. The Ni-based superalloys include Hastelloy X and MarM 247. During joining with conventional processes, these materials have potential for a range of solidification and intermetallic formation-related defects. For this study, three non-conventional joining technologies were evaluated. These included inertia welding, electro-spark deposition (ESD) welding, and magnetic pulse welding (MPW). The developed inertia welding practice closely paralleled that typically used for the refractory metals alloys. Metallographic investigations showed that forging during inertia welding occurred predominantly on the nickel base alloy side. It was also noted that at least some degree of forging on the refractory metal side of the joint was necessary to achieve consistent bonding. Both refractory metals were readily weldable to the Hastelloy X material. When bonding to the MarM 247, results were inconsistent. This was related to the higher forging temperatures of the MarM 247, and subsequent reduced deformation on that material during welding. ESD trials using a Hastelloy X filler were successful for all material combinations. ESD places down very thin (5- to 10- m) layers per pass, and interactions between the substrates and the fill were limited (at most) to that layer. For the refractory metals, the fill only appeared to wet the surface, with minimal dilution effects. Microstructures of the deposits showed high weld metal integrity with maximum porosity on the order of a few percent. Some limited success was also obtained with MPW. In these trials, only the T-111 tubes were used. Joints were possible for the T-111 tube to the Hastelloy X bar stock, but the stiffness of the tube (resisting collapse) necessitated the use of very high power levels. These power levels

  7. Excess heat capacity and entropy of mixing along the chlorapatite-fluorapatite binary join

    NASA Astrophysics Data System (ADS)

    Dachs, Edgar; Harlov, Daniel; Benisek, Artur

    2010-10-01

    The heat capacity at constant pressure, C p, of chlorapatite [Ca5(PO4)3Cl - ClAp], and fluorapatite [Ca5(PO4)3F - FAp], as well as of 12 compositions along the chlorapatite-fluorapatite join have been measured using relaxation calorimetry [heat capacity option of the physical properties measurement system (PPMS)] and differential scanning calorimetry (DSC) in the temperature range 5-764 K. The chlor-fluorapatites were synthesized at 1,375-1,220°C from Ca3(PO4)2 using the CaF2-CaCl2 flux method. Most of the chlor-fluorapatite compositions could be measured directly as single crystals using the PPMS such that they were attached to the sample platform of the calorimeter by a crystal face. However, the crystals were too small for the crystal face to be polished. In such cases, where the sample coupling was not optimal, an empirical procedure was developed to smoothly connect the PPMS to the DSC heat capacities around ambient T. The heat capacity of the end-members above 298 K can be represented by the polynomials: C {p/ClAp} = 613.21 - 2,313.90 T -0.5 - 1.87964 × 107 T -2 + 2.79925 × 109 T -3 and C {p/FAp} = 681.24 - 4,621.73 × T -0.5 - 6.38134 × 106 T -2 + 7.38088 × 108 T -3 (units, J mol-1 K-1). Their standard third-law entropy, derived from the low-temperature heat capacity measurements, is S° = 400.6 ± 1.6 J mol-1 K-1 for chlorapatite and S° = 383.2 ± 1.5 J mol-1 K-1 for fluorapatite. Positive excess heat capacities of mixing, Δ C {p/ex}, occur in the chlorapatite-fluorapatite solid solution around 80 K (and to a lesser degree at 200 K) and are asymmetrically distributed over the join reaching a maximum of 1.3 ± 0.3 J mol-1 K-1 for F-rich compositions. They are significant at these conditions exceeding the 2 σ-uncertainty of the data. The excess entropy of mixing, Δ S ex, at 298 K reaches positive values of 3-4 J mol-1 K-1 in the F-rich portion of the binary, is, however, not significantly different from zero across the join within its 2 σ-uncertainty.

  8. Joining the quantum state of two photons into one

    NASA Astrophysics Data System (ADS)

    Vitelli, Chiara; Spagnolo, Nicolò; Aparo, Lorenzo; Sciarrino, Fabio; Santamato, Enrico; Marrucci, Lorenzo

    2013-07-01

    Photons are the ideal carriers of quantum information for communication. Each photon can have a single or multiple qubits encoded in its internal quantum state, as defined by optical degrees of freedom such as polarization, wavelength, transverse modes and so on. However, as photons do not interact, multiplexing and demultiplexing the quantum information across photons has not been possible hitherto. Here, we introduce and demonstrate experimentally a physical process, named `quantum joining', in which the two-dimensional quantum states (qubits) of two input photons are combined into a single output photon, within a four-dimensional Hilbert space. The inverse process is also proposed, in which the four-dimensional quantum state of a single photon is split into two photons, each carrying a qubit. Both processes can be iterated, and hence provide a flexible quantum interconnect to bridge multiparticle protocols of quantum information with multidegree-of-freedom ones, with possible applications in future quantum networking.

  9. Resistance Distances and Kirchhoff Index in Generalised Join Graphs

    NASA Astrophysics Data System (ADS)

    Chen, Haiyan

    2017-03-01

    The resistance distance between any two vertices of a connected graph is defined as the effective resistance between them in the electrical network constructed from the graph by replacing each edge with a unit resistor. The Kirchhoff index of a graph is defined as the sum of all the resistance distances between any pair of vertices of the graph. Let G=H[G1, G2, …, Gk ] be the generalised join graph of G1, G2, …, Gk determined by H. In this paper, we first give formulae for resistance distances and Kirchhoff index of G in terms of parameters of {G'_i}s and H. Then, we show that computing resistance distances and Kirchhoff index of G can be decomposed into simpler ones. Finally, we obtain explicit formulae for resistance distances and Kirchhoff index of G when {G'_i}s and H take some special graphs, such as the complete graph, the path, and the cycle.

  10. Microhomology-mediated end joining induces hypermutagenesis at breakpoint junctions

    PubMed Central

    Li, Fuyang; Villarreal, Diana; Shim, Jae Hoon; Myung, Kyungjae; Shim, Eun Yong; Lee, Sang Eun

    2017-01-01

    Microhomology (MH) flanking a DNA double-strand break (DSB) drives chromosomal rearrangements but its role in mutagenesis has not yet been analyzed. Here we determined the mutation frequency of a URA3 reporter gene placed at multiple locations distal to a DSB, which is flanked by different sizes (15-, 18-, or 203-bp) of direct repeat sequences for efficient repair in budding yeast. Induction of a DSB accumulates mutations in the reporter gene situated up to 14-kb distal to the 15-bp MH, but more modestly to those carrying 18- and 203-bp or no homology. Increased mutagenesis in MH-mediated end joining (MMEJ) appears coupled to its slower repair kinetics and the extensive resection occurring at flanking DNA. Chromosomal translocations via MMEJ also elevate mutagenesis of the flanking DNA sequences 7.1 kb distal to the breakpoint junction as compared to those without MH. The results suggest that MMEJ could destabilize genomes by triggering structural alterations and increasing mutation burden. PMID:28419093

  11. Highly Precise and Developmentally Programmed Genome Assembly in Paramecium Requires Ligase IV–Dependent End Joining

    PubMed Central

    Marmignon, Antoine; Ku, Michael; Silve, Aude; Meyer, Eric; Forney, James D.; Malinsky, Sophie; Bétermier, Mireille

    2011-01-01

    During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5′ overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi–mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5′-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3′ ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a “cut-and-close” mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new

  12. Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining.

    PubMed

    Kapusta, Aurélie; Matsuda, Atsushi; Marmignon, Antoine; Ku, Michael; Silve, Aude; Meyer, Eric; Forney, James D; Malinsky, Sophie; Bétermier, Mireille

    2011-04-01

    During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5' overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi-mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5'-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3' ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a "cut-and-close" mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new mechanisms

  13. 53BP1 promotes microhomology-mediated end-joining in G1-phase cells

    PubMed Central

    Xiong, Xiahui; Du, Zhanwen; Wang, Ying; Feng, Zhihui; Fan, Pan; Yan, Chunhong; Willers, Henning; Zhang, Junran

    2015-01-01

    Alternative non-homologous end joining (alt-NHEJ) was originally identified as a backup repair mechanism in the absence of classical NHEJ (c-NHEJ) factors but recent studies have demonstrated that alt-NHEJ is active even when c-NHEJ as well as homologous recombination is available. The functions of 53BP1 in NHEJ processes are not well understood. Here, we report that 53BP1 promotes DNA double-strand break (DSB) repair and genomic stability not only in c-NHEJ-proficient but also -deficient human G1-phase cells. Using an array of repair substrates we show that these effects of 53BP1 are correlated with a promotion of microhomology-mediated end-joining (MMEJ), a subtype of alt-NHEJ, in G1-phase. Consistent with a specific role in MMEJ we confirm that 53BP1 status does not affect c-NHEJ. 53BP1 supports sequence deletion during MMEJ consistent with a putative role in facilitating end-resection. Interestingly, promotion of MMEJ by 53BP1 in G1-phase cells is only observed in the presence of functional BRCA1. Depletion of both 53BP1 and BRCA1 increases repair needing microhomology usage and augments loss of DNA sequence, suggesting that MMEJ is a highly regulated DSB repair process. Together, these findings significantly expand our understanding of the cell-cycle-dependent roles of 53BP1 in DSB repair. PMID:25586219

  14. Intentions of Women (18-25 Years Old) to Join the Military: Results of a National Survey.

    ERIC Educational Resources Information Center

    Borack, Jules I.

    In anticipation of the projected decline in the national population of young men and of expanding the role of women in the military, the Navy conducted a national telephone survey to gauge the interest of women and men in joining the military under present conditions and under three alternative options. The options related to expanding the role of…

  15. An efficient abnormal cervical cell detection system based on multi-instance extreme learning machine

    NASA Astrophysics Data System (ADS)

    Zhao, Lili; Yin, Jianping; Yuan, Lihuan; Liu, Qiang; Li, Kuan; Qiu, Minghui

    2017-07-01

    Automatic detection of abnormal cells from cervical smear images is extremely demanded in annual diagnosis of women's cervical cancer. For this medical cell recognition problem, there are three different feature sections, namely cytology morphology, nuclear chromatin pathology and region intensity. The challenges of this problem come from feature combination s and classification accurately and efficiently. Thus, we propose an efficient abnormal cervical cell detection system based on multi-instance extreme learning machine (MI-ELM) to deal with above two questions in one unified framework. MI-ELM is one of the most promising supervised learning classifiers which can deal with several feature sections and realistic classification problems analytically. Experiment results over Herlev dataset demonstrate that the proposed method outperforms three traditional methods for two-class classification in terms of well accuracy and less time.

  16. Refuting Data Aggregation Arguments and How the Instance-Based Learning Model Stands Criticism: A Reply to Hills and Hertwig (2012)

    ERIC Educational Resources Information Center

    Gonzalez, Cleotilde; Dutt, Varun

    2012-01-01

    Hills and Hertwig (2012) challenge the proposed similarity of the exploration-exploitation transitions found in Gonzalez and Dutt (2011) between the 2 experimental paradigms of decisions from experience (sampling and repeated-choice), which was predicted by an instance-based learning (IBL) model. The heart of their argument is that in the sampling…

  17. Family Away from Home: Factors Influencing Undergraduate Women of Color's Decisions to Join a Cultural-Specific Sorority

    ERIC Educational Resources Information Center

    Delgado-Guerrero, Marla; Cherniack, Mayra A.; Gloria, Alberta M.

    2014-01-01

    This study sought to understand the reasons undergraduate women of color join a cultural-specific sorority. Through the use of an online survey, 159 narratives of women of color undergraduates attending predominately White institutions (PWIs) in the Midwest was conducted. LeCompte's (2000) 5-step analysis yielded four culturally focused…

  18. Ceramic-metal composite article and joining method

    DOEpatents

    Kang, Shinhoo; Selverian, John H.; Kim, Hans J.; Dunn, Edmund M.; Kim, Kyung S.

    1992-01-01

    A ceramic-metal article including a ceramic rod, a metal rod, and a braze joining the ceramic and metal rods at a braze area of a coaxial bore in the metal rod. The bore gradually decreases in diameter, having an inward seat area sized for close sliding fit about the ceramic, a larger brazing area near the joint end, and a void area intermediate the braze and seat areas. The ceramic is seated without brazing in the bore seat area. The side wall between the brazing area and the metal outer surface is about 0.030-0.080 inch. The braze includes an inner braze layer, an outer braze layer, and an interlayer about 0.030-0.090 inch thick. A shoulder between the brazing and void areas supports the interlayer during bonding while preventing bonding between the void area and the ceramic member, leaving a void space between the void area and the ceramic member. A venting orifice extends generally radially through the metal member from the outer surface to the void space. The braze layers are palladium, platinum, gold, silver, copper, nickel, indium, chromium, molybdenum, niobium, iron, aluminum, or alloys thereof. Preferred is a gold-palladium-nickel brazing alloy. The interlayer is nickel, molybdenum, copper, tantalum, tungsten, niobium, aluminum, cobalt, iron, or an alloy thereof.

  19. Ceramic-metal composite article and joining method

    DOEpatents

    Kang, S.; Selverian, J.H.; Kim, H.J.; Dunn, E.M.; Kim, K.S.

    1992-04-28

    A ceramic-metal article including a ceramic rod, a metal rod, and a braze joining the ceramic and metal rods at a braze area of a coaxial bore in the metal rod is described. The bore gradually decreases in diameter, having an inward seat area sized for close sliding fit about the ceramic, a larger brazing area near the joint end, and a void area intermediate the braze and seat areas. The ceramic is seated without brazing in the bore seat area. The side wall between the brazing area and the metal outer surface is about 0.030-0.080 inch. The braze includes an inner braze layer, an outer braze layer, and an interlayer about 0.030-0.090 inch thick. A shoulder between the brazing and void areas supports the interlayer during bonding while preventing bonding between the void area and the ceramic member, leaving a void space between the void area and the ceramic member. A venting orifice extends generally radially through the metal member from the outer surface to the void space. The braze layers are palladium, platinum, gold, silver, copper, nickel, indium, chromium, molybdenum, niobium, iron, aluminum, or alloys thereof. Preferred is a gold-palladium-nickel brazing alloy. The interlayer is nickel, molybdenum, copper, tantalum, tungsten, niobium, aluminum, cobalt, iron, or an alloy thereof. 4 figs.

  20. Biomimetic-inspired joining of composite with metal structures: A survey of natural joints and application to single lap joints

    NASA Astrophysics Data System (ADS)

    Avgoulas, Evangelos Ioannis; Sutcliffe, Michael P. F.

    2014-03-01

    Joining composites with metal parts leads, inevitably, to high stress concentrations because of the material property mismatch. Since joining composite to metal is required in many high performance structures, there is a need to develop a new multifunctional approach to meet this challenge. This paper uses the biomimetics approach to help develop solutions to this problem. Nature has found many ingenious ways of joining dissimilar materials and making robust attachments, alleviating potential stress concentrations. A literature survey of natural joint systems has been carried out, identifying and analysing different natural joint methods from a mechanical perspective. A taxonomy table was developed based on the different methods/functions that nature successfully uses to attach dissimilar tissues (materials). This table is used to understand common themes or approaches used in nature for different joint configurations and functionalities. One of the key characteristics that nature uses to joint dissimilar materials is a transitional zone of stiffness in the insertion site. Several biomimetic-inspired metal-to-composite (steel-to-CFRP), adhesively bonded, Single Lap Joints (SLJs) were numerically investigated using a finite element analysis. The proposed solutions offer a transitional zone of stiffness of one joint part to reduce the material stiffness mismatch at the joint. An optimisation procedure was used to identify the variation in material stiffness which minimises potential failure of the joint. It was found that the proposed biomimetic SLJs reduce the asymmetry of the stress distribution along the adhesive area.

  1. Judgments relative to patterns: how temporal sequence patterns affect judgments and memory.

    PubMed

    Kusev, Petko; Ayton, Peter; van Schaik, Paul; Tsaneva-Atanasova, Krasimira; Stewart, Neil; Chater, Nick

    2011-12-01

    Six experiments studied relative frequency judgment and recall of sequentially presented items drawn from 2 distinct categories (i.e., city and animal). The experiments show that judged frequencies of categories of sequentially encountered stimuli are affected by certain properties of the sequence configuration. We found (a) a first-run effect whereby people overestimated the frequency of a given category when that category was the first repeated category to occur in the sequence and (b) a dissociation between judgments and recall; respondents may judge 1 event more likely than the other and yet recall more instances of the latter. Specifically, the distribution of recalled items does not correspond to the frequency estimates for the event categories, indicating that participants do not make frequency judgments by sampling their memory for individual items as implied by other accounts such as the availability heuristic (Tversky & Kahneman, 1973) and the availability process model (Hastie & Park, 1986). We interpret these findings as reflecting the operation of a judgment heuristic sensitive to sequential patterns and offer an account for the relationship between memory and judged frequencies of sequentially encountered stimuli.

  2. Automated detection of age-related macular degeneration in OCT images using multiple instance learning

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Liu, Xiaoming; Yang, Zhou

    2017-07-01

    Age-related Macular Degeneration (AMD) is a kind of macular disease which mostly occurs in old people,and it may cause decreased vision or even lead to permanent blindness. Drusen is an important clinical indicator for AMD which can help doctor diagnose disease and decide the strategy of treatment. Optical Coherence Tomography (OCT) is widely used in the diagnosis of ophthalmic diseases, include AMD. In this paper, we propose a classification method based on Multiple Instance Learning (MIL) to detect AMD. Drusen can exist in a few slices of OCT images, and MIL is utilized in our method. We divided the method into two phases: training phase and testing phase. We train the initial features and clustered to create a codebook, and employ the trained classifier in the test set. Experiment results show that our method achieved high accuracy and effectiveness.

  3. Relationship between acoustic voice onset and offset and selected instances of oscillatory onset and offset in young healthy males and females

    PubMed Central

    Patel, Rita; Forrest, Karen; Hedges, Drew

    2016-01-01

    Objective To investigate the relationship between (1) onset of the acoustic signal and pre-phonatory phases associated with oscillatory onset and (2) offset of the acoustic signal with the post-phonatory events associated with oscillatory offset across vocally healthy adults. Subjects and Methods High-speed videoendoscopy was captured simultaneously with the acoustic signal during repeated production of /hi.hi.hi/ at typical pitch and loudness from 56 vocally healthy adults (age 20–42 years; 21 male, 35 female). The relationship between the acoustic sound pressure signal and oscillatory onset /offset events from the glottal area waveforms (GAW), were statistically investigated using a multivariate linear regression analysis. Results The onset of the acoustic signal (X1a) is a significant predictor of the onset of first oscillations (X1g) and onset of sustained oscillations (X2g). X1a as well as gender are significant predictors of the first instance of medial contact (X1.5g). The offset of the acoustic signal (X2a) is a significant predictor of the first instance of oscillatory offset (X3g), first instance of incomplete glottal closure (X3.5g), and cessation of vocal fold motion (X4g). Conclusions The acoustic signal onset is closely related to the first medial contact of the vocal folds but the latency between these events is longer for females compared to males. The offset of the acoustic signal occurs immediately after incomplete glottal adduction. The emerging normative group latencies between the onset/offset of the acoustic and the GAW from this study appear promising for future investigations. PMID:27769696

  4. TRF2/RAP1 and DNA–PK mediate a double protection against joining at telomeric ends

    PubMed Central

    Bombarde, Oriane; Boby, Céline; Gomez, Dennis; Frit, Philippe; Giraud-Panis, Marie-Josèphe; Gilson, Eric; Salles, Bernard; Calsou, Patrick

    2010-01-01

    DNA-dependent protein kinase (DNA-PK) is a double-strand breaks repair complex, the subunits of which (KU and DNA-PKcs) are paradoxically present at mammalian telomeres. Telomere fusion has been reported in cells lacking these proteins, raising two questions: how is DNA–PK prevented from initiating classical ligase IV (LIG4)-dependent non-homologous end-joining (C-NHEJ) at telomeres and how is the backup end-joining (EJ) activity (B-NHEJ) that operates at telomeres under conditions of C-NHEJ deficiency controlled? To address these questions, we have investigated EJ using plasmid substrates bearing double-stranded telomeric tracks and human cell extracts with variable C-NHEJ or B-NHEJ activity. We found that (1) TRF2/RAP1 prevents C-NHEJ-mediated end fusion at the initial DNA–PK end binding and activation step and (2) DNA–PK counteracts a potent LIG4-independent EJ mechanism. Thus, telomeres are protected against EJ by a lock with two bolts. These results account for observations with mammalian models and underline the importance of alternative non-classical EJ pathways for telomere fusions in cells. PMID:20407424

  5. Why Children Join and Stay in Sports Clubs: Case Studies in Australian, French and German Swimming Clubs

    ERIC Educational Resources Information Center

    Light, Richard L.; Harvey, Stephen; Memmert, Daniel

    2013-01-01

    This article builds upon research on youth sport clubs conducted from a socio-cultural perspective by reporting on a study that inquired into the reasons why children aged 9-12 joined swimming clubs in France, Germany and Australia. Comprising three case studies it employed a mixed method approach with results considered within the framework of…

  6. Impact of Nonlinearity of The Contact Layer Between Elements Joined in a Multi-Bolted System on Its Preload

    NASA Astrophysics Data System (ADS)

    Grzejda, R.

    2017-12-01

    The paper deals with modelling and calculations of asymmetrical multi-bolted joints at the assembly stage. The physical model of the joint is based on a system composed of four subsystems, which are: a couple of joined elements, a contact layer between the elements, and a set of bolts. The contact layer is assumed as the Winkler model, which can be treated as a nonlinear or linear model. In contrast, the set of bolts are modelled using simplified beam models, known as spider bolt models. The theorem according to which nonlinearity of the contact layer has a negligible impact on the final preload of the joint in the case of its sequential tightening has been verified. Results of sample calculations for the selected multi-bolted system, in the form of diagrams of preloads in the bolts as well as normal contact pressure between the joined elements during the assembly process and at its end, are presented.

  7. Redundant function of DNA ligase 1 and 3 in alternative end-joining during immunoglobulin class switch recombination.

    PubMed

    Masani, Shahnaz; Han, Li; Meek, Katheryn; Yu, Kefei

    2016-02-02

    Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammals and resolves the DSBs generated during both V(D)J recombination in developing lymphocytes and class switch recombination (CSR) in antigen-stimulated B cells. In contrast to the absolute requirement for NHEJ to resolve DSBs associated with V(D)J recombination, DSBs associated with CSR can be resolved in NHEJ-deficient cells (albeit at a reduced level) by a poorly defined alternative end-joining (A-EJ) pathway. Deletion of DNA ligase IV (Lig4), a core component of the NHEJ pathway, reduces CSR efficiency in a mouse B-cell line capable of robust cytokine-stimulated CSR in cell culture. Here, we report that CSR levels are not further reduced by deletion of either of the two remaining DNA ligases (Lig1 and nuclear Lig3) in Lig4(-/-) cells. We conclude that in the absence of Lig4, Lig1, and Lig3 function in a redundant manner in resolving switch region DSBs during CSR.

  8. Boeing technicians join Node 1 for ISS to PMA-1 in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Boeing technicians join Node 1 for the International Space Station (ISS) with the Pressurized Mating Adapter (PMA)-1 in KSC's Space Station Processing Facility. This PMA, identifiable by its bright red ring, is a cone-shaped connector for the space station's structural building block, known as Node 1. Seen here surrounded by scaffolding, Node 1 will have two PMAs attached, the second of which is scheduled for mating to the node in January 1998. The node and PMAs, which will be the first element of the ISS, are scheduled to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998.

  9. Practice patterns and job satisfaction in fellowship-trained endocrine surgeons.

    PubMed

    Tsinberg, Michael; Duh, Quan-Yang; Cisco, Robin M; Gosnell, Jessica E; Scholten, Anouk; Clark, Orlo H; Shen, Wen T

    2012-12-01

    Debates about the difficult job market for young endocrine surgeons are ongoing. This study aimed to analyze the practice patterns and work-related satisfaction levels of recently trained endocrine surgeons. An anonymous survey was utilized. Participants were divided into 3 groups: "Young" (<3 years in practice), "middle" (3-5 years), and "older" (>5 years). Fifty-six of 78 surgeons (72%) responded to the survey. Time in practice ranged from 1 to 9 years (mean, 3.9 ± 0.28). Forty-five (80%) described their practice as academic. Participants performed 244.1 ± 17.8 operations within the last year; 75.4 ± 3.3% were endocrine cases. More surgeons in the "young" group have academic practices (92%) and joined established endocrine surgery groups (54%) versus older surgeons (67% and 42%; P = .05). Of surgeons in the "young" group, 4% started their own practice versus 33% in the "older" group (P = .04). Level of satisfaction with financial compensation (3.2 on a 4-point scale versus 2.9) and lifestyle (3.6 vs 3.1) was also higher in the younger group (P = .009). Despite widespread speculation about scarcity of academic jobs after fellowship, recently trained endocrine surgeons are more likely to practice in academic settings and join established endocrine surgery practices when compared with older surgeons. Overall satisfaction level is higher among recently trained surgeons. Copyright © 2012 Mosby, Inc. All rights reserved.

  10. Autocorrelation analysis of the infrared spectra of synthetic and biogenic carbonates along the calcite-dolomite join

    NASA Astrophysics Data System (ADS)

    Jenkins, David M.; Holmes, Zachary F.; Ishida, Kiyotaka; Manuel, Phillip D.

    2018-01-01

    Autocorrelation analysis of infrared spectra can provide insights on the strain energy associated with cation substitutions along a solid-solution compositional join which to date has been applied primarily to silicate minerals. In this study, the method is applied to carbonates synthesized at 10 mol% increments along the calcite-dolomite (CaCO3-CaMg(CO3)2) join in the range of 1000-1150 °C and 0.6-2.5 GPa for the purpose of determining how the band broadening in both the far- and mid-infrared ranges, as represented by the autocorrelation parameter δΔCorr, compares with the existing enthalpy of mixing data for this join. It was found that the carbonate internal vibration ν2 (out-of-plane bending) in the mid-infrared range, and the sum of the three internal vibration modes ν4 + ν2 + ν3 most closely matched the enthalpy of mixing data for the synthetic carbonates. Autocorrelation analysis of a series of biogenic carbonates in the mid-infrared range showed only a systematic variation for the ν2 band. Using the biogenic carbonate with the lowest Mg content for reference, the trend in δΔCorr for biogenic carbonates shows a steady increase with increasing Mg content suggesting a steady increase in solubility with Mg content. The results from this study indicate that autocorrelation analysis of carbonates in the mid-infrared range provides an independent and reliable assessment of the crystallographic strain energy of carbonates. In particular, inorganic carbonates in the range of 0-17 mol% MgCO3 experience a minimum in strain energy and a corresponding minimum in the enthalpy of mixing, whereas biogenic carbonates show a steady increase in strain energy with increasing MgCO3 content. In the event of increasing ocean acidification, biogenic carbonates in the range of 0-17 mol% MgCO3 will dissolve more readily than the compositionally equivalent inorganic carbonates.

  11. Autocorrelation analysis of the infrared spectra of synthetic and biogenic carbonates along the calcite-dolomite join

    NASA Astrophysics Data System (ADS)

    Jenkins, David M.; Holmes, Zachary F.; Ishida, Kiyotaka; Manuel, Phillip D.

    2018-06-01

    Autocorrelation analysis of infrared spectra can provide insights on the strain energy associated with cation substitutions along a solid-solution compositional join which to date has been applied primarily to silicate minerals. In this study, the method is applied to carbonates synthesized at 10 mol% increments along the calcite-dolomite (CaCO3-CaMg(CO3)2) join in the range of 1000-1150 °C and 0.6-2.5 GPa for the purpose of determining how the band broadening in both the far- and mid-infrared ranges, as represented by the autocorrelation parameter δΔCorr, compares with the existing enthalpy of mixing data for this join. It was found that the carbonate internal vibration ν2 (out-of-plane bending) in the mid-infrared range, and the sum of the three internal vibration modes ν4 + ν2 + ν3 most closely matched the enthalpy of mixing data for the synthetic carbonates. Autocorrelation analysis of a series of biogenic carbonates in the mid-infrared range showed only a systematic variation for the ν2 band. Using the biogenic carbonate with the lowest Mg content for reference, the trend in δΔCorr for biogenic carbonates shows a steady increase with increasing Mg content suggesting a steady increase in solubility with Mg content. The results from this study indicate that autocorrelation analysis of carbonates in the mid-infrared range provides an independent and reliable assessment of the crystallographic strain energy of carbonates. In particular, inorganic carbonates in the range of 0-17 mol% MgCO3 experience a minimum in strain energy and a corresponding minimum in the enthalpy of mixing, whereas biogenic carbonates show a steady increase in strain energy with increasing MgCO3 content. In the event of increasing ocean acidification, biogenic carbonates in the range of 0-17 mol% MgCO3 will dissolve more readily than the compositionally equivalent inorganic carbonates.

  12. Indian oil company joins efforts to reduce methane emissions

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    The Oil and Natural Gas Corp, Ltd. (ONGC), headquartered in Dehradun, India, has joined seven U.S. and Canadian oil and natural gas companies as a partner in a U.S. Environmental Protection Agency program to reduce greenhouse gas emissions. EPA's Natural Gas STAR International Program aims to reduce methane emissions from the oil and natural gas sector while delivering more gas to markets around the world. With this partnership, ONGC agrees to implement emissions reduction practices and to submit annual reports on progress achieved; EPA agrees to assist ONGC with training technicians in new cost-effective technologies that will help achieve target emissions. The Natural Gas STAR International Program is administered under the Methane to Markets Partnership, a group of 20 countries and 600 companies across the globe that since 2004 has volunteered to cut methane emissions. More information on EPA's agreement with ONGC can be found at http://www.epa.gov/gasstar/index.htm; information about the Methane to Markets Partnership can be found at http://www.methanetomarkets.org.

  13. A review of recent developments in joining high-performance thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Cole, K. C.

    1991-06-01

    There is currently a great deal of interest in the use of thermoplastic polymers as matrices in fiber reinforced composites for high performance applications, such as those encountered in the aerospace industry. These materials include polyether ether ketone (PEEK), polyphenylene sulphide (PPS), polyetherimide (PEI), polyamideimide (PAI), polyamides, polyimides, and polysulphones. A literature review is provided on the different ways of joining high performance thermoplastic composites by adhesive and fusion bonding. The discussion on adhesive bonding includes examination of the performance of specific adhesive/thermoplastic combinations and of techniques for the preparation of composite surfaces: abrasion, etching, flame, and plasma treatments. Thermoplastic composite welding techniques discussed in depth include the following: heated press welding, resistance welding, induction welding, and ultrasonic welding. Works which examine or compare applications for these bonding techniques are also reviewed.

  14. An innovative platform for quick and flexible joining of assorted DNA fragments

    DOE PAGES

    De Paoli, Henrique Cestari; Tuskan, Gerald A.; Yang, Xiaohan

    2016-01-13

    Successful synthetic biology efforts rely on conceptual and experimental designs in combination with testing of multi-gene constructs. Despite recent progresses, several limitations still hinder the ability to flexibly assemble and collectively share different types of DNA segments. We describe an advanced system for joining DNA fragments from a universal library that automatically maintains open reading frames (ORFs) and does not require linkers, adaptors, sequence homology, amplification or mutation (domestication) of fragments in order to work properly. Moreover, we find that this system, which is enhanced by a unique buffer formulation, provides unforeseen capabilities for testing, and sharing, complex multi-gene circuitrymore » assembled from different DNA fragments.« less

  15. The role of the non-homologous end-joining pathway in lymphocyte development.

    PubMed

    Rooney, Sean; Chaudhuri, Jayanta; Alt, Frederick W

    2004-08-01

    One of the most toxic insults a cell can incur is a disruption of its linear DNA in the form of a double-strand break (DSB). Left unrepaired, or repaired improperly, these lesions can result in cell death or neoplastic transformation. Despite these dangers, lymphoid cells purposely introduce DSBs into their genome to maximize the diversity and effector functions of their antigen receptor genes. While the generation of breaks requires distinct lymphoid-specific factors, their resolution requires various ubiquitously expressed DNA-repair proteins, known collectively as the non-homologous end-joining pathway. In this review, we discuss the factors that constitute this pathway as well as the evidence of their involvement in two lymphoid-specific DNA recombination events.

  16. Rigorous joining of advanced reduced-dimensional beam models to three-dimensional finite element models

    NASA Astrophysics Data System (ADS)

    Song, Huimin

    In the aerospace and automotive industries, many finite element analyses use lower-dimensional finite elements such as beams, plates and shells, to simplify the modeling. These simplified models can greatly reduce the computation time and cost; however, reduced-dimensional models may introduce inaccuracies, particularly near boundaries and near portions of the structure where reduced-dimensional models may not apply. Another factor in creation of such models is that beam-like structures frequently have complex geometry, boundaries and loading conditions, which may make them unsuitable for modeling with single type of element. The goal of this dissertation is to develop a method that can accurately and efficiently capture the response of a structure by rigorous combination of a reduced-dimensional beam finite element model with a model based on full two-dimensional (2D) or three-dimensional (3D) finite elements. The first chapter of the thesis gives the background of the present work and some related previous work. The second chapter is focused on formulating a system of equations that govern the joining of a 2D model with a beam model for planar deformation. The essential aspect of this formulation is to find the transformation matrices to achieve deflection and load continuity on the interface. Three approaches are provided to obtain the transformation matrices. An example based on joining a beam to a 2D finite element model is examined, and the accuracy of the analysis is studied by comparing joint results with the full 2D analysis. The third chapter is focused on formulating the system of equations for joining a beam to a 3D finite element model for static and free-vibration problems. The transition between the 3D elements and beam elements is achieved by use of the stress recovery technique of the variational-asymptotic method as implemented in VABS (the Variational Asymptotic Beam Section analysis). The formulations for an interface transformation matrix and

  17. Making Complex Electrically Conductive Patterns on Cloth

    NASA Technical Reports Server (NTRS)

    Chu, Andrew; Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Scully, Robert C.; Trevino, Robert

    2008-01-01

    A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as 'e-textiles,' in which electrically conductive patterns ar formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits. The present method overcomes the limitations of the prior methods for forming the equivalent of printed circuits on cloth. A typical fabrication process according to the present method involves selecting the appropriate conductive and non-conductive fabric layers to build the e-textile circuit. The present method uses commercially available woven conductive cloth with established surface conductivity specifications. Dielectric constant, loss tangent, and thickness are some of the parameters to be considered for the non-conductive fabric layers. The circuit design of the conductive woven fabric is secured onto a non-conductive fabric layer using sewing, embroidery, and/or adhesive means. The portion of the conductive fabric that is not part of the circuit is next cut from the desired circuit using an automated machine such as a printed-circuit-board milling machine or a laser cutting machine. Fiducials can be used to align the circuit and the cutting machine. Multilayer circuits can be built starting with the inner layer and using conductive thread to make electrical connections between layers.

  18. Automatic detection and recognition of multiple macular lesions in retinal optical coherence tomography images with multi-instance multilabel learning

    NASA Astrophysics Data System (ADS)

    Fang, Leyuan; Yang, Liumao; Li, Shutao; Rabbani, Hossein; Liu, Zhimin; Peng, Qinghua; Chen, Xiangdong

    2017-06-01

    Detection and recognition of macular lesions in optical coherence tomography (OCT) are very important for retinal diseases diagnosis and treatment. As one kind of retinal disease (e.g., diabetic retinopathy) may contain multiple lesions (e.g., edema, exudates, and microaneurysms) and eye patients may suffer from multiple retinal diseases, multiple lesions often coexist within one retinal image. Therefore, one single-lesion-based detector may not support the diagnosis of clinical eye diseases. To address this issue, we propose a multi-instance multilabel-based lesions recognition (MIML-LR) method for the simultaneous detection and recognition of multiple lesions. The proposed MIML-LR method consists of the following steps: (1) segment the regions of interest (ROIs) for different lesions, (2) compute descriptive instances (features) for each lesion region, (3) construct multilabel detectors, and (4) recognize each ROI with the detectors. The proposed MIML-LR method was tested on 823 clinically labeled OCT images with normal macular and macular with three common lesions: epiretinal membrane, edema, and drusen. For each input OCT image, our MIML-LR method can automatically identify the number of lesions and assign the class labels, achieving the average accuracy of 88.72% for the cases with multiple lesions, which better assists macular disease diagnosis and treatment.

  19. Optical Measurement of Cell Colonization Patterns on Individual Suspended Sediment Aggregates

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu Ha; Tang, Fiona H. M.; Maggi, Federico

    2017-10-01

    Microbial processes can make substantial differences to the way in which particles settle in aquatic environments. A novel method (OMCEC, optical measurement of cell colonization) is introduced to systematically map the biological spatial distribution over individual suspended sediment aggregates settling through a water column. OMCEC was used to investigate (1) whether a carbon source concentration has an impact on cell colonization, (2) how cells colonize minerals, and (3) if a correlation between colonization patterns and aggregate geometry exists. Incubations of Saccharomyces cerevisiae and stained montmorillonite at four sucrose concentrations were tested in a settling column equipped with a full-color microparticle image velocimetry system. The acquired high-resolution images were processed to map the cell distribution on aggregates based on emission spectra separation. The likelihood of cells colonizing minerals increased with increasing sucrose concentration. Colonization patterns were classified into (i) scattered, (ii) well touched, and (iii) poorly touched, with the second being predominant. Cell clusters in well-touched patterns were found to have lower capacity dimension than those in other patterns, while the capacity dimension of the corresponding aggregates was relatively high. A strong correlation of colonization patterns with aggregate biomass fraction and properties suggests dynamic colonization mechanisms from cell attachment to minerals, to joining of isolated cell clusters, and finally cell growth over the entire aggregate. This paper introduces a widely applicable method for analyses of microbial-affected sediment dynamics and highlights the microbial control on aggregate geometry, which can improve the prediction of large-scale morphodynamics processes.

  20. Joining of Zirconium Diboride-Based Ceramic Composites to Metallic Systems for High-Temperature Applications

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Singh, M.

    2008-01-01

    Three types of hot-pressed zirconium diboride (ZrB2)-based ultra-high-temperature ceramic composites (UHTCC), ZrB2-SiC (ZS), ZrB2-SiC-C (ZSC), and ZrB2-SCS9-SiC (ZSS), were joined to Cu-clad-Mo using two Ag-Cu brazes (Cusil-ABA and Ticusil, T(sub L) approx.1073-1173 K) and two Pd-base brazes (Palco and Palni, T(sub L) approx.1493-1513 K). Scanning Electron Microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS) revealed greater chemical interaction in joints made using Pd-base brazes than in joints made using Ag-Cu based active brazes. The degree of densification achieved in hot pressed composites influenced the Knoop hardness of the UHTCC and the hardness distribution across the braze interlayer. The braze region in Pd-base system displayed higher hardness in joints made using fully-dense ZS composites than in joints made using partially-dense ZSS composites and the carbon-containing ZSC composites. Calculations indicate a small negative elastic strain energy and an increase in the UHTCC's fracture stress up to a critical clad layer thickness . Above this critical thickness, strain energy in the UHTCC is positive, and it increases with increasing clad layer thickness. Empirical projections show a reduction in the effective thermal resistance of the joints and highlight the potential benefits of joining the UHTCC to Cu-clad-Mo.